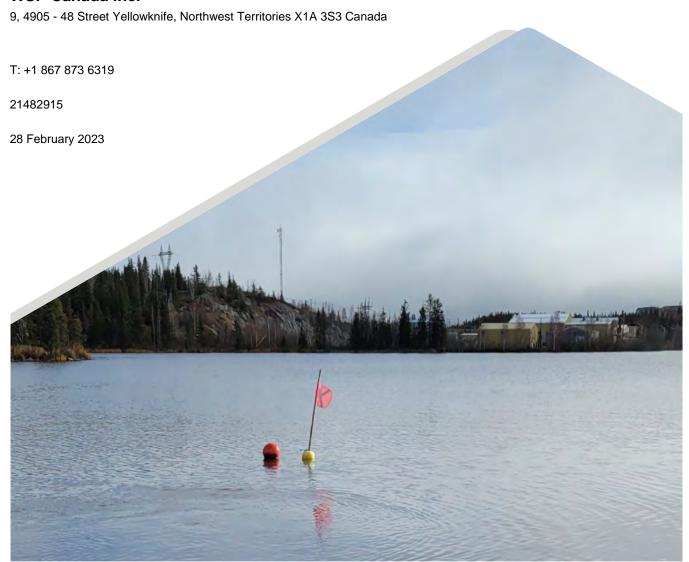


REPORT

Thermal Plume Delineation Report

Jackfish Lake


Submitted to:

Northwest Territories Power Corporation

4 Capital Drive, Hay River NT, X0E 1G2 Attention: Matthew Miller, P.Eng., M.Sc. Environmental Licensing Specialist

Submitted by:

WSP Canada Inc.

Distribution List

1 electronic copy - Northwest Territories Power Corporation

1 electronic copy - WSP Canada Inc.

Compliance Table

Water Licence Schedule 2, Condition 2	Requirement	Applicable Section of the Thermal Plume Delineation Report
а	Maps illustrating the extent of the thermal plume and any seasonal changes documented	Section 3.2.1 and Appendix A, Attachment C
b	Graphical representation of the thermal profile and applicable water quality data	Section 2.5.3; Appendix E
С	Identification of the worse-case thermal plume scenario of the four seasonal conditions identified in Schedule 1, item 1a	Section 3.2.1 and Appendix A
d	Discussion of results and potential impacts to the aquatic ecosystem in Jackfish Lake and recommendations to inform the Aquatic Effects Design Report	Sections 3.2 and 4.0
е	Tabular summaries of all data and information generated under the Thermal Plume Delineation Study, in Excel format	Appendix C, D, E, and F

Plain Language Summary

Introduction

The Northwest Territories Power Corporation (NTPC) owns and operates the Jackfish Lake Generating Station (the Facility) located on the northeast shore of Jackfish Lake in Yellowknife, Northwest Territories. The Facility uses lake water to cool the generators in the system; water is withdrawn from Jackfish Lake through intake pipes, flows through a closed-loop cooling system, and then returns to Jackfish Lake via gravity pipes. Studies have shown that thermal discharges to waterbodies have the potential to affect the aquatic environment. Therefore, as per Part E, Condition 5 of Water Licence MV2019L1-0001 (the Water Licence), which was approved for the Facility on 18 October 2019, a thermal plume delineation study was required to evaluate if there are effects from the thermal discharges of the Facility on the aquatic receiving environment in Jackfish Lake. Part E, Condition 5 of the Water Licence required a Thermal Plume Study Report to provide the results of the thermal plume delineation study. In accordance with Schedule 2, Condition 2 of the Water Licence, the Thermal Plume Study Report consists of two main components: results of recent field studies conducted in 2021 to characterize existing conditions and a thermal plume effects assessment, which is focused on the thermal model development and evaluation of model results.

Existing Conditions

Water level, flow and temperature were measured in Jackfish Lake. Water temperature was measured continuously with loggers at multiple locations in Jackfish Lake at a range of depths, with a focus on measuring temperature near the discharges from the Facility. Water temperatures were also measured at discharge pipe locations to measure the temperature of the thermal discharge. The water level, flow, and temperature data were used primarily for inputs into the thermal model and for model validation and calibration.

Water quality monitoring was conducted during five seasonal field programs between September 2021 to August 2022 at eleven locations in total (i.e., stations), nine of which are in Jackfish Lake, one at an inflow location, and one at the outflow from Jackfish Lake. During each field program, profiles of the water column or surface measurements for temperature, dissolved oxygen (DO) concentrations, pH and conductivity were collected, and water samples of conventional parameters, major ions, nutrients, and total and dissolved metals were collected at two depths at five of the lake stations and at the surface at inflow and outflow stations.

The results of the lake water quality monitoring indicated thermal stratification, and gradients in dissolved oxygen and pH, occurred during early and late summer conditions but were absent in fall, winter and freshet conditions. Mid-depth concentrations or values of total suspended solids (TSS) and turbidity in Jackfish Lake were typically higher in summer and fall compared to winter and spring freshet. The seasonally high TSS concentrations and turbidity values in summer and fall may be related to particulate matter from algae blooms, and the low winter TSS concentrations and turbidity values may be related to minimal runoff and wind-driven mixing of sediment during ice-covered conditions. Concentrations of inorganic nitrogen parameters were typically higher in the lake in winter and spring, compared to fall and summer; this seasonal pattern was likely related to biological uptake of nutrients. Consistent spatial gradients in water quality concentrations that would indicate clear or consistent water quality changes across Jackfish Lake were not observed during the field programs. A review of water quality results from the monitored inflow to Jackfish Lake and at stations within Jackfish Lake indicated that the inflow had a negligible influence on the water quality in the lake. Overall, values or concentrations of water quality parameters in Jackfish Lake and its inflow and outflow were within Canadian Water Quality Guidelines (CWQGs)

for the protection of aquatic life except for four parameters: pH, DO, total arsenic and total copper; however, results are consistent with historical water quality results and observed exceedances.

A fish and fish habitat assessment was also carried out in October 2021. Previous fisheries surveys of Jackfish Lake described a fish community of Northern Pike (*Esox lucius*), Trout-Perch (*Percopsis omiscomaycus*), and Lake Whitefish (*Coregonus clupeaformis*), of which Lake Whitefish was the dominant species in the lake. In October 2021, a side-scan sonar survey was conducted to provide supplemental data to assist with the assessment of potential effects from the Facility on fish and fish habitat. The survey provided information on lake substrate and bathymetry (i.e., depths), as well as the distribution of large-bodied fish targets across the lake. A bathymetric surface was generated from sonar data, showing a maximum depth of approximately 8.4 m and an average depth of 5.5 m. Habitats for specific life stages of Northern Pike and Lake Whitefish were identified and potential thermal refugia at depth were described. Substrates were classified primarily as organics or mud, with some areas of cobbles and boulders as potential spawning substates for Lake Whitefish. Large-bodied fish targets from the side-scan survey were distributed throughout the lake, including areas surrounding the thermal discharge pipe locations, with higher concentrations of fish in deeper locations of the lake at the time of the survey.

Thermal Plume Effects Assessment

The thermal effects of operational heat loads discharged to Jackfish Lake between October 2021 and July 2022 were simulated using a calibrated and validated using MIKE3 FM, a three-dimensional modelling platform developed for the purposes of the thermal plume study. Jackfish Lake temperature conditions were simulated under non-operational conditions (where heat loads to the lake occur only through atmospheric processes but exclude operational influences) and under a hypothetical maximum measured discharge sequence (measured at the Facility between 23 and 25 December 2021, over a two-and-a-half-day period) across five seasonal conditions (late fall, late winter, spring freshet, early summer and late summer). The non-operational simulation results were used to establish baseline conditions against which measured and hypothetical maximum measured conditions could be compared so that the operational effects of heat discharges could be easily distinguished from those caused by atmospheric processes. It is noted that the heat load discharge from the Facility to the lake used to simulate operations occurred for less than three hours of the two-and-a-half-day simulation window owing to the fact that electricity generation at the Facility is only required intermittently to address demand deficits during peak load periods or under supply shortages at other facilities in the territory.

The modelling results indicate that the effects of measured operational heat loads between October 2021 and July 2022 were negligible in magnitude (within fractions of a degree when considered over time) but relatively large in extent (when considered over the surface area of the lake). The results of hypothetical maximum measured discharge simulations, simulated for the purposes of establishing an understanding of effects under different weather and lake conditions, indicate that temperatures could be elevated in magnitude (resulting in short-term lake temperature increases of up to 4°C) but small in scale (with such large increases affecting less than one percent of the lake's surface). Hypothetical maximum discharge effects peaked during the summer period and were lowest during the winter period. Overall, the model results indicate that there are negligible potential operational effects on water quality and on the fish community and fish habitat. The negligible effects observed are localized and intermittent. The maximum expected temperatures within 100 m of the discharge point were evaluated and although temperatures can exceed the thermal optima for Lake Whitefish growth at the surface, thermal refuge remains at deeper depths and throughout the rest of the lake, and elevated temperatures at the surface dissipate to non-operational conditions soon after thermal discharge ceases. However, the thermal

plume model does indicate that there is a potential for longer term and larger waste heat loads to have a larger influence on temperature if the Facility operates for longer periods than observed during the thermal plume study.

Conclusions

The results of the thermal plume study indicate that the Facility had a negligible impact on temperature in Jackfish Lake, reflecting the highly intermittent nature and low heat of loads discharged to the lake during the thermal plume study. Based on the results of the thermal plume delineation study, it is recommended that the Aquatic Effects Monitoring Program (AEMP) Design Plan include continuous temperature monitoring throughout the openwater period, with emphasis on the summer period when maximum temperatures were observed. An adaptive management approach should be considered, based on temperature values, for the initiation and further monitoring of water quality and biological components, if required.

