

Water Licence Annual Report

2023

Northwest Territories Power Corporation Jackfish Power Generation Facility

Water Licence no. MV2019L1-0001

SUBMITTED TO:
MACKENZIE VALLEY LAND AND WATER BOARD

MARCH 2024

TABLE OF CONTENTS

SECT	ΓΙΟΝ		PAGE NO.		
Table	e of Cont	cents	i		
List of Tables					
List c	ist of Figures				
List of Abbreviations					
Table	e of Cond	cordance	V		
Conf	ormity T	able	vi		
1	Intro	duction	1		
2	Proje	ct Activities	4		
3	Surve	eillance Network Program	4		
4	Wate	er Usage Records	4		
5	Calib	ration and Status of Meters and Devices	9		
6	Enga	gement	9		
7	Modi	fications and Major Maintenance	10		
8	Mana	Management Plan Revisions			
	8.1	Waste Management	10		
	8.2	Closure and Reclamation	10		
9	AEMI	P Monitoring Results	10		
	9.1	Thermal Plume Delineation Study	10		
	9.2	AEMP Design Plan 2023	11		
10	Spills		11		
	10.1	Spill Training Exercises	11		
	10.2	Unauthorized Discharges	11		
11	Regu	latory Requirements	11		
	11.1	Outstanding Submissions and Non-compliances	13		
	11.2	Annual Water Licence Inspection	13		
12	Othe	r Board Requests	13		
Closu	ure		14		
Appe	endix A –	Surveillance Network Program Data	1		
Appe	endix B –	Groundwater Monitoring Report	1		

LIST OF TABLES

		PAGE NO
Table 4-1	2023 Monthly and Annual Water Use at the Jackfish Facility	9
Table 11-1	Regulatory Communications in 2023	12

LIST OF FIGURES

		PAGE NO
Figure 1-1	Jackfish Hydroelectric Power Generation Facility	2
Figure 1-2	Jackfish Lake Generating Station	3
Figure 4-1	Mean Daily Water Temperature Recorded at the SNP Stations Associated with the K Plant i 2023	n 6
Figure 4-2	Mean Daily Water Temperatures Recorded at the SNP Stations Associated with the EMD Plant in 2023	7
Figure 4-3	Mean Daily Water Temperatures Recorded at the SNP Stations Associated with the CAT Plant in 2023	8

LIST OF ABBREVIATIONS

AEMP Aquatic Effects Monitoring Program

BTEX benzene, toluene, ethylbenzene, and xylenes

CRP Closure and Reclamation Plan

GNWT Government of Northwest Territories

MVLWB Mackenzie Valley Land and Water Board

NTPC Northwest Territories Power Corporation

ORS Online Review System

SNP Surveillance Network Program

TABLE OF CONCORDANCE

The following table of concordance has been provided by the Northwest Territories Power Corporation (NTPC) to track non-conformances for Water Licence MV2019L1-0001 and how they were addressed in 2023.

Source and Topic	Comment	2023 Addressed (Yes/No)
Missing Surveillance Network Program (SNP) Reports	The following Surveillance Network Program Monthly Monitoring Reports remain outstanding: • 2023: April	Outstanding April 2023 data is being provided with this Annual Report.
Missing Plans	Operations Maintenance and Surveillance Manual	No. NTPC submitted the Operations, Maintenance, and Surveillance Manual to the MVLWB on February 26, 2021. Initially this updated version was meant to incorporate the updated monitoring equipment but given that the equipment is not fully installed and/or commissioned this is the same version of the OMS Manual that was submitted and revised as part of the water licence renewal process. NTPC is required to resubmit an updated version with the updated equipment included. NTPC expects to provide an updated OMS Manual in 2025.
Missing Reports	AEMP Design Plan	No. NTPC requested deferral of the AEMP Design Plan submission until July 31, 2023. The MVLWB approved the deferral request on April 29, 2021. After public review in 2023, NTPC requested additional deferral of the Plan resubmission until February 26, 2024. The MVLWB approved the request on January 26, 2024.

AEMP - Aquatic Effect Monitoring Program; MVLWB - Mackenzie Valley Land and Water Board

CONFORMITY TABLE

The following table shows conformity with Schedule 1 of the Water Licence.

Water Licence MV2019L1-0001 Annual Report Requirements	Section in this Report
1. a) A brief summary of Project activities.	2
1. b) The monthly and annual quantities in cubic metres of fresh Water obtained from all sources and thermal data from intake and Discharge data loggers, as required in Part B, condition 14 and Part C, condition 1 of this Licence.	4
1. c) A summary of the calibration and status of the meters and devices referred to in Part B, condition 14 of this Licence.	5
1. d) A summary of engagement activities conducted in accordance with the approved Engagement Plan, referred to in Part B, condition 17 of this Licence.	6
1. e) A summary of modification activities conducted in accordance with Part D of this Licence.	7
1. f) A summary of major maintenance activities conducted in accordance with this Licence.	7
1. g) A summary of activities conducted in accordance with the approved Waste Management Plan, referred to in Part E, condition 2 of this Licence, including: i. A summary of approved updates or changes to the process or facilities required for the management of Waste; ii. A summary of approved updates or changes to the process or facilities required for the management of Waste	8.1
1. h) A summary of monitoring results and any Action Level exceedances as per the approved AEMP, required in Part F, condition 7 of this Licence	9
 i) A summary of activities conducted in accordance with the approved Spill Contingency Plan, required in Part G, condition 2 of this Licence, including: i. A list and description for all Unauthorized Discharges, including the date, NWT spill number, volume, location, summary of the circumstances and follow-up actions taken, and status (i.e. open or closed), in accordance with the reporting requirements in Part G, condition 4 of this Licence; and ii. An outline of any spill training carried out. 	10
1. j) A summary of any Closure and Reclamation work completed	8.2

Water Licence MV2019L1-0001 Annual Report Requirements	Section in this Report
1. k) Tabular summaries of all data and information generated under the monthly SNP annexed to this Licence, in Excel format	3, Appendix A and B
1. I) A list of any non-compliance(s) with the conditions of this Licence or any directive from the Board pursuant to the conditions of this Licence	Table of Concordance, 11.1
1. m) A summary of actions taken to address concerns, non-conformances, or deficiencies in any reports filed by an Inspector	11.2
1. n) Any other details requested by the Board by November 1 of the year being reported.	12

1 INTRODUCTION

This 2023 Water Licence Annual Report has been prepared for submission by Northwest Territories Power Corporation (NTPC) to the Mackenzie Valley Land and Water Board (MVLWB) as part of the requirements of Type A Water Licence MV2019L1-0001, Part B, Condition 15, and Schedule 1 (the Water Licence), reporting of operations between January 1 and December 31, 2023. The Water Licence regulates the use of water and the deposit of waste for industrial activities at the Jackfish Hydroelectric Power Generation Facility (Jackfish Facility), including withdrawal of water for the cooling of the power generators, depositing of waste, and progressive reclamation and associated closure and reclamation activities. The Water Licence became effective on October 18, 2019, and will expire on October 17, 2044.

NTPC operates the Jackfish Facility on Jackfish Lake, near Yellowknife, Northwest Territories. The facility is a dieseloperated electricity generation station, and through the Water Licence, NTPC uses water from Jackfish Lake to cool the facility generators.

Four water intakes exit on Jackfish Lake (two intakes for K Plant, and one each for the EMD Plant and the CAT Plant). After the water is used for cooling, it is returned to Jackfish Lake via three discharges. NTPC operated the Jackfish Facility for the purposes of standby and continuous power during the 2023 calendar year.

Figure 1-1 provides an overview of the Jackfish Facility location and Figure 1-2 shows an aerial view of the Jackfish Facility.

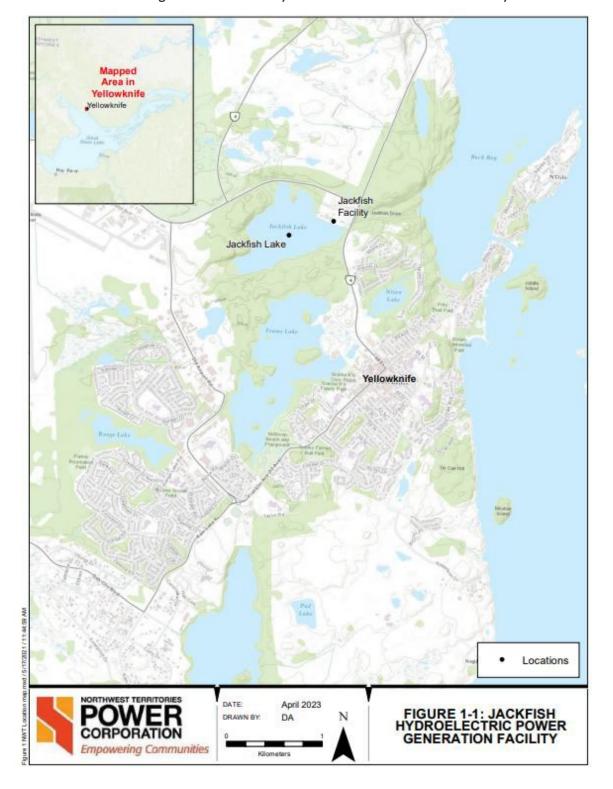


Figure 1-1 Jackfish Hydroelectric Power Generation Facility

Figure 1-2 Jackfish Lake Generating Station

2 PROJECT ACTIVITIES

No significant projects were completed at the Jackfish Facility in 2023. Regular maintenance was completed on the diesel units to prepare for higher generation in winter 2023, as a result of the low-water situation in the Snare system. In 2023, NTPC initiated a project to add a 4 to 5-megawatt genset to the Jackfish Facility to further support reliability of the Snare system. Procurement and design work were completed in 2023. Installation and completion of the project is expected in late 2024.

3 SURVEILLANCE NETWORK PROGRAM

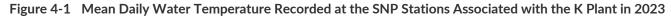
Tabulated SNP temperature data and laboratory results in Appendix A. The tabulated data are also included in digital format (.xlsx file) and are submitted with this report.

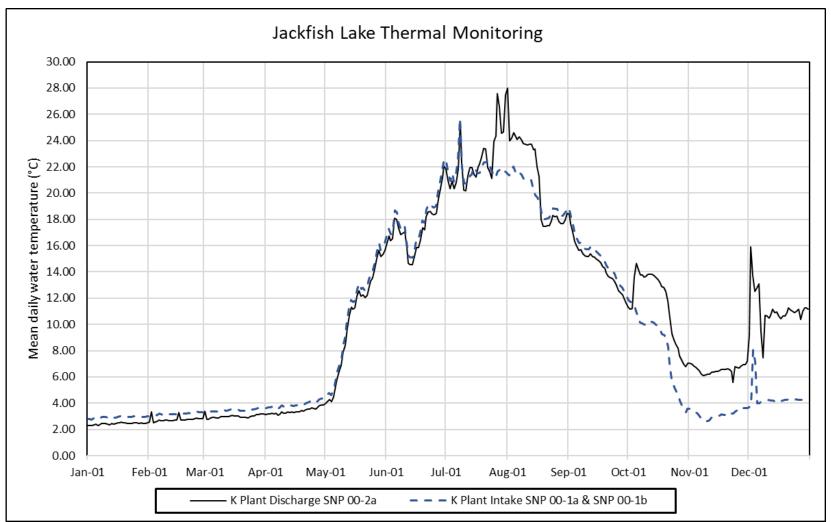
Groundwater samples were collected at SNP Stations JF01-06 and MW2 in July and October 2023. The samples were shipped to ALS Environmental in Edmonton, AB, for laboratory analysis. ALS is accredited by the Canadian Association for Laboratory Accreditation (member number 1352). Results are included in Appendix B.

4 WATER USAGE RECORDS

In situ water temperature (°C) data are continuously recorded by electronic data loggers at 15-minute intervals at the following locations at the Jackfish Facility:

- K Plant intake 1 SNP Station 00-1a
- K Plant intake 2 SNP Station 00-1b
- EMD Plant intake SNP Station 00-1c
- CAT Plant intake SNP Station 00-1d
- K Plant discharge SNP Station 00-2a
- EMD Plant discharge SNP Station 00-2b
- CAT Plant discharge SNP Station 00-2c


The mean daily water temperature records for the intakes and discharge from the K Plant, EMD Plant, and CAT Plant are presented in Figure 4-1, Figure 4-2, and Figure 4-3, respectively. The in-plant data logger for the EMD Plant was offline from 07:45 January 28, 2023, to 10:45 February 2, 2023. Temperature data for this period is not available. Flow data has been estimated based on the average usage between January 1 and January 27.


Tabulated data of the mean daily water temperature are provided in Appendix A. The tabulated data are also included in digital format (.xlsx file) and are available on the MVLWB public registry. Table 4-1 summarizes the monthly and annual water use by the Jackfish Facility. Per Condition C.1 of the Water Licence, the daily water use did not exceed 50,000 m³/day during 2023.

Beginning in fall 2022, there has been a significant increase in the amount of diesel generation at the Jackfish Facility due to low water in the Snare system. Low water continued throughout 2023 and is expected to continue into 2024. Discharge temperatures at the CAT, EMD Plant were variable throughout the year and later in the year for the K Plant

Northwest Territories Power Corporation 2023 Jackfish Annual Report Water Licence no. MV2019L1-0001

due to changes in system demand and which units were run from one day to the next. Engines were run at the three plants based on planned maintenance activities, unexpected downtime, and community loads.

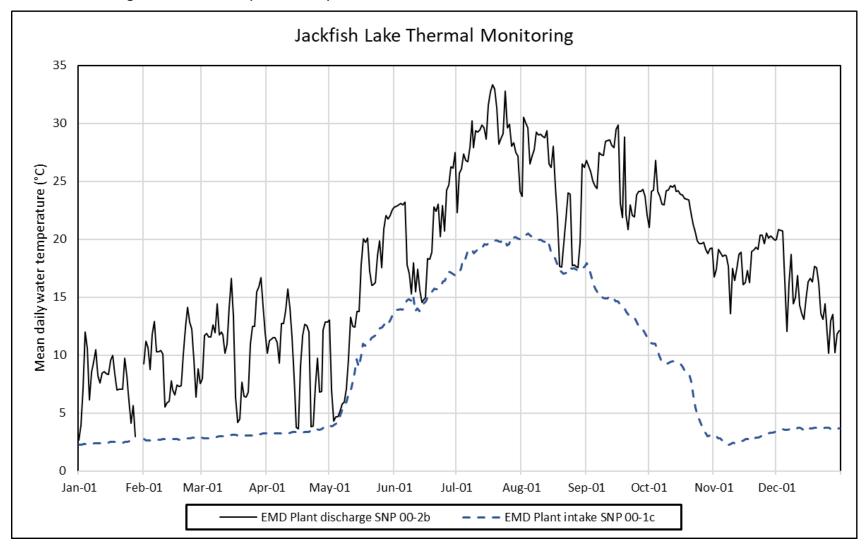


Figure 4-2 Mean Daily Water Temperatures Recorded at the SNP Stations Associated with the EMD Plant in 2023

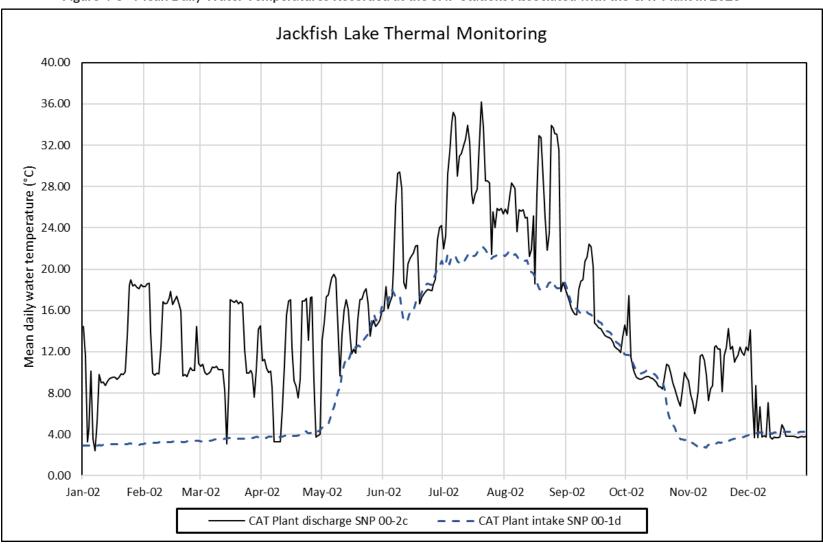


Figure 4-3 Mean Daily Water Temperatures Recorded at the SNP Stations Associated with the CAT Plant in 2023

Table 4-1 2023 Monthly and Annual Water Use at the Jackfish Facility

Month	Daily Mean (m³)	Monthly Total (m³)	
January	18,546	574,941	
February	17,531	490,875	
March	23,233	720,236	
April	17,651	529,522	
May	17,913	555,313	
June	17,762	532,850	
July	18,908	586,137	
August	18,684	579,195	
September	17,438	523,139	
October	19,383	600,866	
November	20,097	602,907	
December	32,267	1,000,262	
Annual Total		7,296,242	

5 CALIBRATION AND STATUS OF METERS AND DEVICES

NTPC initiated automatic flow and temperature monitoring in 2022 for the raw water cooling systems at the Jackfish Facility. As a result of power supply interruptions to the data logger, there were several data gaps in 2022. To mitigate this issue, in 2023 NTPC started to transfer the data logger power supply to uninterruptable power supply–protected circuits, which will eliminate the need for the calibration of the meters. This project was still in progress at December 31, 2023 and will be completed in 2024.

6 ENGAGEMENT

As required by the approved Engagement Plan, (Part B, condition 17 of the Licence), NTPC openly engages with potentially affected water users and the public regarding the North Slave electrical system by providing information about, when required:

- Electricity generation, transmission, and distribution on the NTPC website (<u>www.ntpc.com</u>)
- Power outages, safety, employment opportunities, community investments, and other matters through:
 - Facebook (https://www.facebook.com/NTPC-Northwest-Territories-Power-Corporation-591764887576712)
 - Twitter (https://twitter.com/ntpc_news)
- News releases about significant issues

- NTPC staff attendance at trade shows, conferences, and job fairs to engage directly with members of the public
- Placing paid advertising

No major project activities occurred in 2023 that required additional stakeholder engagement.

7 MODIFICATIONS AND MAJOR MAINTENANCE

No significant operational projects or modifications were undertaken in 2023.

8 MANAGEMENT PLAN REVISIONS

8.1 Waste Management

No updates or changes to the process or facilities occurred in 2023 that required management of waste as outlined in the approved Waste Management Plan (Part E, condition 2 of the Licence).

8.2 Closure and Reclamation

No updates or changes to the Interim Closure and Reclamation Plan V1.1 (CRP) were made in 2023.

9 AEMP MONITORING RESULTS

A summary of monitoring results and any action level exceedances as per the approved AEMP, required in Part F, condition 7 of this Licence will be provided after the first AEMP report is submitted to MVLWB in 2024. The approved timeline for the AEMP is as follows:

- May 31, 2021: Thermal Plume Delineation Study Design
- February 28, 2023: Thermal Plume Delineation Study Report
- February 26, 2024: AEMP Design Plan (incorporates results from the Thermal Plume Delineation Study)
- March 31, 2024: AEMP Annual Report

9.1 Thermal Plume Delineation Study

NTPC carried out the thermal plume delineation study in 2022. The results of the study indicated that the Jackfish Facility has negligible impact on the temperature in Jackfish Lake, reflecting the highly intermittent nature and low heat of loads discharged to the lake by the facility. The thermal plume delineation study was submitted to the MVLWB on February 28, 2023. The report underwent online public review and NTPC responded to comments from

 $^{^1 \}text{ WSP. 2023. Jackfish Lake} - \text{Thermal Plume Delineation Report.} \\ \underline{\text{https://registry.mvlwb.ca/Documents/MV2019L1-0001/NTPC\%20-\%20Jackfish\%20-\%20Thermal\%20Plume\%20Delineation\%20Study\%20Report\%20-\%20Mar9_23.pdf}$

Environment and Climate Change Canada (ECCC), the MVLWB and GNWT-ECC. MVLWB approved the Thermal Plume Delineation Study Report on June 30, 2023².

9.2 AEMP Design Plan 2023

Based on the results of the thermal plume delineation study, NTPC developed AEMP Design Plan with an adaptive management approach based on temperature values for initiation and further monitoring of water quality and biological components. The AEMP Design Plan was submitted to MVLWV on July 31, 2023, and has completed the online public review. NTPC addressed the requirements from Environment and Climate Change Canada (ECCC) and the MVLWB. Due to the commissioning for the Taltson Overhaul Project and staff allocation needs, NTPC requested an extension for the resubmission of the revised AEMP Design Plan V1.1 from January 26, 2024, to February 26, 2024. MVLWB approved and granted the request to extend the submission date on January 26, 2024.

10 SPILLS

10.1 Spill Training Exercises

All new employees received training for the Spill Response Plan, spill response training, an introduction to the Hazardous Waste Management Plan, and the environmental management system. Training requirements are reviewed and renewed every 3 years. Spill procedures and contact numbers are posted in the plant control room, and spill kits are outside each facility. Spill response equipment was reviewed and updated in 2019, resulting in additional or replacement spill response kits being placed at key locations throughout the site as identified in the Spill Response Plan.

Spill training is mandatory and is completed by all employees. The spill training is approximately 1.5 hours and covers the following topics:

- Facility site specifics
- Health and safety
- Spill response
- General cleanup

On October 17, 2023, 11 NTPC staff members received spill training.

10.2 Unauthorized Discharges

No spills or Unauthorized Discharges occurred in 2023.

11 REGULATORY REQUIREMENTS

Table 11-1 present communication between NTPC and MVLWB in 2023.

 $^{^2\,\}text{MVLWB.\,2023.\,Thermal\,Plume\,Report\,-\,V1.1\,-Board\,Staff\,Conformity.\,} \underline{\text{https://registry.mvlwb.ca/Documents/MV2019L1-0001/NTPC\%20-\%20Jackfish\%20-\%20Thermal\%20Plume\%20Report\%20-\%20V1.1\%20-\%20Board\%20Staff\%20Conformity\%20-\%20Jun30_23.pdf}$

Table 11-1 Regulatory Communications in 2023

Date	Communications
January 16	NTPC requested an extension for Thermal Plume Delineation Study Report and Thermal Plume Design to February 28, 2023, to allow more time to review and interpret data from the Thermal Plume Study.
February 28	NTPC submitted the Thermal Plume Delineation Study Report together with attached cover letter.
March 7	MVLWB requested changes to the Thermal Plume Delineation Study including combining Appendix D into all one appendix, combining appendix E into all one appendix and the ensuring the report is compressed and unsecured.
March 7	MVLWB send a letter to NTPC with granted Thermal Plume Delineation Study Report submission date extension to March 7, 2023.
March 7	MVLWB attached a letter of approval of the Compliance Date Change in an email to NTPC and stated to contact Tyree Mullaney for any questions.
March 16	NTPC requested an extension of the AEMP Design Plan to July 31, 2023, to ensure any comments from public review if the Thermal Plume Delineation Study Report are incorporated into the AEMP. NTPC also states they apologize for not including this request with the previous deferral request and in the future, NTPC will include deferral requests for studies that are connected in one submission for efficiency. NTPC attached a former letter requesting former extension for the submission of the AEMP Design Plan under Water MV2019L1-0001.
May 17	MVLWB sent a letter to NTPC with granted submission date extension for AEMP Design Plan to July 31, 2023.
May 31	MVLWB attached revisions required document for the Thermal Plume Delineation Study Report submitted by NTPC on March 7th, 2023. MVLWB stated to contact Kathy Racher for any questions.
May 31	MVLWB send a letter requestion revisions to the Thermal Plume Delineation Study Report.
June 28	NTPC sent an email re-submitting the Thermal Plume Delineation Study Report In accordance with the MVLWB decision letter dated May 31, 2023. NTPC attached a cover letter and informed MVLWB of all the documents that have been shared via the FTP site.
June 30	MVLWB approved the resubmitted version of Thermal Plume Delineation Study Report V1.1.
July 31	NTPC Submitted AEMP Design Plan V1.0 to MVLWB.
November 4	NTPC sent an email to MVLWB requesting an extension for the AEMP public review for the Jackfish Power Generation Facility to allow NTPC to properly engage with internal stakeholders and provide responses to questions received during the public review period. NTPC also attached a cover letter for the extension request.

Date	Communications				
November 6	MVLWB responded to NTPC's email requesting an extension for the AEMP public review and approved the request.				
November 23	Email with attached NTPC's ORS responses to be included for the public review of the Jackfish AEMP Design Plan as required under Part F, Condition 2 for Type A Water Licence MV2019L1-0001. NTPC stated they also have large data files that will be sent in a separate email.				
December 2	MVLWB sent a follow up email to NTPC regarding the request from November 28, 2023.				
December 21	MVLWB sent a letter requestion revisions to the AEMP Design Plan V1.0.				

11.1 Outstanding Submissions and Non-compliances

- The Jackfish Lake Generating Facility Operations, Maintenance, and Surveillance Manual is still outstanding.
- The AEMP Design Plan remains outstanding.
- AEMP Annual Report was required to be submitted on March 31, 2023, and no later than March 31 of each
 year thereafter, to comply with Condition 5, Part F. Due to the deferral of the AEMP Design Plan submission,
 the AEMP Annual Report remains outstanding.
- No Annual Review documents were submitted to MVLWB to comply with Condition 7, Part B.

11.2 Annual Water Licence Inspection

The annual Water Licence inspection was completed for the Jackfish Facility on August 9, 2023, by GNWT – Environment and Climate Change Water Resource Officer Meaghan MacIntyre-Newell. The Inspector recommended that NTPC check all groundwater wells and ensure each well on the property has an appropriate cap. The Inspector also recommended NTPC add appropriate signage to flow measurement devices used as SNP stations. NTPC has labelled the flow measurement devices as per the Inspectors recommendation, and caps will be added once well maintenance has been completed in 2024. No other major deficiencies were recorded during the inspection³.

12 OTHER BOARD REQUESTS

There were no other requests from the MVLWB relating to operating procedures before November 1, 2023.

³GNWT-ECC. 2023. Annual Inspection Report 2023. https://registry.mvlwb.ca/Documents/MV2019L1-0001/NTPC%20-%20Jackfish%20-%20Inspection%20Report%20-%20August%209,%202023%20-%20Sep25_23.pdf

CLOSURE

This 2023 Annual Report for the Jackfish Facility was prepared for Northwest Territories Power Corporation to meet the requirements of Water Licence MV2019L1-0001.

Respectfully submitted,

Belinda Whitford, CPA Chief Operating Officer

Northwest Territories Power Corporation

APPENDIX A - SURVEILLANCE NETWORK PROGRAM DATA

This appendix summarizes the water temperature data for the Surveillance Network Program for the Jackfish Facility. Tabulated summaries of data generated in digital format (.xlsx files) are attached to this report submission.

The in-plant data logger for the EMD Plant was offline from 07:45 January 28, 2023. to 10:45 February 2, 2023. Temperature data for this period is not available. Flow data has been estimated based on the average usage between January 1 and January 27.

Table A-1 Surveillance Network Program Water Temperature Monitoring Data for the Jackfish Facility

Date	CAT Plant Discharge (°C)	CAT Plant Intake (°C)	EMP Plant Discharge (°C)	EDM Plant Intake (°C)	K Plant Discharge (°C)	K Plant Intake (°C)
2023-01-01	14.52	2.91	2.63	2.28	2.28	2.77
2023-01-02	14.45	2.91	3.96	2.27	2.27	2.76
2023-01-03	11.58	2.91	7.14	2.30	2.27	2.76
2023-01-04	3.31	2.91	11.97	2.34	2.36	2.85
2023-01-05	4.53	2.90	10.60	2.35	2.38	2.87
2023-01-06	10.15	2.91	6.13	2.35	2.30	2.79
2023-01-07	3.52	2.87	8.53	2.33	2.36	2.86
2023-01-08	2.43	2.90	9.43	2.36	2.43	2.93
2023-01-09	5.20	2.95	10.47	2.40	2.47	2.96
2023-01-10	9.81	2.96	8.20	2.40	2.44	2.93
2023-01-11	8.99	2.95	7.61	2.40	2.40	2.90
2023-01-12	9.06	2.98	8.45	2.43	2.36	2.85
2023-01-13	8.70	2.96	8.60	2.43	2.44	2.92
2023-01-14	9.15	2.99	8.42	2.44	2.39	2.87
2023-01-15	9.38	3.01	8.35	2.44	2.43	2.92
2023-01-16	9.45	3.02	9.55	2.48	2.48	2.97
2023-01-17	9.54	3.04	9.98	2.50	2.51	3.01
2023-01-18	9.50	3.06	8.31	2.51	2.54	3.03
2023-01-19	9.32	3.04	6.99	2.49	2.48	2.97
2023-01-20	9.54	3.00	7.08	2.47	2.50	2.98
2023-01-21	9.84	3.02	7.06	2.46	2.47	2.96
2023-01-22	9.80	3.02	7.04	2.47	2.46	2.95
2023-01-23	10.08	3.04	9.72	2.50	2.47	2.97
2023-01-24	13.52	3.08	8.19	2.52	2.52	3.01
2023-01-25	18.44	3.09	6.03	2.54	2.51	3.00
2023-01-26	19.00	3.09	4.14	2.54	2.49	2.98
2023-01-27	18.39	3.04	5.62	2.52	2.47	2.95

Date	CAT Plant Discharge (°C)	CAT Plant Intake (°C)	EMP Plant Discharge (°C)	EDM Plant Intake (°C)	K Plant Discharge (°C)	K Plant Intake (°C)
2023-01-28	18.52	3.05	2.96	2.50	2.48	2.96
2023-01-29	18.24	3.03	N/A	N/A	2.47	2.94
2023-01-30	18.12	3.01	N/A	N/A	2.47	2.95
2023-01-31	18.49	3.08	N/A	N/A	2.51	2.99
2023-02-01	18.29	3.08	9.26	2.74	2.53	3.00
2023-02-02	18.30	3.12	11.20	2.60	3.33	3.02
2023-02-03	18.60	3.09	10.62	2.61	2.50	2.97
2023-02-04	18.67	3.09	8.76	2.61	2.56	3.03
2023-02-05	13.95	3.15	11.84	2.62	2.62	3.10
2023-02-06	9.96	3.18	12.91	2.68	2.70	3.18
2023-02-07	9.72	3.16	10.30	2.67	2.66	3.14
2023-02-08	9.96	3.16	10.31	2.66	2.65	3.13
2023-02-09	9.83	3.23	10.41	2.69	2.69	3.17
2023-02-10	12.46	3.28	10.11	2.75	2.73	3.21
2023-02-11	16.84	3.29	5.51	2.75	2.68	3.16
2023-02-12	16.66	3.25	5.88	2.72	2.66	3.14
2023-02-13	16.70	3.26	6.04	2.72	2.66	3.14
2023-02-14	17.17	3.25	7.78	2.73	2.69	3.17
2023-02-15	17.83	3.26	6.97	2.73	2.70	3.17
2023-02-16	16.57	3.29	6.53	2.75	3.26	3.19
2023-02-17	16.98	3.26	7.42	2.75	2.69	3.16
2023-02-18	17.34	3.24	7.30	2.68	2.73	3.19
2023-02-19	16.71	3.29	7.37	2.74	2.72	3.18
2023-02-20	16.01	3.31	10.09	2.79	2.74	3.21
2023-02-21	9.64	3.28	12.34	2.78	2.79	3.26
2023-02-22	9.77	3.26	14.15	2.80	2.75	3.22
2023-02-23	9.57	3.29	12.85	2.82	2.74	3.21
2023-02-24	10.11	3.36	12.20	2.88	2.80	3.27
2023-02-25	10.47	3.40	9.53	2.86	2.85	3.34
2023-02-26	10.22	3.37	6.40	2.83	2.81	3.29
2023-02-27	10.16	3.36	8.80	2.83	2.81	3.29
2023-02-28	14.45	3.38	7.51	2.83	2.83	3.31
2023-03-01	10.88	3.39	7.94	2.87	3.40	3.26
2023-03-02	10.60	3.32	11.68	2.82	2.75	3.23

Date	CAT Plant Discharge (°C)	CAT Plant Intake (°C)	EMP Plant Discharge (°C)	EDM Plant Intake (°C)	K Plant Discharge (°C)	K Plant Intake (°C)
2023-03-03	10.76	3.32	11.85	2.83	2.77	3.26
2023-03-04	10.01	3.36	11.59	2.84	2.86	3.34
2023-03-05	9.77	3.39	11.56	2.89	2.90	3.37
2023-03-06	9.91	3.39	12.63	2.91	2.91	3.39
2023-03-07	10.05	3.41	11.95	2.90	2.87	3.36
2023-03-08	10.50	3.47	14.42	2.94	2.88	3.37
2023-03-09	10.44	3.52	11.76	3.00	2.96	3.45
2023-03-10	10.57	3.55	12.00	3.00	2.98	3.47
2023-03-11	10.25	3.53	11.75	3.01	2.96	3.45
2023-03-12	10.24	3.52	10.16	2.99	2.95	3.43
2023-03-13	10.25	3.54	10.98	3.01	2.96	3.44
2023-03-14	8.26	3.58	14.15	3.06	3.02	3.51
2023-03-15	3.10	3.60	16.64	3.10	3.06	3.55
2023-03-16	8.62	3.67	13.34	3.13	3.02	3.51
2023-03-17	17.04	3.66	6.35	3.12	3.04	3.53
2023-03-18	16.94	3.62	4.16	3.07	3.01	3.49
2023-03-19	16.77	3.59	4.46	3.04	2.93	3.42
2023-03-20	16.96	3.57	7.64	3.01	2.92	3.41
2023-03-21	16.65	3.61	6.41	3.06	2.92	3.41
2023-03-22	16.83	3.60	6.35	3.04	2.92	3.41
2023-03-23	16.67	3.61	6.80	3.07	2.88	3.37
2023-03-24	12.28	3.60	10.95	3.07	2.97	3.46
2023-03-25	9.93	3.61	12.47	3.08	3.02	3.51
2023-03-26	9.90	3.61	12.47	3.10	3.04	3.52
2023-03-27	10.22	3.63	15.46	3.15	3.10	3.59
2023-03-28	9.86	3.68	15.91	3.20	3.12	3.61
2023-03-29	7.57	3.70	16.70	3.20	3.19	3.68
2023-03-30	10.29	3.75	14.18	3.23	3.17	3.66
2023-03-31	14.22	3.73	11.88	3.24	3.18	3.67
2023-04-01	14.54	3.72	10.16	3.23	3.12	3.61
2023-04-02	11.11	3.69	11.26	3.20	3.19	3.68
2023-04-03	11.25	3.75	11.38	3.24	3.18	3.68
2023-04-04	10.38	3.68	11.52	3.21	3.24	3.73
2023-04-05	9.97	3.75	11.51	3.23	3.19	3.68

Date	CAT Plant Discharge (°C)	CAT Plant Intake (°C)	EMP Plant Discharge (°C)	EDM Plant Intake (°C)	K Plant Discharge (°C)	K Plant Intake (°C)
2023-04-06	10.12	3.76	11.06	3.25	3.22	3.71
2023-04-07	8.51	3.75	9.30	3.24	3.09	3.58
2023-04-08	3.26	3.72	12.69	3.21	3.19	3.69
2023-04-09	3.30	3.76	12.70	3.23	3.31	3.81
2023-04-10	3.31	3.78	13.86	3.24	3.26	3.75
2023-04-11	3.27	3.73	15.69	3.25	3.25	3.74
2023-04-12	6.50	3.81	14.05	3.28	3.33	3.83
2023-04-13	10.67	3.88	11.50	3.33	3.29	3.79
2023-04-14	15.49	3.92	8.06	3.38	3.32	3.82
2023-04-15	16.94	3.95	3.73	3.39	3.30	3.80
2023-04-16	17.04	3.84	3.64	3.29	3.32	3.81
2023-04-17	12.38	3.87	8.99	3.30	3.33	3.83
2023-04-18	9.18	3.84	11.66	3.28	3.35	3.85
2023-04-19	8.69	3.85	12.63	3.37	3.42	3.93
2023-04-20	7.51	3.91	12.57	3.37	3.40	3.90
2023-04-21	9.35	3.94	12.01	3.38	3.50	3.99
2023-04-22	16.93	4.09	3.84	3.47	3.56	4.06
2023-04-23	16.94	4.17	3.89	3.51	3.56	4.07
2023-04-24	17.15	4.29	7.26	3.65	3.66	4.17
2023-04-25	13.15	4.13	9.75	3.59	3.61	4.11
2023-04-26	17.24	4.12	6.81	3.54	3.54	4.03
2023-04-27	17.32	4.27	6.88	3.63	3.63	4.14
2023-04-28	9.14	4.37	12.18	3.75	3.81	4.32
2023-04-29	3.78	4.25	12.83	3.75	3.84	4.36
2023-04-30	3.86	4.33	12.87	3.74	3.84	4.37
2023-05-01	4.01	4.47	13.02	3.88	3.94	4.47
2023-05-02	13.14	4.67	6.97	3.83	4.12	4.64
2023-05-03	14.80	4.69	4.31	3.96	4.26	4.74
2023-05-04	17.30	4.77	4.67	4.10	4.14	4.60
2023-05-05	17.52	4.93	4.64	4.30	4.47	4.99
2023-05-06	18.59	5.52	5.16	4.81	5.05	5.59
2023-05-07	19.20	6.19	5.74	5.38	5.86	6.42
2023-05-08	19.50	6.69	5.98	5.62	6.39	6.92
2023-05-09	19.11	7.51	7.08	6.02	6.87	7.40

Date	CAT Plant Discharge (°C)	CAT Plant Intake (°C)	EMP Plant Discharge (°C)	EDM Plant Intake (°C)	K Plant Discharge (°C)	K Plant Intake (°C)
2023-05-10	14.35	8.24	9.72	6.51	7.95	8.51
2023-05-11	9.66	8.47	13.24	6.79	8.40	8.96
2023-05-12	13.71	9.83	12.49	7.59	9.70	10.26
2023-05-13	16.07	10.62	12.43	8.45	10.68	11.24
2023-05-14	17.03	11.32	13.75	9.61	11.29	11.85
2023-05-15	16.14	11.08	13.76	8.95	11.17	11.68
2023-05-16	13.35	11.54	17.84	9.82	11.25	11.81
2023-05-17	11.81	12.37	20.03	10.99	12.13	12.69
2023-05-18	12.29	12.44	19.77	10.83	12.54	13.09
2023-05-19	11.89	12.44	20.12	11.17	12.13	12.68
2023-05-20	15.17	12.64	17.21	11.16	12.26	12.79
2023-05-21	17.04	12.50	16.01	11.46	12.03	12.57
2023-05-22	17.14	12.61	16.09	11.56	12.22	12.78
2023-05-23	17.77	13.14	16.25	11.69	12.88	13.42
2023-05-24	18.08	13.42	18.58	12.06	13.32	13.87
2023-05-25	16.65	13.70	19.87	12.32	13.56	14.13
2023-05-26	13.55	14.11	17.56	12.41	14.24	14.78
2023-05-27	14.43	14.99	20.91	12.60	15.01	15.61
2023-05-28	15.02	15.59	22.03	12.94	15.64	16.18
2023-05-29	14.43	14.98	21.76	12.77	15.15	15.68
2023-05-30	14.70	15.26	22.05	13.09	15.32	15.87
2023-05-31	15.07	15.63	22.57	13.52	15.63	16.20
2023-06-01	15.88	16.46	22.82	13.79	16.20	16.77
2023-06-02	15.96	16.53	22.88	13.90	16.72	17.29
2023-06-03	18.31	16.50	22.95	13.91	16.34	16.87
2023-06-04	16.21	16.78	23.10	14.00	16.53	17.13
2023-06-05	16.87	17.45	22.97	13.92	18.10	18.68
2023-06-06	17.38	17.98	23.23	14.23	17.99	18.54
2023-06-07	20.26	17.71	17.81	14.68	17.28	17.81
2023-06-08	26.11	17.20	17.08	14.83	16.82	17.36
2023-06-09	29.25	17.08	15.30	14.68	16.96	17.52
2023-06-10	29.39	17.29	17.98	15.22	17.04	17.58
2023-06-11	27.80	15.82	15.48	13.78	15.77	16.25
2023-06-12	18.70	15.08	17.41	14.00	14.66	15.18

Date	CAT Plant Discharge (°C)	CAT Plant Intake (°C)	EMP Plant Discharge (°C)	EDM Plant Intake (°C)	K Plant Discharge (°C)	K Plant Intake (°C)
2023-06-13	18.08	14.91	15.58	13.82	14.53	15.08
2023-06-14	20.48	15.11	14.53	14.21	14.54	15.10
2023-06-15	21.01	15.74	14.76	14.43	15.17	15.73
2023-06-16	21.39	16.05	14.99	14.66	15.84	16.39
2023-06-17	21.53	16.09	18.33	15.04	15.85	16.42
2023-06-18	22.20	16.82	18.28	15.19	16.47	17.02
2023-06-19	22.31	17.32	18.88	15.48	17.33	17.91
2023-06-20	16.67	17.24	22.78	15.72	17.22	17.77
2023-06-21	17.25	17.83	22.44	15.67	18.18	18.73
2023-06-22	17.57	18.16	23.01	15.73	18.55	19.13
2023-06-23	17.86	18.45	20.25	15.87	18.60	19.15
2023-06-24	18.01	18.60	22.89	16.33	18.38	18.93
2023-06-25	17.96	18.55	20.74	16.42	18.36	18.90
2023-06-26	17.90	18.49	24.23	16.99	18.44	19.00
2023-06-27	18.54	19.12	24.71	17.21	19.53	20.11
2023-06-28	19.00	19.60	26.25	17.15	20.30	20.88
2023-06-29	22.81	20.05	26.12	16.99	21.18	21.79
2023-06-30	24.06	20.38	27.48	16.91	22.04	22.61
2023-07-01	24.24	20.80	22.31	16.95	21.84	22.37
2023-07-02	21.96	20.36	25.69	17.02	20.94	21.47
2023-07-03	23.23	20.34	26.11	17.50	20.34	20.91
2023-07-04	29.18	21.30	27.37	18.35	20.90	21.48
2023-07-05	31.39	20.46	26.79	18.29	20.34	20.88
2023-07-06	34.26	21.22	26.69	18.94	20.80	21.38
2023-07-07	35.19	21.33	27.97	18.96	21.82	22.50
2023-07-08	34.72	21.19	30.25	19.13	25.34	25.67
2023-07-09	29.01	20.75	27.93	18.80	22.31	21.98
2023-07-10	30.94	20.63	29.35	18.97	20.24	20.78
2023-07-11	31.21	20.43	29.25	19.15	20.18	20.74
2023-07-12	31.91	20.61	29.47	19.32	21.32	20.95
2023-07-13	32.58	20.92	29.85	19.30	21.96	21.34
2023-07-14	33.91	21.24	29.65	19.61	21.94	21.38
2023-07-15	32.25	21.60	28.66	19.54	21.40	21.97
2023-07-16	27.31	21.43	31.55	19.65	21.22	21.77

Date	CAT Plant Discharge (°C)	CAT Plant Intake (°C)	EMP Plant Discharge (°C)	EDM Plant Intake (°C)	K Plant Discharge (°C)	K Plant Intake (°C)
2023-07-17	26.34	21.29	32.75	19.76	21.99	21.51
2023-07-18	27.26	21.30	33.34	19.86	22.22	21.55
2023-07-19	27.73	21.69	33.00	19.90	22.71	22.05
2023-07-20	32.02	21.67	31.34	19.89	23.40	22.32
2023-07-21	36.19	21.89	28.21	19.84	23.36	22.35
2023-07-22	33.74	22.15	28.72	19.74	21.94	22.50
2023-07-23	28.54	21.91	29.15	19.93	21.61	22.17
2023-07-24	28.53	21.57	32.79	19.94	21.13	21.69
2023-07-25	28.34	21.26	29.61	19.47	23.95	21.45
2023-07-26	21.41	20.97	29.94	19.62	24.35	21.17
2023-07-27	25.55	21.19	28.05	20.17	27.58	21.67
2023-07-28	24.01	21.25	28.32	20.14	26.59	21.79
2023-07-29	25.90	21.37	27.47	20.20	24.54	21.53
2023-07-30	25.71	21.47	27.21	20.10	24.68	21.73
2023-07-31	25.90	21.41	24.14	20.02	27.50	21.62
2023-08-01	25.36	21.37	23.68	20.02	27.99	21.49
2023-08-02	25.81	21.26	30.51	20.11	23.97	21.35
2023-08-03	25.38	21.44	30.07	20.36	24.17	21.70
2023-08-04	26.87	21.76	29.62	20.50	24.58	22.02
2023-08-05	28.32	21.51	26.51	20.33	24.28	21.62
2023-08-06	28.16	21.33	27.21	20.19	24.08	21.39
2023-08-07	27.84	21.45	27.75	20.12	24.27	21.57
2023-08-08	23.64	21.18	29.26	20.00	24.10	21.40
2023-08-09	25.75	20.89	29.02	19.94	23.76	21.08
2023-08-10	25.60	20.87	29.10	19.97	23.70	21.01
2023-08-11	25.78	20.84	28.92	19.84	23.66	20.94
2023-08-12	24.97	20.77	28.76	19.75	23.72	20.99
2023-08-13	24.99	20.87	29.36	19.98	23.70	20.98
2023-08-14	21.24	20.22	26.51	19.48	23.29	20.28
2023-08-15	21.88	19.75	26.22	18.96	23.37	19.83
2023-08-16	25.16	19.58	28.01	18.65	22.00	19.65
2023-08-17	18.55	19.17	24.57	18.38	21.28	19.25
2023-08-18	27.32	18.59	21.72	17.86	18.01	18.54
2023-08-19	32.92	18.08	17.65	17.34	17.48	18.02

Date	CAT Plant Discharge (°C)	CAT Plant Intake (°C)	EMP Plant Discharge (°C)	EDM Plant Intake (°C)	K Plant Discharge (°C)	K Plant Intake (°C)
2023-08-20	32.71	18.04	17.60	17.18	17.45	18.01
2023-08-21	28.97	17.95	19.74	17.04	17.50	18.07
2023-08-22	24.94	18.07	21.79	17.09	17.54	18.09
2023-08-23	21.81	18.26	24.03	17.22	17.89	18.45
2023-08-24	23.52	18.67	23.88	17.57	18.28	18.84
2023-08-25	33.92	18.73	17.75	17.45	18.22	18.78
2023-08-26	33.65	18.85	17.81	17.52	18.25	18.80
2023-08-27	33.13	18.37	17.66	17.38	17.81	18.35
2023-08-28	33.03	18.13	17.56	17.28	17.69	18.26
2023-08-29	31.53	18.15	19.72	17.34	17.70	18.26
2023-08-30	17.83	18.43	26.53	17.53	17.92	18.48
2023-08-31	18.74	18.60	26.22	17.66	18.47	18.69
2023-09-01	18.15	18.76	26.84	17.92	18.42	18.92
2023-09-02	17.58	18.18	26.35	17.49	17.66	18.21
2023-09-03	16.96	17.55	25.82	16.91	17.07	17.61
2023-09-04	16.24	16.84	25.07	16.20	16.34	16.88
2023-09-05	15.82	16.41	24.59	15.73	15.95	16.50
2023-09-06	15.62	16.19	24.39	15.41	15.62	16.17
2023-09-07	15.55	16.13	27.50	15.45	15.67	16.22
2023-09-08	18.04	15.86	27.30	15.15	15.37	15.92
2023-09-09	18.84	15.69	27.24	14.95	15.23	15.78
2023-09-10	18.96	15.67	28.48	14.88	15.19	15.74
2023-09-11	20.73	15.69	28.52	14.91	15.15	15.71
2023-09-12	21.18	15.86	28.61	15.04	15.35	15.91
2023-09-13	22.41	15.68	28.12	14.87	15.19	15.74
2023-09-14	22.14	15.61	27.93	14.91	15.13	15.68
2023-09-15	20.24	15.44	29.48	14.68	14.95	15.50
2023-09-16	14.78	15.35	29.84	14.66	14.87	15.42
2023-09-17	14.57	15.15	23.11	14.42	14.69	15.23
2023-09-18	14.32	14.90	21.89	14.26	14.41	14.96
2023-09-19	14.24	14.82	28.84	14.12	14.29	14.84
2023-09-20	13.89	14.46	22.15	13.73	13.92	14.46
2023-09-21	13.58	14.15	20.85	13.52	13.68	14.24
2023-09-22	13.46	14.02	22.96	13.34	13.55	14.10

Date	CAT Plant Discharge (°C)	CAT Plant Intake (°C)	EMP Plant Discharge (°C)	EDM Plant Intake (°C)	K Plant Discharge (°C)	K Plant Intake (°C)
2023-09-23	13.41	13.98	22.05	13.34	13.51	14.06
2023-09-24	13.24	13.80	21.91	13.20	13.31	13.85
2023-09-25	12.94	13.51	23.85	12.83	12.98	13.52
2023-09-26	12.50	13.07	24.16	12.44	12.58	13.12
2023-09-27	12.32	12.88	24.16	12.23	12.43	12.96
2023-09-28	12.16	12.73	24.31	12.12	12.27	12.79
2023-09-29	11.91	12.47	23.68	11.84	11.99	12.51
2023-09-30	13.48	12.16	22.07	11.46	11.65	12.17
2023-10-01	14.58	11.79	21.04	11.19	11.32	11.85
2023-10-02	13.60	11.67	24.16	11.03	11.18	11.70
2023-10-03	17.45	11.72	24.23	11.00	11.20	11.73
2023-10-04	11.49	11.59	26.84	10.97	13.59	11.61
2023-10-05	10.46	10.99	24.11	10.41	14.67	11.05
2023-10-06	9.98	10.51	23.69	9.90	14.15	10.55
2023-10-07	9.55	10.08	23.01	9.46	13.75	10.12
2023-10-08	9.43	9.96	22.97	9.31	13.76	10.07
2023-10-09	9.34	9.87	24.22	9.25	13.62	9.98
2023-10-10	9.43	9.96	24.23	9.27	13.66	10.00
2023-10-11	9.52	10.05	24.62	9.39	13.81	10.18
2023-10-12	9.62	10.16	24.52	9.46	13.80	10.24
2023-10-13	9.58	10.11	24.68	9.46	13.80	10.20
2023-10-14	9.46	9.99	24.15	9.42	13.72	10.13
2023-10-15	9.38	9.91	24.16	9.29	13.56	9.98
2023-10-16	9.27	9.80	23.90	9.20	13.39	9.87
2023-10-17	9.08	9.60	23.81	8.96	13.14	9.63
2023-10-18	8.69	9.21	23.50	8.61	12.88	9.26
2023-10-19	8.63	9.14	23.48	8.50	12.83	9.21
2023-10-20	8.42	8.94	23.40	8.37	12.49	9.01
2023-10-21	9.57	8.29	22.33	7.67	11.77	8.27
2023-10-22	10.78	7.15	21.32	6.47	10.49	6.99
2023-10-23	10.67	5.96	20.67	5.40	9.27	5.80
2023-10-24	9.91	5.33	19.89	4.79	8.81	5.36
2023-10-25	9.00	4.97	19.61	4.36	8.45	4.99
2023-10-26	8.42	4.70	19.61	4.05	8.17	4.69

Date	CAT Plant Discharge (°C)	CAT Plant Intake (°C)	EMP Plant Discharge (°C)	EDM Plant Intake (°C)	K Plant Discharge (°C)	K Plant Intake (°C)
2023-10-27	7.94	4.17	19.73	3.64	7.63	4.21
2023-10-28	7.24	3.79	19.12	3.31	7.31	3.83
2023-10-29	6.77	3.53	18.75	2.97	6.98	3.55
2023-10-30	8.24	3.49	19.20	3.07	6.78	3.32
2023-10-31	9.98	3.48	19.24	3.09	7.04	3.58
2023-11-01	9.52	3.53	16.76	3.02	7.03	3.57
2023-11-02	9.20	3.46	17.41	3.03	6.96	3.55
2023-11-03	7.84	3.15	19.10	2.80	6.85	3.43
2023-11-04	7.11	3.16	18.80	2.78	6.71	3.29
2023-11-05	6.02	3.08	18.49	2.65	6.60	3.18
2023-11-06	6.76	2.91	18.65	2.54	6.46	3.01
2023-11-07	8.18	2.71	18.58	2.32	6.22	2.76
2023-11-08	11.56	2.66	17.67	2.26	6.07	2.66
2023-11-09	11.74	2.64	13.61	2.34	6.13	2.63
2023-11-10	11.20	2.77	17.47	2.43	6.19	2.61
2023-11-11	9.72	2.73	16.45	2.39	6.23	2.68
2023-11-12	7.26	2.95	17.50	2.47	6.36	2.89
2023-11-13	8.41	3.00	18.68	2.56	6.38	2.95
2023-11-14	8.76	2.98	18.87	2.54	6.41	2.95
2023-11-15	12.48	3.16	16.07	2.62	6.42	3.05
2023-11-16	12.62	3.13	16.28	2.73	6.47	3.04
2023-11-17	12.28	3.23	17.30	2.72	6.58	3.14
2023-11-18	12.27	3.20	16.26	2.80	6.55	3.11
2023-11-19	8.17	3.24	18.96	2.80	6.57	3.09
2023-11-20	11.65	3.39	19.09	2.70	6.63	3.26
2023-11-21	12.38	3.40	19.30	2.85	6.58	3.32
2023-11-22	14.28	3.32	19.13	2.89	6.41	3.22
2023-11-23	12.24	3.42	20.33	2.95	5.59	3.19
2023-11-24	12.53	3.48	20.32	3.06	6.79	3.37
2023-11-25	10.96	3.56	19.62	3.03	6.74	3.47
2023-11-26	11.31	3.58	20.51	3.13	6.65	3.40
2023-11-27	11.68	3.64	20.12	3.23	6.84	3.48
2023-11-28	12.43	3.66	20.28	3.27	6.92	3.60
2023-11-29	11.93	3.69	20.12	3.32	6.93	3.61

Date	CAT Plant Discharge (°C)	CAT Plant Intake (°C)	EMP Plant Discharge (°C)	EDM Plant Intake (°C)	K Plant Discharge (°C)	K Plant Intake (°C)
2023-11-30	11.64	3.80	19.90	3.34	7.19	3.62
2023-12-01	12.44	3.84	20.00	3.40	9.16	3.66
2023-12-02	12.11	3.90	20.84	3.46	15.87	3.90
2023-12-03	14.09	3.97	20.75	3.53	13.68	8.04
2023-12-04	7.52	3.99	20.73	3.59	12.50	7.19
2023-12-05	3.65	4.11	16.35	3.53	12.80	3.98
2023-12-06	8.74	4.09	12.08	3.55	13.08	4.00
2023-12-07	3.71	4.16	16.26	3.62	9.41	4.11
2023-12-08	6.64	4.16	18.68	3.65	7.44	4.10
2023-12-09	3.72	4.16	14.40	3.66	10.71	4.13
2023-12-10	3.87	4.19	14.99	3.62	10.65	4.20
2023-12-11	3.77	4.23	16.88	3.71	10.50	4.23
2023-12-12	7.04	4.22	14.29	3.70	10.71	4.18
2023-12-13	3.74	4.19	13.57	3.69	11.14	4.21
2023-12-14	3.58	4.04	13.06	3.56	10.89	4.16
2023-12-15	3.74	4.21	14.85	3.69	10.93	4.23
2023-12-16	3.71	4.18	16.30	3.62	10.64	4.20
2023-12-17	3.70	4.18	16.61	3.67	10.43	4.15
2023-12-18	3.76	4.23	16.31	3.67	10.64	4.21
2023-12-19	4.94	4.22	17.68	3.75	10.62	4.23
2023-12-20	4.55	4.24	17.57	3.75	10.91	4.23
2023-12-21	3.79	4.26	16.19	3.75	11.25	4.28
2023-12-22	3.82	4.28	13.57	3.73	11.12	4.29
2023-12-23	3.78	4.24	13.11	3.68	11.02	4.29
2023-12-24	3.78	4.25	14.45	3.73	10.90	4.25
2023-12-25	3.81	4.27	12.69	3.74	11.00	4.28
2023-12-26	3.78	4.23	10.17	3.69	11.18	4.26
2023-12-27	3.69	4.15	12.96	3.60	10.38	4.24
2023-12-28	3.76	4.22	13.52	3.68	11.00	4.26
2023-12-29	3.79	4.24	10.22	3.70	11.24	4.27
2023-12-30	3.77	4.23	11.84	3.69	11.26	4.28
2023-12-31	3.78	4.24	12.13	3.68	11.16	4.26

N/A – not available

APPENDIX B - GROUNDWATER MONITORING REPORT

2023 Groundwater Assessment

NTPC Jackfish Lake Power Generating Facility

As Part of Water Licence MV2019L1-001

2023 Assessment of Groundwater Water Quality

Northwest Territories Power Corporation Jackfish Lake Power Generating Facility, Yellowknife, NT 2023 Assessment of Groundwater Quality 23-099NT

March 27, 2024

EXECUTIVE SUMMARY

KBL Environmental Ltd. (KBL) is pleased to provide the following assessment report for the 2023 groundwater monitoring program performed at the Northwest Territories Power Corporation (NTPC) Jackfish Lake Generating Facility, Yellowknife, NT (hereafter referred to as "the Site"), as outlined in the water licence for the site (MV2019L1-0001).

On September 22, 2004, a diesel spill occurred at the Site. Remediation activities removed impacted material as much as possible, but as this is an active site, some areas of the Site could not be remediated due to access issues. In October of 2004, a recovery well was established to remove as much dissolved phase and free phase petroleum hydrocarbons (PHCs) as possible from the groundwater beneath the Site. During subsequent years, a complete network of monitoring wells was established across the Site and along the lakeshore to ensure there was no off-site migration of impacted groundwater. The recovery well was in operation until 2016, and monitoring of PHC contaminants in groundwater has continued to be conducted on a twice annual basis.

Historic reports provided to KBL indicate that detectable concentrations of PHC parameters have been reported in 11 out of 18 monitoring wells on the Site but these results were not compared to any regulatory guidelines. Wells that have historically reported detectable concentrations of PHCs in groundwater include pumping wells PW-01 and PW-02 and groundwater monitoring wells JF01-01, JF01-02, JF01-06, MW-02, MW-05, MW-06, MW-07, MW-09 and MW-10.

During the 2023 sampling events, detectable PHC concentrations were reported in pumping wells PW-01 and PW-02 and groundwater monitoring wells MW-05, MW-06, MW-07, MW-09, MW-10, and JF01 01. Concentrations of PHC parameters exceeding applicable regulatory guideline limits were reported in pumping wells PW-01 and PW-02 and groundwater monitoring wells MW-05, MW-06, and MW-07. All elevated concentrations of PHCs reported in groundwater are attributed to on-site operations at the Site.

Elevated dissolved metal parameters exceeding applicable regulatory guideline limits were reported in monitoring wells JF01-06 (Arsenic (As)) and MW-02 (As and Copper (Cu)). The reported dissolved metal parameter concentrations were similar to historical concentrations and were all within the same order of magnitude, leading to the assumption that they are naturally occurring.

During the 2023 groundwater monitoring events, a number of monitoring wells were identified as needing detailed inspection outside of the groundwater monitoring program. Pumping wells PW-01, PW-02 and PW-03 were observed not to have well caps. Pumping well PW-02 was identified as being screened all the way to surface. This creates a conduit for contaminants in surface water, spills and contaminated run-off to easily reach groundwater. As such, the well should be decommissioned and replaced with a properly constructed replacement well. Pumping well PW-03 is a large diameter well and was observed to have various debris inside it which may render groundwater samples collected from it invalid.

From the JF monitoring wells series, monitoring well JF01-01 was observed to be slanted or bent at ground surface and will require additional inspection and repair. Monitoring well JF01-02 appeared to be damaged to the point where groundwater samples could not be collected from it. Further inspection is required to determine if it should be repaired, replaced or decommissioned. Monitoring well JF01-03 was identified as having internal blockage and will need further inspection to see if it can be repaired. Monitoring well JF01-05 was dry during both sampling events

and detailed inspection is necessary to determine if groundwater samples can be collected from it in the future.

From the MW monitoring well series, monitoring well MW-01 appears to be damaged and groundwater samples could not be collected from it. Further inspection is required to determine if it should be repaired, replaced, or decommissioned. Monitoring well MW-09 was also identified as needing additional inspection for possible repair.

Detectable PHC parameter concentrations in groundwater appear to be the result of on-site activities and operations at the Site. A large quantity of visually impacted groundwater was collected and removed from the Site during the purging stage of the groundwater sampling; however, the groundwater PHC impacts appear to be persistent at the Site. KBL recommends that monitoring and sampling of the current monitoring well network continue, and proper well inspection be completed to determine if any of the existing wells require repair, replacement, or decommissioning.

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Background	1
3.0	Objective and Scope of Work	2
4.0	Regulatory Framework	2
4.1.	Surface Water	2
4.2.	Groundwater	2
5.0	Regional Geology	3
6.0	Topography and Drainage	3
7.0	Field Activities	3
7.1.	Field Inspections	3
7.2.	Monitoring and Sample Collection Methodology	3
7.3.	Monitoring Well Conditions	4
8.0	Quality Assurance & Quality Control (QA/QC)	5
8.1.	Blind Field Duplicates	5
8.2.	Zeiner Criteria for Duplicate Samples	6
8.3.	Groundwater Samples	7
9.0	Analytical results	8
9.1.	Groundwater	8
10.0	Conclusion & Recommendations	9
10.1.	Groundwater	9
10.2.	Recommendations	9
11.0	Notice to Readers/Closure	10
12.0	References	12

LIST OF TABLES

Table 2-1 Monitoring Well Network

Table 7-3 Monitoring Well Conditions

Table 9-1 Summary of Groundwater Results

LIST OF FIGURES

Figure 1 Site Location Map

Figure 2 2022 Aerial Photograph

Figure 3 Site Layout Diagram showing Groundwater Monitoring Well and Pumping Well Locations

APPENDICES

Appendix A Site Figures

Appendix B Site Photographs

Appendix C Data Summary Tables

Appendix D Laboratory Certificate of Analysis

Appendix E Water Licence

1.0 INTRODUCTION

Northwest Territories Power Corporation (NTPC) retained KBL Environmental Ltd. (KBL) to complete the 2023 groundwater water quality program at their Jackfish Power Plant site in Yellowknife, NT; hereinafter referred to as 'the Site', A site location diagram is shown on Figure 1 in Appendix A. An aerial photograph view of the Site is provided as Figure 2.

2.0 BACKGROUND

On September 22, 2004, a diesel spill occurred at the Site. Remediation activities removed impacted material as much as possible, but as this is an active site, some areas of the Site could not be remediated due to access issues. In October of 2004, a recovery well was established to remove as much dissolved phase and free phase petroleum hydrocarbons (PHCs) as possible from the groundwater beneath the Site (Figure 3, Appendix A). During subsequent years, a complete network of monitoring wells was established across the Site and along the lakeshore to ensure there was no off-site migration of impacted groundwater. The recovery well was in operation until 2016, and monitoring of PHC contaminants in groundwater has continued to be conducted on a twice annual basis.

Table 2-1 2023 Monitoring Well Network

Well	Location Description
PW-01	North Between L Plant and EMD Plant
PW-02	North of EMD Plant
PW-03	Southeast corner of EMD Plant
JF01-01	Northwest corner of Ruston Plant
JF01-02	Located at the Lease Boundary near the lakeshore, southwest of the Control Building
JF01-03	Located at the Lease Boundary near the lakeshore, south of the CAT Plant
JF01-04	Located at the Lease Boundary near the lakeshore, south of the EMD Plant
JF01-05	Located at the Lease Boundary near the lakeshore, south of the K Plant
JF01-06	Located at the Lease Boundary near the lakeshore, south of the Warehouse
MW-01	Located at the Lease Boundary near the lakeshore, southeast of CAT Plant
MW-02	Located at the Lease Boundary near the lakeshore, between EMD Plant and CAT Plant
MW-03	Located at the Lease Boundary near the lakeshore, southeast of K Plant and the Pump House
MW-04	Located at the Lease Boundary near the lakeshore, between K Plant and the Warehouse
MW-05	Northwest corner of Ruston Plant
MW-06	West of Ruston Plant
MW-07	Southwest corner of Ruston Plant
MW-09	Southeast of Ruston Plant
MW-10	Northwest corner of Cat Plant

3.0 OBJECTIVE AND SCOPE OF WORK

The scope of work for 2023 included the following:

- 1. Two (2) groundwater monitoring and sampling events (July and October) took place in 2023 where 18 monitoring well locations (PW1-PW3, JF01-01 JF01-06, and MW1-MW10) were sampled for PHC constituents benzene, toluene, ethylbenzene, xylene (BTEX) and PHC fractions F1-F4 analysis;
- 2. Groundwater samples collected from monitoring wells JF01-06 and MW2 were also analyzed for routine water parameters, total suspended solids (TSS), dissolved metals, dissolved mercury, oil and grease, and dissolved oxygen;
- 3. In the event groundwater monitoring well JF01-06 was dry, a surface water sample was to be obtained from a location along the lakeshore with adequate water and the GPS location recorded;
- 4. Collection of two duplicate samples for QA/QC analysis;
- 5. Collection of field parameters including pH, temperature, electrical conductivity, and dissolved oxygen;
- 6. Complete monthly inspections of the Oil/Water Separator (OWS) in June and October and contract a vacuum truck to remove any hydrocarbon impacted water, if observed or suspected; and
- 7. Provide a summary and interpretation of results in a report.

4.0 REGULATORY FRAMEWORK

The property is a commercial/industrial power generating facility located within Yellowknife city limits. The nearest waterbody is Jackfish Lake, located directly south of the Site boundaries.

4.1. Surface Water

Surface water samples were not collected during the July and October sampling events due to safety limitations outside of the Site's fenced area and because JF01-06 and MW-02 wells were sampled during both July and October sampling events.

4.2. Groundwater

Government of Canada, 2016, Federal Interim Groundwater Quality Guidelines (FIGQG) - Commercial/Industrial and CCME, Dec 2014, CEQG Water Quality for the Protection of Aquatic Life (Freshwater, long term) were chosen for the Site. This is due to the Site's close proximity to Jackfish Lake. It is unknown if coarse- or fine-grained soil criteria are most applicable to the Site so, to be conservative, the most stringent guidelines were chosen. These were the guidelines for coarse grained soils.

5.0 REGIONAL GEOLOGY

The local terrain mainly consists of bare rocky outcrops with glacial and glaciolacustrine sediments in topographic lows between outcrops. Glacial till is the most common surficial sediment in the area. It consists of a loosely compact, stony, matrix-supported diamicton. The matrix ranges from coarse to fine sand with minor amounts of silt. Glacial till is most often composed of 20%-40% clast. The till is generally less than 2 m thick and forms a discontinuous veneer between areas where small to large bedrock outcrops are present. (Kerr, 2000)

In bedrock, Archean meta-volcanic and metasedimentary rocks are intruded by younger granitoid rocks. Fault lines divide the volcanic rocks from the younger granitoid rocks in the region, including the Kam Lake Fault and West Bay

Fault that run through Yellowknife. In the Yellowknife region, bedrock outcrops may cover up to 75% or more of the surface area. (Kerr, 2000)

6.0 TOPOGRAPHY AND DRAINAGE

The surface of the Site is an industrial gravel and asphalt padded lot, with the overall topography sloping south toward the Jackfish Lake. There was insufficient data to calculate the hydraulic gradient or determine the direction of groundwater flow during the July and October sampling events, however, it is anticipated that the direction of shallow groundwater flow will be south towards Jackfish Lake.

7.0 FIELD ACTIVITIES

7.1. Field Inspections

Inspections conducted during the July and October 2023 sampling events, resulted in the identification of several wells that were likely damaged from frost heaving and/or snow clearing, and/or traffic activity at the Site and/or have improper construction. Minor repairs to wells were made where possible. A full inventory of groundwater monitoring wells was conducted during the October sampling event. A more detailed summary of groundwater monitoring wells is provided in Section 7.3. Separate detailed inspection outside of the groundwater sampling program would be required to determine if wells will need to be repaired, replaced, or decommissioned.

7.2. Monitoring and Sample Collection Methodology

Groundwater monitoring included the measurement of depth to free product, depth to water and depth to the bottom of each well using a Solinst oil/water interface probe. A Waterra pump was used to purge the wells and then a dedicated bailer was used for collecting groundwater samples. Purge water produced by the Waterra pump was directed through a flow-through cell with a multi-parameter probe installed for the purpose of collecting field screening measurements using a YSI 556 multi-parameter analyzer.

Field measured parameters included pH, temperature, electrical conductivity (EC), dissolved oxygen percent (DO%) and oxidation - reduction potential (ORP). Measurements read off the handheld YSI 556 analyzer were periodically recorded, and purging continued until parameter stabilization occurred. At that point, groundwater samples were collected using dedicated bailers. Field screening information from the October sampling event was deemed as non-representative due to interference with the instrument sensors from extreme weather conditions.

All purged groundwater was collected in buckets for transfer to an on-site storage facility which consisted of a lidded steel drum placed inside a larger lidded plastic secondary containment drum. The drummed purge water and on-site oil-water separator are drained periodically by KBL via a vacuum truck for off-site consolidation at KBL's Yellowknife Waste Transfer facility.

All samples were collected using disposable nitrile gloves and placed into clean laboratory supplied containers. Disposable nitrile gloves were replaced between each sample location. All samples collected for laboratory analysis were stored for transport in ice packed coolers. Samples were uniquely labeled, and sample control was maintained using chain of custody forms.

7.3. Monitoring Well Conditions

The condition of the various groundwater monitoring wells on-site are summarized in the following table. Photographs of the monitoring wells are provided in Appendix B.

Table 7-3 2023 Monitoring well conditions

Well	Well Status and Visual Observations
PW-01	No well cap. Groundwater samples collected.
PW-02	No well cap. Hydrocarbon sheen observed during sampling and purging. Well screen extends above ground making the well a potential conduit for surface contaminants to reach groundwater. Needs inspection for possible decommission. Groundwater samples collected. (Photograph 2, Appendix B)
PW-03	No well cap. Large diameter well. Debris observed inside well. Insufficient groundwater to sample during the fall sampling event.
JF01-01	Slanted or bent at ground surface. Needs inspection for possible repair. Hydrocarbon sheen observed during purging and sampling. Groundwater samples collected.
JF01-02	Well Damaged. Needs inspection for repair or decommissioning. Well not sampled.
JF01-03	Well blocked on the inside. Needs inspection for repair or decommissioning. Well not sampled.
JF01-04	Appears to be in proper working condition. No notable observation. Groundwater samples collected.
JF01-05	Dry well. Insufficient water to sample. Needs inspection for possible repair or decommissioning.
JF01-06	Appears to be in proper working condition. Silt observed at bottom of the well. Groundwater samples collected.
MW-01	Dry well. Well Damaged. Needs inspection for repair or decommissioning. Well not sampled.
MW-02	Appears to be in proper working condition. No notable observation. Groundwater samples collected.
MW-03	Appears to be in proper working condition. No notable observation. Groundwater samples collected.
MW-04	Appears to be in proper working condition. No notable observation. Groundwater samples collected.
MW-05	Appears to be in proper working condition. Hydrocarbon sheen observed during purging and sampling. Groundwater samples collected.
MW-06	Appears to be in proper working condition. Groundwater samples collected.
MW-07	Appears to be in proper working condition. Hydrocarbon odour observed during purging and sampling. Groundwater samples collected.
MW-09	Requires inspection for possible repair. Groundwater samples collected.
MW-10	Appears to be in proper working condition. Hydrocarbon sheen observed during purging and sampling. Groundwater samples collected.

8.0 QUALITY ASSURANCE & QUALITY CONTROL (QA/QC)

ALS is accredited by Canadian Association for Laboratory Accreditation Inc. (CALA).

A Quality Assurance & Quality Control (QA/QC) review was conducted to assess the reliability of the data reported from the assessment. The review consisted of an evaluation of sample handling procedures and a detailed analysis of blind field duplicate sample results.

8.1. Blind Field Duplicates

A field duplicate (or blind duplicate) sample is a second sample collected from the same sample location as an original sample and stored in a separate sample container. The sample is given a different identifier to prevent the laboratory from knowing which primary sample it is a duplicate of and taking extraordinary or unusual measures to ensure duplicate sample results closely match primary sample results. The duplicates used for monitoring and sampling in this report include:

- July 2023: Dup1-230727 (MW-10), Dup2-230728 (MW-3)
- October 2023: DUP1 (MW-07), DUP2 (MW-10)

8.2. Zeiner Criteria for Duplicate Samples

In 1994, Stephen T. Zeiner, a senior quality assurance chemist, presented a paper at the Superfund XV conference in Washington, D.C. entitled "Realistic Criteria for the Evaluation of Field Duplicate Sample Results". In his presentation, he outlined the reasoning for the collection of duplicate field samples and how the results obtained should be evaluated. The evaluation and interpretation criteria have since been referred to as the Zeiner Criteria and are summarized in the following paragraphs.

Groundwater, like soils, must be collected in sufficient quantity to produce a duplicate sample for every ten (10) samples or as required by the client. Water for the field original and duplicate samples is collected at the same time. For samples that are not being analyzed for volatile compounds, the water from each bailer that is extracted from the well is split between the bottle(s) for the field original and the field duplicate. This process is repeated until both bottles have been filled.

For samples that are being analyzed for volatile compounds it is important to fill and cap the sample bottles quickly in order to minimize the escape of volatile compounds while the sample bottle(s) is/are being filled so the bottle(s) for the field original sample are always filled and sealed first before the bottle(s) for the field duplicates. In this case, the field duplicates should technically be referred to as "field replicates" instead but for the purposes of this report, all field duplicate and replicate samples shall be collectively referred to as "duplicates".

KBL's practice is to ensure all duplicate samples that are submitted are what are commonly referred to as "blind duplicates" by giving them a generic name that does not give the analytical laboratory a clue as to which sample the duplicate is a duplicate of. This is to prevent the laboratory from taking any unusual measures to ensure the results reported by the duplicate sample are acceptably similar to those of the original sample.

Precision in analytical results may be evaluated by calculating the relative percent difference (RPD) or absolute difference (AD) of replicate samples using the following formulae:

RPD =
$$\frac{|(S - D)|}{(S + D)/2}$$
 x 100 AD = $|(S - D)|$

where: RPD and AD are absolute values;

S is the original sample result (mg/kg) or (mg/L); and,

D is the replicate sample result (mg/kg) or (mg/L).

For groundwater (or water in general), if both the original and duplicate aqueous sample concentrations are greater than five times the MDL for a given parameter, the RPD must be less than or equal to 20% to be considered precise. If the results lie outside of that range, they should be considered estimates only.

If at least one of the sample concentrations reported is less than or equal to five times the MDL for a given parameter, the AD should be less than or equal to the MDL. If the AD is greater than the MDL, the results should be considered estimates only.

If one of the sample concentrations is positive and its duplicate sample concentration is less than the MDL, the AD between the reported concentration and one-half the MDL should be less than or equal to the MDL. If the difference is greater than the MDL, the results should be considered estimates only.

Table 2 and Table 3 in Appendix C present a detailed analysis of all duplicate sample results. It applies the Zeiner criteria and indicates where any results are outside the acceptable range and are to be considered as estimates only (Zeiner, 1994).

8.3. Groundwater Samples

The 1994 Zeiner QA/QC protocol for duplicate water samples were rigorously applied to all tested parameters in all duplicate groundwater samples collected in 2023.

Overall, KBL is satisfied with the accuracy of the QA/QC duplicate sample results reported in 2023.

For the 2023 groundwater sampling events, all concentrations met the testing parameters, except for the following:

MW-07 (DUP1) in October: F2 (RPD 33.33%), F3 (RPD 36.35%), and VPH (AD 330)

The elevated RPD and AD values area believed to be attributed to non-homogenous sampling media upon collection.

Overall, KBL is satisfied with the accuracy of the QA/QC duplicate sample results reported in 2023.

9.0 ANALYTICAL RESULTS

9.1. Groundwater

Groundwater Analytics from 2023 July and October sampling events from Table 1 (Appendix C), are summarized in Table 9-1 below.

Table 9-1 Summary of Groundwater Results

Well	July 2023	October 2023						
· · ·	Parameter E	Parameter Exceedances						
PW-01	PHC Fraction F2	PHC Fraction F2						
PW-02	PHC Fraction F2	PHC Fraction F2						
PW-03	None	-						
JF01-01	None	None						
JF01-02	-	-						
JF01-03	-	-						
JF01-04	None	None						
JF01-05	-	-						
JF01-06	Dissolved Arsenic	Dissolved Arsenic						
MW-01	None	None						
MW-02	Dissolved Arsenic and Copper	Dissolved Arsenic and Copper						
MW-03	None	None						
MW-04	None	None						
MW-05	PHC Fraction F2	-						
MW-06	None	PHC Fraction F2						
MW-07	PHC Fraction F2	PHC Fraction F2						
MW-09	None	None						
MW-10	None	None						

Notes:

Parameter exceedance

All parameters reported concentrations below applicable guideline limits and/or reported non-detect

During the 2023 sampling events, detectable PHC concentrations were reported in pumping wells PW-01 and PW-02 and groundwater monitoring wells MW-05, MW-06, MW-07, MW-09, MW-10, and JF01-01.

As summarized in Table 9-1 above, concentrations of PHC Fraction F2 above the applicable regulatory guideline limit were reported in pumping wells PW-01, PW-02 and groundwater monitoring wells MW-05, MW-06, and MW-07. Elevated concentrations of dissolved metals As and Cu above the applicable regulatory guideline limits were reported in groundwater monitoring wells JF01-06 and MW-02.

All tested routine water parameters reported concentrations below applicable regulatory guideline limits in 2023. Groundwater analytical results are summarized in tables provided in Appendix C. Laboratory Certificates of Analysis are provided in Appendix D.

[&]quot;-" No sample collected

10.0 CONCLUSION & RECOMMENDATIONS

10.1. Groundwater

From the historical 2022 report (Golder, 2022), detectable PHC parameter concentrations of were reported in 11 out of 18 monitoring wells on the Site but were not compared to any regulatory guidelines. Those pumping and monitoring wells included PW-01, PW-02, JF01-01, JF01-02, JF01-06, MW-02, MW-05, MW-06, MW-07, MW-09 and MW-10.

During the 2023 sampling events, detectable PHC concentrations were reported in pumping wells PW 01 and PW-02 and groundwater monitoring wells MW-05, MW-06, MW-07, MW-09, MW-10, and JF01-01. Concentrations of PHC Fraction F2 above the applicable guideline limit were reported in pumping wells PW 01 and PW-02 and groundwater monitoring wells MW-05, MW-06, and MW-07. All elevated PHC concentrations reported in groundwater at the Site are attributed to on-site operations.

Elevated dissolved metal parameters exceeding the applicable regulatory guideline limits were reported in monitoring wells JF01-06 (As) and MW-02 (As, Cu). The reported dissolved metal parameter concentrations were similar to historical concentrations and were all within the same order of magnitude, leading to the assumption that they are naturally occurring.

10.2. Recommendations

During the 2023 groundwater monitoring events, a number of monitoring wells were identified as needing detailed inspection outside of the groundwater monitoring program. Pumping wells PW-01, PW-02 and PW-03 were observed not to have well caps. Pumping well PW-02 was identified as being screened all the way to surface. This creates a conduit for contaminants in surface water, spills and contaminated run-off to easily reach groundwater (Photograph 2, Appendix B). As such, the well should be decommissioned and replaced with a properly constructed replacement well. Pumping well PW-03 is a large diameter well and was observed to have various debris inside it which may render groundwater samples collected from it invalid.

From the JF monitoring wells series, monitoring well JF01-01 was observed to be slanted or bent at ground surface and will require additional inspection and repair. Monitoring well JF01-02 appeared to be damaged to the point where groundwater samples could not be collected from it. Further inspection is required to determine if it should be repaired, replaced or decommissioned. Monitoring well JF01-03 was identified as having internal blockage and will need further inspection to see if it can be repaired. Monitoring well JF01-05 was dry during both sampling events and detailed inspection is necessary to determine if groundwater samples can be collected from it in the future.

From the MW monitoring well series, monitoring well MW-01 appears to be damaged and groundwater samples could not be collected from it. Further inspection is required to determine if it should be repaired, replaced or decommissioned. Monitoring well MW-09 was also identified as needing additional inspection for possible repair.

Detectable PHC parameter concentrations in groundwater appear to be the result of on-site activities and operations at the Site. A large quantity of visually impacted groundwater was collected and removed from the Site during the purging stage of the groundwater sampling; however, the groundwater PHC impacts appear to be persistent at the Site. KBL recommends that monitoring and sampling of the current monitoring well network continue, and proper well inspection be completed to determine if any of the existing wells require repair,

replacement, or decommissioning.

11.0 NOTICE TO READERS/CLOSURE

This report has been prepared and the work referred to in this report has been undertaken by KBL Environmental Ltd. (KBL) for the exclusive use of The Northwest Territories Power Corporation (the Client). The methodology, findings, conclusions and recommendations in this report are based solely upon the scope of work and subject to the time and budgetary considerations derived in the documents which constitute the proposal and/or contract pursuant to which this report was issued.

The findings, conclusions and recommendations in this report have been developed in a manner consistent with the level of skill normally exercised by professionals currently practicing under similar conditions in the area and reflect KBL's best judgement based on information available at the time of preparation of this report. No other warranties, either expressed or implied are made as to the professional services included in this report.

The findings and conclusions contained in this report are valid only as of the date of this report and may be based, in part, upon information provided by others. If any of the information is inaccurate, new information is discovered, the conditions of the Site or intended use of the Site change, or applicable standards are amended, modifications to this report may be necessary. KBL cannot be responsible for the use of this report or portions thereof unless KBL is requested to review and, if necessary, update the report. The results of the work herein should in no way be construed as a warranty that the subject Site is free from any and all contamination.

Any soil and rock descriptions in this report and associated logs, notes or drawings have been made with the intent of providing general information on the subsurface conditions of the Sites. This information should not be used as geotechnical data for any purpose unless specifically addressed in the text of this report. If referenced, groundwater, vapour or other subsurface conditions refer only to those observed at the location and time of observation noted in this report. This report must be read in whole, as sections taken out of context may be misleading. KBL cannot be responsible for the use of portions of the report without reference to the entire report. If discrepancies occur between the preliminary (draft) and final versions of this report, it is the final version that takes precedence. Nothing in this report is intended to constitute or provide a legal opinion.

The contents of this report are confidential and proprietary. Other than by the client, copying or distribution of this report or use of or reliance on the information contained herein in whole or in part, is not permitted without the express consent of the Client and KBL. Any use, reliance on, or decision made by a third party based on this report is the sole responsibility of such third party. KBL accepts no liability or responsibility for any damages that may be suffered or incurred by any third party as a result of the use of, reliance on, or any decision made based on this report.

Should you have any questions or concerns please contact the undersigned at your earliest convenience.

Respectfully,

KBL Environmental Ltd. - NAPEG Permit to Practice P1107.

Prepared By:

Zoran Kosanic, P.Geo.

NAPEG L5474

Project Manager

Reviewed and Edited By:

Roger Dunkley, B.ASc., P.Eng.

NAPEG L5486

Senior Reviewer

12.0 REFERENCES

CCME (Canadian Council of Ministers of the Environment). 2014, CEQG Water Quality for the Protection of Aquatic Life (Freshwater, long term). December 2014.

KBL Environmental Ltd., 2023. Proposal for 2023 Jackfish Lake Water Monitoring Program June 26, 2023.

D.E. Kerr and P. Wilson, Preliminary surficial geology studies and mineral exploration considerations in the Yellowknife Area, Northwest Territories, Natural Resources Canada. 2000.

Golder Associates. 2022. 2022 Jackfish Groundwater Monitoring Report as Part of Water Licence MV2019L1-001. November 20, 2022

Gov of Canada. 2016a, Federal Interim GW Tier 1 - Commercial/Industrial (Coarse). Guidance Document on Federal Interim Groundwater Quality Guidelines for Federal Contaminated Sites.

Gov of Canada. 2016b. Federal Interim Groundwater Quality Guidelines Memo. May 2016

NTPC. 2021. Jackfish Lake 2021 Groundwater Monitoring Program Plan. April 28, 2021.

Zeiner, S T. 1994. "Realistic criteria for the evaluation of field duplicate sample results". Superfund XV conference proceedings. Volume 2; PB: 877 p. United States.

MAP SOURCE:

Main Map: OpenStreetMap.org Inset Map: atlas.gc.ca/Toporama LEGEND

★ SITE LOCATION

NOTES

SITE LOCATION MAP

Date: 27-FEB-2024	Drawn: RD	NORTHWES
File Name: 23-099NT_Fig 1.srf	Approved: ZK	

NORTHWEST TERRITORIES POWER CORPORATION

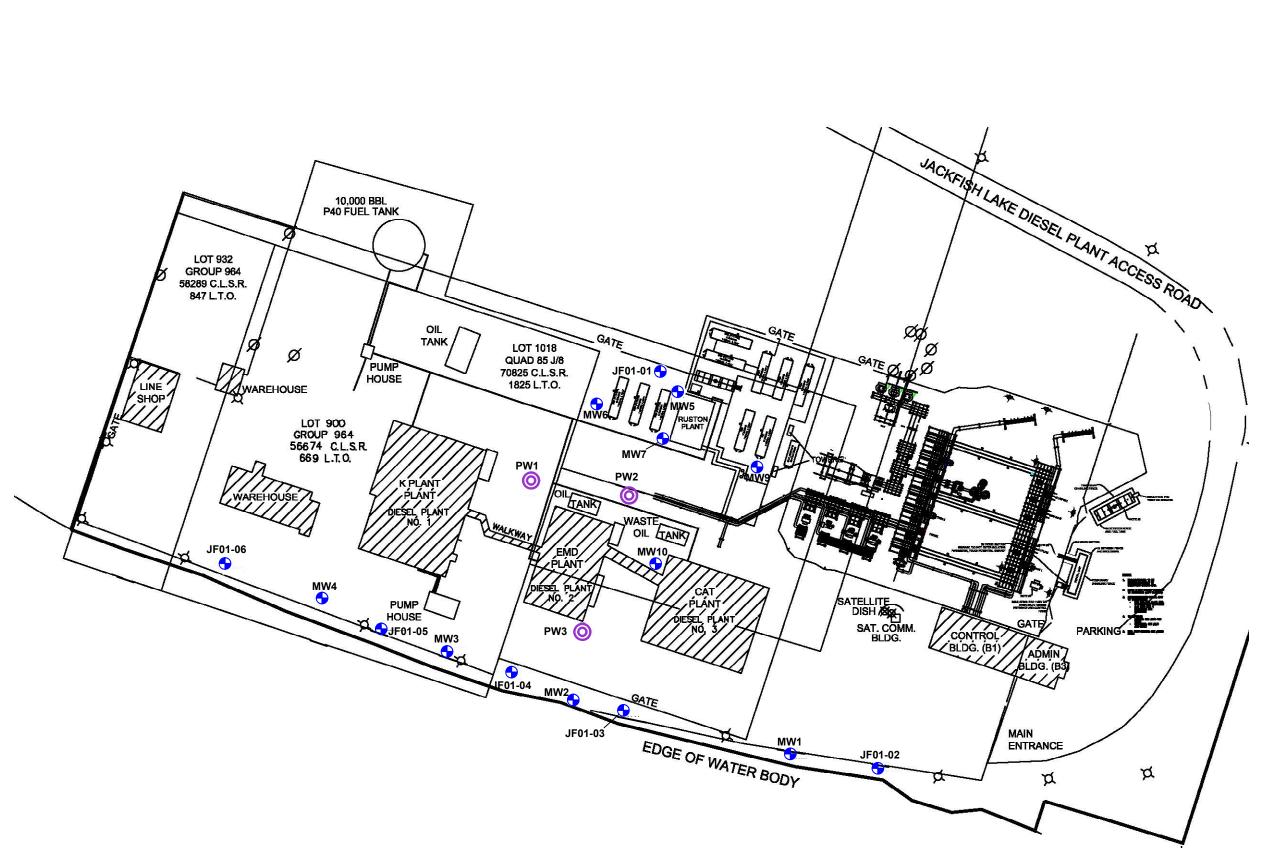
Jackfish Power Plant Site

Jackfish Lake, Yellowknife, NT

Figure:

MAP SOURCE:

Main Map: ESRI World Imagery Wayback


NOTES

2022 AERIAL PHOTOGRAPH

Figure:

Pate: 27-FEB-2024	Drawn: RD	NORTHWEST TERRITORIES POWER CORPORATION Jackfish Power Plant Site
ile Name:	Approved:	Jackfish Lake, Yellowknife, NT
23-099NT_Fig 1.srf	ZK	

FIGURE 3:

SITE LAYOUT DIAGRAM SHOWING GROUNDWATER MONITORING WELL AND PUMPING WELL LOCATIONS

Date: 27-FEB-2024

PROJECT INFORMATION

LOCATION:

Jackfish Power Plant Site

PROJECT NO.:

23-099NT

CLIENT NAME:

Northwest Territories Power Corporation

DRAWN BY: R. Dunkley

CHECKED BY: Z. Kosanic

LEGEND

Groundwater Monitoring Well

Pumping Well Location

Note: Diagram based on Northwest Territories Power Corporation Jackfish Lake Diesel Plant 2017 Groundwater Monitoring Wells Diagram Drawing No. P101-1000

APPENDIX B Site Photographs

Photograph 1: PW-01. No well cap. Well sample collected. Photograph was taken on October 25, 2023.

Photograph 2: **PW-02.** No well cap. Hydrocarbon sheen observed during sampling and purging. Screen of the well extends above ground. Possible conduit to groundwater contamination. Needs inspection for possible decommission. Well sample collected. Photograph was taken on October 25, 2023.

Photograph 3: **PW-03.** No well cap. Debris observed in the well. Insufficient water for sample. Photograph was taken October 25, 2023.

Photograph 4: **JF01-01.** Well not horizontal. Appears to be in proper working condition. Hydrocarbon sheen observed during purging and sampling. Well sample collected. Photograph was taken October 25, 2023

Photograph 5: JF01-02. Well damaged. Needs inspection for repair or decommission. Well not sampled. Photograph was taken October 25, 2023

Photograph 6: **JF01-03.** Well blocked on the inside. Needs inspection for repair or decommission. Well not sampled. Photograph was taken October 25, 2023.

Photograph 7: **JF01-04.** Appears to be in proper working condition. Silt observed at bottom of the well. Well sample collected. Photograph was taken October 25, 2023.

Photograph 8: **JF01-05.** Dry well. Insufficient water to sample. Needs inspection for possible repair or decommission. Photograph was taken October 25, 2023.

Photograph 9: **JF01-06.** Appears to be in proper working condition. Silt observed at the bottom of the well. Well sample collected. Photograph was taken October 25, 2023.

Photograph 10: **MW-01.** Dry well. Well damaged. Needs inspection for repair or decommission. Well not sampled. Photograph was taken October 25, 2023.

Photograph 11: MW-02. Appears to be in proper working condition. No notable observation. Well sample collected. Photograph taken on October 25, 2023

Photograph 12: MW-03. Appears to be in proper working condition. No notable observation. Well sample collected. Photograph taken on October 25, 2023

Photograph 13: MW-04. Appears to be in proper working condition. No notable observation. Well sample collected. Photograph taken on October 25, 2023

Photograph 14: **MW-05.** Appears to be in proper working condition. Hydrocarbon sheen observed during purging and sampling. Well sample collected. Photograph taken on October 25, 2023.

Photograph 15: **MW-06.** Appears to be in proper working condition. Well sampled collected. Photograph taken on October 25, 2023.

Photograph 16: MW-07. Appears to be in proper working condition. Hydrocarbon odour observed during purging and sampling. Well sample collected. Photographed taken on October 25, 2023

Photograph 17: **MW-09.** Requires inspection for possible repair. Well sample collected. Photograph taken on October 25, 2023

Photograph 18: **MW-10.** Appears to be in proper working condition. Hydrocarbon sheen observed during purging and sampling. Well sample collected. Photograph taken on October 25, 2023.

100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	130	740	450	<100	<100	<100
300	<300	<300	<300	<300	<300	<300	<300	2,900	810	1,400	4,280	44,100	31,500	720	1,140	820
300	<300	<300	<300	<300	<300	<300	<300	930	<300	440	810	11,800	8,170	<300	360	<300
300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	710	450	<300	<300	<300
100	<100 <5.0	<100 <5.0	<100	<100	<100	<100	<100	<100	<100	<100	140	830	500	<100	<100	<100
	\5.0	<5.0														
0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.73	<0.50	<0.50
0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50
0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	<0.40	< 0.40	0.68	0.50	< 0.40	< 0.40	< 0.40
0.30	< 0.30	< 0.30	<0.30	<0.30	< 0.30	<0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30
0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	0.68	0.50	<0.50	<0.50	< 0.50
	7.41	7.88														-
	510 162	487 153														<u> </u>
	31.0	28.9													 	
	70.5	55.0													+	
	66.0	66.2														<u>L</u>
	0.087	0.094														
	0.124	0.136														
	<0.0010	0.0023														
	<1,000	<1,000													 	-
	36.1 276	30.6 286														
	210	200														
	0.0095	0.0101														
	0.00152	0.00074													+	
	0.0501	0.0632														
	0.0732	0.0522														
	<0.000020	<0.000100														
	<0.000050	<0.000050											-			
	0.039 41.6	0.018 38.3													 	
	0.0000207	0.0000136													 	
	0.000015	<0.000010														
	<0.00050	<0.00050														
	0.00053	0.00031														
	0.00202	0.00233														
	0.096	0.067													<u> </u>	
	<0.000050 0.0050	<0.000050 0.0029											-		 	
	14.1	13.9											 	 	+	
	0.0456	0.0265											1	1		
	<0.0000050	<0.0000050														
	0.00141	0.00102														
	0.00218	0.00117														
	<0.050	<0.050											 	_	+	
	6.07 0.000127	4.25 <0.000050											 	1	 	
	7,640	5,170											 	†	+	
	<0.000010	<0.000010											1		<u> </u>	
	0.116	0.101														
	<0.20	<0.20														
	0.000023	0.000015													 	
	<0.00010	<0.00010											-			
	<0.00010 0.00030	0.00041 0.00031											 	 	+	
	<0.00030	<0.00031									 		 		 	
	0.282	0.591											 	1		
	0.00133	0.00106											1			1
	<0.0030	0.0017														
	<0.20	<0.20														

Table 2. Quality Assurance / Quality Control Results - Field Duplicates - July 2023

Client Name: NTPC

Location: Jackfish Lake Generating Facility

KBL File #: 23-099NT

			27-Jı	ul-23	Bullett - Burney	Abaaluta	28-J	ul-23	Bullett Burnet	Absolute	
Analyzed Parameter	Unit	RDL	MW-10	DUP1-230727	Relative Percent Difference (RPD)	Absolute Difference (AD) ¹	MW03	DUP2-230728	Relative Percent Difference (RPD)	Absolute	
			YL2300918-002	YL2300918-003	Dillerence (KFD)	Difference (AD)	YL2300932-002	YL2300932-003	Difference (KFD)	Difference (AD) ¹	
F1-BTEX	μg/L	100	<100	<100	NA	NA	<100	<100	NA	NA	
F2	μg/L	300	820	980	NA	160	<300	<300	NA	NA	
F3	μg/L	300	<300	350	NA	NA	<300	<300	NA	NA	
F4	μg/L	300	<300	<300	NA	NA	<300	<300	NA	NA	
VPH (C6-C10)	μg/L	100	<100	<100	NA	NA	<100	<100	NA	NA	
Benzene	μg/L	0.50	<0.50	<0.50	NA	NA	<0.50	<0.50	NA	NA	
Toluene	μg/L	0.50	<0.50	<0.50	NA	NA	<0.50	<0.50	NA	NA	
Ethylbenzene	μg/L	0.50	<0.50	<0.50	NA	NA	<0.50	<0.50	NA	NA	
Xylene (m & p)	μg/L	0.50	<0.40	<0.40	NA	NA	<0.50	<0.50	NA	NA	
Xylene (o)	μg/L	0.50	<0.30	<0.30	NA	NA	<0.50	<0.50	NA	NA	
Xylene Total	μg/L	0.50	<0.50	<0.50	NA	NA	<0.50	<0.50	NA	NA	

Notes:

NA- Not Applicable or cannot be calculated

ND- No Data

RDL- Reporting Detection Limit

1. When one duplicate sample reports non-detect and the other reports a detectable concentration, the AD is considered to be the detectable concentration minus have the detection limit for that parameter Value - Value is outside the Zeiner QA/QC criteria limits for duplicate groundwater samples as per the following criteria:

- When concentrations of both samples are greater than 5 times the detection limit, and RPD of less or equal to 20% is considered precise. Otherwise, the results should be considered estimates. Otherwise, the results should be considered estimates.

reported concentration should be less than or equal to the detection limit for the result to be considered precise. Otherwise, the result should be considered estimates.

Table 3. Quality Assurance / Quality Control Results - Field Duplicates - October 2023

Client Name: NTPC

Location: Jackfish Lake Generating Facility

KBL File #: 23-099NT

			25-O	ct-23	Bullett Burnet	Absoluts	25-O	ct-23	D. L. C. D	Absolute
Analyzed Parameter	Unit	RDL	MW-07	DUP1	Relative Percent Difference (RPD)	Absolute Difference (AD) ¹	MW-10	DUP2	Relative Percent Difference (RPD)	Absolute Difference (AD) ¹
			YL2301518-010	YL2301518-013	Difference (KFD)	Difference (AD)	YL2301518-012	YL2301518-014	Difference (KFD)	Difference (AD)
F1-BTEX	μg/L	100	740	450	NA	NA	<100	<100	NA	NA
F2	μg/L	300	44,100	31,500	33.33%	12600	340	390	13.70%	50
F3	μg/L	300	11,800	8,170	36.35%	3630	<300	<300	NA	NA
F4	μg/L	300	710	450	44.83%	260	<300	<300	NA	NA
VPH (C6-C10)	μg/L	100	830	500	49.62%	330	<100	<100	NA	NA
Benzene	μg/L	0.50	<0.50	<0.50	NA	NA	<0.50	<0.50	NA	NA
Toluene	μg/L	0.50	<0.50	<0.50	NA	NA	<0.50	<0.50	NA	NA
Ethylbenzene	μg/L	0.50	<0.50	<0.50	NA	NA	<0.50	<0.50	NA	NA
Xylene (m & p)	μg/L	0.50	<0.40	<0.40	NA	NA	<0.40	<0.40	NA	NA
Xylene (o)	μg/L	0.50	<0.30	<0.30	NA	NA	<0.30	<0.30	NA	NA
Xylene Total	μg/L	0.50	<0.50	<0.50	NA	NA	<0.50	<0.50	NA	NA

Notes:

NA- Not Applicable or cannot be calculated

ND- No Data

RDL- Reporting Detection Limit

1. When one duplicate sample reports non-detect and the other reports a detectable concentration, the AD is considered to be the detectable concentration minus have the detection limit for that parameter Value - Value is outside the Zeiner QA/QC criteria limits for duplicate groundwater samples as per the following criteria:

- When concentrations of both samples are greater than 5 times the detection limit, and RPD of less or equal to 20% is considered precise. Otherwise, the results should be considered estimates. Otherwise, the results should be considered estimates.

reported concentration should be less than or equal to the detection limit for the result to be considered precise. Otherwise, the result should be considered estimates.