LIST OF ABBREVIATIONS

Term	Definition			
ALS	ALS Canada Ltd.			
BCMOE	British Columbia's Ministry of Environment			
CALA	Canadian Association for Laboratory Accreditation Inc.			
CAT Plant	One of three water-cooled generation plants within the Jackfish Lake Generating Station			
CAT Discharge	discharge from the CAT Plant			
CCME	Canadian Council of Ministers of the Environment			
CWQG	Canadian Water Quality Guidelines			
DL	detection limit			
DO	dissolved oxygen			
EC	Environment Canada			
e.g.	for example			
EMD Plant	One of three water-cooled generation plants within the Jackfish Lake Generating Station			
EMD Discharge	discharge from the EMD Plant			
Facility	Jackfish Lake Generating Station			
GIS	geographic information system			
i.e.,	that is			
K-Plant	One of three water-cooled generation plants within the Jackfish Lake Generating Station			
K Discharge	discharge for the K-Plant			
MVLWB	Mackenzie Valley Land and Water Board			
Mid	Middle			
MIKE 3 FM	MIKE 3 FM, a three-dimensional (3-D) modelling application developed by the Danish Hydraulic Institute			
Minister	Government of Northwest Territories Minister of Environment and Natural Resources			
N	north			
NW	northwest			
NT	Northwest Territories			
NTPC	Northwest Territories Power Corporation			
pH	potential of hydrogen, provides measure of the acidity or alkalinity of a solution on a scale of 0 to 14			
QA/QC	quality assurance and quality control			
QA	quality assurance			
QC	quality control			
S	south			
SW	southwest			
TDS	total dissolved solids			
TSS	total suspended solids			

UNITS OF MEASURE AND SYMBOLS

Term	Definition			
%	percent			
>	greater than			
ha	hectares			
hrs	hours			
°C	degrees Celsius			
μg/L	micrograms per litre			
μS/cm	microsiemens per centimetre			
cm	centimetre			
m	metre			
m³	cubic metres			
m³/S	cubic metres per second			
mg/L	milligrams per litre			
mg-P/L	milligrams as phosphorus per litre			
NTU	nephelometric turbidity unit			

Table of Contents

1.0	0 INTRODUCTION					
	1.1	Background	3			
	1.2	Study Area	3			
	1.3	Purpose and Scope	5			
	1.4	Report Organization	6			
2.0	EXIS	TING ENVIRONMENTAL CONDITIONS	7			
	2.1	Overview of Field Programs	7			
	2.2	Sampling Stations	8			
	2.3	Component Specific Methods	11			
	2.3.1	Water Level and Surface Flow	11			
	2.3.2	Lake Water Temperature	12			
	2.3.3	Water Quality	15			
	2.3.4	Fish and Fish Habitat	19			
	2.4	Quality Assurance and Quality Control	23			
	2.5	Results	23			
	2.5.1	Water Level and Surface Flow	23			
	2.5.2	Lake Water Temperature	25			
	2.5.3	Water Quality	29			
	2.5.4	Fish and Fish Habitat	35			
3.0	THER	MAL PLUME EFFECTS ASSESSMENT	42			
	3.1	Assessment Approach	42			
	3.1.1	Thermal Plume Delineation - Thermal Modelling	42			
	3.1.2	Assessment of Effects to Water Quality	43			
	3.1.3	Assessment of Effects to Fish and Fish Habitat	43			
	3.2	Assessment Results	44			
	3.2.1	Thermal Plume Delineation	44			

	3.2.1	Influence of Cooling Water Discharge on Water Quality	69
	3.2.2	Influence of Operational Discharge on Fish and Fish Habitat	70
4.0	CONCLU	JSIONS AND RECOMENDATIONS	72
5.0	REFERE	NCES	74
TAE	BLES		
Tab	le 1.1-1:	Compliance Table for the Thermal Plume Study Report	5
Tab	le 2.2-1:	Sampling Stations in Jackfish Lake for the Thermal Plume Study	10
Tab	le 2.3-1:	Benchmarks at Jackfish Lake Facility	11
Tab	le 2.3-2:	Summary of Configuration and Dimension of In-Lake Water Temperature Logger Deployment	13
Tab	le 2.3-3:	Flow, Temperature, and Water Level Monitoring Stations to Support the Thermal Modelling	14
Tab	le 2.3-4:	Water Quality Monitoring Stations in Jackfish Lake and Jackfish Lake Inflows and Outflow	16
Tab	le 2.5-1:	Summary of Inflow Field Activities	24
Tab	le 2.5-2:	Summary of Water Level and Outflow Field Activities	24
Tab	le 3.1-1:	Measurement Locations in the Thermal Plumes 100 m from the Discharge Point	44
Tab	le 3.2-1:	Aerial Extent of 95 th Percentile and Median Measured Operational Effects on Jackfish Lake at Lake Surface (6 October 2021 to 27 September 2022 Simulation Period)	48
Tab	le 3.2-2:	Aerial Extent of 95 th Percentile and Median Measured Operational Effects on Jackfish Lake at Lake Bottom (6 October 2021 to 27 September 2022 Simulation Period)	48
Tab	le 3.2-3:	Aerial Extent of 95 th Percentile and Median Hypothetical Operational Effects on Jackfish Lake during Late Fall (21 and 25 October 2021 Simulation Period)	53
Tab	le 3.2-4:	Aerial Extent of 95 th Percentile and Median Hypothetical Operational Effects on Jackfish Lake during Late Winter (10 and 14 April 2022 Simulation Period)	56
Tab	le 3.2-5:	Aerial Extent of 95 th Percentile and Median Hypothetical Operational Effects on Jackfish Lake during Spring Freshet (25 and 29 May 2022 Simulation Period)	
Tab	le 3.2-6:	Aerial Extent of 95 th Percentile and Median Hypothetical Operational Effects on Jackfish Lake during Early Summer (1 and 5 July 2022 Simulation Period)	62
Tab	le 3.2-7:	Aerial Extent of 95 th Percentile and Median Hypothetical Operational Effects on Jackfish	65

FIGURES

Figure 1.1-1:	Regional Location of Jackfish Lake Generating Facility	2
Figure 1.1-2:	Developments Surrounding Jackfish Lake	4
Figure 2.2-1:	Thermal Plume Delineation Study Sampling Stations in Jackfish Lake	9
Figure 2.3-1:	Sonar Transects for Jackfish Lake Bathymetry and Fish Habitat Mapping	20
Figure 2.3-2:	Example of the Sonar Imagery Evaluated for Habitat Classification (Transect R00037; TileT000) and Fish Distribution (Transect R00039; Tile T475) in Jackfish Lake	22
Figure 2.5-1:	Water Level and Outflow Time Series of Jackfish Lake with Discrete Measurements of Water Level, Outflow, and Inflow	25
Figure 2.5-2:	Thermistor Water Temperature Time Series by Plant	26
Figure 2.5-3:	In-Lake Water Temperature Time Series by Location and Position	28
Figure 2.5-4:	Jackfish Lake Bathymetric Surface Generated from Sonar Data	37
Figure 2.5-5:	Jackfish Lake Substrate Types	38
Figure 2.5-6:	Large-bodied Fish Target Distribution in Jackfish Lake	41
Figure 3.2-1:	Annual 95 th Percentile Lake Temperatures in Jackfish Lake at Lake Surface during Measured Operations	46
Figure 3.2-2:	Annual 95 th Percentile Lake Temperatures in Jackfish Lake at Lake Bottom during Measured Operations	47
Figure 3.2-3:	Annual 95 th Percentile Measured Operational Effect Temperatures in Jackfish Lake at Surface	49
Figure 3.2-4:	Annual Median Measured Operational Effect Temperatures in Jackfish Lake at Surface	50
Figure 3.2-5:	Annual 95 th Percentile Measured Operational Effect Temperatures in Jackfish Lake at Bottom	51
Figure 3.2-6:	Annual Median Measured Operational Effect Temperatures in Jackfish Lake at Bottom	52
Figure 3.2-7:	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Surface - Late Fall	54
Figure 3.2-8:	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Bottom - Late Fall	55
Figure 3.2-9:	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Surface - Late Winter	57
Figure 3.2-10:	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Bottom - Late Winter	58
Figure 3.2-11:	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Surface - Spring Freshet	60
Figure 3.2-12:	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Bottom - Spring Freshet	61

Figure 3.2-13:	Seasonal 95 th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Surface - Early Summer	63
Figure 3.2-14:	Seasonal 95 th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Bottom - Early Summer	64
Figure 3.2-15:	Seasonal 95 th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Surface - Late Summer	66
Figure 3.2-16:	Seasonal 95 th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Bottom - Late Summer	67
Figure 3.2-17:	Thermal Structure of Jackfish Lake (Mid-Lake Location) under Hypothetical and Non- Operational Conditions (6 October 2021 through 27 September 2022)	68
Figure 3.2-18:	Model Predictions for Thermal Plume Temperatures, 100 metres from the Discharge Point During Early and Late Summer Periods	71

APPENDICES

APPENDIX A

Thermal Modelling Report

APPENDIX B

Quality Assurance and Quality Control Procedures and Results

APPENDIX C

Water Level and Flow (Excel)

APPENDIX D

Water Temperature (Excel)

APPENDIX E

Water Quality

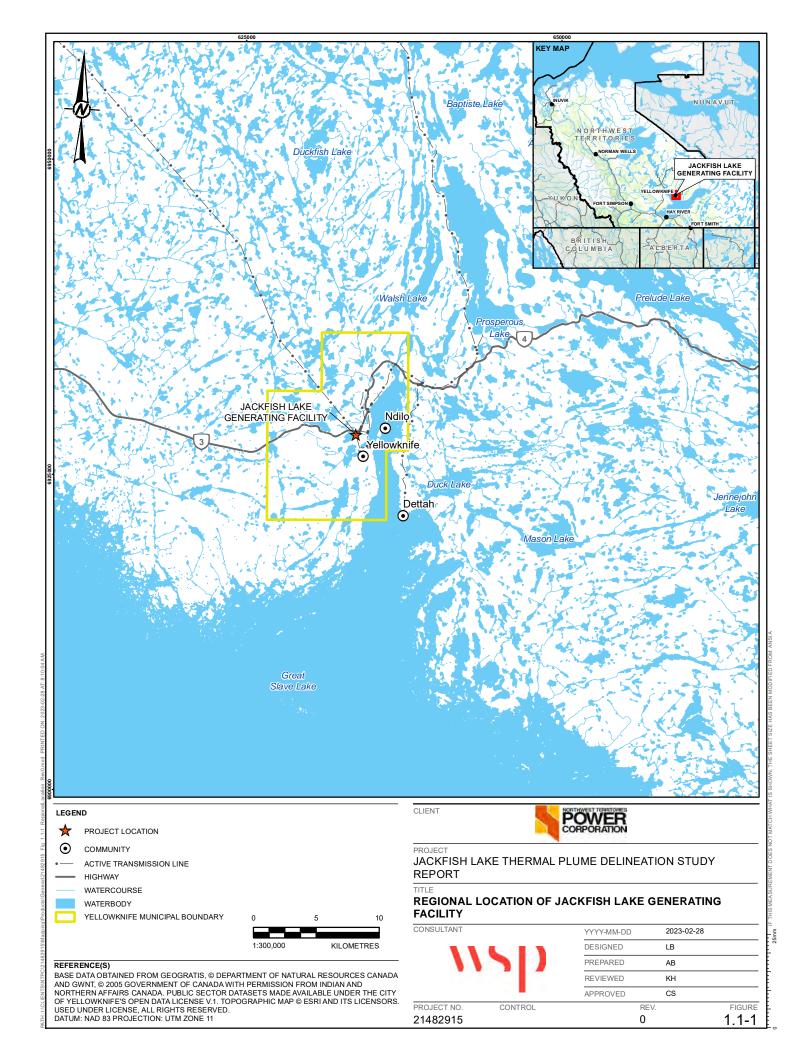
APPENDIX F

Fish and Fish Habitat (Excel)

1.0 INTRODUCTION

The Northwest Territories Power Corporation (NTPC) owns and operates the Jackfish Lake Generating Station (the Facility) located on the northeast shore of Jackfish Lake (previously known as Stock Lake) in Yellowknife, Northwest Territories (NT; Figure 1.1-1). The Facility is located on the northeast shore of Jackfish Lake. The Facility is a critical source of backup power with diesel generators that contribute generation to the North Slave electrical system, including the City of Yellowknife, N'Dilǫ, and Dettah, when required. It is used during periods of peak power demand, during hydroelectric plant maintenance shutdowns, or when hydroelectric power is not available upon loss of the transmission line to the Snare Hydro System. There are three water-cooled generation plants within the Facility: the CAT Plant (built in 1993), the EMD Plant (built in 1974), and the K-Plant (built in 1969). The Facility uses lake water to cool the generators in the system; water is withdrawn from Jackfish Lake through intake pipes, flows through a closed-loop cooling system, and then returns to Jackfish Lake via gravity pipes. Each plant has a cooling system for the generators; the K-Plant has two intakes, and the EMD and CAT Plants each have one intake; each plant also has one discharge pipe.