Table 4: Field Data Measurements KBL Project No: 23-099NT

Client: NTPC Jackfish Lake Generating Facility

Monitoring Well	Date	Stick-up (m)	Depth to Water (mbtor)	Depth to Bottom (mbtor)	Water Column Height (m)	рН	Temp (°C)	DO	EC
	05-Aug-22	0.87	2.35	3.27	0.92	_	_	_	_
	11-Aug-22	0.87	2.41	3.15	0.74	-	-	-	-
PW-01	29-Sep-22	0.83	2.61	3.10	0.49	-	-	-	-
	27-Jul-23	0.92	2.52	3.16	0.64	6.8	13.80	15.50	305.6
	25-Oct-23	0.92	2.93	3.16	0.23	-	-	-	-
	05-Aug-22	0.60	2.01	4.89	2.88	-	-	-	-
	11-Aug-22	0.60	2.07	4.72	2.65	-	-	-	-
PW-02	29-Sep-22	0.74	2.28	4.66	2.38	-	-	-	-
	27-Jul-23	0.74	2.55	4.73	2.19	6.6	13.80	33.00	720.0
	25-Oct-23	0.74	2.60	4.73	2.13	-	-	-	-
	05-Aug-22	1.07	2.58	3.18	0.60	-	-	-	-
PW-03	11-Aug-22	1.07 1.07	2.64 2.85	3.22 3.17	0.58	-	-	-	-
PW-03	29-Sep-22 27-Jul-23	1.07	2.76	3.17	0.32	7.7	13.50	49.50	519.0
	25-Oct-23	1.09	2.17	3.19	1.02	-	-	-	315.
	05-Aug-22	0.95	1.99	2.72	0.73	-			_
JF01-01	29-Sep-22	0.91	2.26	2.89	0.63	_			_
3,01,01	27-Jul-23	1.03	2.17	2.78	0.61	7.1	12.30	30.10	429.
	25-Oct-23	1.03	2.58	2.78	0.20		-	-	-
	05-Aug-22	1.24	1.76	2.04	0.28	-	-	-	-
JF01-02	29-Sep-22	1.13	1.87	2.05	0.18	-	-	-	-
	27-Jul-23	1.16	1.90	2.05	0.15	-	-	-	-
	25-Oct-23	1.16	1.90	2.05	0.15	-	-	-	-
	04-Aug-22	1.17	2.22	3.09	0.87	-	-	-	-
JF01-03	29-Sep-22	1.15	2.46	3.10	0.64	-	-	-	-
	27-Jul-23	1.20	-	-	-	-	-	-	-
	25-Oct-23	1.20	2.79	3.14	0.35	-	-	-	-
	04-Aug-22	0.89	2.12	2.95	0.83	-	-	-	-
JF01-04	29-Sep-22	0.90	2.40	3.12	0.72	-	-	-	-
	27-Jul-23	1.12	2.31	3.15	0.84	7.4	19.90	29.20	513.
	25-Oct-23	1.12	2.72	3.15	0.43	-	-	-	-
	04-Aug-22	0.68	2.05	2.10	0.05	-	-	-	-
JF01-05	29-Sep-22	0.70	-	2.11	-	-	-	-	-
	27-Jul-23	0.94	-	2.14	-	-	-	-	-
	25-Oct-23	0.94	-	2.14	-	-	-	-	-
	04-Aug-22	0.89	2.03	2.44	0.41				
JF01-06	29-Sep-22	0.87	2.30	2.84	0.54				
	27-Jul-23	0.98	2.21	3.06	0.85	7.8	20.10	25.70	500.
	25-Oct-23	0.98	2.63	3.06	0.43	-	-	-	-
NAVA 01	05-Aug-22	- 0.04	-	1.00	-	-	-	-	-
MW-01	29-Sep-22	0.94	-	1.69	-	-	-	-	-
	27-Jul-23 25-Oct-23	1.03	-	1.73 1.73	<u>-</u>	_	_	-	
	05-Aug-22	0.77	2.14	3.68	1.54	_	-		_
MW-02	29-Sep-22	0.77	2.46	3.80	1.34	-	-		
10100-02	27-Jul-23	0.77	2.31	3.12	0.81	7.2	20.30	32.10	521.
	25-Oct-23	0.85	2.77	3.12	0.35	-	-	-	521.
	04-Aug-22	0.92	2.19	2.69	0.50	-	-	_	_
MW-03	29-Sep-22	0.92	2.52	3.46	0.94	-	-		_
	27-Jul-23	0.93	2.39	3.48	1.09	7.5	20.00	34.30	516.
<u> </u>	25-Oct-23	0.93	2.81	3.48	0.67	-	-	-	-
	04-Aug-22	0.87	2.02	3.11	1.09				
MW-04	29-Sep-22	0.82	2.26	3.52	1.26				
	27-Jul-23	0.89	2.18	3.69	1.51	7.4	20.90	21.10	464.
	25-Oct-23	0.89	2.18	3.69	1.51	-	-	-	-
	05-Aug-22	1.14	2.22	2.89	0.67	-	-	-	_
MW-05	29-Sep-22	1.12	2.50	2.85	0.35	-	-	-	-
	27-Jul-23	1.20	2.42	2.91	0.49	6.9	15.60	52.60	452
	25-Oct-23	1.20	2.82	2.91	0.09	-	-	-	
	05-Aug-22	0.55	2.14	5.90	3.76	-	-	-	-
MW-06	29-Sep-22	0.52	2.40	6.21	3.81	-	-	-	-
	27-Jul-23	0.70	2.30	5.84	3.54	6.9	9.00	25.30	415
	25-Oct-23	0.70	2.70	5.84	3.14	-	-	-	-
MW-07	05-Aug-22	0.86	1.99	5.15	3.16	-	-	-	-
	29-Sep-22	0.83	2.33	5.13	2.80	-	-	-	-
	27-Jul-23	1.06	2.17	5.12	2.95	7	8.80	33.60	440
	25-Oct-23	1.06	2.57	5.12	2.55	-	-	-	<u> </u>
	05-Aug-22	0.55	1.71	6.05	4.34	-	-	-	-
MW-09	29-Sep-22	0.49	1.97	6.16	4.19	-		-	-
	27-Jul-23	0.72	1.89	6.05	4.16	7	11.00	40.00	
	25-Oct-23	0.72	2.28	6.05	3.77	-	-	-	<u> </u>
	05-Aug-22	0.92	2.39	4.74	2.35	-	-	-	-
MW-10	29-Sep-22	0.89	2.64	4.82	2.18	- 7.2	- 14.60	-	400
	27-Jul-23	1.02	2.31	4.86	2.55	7.2	14.60	28.90	496.

m- meters

mbtor- meters below top of riser

°C- Celsius

DO - Dissolved Oxygen

EC - Electric Conductivity

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : YL2300918

Client : KBL Environmental Ltd.

Contact : Katie Oliver

Address : 17 Cameron Road PO Box 1895

Yellowknife NT Canada X1A 2P4

Telephone : 780 893 3305

Project : 23-099NT

PO : ---C-O-C number : ---

Sampler : --Site :---

Quote number : YL22-KBLE100-001

No. of samples received : 10
No. of samples analysed : 10

Page : 1 of 4

Laboratory : ALS Environmental - Yellowknife

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife NT Canada X1A 3T3

Telephone : 1 867 445 7143

Date Samples Received : 27-Jul-2023 14:45

Date Analysis Commenced : 31-Jul-2023

Issue Date : 08-Aug-2023 09:03

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Ophelia Chiu Department Manager - Organics Organics, Burnaby, British Columbia

Page : 2 of 4

Work Order : YL2300918

Client : KBL Environmental Ltd.

Project: 23-099NT

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
μg/L	micrograms per litre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page : 3 of 4

Work Order : YL2300918

Client : KBL Environmental Ltd.

Project : 23-099NT

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	MW-9-230727	MW-10-230727	Dup1-230727	PW-02-230727	PW-01-230727
(Matrix: Water)									
			Client samp	ling date / time	27-Jul-2023 00:00				
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2300918-001	YL2300918-002	YL2300918-003	YL2300918-004	YL2300918-005
					Result	Result	Result	Result	Result
Volatile Organic Compounds [Fuels]									
Benzene		E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	100-41-4	E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	1.69
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Styrene	100-42-5	E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	108-88-3	E611A/VA	0.50	μg/L	0.73	<0.50	<0.50	<0.50	<0.50
Xylene, m+p-	179601-23-1		0.40	μg/L	<0.40	<0.40	<0.40	<0.40	6.54
Xylene, o-	95-47-6	E611A/VA	0.30	μg/L	<0.30	<0.30	<0.30	<0.30	3.76
Xylenes, total	1330-20-7	E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	10.3
Hydrocarbons									
F1 (C6-C10)		E581.VH+F1/	100	μg/L	<100	<100	<100	<100	170
		VA							
F2 (C10-C16)		E601/VA	300	μg/L	720	820	980	1600	5270
F3 (C16-C34)		E601/VA	300	μg/L	<300	<300	350	1160	1770
F4 (C34-C50)		E601/VA	300	μg/L	<300	<300	<300	<300	<300
VHw (C6-C10)		E581.VH+F1/	100	μg/L	<100	<100	<100	<100	200
F1-BTEX		VA EC580/VA	100	μg/L	<100	<100	<100	<100	158
VPHw		EC580A/VA	100	μg/L	<100	<100	<100	<100	190
Hydrocarbons Surrogates									
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6	E601/VA	1.0	%	83.9	90.9	87.3	89.3	96.7
Dichlorotoluene, 3,4-	95-75-0	E581.VH+F1/ VA	1.0	%					83.7
Volatile Organic Compounds Surrogates	. /5111			HIII					
Bromofluorobenzene, 4-		E611A/VA	1.0	%					94.1
Difluorobenzene, 1,4-	540-36-3	E611A/VA	1.0	%					102

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 4 of 4

Work Order : YL2300918

Client : KBL Environmental Ltd.

Project : 23-099NT

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	MW-06-230727	MW-07-230727	MW-05-230727	JF01-01-23072	MW-04-230727
(Matrix: Water)								7	
			Client samp	ling date / time	27-Jul-2023 00:00				
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2300918-006	YL2300918-007	YL2300918-008	YL2300918-009	YL2300918-010
					Result	Result	Result	Result	Result
Volatile Organic Compounds [Fuels]									
Benzene	71-43-2	E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	100-41-4	E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Styrene	100-42-5	E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	108-88-3	E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Xylene, m+p-	179601-23-1	E611A/VA	0.40	μg/L	<0.40	<0.40	<0.40	<0.40	<0.40
Xylene, o-		E611A/VA	0.30	μg/L	<0.30	<0.30	<0.30	<0.30	<0.30
Xylenes, total	1330-20-7	E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Hydrocarbons		- 1 50							
F1 (C6-C10)		E581.VH+F1/	100	μg/L	<100	130	<100	<100	<100
		VA							
F2 (C10-C16)		E601/VA	300	μg/L	810	4280	2900	960	<300
F3 (C16-C34)		E601/VA	300	μg/L	<300	810	930	<300	<300
F4 (C34-C50)		E601/VA	300	μg/L	<300	<300	<300	<300	<300
VHw (C6-C10)		E581.VH+F1/	100	μg/L	<100	140	<100	<100	<100
F1-BTEX		VA EC580/VA	100	μg/L	<100	130	<100	<100	<100
VPHw		EC580A/VA	100	μg/L	<100	140	<100	<100	<100
Hydrocarbons Surrogates	171111								
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6	E601/VA	1.0	%	84.5	97.2	94.0	106	89.5
Dichlorotoluene, 3,4-		E581.VH+F1/ VA	1.0	%	91.8	76.5	96.6	93.2	90.2
Volatile Organic Compounds Surrogates									
Bromofluorobenzene, 4-		E611A/VA	1.0	%	92.4	94.0	93.8	92.7	91.9
Difluorobenzene, 1,4-	540-36-3	E611A/VA	1.0	%	104	101	102	103	103

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **YL2300918** Page : 1 of 8

Client : KBL Environmental Ltd. Laboratory : ALS Environmental - Yellowknife

Contact : Katie Oliver : Oliver Gregg

Address :17 Cameron Road PO Box 1895 Address :314 Old Airport Road, Unit 116

Yellowknife. Northwest Territories Canada X1A 3T3

 Telephone
 :780 893 3305
 Telephone
 :1867 445 7143

 Project
 :23-099NT
 Date Samples Received
 : 27-Jul-2023 14:45

 PO
 : --- Issue Date
 : 08-Aug-2023 09:03

C-O-C number :---Sampler :---Site :----

Quote number :YL22-KBLE100-001

No. of samples received :10

No. of samples analysed :10

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

Yellowknife NT Canada X1A 2P4

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) ■ No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

<u>No</u> Quality Control Sample Frequency Outliers occur.

Page : 3 of 8 Work Order : YL2300918

Client : KBL Environmental Ltd.

Amber glass/Teflon lined cap (sodium bisulfate)

JF01-01-230727

Project : 23-099NT

Matrix: Water

Analyte Group

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

04-Aug-2023

Analysis

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Sampling Date

Method

E601

Extraction / Preparation

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

	Motified	Camping Date			,					
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
Dup1-230727	E601	27-Jul-2023	03-Aug-2023	14	7 days	✓	04-Aug-2023	40 days	1 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
MW-06-230727	E601	27-Jul-2023	03-Aug-2023	14	7 days	✓	04-Aug-2023	40 days	1 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID									E F	
Amber glass/Teflon lined cap (sodium bisulfate)										
MW-10-230727	E601	27-Jul-2023	03-Aug-2023	14	7 days	✓	04-Aug-2023	40 days	1 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID									E F	
Amber glass/Teflon lined cap (sodium bisulfate)										
MW-9-230727	E601	27-Jul-2023	03-Aug-2023	14	7 days	✓	04-Aug-2023	40 days	1 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
PW-01-230727	E601	27-Jul-2023	03-Aug-2023	14	7 days	✓	04-Aug-2023	40 days	1 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID		143 19								
Amber glass/Teflon lined cap (sodium bisulfate)										
PW-02-230727	E601	27-Jul-2023	03-Aug-2023	14	7 days	✓	04-Aug-2023	40 days	1 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										

27-Jul-2023

03-Aug-2023

8 days

14 days 40 days 1 days

Page : 4 of 8 Work Order : YL2300918

Client : KBL Environmental Ltd.

Project : 23-099NT

			_				ı			Holding T
Analyte Group	Method	Sampling Date	Ext	traction / Pr				Analys		
Container / Client Sample ID(s)			Preparation	<u> </u>	g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
lydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
MW-04-230727	E601	27-Jul-2023	03-Aug-2023	14	8 days	✓	04-Aug-2023	40 days	1 days	1
				days						
lydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
MW-05-230727	E601	27-Jul-2023	03-Aug-2023	14	8 days	✓	04-Aug-2023	40 days	1 days	✓
				days						ı
lydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
MW-07-230727	E601	27-Jul-2023	03-Aug-2023	14	8 days	✓	04-Aug-2023	40 days	1 days	✓
				days						ı
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
Dup1-230727	E581.VH+F1	27-Jul-2023	31-Jul-2023	14	4 days	✓	31-Jul-2023	10 days	0 days	✓
				days						ı
Hydrocarbons : VH and F1 by Headspace GC-FID		THE PERSON							<u> </u>	
Glass vial (sodium bisulfate)										
MW-10-230727	E581.VH+F1	27-Jul-2023	31-Jul-2023	14	4 days	✓	31-Jul-2023	10 days	0 days	✓
				days						ı
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
MW-9-230727	E581.VH+F1	27-Jul-2023	31-Jul-2023	14	4 days	✓	31-Jul-2023	10 days	0 days	✓
				days						ı
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
PW-02-230727	E581.VH+F1	27-Jul-2023	31-Jul-2023	14	4 days	✓	31-Jul-2023	10 days	0 days	✓
				days						ı
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
JF01-01-230727	E581.VH+F1	27-Jul-2023	03-Aug-2023	14	7 days	✓	03-Aug-2023	7 days	0 days	1
			-	days			_			ı
lydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
MW-04-230727	E581.VH+F1	27-Jul-2023	03-Aug-2023	14	7 days	✓	03-Aug-2023	7 days	0 days	1
			3	days				1		1

Page : 5 of 8 Work Order : 7 VL2300918

Client : KBL Environmental Ltd.

Project : 23-099NT

Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)		γ 3	Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual	Lvar	Analysis Bate	Rec	Actual	Lvar
lydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
MW-05-230727	E581.VH+F1	27-Jul-2023	03-Aug-2023	14 days	7 days	✓	03-Aug-2023	7 days	0 days	✓
lydrocarbons : VH and F1 by Headspace GC-FID		14 3 12								
Glass vial (sodium bisulfate)										
MW-06-230727	E581.VH+F1	27-Jul-2023	03-Aug-2023	14 days	7 days	✓	03-Aug-2023	7 days	0 days	✓
lydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
MW-07-230727	E581.VH+F1	27-Jul-2023	03-Aug-2023	14 days	7 days	✓	03-Aug-2023	7 days	0 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
PW-01-230727	E581.VH+F1	27-Jul-2023	03-Aug-2023	14 days	7 days	✓	03-Aug-2023	7 days	0 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS		14.22								
Glass vial (sodium bisulfate)										
Dup1-230727	E611A	27-Jul-2023	31-Jul-2023	14 days	4 days	✓	31-Jul-2023	10 days	0 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW-10-230727	E611A	27-Jul-2023	31-Jul-2023	14 days	4 days	✓	31-Jul-2023	10 days	0 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW-9-230727	E611A	27-Jul-2023	31-Jul-2023	14 days	4 days	✓	31-Jul-2023	10 days	0 days	✓
/olatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
PW-02-230727	E611A	27-Jul-2023	31-Jul-2023	14 days	4 days	✓	31-Jul-2023	10 days	0 days	✓
olatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)					<u> </u>			l ¯		
JF01-01-230727	E611A	27-Jul-2023	03-Aug-2023	14 days	7 days	✓	03-Aug-2023	7 days	0 days	✓

Page : 6 of 8 Work Order : YL2300918

Client : KBL Environmental Ltd.

Project : 23-099NT

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW-04-230727	E611A	27-Jul-2023	03-Aug-2023	14	7 days	✓	03-Aug-2023	7 days	0 days	✓
				days						
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)	F044A	07 14 0000	00.4							,
MW-05-230727	E611A	27-Jul-2023	03-Aug-2023	14	7 days	✓	03-Aug-2023	7 days	0 days	✓
				days						
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)	E611A	27-Jul-2023	00 4 0000		7 -1	√	02 4 2022	7 -1	0 -1	√
MW-06-230727	EDITA	27-Jul-2023	03-Aug-2023	14	7 days	•	03-Aug-2023	7 days	0 days	•
				days						
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) MW-07-230727	E611A	27-Jul-2023	02 Aug 2022		7 days	√	03-Aug-2023	7 days	0 days	✓
WW-U1-230121	EOTIA	21-Jui-2023	03-Aug-2023	14	7 days	*	03-Aug-2023	7 days	0 days	•
				days						
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) PW-01-230727	E611A	27-Jul-2023	03-Aug-2023	14	7 days	√	03-Aug-2023	7 days	0 days	1
FVV-01-230721	LOTIA	21-Jul-2023	03-Aug-2023	days	r uays	,	00-Aug-2023	r uays	o days	•
				uays						

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 7 of 8 Work Order : 7 up 12300918

Client : KBL Environmental Ltd.

Project : 23-099NT

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluation	on: × = QC freque	ency outside spe	ecification; ✓ = (QC frequency wit	hin specification.
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)				Tanii I			
BTEX by Headspace GC-MS	E611A	1063276	2	37	5.4	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	1063275	2	34	5.8	5.0	✓
Laboratory Control Samples (LCS)							
BTEX by Headspace GC-MS	E611A	1063276	2	37	5.4	5.0	✓
CCME PHCs - F2-F4 by GC-FID	E601	1069039	2	25	8.0	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	1063275	2	34	5.8	5.0	✓
Method Blanks (MB)							
BTEX by Headspace GC-MS	E611A	1063276	2	37	5.4	5.0	✓
CCME PHCs - F2-F4 by GC-FID	E601	1069039	2	25	8.0	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	1063275	2	34	5.8	5.0	✓
Matrix Spikes (MS)							
BTEX by Headspace GC-MS	E611A	1063276	2	37	5.4	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	1063275	2	34	5.8	5.0	✓

Page : 8 of 8 Work Order : YL2300918

Client : KBL Environmental Ltd.

Project : 23-099NT

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VH and F1 by Headspace GC-FID	E581.VH+F1	Water	BC MOE Lab Manual /	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples
			CCME PHC in Soil - Tier	are prepared in headspace vials and are heated and agitated on the headspace
	ALS Environmental -		1 (mod)	autosampler, causing VOCs to partition between the aqueous phase and the
	Vancouver			headspace in accordance with Henry's law.
				Assistant with the Co. COME. Detailed the land of the COME.
				Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply fully with the Reference Method for the Canada-Wide Standard for PHC. Unless
				qualified, all required quality control criteria of the CCME PHC method have been met,
				including response factor and linearity requirements.
CCME PHCs - F2-F4 by GC-FID	E601	Water	CCME PHC in Soil - Tier	Sample extracts are analyzed by GC-FID for CCME hydrocarbon fractions (F2-F4).
			1	
	ALS Environmental -			Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply
	Vancouver			fully with the Reference Method for the Canada-Wide Standard for PHC. Unless
				qualified, all required quality control criteria of the CCME PHC method have been met,
				including response factor and linearity requirements.
BTEX by Headspace GC-MS	E611A	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS.
				Samples are prepared in headspace vials and are heated and agitated on the
	ALS Environmental -			headspace autosampler, causing VOCs to partition between the aqueous phase and
	Vancouver	10.7		the headspace in accordance with Henry's law.
F1-BTEX	EC580	Water	CCME PHC in Soil - Tier	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene,
	ALO Fordermontal		1	ethylbenzene and xylenes (BTEX).
	ALS Environmental - Vancouver			
VPH: VH-BTEX-Styrene	EC580A	Water	BC MOE Lab Manual	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHw = Volatile
VI II. VII B I EX CIGIONO	LCJOUA	Wator	(VPH in Water and	Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and
	ALS Environmental -		Solids) (mod)	styrene.
	Vancouver		Collas) (moa)	styrone.
Dranavation Mathada	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation Methods				
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
	ALS Environmental -			headspace autosampler. An aliquot of the headspace is then injected into the
	Vancouver			GC/MS-FID system.
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are
and i / ii io rioxano Extraorion	LF001	114101		extracted using a hexane liquid-liquid extraction.
	ALS Environmental -			SANGER CONTROL OF THE PROPERTY
	Vancouver			
	_		1	1

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : YL2300918

Client : KBL Environmental Ltd.

Contact : Katie Oliver

Address : 17 Cameron Road PO Box 1895

Yellowknife NT Canada X1A 2P4

Telephone :
Project : 23-099NT

PO :----

C-O-C number : ----

Sampler :--- 780 893 3305

Site : --

Quote number : YL22-KBLE100-001

No. of samples received : 10

No. of samples analysed : 10

Page : 1 of 6

Laboratory ; ALS Environmental - Yellowknife

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife. Northwest Territories Canada X1A 3T3

Telephone :1 867 445 7143

Date Samples Received : 27-Jul-2023 14:45

Date Analysis Commenced : 31-Jul-2023

Issue Date : 08-Aug-2023 09:03

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Ophelia Chiu Department Manager - Organics Vancouver Organics, Burnaby, British Columbia

Page : 2 of 6 Work Order · YL2300918

Client : KBL Environmental Ltd.

Project : 23-099NT

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 6 Work Order : YL2300918

Client : KBL Environmental Ltd.

Project : 23-099NT

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	atory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Co	mpounds (QC Lot: 10	63276)									
KS2302731-003	Anonymous	Benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Styrene	100-42-5	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
Volatile Organic Co	ompounds (QC Lot: 10	68955)									
VA23B7487-001	Anonymous	Benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Styrene	100-42-5	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 1063275)										
KS2302731-003	Anonymous	F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	
		VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	
Hydrocarbons (QC	Lot: 1068954)										
VA23B7487-001	Anonymous	F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	
		VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	

Page : 4 of 6 Work Order : 4 Df 6 YL2300918

Client : KBL Environmental Ltd.

Project : 23-099NT

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number M	ethod	LO	R	Unit	Result	Qualifier
olatile Organic Compounds (QCLot	: 1063276)						
Benzene	71-43-2 E6	611A	0.5	5	μg/L	<0.50	
Ethylbenzene	100-41-4 E6	611A	0.0	5	μg/L	<0.50	
Methyl-tert-butyl ether [MTBE]	1634-04-4 E6	611A	0.5	5	μg/L	<0.50	
Styrene	100-42-5 E6	611A	0.5	5	μg/L	<0.50	
Toluene	108-88-3 E6	611A	0.5	5	μg/L	<0.50	
Xylene, m+p-	179601-23-1 E6	611A	0.4	1	μg/L	<0.40	
Xylene, o-	95-47-6 E6	611A	0.3	3	μg/L	<0.30	
olatile Organic Compounds (QCLot	: 1068955)						
Benzene	71-43-2 E6	611A	0.5	5	μg/L	<0.50	
Ethylbenzene	100-41-4 E6	611A	0.5	5	μg/L	<0.50	
Methyl-tert-butyl ether [MTBE]	1634-04-4 E6	611A	0.5	5	μg/L	<0.50	
Styrene	100-42-5 E6	611A	0.5	5	μg/L	<0.50	
Toluene	108-88-3 E6	611A	0.5	5	μg/L	<0.50	
Xylene, m+p-	179601-23-1 E6	611A	0.4	1	μg/L	<0.40	
Xylene, o-	95-47-6 E6	611A	0.3	3	μg/L	<0.30	
ydrocarbons (QCLot: 1063275)							
F1 (C6-C10)	E	581.VH+F1	10	0	μg/L	<100	
VHw (C6-C10)	E	581.VH+F1	10	0	μg/L	<100	
ydrocarbons (QCLot: 1068954)							
F1 (C6-C10)	E	581.VH+F1	10	0	μg/L	<100	
VHw (C6-C10)	E	581.VH+F1	10	0	μg/L	<100	
ydrocarbons (QCLot: 1069039)							
F2 (C10-C16)	E6	601	10	0	μg/L	<100	
F3 (C16-C34)	E6	601	25	0	μg/L	<250	
F4 (C34-C50)	E6	601	25	0	μg/L	<250	
ydrocarbons (QCLot: 1069261)							
F2 (C10-C16)	E6	601	100	0	μg/L	<100	
F3 (C16-C34)	E6	601	250	0	μg/L	<250	
F4 (C34-C50)	E6	601	25	0	μg/L	<250	

Page : 5 of 6 Work Order : 7L2300918

Client : KBL Environmental Ltd.

Project : 23-099NT

Laboratory Control Sample (LCS) Report

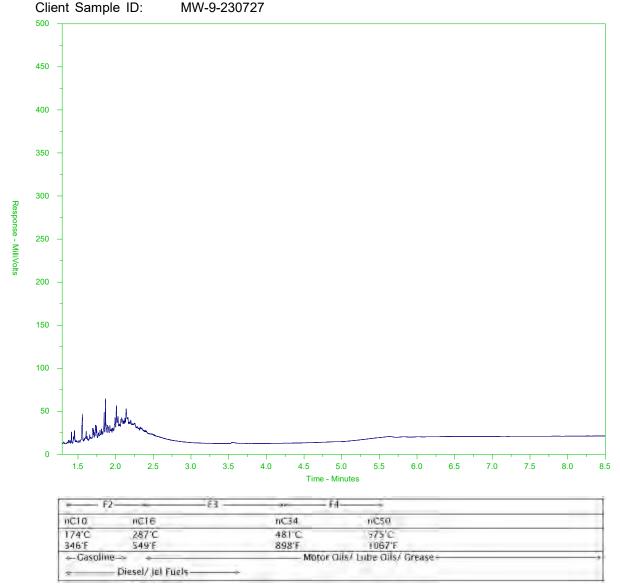
A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot: 10632	276)								
Benzene	71-43-2	E611A	0.5	μg/L	100 μg/L	103	70.0	130	
Ethylbenzene	100-41-4	E611A	0.5	μg/L	100 μg/L	101	70.0	130	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.5	μg/L	100 μg/L	111	70.0	130	
Styrene	100-42-5	E611A	0.5	μg/L	100 μg/L	103	70.0	130	
Toluene	108-88-3	E611A	0.5	μg/L	100 μg/L	101	70.0	130	
Xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	106	70.0	130	
Xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	101	70.0	130	
Volatile Organic Compounds (QCLot: 10689)55)								
Benzene	71-43-2	E611A	0.5	μg/L	100 μg/L	99.2	70.0	130	
Ethylbenzene	100-41-4	E611A	0.5	μg/L	100 μg/L	100	70.0	130	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.5	μg/L	100 μg/L	105	70.0	130	
Styrene	100-42-5	E611A	0.5	μg/L	100 μg/L	99.1	70.0	130	
Toluene	108-88-3	E611A	0.5	μg/L	100 μg/L	100	70.0	130	
Xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	106	70.0	130	
Xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	102	70.0	130	
Hydrocarbons (QCLot: 1063275)									
F1 (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	99.2	70.0	130	
VHw (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	99.3	70.0	130	
Hydrocarbons (QCLot: 1068954)									
F1 (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	86.2	70.0	130	
VHw (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	88.7	70.0	130	
Hydrocarbons (QCLot: 1069039)									
F2 (C10-C16)		E601	100	μg/L	4493.26 μg/L	108	70.0	130	
F3 (C16-C34)		E601	250	μg/L	7476.18 µg/L	109	70.0	130	
F4 (C34-C50)		E601	250	μg/L	6616.81 µg/L	101	70.0	130	
Hydrocarbons (QCLot: 1069261) F2 (C10-C16)		E601	100	μg/L	4493.26 μg/L	107	70.0	130	
F3 (C16-C34)		E601	250	μg/L	7476.18 µg/L	111	70.0	130	
F4 (C34-C50)		E601	250	μg/L	7476.16 μg/L 6616.81 μg/L	95.4	70.0	130	
1 + (00+-000)			200	₩3, -	0010.01 μg/L	30.4	70.0	100	
		<u> </u>							

Page : 6 of 6 Work Order : 7L2300918

Client : KBL Environmental Ltd.

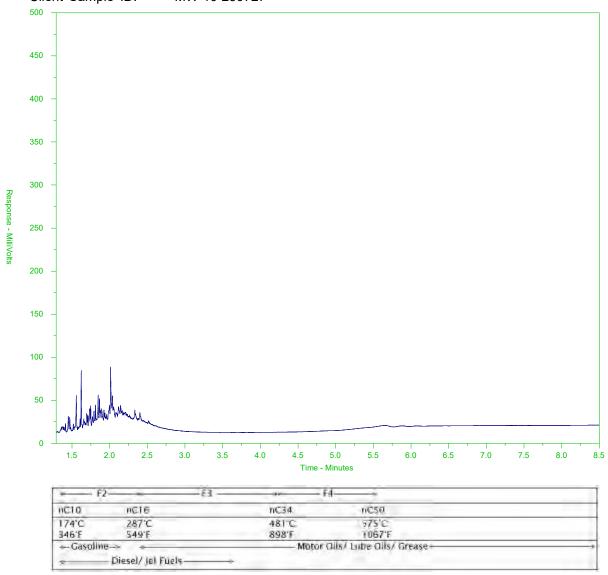
Project : 23-099NT


Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water		campios, may be oubject to blue. 145	•	,			Matrix Snik	re (MS) Report		
Sub-iviatrix. Water					Spi	ike	Recovery (%)		Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Volatile Organic	Compounds (QCLot	t: 1063276)								
KS2302731-004	Anonymous	Benzene	71-43-2	E611A	102 μg/L	100 μg/L	102	60.0	140	
		Ethylbenzene	100-41-4	E611A	97.4 μg/L	100 μg/L	97.4	60.0	140	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	113 µg/L	100 μg/L	113	60.0	140	
		Styrene	100-42-5	E611A	101 μg/L	100 μg/L	101	60.0	140	
		Toluene	108-88-3	E611A	97.6 μg/L	100 μg/L	97.6	60.0	140	
		Xylene, m+p-	179601-23-1	E611A	204 μg/L	200 μg/L	102	60.0	140	
		Xylene, o-	95-47-6	E611A	98.6 μg/L	100 μg/L	98.6	60.0	140	
Volatile Organic	Compounds (QCLot	t: 1068955)	- 1							
VA23B7487-002	Anonymous	Benzene	71-43-2	E611A	104 μg/L	100 μg/L	104	60.0	140	
		Ethylbenzene	100-41-4	E611A	104 μg/L	100 μg/L	104	60.0	140	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	112 µg/L	100 μg/L	112	60.0	140	
		Styrene	100-42-5	E611A	104 μg/L	100 μg/L	104	60.0	140	
		Toluene	108-88-3	E611A	103 μg/L	100 μg/L	103	60.0	140	
		Xylene, m+p-	179601-23-1	E611A	216 µg/L	200 μg/L	108	60.0	140	
		Xylene, o-	95-47-6	E611A	104 μg/L	100 μg/L	104	60.0	140	
Hydrocarbons (QCLot: 1063275)									
KS2302731-005	Anonymous	F1 (C6-C10)		E581.VH+F1	5460 μg/L	6310 µg/L	86.6	60.0	140	
		VHw (C6-C10)		E581.VH+F1	5470 μg/L	6310 μg/L	86.7	60.0	140	
Hydrocarbons (QCLot: 1068954)				BEILE					
VA23B7487-003	Anonymous	F1 (C6-C10)		E581.VH+F1	6260 µg/L	6310 μg/L	99.2	60.0	140	
		VHw (C6-C10)		E581.VH+F1	6450 μg/L	6310 µg/L	102	60.0	140	

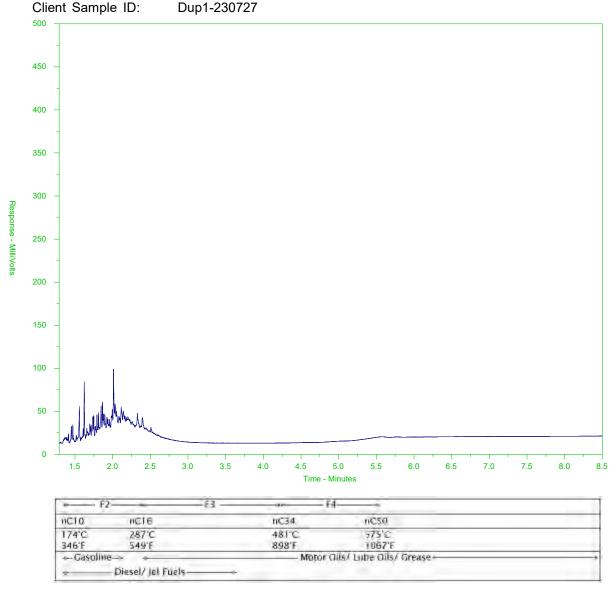
ALS Sample ID: YL2300918-001-E601


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

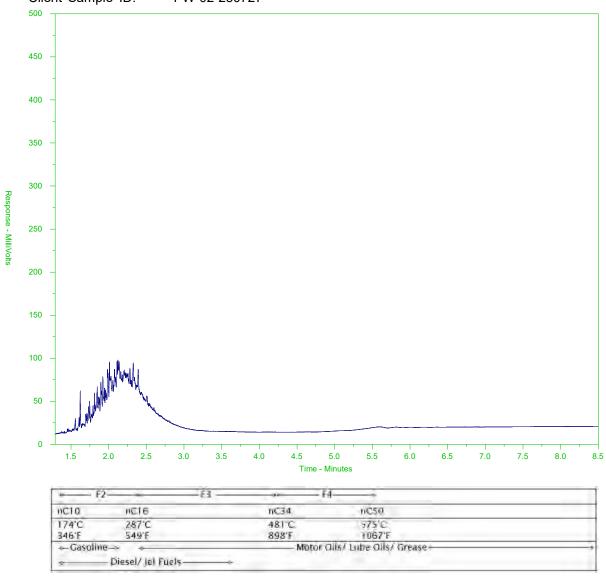
ALS Sample ID: YL2300918-002-E601
Client Sample ID: MW-10-230727


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2300918-003-E601


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

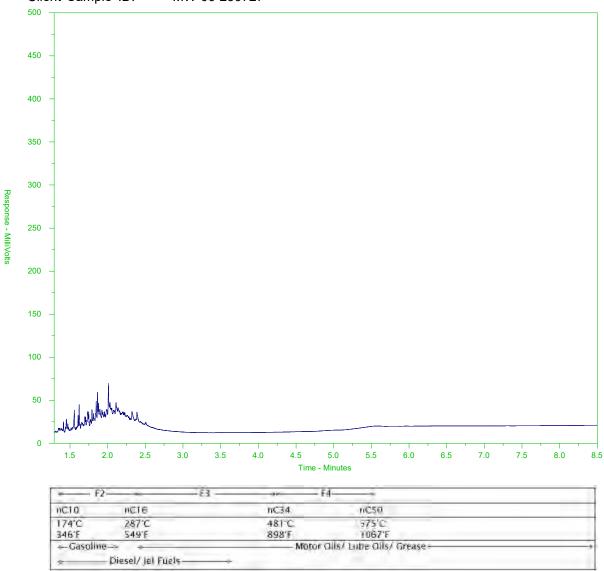
ALS Sample ID: YL2300918-004-E601
Client Sample ID: PW-02-230727

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

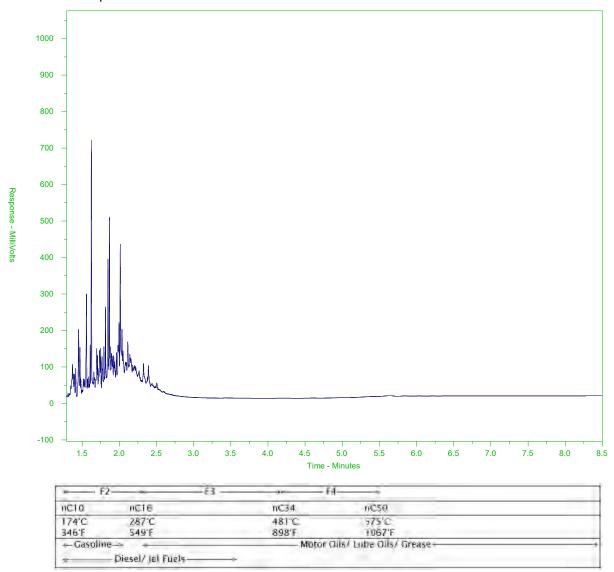
ALS Sample ID: YL2300918-005-E601
Client Sample ID: PW-01-230727


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

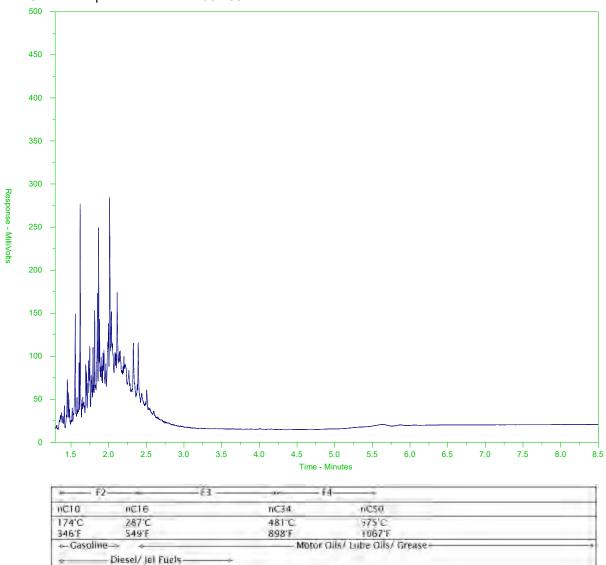
ALS Sample ID: YL2300918-006-E601
Client Sample ID: MW-06-230727


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

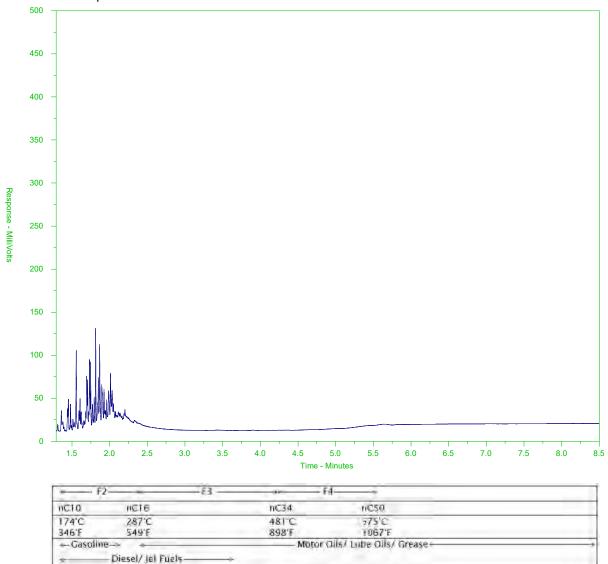
ALS Sample ID: YL2300918-007-E601
Client Sample ID: MW-07-230727


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

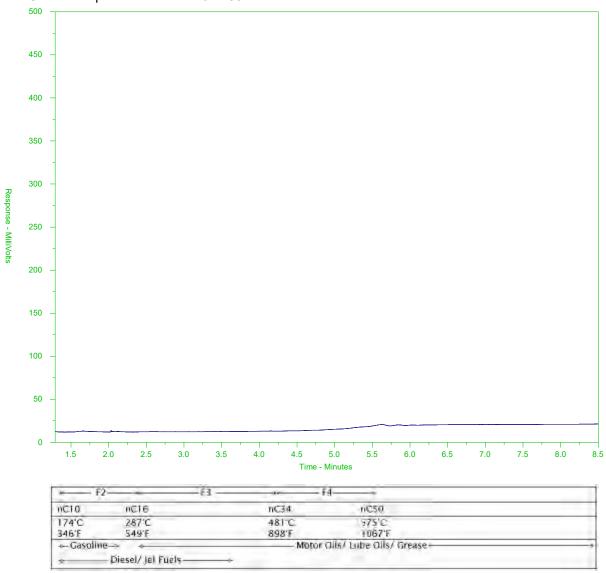
ALS Sample ID: YL2300918-008-E601
Client Sample ID: MW-05-230727


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2300918-009-E601 Client Sample ID: JF01-01-230727


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2300918-010-E601
Client Sample ID: MW-04-230727

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS www.alsglobal.com

Canada Toll Free: 1 800 668 9878

Page of

- The second second	Released by-	0	5	Are samples for hum	□ yes □	Are samples taken fro	Drinking Wat		MY	J-FC	MW	MM	MM	PW	PW	Duj	WW	Alva	ALS Sample # (ALS use only)	ALS Lab Work Or	LSD;	PO / AFE:		ALS Account # / Quote #:		Contact:	Company:	C ₀	Invoice To Sa	Postal Code: T9	City/Province: Let	-	Q	Phone: 78		Company: KB
Dave.	Deter	1		Are samples for human consumption/ use?	NO NO	Are samples taken from a Requiated DW System?	Drinking Water (DW) Samples' (client use)		MW-04-230/2/	JF01-01-230727	MW-05-230727	MW-07-230727	MW-06-230727	PW-01-230727	PW-02-230727	Dup1-230727	MW-10-230727	MW-9-230727		ALS Lab Work Order # (ALS use only):			23-099NT	uote #:	Project Information			Copy of Invoice with Report	Same as Report To	T9E 0Z4	educ, AB	3909, 68 Avenue	Company address below will appear on the final report	780.452.7779	Katie Oliver	KBL Environmental
Pare	(citetit rise)	distant		_		1													Sample Identification and/or Coordinates (This description will appear on the report)						vation			DI YES II NO	D YES I NO				pear on the final report			TO A TANK OF MALL AND THE STREET
ing.	1						lates / Specify												Coordinates the report)																	
neceived by:	18.					(144)	Nates / Specify Limits for result evaluation by selecting from drap-down below													ALS Contact:	Location:	Requisitioner	Major/Minor Code:	AFE/Cost Center:		Email 2	Email 1 or Fax	Select Invoice Distribution:		Email 3	Email 2	Email 1 or Fax	Select Distribution:	Compare Result	Merge QC/QC	Select Report Format:
4	INITIAL SHIPMENT RECEPTION (ALS use only)					cer con only)	aluation by select												Date (dd-mmm-yy)	Oliver Greg					Oil and Gas Required Fields (client use)	Khaywoodfarmer@kblenv		istribution: 🗵 EMAIL	Invoice I	kbl@esdat.net	GMRPMonitoring@kblenv.com	Email 1 or Fax Kklevgaard@kblenv.com	OU. E EMAIL	Compare Results to Criteria on Report - provide details below if how reserved	Merge QC/QCI Reports with COA	100
日	RECEPTION (A						ng from drap-dow												Time (nh:m/n)	Sampler:			Routing Code:	PO#	d Fields (client	@kblenv		MAR O MAR O	Invoice Recipients		@kblenv.com	env.com	O MAIL O	- provide details held		
27/26	LS use only)								Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Sample Type	MM					use)		- 1	FAX					FAX	wif how checked	NO TI N/A	
Time:		乐		Cooler C	Submission Comments identified on Sample Receipt Notification:	Cooling Method: I NONE	1		4	4 R	4	A D	20	A D	-	4 T	4 R		NUME BTEX/F		OF	cc	N	ΓAΙ	NE	RS	3	1	1	Det		□ Same	□ 2 day	D 3 day	A day	
		1	NITIAL	ustody S	ion Com	Method:		1			-		-		-	20	2		BIEX/F	1-7-4					+	-				and Time	Addition	lej o rece day[E2] ji	[P2] If rec	P3J if rec	e [R] If rece	
Received by:			COOLER T	eals Inta	ments id	O NON	1	1		1															1	1000	ndoata Eil	0.000	For all to	Required	nal faas ma	received t	elved by 3p	eived by 3p	aived by 3p	Imaroun
	72		NITTIAL COOLER TEMPERATURES C	ict:	entified c	301 D 30	SAMP	V		1	Telepho						~	W	Envi					-	+	Man Na	Arad (E) E		eto with rus	Date and Time Required for all E&P TATs:	of vidde ve	Claime day [62] If received by 10am M-S - 200% rush surcharge minimum	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum	☐ 3 day [P3] if received by 3pm M-F - Z5% rush surcharge minimum	A Roubne [R] If received by 3pm M-F - no surcharges apply 4 day [P4] If received by 3pm M-F - 20% rush surcharge minimum	Turnaround Time (TAT) Requested
	VAL SHI		JRES*C) YES O	n Sampl	100	E RECE	+	H		Telephone : -1 967 873 5593		3	ő	Ę		YL2300918	ork Ord	Environmental Division						1	- Look soon	, lourage		h TATa req	P TATa:	rush reque	-S - 200%	50% rush s	25% rush s	no surchan	AT) Requ
Date:	MENTE			N/A S	Receipt	I ICE PACKS	PT DET			1	67 873 56		3	7	5		300	er Refe	antal C						1) of Citation	Tiny olo	nalveie	ested, plea	- 1000	ds on mead	rush surch	urcharge in	urcharge m	es apply	ested
1	ECEPTI			ample C	Notifica	☐ FROZEN	AILS (A	-			93			3.			9	rence	Divisio	_	-				+	d and Pres	Analysis nequest	Pomios	se contact	Marie Jaintine	ands stat	arge.	nimum	inimum		
	ON (ALS		FINAL GOO	ustody Se		Nezc	SAMPLE RECEIPT DETAILS (ALS use only)			-	-	_	+	1	=	1	1	1	5						1	CALL DECISION OF LINE AND LINE	27	of the second	gur AM to co	and a sounday	Toro bolideo			AFFI		
	FINAL SHIPMENT RECEPTION (ALS use only)		FINAL COOLER TEMPERATURES *C	Sample Custody Seals Intact:	D YES	E 000E	ily)	1		1			1	1	1	1	1	1								Woled		THE PARTIES	For all tests with rush TATs requested, please contact your AM to confirm availability.	nd Time Required for all E&P TATs:	and forman		(ALS	AFFIX ALS BARCODE LABEL HERE		
Time:			ATURES *C	DYES DWA	ON D	COOLING INFTATED	E			1		1	1	1		1	1	1	SAMP	LES	ON	Н	DLI	0		_	1	my.		dael etimos			(ALS USB ONLY)	CODE LAE		
	-			DNA		O	1	-		-	-	+	1	+		+	1	+	SUSPEC		_	-	_				-							EL HER		
	1																	1	JOFE	, ED	IME	MILL	7 (8	ee 1	IDIE	3)	-	1	1		1			m		

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : **YL2300932** Page : 1 of 10

Client : KBL Environmental Ltd. Laboratory : ALS Environmental - Yellowknife

Contact : Katie Oliver : Oliver Gregg

Address : 17 Cameron Road PO Box 1895 Address : 314 Old Airport Road, Unit 116

Yellowknife NT Canada X1A 2P4 Yellowknife NT Canada X1A 3T3

 Telephone
 : 780 893 3305
 Telephone
 : 1 867 445 7143

 Project
 : 23-099NT
 Date Samples Received
 : 28-Jul-2023 10:20

Sampler : MM

Quote number : YL22-KBLE100-001

No. of samples received : 6
No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

General Comments

- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anshim Anshim	Lab Assistant	Metals, Burnaby, British Columbia
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Inorganics, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia

Page : 2 of 10 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
μg/L	micrograms per litre
μS/cm	microsiemens per centimetre
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page : 3 of 10 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Sub-Matrix: Water			Cl	ient sample ID	JF01-06-23072	MW-03-230728	Dup2-230728	JF01-04-23072	PW3-230728
(Matrix: Water)					8			8	
			Client samp	ling date / time	28-Jul-2023 00:00				
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2300932-001	YL2300932-002	YL2300932-003	YL2300932-004	YL2300932-005
					Result	Result	Result	Result	Result
Physical Tests	7771								
Alkalinity, bicarbonate (as CaCO3)		E290/VA	1.0	mg/L	109				
Alkalinity, carbonate (as CaCO3)		E290/VA	1.0	mg/L	<1.0				
Alkalinity, hydroxide (as CaCO3)		E290/VA	1.0	mg/L	<1.0				
Alkalinity, phenolphthalein (as CaCO3)		E290/VA	1.0	mg/L	<1.0				
Alkalinity, total (as CaCO3)		E290/VA	1.0	mg/L	109				
Conductivity		E100/VA	2.0	μS/cm	487				
Hardness (as CaCO3), dissolved		EC100/VA	0.50	mg/L	148				
рН		E108/VA	0.10	pH units	7.56				
Solids, total dissolved [TDS]		E162/VA	10	mg/L	280				
Solids, total suspended [TSS]		E160/VA	3.0	mg/L	25.3				
Anions and Nutrients									
Bromide	24959-67-9	E235.Br-U/VA	0.0050	mg/L	0.0730				
Chloride	16887-00-6	E235.CI-L/VA	0.10	mg/L	66.0				
Fluoride	16984-48-8	E235.F-L/VA	0.010	mg/L	0.080				
Nitrate (as N)	14797-55-8	E235.NO3-T/V	0.0030	mg/L	0.267				
		A							
Nitrite (as N)	14797-65-0	E235.NO2-L/V	0.0010	mg/L	0.0112				
Sulfata (an SO4)	44000 70 0	A	0.050	es //	23.6				
Sulfate (as SO4)	14808-79-8	E235.SO4-L/V	0.050	mg/L	23.0				
Total Metals		<u> </u>							
Aluminum, total	7429-90-5	E420/VA	0.0030	mg/L	0.0080				
Antimony, total	7440-36-0		0.00010	mg/L	0.00132				
Arsenic, total	7440-38-2		0.00010	mg/L	0.140				
Barium, total	7440-39-3		0.00010	mg/L	0.0457				
Beryllium, total	7440-41-7		0.000020	mg/L	<0.000020				
Bismuth, total	7440-69-9		0.000050	mg/L	<0.000050				
Boron, total	7440-42-8		0.010	mg/L	0.035				
Cadmium, total	7440-43-9		0.0000050	mg/L	0.0000073				
Calcium, total	7440-70-2		0.050	mg/L	38.0				
Cesium, total	7440-46-2		0.000010	mg/L	0.000015				
Solum, total	1440-40-2	, , , ,	1 0.000010	1119/12	0.000010	I			

Page : 4 of 10 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

ALS

Sub-Matrix: Water		CI	lient sample ID	JF01-06-23072	MW-03-230728	Dup2-230728	JF01-04-23072	PW3-230728
(Matrix: Water)				8			8	
		Client comp	oling date / time	28-Jul-2023 00:00				
	CACAL L Makked/Lob	LOR	Unit					
Analyte	CAS Number Method/Lab	LOR	Offic	YL2300932-001	YL2300932-002	YL2300932-003	YL2300932-004	YL2300932-005
				Result	Result	Result	Result	Result
Total Metals Chromium, total	7440-47-3 E420/VA	0.00050	ma/l	<0.00050				
Cobalt, total	7440-47-3 E-420/VA 7440-48-4 E420/VA	0.00030	mg/L mg/L	0.00048				
Copper, total	7440-48-4 L+20/VA 7440-50-8 E420/VA	0.00010	_	0.00048				
	7440-50-8 E420/VA 7439-89-6 E420/VA	0.000	mg/L	<0.010				
Iron, total		0.00050	mg/L	<0.00050				
Lead, total	7439-92-1 E420/VA 7439-93-2 E420/VA	0.000030	mg/L	0.0056				
Lithium, total	l l	0.0010	mg/L	11.2				
Magnesium, total	7439-95-4 E420/VA	0.0030	mg/L	0.110				
Manganese, total	7439-96-5 E420/VA 7439-98-7 E420/VA	0.00010	mg/L	0.000674				
Molybdenum, total		0.00050	mg/L	0.00240				
Nickel, total	7440-02-0 E420/VA		mg/L	0.00240				
Phosphorus, total	7723-14-0 E420/VA	0.050	mg/L					
Potassium, total	7440-09-7 E420/VA	0.050	mg/L	5.79				
Rubidium, total	7440-17-7 E420/VA	0.00020	mg/L	0.00143				
Selenium, total	7782-49-2 E420/VA	0.000050	mg/L	0.000083				
Silicon, total	7440-21-3 E420/VA	0.10	mg/L	7.66				
Silver, total	7440-22-4 E420/VA	0.000010	mg/L	<0.000010				
Sodium, total	7440-23-5 E420/VA	0.050	mg/L	33.6				
Strontium, total	7440-24-6 E420/VA	0.00020	mg/L	0.100				
Sulfur, total	7704-34-9 E420/VA	0.50	mg/L	9.21				
Tellurium, total	13494-80-9 E420/VA	0.00020	mg/L	<0.00020				
Thallium, total	7440-28-0 E420/VA	0.000010	mg/L	<0.000010				
Thorium, total	7440-29-1 E420/VA	0.00010	mg/L	<0.00010				
Tin, total	7440-31-5 E420/VA	0.00010	mg/L	<0.00010				
Titanium, total	7440-32-6 E420/VA	0.00030	mg/L	<0.00030				
Tungsten, total	7440-33-7 E420/VA	0.00010	mg/L	<0.00010				
Uranium, total	7440-61-1 E420/VA	0.000010	mg/L	0.000270				
Vanadium, total	7440-62-2 E420/VA	0.00050	mg/L	0.00094				
Zinc, total	7440-66-6 E420/VA	0.0030	mg/L	0.0034				
Zirconium, total	7440-67-7 E420/VA	0.00020	mg/L	<0.00020				
Dissolved Metals	7440 70 0 54210/0	0.050	ma/l	20.2				
Calcium, dissolved	7440-70-2 E421/VA	0.050	mg/L	38.3				

Page : 5 of 10 Work Order : 7L2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

ALS

Sub-Matrix: Water			Cli	ent sample ID	JF01-06-23072	MW-03-230728	Dup2-230728	JF01-04-23072	PW3-230728
(Matrix: Water)					8			8	
			Client sampl	ing date / time	28-Jul-2023 00:00				
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2300932-001	YL2300932-002	YL2300932-003	YL2300932-004	YL2300932-005
					Result	Result	Result	Result	Result
Dissolved Metals		100							
Magnesium, dissolved	7439-95-4 E	421/VA	0.0050	mg/L	12.6				
Mercury, dissolved	7439-97-6 E	509/VA	0.0000050	mg/L	<0.0000050				
Potassium, dissolved	7440-09-7 E	421/VA	0.050	mg/L	6.64				
Sodium, dissolved	7440-23-5 E	421/VA	0.050	mg/L	35.4				
Dissolved mercury filtration location	EF	P509/VA	-	-	Field				
Dissolved metals filtration location	Ef	P421/VA	-	-	Laboratory				
Aggregate Organics									
Oil & grease (gravimetric)	E	567/VA	5.0	mg/L	<5.0				
Volatile Organic Compounds [Fuels]									
Benzene	71-43-2 E6	611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	100-41-4 E6	611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl-tert-butyl ether [MTBE]	1634-04-4 E6	611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Styrene	100-42-5 E6	611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	108-88-3 E6	611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Xylene, m+p-	179601-23-1 E6	611A/VA	0.40	μg/L	<0.40	<0.40	<0.40	<0.40	<0.40
Xylene, o-	95-47-6 E6	611A/VA	0.30	μg/L	<0.30	<0.30	<0.30	<0.30	<0.30
Xylenes, total	1330-20-7 E6	611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Hydrocarbons		1111111111111							
F1 (C6-C10)	E\$ V/	581.VH+F1/	100	μg/L	<100	<100	<100	<100	<100
F2 (C10-C16)		601/VA	300	μg/L	<300	<300	<300	<300	<300
F3 (C16-C34)	E6	601/VA	300	μg/L	<300	<300	<300	<300	<300
F4 (C34-C50)	E6	601/VA	300	μg/L	<300	<300	<300	<300	<300
VHw (C6-C10)	E!	581.VH+F1/	100	μg/L	<100	<100	<100	<100	<100
	V								
F1-BTEX		C580/VA	100	μg/L	<100	<100	<100	<100	<100
VPHw	E	C580A/VA	100	μg/L	<100	<100	<100	<100	<100
Hydrocarbons Surrogates					51 119 17				
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6 E6	601/VA	1.0	%	90.4	87.4	88.7	84.3	88.5
Dichlorotoluene, 3,4-		581.VH+F1/	1.0	%	109	95.1	101	100	104
	V	A							

Page : 6 of 10 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	JF01-06-23072	MW-03-230728	Dup2-230728	JF01-04-23072	PW3-230728
(Matrix: Water)					8			8	
			Client samp	ling date / time	28-Jul-2023 00:00				
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2300932-001	YL2300932-002	YL2300932-003	YL2300932-004	YL2300932-005
					Result	Result	Result	Result	Result
Volatile Organic Compounds Surrogates									
Bromofluorobenzene, 4-	460-00-4 E	E611A/VA	1.0	%	92.1	93.6	91.6	90.8	91.3
Difluorobenzene, 1,4-	540-36-3 E	E611A/VA	1.0	%	104	103	104	105	104

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 7 of 10 Work Order : 7 L2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Sub-Matrix: Water			Cl	ient sample ID	MW-02-230728		 	
(Matrix: Water)								
			Client samp	ling date / time	28-Jul-2023 00:00		 	
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2300932-006		 	
7.1.2.7.0	<i>5,</i> 10 110111201				Result		 	
Physical Tests	10000							
Alkalinity, bicarbonate (as CaCO3)		E290/VA	1.0	mg/L	114		 	
Alkalinity, carbonate (as CaCO3)		E290/VA	1.0	mg/L	<1.0		 	
Alkalinity, hydroxide (as CaCO3)		E290/VA	1.0	mg/L	<1.0		 	
Alkalinity, phenolphthalein (as CaCO3)		E290/VA	1.0	mg/L	<1.0		 	
Alkalinity, total (as CaCO3)		E290/VA	1.0	mg/L	114		 	
Conductivity		E100/VA	2.0	μS/cm	510		 	
Hardness (as CaCO3), dissolved		EC100/VA	0.50	mg/L	162		 	
pH		E108/VA	0.10	pH units	7.41		 	
Solids, total dissolved [TDS]		E162/VA	10	mg/L	276		 	
Solids, total suspended [TSS]		E160/VA	3.0	mg/L	21.9		 	
Anions and Nutrients		110011115						
Bromide	24959-67-9	E235.Br-U/VA	0.0050	mg/L	0.0705		 	
Chloride	16887-00-6	E235.CI-L/VA	0.10	mg/L	66.0		 	
Fluoride	16984-48-8	E235.F-L/VA	0.010	mg/L	0.087		 	
Nitrate (as N)	14797-55-8	E235.NO3-T/V	0.0030	mg/L	0.124		 	
		A						
Nitrite (as N)	14797-65-0	E235.NO2-L/V	0.0010	mg/L	<0.0010		 	
Sulfate (as SO4)	14000 70 0	A E235.SO4-L/V	0.050	mg/L	31.0		 	
Juliate (as 304)	14000-79-0	A	0.000	IIIg/L	31.0		 	
Total Metals	5.000							
Aluminum, total	7429-90-5	E420/VA	0.0030	mg/L	0.0095		 	
Antimony, total	7440-36-0	E420/VA	0.00010	mg/L	0.00152		 	
Arsenic, total	7440-38-2		0.00010	mg/L	0.0501		 	
Barium, total	7440-39-3	E420/VA	0.00010	mg/L	0.0732		 	
Beryllium, total	7440-41-7		0.000020	mg/L	<0.000020		 	
Bismuth, total	7440-69-9		0.000050	mg/L	<0.000050		 	
Boron, total	7440-42-8		0.010	mg/L	0.039		 	
Cadmium, total	7440-43-9		0.0000050	mg/L	0.0000207		 	
Calcium, total	7440-70-2		0.050	mg/L	39.5		 	
Cesium, total	7440-46-2		0.000010	mg/L	0.000015		 	
I		1	1		'	'		'

Page : 8 of 10 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

ALS

Analyte CAS Number Method/Lab LOR Unit YL2300932-006		-
Client sampling date / time 28-Jul-2023 00:00 Analyte CAS Number Method/Lab LOR Unit YL2300932-006 Total Metals Chromium, total 7440-47-3 E420/VA 0.00050 mg/L <0.00050		
Analyte CAS Number Method/Lab LOR Unit YL2300932-006		
Total Metals Chromium, total 7440-47-3 E420/VA 0.00050 mg/L <0.00050 mg/L	 	
Total Metals Chromium, total 7440-47-3 E420/VA 0.00050 mg/L <0.00050	 	
Chromium, total 7440-47-3 E420/VA 0.00050 mg/L <0.00050	 	
Cobalt, total 7440-48-4 E420/VA 0.00010 mg/L 0.00053 Copper, total 7440-50-8 E420/VA 0.00050 mg/L 0.00202 Iron, total 7439-89-6 E420/VA 0.010 mg/L 0.096 Lead, total 7439-92-1 E420/VA 0.00050 mg/L <0.00050	 	
Copper, total 7440-50-8 E420/VA 0.00050 mg/L 0.00202 Iron, total 7439-89-6 E420/VA 0.010 mg/L 0.096 Lead, total 7439-92-1 E420/VA 0.000050 mg/L <0.000050	 	
Iron, total 7439-89-6 E420/VA 0.010 mg/L 0.096 Lead, total 7439-92-1 E420/VA 0.000050 mg/L <0.000050	 	
Lead, total 7439-92-1 E420/VA 0.000050 mg/L <0.000050		
Lithium, total 7439-93-2 E420/VA 0.0010 mg/L 0.0050 Magnesium, total 7439-95-4 E420/VA 0.0050 mg/L 12.4		
Magnesium, total 7439-95-4 E420/VA 0.0050 mg/L 12.4	 1	
7400 00 5 E4200//A 0 00010 mg/l 0 0456	 	
Molybdenum, total 7439-98-7 E420/VA 0.000050 mg/L 0.00141	 	
Nickel, total 7440-02-0 E420/VA 0.00050 mg/L 0.00218	 	
Phosphorus, total 7723-14-0 E420/VA 0.050 mg/L <0.050	 	
Potassium, total 7440-09-7 E420/VA 0.050 mg/L 5.59	 	
Rubidium, total 7440-17-7 E420/VA 0.00020 mg/L 0.00237	 	
Selenium, total 7782-49-2 E420/VA 0.000050 mg/L 0.000127	 	
Silicon, total 7440-21-3 E420/VA 0.10 mg/L 7.64	 	
Silver, total 7440-22-4 E420/VA 0.000010 mg/L <0.000010	 	
Sodium, total 7440-23-5 E420/VA 0.050 mg/L 34.0	 	
Strontium, total 7440-24-6 E420/VA 0.00020 mg/L 0.116	 	
Sulfur, total 7704-34-9 E420/VA 0.50 mg/L 12.1	 -	
Tellurium, total 13494-80-9 E420/VA 0.00020 mg/L <0.00020	 -	
Thallium, total 7440-28-0 E420/VA 0.000010 mg/L 0.000023	 	
Thorium, total 7440-29-1 E420/VA 0.00010 mg/L <0.00010	 	
Tin, total 7440-31-5 E420/VA 0.00010 mg/L <0.00010	 	
Titanium, total 7440-32-6 E420/VA 0.00030 mg/L 0.00030	 	
Tungsten, total 7440-33-7 E420/VA 0.00010 mg/L <0.00010	 	
Uranium, total 7440-61-1 E420/VA 0.000010 mg/L 0.000282	 	
Vanadium, total 7440-62-2 E420/VA 0.00050 mg/L 0.00133	 	
Zinc, total 7440-66-6 E420/VA 0.0030 mg/L <0.0030	 	
Zirconium, total 7440-67-7 E420/VA 0.00020 mg/L <0.00020	 	
Dissolved Metals		
Calcium, dissolved 7440-70-2 E421/VA 0.050 mg/L 41.6	 	

Page : 9 of 10 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Sub-Matrix: Water		Cl	ient sample ID	MW-02-230728	 	
(Matrix: Water)						
		Client samn	ling date / time	28-Jul-2023 00:00	 	
Analida	CAS Number Method/Lab	LOR	Unit	YL2300932-006	 	
Analyte	CAS Number Welliou/Lab	LON	OTIL	Result	 	
Dissolved Metals				result		
Magnesium, dissolved	7439-95-4 E421/VA	0.0050	mg/L	14.1	 	
Mercury, dissolved	7439-97-6 E509/VA	0.0000050	mg/L	<0.0000050	 	
Potassium, dissolved	7440-09-7 E421/VA	0.050	mg/L	6.07	 	
Sodium, dissolved	7440-23-5 E421/VA	0.050	mg/L	36.1	 	
Dissolved mercury filtration location	EP509/VA	-	-	Field	 	
Dissolved metals filtration location	EP421/VA	-	-	Laboratory	 	
Aggregate Organics						
Oil & grease (gravimetric)	E567/VA	5.0	mg/L	<5.0	 	
Volatile Organic Compounds [Fuels]				41 119 119		
Benzene	71-43-2 E611A/VA	0.50	μg/L	<0.50	 	
Ethylbenzene	100-41-4 E611A/VA	0.50	μg/L	<0.50	 	
Methyl-tert-butyl ether [MTBE]	1634-04-4 E611A/VA	0.50	μg/L	<0.50	 	
Styrene	100-42-5 E611A/VA	0.50	μg/L	<0.50	 	
Toluene	108-88-3 E611A/VA	0.50	μg/L	<0.50	 	
Xylene, m+p-	179601-23-1 E611A/VA	0.40	μg/L	<0.40	 	
Xylene, o-	95-47-6 E611A/VA	0.30	μg/L	<0.30	 	
Xylenes, total	1330-20-7 E611A/VA	0.50	μg/L	<0.50	 	
Hydrocarbons				- C 100 - 7.0		
F1 (C6-C10)	E581.VH+F1/	100	μg/L	<100	 	
E2 (C40 C46)	VA E601/VA	300	ua/l	<300		
F2 (C10-C16)	E601/VA E601/VA	300	μg/L			
F3 (C16-C34)	E601/VA E601/VA	300	μg/L	<300	 	
F4 (C34-C50)		100	μg/L	<300	 	
VHw (C6-C10)	E581.VH+F1/ VA	100	μg/L	<100	 	
F1-BTEX	EC580/VA	100	μg/L	<100	 	
VPHw	EC580A/VA	100	μg/L	<100	 	
Hydrocarbons Surrogates						
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6 E601/VA	1.0	%	86.6	 	
Dichlorotoluene, 3,4-	95-75-0 E581.VH+F1/	1.0	%	96.2	 	
1	VA					

Page : 10 of 10 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	MW-02-230728	 	
(Matrix: Water)							
			Client samp	ling date / time	28-Jul-2023 00:00	 	
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2300932-006	 	
				'	Result	 	
Volatile Organic Compounds Surrogates							
Bromofluorobenzene, 4-	460-00-4 E	E611A/VA	1.0	%	91.5	 	
Difluorobenzene, 1,4-	540-36-3 E	E611A/VA	1.0	%	102	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **YL2300932** Page : 1 of 13

Client : KBL Environmental Ltd. Laboratory : ALS Environmental - Yellowknife

Contact : Katie Oliver : Oliver Gregg

Address :17 Cameron Road PO Box 1895 Address :314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

 Telephone
 :780 893 3305
 Telephone
 :1867 445 7143

 Project
 :23-099NT
 Date Samples Received
 :28-Jul-2023 10:20

 PO
 :-- Issue Date
 :08-Aug-2023 09:04

C-O-C number : ---Sampler : MM
Site : ----

Quote number :YL22-KBLE100-001

No. of samples received :6
No. of samples analysed :6

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

Yellowknife NT Canada X1A 2P4

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ● Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 13 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E	/aluation: × =	Holding time exce	edance ; •	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid) JF01-06-230728	E567	28-Jul-2023	03-Aug-2023	28 days	6 days	✓	03-Aug-2023	40 days	0 days	✓
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid) MW-02-230728	E567	28-Jul-2023	03-Aug-2023	28 days	6 days	✓	03-Aug-2023	40 days	0 days	✓
Anions and Nutrients : Bromide by IC (Ultra Trace Level)										
HDPE JF01-06-230728	E235.Br-U	28-Jul-2023	02-Aug-2023	28 days	5 days	✓	02-Aug-2023	23 days	0 days	✓
Anions and Nutrients : Bromide by IC (Ultra Trace Level)										
HDPE MW-02-230728	E235.Br-U	28-Jul-2023	02-Aug-2023	28 days	5 days	✓	02-Aug-2023	23 days	0 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE JF01-06-230728	E235.CI-L	28-Jul-2023	02-Aug-2023	28 days	5 days	✓	02-Aug-2023	23 days	0 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE MW-02-230728	E235.CI-L	28-Jul-2023	02-Aug-2023	28 days	5 days	✓	02-Aug-2023	23 days	0 days	✓
Anions and Nutrients : Fluoride in Water by IC (Low Level)										
HDPE JF01-06-230728	E235.F-L	28-Jul-2023	02-Aug-2023	28 days	5 days	4	02-Aug-2023	23 days	0 days	*

Page : 4 of 13 Work Order : YL2300932

Client : KBL Environmental Ltd.

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	7 Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Anions and Nutrients : Fluoride in Water by IC (Low Level)		14271								
HDPE MW-02-230728	E235.F-L	28-Jul-2023	02-Aug-2023	28 days	5 days	✓	02-Aug-2023	23 days	0 days	✓
Anions and Nutrients : Nitrate in Water by IC (Trace Level)						THEFT				
HDPE JF01-06-230728	E235.NO3-T	28-Jul-2023	02-Aug-2023	3 days	5 days	* EHT	02-Aug-2023	-2 days	0 days	* UCP
Anions and Nutrients : Nitrate in Water by IC (Trace Level)										
HDPE MW-02-230728	E235.NO3-T	28-Jul-2023	02-Aug-2023	3 days	5 days	# EHT	02-Aug-2023	-2 days	0 days	x UCP
Anions and Nutrients : Nitrite in Water by IC (Low Level)		1277								
HDPE JF01-06-230728	E235.NO2-L	28-Jul-2023	02-Aug-2023	3 days	5 days	* EHT	02-Aug-2023	-2 days	0 days	* UCP
Anions and Nutrients : Nitrite in Water by IC (Low Level)		1271								
HDPE MW-02-230728	E235.NO2-L	28-Jul-2023	02-Aug-2023	3 days	5 days	* EHT	02-Aug-2023	-2 days	0 days	 UCP
Anions and Nutrients : Sulfate in Water by IC (Low Level)										
HDPE JF01-06-230728	E235.SO4-L	28-Jul-2023	02-Aug-2023	28 days	5 days	✓	02-Aug-2023	23 days	0 days	✓
Anions and Nutrients : Sulfate in Water by IC (Low Level)		1, 3, 10								
HDPE MW-02-230728	E235.SO4-L	28-Jul-2023	02-Aug-2023	28 days	5 days	✓	02-Aug-2023	23 days	0 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS		14.9								
Glass vial dissolved (hydrochloric acid) JF01-06-230728	E509	28-Jul-2023	03-Aug-2023	28 days	6 days	✓	03-Aug-2023	22 days	0 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) MW-02-230728	E509	28-Jul-2023	03-Aug-2023	28 days	6 days	1	03-Aug-2023	22 days	0 days	✓

Page : 5 of 13 Work Order : 7 VL2300932

Client : KBL Environmental Ltd.

Analyte Group	Method	Sampling Date	Evi	raction / Pr	renaration			Analysis		
Container / Client Sample ID(s)	Wethou	Sampling Date			g Times	 Eval	Analysis Date		g Times	Eval
Container / Chefit Sample ID(s)			Preparation Date	Rec	Actual	⊏Val	Analysis Date	Rec	Actual	Evai
issolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) JF01-06-230728	E421	28-Jul-2023	03-Aug-2023	180 days	7 days	✓	04-Aug-2023	173 days	1 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS		1. 1. 12	10.00							
HDPE - dissolved (lab preserved) MW-02-230728	E421	28-Jul-2023	03-Aug-2023	180 days	7 days	✓	04-Aug-2023	173 days	1 days	✓
lydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) Dup2-230728	E601	28-Jul-2023	03-Aug-2023	14 days	6 days	✓	03-Aug-2023	40 days	0 days	✓
lydrocarbons : CCME PHCs - F2-F4 by GC-FID		1021								
Amber glass/Teflon lined cap (sodium bisulfate) JF01-04-230728	E601	28-Jul-2023	03-Aug-2023	14 days	6 days	✓	03-Aug-2023	40 days	0 days	✓
lydrocarbons : CCME PHCs - F2-F4 by GC-FID		I I de la la								
Amber glass/Teflon lined cap (sodium bisulfate) JF01-06-230728	E601	28-Jul-2023	03-Aug-2023	14 days	6 days	✓	03-Aug-2023	40 days	0 days	✓
lydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) MW-02-230728	E601	28-Jul-2023	03-Aug-2023	14 days	6 days	✓	03-Aug-2023	40 days	0 days	✓
lydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) MW-03-230728	E601	28-Jul-2023	03-Aug-2023	14 days	6 days	✓	03-Aug-2023	40 days	0 days	✓
lydrocarbons : CCME PHCs - F2-F4 by GC-FID		I I I I I I I I I I	1912							
Amber glass/Teflon lined cap (sodium bisulfate) PW3-230728	E601	28-Jul-2023	03-Aug-2023	14 days	6 days	✓	03-Aug-2023	40 days	0 days	√
ydrocarbons : VH and F1 by Headspace GC-FID		1021								
Glass vial (sodium bisulfate) Dup2-230728	E581.VH+F1	28-Jul-2023	01-Aug-2023	14 days	5 days	✓	02-Aug-2023	9 days	0 days	✓

Page : 6 of 13 Work Order : 7L2300932

Client : KBL Environmental Ltd.

Analyte Group	Method	Sampling Date	Evi	traction / Pr	renaration			Analys	sis	
Container / Client Sample ID(s)	Wethod	Sampling Date	Preparation Date		g Times Actual	Eval	Analysis Date		g Times Actual	Eval
lydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) JF01-04-230728	E581.VH+F1	28-Jul-2023	01-Aug-2023	14 days	5 days	✓	02-Aug-2023	9 days	0 days	*
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) JF01-06-230728	E581.VH+F1	28-Jul-2023	01-Aug-2023	14 days	5 days	✓	02-Aug-2023	9 days	0 days	✓
lydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) MW-02-230728	E581.VH+F1	28-Jul-2023	01-Aug-2023	14 days	5 days	✓	02-Aug-2023	9 days	0 days	4
lydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) MW-03-230728	E581.VH+F1	28-Jul-2023	01-Aug-2023	14 days	5 days	✓	02-Aug-2023	9 days	0 days	✓
lydrocarbons : VH and F1 by Headspace GC-FID		14.3								
Glass vial (sodium bisulfate) PW3-230728	E581.VH+F1	28-Jul-2023	01-Aug-2023	14 days	5 days	✓	02-Aug-2023	9 days	0 days	4
Physical Tests : Alkalinity Species by Titration										
HDPE JF01-06-230728	E290	28-Jul-2023	02-Aug-2023	14 days	5 days	✓	02-Aug-2023	9 days	0 days	4
Physical Tests : Alkalinity Species by Titration										
HDPE MW-02-230728	E290	28-Jul-2023	02-Aug-2023	14 days	5 days	✓	02-Aug-2023	9 days	0 days	4
Physical Tests : Conductivity in Water										
HDPE JF01-06-230728	E100	28-Jul-2023	02-Aug-2023	28 days	5 days	✓	02-Aug-2023	23 days	0 days	√
Physical Tests : Conductivity in Water		142								
HDPE MW-02-230728	E100	28-Jul-2023	02-Aug-2023	28 days	5 days	✓	02-Aug-2023	23 days	0 days	√

Page : 7 of 13 Work Order : YL2300932

Client : KBL Environmental Ltd.

Matrix: Water					E	valuation: 🗴 =	Holding time exce	edance ; •	✓ = Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE										
JF01-06-230728	E108	28-Jul-2023	02-Aug-2023	0.11	0.25	*	02-Aug-2023	-131.32	0.11	36
				hrs	hrs	EHTR-FM		hrs	hrs	UCP
Physical Tests : pH by Meter										
HDPE										
MW-02-230728	E108	28-Jul-2023	02-Aug-2023	0.11	0.25	3E	02-Aug-2023	-131.32	0.11	3¢
				hrs	hrs	EHTR-FM		hrs	hrs	UCP
Physical Tests : TDS by Gravimetry										
HDPE										
JF01-06-230728	E162	28-Jul-2023					03-Aug-2023	7 days	6 days	✓
Physical Tests : TDS by Gravimetry										
HDPE				<u> </u>						
MW-02-230728	E162	28-Jul-2023					03-Aug-2023	7 days	6 days	✓
							-			
Physical Tests : TSS by Gravimetry										
HDPE								1		
JF01-06-230728	E160	28-Jul-2023					02-Aug-2023	7 days	5 days	✓
							J J J			
Physical Tests : TSS by Gravimetry										
HDPE								I		
MW-02-230728	E160	28-Jul-2023					02-Aug-2023	7 days	5 days	1
WW-02-230720	2.00	20 041 2020					02 7 kg 2020	r days	o days	
T (I M (I) T (I) (I) (I) W (I) I OPO JOPNO										
Total Metals : Total metals in Water by CRC ICPMS										
HDPE total (nitric acid) JF01-06-230728	E420	28-Jul-2023	03-Aug-2023	180	6 days	√	03-Aug-2023	174	0 days	1
JF01-00-230726	L420	20-Jul-2023	03-Aug-2023		0 days	,	03-Aug-2023		0 days	•
				days				days		
Total Metals : Total metals in Water by CRC ICPMS										
HDPE total (nitric acid)	E 400	00 1/4 0000	00 4 0005	,			00 4 0005		0.1	,
MW-02-230728	E420	28-Jul-2023	03-Aug-2023	180	6 days	✓	03-Aug-2023	174	0 days	✓
				days				days		
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
Dup2-230728	E611A	28-Jul-2023	01-Aug-2023	14	5 days	✓	02-Aug-2023	9 days	0 days	✓
				days						

Page : 8 of 13 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Date Extraction / Preparation				Analys	sis		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
JF01-04-230728	E611A	28-Jul-2023	01-Aug-2023	14	5 days	✓	02-Aug-2023	9 days	0 days	✓
				days						
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										_
JF01-06-230728	E611A	28-Jul-2023	01-Aug-2023	14	5 days	✓	02-Aug-2023	9 days	0 days	✓
				days						
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW-02-230728	E611A	28-Jul-2023	01-Aug-2023	14	5 days	✓	02-Aug-2023	9 days	0 days	✓
				days						
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
MW-03-230728	E611A	28-Jul-2023	01-Aug-2023	14	5 days	✓	02-Aug-2023	9 days	0 days	✓
				days						
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
PW3-230728	E611A	28-Jul-2023	01-Aug-2023	14	5 days	✓	02-Aug-2023	9 days	0 days	✓
				days						

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

UCP: Unsuitable Container and/or Preservative used (invalidates standard hold time). Maximum hold time of zero applied. Test results may be biased low / unreliable, and may not meet regulatory requirements.

Page : 9 of 13 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)								
Alkalinity Species by Titration	E290	1067361	1	11	9.0	5.0	1	
Bromide by IC (Ultra Trace Level)	E235.Br-U	1067357	1	2	50.0	5.0	√	
BTEX by Headspace GC-MS	E611A	1066792	1	6	16.6	5.0	<u>√</u>	
Chloride in Water by IC (Low Level)	E235.CI-L	1067355	1	2	50.0	5.0	<u>√</u>	
Conductivity in Water	E100	1067360	1	20	5.0	5.0	√	
Dissolved Mercury in Water by CVAAS	E509	1069128	1	13	7.6	5.0	1	
Dissolved Metals in Water by CRC ICPMS	E421	1070929	1	17	5.8	5.0	√	
Fluoride in Water by IC (Low Level)	E235.F-L	1067356	1	2	50.0	5.0	1	
Nitrate in Water by IC (Trace Level)	E235.NO3-T	1067353	1	5	20.0	5.0	1	
Nitrite in Water by IC (Low Level)	E235.NO2-L	1067350	1	20	5.0	5.0	1	
pH by Meter	E108	1067359	1	16	6.2	5.0	✓	
Sulfate in Water by IC (Low Level)	E235.SO4-L	1067358	1	2	50.0	5.0	1	
TDS by Gravimetry	E162	1068969	1	6	16.6	5.0	1	
Total metals in Water by CRC ICPMS	E420	1067021	1	20	5.0	5.0	√	
TSS by Gravimetry	E160	1068976	1	6	16.6	5.0	1	
VH and F1 by Headspace GC-FID	E581.VH+F1	1066791	1	6	16.6	5.0	✓	
Laboratory Control Samples (LCS)								
Alkalinity Species by Titration	E290	1067361	1	11	9.0	5.0	1	
Bromide by IC (Ultra Trace Level)	E235.Br-U	1067357	1	2	50.0	5.0	✓	
BTEX by Headspace GC-MS	E611A	1066792	1	6	16.6	5.0	✓	
CCME PHCs - F2-F4 by GC-FID	E601	1068963	1	7	14.2	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	1067355	1	2	50.0	5.0	✓	
Conductivity in Water	E100	1067360	1	20	5.0	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	1069128	1	13	7.6	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	1070929	1	17	5.8	5.0	✓	
Fluoride in Water by IC (Low Level)	E235.F-L	1067356	1	2	50.0	5.0	✓	
Nitrate in Water by IC (Trace Level)	E235.NO3-T	1067353	1	5	20.0	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	1067350	1	20	5.0	5.0	✓	
Oil & Grease by Gravimetry	E567	1068831	1	10	10.0	5.0	✓	
pH by Meter	E108	1067359	1	16	6.2	5.0	✓	
Sulfate in Water by IC (Low Level)	E235.SO4-L	1067358	1	2	50.0	5.0	✓	
TDS by Gravimetry	E162	1068969	1	6	16.6	5.0	✓	
Total metals in Water by CRC ICPMS	E420	1067021	1	20	5.0	5.0	✓	
TSS by Gravimetry	E160	1068976	1	6	16.6	5.0	✓	
VH and F1 by Headspace GC-FID	E581.VH+F1	1066791	1	6	16.6	5.0	✓	

Page : 10 of 13 Work Order : YL2300932

Client : KBL Environmental Ltd.

Matrix: Water		Evaluati	on: × = QC freque	ency outside sp	ecification; ✓ = 0	QC frequency wit	hin specification
Quality Control Sample Type			Co	ount		Frequency (%,)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB)							
Alkalinity Species by Titration	E290	1067361	1	11	9.0	5.0	✓
Bromide by IC (Ultra Trace Level)	E235.Br-U	1067357	1	2	50.0	5.0	✓
BTEX by Headspace GC-MS	E611A	1066792	1	6	16.6	5.0	√
CCME PHCs - F2-F4 by GC-FID	E601	1068963	1	7	14.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	1067355	1	2	50.0	5.0	✓
Conductivity in Water	E100	1067360	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	1069128	1	13	7.6	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	1070929	1	17	5.8	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	1067356	1	2	50.0	5.0	✓
Nitrate in Water by IC (Trace Level)	E235.NO3-T	1067353	1	5	20.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	1067350	1	20	5.0	5.0	✓
Oil & Grease by Gravimetry	E567	1068831	1	10	10.0	5.0	✓
Sulfate in Water by IC (Low Level)	E235.SO4-L	1067358	1	2	50.0	5.0	✓
TDS by Gravimetry	E162	1068969	1	6	16.6	5.0	✓
Total metals in Water by CRC ICPMS	E420	1067021	1	20	5.0	5.0	√
TSS by Gravimetry	E160	1068976	1	6	16.6	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	1066791	1	6	16.6	5.0	✓
Matrix Spikes (MS)							
Bromide by IC (Ultra Trace Level)	E235.Br-U	1067357	1	2	50.0	5.0	✓
BTEX by Headspace GC-MS	E611A	1066792	1	6	16.6	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	1067355	1	2	50.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	1069128	1	13	7.6	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1070929	1	17	5.8	5.0	√
Fluoride in Water by IC (Low Level)	E235.F-L	1067356	1	2	50.0	5.0	✓
Nitrate in Water by IC (Trace Level)	E235.NO3-T	1067353	1	5	20.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	1067350	1	20	5.0	5.0	✓
Sulfate in Water by IC (Low Level)	E235.SO4-L	1067358	1	2	50.0	5.0	✓
Total metals in Water by CRC ICPMS	E420	1067021	1	20	5.0	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	1066791	1	6	16.6	5.0	√

Page : 11 of 13 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	ALS Environmental -			sample. Conductivity measurements are temperature-compensated to 25°C.
	Vancouver			sample. Conductivity measurements are temperature-compensated to 25 C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	ALS Environmental -			pH should be measured in the field within the recommended 15 minute hold time.
	Vancouver			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
				filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	ALS Environmental -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Vancouver			brackish waters) may produce a positive bias by this method. Alternate analysis
TDC hu Cravina stra	F100	10/-4	APHA 2540 C (mod)	methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
	ALS Environmental -			filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
	Vancouver			with gravimetric measurement of the residue.
Bromide by IC (Ultra Trace Level)	E235.Br-U	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
, , ,			,	detection.
	ALS Environmental -			
	Vancouver			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
				detection.
	ALS Environmental -			
	Vancouver		===	
Fluoride in Water by IC (Low Level)	E235.F-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
	ALS Environmental -			detection.
	Vancouver			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
Withte III Water by 10 (Low Level)	E233.NO2-L	vvatei	Li A 300.1 (mod)	detection.
	ALS Environmental -			detection.
	Vancouver			
Nitrate in Water by IC (Trace Level)	E235.NO3-T	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	ALS Environmental -			
	Vancouver			

Page : 12 of 13 Work Order : YL2300932

Client : KBL Environmental Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Sulfate in Water by IC (Low Level)	E235.SO4-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Vancouver	107.1	15111 2222 5 (1)	
Alkalinity Species by Titration	E290 ALS Environmental -	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Vancouver			alkalinity values.
Total metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by
Total metals in water by One for Mo		Water	(mod)	Collision/Reaction Cell ICPMS.
	ALS Environmental -			
	Vancouver			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	ALS Environmental -		, ,	
	Vancouver			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Dissolved Mercury in Water by CVAAS	E509	Water	APHA 3030B/EPA	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation
			1631E (mod)	using bromine monochloride prior to reduction with stannous chloride, and analyzed by
	ALS Environmental -			CVAAS.
	Vancouver			
Oil & Grease by Gravimetry	E567	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
	ALS Environmental -			
	Vancouver			
VH and F1 by Headspace GC-FID	E581.VH+F1	Water	BC MOE Lab Manual / CCME PHC in Soil - Tier	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace
	ALS Environmental -		1 (mod)	autosampler, causing VOCs to partition between the aqueous phase and the
	Vancouver			headspace in accordance with Henry's law.
				Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply
				fully with the Reference Method for the Canada-Wide Standard for PHC. Unless
				qualified, all required quality control criteria of the CCME PHC method have been met,
				including response factor and linearity requirements.
CCME PHCs - F2-F4 by GC-FID	E601	Water	CCME PHC in Soil - Tier	Sample extracts are analyzed by GC-FID for CCME hydrocarbon fractions (F2-F4).
	ALS Environmental -		·	Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply
	Vancouver			fully with the Reference Method for the Canada-Wide Standard for PHC. Unless
				qualified, all required quality control criteria of the CCME PHC method have been met,
				including response factor and linearity requirements.

Page : 13 of 13 Work Order : YL2300932

Client : KBL Environmental Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
BTEX by Headspace GC-MS	E611A	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS.
				Samples are prepared in headspace vials and are heated and agitated on the
	ALS Environmental -			headspace autosampler, causing VOCs to partition between the aqueous phase and
	Vancouver			the headspace in accordance with Henry's law.
Dissolved Hardness (Calculated)	EC100	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and
				Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	ALS Environmental -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Vancouver			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations.
F1-BTEX	EC580	Water	CCME PHC in Soil - Tier	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).
	ALS Environmental -		1	chybonzone and xylones (BTEX).
	Vancouver			
VPH: VH-BTEX-Styrene	EC580A	Water	BC MOE Lab Manual	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHw = Volatile
· ·			(VPH in Water and	Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and
	ALS Environmental -		Solids) (mod)	styrene.
	Vancouver			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	ALS Environmental -			
	Vancouver			
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCI.
Joseph Marie	LI 309		7 11 1 11 1 0 0 0 0 0 0	Traisi campioc are more (cirio am), and process of marrior
	ALS Environmental -			
	Vancouver			
Oil & Grease Extraction for Gravimetry	EP567	Water	BC MOE Lab Manual	The entire water sample is extracted with hexane by liquid-liquid extraction.
			(Oil & Grease) (mod)	
	ALS Environmental -			
	Vancouver			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
				headspace autosampler. An aliquot of the headspace is then injected into the
	ALS Environmental -			GC/MS-FID system.
	Vancouver			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
	ALS Environmental -			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Page

Work Order : YL2300932

Yellowknife NT Canada X1A 2P4

Client : KBL Environmental Ltd. Laboratory : ALS Environmental - Yellowknife

Contact : Katie Oliver : Oliver Gregg

Address :17 Cameron Road PO Box 1895 Address :314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

: 1 of 14

Telephone : Telephone : 1 867 445 7143

 Project
 :23-099NT
 Date Samples Received
 :28-Jul-2023 10:20

 PO
 :--- Date Analysis Commenced
 :01-Aug-2023

 C-O-C number
 :--- Issue Date
 :08-Aug-2023 09:04

Sampler : MM 780 893 3305

Site ·----

Quote number : YL22-KBLE100-001

No. of samples received : 6
No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anshim Anshim	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Janice Leung	Supervisor - Organics Instrumentation	Vancouver Organics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Inorganics, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Vancouver Metals, Burnaby, British Columbia
Owen Cheng		Vancouver Metals, Burnaby, British Columbia

Page : 2 of 14 Work Order · YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 14 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water	b-Matrix: Water						Labora	ntory Duplicate (D	OUP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 1067359)										
VA23B7639-001	Anonymous	pH		E108	0.10	pH units	7.54	7.54	0.00%	4%	
Physical Tests (QC	Lot: 1067360)										
VA23B7639-001	Anonymous	Conductivity		E100	2.0	μS/cm	110	110	0.0907%	10%	
Physical Tests (QC	Lot: 1067361)										
VA23B7639-001	Anonymous	Alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	28.4	28.1	1.07%	200%	
		Alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0.00%	200%	
		Alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0.00%	200%	
		Alkalinity, phenolphthalein (as		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		CaCO3) Alkalinity, total (as CaCO3)		E290	1.0	mg/L	28.4	28.1	1.07%	20%	
Physical Tests (QC	Lot: 1068969)										
VA23B7561-003	Anonymous	Solids, total dissolved [TDS]		E162	20	mg/L	228	228	0.438%	20%	
Physical Tests (QC	Lot: 1068976)										
VA23B7561-003	Anonymous	Solids, total suspended [TSS]		E160	3.0	mg/L	5.1	5.9	0.8	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1067350)				l Dist						
VA23B7699-001	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1067353)										
VA23B7638-001	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3-T	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1067355)										
YL2300932-001	JF01-06-230728	Chloride	16887-00-6	E235.CI-L	0.10	mg/L	66.0	66.0	0.0383%	20%	
Anions and Nutrien	ts (QC Lot: 1067356)										
YL2300932-001	JF01-06-230728	Fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.080	0.078	0.001	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1067357)										
YL2300932-001	JF01-06-230728	Bromide	24959-67-9	E235.Br-U	0.0050	mg/L	0.0730	0.0717	1.73%	20%	
Anions and Nutrien	ts (QC Lot: 1067358)										
YL2300932-001	JF01-06-230728	Sulfate (as SO4)	14808-79-8	E235.SO4-L	0.050	mg/L	23.6	23.6	0.00939%	20%	
Total Metals (QC Lo	ot: 1067021)										
FJ2301884-001	Anonymous	Aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0197	0.0178	0.0019	Diff <2x LOR	
	,	Antimony, total	7440-36-0	E420	0.00010	mg/L	0.00012	0.00013	0.000002	Diff <2x LOR	
		Arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00016	0.00018	0.00001	Diff <2x LOR	
	1			==	1					=/-2011	

Page : 4 of 14 Work Order : YL2300932

Client : KBL Environmental Ltd.

Sub-Matrix: Water	o-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
Total Metals (QC Lo	ot: 1067021) - continue	d la		10.24								
FJ2301884-001	Anonymous	Barium, total	7440-39-3	E420	0.00010	mg/L	0.117	0.119	1.65%	20%		
		Beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR		
		Bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		Boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR		
		Cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0000321	0.0000271	0.0000050	Diff <2x LOR		
		Calcium, total	7440-70-2	E420	0.050	mg/L	54.7	57.6	5.02%	20%		
		Cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		Chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		Cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		Copper, total	7440-50-8	E420	0.00050	mg/L	0.00240	0.00247	0.00007	Diff <2x LOR		
		Iron, total	7439-89-6	E420	0.010	mg/L	0.062	0.056	0.006	Diff <2x LOR		
		Lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		Lithium, total	7439-93-2	E420	0.0010	mg/L	0.0101	0.0104	2.35%	20%		
		Magnesium, total	7439-95-4	E420	0.0050	mg/L	19.7	20.3	2.68%	20%		
		Manganese, total	7439-96-5	E420	0.00010	mg/L	0.00582	0.00582	0.00657%	20%		
		Molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00266	0.00263	0.968%	20%		
		Nickel, total	7440-02-0	E420	0.00050	mg/L	0.00082	0.00083	0.00001	Diff <2x LOR		
		Phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR		
		Potassium, total	7440-09-7	E420	0.050	mg/L	0.702	0.704	0.276%	20%		
		Rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00038	0.00034	0.00004	Diff <2x LOR		
		Selenium, total	7782-49-2	E420	0.000050	mg/L	0.00130	0.00137	5.26%	20%		
		Silicon, total	7440-21-3	E420	0.10	mg/L	1.88	1.83	2.48%	20%		
		Silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		Sodium, total	7440-23-5	E420	0.050	mg/L	8.35	8.13	2.63%	20%		
		Strontium, total	7440-24-6	E420	0.00020	mg/L	0.289	0.277	4.27%	20%		
		Sulfur, total	7704-34-9	E420	0.50	mg/L	29.6	29.8	0.355%	20%		
		Tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
		Thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		Thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		Tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		Titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR		
		Tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		Uranium, total	7440-61-1	E420	0.000010	mg/L	0.000760	0.000742	2.39%	20%		
		Vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00062	0.00061	0.00002	Diff <2x LOR		

Page : 5 of 14 Work Order : 7 VL2300932

Client : KBL Environmental Ltd.

Sub-Matrix: Water							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 1067021) - continued										
FJ2301884-001	Anonymous	Zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
		Zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 1069128)										
FJ2301856-001	Anonymous	Mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 1070929)	12 70 70 70 70 70 70 70 70 70 70 70 70 70		10.25							
YL2300952-001	Anonymous	Calcium, dissolved	7440-70-2	E421	0.050	mg/L	209	210	0.713%	20%	
		Magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	41.9	41.2	1.62%	20%	
		Potassium, dissolved	7440-09-7	E421	0.050	mg/L	12.7	12.5	1.34%	20%	
		Sodium, dissolved	7440-23-5	E421	0.050	mg/L	205	202	1.32%	20%	
Volatile Organic Co	mpounds (QC Lot: 1066	792)		10.75							
YL2300932-001	JF01-06-230728	Benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Styrene	100-42-5	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 1066791)										
YL2300932-001	JF01-06-230728	F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	
		VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	

Page : 6 of 14 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

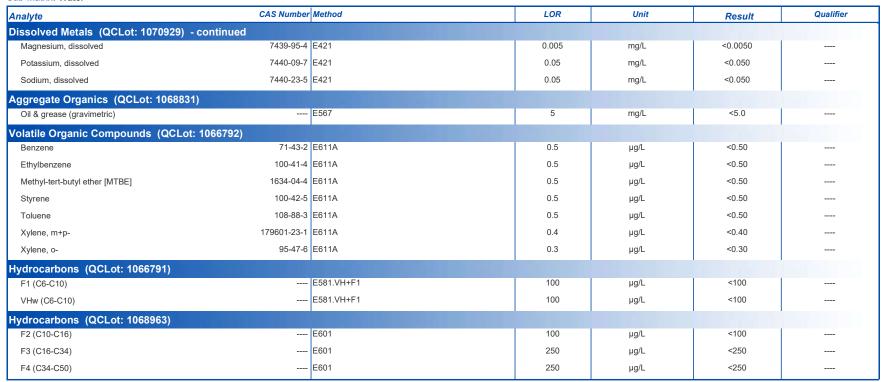
Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1067360)					
Conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 1067361)					
Alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
Alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
Alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
Alkalinity, phenolphthalein (as CaCO3)	E290	1	mg/L	<1.0	
Alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
hysical Tests (QCLot: 1068969)					
Solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 1068976)					
Solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Anions and Nutrients (QCLot: 1067350)					
Nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
nions and Nutrients (QCLot: 1067353)					
Nitrate (as N)	14797-55-8 E235.NO3-T	0.003	mg/L	<0.0030	
Anions and Nutrients (QCLot: 1067355)					
Chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
nions and Nutrients (QCLot: 1067356)					
Fluoride	16984-48-8 E235.F-L	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 1067357)					
Bromide	24959-67-9 E235.Br-U	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 1067358)					
Sulfate (as SO4)	14808-79-8 E235.SO4-L	0.05	mg/L	<0.050	
otal Metals (QCLot: 1067021)					
Aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
Antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
Arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
Barium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
Beryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
Bismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
Boron, total	7440-42-8 E420	0.01	mg/L	<0.010	
Cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	

Page : 7 of 14 Work Order : 7 up 14 YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Sub-Matrix: Water


Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 1067021) - conti	nued					
Calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
Cesium, total	7440-46-2	E420	0.00001	mg/L	<0.000010	
Chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
Cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
Copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
Iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
Lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
Lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
Magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
Manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
Molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
Nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
Phosphorus, total	7723-14-0	E420	0.05	mg/L	<0.050	
Potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
Rubidium, total	7440-17-7	E420	0.0002	mg/L	<0.00020	
Selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
Silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
Silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
Sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
Strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
Sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
Tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
Thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
Thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
Tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
Titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
Tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
Uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
Vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
Zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Dissolved Metals (QCLot: 1069128)						
Mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.0000050	
Dissolved Metals (QCLot: 1070929)						
Calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	

Page : 8 of 14 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Sub-Matrix: Water

Page : 9 of 14 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	.CS) Report		
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 1067359)			TO LET							
рН		E108		pH units	7 pH units	100	98.0	102		
Physical Tests (QCLot: 1067360)										
Conductivity		E100	1	μS/cm	146.9 μS/cm	101	90.0	110		
Physical Tests (QCLot: 1067361)										
Alkalinity, phenolphthalein (as CaCO3)		E290	1	mg/L	229 mg/L	114	75.0	125		
Alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	110	85.0	115		
Physical Tests (QCLot: 1068969)										
Solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	111	85.0	115		
Physical Tests (QCLot: 1068976)										
Solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	103	85.0	115		
Anions and Nutrients (QCLot: 1067350)										
Nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	99.6	90.0	110		
Anions and Nutrients (QCLot: 1067353)										
Nitrate (as N)	14797-55-8	E235.NO3-T	0.003	mg/L	2.5 mg/L	103	90.0	110		
Anions and Nutrients (QCLot: 1067355)										
Chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	101	90.0	110		
Anions and Nutrients (QCLot: 1067356)										
Fluoride	16984-48-8	E235.F-L	0.01	mg/L	1 mg/L	99.3	90.0	110		
Anions and Nutrients (QCLot: 1067357)										
Bromide	24959-67-9	E235.Br-U	0.005	mg/L	0.5 mg/L	111	85.0	115		
Anions and Nutrients (QCLot: 1067358)										
Sulfate (as SO4)	14808-79-8	E235.SO4-L	0.05	mg/L	100 mg/L	101	90.0	110		
Total Metals (QCLot: 1067021)										
Aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	110	80.0	120		
Antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	107	80.0	120		
Arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	112	80.0	120		
Barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	110	80.0	120		
Beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	107	80.0	120		
Bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	106	80.0	120		
Boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	95.8	80.0	120		

Page : 10 of 14 Work Order : YL2300932

Client : KBL Environmental Ltd.