The Facility's cooling systems and water withdrawal from Jackfish Lake were regulated under Water Licence N1L1-1632 (MVLWB 1995). The expiry date of the Water Licence N1L1-1632 was 31 December 2019; therefore, NTPC prepared a Water Licence renewal application for the Facility and submitted it to the Mackenzie Valley Land and Water Board (MVLWB; the Board) on 25 February 2019. On 27 September 2019, the MVLWB recommended that the new Water Licence (MV2019L1-0001; the Water Licence) be approved by the Government of Northwest Territories Minister of Environment and Natural Resources (the Minister). The Water Licence was signed by the Minister and issued on 18 October 2019 (MVLWB 2019a).


The Water Licence included a requirement for NTPC to submit for approval a Thermal Plume Delineation Study Design Plan (Thermal Plume Study Design) within 90 days following issuance of the Water Licence (MVLWB 2019b). The Thermal Plume Study Design version 1.0 was submitted to the MVLWB on 16 January 2020, with the caveat that execution of the study was contingent on installation of the flow monitoring instrumentation.

The Thermal Plume Study Design version 1.0 was deemed adequate by the MVLWB (MVLWB 2020); however, the MVLWB noted that the chosen model required a full year to calibrate the model and to confirm that the model is working and valid. Therefore, a delay in the submission schedule of the Thermal Plume Delineation Study Report (Thermal Plume Study Report) would be needed and MVLWB requested an updated study design with a revised schedule. The Thermal Plume Study Design version 2.0 was submitted on 15 July 2020 with the updated schedule.

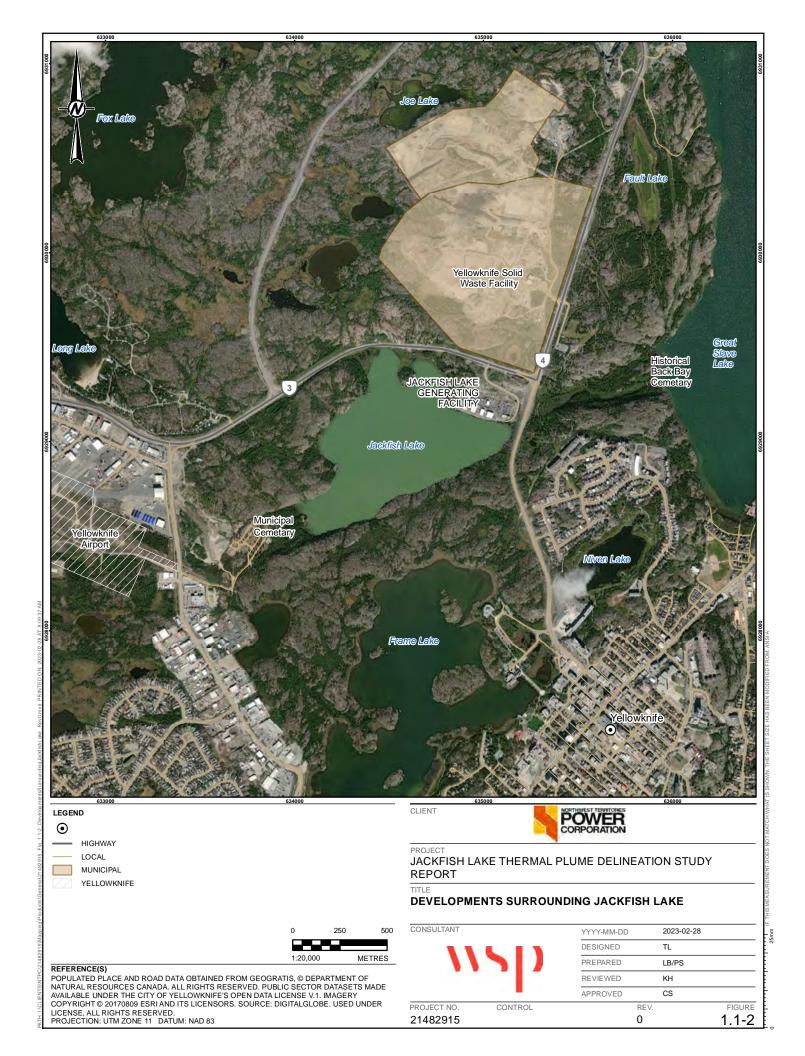
Since the submission of the Thermal Plume Study Design version 2.0, NTPC determined that the instrumentation could not be installed until September 2020; therefore, a delay in the sampling program was anticipated, which would also cause a delay in submission of the Thermal Plume Study Report. The MVLWB requested an additional updated version of the study design with the new revised schedule for submission of the Thermal Plume Study Report. The Thermal Plume Study Design version 2.1 (Golder 2021) was submitted on 28 May 2021 with the revised schedule for submission of the Thermal Plume Delineation Report (Thermal Plume Study Report).

The MVLWB approved the study design based on the decision that if the Thermal Plume Study Report identifies deficiencies in the design of the program, then these deficiencies could be addressed through a Board directive for an additional thermal plume assessment or through on-going monitoring as part of the Aquatic Effects Monitoring Program (AEMP; MVLWB 2019b), required under Part F, Condition 1 of the Water Licence (MV2019L1-0001).

1.1 Background

Water that discharges to Jackfish Lake from the Facility is warmer than the water that is withdrawn from the lake when one or more of the power generating systems is operating. Studies have shown that thermal discharges to waterbodies have the potential to affect the aquatic environment; however, most studies have demonstrated that effects tend to be localized, depending on the size of the receiving waterbody (EC 2014). Thermal discharge may result in localized alteration of an organism's physiological and behavioural processes; it may affect primary and secondary production, and cause changes in species composition (EC 2014).

For fish, increased temperatures result in increased rates of metabolism and respiration, as well as increased activity and food consumption (EC 2014). Temperature also affects reproduction, growth, and longevity and can adversely affect species diversity and trophic relationships (Golder 2019a; Spotila et al. 1979).


Thermal discharges from the Facility may result in prolonged and more stable thermal stratification in the lake, which in turn may result in prolonged anoxia at the lake bottom and greater release of the limiting nutrient (phosphorus) and metals from sediments compared to lakes not subject to thermal inputs (Golder 2019a). Additional internal loads of phosphorus from the sediment to the water column could enhance phytoplankton growth and thereby increase the likelihood of summer algal blooms. In addition, increased temperatures can also have an adverse effect when combined synergistically with toxicants (EC 2014). With increasing temperature, toxicity of some contaminants increases (e.g., ammonia; CCME 1999) and the resistance for fish species to disease is lowered.

1.2 Study Area

The study area consists of Jackfish Lake itself, two inflow locations, and the immediate outflow from the lake. Jackfish Lake is located on the northern end of the City of Yellowknife, immediately southwest of the intersection of Highway 3 and the old access to the Ingraham Trail, and approximately 300 metre (m) south of the Yellowknife Solid Waste Facility (Figure 1.1-2). A municipal cemetery is located on the southwest side of the lake.

Inflows to the lake have been observed at two locations in the northwest bay of Jackfish Lake. The lake outlet intermittently drains into a channel that flows into Great Slave Lake, which is approximately 750 m east of Jackfish Lake. The four intake and three discharge pipes for the Facility are located along the northeast shore of Jackfish Lake.

1.3 Purpose and Scope

The purpose of the thermal plume delineation study is to evaluate if there are effects from the thermal discharges of the Facility on the aquatic receiving environment in Jackfish Lake. Part E, Condition 4 of the Water Licence (MV2019L1-0001) required that NTPC submit a thermal plume delineation study design and perform the subsequent study associated with the design. The study was conducted following the Thermal Plume Delineation Study Design version 2.1 (Golder 2021) between 6 October 2021 and 27 September 2022.

The Thermal Plume Study Report provides the results of the thermal plume delineation study. The specific objectives, as per Schedule 2, Condition 2 in the Water Licence (MVLWB 2019b), are listed in Table 1.1-1. Table 1.1-1 also provides the locations of where each condition is addressed in this document. The thermal plume study consists of two main components:

- 1) a summary of existing conditions (Section 2)
- 2) a thermal plume effects assessment, which is focused on model development and evaluation of model results (Section 3)

Components of the study included:

- operational temperature flux measurements, using in-situ instrumentation (used for inputs to thermal model)
- lake temperature measurements, using in-situ temperature loggers (used for inputs to thermal model)
- water flow and water level measurements (used for inputs to thermal model)
- water quality sampling and in-situ field measurements
- fish and fish habitat (i.e., aquatic habitat) program, including lake bathymetry and a sonar survey
- thermal modelling

The thermal model provides a seasonal delineation of the thermal plume and an estimate the maximum extent of the thermal plume (Item a in Table 1.1-1). The details of the model calibration, validation, and results are provided in Appendix A.

Table 1.1-1: Compliance Table for the Thermal Plume Study Report

Item	Location
a) Maps illustrating the extent of the thermal plume and any seasonal changes documented;	Section 3.2.1 and Appendix A, Attachment C
b) Graphical representation of the thermal profile and applicable water quality data;	Section 2.5.3; Appendix E
c) Identification of the worse-case thermal plume scenario of the four seasonal conditions identified in Schedule 1, item 1a;	Section 3.2.1 and Appendix A
d) Discussion of results and potential impacts to the aquatic ecosystem in Jackfish Lake and recommendations to inform the Aquatic Effects Design Report; and	Sections 3.2 and 4.0
e) Tabular summaries of all data and information generated under the Thermal Plume Delineation Study, in Excel format.	Appendix C, D, E, and F

1.4 Report Organization

The report is organized as follows:

Section 1 – Introduction (background, study area, and purpose and organization of the report)

- Section 2 Existing Environmental Conditions:
 - Sections 2.1 to 2.7 describe the methods used to characterize existing conditions in Jackfish Lake (for model input), including quality assurance and quality control (QA/QC) procedures and results.
 - Section 2.8 describes the results of the recent field studies that were conducted to characterize existing conditions
- Section 3 Thermal Plume Effects Assessment:
 - Section 3.1 describes the assessment approach for the thermal plume delineation, and the assessment of potential effects on water quality, fish and fish habitat
 - Section 3.2 describers the results of the thermal assessment including a discussion of potential impacts to the aquatic ecosystem
- Section 4 Conclusions and Recommendations (where recommendations are to inform the Aquatic Effects Design Report)
- Section 5 References

In addition to the above sections, a description of the data analysis and modelling methods, model calibration and results is provided in Appendix A (Thermal Modelling) and detailed quality assurance and quality control (QA/QC) procedures and results are provided in Appendix B (Quality Assurance and Quality Control). Tabular summaries of all data and information generated under the thermal plume delineation study are provided in Excel format in appendices C through F.

2.0 EXISTING ENVIRONMENTAL CONDITIONS

2.1 Overview of Field Programs

Five sampling programs were completed with the objectives of capturing seasonal differences in temperature and water quality in the lake and to fill data gaps on the existing environment to assess the thermal plume within the lake and to assess effects of inflows to Jackfish Lake:

Late fall: September/October 2021

Late winter: March 2022

Spring freshet: May 2022

Early Summer: July 2022

Late Summer: August 2022

During each sampling program, the following were routinely completed:

Water level measurement

- Inspection of lake inlets and outlet, with measurement of flow, if flowing
- Downloads of water temperature loggers and confirming correct position
- Downloads of thermistor data loggers
- Water quality sampling and field measurements

The fish and fish habitat assessment, including lake bathymetry, was conducted in September 2021. Two non-sampling programs (i.e., visits) took place in December 2021 and September 2022. In December 2021, the position of in-lake temperature loggers was confirmed after ice formation. In September 2022, a final download of in-lake temperature loggers and thermistors was completed, and subsequently, the in-lake temperature loggers were removed from the lake. The thermistors were not removed.

2.2 Sampling Stations

Sampling locations for the thermal plume study (Figure 2.2-1) were selected based on monitoring locations from the 2018 Environmental Monitoring Report (Golder 2019b), feedback from reviewers during the Water Licence application process, and location requirements in the Water Licence (Schedule 2, Condition 1d):

- a minimum of one station located outside of the potential plume but situated such that potential influence of inflow[s] can be characterized
- 2) one station located at, or near, the outflow of Jackfish Lake

The location coordinates and applicable study component for each station are provided in Table 2.2-1. Specifics applicable to each of these sampling stations are summarized as follows:

- Thermistors that were installed at the intakes and discharges measured the temperature of the water being circulated through the Facility and back into the lake.
- Temperature loggers that were deployed vertically in the water column measured water temperature at three stations in the immediate vicinity of the discharges from the Facility (i.e., K, EMD, and CAT discharges) and at three in-lake stations.
- Lake water level monitoring occurred at a location near the Facility discharge.
- Flow rates at lake inflows and the outflow were measured to characterize hydrological processes of the lake.
- Water quality samples and field measurements were collected in the immediate vicinity of the discharges from the Facility (i.e., EMD and K, EMD and CAT discharges), at in-lake stations and watercourse stations to characterize quality in Jackfish Lake and its inflows and outflow.
- Fish habitat mapping was conducted throughout Jackfish Lake.

In addition to the in-lake sampling, temperature sensors and in-line flow meters were installed by NTPC to monitor flow rates, intake temperature, and discharge temperature of cooling loops within the Facility.

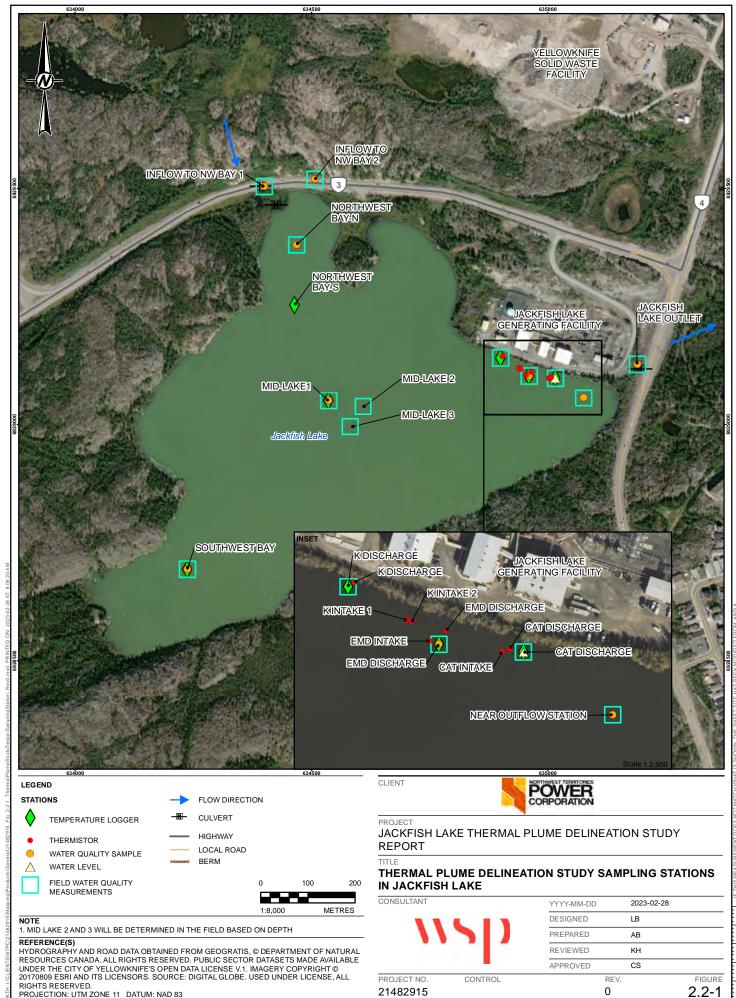


Table 2.2-1: Sampling Stations in Jackfish Lake for the Thermal Plume Study

Area	Station	UTM Coordinates (NAD 83, Zone 11)		Thermisters	Water Flow	Weterland	T	Water Quality	Water Quality Sampling
		Easting	Northing	Thermistors	Water Flow	Water Level	Temperature	Field Measurement	water Quality Sampling
	Inflow to NW Bay 1 ^(a)	634506	6929495	-	-	-	-	-	-
Watercourse	Inflow to NW Bay 2	634400	6929503	-	X ^(b)	-	-	Х	х
	Outflow of Jackfish Lake	635189	6929127	-	X ^(b)	-	-	Х	х
	K Intake 1	634939	6929119	х	-	-	-	-	-
letelsee le Lelse	K Intake 2	634942	6929118	х	-	-	-	-	-
Intakes In-Lake	EMD Intake	634954	6929105	х	-	-	-	-	-
	CAT Intake	635002	6929098	х	-	-	-	-	-
	K Discharge	634904	6929144	х	-	-	-	-	-
Discharges In-Lake	EMD Discharge	634965	6929112	х	-	-	-	-	-
	CAT Discharge	635007	6929100	х	-	-	-	-	-
	Northwest Bay - N	634468	6929380	-	-	-	-	Х	х
	Northwest Bay - S	634464	6929253	-	-	-	х	-	-
	Mid Lake 1	634536	6929050	-	-	-	х	Х	х
	Mid Lake 2	634608	6929037	-	-	-	-	Х	-
la Laba	Mid Lake 3	634580	6928995	-	-	-	-	Х	-
In-Lake	EMD Discharge - In lake	634960	6929103	-	-	-	х	Х	х
	CAT Discharge - In lake	635016	6929098	-	-	х	х	Х	-
	K Discharge - In lake	634900	6929141	-	-	-	х	Х	-
	Southwest Bay	634237	6928693	-	-	-	х	Х	х
	Near Outflow - In lake	635080	6929055	-	-	-	-	Х	х
	SNP 00-1a: K Plant Intake 1	n/a	n/a	-	X ^(c)	-	х	-	-
	SNP 00-1b: K Plant Intake 2	n/a	n/a	-	X _(c)	-	х	-	-
	SNP 00-1c: EMD Plant Intake	n/a	n/a	-	X _(c)	-	Х	-	-
In-Plant	SNP 00-1d: CAT Plant Intake	n/a	n/a	-	X(c)	-	х	-	-
	SNP 00-2a: K Plant Discharge	n/a	n/a	-	-	-	Х	-	-
	SNP 00-2b: EMD Plant Discharge	n/a	n/a	-	-	-	х	-	-
	SNP 00-2c: CAT Plant Discharge	n/a	n/a	-	-	-	Х	-	-

⁽a) Station was not sampled because it was dry.

⁽b) Manual instantaneous measurement.

⁽c) Automatic continuous measurements.

UTM = Universal Transverse Mercator; NAD = North American Datum of 1983, Zone 11; "-" = not measured or sampled; SNP = Surveillance Network Program; n/a = not applicable, location is inside plant.

2.3 Component Specific Methods

2.3.1 Water Level and Surface Flow

2.3.1.1 Field Methods

Water Level

A hydrometric station with continuous water level measurements was operated near the CAT Discharge. Two Solinst Leveloggers and a Barologger were installed on 30 September 2021 to continuously measure water level and barometric pressure to provide compensated water level data. Manual surveys of water surface elevation were performed relative to geodetic benchmarks adjacent to CAT Plant, which allowed the generation of a time series of water surface elevation. Benchmarks were established during monitoring in 2018 (Golder 2019b) and are provided in Table 2.3-1. Checks and downloads of the Leveloggers and Barologger, and measurement of water level was completed during each of the five sampling programs. The Leveloggers and Barologger were removed from the field at the end of the thermal plume study, on 27 September 2022.

Table 2.3-1: Benchmarks at Jackfish Lake Facility

Benchmark	Location	UTM Coordinates (NAD 83, Zone 11) ^(a)		Description	Elevation	
Dencimark	Location	Easting (m)	Northing (m)	Description	(m; geodetic)	
BM1	West edge of CAT Plant	635015	6929137	Top of fastener in siding of plant, marked with embossed tag	175.733	
BM2	West edge of CAT Plant	635015	6929137	Top of bolt securing column to slab, marked with embossed tag	175.527	

⁽a) All coordinates were collected using a handheld GPS and are subject to a horizontal accuracy of 3 to 5 m. UTM = Universal Transverse Mercator; NAD = North American Datum of 1983, Zone 11; BM = benchmark.

Water Flow

During each sampling program, the identified lake inlets (two culvert crossings at Highway 3 north of Jackfish Lake) and the lake outlet were inspected, and if flow was observed, an instantaneous measurement was collected. Manual water flow measurements were collected following the Water Survey of Canada standard (Terzi et al. 1994). Velocity and depth measurements used for the calculation of flow using the area-velocity method were collected using a SonTek FlowTracker Handheld Acoustic Doppler Velocimeter, or a Hach FH950, with a top-setting wading rod. In addition, a qualitative assessment of fish passage was conducted at the culvert near the outlet of the lake during the field program.

2.3.1.2 Data Analysis

A relationship between paired measurements of lake water surface elevation and lake outflow, referred to as a rating curve, was developed to derive the lake outflow for a given lake water surface elevation. During inspections of the outlet, the stage datum (i.e., the elevation at which there would be no lake outflow) was measured to support the derivation of a lake outflow time series.

Water level and surface flow data were primarily used as hydrological inputs to support the thermal model.

2.3.2 Lake Water Temperature

2.3.2.1 Field Methods

Thermistors

Seven thermistors ($3k \Omega$ type) were installed at all plant intakes and discharges (four intakes and three discharges) to measure the temperature of the water being circulated through the Facility and back into the lake (Figure 2.2-1; Tables 2.3-2 and 2.3-3). Thermistors at the intakes and discharges of the plants were installed in an enclosure outdoors on a pole near K-Plant in 2018 (Golder 2019b), and data from the thermistors were available for the thermal plume study from 30 September 2021 to 27 September 2022. The thermistors were located at the intakes and discharges in the lake where thermistor temperatures are subject to environmental and atmospheric influences. The discharge pipes are located near the surface of the water (i.e., 0.6 metres) where water is often warmer, whereas intakes are located on the lakebed, where water is cooler.

A multi-channel data logger (RST DT2055 data logger) collected data automatically, at 15-minute intervals throughout the study period. Data were downloaded during each of the five sampling programs and at the end of the study in September 2022. The thermistors and data logger were left in place and remain operational.

Temperature Loggers

In-lake water temperature monitoring was initiated on 5 October 2022. Lake water depths at each in-lake station were measured during the late fall sampling program, and these data were used to construct the anchor-cable-buoy string and to space the temperature loggers appropriately. A length of chain was included at the anchor to resist loading to the anchor in the case of winds and waves, and any additional length of cable and chain was expected to sit at the lake bottom, until it was mobilized. The measured dimensions and spacing of temperature loggers are summarized in Table 2.3-2.