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 1067021) - c	ontinued								
Cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	109	80.0	120	
Calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	107	80.0	120	
Cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	110	80.0	120	
Chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	105	80.0	120	
Cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	107	80.0	120	
Copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	104	80.0	120	
ron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	111	80.0	120	
ead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	106	80.0	120	
ithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	105	80.0	120	
Magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	104	80.0	120	
Manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	109	80.0	120	
/lolybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	107	80.0	120	
lickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	105	80.0	120	
Phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	113	80.0	120	
otassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	107	80.0	120	
Rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	104	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	108	80.0	120	
Silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	117	80.0	120	
Silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	103	80.0	120	
Sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	108	80.0	120	
Strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	114	80.0	120	
Sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	102	80.0	120	
ellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	95.8	80.0	120	
hallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	105	80.0	120	
horium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	111	80.0	120	
in, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	104	80.0	120	
itanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	102	80.0	120	
ungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	100	80.0	120	
Jranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	112	80.0	120	
/anadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	107	80.0	120	
linc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	106	80.0	120	
Circonium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	106	80.0	120	
Mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	96.0	80.0	120	
Dissolved Metals (QCLot: 1070929					SECTION AND ADDRESS.				
Calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	105	80.0	120	

Page : 11 of 14 Work Order : YL2300932

Client : KBL Environmental Ltd.

Sub-Matrix: Water	ub-Matrix: Water						Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier				
Dissolved Metals (QCLot: 1070929) - c	ontinued												
Magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	108	80.0	120					
Potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	111	80.0	120					
Sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	112	80.0	120					
Aggregate Organics (QCLot: 1068831)	1.010					HITLE							
Oil & grease (gravimetric)		E567	5	mg/L	100 mg/L	97.5	70.0	130					
Volatile Organic Compounds (QCLot: 1													
Benzene	71-43-2		0.5	μg/L	100 μg/L	102	70.0	130					
Ethylbenzene	100-41-4	E611A	0.5	μg/L	100 μg/L	110	70.0	130					
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.5	μg/L	100 μg/L	108	70.0	130					
Styrene	100-42-5	E611A	0.5	μg/L	100 μg/L	110	70.0	130					
Toluene	108-88-3	E611A	0.5	μg/L	100 μg/L	105	70.0	130					
Xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	109	70.0	130					
Xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	109	70.0	130					
Hydrocarbons (QCLot: 1066791)		E504 \ # 1 \ 54	400	"			70.0	100	ı				
F1 (C6-C10)		E581.VH+F1	100	μg/L	6310 µg/L	109	70.0	130					
VHw (C6-C10)		E581.VH+F1	100	μg/L	6310 µg/L	112	70.0	130					
Hydrocarbons (QCLot: 1068963)													
F2 (C10-C16)		E601	100	μg/L	3538 μg/L	130	70.0	130					
F3 (C16-C34)		E601	250	μg/L	7053 μg/L	115	70.0	130					
F4 (C34-C50)		E601	250	μg/L	5051 μg/L	123	70.0	130					

Page : 12 of 14 Work Order : YL2300932

Client : KBL Environmental Ltd.

Project : 23-099NT

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
	ents (QCLot: 1067350)	1000										
VA23B7699-002	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2-L	0.504 mg/L	0.5 mg/L	101	75.0	125			
Anions and Nutri	ents (QCLot: 1067353)	774 77 18 18										
VA23B7639-001	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3-T	2.65 mg/L	2.5 mg/L	106	75.0	125			
Anions and Nutri	ents (QCLot: 1067355)	144911111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= 4 (1)								
YL2300932-006	MW-02-230728	Chloride	16887-00-6	E235.CI-L	103 mg/L	100 mg/L	103	75.0	125			
nions and Nutri	ents (QCLot: 1067356)	204400000000000000000000000000000000000										
YL2300932-006	MW-02-230728	Fluoride	16984-48-8	E235.F-L	1.04 mg/L	1 mg/L	104	75.0	125			
Anions and Nutri	ents (QCLot: 1067357)											
YL2300932-006	MW-02-230728	Bromide	24959-67-9	E235.Br-U	0.580 mg/L	0.5 mg/L	116	75.0	125			
Anions and Nutri	ents (QCLot: 1067358)											
YL2300932-006	MW-02-230728	Sulfate (as SO4)	14808-79-8	E235.SO4-L	102 mg/L	100 mg/L	102	75.0	125			
otal Metals (QC	l ot: 1067021)		14000 70 0	2200.004 2	TOZ MIG/L	100 mg/L	102	70.0	120			
FJ2301884-002	Anonymous	Aluminum, total	7429-90-5	E420	0.203 mg/L	0.2 mg/L	102	70.0	130			
. 0200 100 1 002	,	Antimony, total	7440-36-0	E420	0.0200 mg/L	0.2 mg/L 0.02 mg/L	99.9	70.0	130			
		Arsenic, total	7440-38-2	E420	0.0208 mg/L	0.02 mg/L	104	70.0	130			
		Barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		Beryllium, total	7440-41-7	E420	0.0398 mg/L	0.04 mg/L	99.6	70.0	130			
		Bismuth, total	7440-69-9	E420	0.00923 mg/L	0.01 mg/L	92.3	70.0	130			
		Boron, total	7440-42-8	E420	0.091 mg/L	0.1 mg/L	91.0	70.0	130			
		Cadmium, total	7440-43-9	E420	0.00395 mg/L	0.004 mg/L	98.7	70.0	130			
		Calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130			
		Cesium, total	7440-46-2	E420	0.0107 mg/L	0.01 mg/L	107	70.0	130			
		Chromium, total	7440-47-3	E420	0.0399 mg/L	0.04 mg/L	99.7	70.0	130			
		Cobalt, total	7440-48-4	E420	0.0189 mg/L	0.02 mg/L	94.7	70.0	130			
		Copper, total	7440-50-8	E420	0.0181 mg/L	0.02 mg/L	90.4	70.0	130			
		Iron, total	7439-89-6	E420	1.99 mg/L	2 mg/L	99.4	70.0	130			
		Lead, total	7439-92-1	E420	0.0184 mg/L	0.02 mg/L	91.8	70.0	130			
		Lithium, total	7439-93-2	E420	0.0933 mg/L	0.1 mg/L	93.3	70.0	130			
		Magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130			
	1	Manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND I	70.0	130			

Page : 13 of 14 Work Order : YL2300932

Client : KBL Environmental Ltd.

Sub-Matrix: Water	p-Matrix: Water					Matrix Spike (MS) Report								
					Spi	ike	Recovery (%)	Recovery	Limits (%)					
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
otal Metals (QC	Lot: 1067021) - con	tinued												
FJ2301884-002	Anonymous	Molybdenum, total	7439-98-7	E420	0.0212 mg/L	0.02 mg/L	106	70.0	130					
		Nickel, total	7440-02-0	E420	0.0369 mg/L	0.04 mg/L	92.2	70.0	130					
		Phosphorus, total	7723-14-0	E420	11.6 mg/L	10 mg/L	116	70.0	130					
		Potassium, total	7440-09-7	E420	ND mg/L	4 mg/L	ND	70.0	130					
		Rubidium, total	7440-17-7	E420	0.0195 mg/L	0.02 mg/L	97.4	70.0	130					
		Selenium, total	7782-49-2	E420	0.0458 mg/L	0.04 mg/L	115	70.0	130					
		Silicon, total	7440-21-3	E420	10.2 mg/L	10 mg/L	102	70.0	130					
		Silver, total	7440-22-4	E420	0.00390 mg/L	0.004 mg/L	97.5	70.0	130					
		Sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130					
		Strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130					
		Sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130					
		Tellurium, total	13494-80-9	E420	0.0419 mg/L	0.04 mg/L	105	70.0	130					
		Thallium, total	7440-28-0	E420	0.00369 mg/L	0.004 mg/L	92.2	70.0	130					
		Thorium, total	7440-29-1	E420	0.0217 mg/L	0.02 mg/L	108	70.0	130					
		Tin, total	7440-31-5	E420	0.0196 mg/L	0.02 mg/L	98.0	70.0	130					
		Titanium, total	7440-32-6	E420	0.0401 mg/L	0.04 mg/L	100	70.0	130					
		Tungsten, total	7440-33-7	E420	0.0188 mg/L	0.02 mg/L	93.9	70.0	130					
		Uranium, total	7440-61-1	E420	ND mg/L	0.004 mg/L	ND	70.0	130					
		Vanadium, total	7440-62-2	E420	0.102 mg/L	0.1 mg/L	102	70.0	130					
		Zinc, total	7440-66-6	E420	0.376 mg/L	0.4 mg/L	93.9	70.0	130					
		Zirconium, total	7440-67-7	E420	0.0419 mg/L	0.04 mg/L	105	70.0	130					
Dissolved Metals	(QCLot: 1069128)													
FJ2301856-002	Anonymous	Mercury, dissolved	7439-97-6	E509	0.0000979 mg/L	0.0001 mg/L	97.9	70.0	130					
Dissolved Metals	(QCLot: 1070929)													
YL2300961-001	Anonymous	Calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130					
		Magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130					
		Potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130					
		Sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130					
/olatile Organic	Compounds (QCLo	t: 1066792)												
YL2300932-002	MW-03-230728	Benzene	71-43-2	E611A	103 μg/L	100 μg/L	103	60.0	140					
		Ethylbenzene	100-41-4	E611A	114 µg/L	100 μg/L	114	60.0	140					
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	112 µg/L	100 μg/L	112	60.0	140					
		Styrene	100-42-5	E611A	113 μg/L	100 μg/L	113	60.0	140					
	T	Toluene	108-88-3	E611A	107 μg/L	100 µg/L	l 107	60.0	140	I				

Page : 14 of 14 Work Order : YL2300932

Client : KBL Environmental Ltd.

Sub-Matrix: Water	b-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
Volatile Organic	Compounds (QCLot: 10												
YL2300932-002	MW-03-230728	Xylene, m+p-	179601-23-1	E611A	222 μg/L	200 μg/L	111	60.0	140				
		Xylene, o-	95-47-6	E611A	113 μg/L	100 μg/L	113	60.0	140				
Hydrocarbons (0	QCLot: 1066791)												
YL2300932-003	Dup2-230728	F1 (C6-C10)		E581.VH+F1	5400 μg/L	6310 μg/L	85.6	60.0	140				
		VHw (C6-C10)		E581.VH+F1	5560 µg/L	6310 µg/L	88.1	60.0	140				

ALS www.alsglobal.com

Canada Toll Free: 1 800 668 9878

Page o,

Released by:		II YES	Are samples for	o yes	Are samples take	Drinking											ALS Sample # (ALS use only)	ALS Lab Worl	LSD:	PO / AFE:	Job #:	ALS Account # / Quote #:		Contact:	Company:		Invoice To	Postal Code:	City/Province:	Street:		Phone:	Contact	Company:
Date Date	SHIPMENT RELEASE (client use)	s 🗵 NO	-	S E NO	Are samples taken from a Regulated DW System?	Drinking Water (DW) Samples (client use)	Telep				MW-02-230728	PW3-230728	JF01-04-230728	Dup2-230728 Ye	MW-03-230728 En	JF01-06-230728	Sample Identificati (This description w	ALS Lab Work Order # (ALS use only):			23-099NT	/ Quote #	Project Information			Copy of Invoice with Report 🗵 YES	Same as Report To 🛭 YES	T9E 0Z4	Leduc, AB	3909, 68 Avenue	Company address below will appear on the final report	780.452,7779	Katie Oliver	KBL Environmental
Time: Received by:						Notes / Specify Limits for result evaluation by selecting from drop-down below	Telephone : +1 867 873 5593					LECOURSE	Vork Order Reference	Yellowknife	Environmental Division		Sample Identification and/or Coordinates (This description will appear on the report)	ALS Contact:	Location:	Requisitioner	Major/Minor Code:	AFE/Cost Center:		Email 2	Email 1 or Fax	☐ NO Select Inv	□ N5	Email 3	Email 2	Email 1 or Fax		□ Compan	Merge Q	
Dec. 1	0.00				(Excel COC only)	esult evaluation by selec											Date (dd-mmm-yy)	tact: Oliver Greg		лег	Code:	enter	Oil and Gas Required Fields	Khaywoodfarmer@kblenv	r Fax accounting@kblenv.com	Select Invoice Distribution; 🗵 🖽	Invoice I	kbl@esdat.net	GMRPMonitoring@kblenv.com	r Fax Kklevgaard@kblenv.com	stribution: 🖾 EMAIL	☐ Compare Results to Criteria on Report - provide details below if box checked	ES .	Select Report Format
Date: 08 10	INITIAL SHIPMENT RECEPTION (ALS use only)					ting from drop-down											Time (hh:mm)	Sampler: MM			Routing Code:	PO#	ed Fields (client use)	@kblenv	anv.com	BMAIL O MAIL O E	Invoice Recipients		@kblenv.com	env.com	O MAIL O FAX	- provide details below if		☑ POF ☑ EXCEL ☑ EDD (C
1	use only)	7	Coo		000	below					Ground water	Ground water .	Ground water .	Ground water	Ground water	Ground water	Sample Type		05	C	2017	-		-	c	FAX			9	0		770		EDD (DIGITAL)
) me:		44	e c	Submission Comments identified on Sample Receipt Notification:	Cooling Method:	-		H	+	H	9 R	A D	4 R	A R	R R	9 R	Btex (F1	-	UF	-	JIN I	A	IIV		3			Date a		☐ Same day [E2] If received by 10am M-S - 200% rush surcharge.	day day	Routine		
-			INITIAL COOLER TEMPERATURES °C	on Com	lethod:						R					R	TSS								=			and Time Required for all E&P TATs:	Addition	[E2] #	day [P2] If received by 3pm M-F - 50% rush surcharge minimum	day [P3] if received by 3pm M-F - 25% rush surcharge minimum	day [P4] if received by 3pm M-F - 20% rush surcharge minimum	RI if nece
Received by:			COOLER	ments	- NONE						20					π	Routine	ar an luase				0.0	-		dicate Fi		For all &	Require	al fees m	eceived	wed by 3p	wed by 3	red by 3p	wed by 3
			TEMPER	dentifie	JAK I	SAI	+		+	H	Z Z	-		-		R	Total Me		solve	d, M	ercur	у)	+	-	Itered (F)		ests with	for all B	ay apply	by 10am	om M-F	om M-F	m M-F-	received by 3pm M-F - no surchamps and
	FINAL		ATURES .	d on S	301	APLE F		H		H	zo						Dissolve		n				1		Preserv		rush TAT	&P TAT	to rush re	M-5 - 2	50% ru	25% ru	20% ru	no sun
	SHIPN		C N/A	imple F	Dic	ECEIP																			ed (P) or	Ana	request	S.	quests o	00% rus	ish surch	ish surch	sh surcha	hames
Dale:	ENT R			deceipt	□ ICE PACKS	SAMPLE RECEIPT DETAILS (ALS use only)		-		H									_			_		4	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F.P) below	Analysis Request	d, please		n weeken	Surchan	arge min	arge min	rge mini	nolv
	ECEP1		imple (Notifica	D FROZEN	AILS (A		+	+	H									-		+		+		and Pres	equest	contact)		ds, statu	e.	mun mun	mum	mum	
	NOI (A		FINAL C	ation:	NAZO	LS use																			erved (F.)		our AM to	-	tory holid			3	200	
	FINAL SHIPMENT RECEPTION (ALS use only)		Sample Custody Seals Intact: PINAL COOLER TEMPERATURES TO YES	D YES	000	only)																			e) below		For all tests with rush TATs requested, please contact your AM to confirm availability.	NAME OF STREET	Additional fees may apply to rush requests on weekends, statutory trolldays and for non-routing lests.			(ALS use only)	NA VI & BVD	
			RATURES Y		ING IN	ŀ	+	-	+	H	-				-		SAMI	D) E0	0		01	_	1		4		ally.	40	H BUTTON			(ALS use only)	ODE I	
Time:	1		ES C		TATED	-											EXTEN			-	-	-	JUI	RE	5				Sts.) HOELT	200	
			O N/A	1													SUSPE		_	_	_	_		_	-							JENC	000	

ALS Canada Ltd.

Contact

CERTIFICATE OF ANALYSIS

Work Order : YL2301518 Page : 1 of 11

Client Laboratory : KBL Environmental Ltd. : ALS Environmental - Yellowknife

Account Manager : Katie Oliver : Oliver Gregg

Address : 17 Cameron Road PO Box 1895 Address : 314 Old Airport Road, Unit 116 Yellowknife NT Canada X1A 2P4

Yellowknife NT Canada X1A 3T3

Telephone : 780 893 3305 Telephone : 1 867 445 7143 **Project** : 23-099NT Date Samples Received : 25-Oct-2023 15:22

PO ----**Date Analysis Commenced** : 27-Oct-2023

C-O-C number Issue Date : 17-824361 : 02-Nov-2023 09:34

Sampler Site ----

Quote number : YL22-KBLE100-001

No. of samples received : 14 No. of samples analysed : 14

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Thornton	Analyst	Metals, Burnaby, British Columbia
Brieanna Allen	Production/Validation Manager	Inorganics, Burnaby, British Columbia
Erin Sanchez		Metals, Burnaby, British Columbia
Ophelia Chiu	Department Manager - Organics	Organics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia

Page : 2 of 11 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
μg/L	micrograms per litre
μS/cm	microsiemens per centimetre
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
SUR-ND	Surrogate recovery marginally exceeded ALS DQO. Reported non-detect results for
	associated samples were deemed to be unaffected.

Page : 3 of 11 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Sub-Matrix: Water			Cl	ient sample ID	PW-01	PW-02	JF01-01	JF01-06	JF01-04
(Matrix: Water)									
			Client samp	ling date / time	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2301518-001	YL2301518-002	YL2301518-003	YL2301518-004	YL2301518-005
					Result	Result	Result	Result	Result
Physical Tests Alkalinity, bicarbonate (as CaCO3)	E290	0/\/Δ	1.0	mg/L				126	
Alkalinity, carbonate (as CaCO3)	E290		1.0	mg/L				<1.0	
Alkalinity, hydroxide (as CaCO3)	E290		1.0	mg/L				<1.0	
Alkalinity, phenolphthalein (as CaCO3)	E290		1.0	mg/L				<1.0	
Alkalinity, phenoiphthalem (as cacos)	E290		1.0	mg/L				126	
Conductivity	E100		2.0	μS/cm				544	
Hardness (as CaCO3), dissolved	EC10		0.60	mg/L				176	
pH	E108		0.10	pH units				8.09	
Solids, total dissolved [TDS]	E162		10	mg/L				312	
Solids, total suspended [TSS]	E160		3.0	mg/L				538	
Anions and Nutrients				9, 2					
Bromide	24959-67-9 E235	5.Br-U/VA	0.0050	mg/L				0.0446	
Chloride	16887-00-6 E235		0.10	mg/L				66.5	
Fluoride	16984-48-8 E235		0.010	mg/L				0.096	
Nitrate (as N)	14797-55-8 E235		0.0030	mg/L				0.352	
` ,	A								
Nitrite (as N)	14797-65-0 E235	5.NO2-L/V	0.0010	mg/L				0.0026	
	Α		0.050					45.0	
Sulfate (as SO4)	14808-79-8 E235	5.SO4-L/V	0.050	mg/L				45.3	
Dissolved Metals	A								
Aluminum, dissolved	7429-90-5 E421	1/VA	0.0010	mg/L				0.0042	
Antimony, dissolved	7440-36-0 E421		0.00010	mg/L				0.00123	
Arsenic, dissolved	7440-38-2 E421		0.00010	mg/L				0.0644	
Barium, dissolved	7440-39-3 E421		0.00010	mg/L				0.0339	
Beryllium, dissolved	7440-41-7 E421		0.000100	mg/L				<0.000100	
Bismuth, dissolved	7440-69-9 E421		0.000050	mg/L				<0.000050	
Boron, dissolved	7440-42-8 E421		0.010	mg/L				0.034	
Cadmium, dissolved	7440-43-9 E421		0.0000050	mg/L				<0.0000050	
Calcium, dissolved	7440-70-2 E421		0.050	mg/L				44.2	
,									l

Page : 4 of 11 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

ALS

Sub-Matrix: Water		CI	ient sample ID	PW-01	PW-02	JF01-01	JF01-06	JF01-04
(Matrix: Water)								
		Client samp	ling date / time	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00
Analyte	CAS Number Method/Lab	LOR	Unit	YL2301518-001	YL2301518-002	YL2301518-003	YL2301518-004	YL2301518-005
				Result	Result	Result	Result	Result
Dissolved Metals Cesium, dissolved	7440-46-2 E421/VA	0.000010	ma/l				<0.00010	
Chromium, dissolved		0.00050	mg/L				<0.00050	
Cobalt, dissolved	7440-47-3 E421/VA 7440-48-4 E421/VA	0.00030	mg/L				<0.00030	
•	7440-48-4 E421/VA 7440-50-8 E421/VA	0.00010	mg/L				0.00138	
Copper, dissolved		0.00020	mg/L				<0.010	
Iron, dissolved Lead, dissolved	7439-89-6 E421/VA 7439-92-1 E421/VA	0.00050	mg/L				<0.00050	
Lithium, dissolved	7439-93-1 E421/VA 7439-93-2 E421/VA	0.0000	mg/L				0.0030	
Magnesium, dissolved	7439-93-2 E421/VA 7439-95-4 E421/VA	0.0010	mg/L				15.9	
Manganese, dissolved	7439-96-5 E421/VA	0.00010	mg/L				0.00800	
Mercury, dissolved	7439-96-5 E-921/VA 7439-97-6 E-509/VA	0.00010	mg/L				<0.00000	
Molybdenum, dissolved	7439-97-6 E309/VA 7439-98-7 E421/VA	0.000050	mg/L mg/L				0.000374	
Nickel, dissolved	7439-98-7 E421/VA 7440-02-0 E421/VA	0.00050					0.000374	
Phosphorus, dissolved	7723-14-0 E421/VA	0.000	mg/L				<0.050	
Potassium, dissolved	7440-09-7 E421/VA	0.050	mg/L				2.91	
Rubidium, dissolved	7440-09-7 E421/VA 7440-17-7 E421/VA	0.00020	mg/L				0.00068	
Selenium, dissolved	7782-49-2 E421/VA	0.00020	mg/L				0.00008	
Silicon, dissolved	7440-21-3 E421/VA	0.050	mg/L				6.08	
Silver, dissolved	7440-22-4 E421/VA	0.00010	mg/L				<0.00010	
Sodium, dissolved	7440-22-4 E-421/VA 7440-23-5 E421/VA	0.050	mg/L				35.1	
Strontium, dissolved	7440-24-6 E421/VA	0.00020	mg/L mg/L				0.103	
Sulfur, dissolved	7704-34-9 E421/VA	0.50	mg/L				17.0	
Tellurium, dissolved	13494-80-9 E421/VA	0.00020	mg/L				<0.00020	
Thallium, dissolved	7440-28-0 E421/VA	0.00020	mg/L				<0.00020	
Thorium, dissolved	7440-28-0 E421/VA 7440-29-1 E421/VA	0.00010	mg/L				<0.00010	
Tin, dissolved	7440-29-1 E-421/VA 7440-31-5 E421/VA	0.00010	mg/L				<0.00010	
Titanium, dissolved	7440-31-5 E-21/VA 7440-32-6 E421/VA	0.00010	mg/L				<0.00010	
Tungsten, dissolved	7440-32-6 E-421/VA 7440-33-7 E421/VA	0.00030	mg/L				<0.00030	
Uranium, dissolved	7440-61-1 E421/VA	0.00010	mg/L				0.00145	
Vanadium, dissolved	7440-61-1 E-21/VA 7440-62-2 E421/VA	0.00050	mg/L				0.00143	
•	7440-62-2 E421/VA 7440-66-6 E421/VA	0.00030	I 1				<0.0010	
Zinc, dissolved	744U-00-0 E42 I/VA	0.0010	mg/L				\0.0010	

Page : 5 of 11 Work Order : 7 VL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

ALS

Sub-Matrix: Water			Cli	ent sample ID	PW-01	PW-02	JF01-01	JF01-06	JF01-04
(Matrix: Water)									
			Client samp	ling date / time	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2301518-001	YL2301518-002	YL2301518-003	YL2301518-004	YL2301518-005
					Result	Result	Result	Result	Result
Dissolved Metals									
Zirconium, dissolved	7440-67-7 E421	21/VA	0.00020	mg/L				<0.00020	
Dissolved mercury filtration location	EP50	509/VA	-	-				Field	
Dissolved metals filtration location	EP42	121/VA	-	-				Field	
Aggregate Organics									
Oil & grease (gravimetric)	E567	67/VA	5.0	mg/L				<5.0	
Volatile Organic Compounds [Fuels]									
Benzene	71-43-2 E61 ²	1A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	100-41-4 E61 ²	1A/VA	0.50	μg/L	0.71	<0.50	<0.50	<0.50	<0.50
Methyl-tert-butyl ether [MTBE]	1634-04-4 E611	1A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Styrene	100-42-5 E611	1A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	108-88-3 E611	1A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Xylene, m+p-	179601-23-1 E611	1A/VA	0.40	μg/L	5.84	<0.40	<0.40	<0.40	<0.40
Xylene, o-	95-47-6 E611		0.30	μg/L	4.36	<0.30	<0.30	<0.30	< 0.30
Xylenes, total	1330-20-7 E611	1A/VA	0.50	μg/L	10.2	<0.50	<0.50	<0.50	<0.50
Hydrocarbons									
F1 (C6-C10)	E58 ²	31.VH+F1/	100	μg/L	420	<100	<100	<100	<100
	VA								
F2 (C10-C16)	E60 ²	01/VA	300	μg/L	57100	1760	670	<300	<300
F3 (C16-C34)	E60 ²)1/VA	300	μg/L	22400	1290	<300	<300	<300
F4 (C34-C50)	E60 ⁻	01/VA	300	μg/L	950	<300	<300	<300	<300
VHw (C6-C10)	E58 ²	31.VH+F1/	100	μg/L	480	<100	<100	<100	<100
_,,	VA	-000.44	400		400	.400	.100	.400	.100
F1-BTEX	EC5		100	μg/L "	409	<100	<100	<100	<100
VPHw	EC5	580A/VA	100	μg/L	470	<100	<100	<100	<100
Hydrocarbons Surrogates									
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6 E60°		1.0	%	115	98.4	86.9	80.4	80.9
Dichlorotoluene, 3,4-	95-75-0 E58 ²	31.VH+F1/	1.0	%	90.3	88.3	86.0	67.0 SUR-ND	89.2
	VA								
Volatile Organic Compounds Surrogates	400.00 4 504	100/0	1.0	0/	07.7	90.6	04.2	90.0	00.3
Bromofluorobenzene, 4-	460-00-4 E611		1.0	%	97.7	89.6	91.3	89.2	90.3
Difluorobenzene, 1,4-	540-36-3 E61 ²	1A/VA	1.0	%	98.1	98.9	99.6	99.1	98.8

Page : 6 of 11

Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 7 of 11 Work Order : 7 up 11 Work Order : 7 up 12 Work Order : 7

Client : KBL Environmental Ltd.

Project : 23-099NT

Sub-Matrix: Water			Cli	ent sample ID	MW-02	MW-03	MW-04	MW-06	MW-07
(Matrix: Water)									
			Client samp	ling date / time	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00
Analyte CAS	S Number	Method/Lab	LOR	Unit	YL2301518-006	YL2301518-007	YL2301518-008	YL2301518-009	YL2301518-010
					Result	Result	Result	Result	Result
Physical Tests		-000 # /A	4.0						
Alkalinity, bicarbonate (as CaCO3)		E290/VA	1.0	mg/L	111				
Alkalinity, carbonate (as CaCO3)		E290/VA	1.0	mg/L	<1.0				
Alkalinity, hydroxide (as CaCO3)		E290/VA	1.0	mg/L	<1.0				
Alkalinity, phenolphthalein (as CaCO3)		E290/VA	1.0	mg/L	<1.0				
Alkalinity, total (as CaCO3)	E	E290/VA	1.0	mg/L	111				
Conductivity	E	E100/VA	2.0	μS/cm	487				
Hardness (as CaCO3), dissolved	E	EC100/VA	0.60	mg/L	153				
рН	E	E108/VA	0.10	pH units	7.88				
Solids, total dissolved [TDS]	E	E162/VA	10	mg/L	286				
Solids, total suspended [TSS]	E	E160/VA	3.0	mg/L	61.3				
Anions and Nutrients									
Bromide 24	1959-67-9 E	E235.Br-U/VA	0.0050	mg/L	0.0550				
Chloride 16	887-00-6 E	E235.CI-L/VA	0.10	mg/L	66.2				
Fluoride 16	6984-48-8 E	E235.F-L/VA	0.010	mg/L	0.094				
Nitrate (as N)	1797-55-8 E	E235.NO3-T/V	0.0030	mg/L	0.136				
	P	Ą							
Nitrite (as N)	1797-65-0 E	E235.NO2-L/V	0.0010	mg/L	0.0023				
0.154.4000		4	0.050		20.0				
Sulfate (as SO4)	1808-79-8 E	E235.SO4-L/V	0.050	mg/L	28.9				
Dissolved Metals	F								
	7429-90-5 E	E421/VA	0.0010	mg/L	0.0101				
	7440-36-0 E		0.00010	mg/L	0.00074				
	7440-38-2 E		0.00010	mg/L	0.0632				
	7440-39-3 E		0.00010	mg/L	0.0522				
	7440-41-7 E		0.00010	mg/L	<0.000100				
	7440-41-7 E		0.000100	mg/L	<0.000100				
	7440-69-9 E		0.0000		0.018				
	7440-42-8 E		0.000050	mg/L	0.0000136				
				mg/L					
	7440-70-2 E		0.050	mg/L	38.3				
Cesium, dissolved 7	7440-46-2 E	=4∠1/VA	0.000010	mg/L	<0.000010				

Page : 8 of 11 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

ALS

Analytical Results

Analytical Nesults			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	B834/ 00	B414/ 00	B8187 O 4	B814/ 0.0	B504/ 07
Sub-Matrix: Water		CI	lient sample ID	MW-02	MW-03	MW-04	MW-06	MW-07
(Matrix: Water)								
		Client samp	oling date / time	25-Oct-2023	25-Oct-2023	25-Oct-2023	25-Oct-2023	25-Oct-2023
		<u> </u>		00:00	00:00	00:00	00:00	00:00
Analyte	CAS Number Method/Lab	LOR	Unit	YL2301518-006	YL2301518-007	YL2301518-008	YL2301518-009	YL2301518-010
				Result	Result	Result	Result	Result
Dissolved Metals								
Chromium, dissolved	7440-47-3 E421/VA	0.00050	mg/L	<0.00050				
Cobalt, dissolved	7440-48-4 E421/VA	0.00010	mg/L	0.00031				
Copper, dissolved	7440-50-8 E421/VA	0.00020	mg/L	0.00233				
Iron, dissolved	7439-89-6 E421/VA	0.010	mg/L	0.067				
Lead, dissolved	7439-92-1 E421/VA	0.000050	mg/L	<0.000050				
Lithium, dissolved	7439-93-2 E421/VA	0.0010	mg/L	0.0029				
Magnesium, dissolved	7439-95-4 E421/VA	0.0050	mg/L	13.9				
Manganese, dissolved	7439-96-5 E421/VA	0.00010	mg/L	0.0265				
Mercury, dissolved	7439-97-6 E509/VA	0.0000050	mg/L	<0.0000050				
Molybdenum, dissolved	7439-98-7 E421/VA	0.000050	mg/L	0.00102				
Nickel, dissolved	7440-02-0 E421/VA	0.00050	mg/L	0.00117				
Phosphorus, dissolved	7723-14-0 E421/VA	0.050	mg/L	< 0.050				
Potassium, dissolved	7440-09-7 E421/VA	0.050	mg/L	4.25				
Rubidium, dissolved	7440-17-7 E421/VA	0.00020	mg/L	0.00213				
Selenium, dissolved	7782-49-2 E421/VA	0.000050	mg/L	<0.000050				
Silicon, dissolved	7440-21-3 E421/VA	0.050	mg/L	5.17				
Silver, dissolved	7440-22-4 E421/VA	0.000010	mg/L	<0.000010				
Sodium, dissolved	7440-23-5 E421/VA	0.050	mg/L	30.6				
Strontium, dissolved	7440-24-6 E421/VA	0.00020	mg/L	0.101				
Sulfur, dissolved	7704-34-9 E421/VA	0.50	mg/L	10.1				
Tellurium, dissolved	13494-80-9 E421/VA	0.00020	mg/L	<0.00020				
Thallium, dissolved	7440-28-0 E421/VA	0.000010	mg/L	0.000015				
Thorium, dissolved	7440-29-1 E421/VA	0.00010	mg/L	<0.00010				
Tin, dissolved	7440-31-5 E421/VA	0.00010	mg/L	0.00041				
Titanium, dissolved	7440-32-6 E421/VA	0.00030	mg/L	0.00031				
Tungsten, dissolved	7440-33-7 E421/VA	0.00010	mg/L	<0.00010				
Uranium, dissolved	7440-61-1 E421/VA	0.000010	mg/L	0.000591				
Vanadium, dissolved	7440-62-2 E421/VA	0.00050	mg/L	0.00106				
Zinc, dissolved	7440-66-6 E421/VA	0.0010	mg/L	0.0017				
Zirconium, dissolved	7440-67-7 E421/VA	0.00020	mg/L	<0.00020				
	7 7 10 07 -7 - 1 - 11 11	1			I	I	I	I

Page : 9 of 11 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Analytical Results

Sub-Matrix: Water		C	lient sample ID	MW-02	MW-03	MW-04	MW-06	MW-07
(Matrix: Water)								
		Client samp	oling date / time	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00
Analyte	CAS Number Method/Lab	LOR	Unit	YL2301518-006	YL2301518-007	YL2301518-008	YL2301518-009	YL2301518-010
Productive to				Result	Result	Result	Result	Result
Dissolved Metals Dissolved mercury filtration location	EP509/VA	_	-	Field				
Dissolved metals filtration location	EP421/VA	-	_	Field				
Aggregate Organics								
Oil & grease (gravimetric)	E567/VA	5.0	mg/L	<5.0				
Volatile Organic Compounds [Fuels]								
Benzene	71-43-2 E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	100-41-4 E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl-tert-butyl ether [MTBE]	1634-04-4 E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Styrene	100-42-5 E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	108-88-3 E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Xylene, m+p-	179601-23-1 E611A/VA	0.40	μg/L	< 0.40	<0.40	<0.40	<0.40	0.68
Xylene, o-	95-47-6 E611A/VA	0.30	μg/L	< 0.30	<0.30	<0.30	<0.30	<0.30
Xylenes, total	1330-20-7 E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	0.68
Hydrocarbons								
F1 (C6-C10)	E581.VH+F1/ VA	100	μg/L	<100	<100	<100	<100	740
F2 (C10-C16)	E601/VA	300	μg/L	<300	<300	<300	1400	44100
F3 (C16-C34)	E601/VA	300	μg/L	<300	<300	<300	440	11800
F4 (C34-C50)	E601/VA	300	μg/L	<300	<300	<300	<300	710
VHw (C6-C10)	E581.VH+F1/ VA	100	μg/L	<100	<100	<100	<100	830
F1-BTEX	EC580/VA	100	μg/L	<100	<100	<100	<100	740
VPHw	EC580A/VA	100	μg/L	<100	<100	<100	<100	830
Hydrocarbons Surrogates								
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6 E601/VA	1.0	%	92.3	88.9	78.6	87.8	116
Dichlorotoluene, 3,4-	95-75-0 E581.VH+F1/ VA	1.0	%	79.7	93.5	97.1	85.1	85.6
Volatile Organic Compounds Surrogates								
Bromofluorobenzene, 4-	460-00-4 E611A/VA	1.0	%	85.4	99.9	101	87.7	93.4
Difluorobenzene, 1,4-	540-36-3 E611A/VA	1.0	%	97.8	99.5	100	95.4	95.4

Page : 10 of 11 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	MW-09	MW-10	DUP1	DUP2	
(Matrix: Water)									
			Client samp	ling date / time	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00	25-Oct-2023 00:00	
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2301518-011	YL2301518-012	YL2301518-013	YL2301518-014	
					Result	Result	Result	Result	
Volatile Organic Compounds [Fuels]									
Benzene	71-43-2	E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
Ethylbenzene		E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
Styrene	100-42-5	E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
Toluene	108-88-3	E611A/VA	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
Xylene, m+p-	179601-23-1	E611A/VA	0.40	μg/L	<0.40	<0.40	0.50	<0.40	
Xylene, o-	95-47-6	E611A/VA	0.30	μg/L	<0.30	<0.30	<0.30	<0.30	
Xylenes, total	1330-20-7	E611A/VA	0.50	μg/L	<0.50	<0.50	0.50	<0.50	
Hydrocarbons				103					
F1 (C6-C10)		E581.VH+F1/	100	μg/L	<100	<100	450	<100	
		VA							
F2 (C10-C16)		E601/VA	300	μg/L	1140	340	31500	390	
F3 (C16-C34)		E601/VA	300	μg/L	360	<300	8170	<300	
F4 (C34-C50)		E601/VA	300	μg/L	<300	<300	450	<300	
VHw (C6-C10)		E581.VH+F1/	100	μg/L	<100	<100	500	<100	
F1-BTEX		VA EC580/VA	100	μg/L	<100	<100	450	<100	
VPHw		EC580A/VA	100	μg/L	<100	<100	500	<100	
Hydrocarbons Surrogates									
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6	E601/VA	1.0	%	90.2	80.5	110	92.6	
Dichlorotoluene, 3,4-		E581.VH+F1/	1.0	%	91.0	78.1	76.8	91.6	
		VA							
Volatile Organic Compounds Surrogates									
Bromofluorobenzene, 4-		E611A/VA	1.0	%	90.5	88.3	94.0	91.4	
Difluorobenzene, 1,4-	540-36-3	E611A/VA	1.0	%	96.3	97.3	97.3	97.0	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 11 of 11 Work Order : YL2301518

Client : KBL Environmental Ltd.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **YL2301518** Page : 1 of 17

Client : KBL Environmental Ltd. Laboratory : ALS Environmental - Yellowknife

Contact : Katie Oliver : Oliver Gregg

Address :17 Cameron Road PO Box 1895 Address :314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

 Telephone
 :780 893 3305
 Telephone
 :1 867 445 7143

 Project
 :23-099NT
 Date Samples Received
 : 25-Oct-2023 15:22

 PO
 :--- Issue Date
 : 02-Nov-2023 09:35

C-O-C number :17-824361

Site :----

Quote number : YL22-KBLE100-001

No. of samples received :14

No. of samples analysed :14

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Sampler

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

Yellowknife NT Canada X1A 2P4

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- Matrix Spike outliers occur please see following pages for full details.
- Test sample Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ● Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 17 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Matrix Spike (MS) Recoveries								
Dissolved Metals	Anonymous	Anonymous	Silver, dissolved	7440-22-4	E421	68.5 % MES	70.0-130%	Recovery less than lower
								data quality objective

Result Qualifiers

Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Regular Sample Surrogates

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Result	Limits	Comment
Samples Submitted							
Hydrocarbons Surrogates	YL2301518-004	JF01-06	Dichlorotoluene, 3,4-	95-75-0	67.0 %	70.0-130	Recovery less than lower
						%	data quality objective

Page : 4 of 17 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Matrix: Water

Evaluation: v = Holding time exceedance: $\sqrt{}$ = Within Holding Time

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

latrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🕦	= Within	Holding 7
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
ggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
JF01-06	E567	25-Oct-2023	31-Oct-2023	28	6 days	✓	31-Oct-2023	40 days	0 days	✓
				days						
ggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)						,				
MW-02	E567	25-Oct-2023	31-Oct-2023	28	6 days	✓	31-Oct-2023	40 days	0 days	✓
				days						
nions and Nutrients : Bromide by IC (Ultra Trace Level)										
HDPE			_							
JF01-06	E235.Br-U	25-Oct-2023	27-Oct-2023	28	3 days	✓	27-Oct-2023	28 days	3 days	✓
				days						
nions and Nutrients : Bromide by IC (Ultra Trace Level)										
HDPE										
MW-02	E235.Br-U	25-Oct-2023	27-Oct-2023	28	3 days	✓	27-Oct-2023	28 days	3 days	✓
				days						
nions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE			_							
JF01-06	E235.CI-L	25-Oct-2023	27-Oct-2023	28	3 days	✓	27-Oct-2023	28 days	3 days	✓
				days						
nions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE						_				
MW-02	E235.CI-L	25-Oct-2023	27-Oct-2023	28	3 days	✓	27-Oct-2023	28 days	3 days	✓
				days						
nions and Nutrients : Fluoride in Water by IC (Low Level)										
HDPE										
JF01-06	E235.F-L	25-Oct-2023	27-Oct-2023	28	3 days	✓	27-Oct-2023	28 days	3 days	✓
					1		1			

days

Page : 5 of 17 Work Order : 7L2301518

Client : KBL Environmental Ltd.

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🔻	/ = Within	Holding Tim
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC (Low Level)										
HDPE										
MW-02	E235.F-L	25-Oct-2023	27-Oct-2023	28	3 days	✓	27-Oct-2023	28 days	3 days	✓
				days						
Anions and Nutrients : Nitrate in Water by IC (Trace Level)					,					
HDPE	FOOT NOO T	25 0-4 2022	07.0.4.0000	0.4	0.1		07.0.4.0000	0.1	0.4	,
JF01-06	E235.NO3-T	25-Oct-2023	27-Oct-2023	3 days	3 days	✓	27-Oct-2023	3 days	3 days	✓
Anions and Nutrients : Nitrate in Water by IC (Trace Level)										
HDPE	E235.NO3-T	25-Oct-2023	27-Oct-2023	2 days	2 days	√	27-Oct-2023	2 days	3 days	1
MW-02	E235.NO3-1	25-UCI-2023	21-Oct-2023	3 days	3 days	Y	27-UCI-2023	3 days	3 days	•
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE	E235.NO2-L	25-Oct-2023	27-Oct-2023	2 days	2 days	√	27-Oct-2023	2 days	2 days	✓
JF01-06	E235.NO2-L	25-001-2023	27-Oct-2023	3 days	3 days	•	27-UCI-2023	3 days	3 days	•
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE MW-02	E235.NO2-L	25-Oct-2023	27-Oct-2023	3 days	3 days	√	27-Oct-2023	3 days	3 days	√
WWV-OZ	L233.NO2-L	25-061-2025	21-001-2023	3 days	3 days	•	27-001-2023	Juays	3 days	•
Anions and Nutrients : Sulfate in Water by IC (Low Level)										
HDPE JF01-06	E235.SO4-L	25-Oct-2023	27-Oct-2023	28	3 days	√	27-Oct-2023	28 days	3 days	1
31 01-00	2200.0012	20 000 2020	21-001-2020	days	o days	,	27-000-2020	20 days	o days	,
Anima and National a College in Materials 10 (1 and 1 and 1)				dayo						
Anions and Nutrients : Sulfate in Water by IC (Low Level) HDPE				l l						
MW-02	E235.SO4-L	25-Oct-2023	27-Oct-2023	28	3 days	✓	27-Oct-2023	28 days	3 days	✓
02				days	,-				,-	
Dissolved Metals : Dissolved Mercury in Water by CVAAS				,-						
Glass vial dissolved (hydrochloric acid)										
JF01-06	E509	25-Oct-2023	31-Oct-2023	28	6 days	✓	31-Oct-2023	28 days	6 days	✓
				days	,0				, 5	
Dissolved Metals : Dissolved Mercury in Water by CVAAS				.,,-						
Glass vial dissolved (hydrochloric acid)										
MW-02	E509	25-Oct-2023	31-Oct-2023	28	6 days	✓	31-Oct-2023	28 days	6 days	✓
				days	1				1	

Page : 6 of 17 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						aluation. • -	Holding time exce	cuarice, •	- vviti iii i	riolaling riini
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
JF01-06	E421	25-Oct-2023	01-Nov-2023	180	7 days	✓	01-Nov-2023	180	8 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
MW-02	E421	25-Oct-2023	01-Nov-2023	180	7 days	✓	01-Nov-2023	180	8 days	✓
				days	_			days	_	
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
JF01-01	E601	25-Oct-2023	31-Oct-2023	14	6 days	√	01-Nov-2023	40 days	1 days	1
				days	,-			, -	,-	
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID				T	I			I		
Amber glass/Teflon lined cap (sodium bisulfate)	E601	25-Oct-2023	31-Oct-2023		0 4-11-	√	01-Nov-2023	40 4-11-	4	1
JF01-04	E001	25-001-2023	31-UCI-2023	14	6 days	•	01-NOV-2023	40 days	1 days	•
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
JF01-06	E601	25-Oct-2023	31-Oct-2023	14	6 days	✓	01-Nov-2023	40 days	1 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
MW-02	E601	25-Oct-2023	31-Oct-2023	14	6 days	✓	01-Nov-2023	40 days	1 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
MW-03	E601	25-Oct-2023	31-Oct-2023	14	6 days	✓	01-Nov-2023	40 days	1 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID									E F	
Amber glass/Teflon lined cap (sodium bisulfate)	I									
MW-04	E601	25-Oct-2023	31-Oct-2023	14	6 days	✓	01-Nov-2023	40 days	1 days	1
· ···· · · ·			3. 33. 2020	days	2 24,0		0		,0	
				uayo			<u> </u>			
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)	E601	25-Oct-2023	21 Oct 2022		6 days	✓	01 Nov 2022	10 day:-	1 days	√
MW-06	E001	25-001-2023	31-Oct-2023	14	6 days	*	01-Nov-2023	40 days	1 days	*
				days						

Page : 7 of 17 Work Order · YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Analyte Group : Analytical Method Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) **Holding Times** Preparation **Holding Times** Eval Analysis Date Eval Rec Actual Rec Actual Date Hydrocarbons: CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) E601 25-Oct-2023 31-Oct-2023 1 01-Nov-2023 1 days ✓ MW-07 6 days 40 days 14 days Hydrocarbons: CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) MW-09 E601 25-Oct-2023 31-Oct-2023 6 days ✓ 01-Nov-2023 40 days 1 days ✓ 14 days Hydrocarbons : CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) MW-10 E601 25-Oct-2023 31-Oct-2023 6 days 1 01-Nov-2023 40 days 1 days 1 14 davs Hydrocarbons: CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) 25-Oct-2023 1 PW-01 E601 31-Oct-2023 6 days 01-Nov-2023 40 days 1 days ✓ 14 days Hydrocarbons: CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) 6 days E601 25-Oct-2023 31-Oct-2023 1 01-Nov-2023 40 days 1 PW-02 1 days 14 days Hydrocarbons: CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) E601 25-Oct-2023 1 ✓ DUP1 31-Oct-2023 7 days 01-Nov-2023 40 days 1 days 14 days Hydrocarbons: CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) DUP2 E601 25-Oct-2023 31-Oct-2023 7 days 01-Nov-2023 40 days 1 days 14 days Hydrocarbons: VH and F1 by Headspace GC-FID Glass vial (sodium bisulfate) 1 JF01-01 E581.VH+F1 25-Oct-2023 30-Oct-2023 5 days 30-Oct-2023 14 days 6 days ✓ 14 days Hydrocarbons: VH and F1 by Headspace GC-FID Glass vial (sodium bisulfate) E581.VH+F1 25-Oct-2023 30-Oct-2023 1 30-Oct-2023 ✓ JF01-04 5 days 14 days 6 days 14 days

Page : 8 of 17 Work Order : YL2301518

Client : KBL Environmental Ltd.

Analysis Onesin - Analysis at Mashad		0 " 0 "					= Within			
Analyte Group : Analytical Method	Method	Sampling Date		traction / Pr				Analys		
Container / Client Sample ID(s)			Preparation Date	Rec	g Times Actual	Eval	Analysis Date	Rec	Times Actual	Eval
lydrocarbons : VH and F1 by Headspace GC-FID			Date	Nec	Actual			Nec	Actual	
Glass vial (sodium bisulfate)										
JF01-06	E581.VH+F1	25-Oct-2023	30-Oct-2023	14 days	5 days	✓	30-Oct-2023	14 days	6 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) PW-01	E581.VH+F1	25-Oct-2023	30-Oct-2023	14 days	5 days	✓	30-Oct-2023	14 days	6 days	1
lydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) PW-02	E581.VH+F1	25-Oct-2023	30-Oct-2023	14 days	5 days	✓	30-Oct-2023	14 days	6 days	✓
lydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) DUP1	E581.VH+F1	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID		110,711								
Glass vial (sodium bisulfate) DUP2	E581.VH+F1	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	4
Hydrocarbons : VH and F1 by Headspace GC-FID			1275							
Glass vial (sodium bisulfate) MW-02	E581.VH+F1	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	*
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) MW-03	E581.VH+F1	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID		142								
Glass vial (sodium bisulfate) MW-04	E581.VH+F1	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	4
lydrocarbons : VH and F1 by Headspace GC-FID		11271								
Glass vial (sodium bisulfate) MW-06	E581.VH+F1	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	✓

Page : 9 of 17 Work Order : 9 L2301518

Client : KBL Environmental Ltd.

Analyte Group : Analytical Method	Method	Sampling Date	Fx	traction / Pi	renaration			Analys	eis	
Container / Client Sample ID(s)	Wethou	Sampling Date				Eval	Analysis Data			Eval
Container / Cheft Sample ID(S)			Preparation Date	Rec	g Times Actual	Evai	Analysis Date	Rec	7 Times Actual	Evai
lydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) MW-07	E581.VH+F1	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	✓
lydrocarbons : VH and F1 by Headspace GC-FID			12.6							
Glass vial (sodium bisulfate) MW-09	E581.VH+F1	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	✓
lydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) MW-10	E581.VH+F1	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	✓
Physical Tests : Alkalinity Species by Titration		14271								
HDPE JF01-06	E290	25-Oct-2023	27-Oct-2023	14 days	3 days	✓	28-Oct-2023	14 days	4 days	✓
Physical Tests : Alkalinity Species by Titration						The Di				
HDPE MW-02	E290	25-Oct-2023	27-Oct-2023	14 days	3 days	✓	28-Oct-2023	14 days	4 days	✓
Physical Tests : Conductivity in Water										
HDPE JF01-06	E100	25-Oct-2023	27-Oct-2023	28 days	3 days	4	28-Oct-2023	28 days	4 days	4
Physical Tests : Conductivity in Water										
MW-02	E100	25-Oct-2023	27-Oct-2023	28 days	3 days	✓	28-Oct-2023	28 days	4 days	*
Physical Tests : pH by Meter		14271								
HDPE JF01-06	E108	25-Oct-2023	27-Oct-2023	0.25 hrs	69 hrs	* EHTR-FM	28-Oct-2023	0.25 hrs	86 hrs	# EHTR-I
hysical Tests : pH by Meter										
HDPE MW-02	E108	25-Oct-2023	27-Oct-2023	0.25	69 hrs	*	28-Oct-2023	0.25	86 hrs	*

Page : 10 of 17 Work Order : YL2301518

Client : KBL Environmental Ltd.

fatrix: Water					E۱	/aluation: 🗴 =	Holding time excee	edance ; 🕦	/ = Within	Holding Tir
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pr	reparation			Analys		
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE										
JF01-06	E162	25-Oct-2023					31-Oct-2023	7 days	6 days	✓
Physical Tests : TDS by Gravimetry							1 1 1 1 1			
HDPE										
MW-02	E162	25-Oct-2023					01-Nov-2023	7 days	8 days	1
32								, -	,-	
DI 1 1 T 1 T T T T T T T T T T T T T T T										
Physical Tests : TSS by Gravimetry										
HDPE JF01-06	E160	25-Oct-2023					31-Oct-2023	7 days	6 days	1
JF01-00	E 100	25-001-2025					31-001-2023	7 uays	0 uays	•
Physical Tests : TSS by Gravimetry										
HDPE										
MW-02	E160	25-Oct-2023					31-Oct-2023	7 days	6 days	✓
Volatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
JF01-04	E611A	25-Oct-2023	30-Oct-2023	14	5 days	✓	30-Oct-2023	14 days	6 days	✓
				days						
Volatile Organic Compounds : BTEX by Headspace GC-MS				-						
Glass vial (sodium bisulfate)							I			
JF01-06	E611A	25-Oct-2023	30-Oct-2023	14	5 days	1	30-Oct-2023	14 days	6 days	1
01 01 00	201.71	20 001 2020	00 001 2020	days	o dayo	·	00 001 2020	i i dayo	o dayo	
				days						
Volatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)	E0444	05.0 1.0000	00 0 4 0000				00 0 1 0000			,
PW-01	E611A	25-Oct-2023	30-Oct-2023	14	5 days	✓	30-Oct-2023	14 days	6 days	✓
				days						
Volatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
PW-02	E611A	25-Oct-2023	30-Oct-2023	14	5 days	✓	30-Oct-2023	14 days	6 days	✓
				days						
Volatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)		T								
JF01-01	E611A	25-Oct-2023	30-Oct-2023	14	5 days	✓	30-Oct-2023	14 days	7 days	✓
				days	,			,-	,	

Page : 11 of 17 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

atrix: Water	14-45-1	Occupation of B. (-	tua atia a 15		aluation: * =	= Holding time exceedance ; ✓ = Within Hold Analysis			
Analyte Group : Analytical Method	Method	Sampling Date		traction / Pr			4 / 1 5 /	Holding Times		
Container / Client Sample ID(s)			Preparation Date	Rec	g Times Actual	Eval	Analysis Date	Rec	Actual	Eval
olatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) DUP1	E611A	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	~
olatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) DUP2	E611A	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	4
olatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) MW-02	E611A	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	✓
/olatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) MW-03	E611A	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	✓
olatile Organic Compounds : BTEX by Headspace GC-MS		L REPLE								
Glass vial (sodium bisulfate) MW-04	E611A	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	✓
olatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) MW-06	E611A	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	4
olatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) MW-07	E611A	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	✓
olatile Organic Compounds : BTEX by Headspace GC-MS				in p						
Glass vial (sodium bisulfate) MW-09	E611A	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	√
olatile Organic Compounds : BTEX by Headspace GC-MS		CERSON I								
Glass vial (sodium bisulfate) MW-10	E611A	25-Oct-2023	31-Oct-2023	14 days	6 days	✓	31-Oct-2023	14 days	7 days	1

Legend & Qualifier Definitions

Page : 12 of 17 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

Page : 13 of 17 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		Frequency (%)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	1210965	1	3	33.3	5.0	1
Bromide by IC (Ultra Trace Level)	E235.Br-U	1210975	1	2	50.0	5.0	1
BTEX by Headspace GC-MS	E611A	1212294	2	34	5.8	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	1210973	1	2	50.0	5.0	✓
Conductivity in Water	E100	1210964	1	4	25.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	1214661	1	7	14.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1216983	1	5	20.0	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	1210974	1	2	50.0	5.0	✓
Nitrate in Water by IC (Trace Level)	E235.NO3-T	1210967	1	11	9.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	1210968	1	13	7.6	5.0	✓
pH by Meter	E108	1210963	1	18	5.5	5.0	✓
Sulfate in Water by IC (Low Level)	E235.SO4-L	1210976	1	2	50.0	5.0	✓
TDS by Gravimetry	E162	1214547	1	17	5.8	5.0	✓
TSS by Gravimetry	E160	1214514	1	17	5.8	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	1212295	2	34	5.8	5.0	✓
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	1210965	1	3	33.3	5.0	1
Bromide by IC (Ultra Trace Level)	E235.Br-U	1210975	1	2	50.0	5.0	✓
BTEX by Headspace GC-MS	E611A	1212294	2	34	5.8	5.0	✓
CCME PHCs - F2-F4 by GC-FID	E601	1214779	2	32	6.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	1210973	1	2	50.0	5.0	✓
Conductivity in Water	E100	1210964	1	4	25.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	1214661	1	7	14.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1216983	1	5	20.0	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	1210974	1	2	50.0	5.0	✓
Nitrate in Water by IC (Trace Level)	E235.NO3-T	1210967	1	11	9.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	1210968	1	13	7.6	5.0	✓
Oil & Grease by Gravimetry	E567	1215248	1	8	12.5	5.0	✓
pH by Meter	E108	1210963	1	18	5.5	5.0	✓
Sulfate in Water by IC (Low Level)	E235.SO4-L	1210976	1	2	50.0	5.0	✓
TDS by Gravimetry	E162	1214547	1	17	5.8	5.0	✓
TSS by Gravimetry	E160	1214514	1	17	5.8	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	1212295	2	34	5.8	5.0	✓
Method Blanks (MB)							
Alkalinity Species by Titration	E290	1210965	1	3	33.3	5.0	1

Page : 14 of 17 Work Order : YL2301518

Client : KBL Environmental Ltd.

Matrix: Water		Evaluation	n: 🗴 = QC freque	ency outside spe	ecification; ✓ = 0	QC frequency wit	hin specification
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
Bromide by IC (Ultra Trace Level)	E235.Br-U	1210975	1	2	50.0	5.0	✓
BTEX by Headspace GC-MS	E611A	1212294	2	34	5.8	5.0	✓
CCME PHCs - F2-F4 by GC-FID	E601	1214779	2	32	6.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	1210973	1	2	50.0	5.0	✓
Conductivity in Water	E100	1210964	1	4	25.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	1214661	1	7	14.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1216983	1	5	20.0	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	1210974	1	2	50.0	5.0	✓
Nitrate in Water by IC (Trace Level)	E235.NO3-T	1210967	1	11	9.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	1210968	1	13	7.6	5.0	✓
Oil & Grease by Gravimetry	E567	1215248	1	8	12.5	5.0	✓
Sulfate in Water by IC (Low Level)	E235.SO4-L	1210976	1	2	50.0	5.0	✓
TDS by Gravimetry	E162	1214547	1	17	5.8	5.0	✓
TSS by Gravimetry	E160	1214514	1	17	5.8	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	1212295	2	34	5.8	5.0	✓
Matrix Spikes (MS)							
Bromide by IC (Ultra Trace Level)	E235.Br-U	1210975	1	2	50.0	5.0	✓
BTEX by Headspace GC-MS	E611A	1212294	2	34	5.8	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	1210973	1	2	50.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	1214661	1	7	14.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1216983	1	5	20.0	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	1210974	1	2	50.0	5.0	✓
Nitrate in Water by IC (Trace Level)	E235.NO3-T	1210967	1	11	9.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	1210968	1	13	7.6	5.0	✓
Sulfate in Water by IC (Low Level)	E235.SO4-L	1210976	1	2	50.0	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	1212295	2	34	5.8	5.0	✓

Page : 15 of 17 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	ALS Environmental -			sample. Conductivity measurements are temperature-compensated to 25°C.
	Vancouver			sample. Conductivity measurements are temperature-compensated to 25 C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	ALS Environmental -			pH should be measured in the field within the recommended 15 minute hold time.
	Vancouver			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
				filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	ALS Environmental -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Vancouver			brackish waters) may produce a positive bias by this method. Alternate analysis
TDC hu Cravina stra	F100	10/-4	APHA 2540 C (mod)	methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
	ALS Environmental -			filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
	Vancouver			with gravimetric measurement of the residue.
Bromide by IC (Ultra Trace Level)	E235.Br-U	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
, , ,			,	detection.
	ALS Environmental -			
	Vancouver			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
				detection.
	ALS Environmental -			
	Vancouver		===	
Fluoride in Water by IC (Low Level)	E235.F-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
	ALS Environmental -			detection.
	Vancouver			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
Withte III Water by 10 (Low Level)	E233.NO2-L	vvatei	Li A 300.1 (mod)	detection.
	ALS Environmental -			detection.
	Vancouver			
Nitrate in Water by IC (Trace Level)	E235.NO3-T	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	ALS Environmental -			
	Vancouver			

Page : 16 of 17 Work Order : YL2301518

Client : KBL Environmental Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Sulfate in Water by IC (Low Level)	E235.SO4-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Vancouver			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	ALS Environmental -			alkalinity values.
	Vancouver			
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	ALS Environmental -			
	Vancouver			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Mercury in Water by CVAAS	E509	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by
	ALS Environmental -		, ,	CVAAS.
	Vancouver			
Oil & Grease by Gravimetry	E567	Water	BC MOE Lab Manual	The entire water sample is extracted with hexane and the extract is evaporated to
			(Oil & Grease) (mod)	dryness. The residue is then weighed to determine Oil and Grease.
	ALS Environmental -			
VII. 1541 H. 1 00 510	Vancouver	147 /		
VH and F1 by Headspace GC-FID	E581.VH+F1	Water	BC MOE Lab Manual /	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples
	ALS Environmental -		CCME PHC in Soil - Tier	are prepared in headspace vials and are heated and agitated on the headspace
	Vancouver		1 (mod)	autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
				Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply
				fully with the Reference Method for the Canada-Wide Standard for PHC. Unless
				qualified, all required quality control criteria of the CCME PHC method have been met,
				including response factor and linearity requirements.
CCME PHCs - F2-F4 by GC-FID	E601	Water	CCME PHC in Soil - Tier	Sample extracts are analyzed by GC-FID for CCME hydrocarbon fractions (F2-F4).
	ALS Environmental -			Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply
	Vancouver			fully with the Reference Method for the Canada-Wide Standard for PHC. Unless
				qualified, all required quality control criteria of the CCME PHC method have been met,
				including response factor and linearity requirements.
BTEX by Headspace GC-MS	E611A	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the
	ALS Environmental -			headspace autosampler, causing VOCs to partition between the aqueous phase and
	Vancouver			the headspace in accordance with Henry's law.

Page : 17 of 17 Work Order : YL2301518

Client : KBL Environmental Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Hardness (Calculated)	EC100	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and
				Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	ALS Environmental -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Vancouver			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations.
F1-BTEX	EC580	Water	CCME PHC in Soil - Tier	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene,
			1	ethylbenzene and xylenes (BTEX).
	ALS Environmental -			
	Vancouver			
VPH: VH-BTEX-Styrene	EC580A	Water	BC MOE Lab Manual	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHw = Volatile
			(VPH in Water and	Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and
	ALS Environmental -		Solids) (mod)	styrene.
	Vancouver			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	ALS Environmental -			
	Vancouver			
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	ALS Environmental -			
	Vancouver			
Oil & Grease Extraction for Gravimetry	EP567	Water	BC MOE Lab Manual	The entire water sample is extracted with hexane by liquid-liquid extraction.
on a creace Emacacinic Claimical,	21 007		(Oil & Grease) (mod)	The state state of the state of
	ALS Environmental -		(Oil & Orease) (Mod)	
	Vancouver			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
,	2. 00.		,	headspace autosampler. An aliquot of the headspace is then injected into the
	ALS Environmental -			GC/MS-FID system.
	Vancouver			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are
			` ′	extracted using a hexane liquid-liquid extraction.
	ALS Environmental -			
	Vancouver			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order Page :YL2301518 : 1 of 14

Client : KBL Environmental Ltd. Laboratory : ALS Environmental - Yellowknife

: Katie Oliver **Account Manager** : Oliver Gregg Contact Address : 17 Cameron Road PO Box 1895

Address :314 Old Airport Road, Unit 116

Yellowknife. Northwest Territories Canada X1A 3T3

Telephone :18674457143 :23-099NT Date Samples Received :25-Oct-2023 15:22

PO **Date Analysis Commenced** : 27-Oct-2023 : ----

C-O-C number : 17-824361 **Issue Date** :02-Nov-2023 09:35

Sampler 780 893 3305

Site

Quote number :YL22-KBLE100-001

No. of samples received : 14 No. of samples analysed : 14

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

Yellowknife NT Canada X1A 2P4

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

Telephone

Project

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Thornton	Analyst	Vancouver Metals, Burnaby, British Columbia
Brieanna Allen	Production/Validation Manager	Vancouver Inorganics, Burnaby, British Columbia
Erin Sanchez		Vancouver Metals, Burnaby, British Columbia
Ophelia Chiu	Department Manager - Organics	Vancouver Organics, Burnaby, British Columbia
Owen Cheng		Vancouver Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia

Page : 2 of 14 Work Order · YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 14 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 1210963)										
YL2301518-006	MW-02	рН		E108	0.10	pH units	7.88	7.93	0.683%	4%	
Physical Tests (QC	Lot: 1210964)										
YL2301518-006	MW-02	Conductivity		E100	2.0	μS/cm	487	486	0.206%	10%	
Physical Tests (QC	Lot: 1210965)		men								
YL2301518-006	MW-02	Alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	111	111	0.00%	200%	
		Alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0.00%	200%	
		Alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0.00%	200%	
		Alkalinity, phenolphthalein (as		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		CaCO3)		F200	4.0	/I	444	444	0.000/	20%	
		Alkalinity, total (as CaCO3)		E290	1.0	mg/L	111	111	0.00%	20%	
Physical Tests (QC	The state of the s										
VA23C5798-007	Anonymous	Solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 1214547)										
VA23C5798-007	Anonymous	Solids, total dissolved [TDS]		E162	10	mg/L	38	34	5	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1210967)										
VA23C5455-001	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3-T	0.0030	mg/L	0.154	0.154	0.0905%	20%	
Anions and Nutrien	ts (QC Lot: 1210968)										
VA23C5455-001	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1210973)										
YL2301518-004	JF01-06	Chloride	16887-00-6	E235.CI-L	0.10	mg/L	66.5	66.3	0.267%	20%	
Anions and Nutrien	ts (QC Lot: 1210974)										
YL2301518-004	JF01-06	Fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.096	0.095	0.001	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1210975)										
YL2301518-004	JF01-06	Bromide	24959-67-9	E235.Br-U	0.0050	mg/L	0.0446	0.0444	0.0002	Diff <2x LOR	
Anions and Nutrion	ts (QC Lot: 1210976)										
YL2301518-004	JF01-06	Sulfate (as SO4)	14808-79-8	E235.SO4-L	0.050	mg/L	45.3	45.4	0.140%	20%	
		(3					
Dissolved Metals (0 VA23C5904-002	Anonymous	Mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
	,	Microury, dissolved	1 -100-01-0		0.000000	g/ L	-0.000000	-0.000000		Jiii -ZA LOIN	
Dissolved Metals (7400.00.5	E404	0.0040	/I	0.0050	0.0054	0.0004	D:# 401 OD	
YL2301519-001	Anonymous	Aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0058	0.0054	0.0004	Diff <2x LOR	

Page : 4 of 14 Work Order : YL2301518

Client : KBL Environmental Ltd.

Sub-Matrix: Water						Labora	tory Duplicate (D	UP) Report			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (C	QC Lot: 1216983) - conti	nued									
YL2301519-001	Anonymous	Antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00233	0.00238	1.99%	20%	
		Arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0214	0.0211	1.20%	20%	
		Barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0178	0.0178	0.372%	20%	
		Beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		Bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Boron, dissolved	7440-42-8	E421	0.010	mg/L	0.082	0.082	0.0001	Diff <2x LOR	
		Cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000099	0.0000095	0.0000004	Diff <2x LOR	
		Calcium, dissolved	7440-70-2	E421	0.050	mg/L	219	220	0.511%	20%	
		Cesium, dissolved	7440-46-2	E421	0.000010	mg/L	0.000040	0.000039	0.000001	Diff <2x LOR	
		Chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00342	0.00343	0.274%	20%	
		Copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00192	0.00191	0.00001	Diff <2x LOR	
		Iron, dissolved	7439-89-6	E421	0.010	mg/L	0.145	0.143	1.04%	20%	
		Lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0622	0.0617	0.872%	20%	
		Magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	92.7	90.3	2.64%	20%	
		Manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0716	0.0707	1.21%	20%	
		Molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00302	0.00304	0.771%	20%	
		Nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00157	0.00159	0.00002	Diff <2x LOR	
		Phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	0.513	0.528	2.80%	20%	
		Potassium, dissolved	7440-09-7	E421	0.050	mg/L	8.48	8.32	1.85%	20%	
		Rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00202	0.00207	2.35%	20%	
		Selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000329	0.000328	0.0000008	Diff <2x LOR	
		Silicon, dissolved	7440-21-3	E421	0.050	mg/L	5.64	5.48	2.90%	20%	
		Silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Sodium, dissolved	7440-23-5	E421	0.050	mg/L	24.4	23.7	2.56%	20%	
		Strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.866	0.884	2.01%	20%	
		Sulfur, dissolved	7704-34-9	E421	0.50	mg/L	265	265	0.117%	20%	
		Tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		Tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	0.00134	0.00136	1.38%	20%	

Page : 5 of 14 Work Order : 7 VL2301518

Client : KBL Environmental Ltd.

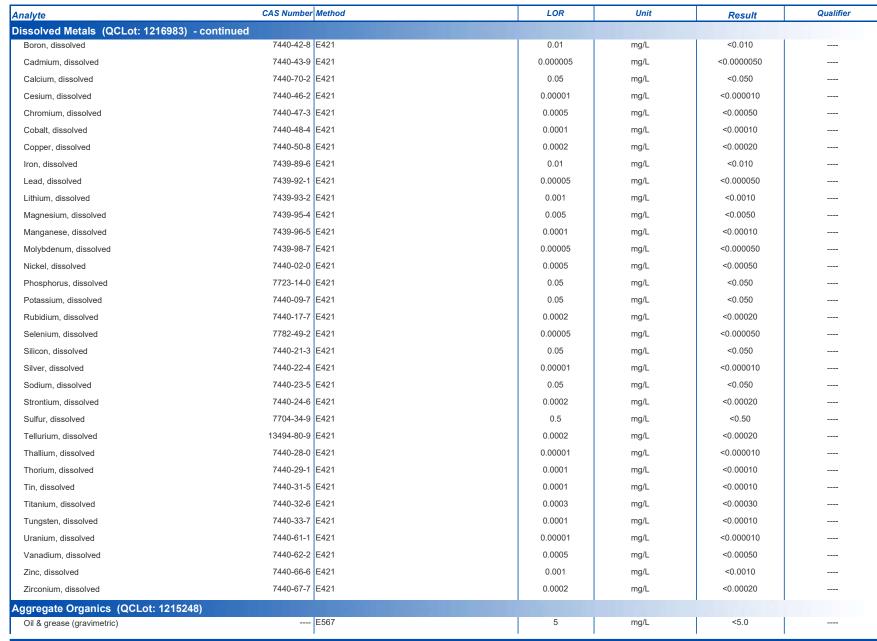
Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 1216983) - co	ontinued									
YL2301519-001	Anonymous	Uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.0645	0.0657	1.87%	20%	
		Vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	0.00074	0.00072	0.00002	Diff <2x LOR	
		Zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0037	0.0034	0.0003	Diff <2x LOR	
		Zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Volatile Organic Co	mpounds (QC Lot: 1	212294)									
VA23C5062-001	Anonymous	Benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Styrene	100-42-5	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
Volatile Organic Co	mpounds (QC Lot: 1	214559)									
VA23C5815-001	Anonymous	Benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Styrene	100-42-5	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 1212295)			I I am I I							
VA23C5062-001	Anonymous	F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	
		VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	
Hydrocarbons (QC	Lot: 1214558)										
VA23C5815-001	Anonymous	F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	
		VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	

Page : 6 of 14 Work Order : 7L2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Method Blank (MB) Report

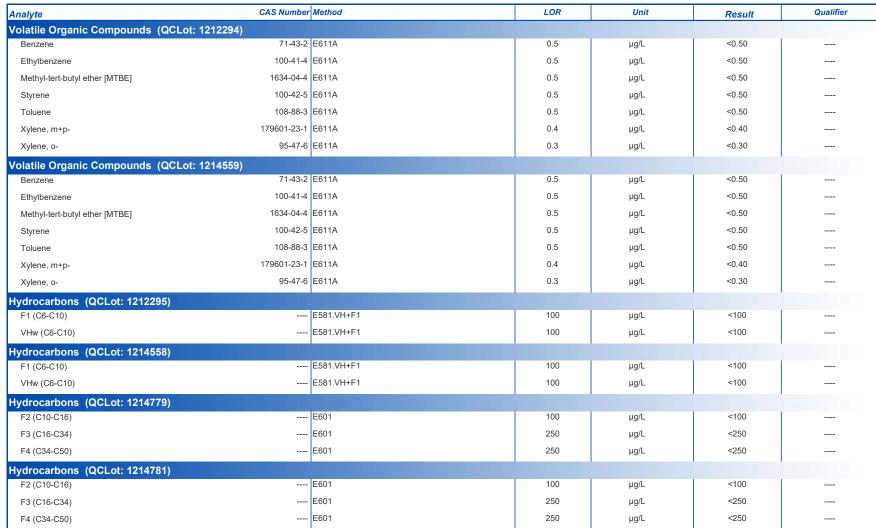

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1210964)					
Conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 1210965)					
Alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
Alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
Alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
Alkalinity, phenolphthalein (as CaCO3)	E290	1	mg/L	<1.0	
Alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
hysical Tests (QCLot: 1214514)					
Solids, total suspended [TSS]	E160	3	mg/L	<3.0	
hysical Tests (QCLot: 1214547)					
Solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 1210967)					
Nitrate (as N)	14797-55-8 E235.NO3-T	0.003	mg/L	<0.0030	
Anions and Nutrients (QCLot: 1210968)					
Nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 1210973)					
Chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 1210974)					
Fluoride	16984-48-8 E235.F-L	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 1210975)					
Bromide	24959-67-9 E235.Br-U	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 1210976)					
Sulfate (as SO4)	14808-79-8 E235.SO4-L	0.05	mg/L	<0.050	
Dissolved Metals (QCLot: 1214661)					
Mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.0000050	
Dissolved Metals (QCLot: 1216983)					
Aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
Antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
Arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
Barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
Beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
Bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	

Page : 7 of 14 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT



Page : 8 of 14 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Page : 9 of 14 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 1210963)									
pH		E108		pH units	7 pH units	101	98.0	102	
Physical Tests (QCLot: 1210964)									
Conductivity		E100	1	μS/cm	146.9 μS/cm	101	90.0	110	
Physical Tests (QCLot: 1210965)									
Alkalinity, phenolphthalein (as CaCO3)		E290	1	mg/L	229 mg/L	119	75.0	125	
Alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	109	85.0	115	
Physical Tests (QCLot: 1214514)									
Solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	105	85.0	115	
Physical Tests (QCLot: 1214547)		10 11 5 8 11 10							
Solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	101	85.0	115	
Anions and Nutrients (QCLot: 1210967)									
Nitrate (as N)	14797-55-8	E235.NO3-T	0.003	mg/L	2.5 mg/L	99.7	90.0	110	
Anions and Nutrients (QCLot: 1210968)		75 - 1 - 2 1 1 1							
Nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	99.3	90.0	110	
Anions and Nutrients (QCLot: 1210973)	1111								
Chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	99.2	90.0	110	
Anions and Nutrients (QCLot: 1210974)									
Fluoride	16984-48-8	E235.F-L	0.01	mg/L	1 mg/L	99.9	90.0	110	
Anions and Nutrients (QCLot: 1210975)									
Bromide	24959-67-9	E235.Br-U	0.005	mg/L	0.5 mg/L	103	85.0	115	
Anions and Nutrients (QCLot: 1210976)		VI E E E							
Sulfate (as SO4)	14808-79-8	E235.SO4-L	0.05	mg/L	100 mg/L	99.5	90.0	110	
Mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	104	80.0	120	
Dissolved Metals (QCLot: 1216983)									
Aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	98.8	80.0	120	
Antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	101	80.0	120	
Arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	103	80.0	120	
Barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	100	80.0	120	
Beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	98.2	80.0	120	
Bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	101	80.0	120	

Page : 10 of 14 Work Order : YL2301518

Client : KBL Environmental Ltd.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie		
Dissolved Metals (QCLot: 1216983) - co	ntinued										
Boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	91.1	80.0	120			
Cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	100	80.0	120			
Calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	98.3	80.0	120			
Cesium, dissolved	7440-46-2	E421	0.00001	mg/L	0.05 mg/L	105	0.08	120			
Chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	98.6	0.08	120			
Cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	98.4	80.0	120			
Copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	96.6	0.08	120			
on, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	102	80.0	120			
ead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	101	80.0	120			
ithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	99.9	80.0	120			
lagnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	101	80.0	120			
langanese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	98.8	80.0	120			
lolybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	102	80.0	120			
ickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	96.8	80.0	120			
hosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	103	80.0	120			
otassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	101	80.0	120			
ubidium, dissolved	7440-17-7	E421	0.0002	mg/L	0.1 mg/L	99.5	80.0	120			
elenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	108	80.0	120			
ilicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	113	80.0	120			
ilver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	96.7	80.0	120			
odium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	101	80.0	120			
trontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	104	80.0	120			
ulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	114	80.0	120			
ellurium, dissolved	13494-80-9	E421	0.0002	mg/L	0.1 mg/L	101	80.0	120			
hallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	100	80.0	120			
horium, dissolved	7440-29-1	E421	0.0001	mg/L	0.1 mg/L	99.7	80.0	120			
in, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	101	80.0	120			
itanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	94.6	80.0	120			
ungsten, dissolved	7440-33-7	E421	0.0001	mg/L	0.1 mg/L	101	80.0	120			
ranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	100	80.0	120			
anadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	99.8	80.0	120			
inc, dissolved	7440-66-6		0.001	mg/L	0.5 mg/L	98.3	80.0	120			
irconium, dissolved	7440-67-7		0.0002	mg/L	0.1 mg/L	101	80.0	120			
aggregate Organics (QCLot: 1215248)											
il & grease (gravimetric)		E567	5	mg/L	100 mg/L	99.5	70.0	130			

Page : 11 of 14 Work Order : YL2301518

Client : KBL Environmental Ltd.

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report						
						Recovery (%)	Recovery	Limits (%)	its (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Volatile Organic Compounds (QCLot:	1212294)											
Benzene	71-43-2	E611A	0.5	μg/L	100 μg/L	102	70.0	130				
Ethylbenzene	100-41-4	E611A	0.5	μg/L	100 μg/L	93.7	70.0	130				
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.5	μg/L	100 μg/L	97.4	70.0	130				
Styrene	100-42-5	E611A	0.5	μg/L	100 μg/L	107	70.0	130				
Toluene	108-88-3	E611A	0.5	μg/L	100 μg/L	93.7	70.0	130				
Xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	98.4	70.0	130				
Xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	97.5	70.0	130				
Volatile Organic Compounds (QCLot:	1214559)											
Benzene	71-43-2	E611A	0.5	μg/L	100 μg/L	105	70.0	130				
Ethylbenzene	100-41-4	E611A	0.5	μg/L	100 μg/L	104	70.0	130				
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.5	μg/L	100 μg/L	100	70.0	130				
Styrene	100-42-5	E611A	0.5	μg/L	100 μg/L	95.4	70.0	130				
Toluene	108-88-3	E611A	0.5	μg/L	100 μg/L	106	70.0	130				
Xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	106	70.0	130				
Xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	106	70.0	130				
Hydrocarbons (QCLot: 1212295)		30 1 53 1										
F1 (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	82.0	70.0	130				
VHw (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	83.8	70.0	130				
Hydrocarbons (QCLot: 1214558)												
F1 (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	77.9	70.0	130				
VHw (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	79.4	70.0	130				
Hydrocarbons (QCLot: 1214779)												
F2 (C10-C16)		E601	100	μg/L	3538 µg/L	124	70.0	130				
F3 (C16-C34)		E601	250	μg/L	7053 μg/L	113	70.0	130				
F4 (C34-C50)		E601	250	μg/L	5051 μg/L	118	70.0	130				
Hydrocarbons (QCLot: 1214781)									1			
F2 (C10-C16)		E601	100	μg/L	3538 μg/L	120	70.0	130				
F3 (C16-C34)		E601	250	μg/L	7053 μg/L	108	70.0	130				
F4 (C34-C50)		E601	250	μg/L	5051 μg/L	119	70.0	130				

Page : 12 of 14 Work Order : YL2301518

Client : KBL Environmental Ltd.

Project : 23-099NT

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
	ents (QCLot: 1210967)										
VA23C5455-005	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3-T	2.50 mg/L	2.5 mg/L	99.8	75.0	125		
Anions and Nutri	ents (QCLot: 1210968)										
VA23C5455-005	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2-L	0.496 mg/L	0.5 mg/L	99.1	75.0	125		
Anions and Nutri	ents (QCLot: 1210973)	3 (1) (1)									
YL2301518-006	MW-02	Chloride	16887-00-6	E235.CI-L	108 mg/L	100 mg/L	108	75.0	125		
Anions and Nutri	ents (QCLot: 1210974)										
YL2301518-006	MW-02	Fluoride	16984-48-8	E235.F-L	1.10 mg/L	1 mg/L	110	75.0	125		
Anions and Nutri	ents (QCLot: 1210975)	1000									
YL2301518-006	MW-02	Bromide	24959-67-9	E235.Br-U	0.564 mg/L	0.5 mg/L	113	75.0	125		
Anions and Nutri	ents (QCLot: 1210976)	2000									
YL2301518-006	MW-02	Sulfate (as SO4)	14808-79-8	E235.SO4-L	108 mg/L	100 mg/L	108	75.0	125		
Dissolved Metals	(QCLot: 1214661)	1000									
VA23C5904-003	Anonymous	Mercury, dissolved	7439-97-6	E509	0.000101 mg/L	0.0001 mg/L	101	70.0	130		
Dissolved Metals	(QCLot: 1216983)										
YL2301519-002	Anonymous	Aluminum, dissolved	7429-90-5	E421	0.372 mg/L	0.4 mg/L	93.1	70.0	130		
		Antimony, dissolved	7440-36-0	E421	ND mg/L	0.04 mg/L	ND	70.0	130		
		Arsenic, dissolved	7440-38-2	E421	ND mg/L	0.04 mg/L	ND	70.0	130		
		Barium, dissolved	7440-39-3	E421	ND mg/L	0.04 mg/L	ND	70.0	130		
		Beryllium, dissolved	7440-41-7	E421	0.0714 mg/L	0.08 mg/L	89.2	70.0	130		
		Bismuth, dissolved	7440-69-9	E421	0.0192 mg/L	0.02 mg/L	96.0	70.0	130		
		Boron, dissolved	7440-42-8	E421	ND mg/L	0.2 mg/L	ND	70.0	130		
		Cadmium, dissolved	7440-43-9	E421	0.00759 mg/L	0.008 mg/L	94.9	70.0	130		
		Calcium, dissolved	7440-70-2	E421	ND mg/L	8 mg/L	ND	70.0	130		
		Cesium, dissolved	7440-46-2	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130		
		Chromium, dissolved	7440-47-3	E421	0.0766 mg/L	0.08 mg/L	95.7	70.0	130		
		Cobalt, dissolved	7440-48-4	E421	0.0366 mg/L	0.04 mg/L	91.5	70.0	130		
		Copper, dissolved	7440-50-8	E421	0.0353 mg/L	0.04 mg/L	88.4	70.0	130		
		Iron, dissolved	7439-89-6	E421	3.73 mg/L	4 mg/L	93.3	70.0	130		
	I	Lead, dissolved	7439-92-1	E421	0.0376 mg/L	0.04 mg/L	93.9	70.0	130		

Page : 13 of 14 Work Order : YL2301518

Client : KBL Environmental Ltd.

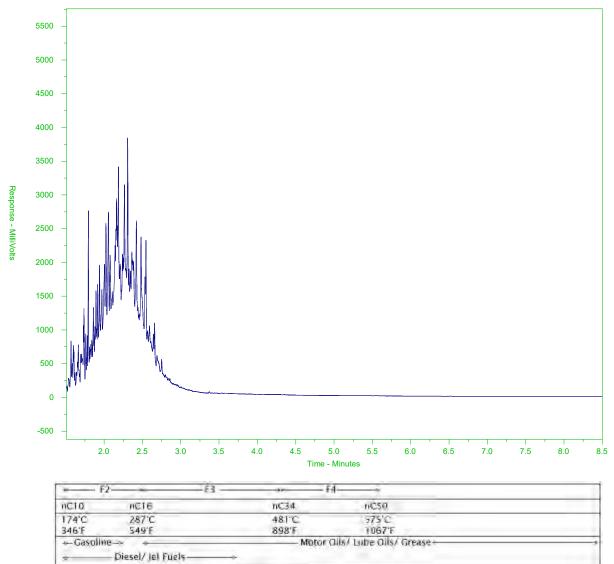
ub-Matrix: Water						Matrix Spike (MS) Report						
					Spi	ke	Recovery (%) Recovery Limits (%)					
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie		
	(QCLot: 1216983)	- continued										
YL2301519-002	Anonymous	Lithium, dissolved	7439-93-2	E421	0.176 mg/L	0.2 mg/L	87.8	70.0	130			
		Magnesium, dissolved	7439-95-4	E421	ND mg/L	2 mg/L	ND	70.0	130			
		Manganese, dissolved	7439-96-5	E421	0.0364 mg/L	0.04 mg/L	91.0	70.0	130			
		Molybdenum, dissolved	7439-98-7	E421	0.0391 mg/L	0.04 mg/L	97.9	70.0	130			
		Nickel, dissolved	7440-02-0	E421	0.0728 mg/L	0.08 mg/L	91.0	70.0	130			
		Phosphorus, dissolved	7723-14-0	E421	19.6 mg/L	20 mg/L	97.9	70.0	130			
		Potassium, dissolved	7440-09-7	E421	ND mg/L	8 mg/L	ND	70.0	130			
		Rubidium, dissolved	7440-17-7	E421	0.0370 mg/L	0.04 mg/L	92.5	70.0	130			
		Selenium, dissolved	7782-49-2	E421	0.0808 mg/L	0.08 mg/L	101	70.0	130			
		Silicon, dissolved	7440-21-3	E421	20.1 mg/L	20 mg/L	100	70.0	130			
		Silver, dissolved	7440-22-4	E421	0.00548 mg/L	0.008 mg/L	68.5	70.0	130	MES		
		Sodium, dissolved	7440-23-5	E421	ND mg/L	4 mg/L	ND	70.0	130			
		Strontium, dissolved	7440-24-6	E421	ND mg/L	0.04 mg/L	ND	70.0	130			
		Sulfur, dissolved	7704-34-9	E421	ND mg/L	40 mg/L	ND	70.0	130			
		Tellurium, dissolved	13494-80-9	E421	0.0772 mg/L	0.08 mg/L	96.5	70.0	130			
		Thallium, dissolved	7440-28-0	E421	0.00767 mg/L	0.008 mg/L	95.9	70.0	130			
		Thorium, dissolved	7440-29-1	E421	0.0388 mg/L	0.04 mg/L	96.9	70.0	130			
		Tin, dissolved	7440-31-5	E421	0.0395 mg/L	0.04 mg/L	98.8	70.0	130			
		Titanium, dissolved	7440-32-6	E421	0.0754 mg/L	0.08 mg/L	94.2	70.0	130			
		Tungsten, dissolved	7440-33-7	E421	0.0390 mg/L	0.04 mg/L	97.5	70.0	130			
		Uranium, dissolved	7440-61-1	E421	ND mg/L	0.008 mg/L	ND	70.0	130			
		Vanadium, dissolved	7440-62-2	E421	0.192 mg/L	0.2 mg/L	96.0	70.0	130			
		Zinc, dissolved	7440-66-6	E421	0.722 mg/L	0.8 mg/L	90.2	70.0	130			
		Zirconium, dissolved	7440-67-7	E421	0.0792 mg/L	0.08 mg/L	99.0	70.0	130			
olatile Organic	Compounds (QCLot	: 1212294)										
/A23C5062-002	Anonymous	Benzene	71-43-2	E611A	103 μg/L	100 μg/L	103	60.0	140			
		Ethylbenzene	100-41-4	E611A	97.8 μg/L	100 μg/L	97.8	60.0	140			
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	100 μg/L	100 μg/L	100	60.0	140			
		Styrene	100-42-5	E611A	109 μg/L	100 μg/L	109	60.0	140			
		Toluene	108-88-3	E611A	97.8 μg/L	100 μg/L	97.8	60.0	140			
		Xylene, m+p-	179601-23-1	E611A	206 μg/L	200 μg/L	103	60.0	140			
		Xylene, o-	95-47-6	E611A	101 μg/L	100 μg/L	101	60.0	140			
olatile Organic	Compounds (QCLot	: 1214559)										
/A23C5815-002	Anonymous	Benzene	71-43-2	E611A	106 μg/L	100 μg/L	106	60.0	140			
	T	Ethylbenzene	100-41-4	I E611A	104 μg/L	100 μg/L	104	60.0	140			

Page 14 of 14 YL2301518 Work Order:

KBL Environmental Ltd. Client

23-099NT Project

Sub-Matrix: Water					Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Volatile Organic Compounds (QCLot: 1214559) - continued											
VA23C5815-002	Anonymous	Methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	100 μg/L	100 μg/L	100	60.0	140		
		Styrene	100-42-5	E611A	92.4 μg/L	100 μg/L	92.4	60.0	140		
		Toluene	108-88-3	E611A	107 μg/L	100 μg/L	107	60.0	140		
		Xylene, m+p-	179601-23-1	E611A	216 μg/L	200 μg/L	108	60.0	140		
		Xylene, o-	95-47-6	E611A	106 μg/L	100 μg/L	106	60.0	140		
Hydrocarbons (C	Hydrocarbons (QCLot: 1212295)										
VA23C5062-003	Anonymous	F1 (C6-C10)		E581.VH+F1	4420 μg/L	6310 µg/L	70.0	60.0	140		
		VHw (C6-C10)		E581.VH+F1	4590 μg/L	6310 μg/L	72.8	60.0	140		
Hydrocarbons (QCLot: 1214558)											
VA23C5815-003	Anonymous	F1 (C6-C10)		E581.VH+F1	4120 μg/L	6310 μg/L	65.3	60.0	140		
		VHw (C6-C10)		E581.VH+F1	4190 μg/L	6310 μg/L	66.4	60.0	140		


Qualifiers	
Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

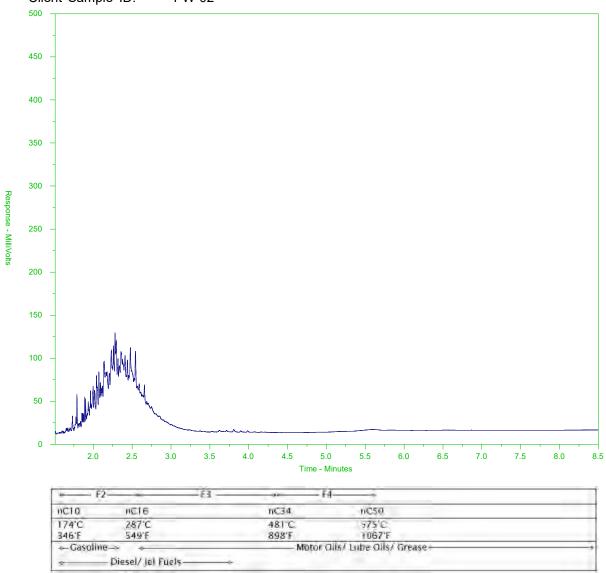
CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: YL2301518-001-E601