Temperature loggers (i.e., HOBO Pendant MX2204 Water Temperature Data Loggers) were deployed at six stations: three in the immediate vicinity of the discharges from the Facility (i.e., K, EMD, and CAT discharges) and at three in-lake locations (Tables 2.3-3). At each station, temperature loggers were suspended vertically in the water column by an anchored steel cable and buoy. Target depths included one logger positioned 1 m from the lake bottom, one near the surface and a number of temperature loggers distributed in between, with the number dependent on water depth. The depth of the near surface temperature logger, for the three stations near the Facility, was 0.3 m below surface because the loggers were deployed in areas of year-round open water. For the three stations farther from the Facility, where ice cover formed during the winter, the upper temperature loggers were deployed 1 m below surface. At K Discharge, where depths were shallow, only a near-bottom and near-surface temperature logger were deployed. At Mid Lake 1, where water depths were greatest, a total of four temperature loggers were deployed: near-bottom, near-surface, and two others at one third and two thirds of water depth. All other stations were comprised of three temperature loggers: near-bottom, near-surface, and at mid-depth.

Data were collected at 15-minute intervals, and monitoring was suspended on 27 September 2022, and temperature loggers and associated deployment materials were removed from the field. Temperature loggers at the Southwest Bay station were mistakenly deployed at an incorrect location during the December 2021 program. The location was corrected in March 2022. During the late March program, it was discovered that the temperature logger at the near-bottom position at Mid Lake 1 failed and was replaced; therefore, water temperatures are not available from the start of the thermal plume study until late March. Following retrieval of the temperature loggers for downloading in late March, the data suggests that the near-surface temperature logger froze in ice, reporting sub-zero temperature.

Table 2.3-2: Summary of Configuration and Dimension of In-Lake Water Temperature Logger Deployment

Station	Water Depth at Station ^(a) (m)	Top Logger (m)	Mid 1 Logger (m)	Mid 2 Logger (m)	Bottom Logger (m)	Start of Chain (m)	Anchor (m)
Northwest Bay - S	6.8	1.00	3.33	3.40	5.79	7.46	8.32
Mid Lake 1	7.7	1.00	2.55	5.12	6.69	8.34	9.23
EMD Discharge	5.3	0.30	2.63	n/a	4.28	5.80	6.75
CAT Discharge	2.85	0.30	1.42	n/a	1.85	3.47	4.33
K Discharge	1.6	0.30	n/a	n/a	1.00	2.65	3.52
Southwest Bay	5.3	1.00	2.63	n/a	4.30	5.93	6.80

Note: All lengths are relative to the center of the buoy with the cable and chain fully outstretched.

⁽a) Water depth measured on 29 September 2021.

S =south; n/a =not applicable

Table 2.3-3: Flow, Temperature, and Water Level Monitoring Stations to Support the Thermal Modelling

Component	Station	Sample Type	Frequency/Duration	Rationale
	Inflow to NW Bay 1	Watercourse - lake inflow; manual flow measurements	Late Fall, Late Winter, Spring Freshet, Early Summer, Late Summer	Measurements collected with intention to capture high and low flow conditions at inflows
	Inflow to NW Bay 2	Watercourse - lake inflow; manual flow measurements	Late Fall, Late Winter, Spring Freshet, Early Summer, Late Summer	Measurements collected with intention to capture high and low flow conditions at inflows
Flows	Outflow of Jackfish Lake	Watercourse - lake outflow; manual flow measurements	Late Fall, Late Winter, Spring Freshet, Early Summer, Late Summer	Measurements collected with intention to capture high and low flow conditions at outflows
	EMD, CAT, and K Intake and Discharge Point	Logger	Automatic level data (15 to 60-minute intervals) recorded throughout entire year	Cooling water intake and discharge flows
Lake level			Automatic level data (15 to 60-minute intervals) recorded throughout entire year	Measurements of water level and barometric pressure to provide required lake level data for modelling and other analytical applications
	Northwest Bay - S	Lake - multi-depth in-lake temperature loggers	Automatic temperature data at 15-minute intervals throughout the year	Identify changing temperature gradient over time
	Mid Lake 1	Lake - multi-depth in-lake temperature loggers	Automatic temperature data at 15-minute intervals throughout the year	Identify changing temperature gradient over time
	EMD Discharge - In lake	Lake - multi-depth in-lake temperature loggers	Automatic temperature data at 15-minute intervals throughout the year	Characterize thermal plume, and identify changing temperature gradient over time during non-operational conditions
Temperature	CAT Discharge - In lake	Lake - multi-depth in-lake temperature loggers	Automatic temperature data at 15-minute intervals throughout the year	Characterize thermal plume, and identify changing temperature gradient over time during non-operational conditions
	K Discharge - In lake	Lake - multi-depth in-lake temperature loggers	Automatic temperature data at 15-minute intervals throughout the year	Characterize thermal plume, and identify changing temperature gradient over time during non-operational conditions
	Southwest Bay	Lake - multi-depth in-lake temperature loggers	Automatic temperature data at 15-minute intervals throughout the year	Identify changing temperature gradient over time
	EMD, CAT, and K Intake and Discharge Point	Thermistor temperature logger	Automatic temperature data at 15-minute intervals throughout the year	Characterize hourly cooling water intake and discharge temperatures

Note: Periodic manual measurements are required to verify no issues with logger drift/accuracy.

NW = northwest; S = south.

2.3.2.2 Data Analysis

Thermistor and temperature logger data were primarily used as hydrological inputs to support the thermal model.

2.3.3 Water Quality

Water quality sampling stations were selected to characterize water quality in the inflows to Jackfish Lake (i.e., to characterize the influence of inflows on lake water quality), in Jackfish Lake close to and further from the thermal discharges, and in the outflow from Jackfish Lake (Table 2.3-4, Figure 2.2-1). During the five field programs, water quality samples were collected at the five lake stations and at the watercourse stations, when flow was observed. The following watercourse stations were not sampled between September 2021 and August 2022 due to the absence of observed flow:

- Inflow to NW Bay 1 during all the five field programs
- Inflow to NW Bay 2 in late winter (22 to 25 March 2022) and late summer (24 and 25 August 2022)
- Outflow of Jackfish Lake in late winter (22 to 25 March 2022) and late summer (24 and 25 August 2022)

2.3.3.1 Field Methods

Water quality sampling and field measurements were completed at the inflow to Jackfish Lake and at the outflow of Jackfish Lake, and at five locations in Jackfish Lake. Four additional stations in Jackfish Lake were monitored for field measurements only (Table 2.3-4). Water quality samples and field measurements were collected during late fall (30 September and 1 October 2021), late winter (22 to 25 March 2022), spring freshet (24 to 26 May 2022), early summer (5 and 6 July 2022), and late summer (24 and 25 August 2022). Monitoring was conducted at all water quality stations during each field program, with the exception of the watercourse stations where samples were not collected if flow was not observed.

Water Quality Field Measurements

Field water quality measurements within Jackfish Lake were collected as vertical profile measurements recorded at 1-m depth intervals (or 0.5-m intervals if the total depth was less than 4 m) throughout the water column using a handheld multi-parameter water quality meter (In-Situ AquatTroll 600). Secchi depth and total water depth were also measured at each profile location. At watercourse stations, surface field measurements were collected approximately 0.3 m under the water surface. The profile or surface measurements consisted of:

- water temperature (°C)
- pH
- Dissolved oxygen (DO) in milligrams per litre (mg/L) and percent saturation (%)
- specific conductivity (microsiemens per centimetre [µS/cm])

Additional field information such as station name and location coordinates, total depth, and weather conditions were also recorded.

Table 2.3-4: Water Quality Monitoring Stations in Jackfish Lake and Jackfish Lake Inflows and Outflow

Station	Monitoring Dates	Sample Type and Depth ^(a)	Rationale	
Inflow to NW Bay 1 ^(b)	-	Watercourse - surface sample and surface field measurement	Characterize water quality in inflows to lake	
Inflow to NW Bay 2 ^(c)	Late Fall (30 September 2021) Spring Freshet (26 May 2022) Early Summer (6 July 2022)	Watercourse - surface sample and surface field measurement	Characterize water quality in inflows to lake	
Northwest Bay - N	Late Fall (30 September and 1 October 2021) Late Winter (22 to 25 March 2022) Spring Freshet (24 to 26 May 2022) Early Summer (5 and 6 July 2022) Late Summer (24 and 25 August 2022)	Lake - bottom and mid-depth sample and field measurement profile	Characterize influence of inflows on in-lake water quality, outside of the potential thermal plume, and identify vertical differences in water quality in the water column	
Mid Lake 1	As above	Lake - bottom and mid-depth sample and field measurement profile	Characterize water quality at a deep location in the lake, and identify vertical differences in water quality in the water column	
Mid Lake 2	As above	Lake - field measurement profile	Provide additional field profile information for DO and temperature at deep locations	
Mid Lake 3	As above	Lake - field measurement profile	Provide additional field profile information for DO and temperature at deep locations	
EMD Discharge - In lake	As above	Lake - bottom and mid-depth sample and field measurement profile	Characterize water quality in the potential thermal plume and identify vertical differences in water quality in the water column	
CAT Discharge - In lake	As above	Lake - field measurement profile	Provide additional field profile information for DO and temperature in the potential thermal plume	
K Discharge - In lake	As above	Lake - field measurement profile	Provide additional field profile information for DO and temperature in the potential thermal plume	
Southwest Bay	As above	Lake - bottom and mid-depth sample and field measurement profile	Characterize water quality least influenced by discharges or observed inflows	
Near Outflow - In lake	As above	Lake - bottom and mid-depth sample and field measurement profile	Characterize lake water quality near the outflow and identify vertical differences in water quality in the water column	
Outflow of Jackfish Lake ^(c)	Late Fall (30 September 2021) Spring Freshet (24 May 2022) Early Summer (6 July 2022)	Watercourse - surface sample and surface field measurement	Characterize water quality in the outflow from lake	

Note: Field measurements included water temperature, dissolved oxygen (concentration and percent saturation), pH, and specific conductivity.

DO = dissolved oxygen; NW = northwest; S = south.

⁽a) Bottom samples were collected 1 m above lake bottom, surface samples, and surface field measurements were collected approximately 30 cm below the water or ice surface, and water quality field measurement profiles were collected at 1 intervals (or at 0.5 m intervals if the total depth was less than 4 m).

⁽b) Flow was not observed at Inflow to NW Bay 1 during the Thermal Plume Delineation Study from September 2021 to August 2022; therefore, sampling and field measurements were not completed at this station.

⁽c) Flow was not observed at Inflow to NW Bay 2 or Outflow of Jackfish Lake during the Thermal Plume Delineation Study in late winter or late summer; therefore, sampling and field measurements were not completed at this station during these months.

Water Quality Samples

During each program, samples were collected at each of the five lake stations at mid-depth and at the bottom (1 m above the lake bottom) of the water column using a Kemmerer sampler and at watercourse stations by directly filling bottles provided by the laboratory. Lake samples were poured from the Kemmerer sampler into sample bottles provided by the laboratory. If more than one full volume of the sampler was required to fill the bottle suite, the bottles would be filled by splitting the sample from each Kemmerer volume equally between the bottles. Water from the Kemmerer sampler (for lake samples) or extra laboratory-grade bottle (for watercourse samples) was also used to measure turbidity in the field using a turbidity meter (LaMotte 2020we); turbidity measurements were based on the average of three readings from the turbidity meter.