Client Sample ID: PW-01

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

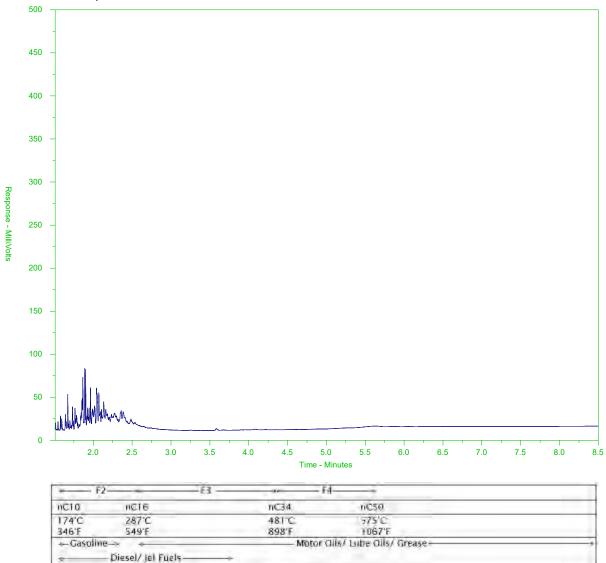

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

ALS Sample ID: YL2301518-002-E601

Client Sample ID: PW-02

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

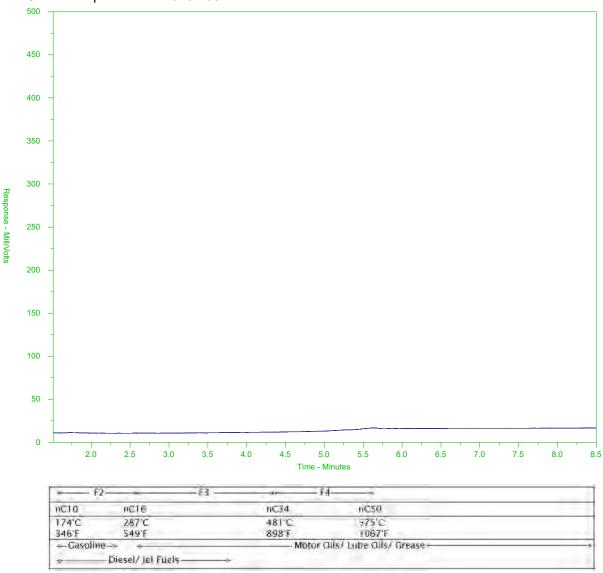

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2301518-003-E601

Client Sample ID: JF01-01

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

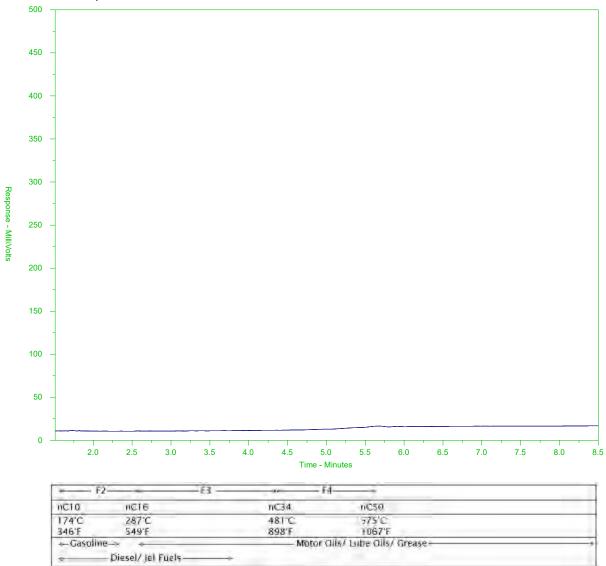

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2301518-004-E601

Client Sample ID: JF01-06

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

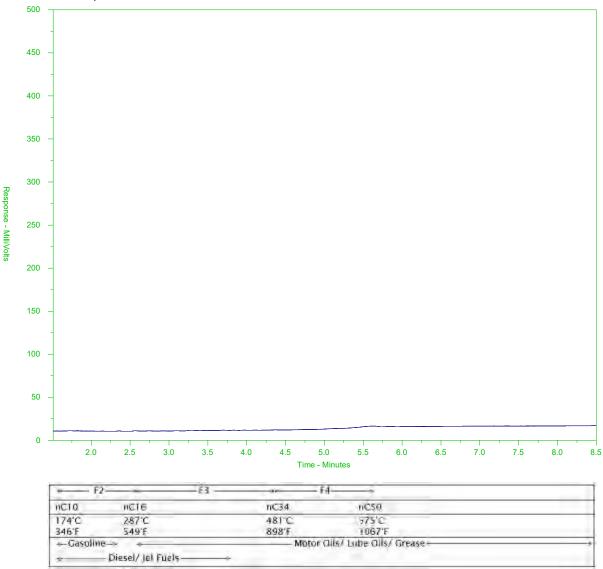

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2301518-005-E601

Client Sample ID: JF01-04

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

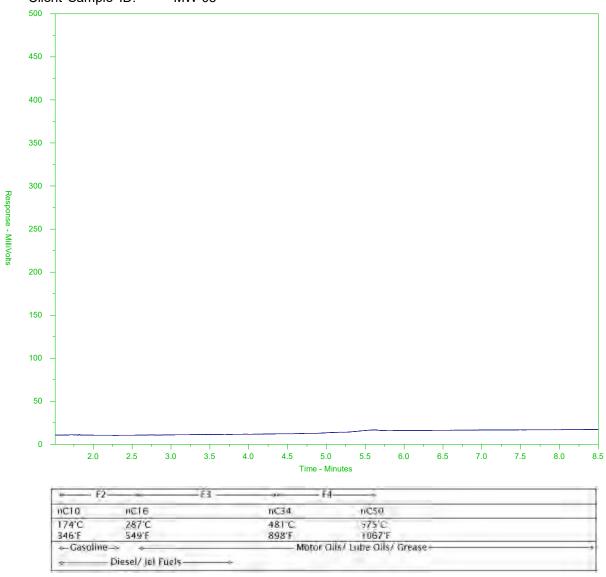

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2301518-006-E601

Client Sample ID: MW-02

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

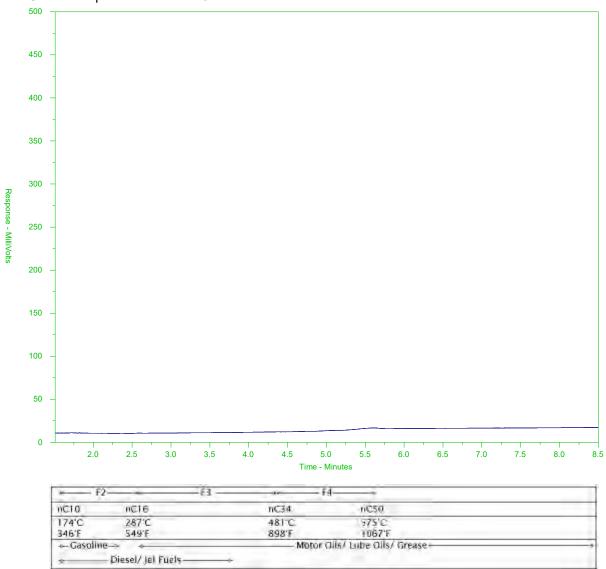

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2301518-007-E601

Client Sample ID: MW-03

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

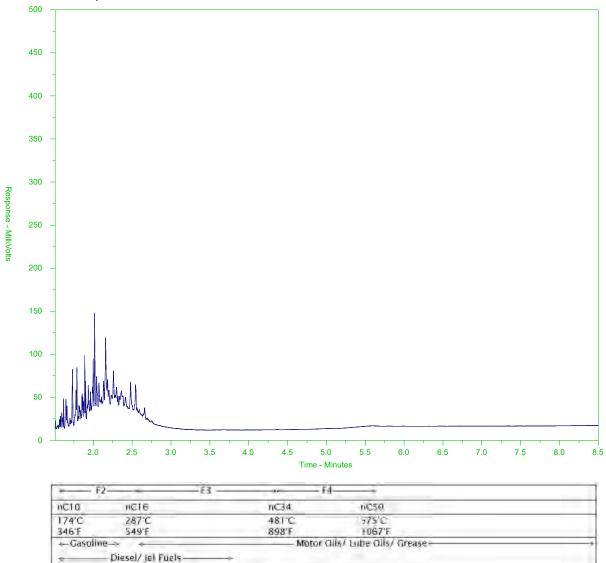

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2301518-008-E601

Client Sample ID: MW-04

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

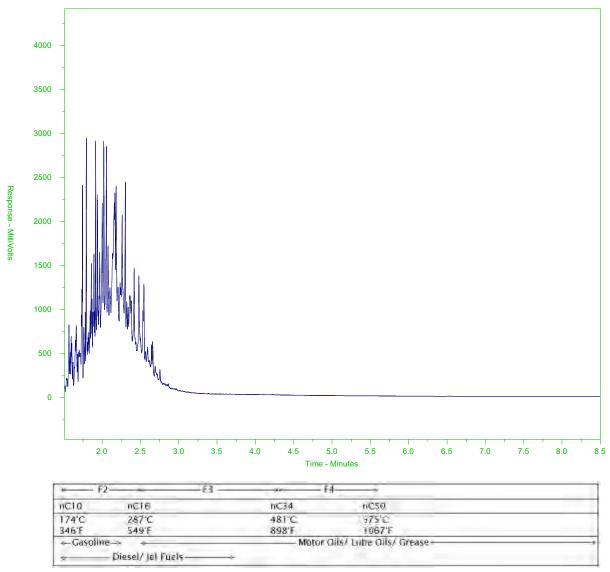

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2301518-009-E601

Client Sample ID: MW-06

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

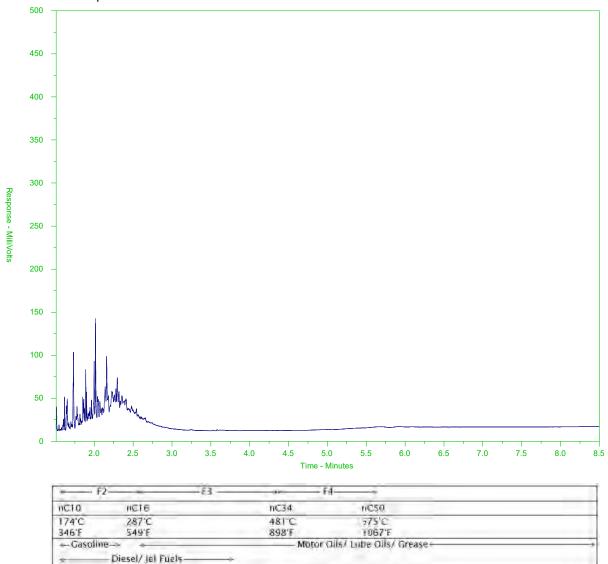

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2301518-010-E601

Client Sample ID: MW-07

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

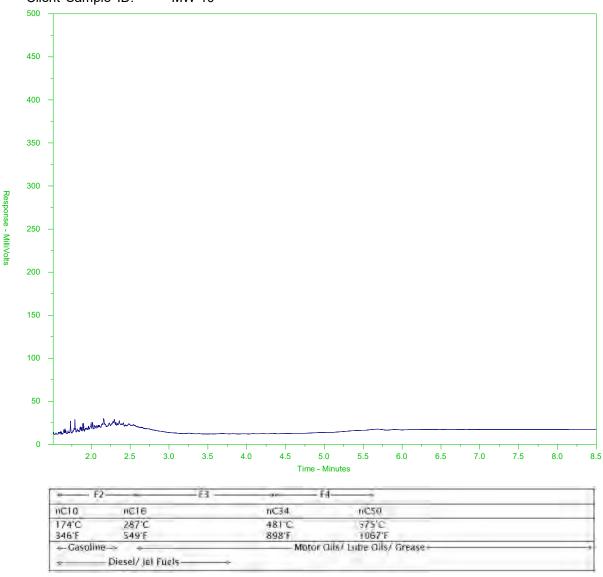

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2301518-011-E601

Client Sample ID: MW-09

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

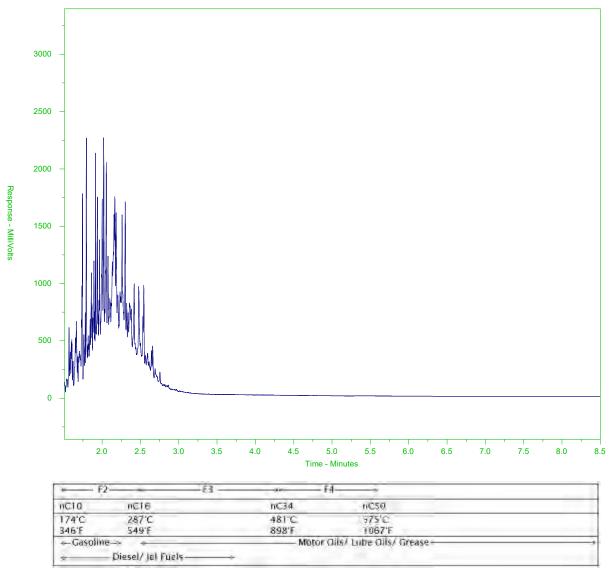

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2301518-012-E601

Client Sample ID: MW-10

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

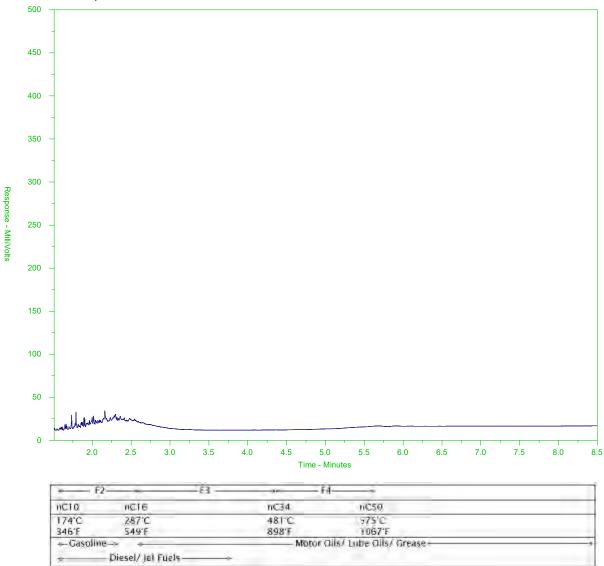

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2301518-013-E601

Client Sample ID: DUP1

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: YL2301518-014-E601

Client Sample ID: DUP2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS) Environmental

www.alsglobal.com

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

Affix ALS barcode label here

COG Number: 17 - 824361

Page of 2

JUNE 2015 FRO					1	1		CI EN	YE	YOOV	E ABOBATON	HIM P		NOITAMBO	OP ALS LOCATIONS AND SAMELING IN	TO BACK DACE	BEEED
	lime:	Date.			d by	Received by	7	い。	シュ	120	2	A	Received by	2065 lime:	oct or	sed by	Released by:
	FINAL SHIPMENT RECEPTION (lab use only)	SHIPMENT	FINAL				-			lab use ont	RECEPTION (INITIAL SHIPMENT RECEPTION (lab use only)	10		SHIPMENT RELEASE (client use)		
	FINAL COOLER TEMPERATURES TO		URES °C	NITIAL COOLER TEMPERATURES "C	OLER TEN	INT COO	- N	5	Case	HELD FIGHERY		THIS ARE	WESCHEN MENSER	DISOLUCD MA	Are samples for human consumption/ use?	YES 1	Are sam
	Yes	Custody seal intact	Custod		Cubes		of.	Cooling Initiated		MESESA	0	REZU HUTE	ARE NO	METAL VIAUS	Are samples taken from a Regulated DW System?	nples taken from	Are sam
	Yes	SIF Observations	SIF Ob	AMPL	y	'	1	rozen		down list bel	ing on the drop-c	d on report by click onic COC only)	pecify Criteria to ad (electro	Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only)	Drinking Water (DW) Samples' (client use)	Drinking Wat	
-		AS DE	200		-	H	1	4				*			MW-10	M	
-						-	<	4		_					60 MM-MW	3	
	Telephone: +1 85/ 8/3 5555	1					~	<								2	
-	- TO SECON	1					<	c							MUU-06	M	
							5	C							NW-04	MIN	
	大なマンモカ	1				-	5	-							1-03	MW	
			2	<	<	5	<	0							MW-02	M	H
							5	-							F01-04	LF	- 4
	175001010		1	<	<	5	/	8							1501-06	7	as ija
	く					*	5	4							F01-01	. 4	NA T
	Yellowknife	Ye					<	4				-			PW-02	P	
	Environmental Division	m						4	A	WARE		00 25	6		PW-01	P	
			0	Dis	DI	R		-		Sample Type	(hh:mm)	(dd-mmm-yy)		and/or Coordinates ppear on the report)	Sample identification and/or Coordinates (This description will appear on the report)	(tab use only)	ALS S
ECTED	AMF		ic	SSOL SOLI	SSOL	55 0U7		MBE			Sampler:		ALS Contact:	gh.	ALS Lab Work Order # (lab use only):	Lab Work Ord	ALS
	PLI		8	va	VES	フン							ocation:				LSD:
70	E		4	1 1)	JE							Requisitioner:	7		iii	PO / AFE:
	5 (FIZ.	(E)	Me	2		_			Routing Code:		Major/Minor Code:	W	3-099NT	1	Job#:
T.	OI		2	20	57.		-1				PO#		AFEACost Center:	P	*	ALS Account # / Quote #	ALS Ac
	N		1	4,2	A		7			ise)	Fields (client u	- X	0110		Project Information		
	Н		SE	4	5		_			OM	Kblony, com		Email 2	ZKSONICO KOKENULE) KOSAMIC		Contact:
	0		-		,		-	IE		(com	o Lblenvicon	TKOSAU, C/	Email 1 or Fax 7	E	L ENUI BONNETING	ny: KB	Company:
							-	RS		FAX	MAIL MAIL	bution: MENAIL	Select Invoice Distribution:	XES WINO S	Copy of Invoice with Report YES	Сору	
	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below	(P) or Filtered a	reserved	red (F), F	icate Filte	lhdi					tribution	Invoice Distribution		NO	Same as Report To		Invoice To
	equest	Analysis Request								wan	ich leave ugan	1	Email 3 lows	-		Code:	Postal Code:
	or tests that can not be performed according to the service level selected, you will be contacted.	a level selected, y	the service	ording to I	emed acco	t be perfor	at can not	or tests the	n	Me	OK blend com	of am OK	Email 2 Yh	Е		Wince:	City/Province:
	dd-mmm-yy hh:mm		TATs:	Date and Time Required for all E&P TATs:	quired for	īme Reg	te and T	Da		MO	12 Kblenn com	2 Kosanich	Email 1 or Fax Z	m			Street
	(Laboratory opening fees may apply)]	Laboratory o				2 day [P2-50%]	day [P	(Susin		FAX	MAIL FAX	Д вмиц	Select Distribution:		ess below will appea	Com	
7 (Same Day, Weekend or Statutory holiday [E2 -200%	ame Day, We	MERGE			3 day [P3-25%]	day [P	BORITA ness D. W		f box checked	rovide details below	Compare Results to Criteria on Report - provide details below if box checked	Compare Results t		127		Phone:
	Business day [E - 100%]	Business d	ENCY			4 day [P4-20%]	day [P	tayn)		No		epor	Quality Control (QC) Report with Report		+		Contact
	If received by 3 pm - business days - no suncharges apply	ceived by 3 pm -	AT	Standard	Q	ar [R]	Regular [R]			EDD (DIGITAL)	PEXCEL E	at: Por 1	Select Report Format:		KBI ENVIRONMENTA		Company:
(V	Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply)	t your AM to c	Contact	Below -	Level E	Service	Select :				Distribution	Report Format / Distribution		ar on the final report	Contact and company name below will appear on the final report	To	Report To

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here (lab use only)

coc Number: 17 - 824362

Page 2 of 2

ALS) Environmental

Canada Toll Free: 1 800 668 9878

Constraint Contraint Con
Sales Report To make Email 2 Company address below will support on the final report Company address below will support
Select Distribution: Commany address below will appear on the final import Commany address below will appear on the final import Commany address below will appear on the final import Commany address below will appear on the final import Commany address below will appear on the final import Commany address below will appear on the final import Commany address below will appear on the final import Commany address below will appear on the final import Commany address below will appear on the final import Commany address below will appear on the regort) Commany and the stock of the commany address below will appear on the regort) Commany address below will appear on the regort Commany address below will appear on the regort Commany address below will be the commany addr
Select Report Format: Correlating address beliew will appear on the final report Correlating address beliew will appear on the final report Correlating address beliew will appear on the final report Correlating address beliew will appear on the final report Correlating address beliew will appear on the final report Correlating and
Select Report Format
Select Report Format: [UFice] Foods: EXCEL EXD (DISTIFL) Company address below will appear on the final report Select Distribution: Email 1 or Fax: 7 Kespant C
Select Report Format
Select Report Format:
Select Report Format: UP For UP Exce. EDD (DIGITAL) Company address below will appear on the final report Company address below will appear on the final report Company address below will appear on the final report Copy of Invoice with Report YES NO Email 1 or Fax
Select Report Format: Por Pocker, Ebb (plotatal.) Por Po
Select Report Format: \$\frac{1}{2} \text{FNCE} \ \text{EDD (DISTIAL)} \ \text{Company address below will appear on the final report} \
Select Report Format: \$\text{UPDF} \ \text{VEXEL} \ \ \ \ \ \ \ \ \ \ \ \ \
Select Report Format:
Select Report Format: U POF ZEXEL EDD (OKGITAL) Company address below will appear on the final report Company address below will appear on the final report Email 1 or Fax 2 kasen C (2 kblen). Conv. Copy of Invoice with Report YES NO Email 2 No Liben). Conv. Copy of Invoice with Report YES NO Select Invoice Distribution: Wall Mall Fax Email 1 or Fax 2 kasen C (2 kblen). Conv. Invoice Distribution: Email 2 No Liben). Conv. Email 3 Lab Pos Liben C (2 kblen). Conv. Invoice Distribution: Email 1 or Fax 2 kasen C (2 kblen). Conv. Select Invoice Distribution: Email 1 or Fax 2 kasen C (2 kblen). Conv. Email 1 or Fax 2 kasen C (2 kblen). Conv. Email 1 or Fax 2 kasen C (2 kblen). Conv. Email 1 or Fax 2 kasen C (2 kblen). Conv. Email 1 or Fax 2 kasen C (2 kblen). Conv. Project Information
Select Report Format:
Select Report Format. U POF ZEXEL EDD (DISTITAL) Company address below will appear on the final report Company address below will appear on the final report Email 1 or Fax Z & Select Distribution: Z Email No Final Fax Sode: Same as Report To Y YES NO Email 3 Coby of Invoice with Report YES NO Select Invoice Distribution: Select Invoice Distribution: Select Invoice Distribution: Fax Company address below will appear on the final report Email 2 No Email 3 Coby of Invoice Distribution Fax Select Invoice Distribution: Select
Select Report Format. Select Report Format. Company address below will appear on the final report Company address below will appear on the final report Company address below will appear on the final report Email 1 or Fax. Email 2 No. Email 3 Johnson Notice Distribution: Same as Report 10 Yes No. Copy of Invoice with Report Yes No. Select Invoice Distribution: Select Invoice Di
Select Report Format. Select Report Format. Ouality Control (QC) Report with Report. Company address below will appear on the final report. Company address below will appear on the final report. Select Distribution: Email 1 or Fax. Copy of Invoice with Report. Final 2 Final 3 Select Invoice Distribution: Select Invoice Dist
Select Report Format: U POF D EXCEL EDD (DIGITAL) Company address below will appear on the final report Email 2 Company address below will appear on the final report Email 3 Company address below will appear on the final report Email 3 Company address below will appear on the final report Email 1 or Fax 2 Copy of Invoice with Report YES NO Select Invoice Distribution: Copy of Invoice with Report YES NO Select Invoice Distribution: Copy of Invoice with Report YES NO Select Invoice Distribution: Copy of Invoice with Report YES NO Select Invoice Distribution: Copy of Invoice with Report YES NO Select Invoice Distribution: Copy of Invoice with Report YES NO Select Invoice Distribution: Copy of Invoice Distribution NALL FAX Select Invoice Distribution Copy of Invoice Distribution C
Select Report Format: \$\frac{1}{2} \text{POR} \ \text{EDD (OKITAL)} \ \text{EDD (OKITAL)} \ \text{Compare Results to Crizeria on Report provide details below if box checked \$\text{Compare Results to Crizeria on Report provide details below if box checked \$\text{Select Distribution:} \$\text{V EMAIL }
Select Report Format: \$\frac{1}{2} \text{POF} \ \frac{1}{2} \text{EXCEL} \ \text{EDD (OKGITAL)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Select Report Format: \$\frac{1}{2} \text{FRU} \ \$\text{FOX} \ \$\text{EDD} \(\text{OKITAL} \) \$\text{EDD} \(\text{OKITAL} \) \$\text{Ouality Control} \(\text{CQ} \) \$\text{Compare Results to Criteria on Report - provide details below if box checked \$\text{Compare Results to Criteria on Report - provide details below if box checked \$\text{Select Distribution} \) \$\text{V} \ \$\text{Email 1 or Fex.} \ \$\text{Email 1 or Fex.} \ \$\text{V} \ \$\text{CASONIC Q Velexion Compare Results to Criteria on Report - provide details below if box checked \$\text{Select Distribution} \] \$\text{V} \ \$\text{Email 1 or Fex.} \ \$\text{Email 1 or Fex.} \ \$\text{V} \ \$\text{CASONIC Q Velexion Compare Results to Criteria on Report - provide details below if box checked \$\text{Select Distribution} \] \$\text{V} \ \$\text{Email 1 or Fex.} \ \$\text{V} \ \$\text{CASONIC Q Velexion Compare Results to Criteria on Report - provide details below if box checked \$\text{Select Distribution} \] \$\text{V} \ \$\text{Email 1 or Fex.} \ \$\text{V} \ \$\text{CASONIC Q Velexion Compare Results to Criteria on Report - provide details below if box checked \$\text{Select Distribution} \] \$\text{V} \ \$\text{Email 1 or Fex.} \ \$\text{V} \ \$\text{CASONIC Q Velexion Compare Results to Criteria on Report - provide details below if box checked \$\text{Select Distribution} \] \$\text{V} \ \$\text{Email 1 or Fex.} \ \$\text{V} \ \$\text{CASONIC Q Velexion Compare Results to Criteria on Report - provide details below if box checked \$\text{Select Distribution} \ \$\text{Email 1 or Fex.} \ \$\text{V} \ \$\text{CASONIC Q Velexion Compare Results to Criteria on Report - provide details below if box checked \$\text{Email 1 or Fex.} \ \$\text{V} \ \$CASONIC Q Velexion Compare Results to Criteria on Report - provide details below if box checked \$\text{CASONIC Q Velexion Compare Results to Criteria on Report - provide details below if box checked \$\text{CASONIC Q Velexion Compare Results to Criteria on Report - pro
Select Report Format: U PDF J EXCEL EDD (DIGITAL) Company address below will appear on the final report Select Distribution: U EMAIL MAIL FAX
Select Report Format: U FDF J EXCEL EDD (DIGITAL) Company address below will appear on the final report Select Report Format: U FDF J EXCEL EDD (DIGITAL) Ouality Control (QC) Report with Report V ES NO Factor Company address below will appear on the final report Select Report Format: U FDF AVENUE EDD (DIGITAL) FAX Page 1 Select Report Format: U FDF AVENUE EDD (DIGITAL) FAX Page 2 FAX FAX FAX FAX FAX FAX FAX FA
NY: KSL FNU POLIUCITAL Select Report Format: U POF J EXCEL EDD (DIGITAL) Ouality Control (QC) Report with Report YES NO FIGURE 1 Compare Results to Citeria on Report - provide details below if box checked Rives 3
Select Report Format: VFPDF JEXCEL EDD (DISITAL) ORAN EOSAL Ouality Control (QC) Report with Report YES NO 25 4
Select Report Format: V PDF V EXCEL EDD (DIGITAL)
Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply)

Mackenzie Valley Land and Water Board
7th Floor - 4922 48th Street
P.O. Box 2130
YELLOWKNIFE NT XIA 2P6
Phone (867) 669-0506
FAX (867) 873-6610

Email: mmiller@ntpc.com

October 18, 2019 File: MV2019L1-0001

Mr. Matthew Miller Northwest Territories Power Corporation 4 Capital Drive HAY RIVER NT X0E 1G2

Dear Mr. Miller:

Issuance of Type A Water Licence Jackfish Power Generating Facility, Yellowknife NT

Attached is Water Licence MV2019L1-0001 granted by the Minister of Environment and Natural Resources in accordance with the *Mackenzie Valley Resource Management Act* and *Waters Act*. This Licence has been approved for a period of 25 years effective October 18, 2019 and expiring October 17, 2044.

Conditions and General Procedures

Please read all the conditions carefully. For the purpose of submitting plans in accordance with this Licence, the date of the letter October 18, 2019, is the date of issuance. Also attached is a copy of the "General Procedures for the Administration of Licences in the Northwest Territories". The MVLWB requests that you review these and address any questions to the Board's office.

Plans and Reports

Below you will find a table outlining the Plans that that Board has approved as well as the Plans that are required for submission and approval by the Board.

Condition	Plan/Report	Submission Requirements
Annex A	Monthly SNP Report	Within 30 days of the end of the reporting month
Part B, condition 15	Annual Water Licence Report	March 31, 2020 and every March 31 thereafter.
Part B, condition 16	Standard Operating Procedures and Quality Assurance and Quality Control Plan	Within 90 days following issuance of this Licence
Part E, condition 4	Thermal Plume Delineation Study Design	A minimum of 90 days following the effective date of this Licence.

Part E, condition 5	Thermal Plume Delineation Study Report	August 1, 2021
Part F, condition 2	AEMP Design Plan	November 1, 2021
Part F, condition 3	Aquatic Effects Re-evaluation Report	Three years following implementation of the AEMP Design Plan and every five years thereafter, or as directed by the Board.
Part F, condition 4	AEMP Design Plan – Revised	Three years following implementation of the AEMP Design Plan and every five years thereafter, or as directed by the Board.
Part F, condition 5	AEMP Annual Report	March 31, 2023 and every year thereafter.
Part H, condition 1	Closure and Reclamation Plan	Within 24 months following the effective date of this Licence
Part H, condition 2	Closure and Reclamation Plan - Update	Three years prior to the expiration of this Licence

Public Registry

A copy of this Licence has been filed on the <u>Public Registry</u> at the office of the MVLWB. Please be advised that this letter, with attached procedures, all Inspection Reports, and correspondence related thereto is part of the Public Registry and is intended to keep all interested parties informed of the manner in which the Licence's requirements are being met. All Public Registry material will be considered if an amendment to the Licence is requested.

The full cooperation of Northwest Territories Power Corporation is anticipated and appreciated. If you have any questions or concerns, please contact Tyree Mullaney at (867) 766-7464 or email tyree@mvlwb.com.

Yours sincerely,

Mavis Cli-Michaud MVLWB, Chair

Copied to: Distribution List

Attached: Water Licence MV2019L1-0001

Reasons for Decision

General Procedures for the Administration of Licences in the Northwest Territories

Mackenzie Valley Land and Water Board Water Licence

Pursuant to the *Mackenzie Valley Resource Management Act, Waters Act,* and Waters Regulations, the Mackenzie Valley Land and Water Board, hereinafter referred to as the Board, hereby grants to:

Northwest Te	erritories Power Corporation
	(Licensee)
of 4 Capita	l Drive, Hay River NT X0E 1G2
	(Mailing Address)
	to alter, divert, or otherwise use water subject to the <i>Waters Act</i> and Regulations made thereunder and subject to ied in this Licence.
Licence Number:	MV2019L1-0001
Licence Type:	_A
Water Management Area:	Northwest Territories 03
Location:	114° 23' 00" W - 62° 28'10" N
Purpose:	To use water and dispose of waste and associated uses
Description:	Industrial
Quantity of Water not to be exceeded:	50,000 cubic metres (m³)/day
Effective date of Licence:	October 18, 2019
Expiry date of Licence:	October 17, 2044
This Licence issued and recorded at Yellowkn	ife includes and is subject to the annexed conditions.
PRO Person Mackenzie V	alley Land and Water Board
Mavis Cli-Michaud, Chair	Approved by
Amanda Gauthier, Witness	Minister of Environment and Natural Resources

MV2019L1-0001

Northwest Territories Power Corporation - Jackfish Hydro Facility Type A Water Licence

Part A: Scope and Definitions

Scope

1. This Licence entitles the Licensee to use Water, and deposit Waste for industrial activities at the Jackfish Power Generation Facility.

SCOPE

The scope of this Licence includes the following:

- a) Withdrawal of Water for the cooling of the power generators;
- b) Depositing of Waste; and
- c) Progressive Reclamation and associated Closure and Reclamation activities.
- 2. This Licence is issued subject to the conditions contained herein with respect to the use of Water and the deposit of Waste in any Waters or in any place under any conditions where such Waste or any other Waste that results from the deposits of such Waste may enter any Waters. Whenever new Regulations are made or existing Regulations are amended by the Commissioner in Executive Council under the Waters Act, or other statutes imposing more stringent conditions relating to the quantity or type of Waste that may be so deposited or under which any such Waste may be so deposited, this Licence shall be deemed, upon promulgation of such Regulations, to be automatically amended to conform with such Regulations.

REGULATIONS SUBJECT TO CHANGE

 Compliance with the defined terms and conditions of this Licence does not relieve the Licensee from responsibility for compliance with the requirements of any applicable federal, territorial or municipal legislation. LEGISLATIVE COMPLIANCE

Definitions¹:

Defined Terms

Action Level – a predetermined qualitative or quantitative trigger which, if exceeded, requires the Licensee to take appropriate actions.

Analyst – an Analyst designated by the Minister under subsection 65(1) of the Waters Act.

Aquatic Effects Monitoring Program (AEMP) – a monitoring program developed for the Project in accordance with this Licence and the MVLWB/GNWT *Guidelines for Aquatic Effects Monitoring Programs*

Board – the Mackenzie Valley Land and Water Board established under subsection 99(1) of the *Mackenzie Valley Resource Management Act*.

Closure Criteria – has the same meaning as that in the MVLWB/AANDC *Guidelines for the Closure and Reclamation of Advance Mineral Exploration and Mine Sites in the Northwest Territories*.

¹ Defined terms are capitalized throughout the License, including when used in other definitions. MV2019L1-0001 – Northwest Territories Power Corporation – Industrial Current to: September 26, 2019

Defined Terms

Closure Objectives – has the same meaning as that in the MVLWB/AANDC *Guidelines for the Closure and Reclamation of Advance Mineral Exploration and Mine Sites in the Northwest Territories*.

Closure and Reclamation – the process and activities that facilitate the return of areas affected by the Project to viable and, wherever practicable, self-sustaining ecosystems that are compatible with a healthy environment and human activities.

Closure and Reclamation Plan (CRP) – a document, developed in accordance with this Licence and the MVLWB/AANDC *Guidelines for the Closure and Reclamation of Advanced Mineral Exploration and Mine Sites in the Northwest Territories*, that clearly describes the Closure and Reclamation for the Project.

Discharge – a direct or indirect deposit or release of any Waters or Waste to the Receiving Environment.

Discharge Water – wastewater specifically used for the cooling of the pumps associated with the power generators.

Engagement Plan – a document, developed in accordance with the MVLWB *Engagement and Consultation Policy* and the *Engagement Guidelines for Applicants and Holders of Water Licences and Land Use Permits*, that clearly describes how, when and which engagement activities will occur with an affected party during the life of the Project.

Inspector – an Inspector designated by the Minister under subsection 65(1) of the *Waters Act*.

Licensee – the holder of this Licence.

Minister – the Minister of the Government of the Northwest Territories (GNWT) – Environment and Natural Resources.

Modification - in respect of a structure, means a change, other than an expansion, that does not alter the purpose or function of a structure.

Professional Engineer – a person registered with the Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists to practice as a Professional Engineer in the Northwest Territories as per the territorial *Engineering and Geoscience Professions Act*, and whose professional field of specialization is appropriate to address the components of the Project at hand.

Project – the undertaking described in Part A, condition 1.

Receiving Environment – the natural environment that, directly or indirectly, receives any deposit of Waste from the Project.

Remediation – the removal, reduction or neutralization of substances, Wastes or hazardous materials from a site in order to prevent or minimize any adverse effects on the environment and public safety, now or in the future.

Response Framework – a systematic approach to responding to the results of a monitoring program through adaptive management actions.

Response Plan – a document describing the actions that will be taken by a Licensee in response to an Action Level exceedance.

Runoff – the overland flow of Water or Wastewater that occurs when precipitation, meltwater, or other Water is not absorbed by the land, and instead drains downslope towards a Watercourse.

Defined Terms

Seepage – any Water or Waste that drains, passes through, or escapes from any structure designed to contain, withhold, divert, or retain Water or Waste.

Spill Contingency Plan (SCP) – a document, developed in accordance with INAC's *Guidelines for Spill Contingency Planning*.

Temporary Closure – a state of care and maintenance, with the intent of resuming activities in the near future.

Waste – any substance defined as Waste by section 1 of the *Waters Act*.

Waste Management Plan (WMP) – a document, developed in accordance with the MVLWB *Guidelines for Developing a Waste Management Plan*, that describes the methods of Waste management from Waste generation to final disposal.

Wastewater – any Water that is generated by Project activities or originates on-site, and which contains Waste, and may include, but is not limited to, Runoff, Seepage, and Discharge Water.

Water – any Water as per section 1 of the Waters Act.

Watercourse – a natural watercourse, body of Water or Water supply, whether usually containing Water or not, and includes Groundwater, springs, swamps, and gulches.

Water Management Area – a geographical area of the Northwest Territories established by section 2 and Schedule A of the Waters Regulations.

Waters Regulations – the regulations proclaimed pursuant to section 63 of the Waters Act.

Water Use – a use of Water as per section 1 of the Waters Act.

Part B: General Conditions

	Condition	Title
1.	The Licensee shall ensure a copy of this Licence is maintained on site at all times.	COPY OF LICENCE
2.	The Licensee shall take every reasonable precaution to protect the environment.	PRECAUTION TO PROTECT ENVIRONMENT
3.	All references to policies, guidelines, codes of practice, statutes, regulations, or other authorities shall be read as a reference to the most recent versions, unless otherwise denoted.	USE UP-TO-DATE REFERENCES
4.	The Licensee shall ensure all submissions to the Board:	SUBMISSION FORMAT
	 a) Are in accordance with the MVLWB Document Submission Standards; b) Include a conformity table which identifies where the requirements of this Licence, or other directives from the Board, are addressed; and c) Include any additional information requested by the Board. 	AND CONFORMITY
5.	The Licensee shall ensure management plans are submitted to the Board in a format consistent with the MVLWB <i>Standard Outline for Management Plans</i> , unless otherwise specified.	MANAGEMENT PLAN FORMAT
6.	The Licensee shall comply with all plans, programs, manuals approved pursuant to the conditions of this Licence, including such revisions made as per the conditions of this Licence, and as approved by the Board.	COMPLY WITH SUBMISSIONS AND REVISIONS
7.	The Licensee shall conduct an annual review of all plans, programs, manuals, studies and make any revisions necessary to reflect changes in operations, contact information, or other details. No later than March 31 each year, the Licensee shall send a notification letter to the Board, listing the documents that have been reviewed and do not require revisions as well as the ones which do require revisions.	ANNUAL REVIEW
8.	The Licensee may propose changes at any time by submitting revised plans, programs, manuals, or studies to the Board, for approval, a minimum of 90 days prior to the proposed implementation date for the changes. The Licensee shall not implement the changes until approved by the Board.	REVISIONS
9.	The Licensee shall revise any submission and submit it as per the Board's directive.	REVISE AND SUBMIT
10.	If any date for any submission falls on a weekend or holiday, the Licensee may submit the item on the following business day.	SUBMISSION DATE
11.	The Licensee shall comply with the Schedules, which are annexed to and form part of this Licence, and any updates to the Schedules as may be made by the Board.	COMPLY WITH SCHEDULE(S)
12.	The Licensee shall comply with the Surveillance Network Program (SNP), which is annexed to and forms part of this Licence, and any updates to the SNP as may be made by the Board.	COMPLY WITH SNP
13.	The Schedules and any compliance dates specified in this Licence may be updated at the discretion of the Board.	UPDATES TO COMPLIANCE DATE(S)

MV2019L1-0001 – Northwest Territories Power Corporation – Industrial Current to: September 26, 2019

Condition

14. The Licensee shall install, operate, and maintain meters/measuring, devices, loggers or other such methods used for measuring/monitoring the volumes of Water used and Waste Discharged to the satisfaction of an Inspector and in accordance with the approved Standard Operating Procedures and Quality Assurance and Quality Control Plan.

MEASURE WATER USE AND WASTE DISCHARGED

15. Beginning March 31, 2020 and no later than every March 31 thereafter, the Licensee shall submit an **Annual Water Licence Report** to the Board and an Inspector. The Report shall be in accordance with the requirements of Schedule 1, condition 1.

ANNUAL WATER LICENCE REPORT

Within 90 days following the effective date of this Licence, the Licensee shall submit to the Board, for approval, a Standard Operating Procedures and Quality Assurance and Quality Control Plan. STANDARD OPERATING
PROCDURES AND
QUALITY ASSURANCE
AND QUALITY CONTROL
PLAN

17. The Licensee shall comply with the **Engagement Plan**, once approved.

ENGAGEMENT PLAN

18. The Licensee shall immediately provide written notification to the Board and an Inspector of any non-compliance with the conditions of this Licence or any direction from the Board pursuant to the conditions of this Licence.

NOTIFICATION – NON-COMPLIANCE

Part C: Conditions Applying to Water Use

	Condition	Title
1.	The Licensee shall only obtain fresh Water for the Project from Jackfish Lake. The Licensee may withdraw up to 50,000 m ³ /day of Water from this source.	WATER SOURCE AND MAXIMUM VOLUME
2.	The Licensee shall construct and maintain the Water intake(s) with a screen designed to prevent impingement or entrapment of fish.	WATER INTAKE SCREEN

Part D: Conditions Applying to Modifications

	Condition	Title
1.	The Licensee may, without written approval from the Board, carry out a Modification to the existing or planned undertaking provided the following requirements are met:	MODIFICATION REQUIREMENTS
	a) The Licensee has notified the Board and an Inspector, in writing, of such proposed Modification at least 90 days prior to the beginning of the Modification;	
	b) The Modification does not place the Licensee in contravention of either this Licence or the Act;	
	 The Board has not, during the 60 days following notification of the proposed Modification, informed the Licensee that further information is required or that a review of the proposal will require more than 60 days; 	
	d) An Inspector has authorized the proposed Modification and provided a letter of notification to the Board; and	
	e) The Board has not rejected the proposed Modification.	
2.	Modifications for which all of the conditions referred to in Part D, condition 1 have not been met, may only be carried out with written approval from the Board.	MODIFICATION – WRITTEN APPROVAL REQUIRED
3.	Within 90 days of the completion of the Modification referred to in Part D, condition 1, the Licensee shall submit to the Board an As-built Report , stamped and signed by a Professional Engineer, which shall include final as-built drawings and specifications of the modified structure.	AS-BUILT REPORT – MODIFICATION

Part E: Conditions Applying to Waste and Water Management

	Condition	Title
1.	The Licensee shall manage Waste and Water with the objective of minimizing the impacts of the Project on the quantity and quality of Water in the Receiving Environment through the use of appropriate mitigation measures, monitoring, and follow-up actions.	OBJECTIVE – WASTE AND WATER MANAGEMENT
2.	The Licensee shall comply with the Waste Management Plan once approved.	WASTE MANAGEMENT PLAN
3.	The Licensee shall direct all Discharge Water from the Jackfish Lake Power Generating Facility to Jackfish Lake as described in the approved Waste Management Plan.	DISCHARGE WATER – JACKFISH LAKE POWER GENERATING FACILITY
4.	A minimum of 90 days following the effective date of this Licence, a Thermal Plume Delineation Study Design Plan . The Plan shall be in accordance with the requirements of Schedule 2, Condition 1 and shall be submitted to the Board for approval.	THERMAL PLUME DELINEATION STUDY DESIGN
5.	The Licensee shall submit to the Board for approval, a Thermal Plume Delineation Study Report by August 1, 2021. The Plan shall be in accordance with the requirements of Schedule 2, condition 2.	THERMAL PLUME DELINEATION STUDY REPORT

Part F: Conditions Applying to Aquatic Effects Monitoring Program

	Condition	Title
1.	The Licensee shall design and implement an Aquatic Effects Monitoring Program (AEMP) in accordance with the MVLWB/GNWT <i>Guidelines for Aquatic Effects Monitoring Programs</i> to meet the following objectives:	OBJECTIVE – AEMP
	 a) To determine the short- and long-term effects of the Project on the Receiving Environment; 	
	b) To assess the efficacy of mitigation that is used to minimize the effects of the Project on the Receiving Environment;	
	c) To identify the need for additional mitigation measures to reduce or eliminate Project-related effects; and	
	d) To provide an early warning system where the results of the AEMP are used to avoid adverse effects through the Response Framework and/or regular evaluation of the AEMP .	
2.	The Licensee shall submit to the Board, for approval, an AEMP Design Plan by November 1, 2021. The Plan shall be in accordance with the MVLWB/GNWT <i>Guidelines for Aquatic Effects Monitoring Programs</i> and will incorporate the results from the Thermal Plume Delineation Study Report.	AEMP DESIGN PLAN
3.	Three years following implementation of the AEMP Design Plan , and every five years thereafter, or as directed by the Board, the Licensee shall submit to the Board, for approval, an AEMP Re-Evaluation Report . The Report shall be in accordance with the MVLWB/GNWT <i>Guidelines for Aquatic Effects Monitoring</i> Programs and shall evaluate the overall effectiveness of the AEMP to date.	AEMP RE- EVALUATION REPORT
4.	Three years following implementation of the AEMP Design Plan and every five years thereafter, or as directed by the Board, the Licensee shall submit to the Board, for approval, a revised AEMP Design Plan , which incorporates the results from the AEMP Re-evaluation Report . The revised Plan shall be in accordance with the MVLWB/GNWT <i>Guidelines for Aquatic Effects Monitoring Programs</i> .	AEMP DESIGN PLAN – REVISED
5.	Beginning March 31, 2023, and no later than March 31 of each year thereafter, the Licensee shall submit to the Board, for approval, an AEMP Annual Report . The Report shall be in accordance with the MVLWB/GNWT <i>Guidelines for Aquatic Effects Monitoring Programs</i> and the requirements of Schedule 3, condition 1.	AEMP ANNUAL REPORT
6.	If any low Action Level established in the approved AEMP Design Plan is exceeded, the Licensee shall, at a minimum, implement the response actions described in the approved AEMP Design Plan , and report the exceedance in the AEMP Annual Report .	LOW ACTION LEVEL EXCEEDENCE
7.	If any moderate or high Action Level established in the approved AEMP Design Plan is exceeded, the Licensee shall:	MODERATE OR HIGH ACTION LEVEL
	a) Within the timeframe identified in the approved AEMP Design Plan notify the Board and an Inspector; and	EXCEEDENCE
	b) Within the timeframe identified in the approved AEMP Design Plan or as otherwise directed by the Board, submit an AEMP Response Plan to the Board for approval. The Response Plan shall be in accordance with the MVLWB/GNWT <i>Guidelines for Aquatic Effects Monitoring Programs</i> .	

PART G: Conditions Applying to Spill Contingency Planning

	Condition	Title
1.	The Licensee shall ensure that Unauthorized Discharges associated with the Project do not enter any Waters.	OBJECTIVE – PREVENT WASTE INTO WATER
2.	The Licensee shall comply with the Spill Contingency Plan , once approved.	SPILL CONTINGENCY PLAN
3.	During the period of this Licence, if a spill or an Unauthorized Discharge occurs or is foreseeable, the Licensee shall:	REPORT SPILLS
	 a) Implement the approved Spill Contingency Plan referred to in Part G, Condition 2; b) Report it immediately using the NU-NT Spill Report Form by one of the following methods: Telephone: (867) 920-8130 Fax: (867) 873-6924 E-mail: spills@gov.nt.ca Online: Spill Reporting and Tracking Database c) Within 24 hours, notify the Board and an Inspector; and d) Within 30 days of initially reporting the incident, submit a detailed report to the Board and an Inspector, including descriptions of causes, response actions, and any changes to procedures to prevent similar occurrences in the future. Written notification shall be provided to the Board and an Inspector if any changes occur. 	
4.	The Licensee shall ensure that spill prevention infrastructure and spill response equipment is in place prior to commencement of the Project.	SPILL PREVENTION AND RESPONSE EQUIPMENT
5.	The Licensee shall restore all areas affected by spills and Unauthorized Discharges to the satisfaction of an Inspector.	CLEAN UP SPILLS

PART H: Conditions Applying to Closure and Reclamation

	Condition	Title
1.	Within 24 months following the effective date of this Licence, the Licensee shall submit to the Board, for approval, an Interim Closure and Reclamation Plan. The Plan shall be in accordance with the requirements of Schedule 4, condition 1.	CLOSURE AND RECLAMATION PLAN
2.	Two years prior to the expiration of this Licence, the Licensee shall submit to the Board, for approval, an updated Interim Closure and Reclamation Plan .	CLOSURE AND RECLAMATION PLAN – UPDATE

Signed on behalf of the Mackenzie Valley Land and Water Board

PRQ Perand	An Howards	
Mavis Cli-Michaud, Chair	Amanda Gauthier, Witness	

Schedule 1: Annual Water Licence Report

- 1. The **Annual Water Licence Report** referred to in Part B, condition 15 of this Licence shall include, but not be limited to, the following information about activities conducted during the previous calendar year:
- a) A brief summary of Project activities;
- b) The monthly and annual quantities in cubic metres of fresh Water obtained from all sources and thermal data from intake and Discharge data loggers, as required in Part B, condition 14 and Part C, condition 1 of this Licence;
- c) A summary of the calibration and status of the meters and devices referred to in Part B, condition 14 of this Licence;
- d) A summary of engagement activities conducted in accordance with the approved **Engagement Plan**, referred to in Part B, condition 17 of this Licence;
- e) A summary of Modification activities conducted in accordance with Part D of this Licence;
- f) A summary of major maintenance activities conducted in accordance with this Licence;
- g) A summary of activities conducted in accordance with the approved **Waste Management Plan**, referred to in Part E, condition 2 of this Licence, including:
 - i. A summary of approved updates or changes to the process or facilities required for the management of Waste;
 - ii. A summary of approved updates or changes to the process or facilities required for the management of Waste
- h) A summary of monitoring results and any Action Level exceedances as per the approved AEMP, required in Part F, condition 7 of this Licence;
- i) A summary of activities conducted in accordance with the approved Spill Contingency Plan, required in Part G, condition 2 of this Licence, including:
 - i. A list and description for all Unauthorized Discharges, including the date, NWT spill number, volume, location, summary of the circumstances and follow-up actions taken, and status (i.e. open or closed), in accordance with the reporting requirements in Part G, condition 4 of this Licence; and
 - ii. An outline of any spill training carried out.
- j) A summary of any Closure and Reclamation work completed.
- k) Tabular summaries of all data and information generated under the monthly SNP annexed to this Licence, in Excel format.
- A list of any non-compliance(s) with the conditions of this Licence or any directive from the Board pursuant to the conditions of this Licence;
- m) A summary of actions taken to address concerns, non-conformances, or deficiencies in any reports filed by an Inspector;
- n) Any other details requested by the Board by November 1 of the year being reported.

Schedule 2: Thermal Plume Delineation

Condition

- 1. The **Thermal Plume Delineation Study Design Plan** referred to in Part E, condition 6 of this Licence shall include, but not be limited to, the following:
- a) Seasonal delineation (spring freshet, late summer, late fall, and late under ice) of the thermal plume, include a calculation of maximum extent of plume as a percentage of lake area;
- b) Temperature, dissolved oxygen profiles and any other parameters deemed relevant to the understanding of the thermal plume and the lake stratification;
- c) An assessment of aquatic habitat within the thermal plume zone(s); and
- d) Seasonal chemical characterization² at a minimum of one station located outside of the potential plume but situated such that potential influence of inflow(s) can be characterized and one station located at or near the outflow of Jackfish Lake. Station locations and rational to be included.
- 2. The **Thermal Plume Delineation Study Report** referred to in Part E, condition 7 of this Licence shall include, but not be limited to, the following:
- a) Maps illustrating the extent of the thermal plume and any seasonal changes documented;
- b) Graphical representation of the thermal profile and applicable water quality data:
- c) Identification of the worse case thermal plume scenario of the four seasonal conditions identified in Schedule 1, item 1a;
- d) Discussion of results and potential impacts to the aquatic ecosystem in Jackfish Lake and recommendations to inform the Aquatic Effects Design Report; and
- e) Tabular summaries of all data and information generated under the Thermal Plume Delineation Study, in Excel format.

• Oil and Grease (Hexane Extractable)

² Chemical characterization shall include, but not be limited to the following parameters:

Field parameters (pH, Electrical Conductivity [EC], Temperature, Dissolved Oxygen [DO])

Major lons

Total Suspended Solids (TSS)

pH

[•] Total Petroleum Hydrocarbons (F1, F2, F3, F4 CCME Fractions)

Benzene, Toluene, Ethylbenzene, Xylene (BTEX)

Total and Dissolved Metals (Metals shall include but not be limited to analysis of the following parameters: Aluminum, Antimony, Arsenic, Barium, Boron, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Mercury, Molybdenum, Nickel, Selenium, Thallium, Uranium, and Zinc)

Schedule 3: Aquatic Effects Monitoring Program

- 1. The **AEMP Annual Report** referred to in Part F, condition 5 of this Licence shall include, but not be limited to, the following:
- a) A plain language summary and interpretation of the major results obtained in the preceding calendar year;
- b) A summary of activities conducted under the AEMP;
- c) A summary of any spills, activities, or other considerations within the report time frame that could influence the results of the AEMP;
- d) Tabular summaries of all data and information generated under the AEMP, in Excel format;
- e) A comparison of monitoring results from the annual AEMP and results from the Thermal Plume Delineation Study Report including an interpretation of the results, including an evaluation of any identified environmental effects and their potential ecological significance that occurred as a result of the Project;
- f) A comparison of monitoring results to Action Levels as defined in the approved **AEMP Design Plan**;
- g) For any low Action Level exceedances, a summary of the nature and extent of the exceedance, as well as a description of actions in response to the exceedance;
- h) An evaluation of any adaptive management response actions implemented;
- i) Recommendations, with rationale, for changes to any aspect of the AEMP Design Plan; and
- j) Any other information specified in the approved **AEMP Design Plan**.

Schedule 4: Closure and Reclamation

- 1. The **Interim Closure and Reclamation Plan** referred to in Part H, condition 1 of this Licence shall include, but not be limited to the following information:
- a) A plain language summary of the Plan;
- b) A description of the overall goals for Closure and Reclamation of the Project, including expected future land use;
- c) A description of the Closure and Reclamation planning team;
- d) A description of engagement related to Closure and Reclamation planning, including a summary of completed and planned engagement, and links to the **Engagement Plan** referred to in Part B, Condition 17 for the Project;
- e) A list of any other regulatory instruments required for Closure and Reclamation of the Project;
- f) A description of the pre-existing and current Project environment, including, but not limited to:
 - i. climatic conditions;
 - ii. physical conditions;
 - iii. chemical conditions;
 - iv. biological conditions; and
 - v. any physical or chemical assessments of soil, water, and permafrost.
- g) A description of the Project, including, but not limited to:
 - i. site history;
 - ii. Project development;
 - iii. current status of the Project;
 - iv. maps delineating all disturbed areas, borrow material locations, site facilities, hydrological features, and elevation contours; and
 - v. photographs.
- h) A description of each Project component, including, but not limited to:
 - i. areas affected by spills or Unauthorized Discharges; and
 - ii. other areas affected by Project activities.
- i) For the Project site, a description of Closure and Reclamation plans, including, but not limited to:
 - i. Closure Objectives and Criteria;
 - ii. preferred Closure and Reclamation option and method for each Project component identified in condition (h) above;
 - iii. design drawings, signed and stamped by a Professional Engineer, for any Engineered structures if applicable;
 - iv. Water management and restoration of natural drainage;
 - v. predicted environmental effects during and after Closure and Reclamation activities;
 - vi. post-closure monitoring, maintenance, and reporting;
 - vii. uncertainties and contingencies;
 - viii. climate change considerations; and
 - ix. Closure and Reclamation Research plans.

- j) A description of any planned Progressive Reclamation;
- k) A plan for Temporary Closure, including, but not limited to the following information:
 - i. Temporary Closure goals and objectives;
 - ii. a description of activities and methods;
 - iii. a description of monitoring, maintenance, and reporting;
 - iv. contingencies; and
 - v. an implementation schedule.
- I) An implementation schedule that includes Progressive Reclamation and final Closure and Reclamation activities.

ANNEX A: SURVEILLANCE NETWORK PROGRAM - annexed to Water Licence MV2019L1-0001

LICENSEE: Northwest Territories Power Corporation

LICENCE NUMBER: MV2019L1-0001

EFFECTIVE DATE OF LICENCE: October 18, 2019

EFFECTIVE DATE OF SURVEILLANCE NETWORK

PROGRAM (SNP): October 18, 2019

Part A – Surveillance Network Program Description and Monitoring Requirements

1) The location of sampling sites and specific monitoring requirements are as follows:

a) Surveillance Network Program (SNP) 00-1:

Description: Location:	SNP 00-1a,b,c,d — Intakes to the K (2 intakes), EMD (1 intake), and CAT (1 intake) plants SNP 00-1a - K plant intake 1 SNP 00-1b - K plant intake 2 SNP 00-1c - EMD plant intake SNP 00-1d - CAT plant intake
Sampling Frequency:	Continuous in-situ measurements during periods of discharge to Jackfish Lake
Sampling Parameters:	Water Temperature Flow

b) Surveillance Network Program (SNP) 00-2:

Description:	SNP 00-2a,b,c - Discharges from the K, EMD and CAT plants, respectively
Location:	SNP 00-2a - K plant SNP 00-2b - EMD SNP 00-2c - CAT plant
Sampling Frequency:	Continuous in-situ measurements during periods of Discharge to Jackfish Lake
Sampling Parameters	Water Temperature

c) Surveillance Network Program (SNP) JF01-06

Description:	JF01-06 – Groundwater Monitoring Well		
Location:	Located at the Lease Boundary near the lake shore near the warehouse near K Plant		
Sampling Frequency:	Twice a year during June and September		
Sampling Parameters	 Field parameters (pH, Electrical Conductivity [EC], Temperature, Dissolved Oxygen [DO]) Major lons Total Suspended Solids (TSS) Oil and Grease (Hexane Extractable) pH Total Petroleum Hydrocarbons (F1, F2, F3, F4 CCME Fractions) Benzene, Toluene, Ethylbenzene, Xylene (BTEX) Dissolved Metals (Metals shall include but not be limited to analysis of the following parameters: Aluminum, Antimony, Arsenic, Barium, Boron, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Mercury, Molybdenum, Nickel, Selenium, Thallium, Uranium, and Zinc) 		

d) Surveillance Network Program (SNP) MW2

Description:	MW2 – Groundwater Monitoring Well
Location:	Located at the Lease Boundary near the lake shore between the EMD Plant and the Cat Plant
Sampling Frequency:	Twice a year during June and September
Sampling Parameters	 Field parameters (pH, Electrical Conductivity [EC], Temperature, Dissolved Oxygen [DO]) Major Ions Total Suspended Solids (TSS) Oil and Grease (Hexane Extractable) pH Total Petroleum Hydrocarbons (F1, F2, F3, F4 CCME Fractions) Benzene, Toluene, Ethylbenzene, Xylene (BTEX) Dissolved Metals (Metals shall include but not be limited to analysis of the following parameters: Aluminum, Antimony, Arsenic, Barium, Boron, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Mercury, Molybdenum, Nickel, Selenium, Thallium, Uranium, and Zinc)

- 2. The location of sampling sites is subject to approval of the Inspector.
- 3. More frequent sample collection may be required at the request of an Inspector.

- 4. All sampling, sample preservation, and analyses shall be conducted in accordance with methods prescribed in the current edition of "Standard Methods for the Examination of Water and Wastewater" at the time of analysis, or by such other methods approved by an Analyst.
- 5. All analyses shall be performed in a laboratory accredited by the Canadian Association for Laboratory Accreditation (CALA) or equivalent for the specific analyses to be performed or as approved by an Analyst.
- 6. The Licensee shall annually review the approved QA/QC Plan and modify the Plan as necessary. Proposed modifications shall be submitted to an Analyst for approval.
- 7. The QA/QC Plan referred to in SNP Section A, Item 6 shall be implemented as approved by an Analyst.

Part B – Volume and Temperature Measurement Requirements

- 1) All volume and temperature measurements shall be measured and recorded continuously (i.e., using electronic data storage chips or equivalent) during periods of Discharges and reported on a monthly basis:
- a) The daily, monthly, and annual quantities of cooling water circulated from Surveillance Network Program Station Numbers <u>00-1a</u>, <u>00-1b</u>, <u>00-1c</u>, and <u>00-1d</u> shall be measured and recorded in cubic metres; and
- b) The water temperature at Surveillance Network Program Station Numbers <u>00-1a</u>, <u>00-1b</u>, <u>00-1c</u>, <u>00-1d</u>, <u>00-2a</u>, <u>00-2b</u>, and <u>00-2c</u> shall be measured and recorded in degrees Celsius.

ANNEX B: Concordance Table of items Requiring Submission – annexed to Water Licence MV2019L1-0001

This table summarizes the information the Licensee is required to submit as per the Water Licence conditions.

Part of Licence	Item	Date
Annex A	Monthly SNP Report	Within 30 days of the end of the reporting month
Part B, condition 15	Annual Water Licence Report	March 31, 2020 and every March 31 thereafter.
Part B, condition 16	Standard Operating Procedures and Quality Assurance and Quality Control Plan	Within 90 days following issuance of this Licence
Part E, condition 4	Thermal Plume Delineation Study Design	A minimum of 90 days following the effective date of this Licence.
Part E, condition 5	Thermal Plume Delineation Study Report	August 1, 2021
Part F, condition 2	AEMP Design Plan	November 1, 2021
Part F, condition 3	Aquatic Effects Re-evaluation Report	Three years following implementation of the AEMP Design Plan and every five years thereafter, or as directed by the Board.
Part F, condition 4	AEMP Design Plan – Revised	Three years following implementation of the AEMP Design Plan and every five years thereafter, or as directed by the Board.
Part F, condition 5	AEMP Annual Report	March 31, 2023 and every year thereafter.
Part H, condition 1	Closure and Reclamation Plan	Within 24 months following the effective date of this Licence
Part H, condition 2	Closure and Reclamation Plan - Update	Three years prior to the expiration of this Licence

ANNEX C: Table of Revision History – annexed to Water Licence MV2019L1-0001

Date	Location of change	Description of change
		-
		-

Mackenzie Valley Land and Water Board
7th Floor - 4922 48th Street
P.O. Box 2130
YELLOWKNIFE NT XIA 2P6
Phone (867) 669-0506
FAX (867) 873-6610

Reasons for Decision

Issued pursuant to Sections 72.25 and 121 of the *Mackenzie Valley Resource Management Act* (MVRMA) and

Sections 36 and 54 of the *Waters Act*

Water Licence Application		
Preliminary Screener	MVLWB	
File Number	MV2019L1-0001	
Company	Northwest Territories Power Corporation	
Project	Industrial, Jackfish Power Generating Station, Yellowknife NT	
Date of Decision	September 26, 2019	

Table of Contents

1.0 List	of Abbreviations	3
	mary of Application(s)	
	stribution List	
3.0 Regu	ılatory Process	,
	etails of the Regulatory Process	
	slative Requirements	
	eneral	
4.2 M 4.2.1	VRMA Part 3: Duty to Consult (Aboriginal Matters) The Board Role in Consultation	
4.2.1	Notifications and Initial Engagement	
4.2.2	The Board's Process and Participating of Aboriginal Groups	
4.2.3	Views of the Board	
	VRMA Part 3 and 4 and <i>Waters Act</i> : Land and Water Regulation and MVLWB	
4.3.1	GeneralGeneral	
4.3.2	Public Notice	
4.3.3	Water Use Fees	
4.3.4	Existing Licences	
4.3.5	Compensation to Existing Water Uses	
4.3.6	Water Quality Standards	
4.3.7	Effluent Quality Standards	
4.3.8	Financial Responsibility	
4.3.9	Minimization of Adverse Effects	
4.3.10	Time Limit	
4.4 M	VRMA Part 5: Environmental Review	11

4	.4.1 Preliminary Screening	11
5.0	Decision – Water Licence MV2019L1-0001	12
5.1	Term of Licence	12
5.2	Part A: Scope and Definitions	12
5.3	Part B: General Conditions and Schedule 1	
5.4	Part C: Conditions Applying to Water Use	13
5.1	Part D: Conditions Applying to Modifications	14
5.2	Part E: Conditions Applying to Waste and Water Management	14
5.3	Part F: Conditions Applying to Aquatic Effects Monitoring Program and Schedule 3	16
5.4	Part G: Conditions Applying to Contingency Planning	16
5.5	Part H: Conditions Applying to Closure and Reclamation and Schedule 4	17
5.6	Annex A: Surveillance Network Program	17
5.7	Annex B: Table of Submissions	18
5.8	Annex C: Table of Revision History	18
6.0	Conclusion	18

These Reasons for Decision set out the Mackenzie Valley Land and Water Board's (the MVLWB/Board) regulatory process and decisions made on **September 26, 2019** for the Application made by Northwest Territories Power Corporation (NTPC) for Water Licence (Licence) MV2019L1-0001 for the Jackfish Power Generating Project.

A summary of the Application is provided in Section 2 below, followed by the regulatory process in Section 3. Section 4 describes the legislative requirements applicable to this regulatory process, leading to the Board's decisions with supporting rationale in Section 5.

1.0 <u>List of Abbreviations</u>

Anniversary Date	Effective date of Licence as seen on the Licence cover page
Applicant	Northwest Territories Power Corporation
Application	Northwest Territories Power Corporation's submissions in support of Water Licence MV2019L1-0001
CIRNAC	Crown-Indigenous Relations and Northern Affairs Canada
DFO	Fisheries and Oceans Canada
DIAND	Department of Indigenous Affairs and Northern Development
ECCC	Environment and Climate Change Canada
GNWT	Government of the Northwest Territories
GNWT-ENR	Government of the Northwest Territories – Environment and Natural Resources
IR	Information Request
Inspector	Government of the Northwest Territories – Environment and Natural Resources –
	Water Resource Officer (Inspector)
Intervener	A reviewing Party that submits an intervention
Licence	Water Licence MV2019L1-0001
MVLWB or Board	Mackenzie Valley Land and Water Board
MVRMA	Mackenzie Valley Resource Management Act
Minister	Minister of Environment and Natural Resources for the Government of the Northwest
	Territories
Party	As per the Board's Rules of Procedures
Project	Jackfish Power Generating Project
Reviewer	As per the Board's Rules of Procedures

2.0 Summary of Application(s)

On February 26, 2019, NTPC submitted an Application for a new Licence MV2019L1-00001.¹ This Application is for the use of water for the cooling of the diesel power generating plants. The Jackfish Power Generating station is located within the City of Yellowknife, NT. These activities are located within a Non-Federal area.

The Application is to replace the current Licence N1L1-1632, which is set to expire on December 31, 2019. The current licence was issued for water use for cooling systems.

¹ See Water Licence MV2019L1-0001 Application (hyperlink), submitted to the MVLWB on February 26, 2019.

2.1 Distribution List

This document uses the term "distribution list" for the list of parties with whom materials from this regulatory process were circulated. As this Project is in the Akaitcho Territory, the appropriate core organizational reviewers, governments, First Nations, and Aboriginal organizations were included in the list. The list was periodically updated, and (when requested) individuals with specific interests in the Project were also added to the distribution list (see Table1: Organizations on the Distribution List).

3.0 Regulatory Process

3.1 Details of the Regulatory Process

On February 26, 2019, NTPC submitted an Application for a new Licence MV2019L1-0001. On March 4, 2019, the Application was deemed complete and the review commenced.² Distribution of the Application on the Online Review System advised the parties that the Application was in the form and contained the information required by section 72.1 of the MVRMA, and section 34 of the *Waters Act*, that the regulatory process would proceed, that the legislated timelines defined in subsection 47(1) of the *Waters Act* had commenced, and that the online review period was underway.

On March 4, 2019, Board staff distributed a draft work plan that included the scheduling of a public hearing as per paragraph 42(2)(a) of the *Waters Act*. At that time parties were requested to provide their comments and recommendations on the draft work plan.³ Comments on the draft work plan were received by March 18, 2019 from the Government of the Northwest Territories – Environment and Natural Resources (GNWT-ENR)⁴.

By April 2, 2019, comments and recommendations regarding the Applications were received by the Board from the following parties: GNWT-ENR, Environment and Climate Change Canada (ECCC), Fisheries and Oceans Canada (DFO), and MVLWB staff. ⁵ On April 15, 2019, NTPC responded to the parties' comments and recommendations. ⁶

NTPC's Technical Session presentation was submitted on May 2, 2019. A single Technical Session was held on May 2, 2019, in Yellowknife, NT, to discuss and seek clarity on issues raised by parties and Board staff, and to provide an opportunity to discuss the Application in advance of parties submitting comments and recommendations to the Board. The Technical Session was facilitated by Board staff and was transcribed. Attendees included NTPC, Golder Associates Ltd (Golder; Technical Advisor to NTPC), GNWT-ENR, and ECCC. There were two (2) Technical Session Information Requests (TS-IR#1 and TS-IR#2) resulting from this Technical Session, which were directed at NTPC. These two TS-IRs

² See MVLWB – Application Complete (<u>hyperlink</u>), dated March 4.

³ See MVLWB – Draft Work Plan (hyperlink), dated March 4, 2019.

⁴ See Comments on Draft Work Plan: GNWT-ENR (hyperlink) submitted to the MVLWB on March 18, 2019.

⁵ See Review Comment Summary Table – Application (hyperlink), dated April 16, 2019.

⁶ See Review Comment Summary Table – Application (<u>hyperlink</u>), dated April 16, 2019.

⁷ See NTPC- Technical session presentation (<u>hyperlink</u>), submitted to the MVLWB on May 2, 2019

⁸ See Technical session – Transcripts (<u>hyperlink</u>), dated May 2, 2019.

⁹ See Technical session – Sign-in Sheet (hyperlink), dated May 2, 2019.

were circulated to the distribution list on May 2, 2019¹⁰, and NTPC submitted responses to both TS-IRs on May 16, 2019.¹¹

A public notice of the Application and the Public Hearing was published in *News North* during the week of May 20, 2019 to fulfill paragraphs 41(1)(a) and 43(2)(a) of the *Waters Act*. 12

The pre-hearing conference was held on May 28, 2019 in Yellowknife, NT to discuss the potential content of the public hearing, written interventions and presentations, notices of intent to appear at the hearing, and to briefly outline the Board's (2004) *Rules of Procedure, Including Public Hearings.*¹³ The pre-hearing conference was attended in-person by representatives from the MVLWB, GNWT – ENR, and Golder (Technical Advisor to NTPC); representatives from ECCC, NTPC, and NTPC Legal Support participated by teleconference. Summary notes were recorded and distributed on May 29, 2019.¹⁴

On June 11, 2019, written interventions were received from GNWT-ENR and ECCC.¹⁵ Both interventions submitted indicated that the concerns that were brought forward during the initial review have been addressed by NTPC through responses as well as the Technical Session. NTPC did not have to respond to the written interventions.

The Board did not receive notification that any person intended to appear regarding the Application ten days prior to the scheduled hearing date. On July 22, 2019, the Public Hearing was cancelled as per paragraph 41(3)(a) of the *Waters Act*, and an updated work plan (Version 2) was distributed.¹⁶

On July 23, 2019, Board staff circulated draft Licence Conditions to parties for review and comment. The following parties responded by August 13, 2019; GNWT-ENR, ECCC and NTPC.¹⁷ NTPC responded to all the parties' comments and provided comments of their own on August 30, 2019¹⁸.

For a Type A Licence, as was the case in this Application, within nine months the Board shall make a decision. On September 26, 2019, the Board met to make decisions regarding the Application.

4.0 Legislative Requirements

In conducting the review process for the Application as described in Sections 2 and 3 above, the Board has ensured that all applicable legislative and procedural requirements have been satisfied, as required by section 62 of the MVRMA and as outlined below.

¹⁰ See Technical session – Information Requests (hyperlink), dated May 2, 2019.

¹¹ See NTPC – Response to Information Request #1 (hyperlink), submitted to the MVLWB on May 16, 2019.

¹² See Notice of Application and public hearing (hyperlink), dated May 20, 2019.

¹³ See Pre-hearing conference – Agenda (hyperlink), dated May 16, 2019.

¹⁴ See Pre-hearing conference – Summary Notes (hyperlink), dated May 28, 2019.

¹⁵ See Written Interventions: GNWT-ENR (hyperlink) and ECCC (hyperlink) submitted to the MVLWB on June 11, 2019

¹⁶ See MVLWB Letter – Cancellation of Public Hearing (<u>hyperlink</u>) and Updated Work Plan (<u>Version 2</u>) (hyperlink), dated July 22, 2019.

¹⁷ See Review Comment Summary Table – Draft Licence (hyperlink), dated September 4, 2019.

¹⁸ See Review Comment Summary Table – Draft Licence (hyperlink), dated September 4. 2019

4.1 General

The use of water and the deposit of waste proposed is of a nature contemplated by the MVRMA and the *Waters Act*.

As this Project is located on a Non-Federal Area, the MVRMA and the Waters Act apply.

4.2 MVRMA Part 3: Duty to Consult (Aboriginal Matters)

In exercising its authority under the MVRMA, generally, the Board must ensure that the concerns of Aboriginal peoples have been taken into account as per paragraph 114(c) of the MVRMA. It must also consider the importance of conservation to the well-being and way of life of Aboriginal peoples of Canada, as per paragraph 60.1(a) of the MVRMA, specifically those to whom section 35 of the *Constitution Act*, 1982 applies and who use an area of the Mackenzie Valley. Accordingly, the Board works with applicants, affected parties (including Aboriginal organizations and governments), and other parties (such as other boards and regulators) to ensure that potential impacts of proposed projects are understood and carefully considered before decisions are made with respect to the issuance of Licences.

In order to address the question of Aboriginal consultation it is first helpful to understand the general process through which the Board considers an application. Following the initiation of engagement and the submission of an application, a proposed project goes through several stages in the Board's approval process. The application is reviewed to ensure that all necessary information is included and to confirm that the right types of Permit and Licence have been applied for. This check for completeness is completed within ten days of receipt of the application.

The application and supporting documents are uploaded to the Board's online registry and then the application package is distributed to stakeholders, including appropriate federal and territorial government departments and agencies, landowners, affected communities and Aboriginal organizations, Renewable Resource Boards, heritage regulators, and other interested parties. The distribution list that the Board used for the NTPC Application is provided in Table 1.

¹⁹ See <u>www.mvlwb.com</u> → Resources → Policies and Guidelines: <u>MVLWB Guide to the Land Use Permitting Process</u> 2013).

²⁰ See <u>www.mvlwb.com</u> → Resources → Policies and Guidelines: <u>Guide to Completing Water Licence Applications</u> to the <u>Mackenzie Valley Land and Water Board</u> (2003).

Table 1: Organizations on the Distribution List for Licence MV2019L1-0001

Akaitcho Interim Measures Agreement Implementation Office	Hamlet of Fort Resolution
Athabasca Denesuline Council C/O Prince Albert Council	Hay River Métis Council
Bathurst Inlet Development Ltd.	Crown-Indigenous Relations and Northern Affairs Canada – Contaminants and Remediation Directorate
Bathurst Inlet Lodge	Crown-Indigenous Relations and Northern Affairs Canada – NWT Inspectors
BNT Gold Resources Ltd.	K'atl'odeeche First Nation
Canadian Northern Economic Development Agency	Łutsel K'e Dene First Nation - Chief or Wildlife, Lands and Environment
CanNor NWT Region	Mackenzie Valley Environmental Impact Review Board
Chamber of Mines NWT & Nunavut	Manitoba Denesuline
City of Yellowknife	Miramar Northern Mining Ltd.
Dene Nation	National Energy Board
Deninu K'ue First Nation	North Slave Métis Alliance
Environment and Climate Change Canada	Northwest Territory Métis Nation
Fisheries and Oceans Canada	Salt River First Nations
Fort Resolution Métis Council	Smith's Landing First Nation
Fort Smith Métis Council	Snap Lake Environmental Monitoring Agency (SLEMA)
General Public	Tłycho Government
Government of the Northwest Territories – Education, Culture and Employment	Tłլcho Government - Lands Protection Department
Government of the Northwest Territories – Environment and Natural Resources	Town of Fort Smith
Government of the Northwest Territories – Infrastructure	Wek'èezhìi Renewable Resources Board
Government of the Northwest Territories – Industry, Tourism and Investment	Wek'èezhìi Land and Water Board
Government of the Northwest Territories – Lands	West Point First Nation
Government of the Northwest Territories – Municipal and Community Affairs	Workers' Safety and Compensation Commission
Government of the Northwest Territories – Office of the Regulator of Oil and Gas	Yellowknives Dene First Nation
Golder Associates	
Government of Canada	

The Board requested that reviewers provide comments with respect to the Application and associated management plans. When the review was completed, comments were forwarded to the applicant for a response.

The Application is then assessed to determine if the activities are exempt from Part 5 of the MVRMA; if not, the Application moves to preliminary screening.

4.2.1 The Board's Role in Consultation

The Board's requirements for engagement are set out in its *Engagement and Consultation Policy*. ²¹ This Policy was developed to ensure that the Board's obligations for achieving meaningful consultation (as set out by the land claims and applicable legislation) with all affected parties, including Aboriginal groups in the Mackenzie Valley, are met and consultation results clearly articulated.

The core of the *Engagement and Consultation Policy* is as follows:

- 1) To require proponents to initiate dialogue and engagement planning with affected parties, particularly affected Aboriginal organizations/governments, in advance of an application with the goals of:
 - explaining the project;
 - identifying concerns and potential environmental impacts (including any potential for impacts to Aboriginal and treaty rights);
 - addressing concerns raised; and
 - ensuring appropriate levels and types of engagement are carried out over the life of an authorization or project.
- 2) To apply consultative approaches throughout a proceeding, which assist affected parties to meaningfully contribute to the assessment of impacts on the environment and the establishment of appropriate mitigations in order for the Boards to meet statutory responsibilities pursuant to the MVRMA and the *Waters Act* and their regulations.
- 3) To assist in ensuring, and if necessary, rule on, the adequacy of Crown consultation before making a final decision or recommendation, taking into account information gathered during proponent engagement and through its consultative processes.

4.2.2 Notifications and Initial Engagement

The following is a high-level summary of notifications and early engagement undertaken by NTPC for the Jackfish Power Generating Project. For more details on the timing of engagement activities, see material filed by NTPC in support of their Application.²²

In accordance with the *Engagement and Consultation Policy* and associated guidelines, the Board requires proponents to engage with potentially affected parties prior to and during the operation of a project. ²³ Engagement ensures that affected parties are able to develop an understanding of

²¹ See <u>www.mvlwb.com</u> → Resources → Policies and Guidelines: <u>MVLWB Engagement and Consultation Policy</u> (June 1, 2013).

²² See NTPC Engagement Record (<u>hyperlink</u>) February 26, 2019

²³ See www.mvlwb.com → Resources → Policies and Guidelines: MVLWB Engagement and Consultation Policy (June 1, 2013).

a proposed project or component of a project, provide feedback during the engagement process on issuance of concern with regards to a project, and work towards building relationships with stakeholders that are operating in the area.²⁴

NTPC included a record of engagement as part of the Application, which highlighted the engagement activities that took place prior to submitting the Application and a summary of the discussion topics. Where contact was made, the engagement record indicated that no concerns were raised.²⁵

4.2.3 The Board's Process and Participation of Aboriginal Groups

Aboriginal communities and organizations were engaged throughout the review phase of the Board's process as well as on all public products of the Board's process.

4.2.4 Views of the Board

As noted above, in Section 4.2.2 (The Board's Role in Consultation), the Board's *Engagement and Consultation Policy* has three broad objectives: proactive engagement, facilitating the effective contributions of all reviewers, and Crown consultation.

Regarding the objective of proactive engagement, the Board has determined that the level of engagement by NTPC was adequate. In accordance with the *Engagement and Consultation Policy*, the MVLWB *Engagement Guidelines for Applicants and Holders of Water Licences and Land Use Permits* (Engagement Guidelines), NTPC initiated dialogue with Aboriginal organizations and governments starting in November 2018 and continuing through to February 8, 2019, prior to filing the Application with the Board on February 26, 2019.²⁶

Regarding the objective of facilitating the effective contribution of all reviewers in the regulatory process, the Board has determined its process was sufficient and robust. The Board's process provided opportunities for the review of the Application, participation in a Technical Session, an opportunity to file written interventions, an opportunity for commenting on draft Licence conditions, and for Interveners to submit Closing Arguments.

Regarding the objective of Crown consultation, the Board has determined that the duty to consult in relation to matters within its jurisdiction has been satisfied. Administrative tribunals such as the Land and Water Boards under the MVRMA can rule on questions of law. The Board, therefore, has the authority, if necessary, to assess the adequacy of Crown consultation before making a final decision or making a recommendation to the responsible Minister and may use remedies available to it in addressing Aboriginal consultation issues.

In summation, the Board finds that parties were engaged throughout the Board's process. The Board's role in regard to the Crown's duty to consult was discharged in several ways, as identified

²⁴ See <u>www.mvlwb.com</u> → Resources → Policies and Guidelines: MVLWB, <u>Information for Proponents on the MVLWB's</u> Engagement Requirements (2014).

²⁵ See NTPC – Engagement Log submitted with the Application (hyperlink) – dated February 26, 2019

²⁶ See <u>www.mvlwb.com</u> → Resources → Policies and Guidelines: <u>MVLWB Engagement Guidelines for Applicants and Holders of Water Licences and Land Use Permits</u> (September 2014).

above and as directed by its own Engagement Policy. The Board finds that Crown consultation has been adequate on the Application related to the Jackfish Power Generating project.

4.3 MVRMA Part 3 and 4 and Waters Act: Land and Water Regulation and MVLWB

The Board has jurisdiction to issue this Licence as per subsection 60(1.1) of the MVRMA.

4.3.1 General

The Board has considered the people and users of the Mackenzie Valley, and any traditional knowledge and scientific information that was made available to it during this regulatory proceeding, as per section 60.1 of the MVRMA.

4.3.2 Public Notice

Notice and copies of the Application were given to fulfill sections 63 and 64 of the MVRMA. The Board is satisfied that a reasonable amount of time was given to communities, First Nations, and the public to participate in this regulatory process to make submissions to the Board.

4.3.3 Water Use Fees

NTPC is exempt from paying fees for the right to use water and deposit waste due to the exemption in section 3 of the Waters Regulations because NTPC is a Crown corporation.

4.3.4 Existing Licences

With respect to 26(5)(a) of the *Waters Act*, no other Licensees contacted the Board during the statutory period, and there are no applicants with precedence in the watershed as per subsection 72.26(1) of the MVRMA/59(1) of the *Waters Act*. The Board is satisfied that the granting of this Licence will not adversely affect, in a significant way, any existing Licensee if compliance with the Licence occurs.

4.3.5 Compensation to Existing Water Uses

Paragraph 26(5)(b) of the *Waters Act* prohibits the issuance of the Licence unless the Board is satisfied that appropriate compensation has been or will be paid by the applicant to persons who would be adversely affected by the use of waters, or deposit of waste proposed by the applicant, at the time when the applicant filed its application with the Board.

The Board received no claims for compensation either during the prescribed period or afterwards. Provided compliance with the Licence conditions takes place, the Board finds that there are no water users or persons listed in paragraph26(5)(b) of the *Waters Act* who will be adversely affected by the use of waters or the deposit of waste proposed.

4.3.6 Water Quality Standards

With regards to 26(5)(c)(i) of the *Waters Act*, the Board is satisfied that compliance with the Licence conditions will ensure that waste will be collected and disposed of in a manner that will maintain water quality consistent with applicable standards

4.3.7 Effluent Quality Standards

There are no effluent quality standards prescribed in the Waters Regulations. The Board is satisfied that compliance with the Licence conditions will protect the receiving waters and environment.

4.3.8 Financial Responsibility

The Board must satisfy itself of the financial responsibility of NTPC per paragraph 26(5)(c) of the *Waters Act* before it can issue the Licence.

NTPC is a Crown Corporation under the Government of the Northwest Territories; therefore, the Board is confident that NTPC is capable of meeting any financial obligations set out in the *Waters Act* and Licence concerning the use of water and deposit of waste for industrial purposes for the Jackfish Power Generating project.

On April 11, 2012, NTPC submitted a letter to the Board indicating that NTPC became a Crown Corporation on May 4, 1988 when the Northern Canada Power Commission was acquired from Her Majesty the Queen in Rights of Canada by the Government of the Northwest Territories²⁷.

As a result, and for the reasons set out above, the Board is satisfied that the financial capacity of the Applicant, in this case, is adequate and meets the requirements of 26(5)(c) of the *Waters Act*.

4.3.9 Minimization of Adverse Effects

With regards to subsection 27(2) of the *Waters Act*, it is the opinion of the Board that compliance with the Licence will ensure that any potential adverse effects on other water users, which might arise because of the issuance of the Licence, will be minimized.

4.3.10 *Time Limit*

The Board is satisfied it has adhered to subsection 47(1) of the *Waters Act*, which requires it to make a decision within a period of nine months after the day on which an application is made or a notice advertised as per subsections 43(1) and 43(2) of the *Waters Act*.

4.4 MVRMA Part 5: Environmental Review

4.4.1 Preliminary Screening

On May 1, 2019, the Board met and conducted a preliminary screening of the activities associated with the Application, to fulfill subsection 124(1) of the MVRMA. As per paragraph 125(1)(a) of the MVRMA, the Board determined that the activities associated with the Application would not have a significant adverse impact on the environment and would not be a cause of public concern. The Board's Preliminary Screening Report includes its reasons for that decision and is available on the Board's public registry.²⁸ The Board is satisfied the proposed development has been screened pursuant to the MVRMA.

²⁷ See Letter from NTPC relating to Crow Corporation – (hyperlink) – April 11, 2012

²⁸ See MVLWB Preliminary Screening and Reasons for Decision (hyperlink), dated May 1, 2019.

5.0 Decision – Water Licence MV2019L1-0001

In making its decision and preparing these Reasons for Decision, the Board has reviewed and considered:

- 1) The comments and recommendations made during the regulatory process;
- 2) The evidence and submissions from NTPC received by the Board;
- 3) The written comments and submissions from parties received by the Board; and
- 4) The Staff Report prepared for the Board.

Having due regard to the facts, circumstances, and the merits of the submissions made to it, and to the purpose, scope, and intent of the MVRMA and the *Waters Act*, the Board has determined that Licence MV2019L1-0001 should be issued, subject to the scope, definitions, conditions, and term contained therein. The Board's reasons for this decision are set out below.

The scope, definitions, conditions, and term set forth in the Licence have been developed to address the Board's statutory responsibilities and the concerns that arose during the regulatory process. The Reasons for Decision set out below focus on the major concerns and issues raised by parties, including those that were the subject of substantive argument submitted by one or more parties.

5.1 Term of Licence

NTPC has applied for a term of 20 years for the Licence as noted in their Application. NTPC stated at the Technical Session that the proposed term being requested is simply based on the longevity and stability of operations of the facility. NTPC also indicated that requesting the term would help keep electricity rates as low as possible for customers by minimizing regulatory costs.²⁹ Also during the Technical Session, a GNWT – ENR Water Resource Officer questioned why an even longer term was not requested as the Board has to ability to issue terms for longer. NTPC indicated that they would not object to a longer term than what they initially requested.³⁰

Subsection 26(2) of the *Waters Act* allows for a Licence term of not more than 25 years or the duration of the undertaking. After reviewing the submissions made during this regulatory process, the Board has determined an appropriate term for this undertaking is 25 years.

5.2 Part A: Scope and Definitions

Part A of the Licence contains the scope and definitions for terms used throughout.

Scope

The scope of the Licence ensures the Licensee is entitled to conduct activities that have been applied for and screened by the Board. In setting out the scope of the Licence, the Board endeavoured to provide enough detail to identify and describe the authorized activities, without being unduly restrictive or prescriptive, and to allow for project flexibility throughout the life of the Licence.

Part A, conditions 1 through 3 are consistent with previous Licences issued by the Board. These conditions ensure that the scope of the authorization includes all water uses and deposits of waste associated with the Project, reflect and comply with all applicable legislation for the life of the

²⁹ See MVLWB Technical Session Transcripts (page 78) – (hyperlink) – May 2, 2019

³⁰ See MVLWB Technical Session Transcripts (page 79) – (<u>hyperlink</u>) – May 2, 2019

authorization, and consider and incorporate scientific and Traditional Knowledge where available in the Licensee's effort to protect the environment.

Definitions

The Board defined items in the Licence to ensure a common understanding of conditions, to avoid future differences in interpretation, and to use wording similar to that found in previously issued Licences.

During the review of the Licence it was noted by the reviewers that definitions have been included that are not applicable to the project such as construction, greywater, sewage, sump, toilet waste, and unauthorized discharge. These definitions have been removed from the Licence.

5.3 Part B: General Conditions and Schedule 1

Part B and Schedule 1 of the Licence contain general administrative conditions regarding compliance and conformity with the *Waters Act* that are reflective of current Board terminology and consistent with standard conditions found in previous Licences issued by the Board.

Part B, condition 4: Measure Water Use and Waste Discharge

The Board has updated this condition based on reviewer comments relating to providing clarity to the measuring and monitoring devices used.

Part B, condition 17: Engagement

The Board assesses engagement adequacy of applications through the Board's *Engagement Guidelines for Applicants and Holders of Water Licences and Land Use Permits*, and the Board's *Engagement and Consultation Policy*. The Board notes that NTPC's pre-engagement for the Application was determined to be in accordance with the Guidelines and Policy. NTPC included an Engagement Plan and Log in the Application.

The Board has approved the Engagement Plan as it meets the Board's Guideline and Policy, and sufficiently reflects the scope of the proposed activities.

Part B, condition 19: Notification – Non-Compliance

The Board has included this condition to assist the Board, Inspectors, and reviewers in tracking compliance.

Schedule 1: Annual Water Licence Report

During the review of the draft licence it was noted that under 1(g) there were a number of items that do not apply to the Project; therefore, the Board has removed 1(g) iii, iv, v, and vi.

5.4 Part C: Conditions Applying to Water Use

Part C of the Licence contains conditions related to water use for Jackfish Power Generating Project. These are consistent with standard conditions found in previous Licences issued by the Board.

The maximum quantity of water that can be withdrawn from Jackfish Lake is 50,000 m³/day.

During the Technical Session NTPC indicated that average water use per day is around 16,400 m³/day and the maximum water use for the facility based on full operating capacity is 50,000 m³/day. NTPC noted that they are requesting keeping the water volume as currently authorized to act as a backup if a power line was to go down or if there was a low water event at the hydro-generation facilities.³¹

5.1 Part D: Conditions Applying to Modifications

Part D of the Licence contains conditions outlining when and how modifications of existing or planned physical works may be authorized. They ensure the Board and the Inspector are kept informed and have the opportunity to request more information or reject the proposed modification. This section relies on the definition of a modification, outlined in Part A, "does not include expansions, nor alternations of the purpose of function of a structure." These conditions are consistent with standard conditions found in previous Licences issued by the Board. The purpose of Part D is to streamline the process for authorizing modifications and ensure that any proposed changes to structures that might be outside the scope of the Licence are brought to the Board's attention.

5.2 Part E: Conditions Applying to Waste and Water Management

Part E of the Licence contains conditions applying to waste and water management activities for the Jackfish Power Generating Project and are consistent with standard conditions included in previous Licences issued by the Board. Site-specific conditions were developed where necessary.

Part E, condition 1 sets out the objectives for the management of water and waste for the Jackfish Power Generating Project. This condition is consistent with the principles of objective-based regulation: it essentially defines the objectives of any required management actions, plans or reports. This condition is standard for Licences issued by the Board and reminds the Licensee of the need to manage water and waste with the goal of minimizing impacts on the receiving environment.

Part E, condition 2: Waste Management Plan

The Board's authority to regulate the management of waste is described in subsection 26(1) of the MVLUR and sections 11 and 27 of the *Waters Act*. As such, the Board developed and approved the *Guidelines for Developing a Waste Management Plan*.³² These guidelines can be applied to a wide range of projects and are intended to ensure that all waste management activities specific to each project are carried out in a way that is consistent with best practices and applicable guidelines to minimize waste released from the Project. Waste Management Plan is a defined term in the Licence, ensuring that this required Plan adheres to the Board's Guidelines.

Submittal and compliance with a Waste Management Plan is standard for Licences issued by the Board. NTPC included a Waste Management Plan in the Application. The Board has approved the Waste Management Plan because it meets the Board's *Guidelines for Developing a Waste Management Plan*, and sufficiently reflects the scope of the proposed activities.

³¹ See MVLWB Technical Session Transcripts pg 70 (hyperlink) – May 2, 2019

³² See <u>www.mvlwb.com</u> \rightarrow Resources \rightarrow Policies and Guidelines: <u>MVLWB Guidelines for Developing a Waste Management Plan</u> (March 31, 2011).

Part E, condition 4: Daily Inspections of Discharge Locations

The Board has removed this condition as it was noted during the review of the draft conditions that the discharge locations are under water and, therefore, the condition is not applicable.

<u>Part E, conditions 6 and 7 and Schedule 2, conditions 1 and 2: Thermal Plume Delineation Study</u> <u>Design Plan and Thermal Plume Delineation Study Report</u>

Part E, conditions 6 and 7 and Schedule 2, conditions 1 and 2, outline the requirements for a Thermal Plume Delineation Study Design Plan (Design Plan) and a Thermal Plume Delineation Study Report (Report) to be filed with the Board. The Design Plan and Report are required by the Licence to assist in the establishment of the Aquatic Effects Monitoring Program (AEMP).

During the initial review of the application, ECCC recommended that NTPC provide information relating to the details of facility discharge management (e.g., discharge method(s), rates, volumes, frequency, duration, locations), identification of mitigations currently in place to minimize the effects of thermal discharges on the aquatic receiving environment, as well as identify potential mitigation options to further minimize the effects of thermal discharges on the aquatic receiving environment³³. During the May 2, 2019 Technical Session, ECCC requested additional information relating to the aquatic habitat types in the vicinity of the discharges and potential thermal-related effects on fish. NTPC indicated that the information was not available at the time of the Application, that baseline work has begun, and that they would be open to completing a further study to gather the additional information.³⁴ An assessment of aquatic habitat within the thermal plume zone has been included as a requirement under Schedule 2, condition 1.

During the May 2, 2019 Technical Session, discussion regarding the potential influence of additional development on Jackfish Lake, the current trophic status, and recently documented algal blooms occurred.³⁵ In 2018, NTPC completed a comprehensive environmental monitoring program to characterize the existing conditions within Jackfish Lake (Golder 2019)³⁶. Results of this monitoring program suggest that it was unlikely that the cyanobacterial bloom was a thermal-related effect; however, given the uncertainty, additional chemical characterization to further support the development of the AEMP Design Plan is required. A minimum of one station should be located near the inflow areas, but outside of the thermal plume, to assess the potential influence of other anthropogenic effects unrelated to the Jackfish Power Generating Project and determine if the thermal plume is contributing to the formation of the cyanobacterial bloom. An additional station should be located at the outflow area to better define the potential influence the Jackfish Lake outflow may have on the downstream Yellowknife Bay of Great Slave Lake.

³³ See Comment Summary Table – ECCC (hyperlink) – April 16, 2019

³⁴ See Technical Session Transcripts pg. 36-48 (<u>hyperlink</u>) – May 2, 2019

³⁵ See Technical Session Transcripts pg. 27-34 (<u>hyperlink</u>) – May 2, 2019

³⁶ See Golder Associates Ltd. 2019. 2018 Environmental Monitoring Report Jackfish Lake Generating Facility. Submitted to Northwest Territories Power Corporation. 105 pp + appendices- (hyperlink) – February 26, 2019

5.3 Part F: Conditions Applying to Aquatic Effects Monitoring Program and Schedule 3

Part F and Schedule 3 of the Licence contain conditions applying to the AEMP for the NTPC Jackfish Power Generating Project. The Board has set out the standard conditions for the submission of an AEMP Design Plan, an AEMP Annual Report, a periodic AEMP Re-evaluation Report, a revised AEMP Design Plan (as required based on the conclusions of the AEMP Re-Evaluation Report) and AEMP Response Plans (as needed). More detailed information requirements for each condition are set out in Schedule 3. The AEMP should be designed in accordance with the applicable guidelines. ^{37,38,39}

At the May 2, 2019 Technical Session, GNWT-ENR recommended that an AEMP be developed and consideration be given to including sampling under late ice-covered conditions (e.g., April) to document potential issues related to low dissolved oxygen concentrations.⁴⁰ ECCC had further questions in relation to low dissolved oxygen levels and potential impacts on fish within Jackfish Lake.⁴¹

NTPC included a draft Licence as part of the Application, which included a condition requiring the submission of an AEMP Design Plan for approval within 90 days of Licence issuance. Due to the nature of the deposited waste being restricted to thermal waste only, the Board determined that a Thermal Plume Delineation Study Design and Report would be required to verify the appropriate extent of monitoring thermal in Jackfish Lake. Results from the Thermal Plume Delineation Study Report will be used to inform the AEMP Design Plan. The requirement for the Thermal Plume Delineation Study to be completed results in a delay in the submission of the AEMP Design Plan (i.e., 90 days after the submission of the Thermal Plume Delineation Study Report). Although this delays the AEMP Design Plan approval, and in turn the AEMP implementation, the Board recognizes that an understanding of the thermal plume is required to properly design an appropriate AEMP. Additional information gathered through the chemical characterization at the inflow and outflow of Jackfish Lake, which will be completed as part of the Thermal Plume Delineation Study, will also be used to confirm if additional parameters and stations are required as part of the AEMP.

5.4 Part G: Conditions Applying to Contingency Planning

Part G of the Licence contains conditions related to spill contingency planning and reporting, reclamation of spills and unauthorized discharges, and emergency response for the Jackfish Power Generating Project. The purpose of this part is to ensure that NTPC is fully prepared to respond to spills and unauthorized discharges. The planning and reporting requirements in this part ensure that NTPC has identified the lines of authority and responsibility, has an action plan(s) for responses to spills and unauthorized discharges, and has established reliable reporting and communication procedures. This will ensure that any spills or unauthorized discharges are effectively controlled and cleaned up, with the goal of preventing or limiting damage to the receiving environment. The

³⁷ See Guidelines for Aquatic Effects Monitoring Program (MVLWB & GNWT 2019) – (hyperlink) - 2019

³⁸ See Draft Guidelines for Adaptive Management – A Response Framework for Aquatic Effect Monitoring (<u>hyperlink</u>)

³⁹ See Guidelines for Designing and Implementing Aquatic Effects Monitoring Programs for Development Project in the Northwest Territories (https://doi.org/10.1009/nyperlink) - 2009

⁴⁰ See Technical Session Transcripts pg. 35 and pg. 36 (hyperlink) – May 2, 2019

⁴¹ See Technical Session Transcripts pg. 39 to pg. 40 (hyperlink) – May 2, 2019

conditions in Part G are consistent with standard conditions found in previous Licences issued by the Board.

Part G, condition 2: Spill Contingency Plan

Spill Contingency Plan is a defined term in the Licence, referencing the Indian and Northern Affairs Canada's *Guidelines for Spill Contingency Planning*. ATPC included a Spill Contingency Plan in the Application.

The Board has approved the Spill Contingency Plan because it sufficiently meets the guidelines and reflects the scope of the proposed activities.

5.5 Part H: Conditions Applying to Closure and Reclamation and Schedule 4

Part H and Schedule 4 of the Licence contain conditions applying to closure and reclamation of the Jackfish Power Generating Project.

As outlined in the Application, NTPC noted that the power generating system is a standby plant for the North Slave System and that this system in not anticipated to close or be decommissioned. NTPC submitted a Conceptual Abandonment and Restoration Plan, which outlines a brief closure plan for the facility. Although the facility is not anticipated to close, the requirement for a Closure and Reclamation Plan for the facility is needed to address the potential closing of the facility.

The Board notes that all Closure and Reclamation Plans (including Interim and Final) shall be in accordance with the Mackenzie Valley Land and Water Board and Aboriginal Affairs and Northern Development Canada's *Guidelines for the Closure and Reclamation of Advances Mineral Exploration and Mine Sites in the Northwest Territories* (Closure Guidelines)].⁴³ While the Board acknowledges that the Jackfish Power Generating Project is not this type of project, these guidelines can still be applied to the project in principle.

Part H, condition 1 and Schedule 4, condition 1 requires NTPC to submit an Interim Closure and Reclamation Plan to the Board within 24 months following the effective date of this Licence. This is a standard requirement of a Licence issued by the Board and will ensure the Project is reclaimed in accordance with established guidelines and expectation of reviewers and the Board.

Part H, condition 2, requires NTPC to submit an updated Interim Closure and Reclamation Plan to the Board for approval two years prior to the expiration of the Licence.

5.6 Annex A: Surveillance Network Program

Annex A of the Licence contains conditions applying to the Surveillance Network Program (SNP). The SNP details the sampling and monitoring requirements for compliance with numerous conditions and plans required by the Licence. Requirements for measuring flows, volumes, and meteorological data are based on standard water licence conditions as are the reporting requirements.

⁴² See <u>www.mvlwb.com</u> → Resources → Policies and Guidelines: <u>INAC Guidelines for Spill Contingency Planning</u> (2007).

⁴³ See <u>www.mvlwb.com</u> → Resources → Policies and Guidelines: <u>MVLWB/AANDC Guidelines for the Closure and Reclamation of Advances Mineral Exploration and Mine Sites in the Northwest Territories</u> (2013).

5.7 Annex B: Table of Submissions

Annex B of the Licence contains a table that summarizes the information NTPC is required to submit as required by the Licence conditions.

5.8 Annex C: Table of Revision History

Mackenzie Valley Land and Water Board

Mavis Cli-Michaud, Chair

Annex C of the Licence contains a table that identifies updates and tracks changes made to the Licence. This table is currently blank because this is a new Licence, but it will be updated throughout the life of the Licence.

6.0 Conclusion

Subject to the scope, definitions, conditions, and terms set out in the Licence, and for the reasons expressed herein, the MVLWB is of the opinion that the water use, and waste disposal associated with the Jackfish Power Generating Project can be completed by NTPC while providing for the conservation, development, and utilization of waters in a manner that will provide the optimum benefit for all Canadians and in particular for the residents of the Mackenzie Valley.

Water Licence MV2019L1-0001 contains provisions that the Board deems necessary to ensure and monitor compliance with the MVRMA, *Waters Act*, and the Regulations made thereunder, and to provide appropriate safeguards in respect of NTPC's use of the land and water affected by the Licence.

SIGNATURE

Pla Pirand	September 26, 2019	
------------	--------------------	--

Date

General Procedures for the Administration of Licences Issued Under the Waters Act in the Northwest Territories

- 1. At the time of issuance, a copy of the Licence is placed on the Public Registry in the office of the Mackenzie Valley Land and Water Board (MVLWB or the Board) in Yellowknife and is then available to the public.
- 2. To enforce the terms and conditions of the Licence, the Minister of Environment and Natural Resources has appointed Inspectors in accordance with subsection 65(1) of the *Waters Act*. The Inspectors coordinate their activities with staff of the MVLWB. The Inspector responsible for Licence MV2019L1-0001 is located in the North Slave office.
- 3. To keep the MVLWB and members of the public informed of the Licensee's conformity to the Licence's conditions, the inspectors prepare reports which detail observations on how each item in the Licence has been met. These reports are forwarded to the Licensee with a covering letter indicating which action, if any, should be taken. The inspection reports and cover letters are placed on the Public Registry, as are any responses received from the Licensee pertaining to the inspection reports. It is therefore of prime importance that you react in all areas of concern regarding all inspection reports so that these concerns may be clarified.
- 4. Licence MV2019L1-0001 will expire on October 17, 2044, if required; it is the responsibility of the Licensee to apply to the MVLWB for a new licence. The past performance of the Licensee, new documentation and information, and points raised during a public hearing, if required, will be used to determine the terms and conditions of any new licence. Please note that if the Licence expires and another has not been issued, then water and waste disposal must cease, or you, the Licensee, would be in contravention of the *Waters Act*. For a Type A Licence, an application for a new licence shall be made at least one year in advance of the Licence's expiry date. In the case of a Type B Licence, an application shall be made at least six months in advance of the Licence's expiry date.
- 5. If, for some reason, Licence MV2019L1-0001 requires amendment, a public hearing may be required. You are reminded that applications for amendments should be submitted as soon as possible to provide the MVLWB ample time to complete the amendment process. The process may take up to six months or more depending on the scope of the amendment requested.
- 6. Specific clauses of your Licence make reference to the Board, Analyst, or Inspector. The contact person, address, phone, and fax number of each is:

Mackenzie Valley Land and Water Board:

Public Registry Clerk
Mackenzie Valley Land and Water Board
7th Floor - 4922 48 Street,
P.O. Box 2130
YELLOWKNIFE NT XIA 2P6
Phone: (867) 669-0506

Fax: (867) 873-6610

Analyst:

Street Address:

Taiga Environmental Laboratory

4601 – 52nd Ave Yellowknife, NT X1A 1L4

Phone: (867) 767-9235, ext 53151

Fax: (867) 920-8740

General Email: taiga@gov.nt.ca

Mailing Address:

Taiga Environmental Laboratory P.O. Box 1320 Yellowknife, NT X1A 2L9

Inspector:

Water Resource Officer (Inspector)

North Slave Regional Office

Department of Environment and Natural Resources

Government of the Northwest Territories

Box 2668

YELLOWKNIFE NT X1A 2P9 Phone: (867) 873-7443

Fax: (867) 873-6230