Samples with dissolved parameters were filtered and preserved according to laboratory instructions. Prior to transport to the analytical laboratory, samples were stored in coolers and kept cool with ice packs. Analysis request and chain-of-custody forms were used to request the analysis and track samples, respectively.

All water quality samples were sent to ALS Group (ALS) in Vancouver, British Columbia, Canada, an analytical laboratory accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for analysis of routine parameters, major ions, nutrients, and total and dissolved metals:

- Routine parameters (hardness, total alkalinity, specific conductivity, total dissolved solids [TDS], total suspended solids [TSS], turbidity, pH)
- Major ions (fluoride, chloride, sulphate, calcium, potassium, magnesium, sodium)
- Nutrients (total and dissolved phosphorus, nitrate, nitrite, total ammonia, total nitrogen, reactive silica, dissolved organic carbon)
- Total and dissolved metals (aluminum, antimony, arsenic, barium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, thallium, uranium, and zinc)

Bottom samples from the Northwest Bay - N and the Near Outflow - In lake stations were sent to ALS for analysis of:

- Oil and grease (hexane extractable)
- Total petroleum hydrocarbons (F1, F2, F3, F4 Canadian Council of Ministers of the Environment [CCME] fractions)
- Benzene, toluene, ethylbenzene, xylene (BTEX)

Surveillance Network Program

As part of the Water License (MV2019L1-0001), NTPC is required to continuously monitor water temperature and flow at all plant intakes (SNP 00-1a,b,c,d) during periods of discharge to Jackfish Lake. NTPC is also required to measure water temperature at all plant discharge locations (SNP 00-2a,b,c,d) during periods of discharge to Jackfish Lake (Figure 2.2-1).

2.3.3.2 Data Analysis

General Water Quality Characterization and Comparisons to Water Quality Guidelines

Water quality data collected during the thermal plume study were tabulated and compared to Canadian Water Quality Guidelines (CWQGs; CCME 1999). Parameter-dependent CWQGs (e.g., total ammonia, aluminum, cadmium, copper, lead, manganese, nickel, and zinc) were calculated for each sampling event and for each sampling station based on individual sample parameter values. The results of water quality data collected in the inflow to Jackfish Lake, within Jackfish Lake, and at the outflow of Jackfish Lake during the study were also reviewed to provide a general characterization of water quality in these areas.

Spatial and Seasonal Patterns

Water quality data from the inflow to Jackfish Lake, within Jackfish Lake, and at the outflow of Jackfish Lake were plotted to qualitatively review spatial and seasonal patterns in Jackfish Lake and assess differences between inflow, outflow, and lake water quality. Seasonal profiles at either 1-m intervals (for field parameters in the lake) or mid and bottom depths (for routine parameters, nutrients, metals, and hydrocarbons in the lake) were plotted to assess water quality differences within the water column of Jackfish Lake.

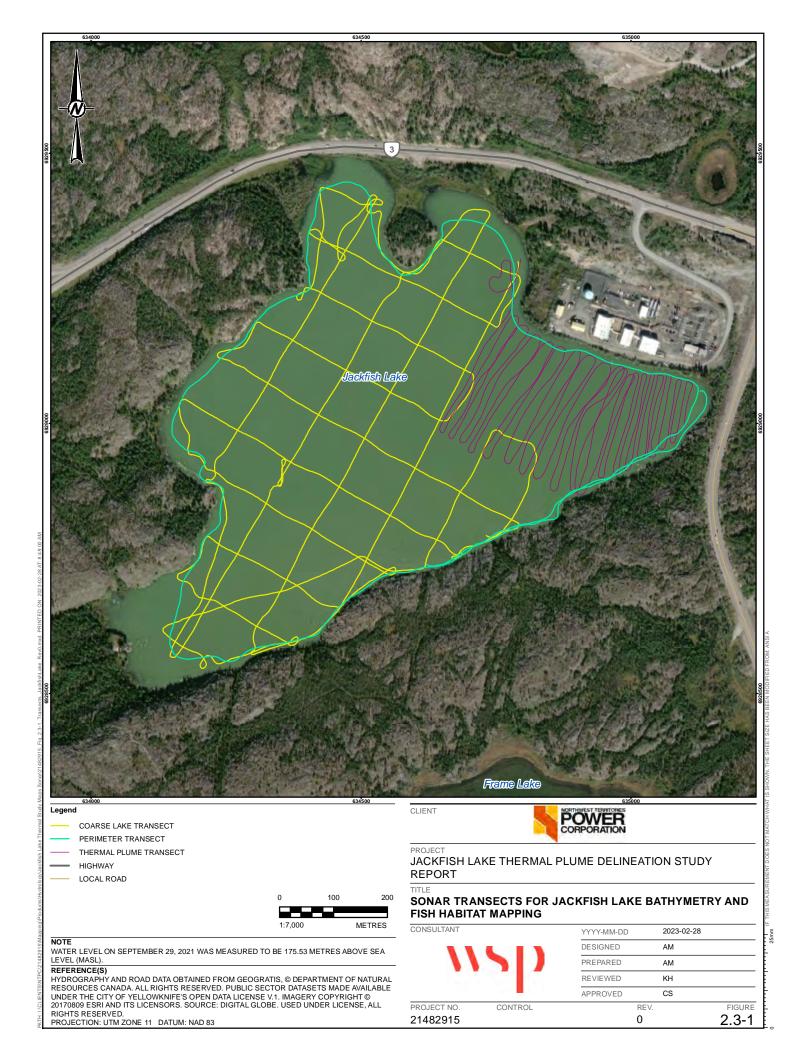
Influence of Lake Inflows

The water quality results from the inflow samples were compared to the lake sample results to assess the potential for the inflow to influence lake water quality. The potential for the watercourse inflow to influence water quality in Jackfish Lake was assessed by completing two comparisons:

- concentrations were 20% higher in the inflow relative to the Southwest Bay station (located farthest from the inflow)
- concentrations were 20% higher at the Northwest Bay station (located closest to the inflow) relative to other stations in Jackfish Lake

For the first comparison, both concentrations from the mid-depth and the lake bottom samples at the Southwest Bay station were compared to inflow concentrations. For the second comparison, concentrations in mid-depth samples at the Northwest Bay – N station were compared to concentrations in mid-depth samples at other Jackfish Lake stations; similarly, concentrations in bottom samples at the Northwest Bay – N station were compared to concentrations in bottom samples at other lake stations.

Concentrations below detection limits were assumed to be equal to the detection limit during the comparison. A difference of 20% was selected to identify parameters for further review because concentrations that are within 20% of each other are typically not considered notably different (Appendix B). If both criteria were met during one or more field programs, these parameters were reviewed further to assess the potential of influence from the inflows by evaluating the spatial trends in the lake with increasing distance from the inflows.

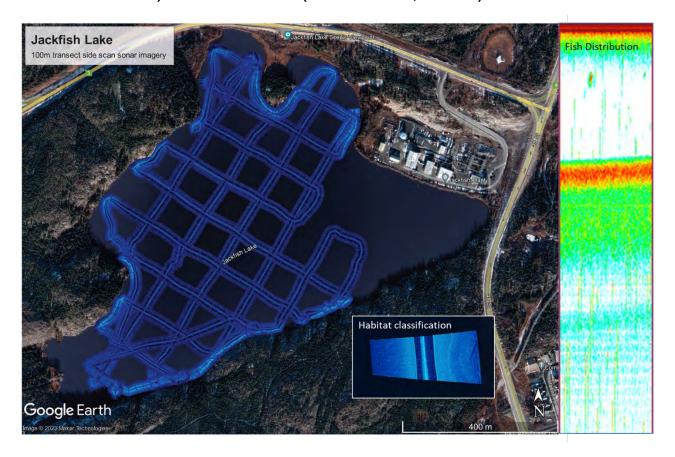

2.3.4 Fish and Fish Habitat

2.3.4.1 Field Methods

A fisheries survey was completed for Jackfish Lake in August of 2018 to evaluate the potential effects of the cooling system water discharges on Jackfish Lake (Golder 2019b). In September 2021, a sonar survey using a Helix 5 Chirp SI GPS G2 side-scan sonar unit was conducted in Jackfish Lake to map the fish habitat in the lake with particular focus on areas near the discharges to better understand fish use of the area. The side-scan sonar was used to map depths, benthic habitat (substrates), and large-bodied fish target distributions around the discharge pipes and throughout the lake, providing high-resolution images to map the extent to which vegetation and rocky shoals intersect the thermal plume. All sonar data was logged on the sonar unit, stored on a memory card, then uploaded to the Project SharePoint folder upon return to the office, whereas field notes were recorded on datasheets during the survey, then scanned and uploaded upon return to the office.

The study design included three components: a thermal plume area transect grid, spaced at 10 m intervals; a coarse lake transect grid, spaced at 100-m intervals; and a perimeter transect running parallel to the shoreline, at depths of approximately 2 to 4 m (Figure 2.3-1). The field crew adjusted the survey effort where needed to better map complex habitat features identified while navigating the lake. Detailed notes on observed substrate conditions and habitat features (e.g., submergent and emergent macrophytes) for the entire shoreline and discernible littoral habitats were taken while in the boat during the survey to compare to classified features during post-processing of the sonar data.

2.3.4.2 Data Analysis


As part of the fish and fish habitat assessment, existing conditions in the lake were characterized and the potential for habitat to support fish in the vicinity of thermal plume was delineated. Geo-referenced depth data (i.e., latitudinal, longitudinal, and depth data) collected during the sonar survey of Jackfish Lake were processed and analysed with geographic information system (GIS) software. The spatially explicit sonar imagery was processed using SonarTRX Pro (x64; Leraand Engineering Inc.) to create substrate images from the side-scan sonar (Buscombe 2017). The substrate images consisted of tiles for three directions from the vessel: left, right, and straight down. The depth data, generated from the down direction sonar data were used to generate a bathymetry map for Jackfish Lake and an updated table describing storage (in cubic metres [m³]) per elevation (or depth; m) for Jackfish Lake. The shoreline, including islands, was assigned a water depth of 0 m.

The distribution of large-bodied fish targets was also analysed using the down direction of the sonar data. In each tile, the water column was identified where the top of the image is the water surface, and the substrate is a cyan line (Figure 2.3-2). The depth was confirmed based on bathymetry data to ensure consistency between the different analyses. The number of fish targets and the depth the fish targets were observed were recorded for each tile. In the example tile shown in Figure 2.3-2, one fish target was counted between 0 and 2 m. The fish distribution data was used to determine where large-bodied fish are in Jackfish Lake and the potential overlap between fish distribution and the potential thermal plume. Inference about fish distribution was limited to the time period of the data collection (i.e., October 2021).

The fish habitat assessment was also informed using the left and right directions from the side-scan sonar data (Figure 2.3-2). Substrate types in each tile were classified according to the Wentworth Scale based on estimated particle size (Wentworth 1922) and any habitat features were noted. Observed substrate and vegetation in the littoral zone (i.e., zone of shallow water with rooted plants along the shoreline) was noted throughout the perimeter sonar transect. Emergent and submergent aquatic vegetation provides Northern Pike (*Esox lucius*) spawning habitat and cover for small-bodied fish. Coarse substrates such as boulders and cobbles similarly provide refuge for small-bodied fish, and large aggregations of boulders and cobbles may provide habitat for spawning Salmonids in the lake such as Lake Whitefish (*Coregonus clupeaformis*).

Figure 2.3-2: Example of the Sonar Imagery Evaluated for Habitat Classification (Transect R00037; TileT000) and Fish Distribution (Transect R00039; Tile T475) in Jackfish Lake

2.4 Quality Assurance and Quality Control

A summary of the QA/QC procedures employed during the thermal plume study is provided in Appendix B. A review of the QA/QC data demonstrated:

- Direct measurements of lake water level, lake inflows, and lake outflow were acceptable to address the objectives of the study, and although a data gap in the water level data exists for the winter period (6 December 2021 to 22 March 2022), the gap has no impact to the study because it occurred during a period when there was no lake outflow.
- The temperature logger dataset was largely complete with negligible missing data (i.e., only one data logger out of the 19 resulted in missing data and 6 months of data are still available at that logger) and instances of data gaps or data collected from wrong locations occurred only during the winter when under-ice temperatures were generally stable and predictable resulting in negligible impact to the data collection.
- The water quality data were of acceptable quality. Only one value for dissolved copper was invalidated from further analysis because the concentration (29 μg/L) on 30 September 2021 at the Inflow to NW Bay 2 station was 18 times higher than the total concentration (1.6 μg/L) and outside of the total and dissolved copper ranges from September 2021 to August 2022.
- The bathymetry and fish and fish habitat data met the QA/QC objectives.

Overall, the data collected during the thermal plume study were considered to be of acceptable quality and adequate to address the objectives of the study.

2.5 Results

2.5.1 Water Level and Surface Flow

Flow at the inflow to Northwest (NW) Bay 1 station was not observed during the thermal plume study; flow at the outflow and the inflow to NW Bay 2 station were observed intermittently. A summary of observations and measurements of inflows are provided in Table 2.5-1 and a summary of water level and outflow activities, and measurements taken is provided in Table 2.5-2. The water level and outflow time series, in addition to measurements of water level, outflow and inflow are presented in Figure 2.5-1. Detailed data of water level and surface flow are available in Appendix C.

During the late fall sampling program, outflow from the lake through the culvert crossing 48th Street to the east was not observed. The outflow pathway was inspected, and the height of a high-point above the water surface of Jackfish Lake was measured to be 3 cm, establishing a zero-flow elevation of 174.579 m. The difference between the water level and the zero elevation is referred to as the stage; a negative stage, or a water level below the zero-flow elevation, means there is no outflow.

Atmospheric pressure data from 6 December 2021 to 22 March 2022 are not available due to unreliable readings, assumed to be related to cold air temperatures experienced by the Barologger. As a result, the water level timeseries during that period cannot be presented because atmospheric pressure is required to convert readings of total pressure to water depth. This occurred during the winter when there would not be outflow from the lake due to frozen conditions.

Table 2.5-1: Summary of Inflow Field Activities

Date and Time	Inflow to NW Bay 1 (m³/s)	Inflow to NW Bay 2 (m³/s)
30 Sep 2021, 12:45	No flow observed	0.002
Mar 2022	No flow expected (frozen conditions)	No flow expected (frozen conditions)
26 May 2022, 13:00	No flow observed	0.011
6 Jul 2022, 17:10	No flow observed	0.001
24 Aug 2022, 11:00	No flow observed	No flow observed

NW = northwest; m^3/s = cubic metres per second.

Table 2.5-2: Summary of Water Level and Outflow Field Activities

Date and Time	Activities	Water Level (m; geodetic)	Outflow (m³/s)
29 Sep 2021, 17:00	Water level measurement after bathymetry	174.549	No flow observed
30 Sep 2021, 12:45	Pressure transducers deployed, water level measurement, no outflow observed, measurement of zero-flow elevation)	174.549	No flow observed
23 Mar 2022, 16:10	Water level measurement, deployment of redundant Barologger	174.639	No flow expected (frozen conditions)
24 May 2022, 11:45	Water level measurement, outflow measurement, download loggers, removed redundant Barologger from field	174.791	0.014
6 Jul 2022, 14:05	Water level measurement, outflow measurement, download loggers	174.600	0.0015
24 Aug 2022, 11:30	Water level measurement, download loggers	174.475	No flow observed
27 Sep 2022, 10:45	Water level measurement, download loggers, remove loggers from field	174.421	No flow expected (water level is below zero-flow elevation)

 $m^3/s = cubic metres per second.$

174.80 0.040 Water Surface Elevation Surveyed Water Surface Elevation 174.75 0.035 Zero-Outflow Elevation Outflow from Open-Water Rating Curve Mater Surface Elevation (m; deodetic) 174.65 174.60 174.55 174.55 Measured Outflow 0.030 Measured Inflow 0.025 0.020 0.015 0.010 0.005 174.45 174.40 0.000 1-Dec-2021 2-Mar-2022 1-Sep-2022 1-Sep-2021 1-Jun-2022 Date

Figure 2.5-1: Water Level and Outflow Time Series of Jackfish Lake with Discrete Measurements of Water Level, Outflow, and Inflow

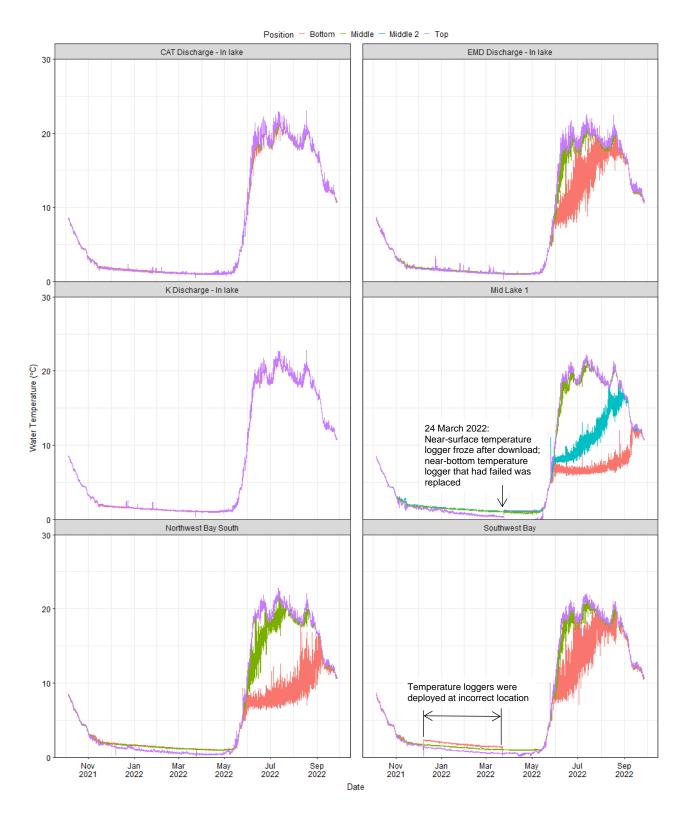
2.5.2 Lake Water Temperature

2.5.2.1 Thermistors

Water temperature measured by the thermistors (Figure 2.5-2) displayed similar trends to the in-lake temperature loggers (Section 2.5-1). Thermal stratification was only observed at K-Plant, which suggests a larger difference in depth between intakes and discharges. However, the higher discharge temperature observed at the intakes at K-Plant in June 2022 (Figure 2.5-2) do not necessarily mean that the plant was discharging water of elevated temperature, it could mean that the discharge thermistor was situated in warmer water (surface) than the intakes (lakebed). Instances of elevated discharge water temperature compared to the intake are prominent for CAT Plant.

Figure 2.5-2: Thermistor Water Temperature Time Series by Plant

2.5.2.2 Temperature Loggers


Water temperatures consistently decreased from September until mid-November, after which the decrease was more gradual (Figure 2.5-3; Appendix D). During the winter period, until early May, temperatures decreased from an average of approximately 2.2°C to 0.8°C. At the stations close to the Facility, where open-water occurs year-round; the difference between the near-surface and near-bottom temperatures did not vary greatly and were within a range of 0.5°C.

During winter, a temperature gradient through the water column was not consistently observed based on the temperature logger data near the Facility (Figure 2.5-3). The stations away from the Facility exhibited thermal stratification, where temperatures were generally colder near surface (i.e., near under-side of ice) and warmer near bottom. Temperatures at mid-depth were generally consistent within a range of 0.5°C. Temperatures near surface were approximately 1°C colder than temperatures at mid-depth and near-bottom.

During spring, temperatures across the lake increased sharply in mid-May and began to exhibit thermal stratification (Figure 2.5-3). At the deep stations (i.e., Northwest Bay – S and Mid Lake 1), temperature measured from the deeper temperature loggers remained relatively stable (i.e., 6 to 8°C) until fall. At the moderately deep stations (i.e., EMD Discharge and Southwest Bay), stratification was weakly observed, as near-bottom temperatures were consistently lower than surface temperatures, but steadily increased during summer. At shallow stations (i.e., CAT Discharge and K Discharge), very little stratification was observed, though a temperature gradient was observed with temperature decreasing with depth. During late summer and fall, cooling of the lake led to convergence of temperatures in the water column, promoting mixing.

Figure 2.5-3: In-Lake Water Temperature Time Series by Location and Position

2.5.3 Water Quality

Water quality results are presented in Appendix E as tables (Appendices E.1 to 3) and as figures (Appendices E.4 to 6). ALS certificates of analysis are presented in Appendix E.7.

2.5.3.1 General Water Quality Characterization and Comparisons to Water Quality Guidelines

Routine Parameters

The depth of stations in Jackfish Lake ranged from 1.1 to 7.9 m. EMD Discharge — In lake, Mid Lake 1, Mid Lake 2, and Mid Lake 3 were the deep stations, with depths up to 6 to 7 m during most of the sampling events from September 2021 to August 2022. Jackfish Lake was generally well-mixed during late fall, late winter, and spring freshet based on the temperature and conductivity field profiles (Appendices E.1 and E.4); thermal stratification was evident during the sampling events in early and late summer (July and August) when water temperatures were lower at the bottom of the lake, particularly at deeper locations in the lake, compared to the surface (Appendices E.1 and E.4). Field turbidity measurements were low (less than 2 NTU) in the inflow (Inflow to NW Bay 2), and in the winter for the Jackfish Lake stations. Water in Jackfish Lake was generally turbid from early summer to fall, as indicated by turbidity results (4.2 to 22 NTU). Water at the Outflow of Jackfish Lake station was generally turbid, with turbidity measurements from 6.6 to 53 NTU.

Measured field pH values ranged from 7.0 to 8.2 during late fall, late winter, and spring freshet. In the upper portion of the water column (upper 3 m) in Jackfish Lake, water was more alkaline during summer (July and August) compared to other seasons, with typical field pH values between 9.1 and 9.5 (Appendices E.1 and E.4); summer field pH values near the bottom of the lake (i.e., 4 m or deeper) ranged from slightly acidic to alkaline (6.8 to 9.1). Field pH values in the mid-depth samples were typically above the CWQG during the summer (Appendix E.2). Values of field pH at Inflow to NW Bay 2 and Outflow of Jackfish Lake were within the CWQG range. Alkaline waters during the summer were previously observed in 2018 (Golder 2019b).

The concentration of dissolved oxygen (DO) in lake water is a function of the balance of the processes that introduce oxygen into (e.g., wind mixing and photosynthesis by algae) and remove oxygen from the water column (e.g., respiration by algae and aquatic organisms, microbial decomposition, and chemical oxidation). Based on the measurements of DO concentrations during the thermal plume study, Jackfish Lake was well-oxygenated with the exception of bottom concentrations during July and August. During these two months, low DO concentrations (less than 4 mg/L) or anoxic conditions (approaching or at 0 mg/L) were observed at the lake bottom (depths greater than 4 m) (Appendices E.1 and E.4). Thermal stratification of the lake during warmer months limited mixing of DO between surface waters and bottom waters. Lower DO concentrations measured near the bottom of Jackfish Lake may be due to natural processes in or near the sediment boundary that consume oxygen (e.g., microbial decomposition of organic matter in the sediments). Concentrations of DO were typically above the minimum CWQG of 6.5 mg/L for all other life stages (CCME 1999), except for bottom samples at most lake stations in July and August (Appendix E.2). Plots of DO concentration profiles from the summer of 1980 indicate that DO concentrations near the bottom of Jackfish Lake have historically been below the CWQG of 6.5 mg/L (Baker 1987). Concentrations of DO at the Inflow to NW Bay 2 station and the Outflow of Jackfish Lake station were typically above the minimum CWQG (6.5 mg/L), except for the Outflow of Jackfish Lake station (5.2 mg/L) on 30 September 2021.

Total alkalinity (as CaCO₃) at the Inflow to NW Bay 2 station, at stations in Jackfish Lake, and at the Outflow of Jackfish Lake station ranged from 56 to 136 mg/L during the thermal plume study (Appendix E.2); total alkalinity indicated an overall low sensitivity to acid input (BC ENV 2021). Measured TSS concentrations in Jackfish Lake and its inflow (Inflow to NW Bay 2) ranged from less than 3 mg/L to 18 mg/L; TSS concentrations at the Outflow of Jackfish Lake station were typically higher (6.0 to 55 mg/L) than concentrations in the lake.

Concentrations of dissolved organic carbon varied from 11 to 21 mg/L during the thermal plume study (Appendix E.2). High concentrations of dissolved organic carbon have been shown to have a protective effect against metal toxicity in aquatic organisms and has been incorporated into the calculation of some guidelines (e.g., CWQG for dissolved manganese and dissolved zinc; CCME 1999).

Major Ions

Major ions in surface water may be expressed in terms of hardness, TDS (measured directly or calculated), specific conductivity, major cations, and major anions (Appendix E.2). The toxicity of many metals decreases with increasing hardness. Hardness (as $CaCO_3$) in waters from the Inflow to NW Bay 2 station, the Jackfish Lake stations, and the Outflow of Jackfish Lake station ranged from 99 to 178 mg/L during the thermal plume study (Appendix E.2); water hardness values were classified as moderately hard (i.e., within the range of 76 to 180 mg/L; CCME 1999). Measured and calculated TDS ranges (232 to 319 mg/L and 233 to 280 mg/L, respectively), together with field and laboratory specific conductivity (407 to 499 and 439 to 544 μ S/cm, respectively; Appendix E.2) indicated a moderate level of total ion concentrations in Jackfish Lake during the thermal plume study (Hart et al. 1990; Mitchell and Prepas 1990). Overall, Concentrations of TDS and values of specific conductivity at the Inflow to NW Bay 2 station and the Outflow of Jackfish Lake station were similar to those in Jackfish Lake (Appendix E.2).

Two major anions, chloride and fluoride, have CWQGs; concentrations of chloride and fluoride at the Inflow to NW Bay 2 station, the Jackfish Lake stations, and the Outflow of Jackfish Lake station were below their respective CWQGs during the thermal plume study (Appendix E.2).

Nutrients

The main nutrients of concern in most freshwaters are phosphorus and nitrogen, as both are required for aquatic plant growth in small amounts. Phosphorus is often the limiting nutrient, which means that small additions of phosphorus can result in increased productivity (Schindler 1974). Increased nutrient concentrations may result in excessive algal growth in water or on rock substrates, which can decrease oxygen concentration in water at night and under ice when photosynthesis and wind driven mixing do not occur, respectively. Both dissolved phosphorus and total phosphorus (TP) were measured during the thermal plume study.

Trophic status classification of lakes and watercourses can be based on TP concentrations (CCME 2004). Based on the concentrations of TP, the trophic status of Jackfish Lake ranged from meso-eutrophic to hyper-eutrophic (i.e., 0.027 to 0.12 milligrams phosphorus per litre [mg-P/L]; Appendix E.2). The trophic status at the Inflow to NW Bay 2 station ranged from oligotrophic to mesotrophic (TP concentrations 0.0082 to 0.011 mg-P/L), whereas the trophic status at the Outflow of Jackfish Lake station ranged from eutrophic to hyper-eutrophic (TP concentrations 0.092 to 0.41 mg-P/L; Appendix E.2). Elevated concentrations of TP in Jackfish Lake and at outflow of Jackfish Lake could be related to internal loading of TP from lake sediments or loading from runoff.

Nitrogen can be present in both dissolved and particulate forms in surface waters. Dissolved inorganic forms include nitrate, nitrite and ammonia; total nitrogen includes both total and dissolved inorganic and organic nitrogen. Three CWQGs exist for the dissolved inorganic forms of nitrogen: total ammonia, nitrate, and nitrite.

During the thermal plume study, concentrations of total ammonia, nitrate and nitrite were below CWQGs in Jackfish Lake and at the Inflow to NW Bay 2 station and the Outflow of Jackfish Lake station (Appendix E.2).

Metals

Metals naturally occur in surface waters in small quantities. Aquatic organisms can be adversely affected by high metal concentrations; however, the level at which metals are toxic to aquatic organisms varies and several environmental factors (e.g., organic matter, hardness, pH) can modify the toxicity of metals (CCME 1999).

Total metal concentrations were below CWQGs in Jackfish Lake except for arsenic and copper. Total arsenic concentrations were consistently above the CWQG at the Inflow to NW Bay 2 station, the Jackfish Lake stations, and at the Outflow of Jackfish Lake station during the thermal plume study (Appendix E.2), as well as in historical samples collected from Jackfish Lake in 2018 (Golder 2019b). Concentrations of total arsenic are routinely above the CWQG in lakes in, and around, Yellowknife due to the historical contamination from former gold mines in the area (Palmer et. al 2015). Total copper concentrations were above the CWQG in three lake samples (Near Outflow – In lake [mid-depth] at 9.7 μ g/L on 1 October 2021, EMD Discharge – In lake [bottom] at 4.6 μ g/L on 24 August 2022, and Northwest Bay – N [mid-depth] at 4.5 μ g/L on 6 July 2022; Appendix E.2). Total copper concentrations above the CWQG have also been observed historically in Jackfish Lake (Golder 2019b). Dissolved metal concentrations were below relevant CWQGs in Jackfish Lake during the thermal plume study (Appendix E.2).

Organics

Elevated levels of organic compounds may be harmful to aquatic organisms; however, toxicity varies widely by chemical (CCME 1999). Concentrations in lake samples analyzed for total oil and grease, total petroleum hydrocarbons (F1, F2, F3, F4 fractions), and BTEX were below detection limits (DLs) and CWQGs (Appendix E.2).

2.5.3.2 Spatial and Seasonal Patterns

The assessment of spatial patterns in water quality at the Jackfish Lake stations focussed on field parameters, routine parameters, major ions, nutrients, and metals that were typically above the DLs. Spatial patterns for metals typically below DLs (i.e., beryllium, bismuth, cadmium, chromium, cesium, lead, mercury, silver, tellurium, thallium, thorium, tin, titanium, tungsten, vanadium, and zirconium) and organics, which were consistently below DLs, were not assessed for seasonal or spatial patterns.

Vertical Patterns in Jackfish Lake

No clear vertical patterns were observed in water column profiles for field parameters at the five lake stations during the September 2021, October 2021, March 2022, or May 2022 sampling events (Appendix E.4). During the July and August sampling events in 2022, vertical gradients in Jackfish Lake were observed for temperature, dissolved oxygen, and pH, which were consistent with historical observations in 2018 (Appendix E.4; Golder 2019b).

Seasonal and spatial patterns of water temperatures at the bottom, middle and top of the water column are discussed in the following subsection. A discussion of the detailed profile measurements (i.e., at 1- or 0.5-m depth intervals) of temperature collected during the five sampling events is provided here.

Vertical gradients in temperatures were typically observed in Jackfish Lake during July and August 2022 when the lake was thermally stratified. In July 2022, temperatures at most stations in Jackfish Lake gradually decreased with depth from 20°C at depths of 3 m to 4 m below the water surface to as low as 6°C near the lake bottom. In

August 2022, small vertical gradients from 0 to 5 m were observed at the four lake stations where depths exceed 5 m (at EMD Discharge – In lake, Mid Lake 1, Mid Lake 2, and Mid Lake 3): a sharp decrease in temperature was observed from 5 m to the bottom at the four stations (Appendix E.4). Strong vertical gradients in temperatures were not observed in other seasons (i.e., in September/October 2021, May 2022, March 2022); slight increases in temperature (0.1 to 1.1°C) with increasing depth were observed at all the lake stations in March 2022 (Appendix E.4).

Vertical gradients in DO concentrations, where DO concentrations decreased with increasing depth, were observed during the July and August 2022 programs. In July 2022, DO concentrations decreased by approximately 12 mg/L between depths of 2 or 3 m and the bottom at all stations (Appendix E.4). During the August field program, DO concentrations declined slightly from the surface to depths of 4 or 5 m at all nine stations, from where strong vertical gradients were observed to the lake bottom at four of the stations (i.e., EMD Discharge – In lake, Mid Lake 1, Mid Lake 2, and Mid Lake 3); vertical trends at depth were not observed for stations with a total depth of 5 m or less (i.e., K Discharge – In lake, CAT Discharge – In lake, Near Outflow – In lake, Northwest Bay – N, and Southwest Bay; Appendix E.4). Vertical gradients in DO saturation demonstrated similar spatial, temporal, and vertical patterns to those of DO concentrations (Appendix E.4). During open-water conditions, the density difference of water layers between the cooler, denser layer of the water at the bottom of the lake (i.e., the hypolimnion) versus the warmer layer above inhibited mixing of the water column, thereby reducing the potential for aeration in the deeper portion of the water. The lowest DO concentrations in Jackfish Lake typically occurred near the bottom of the lake, where oxygen consumption can increase due to biological activity in the sediment.

Similar to temperature and DO, vertical patterns in pH in Jackfish Lake were observed during the July and August 2022 programs. During the July program, field pH decreased with depth by approximately 2 pH units between 3 m and the bottom at all stations (Appendix E.4). During the August program, little to no gradients were observed for pH between the surface and a depth 4 or 5 m; pH decreased approximately 2 units between 5 m and the lake bottom at EMD Discharge – In lake, Mid Lake 1, Mid Lake 2, and Mid Lake 3 (Appendix E.4). In the lower layers, decomposition processes generate carbon dioxide, and photosynthesis is limited due to a lack of light; therefore, resulting in an overall increase in carbon dioxide (carbonic acid in the water) that can result in lower pH values at the bottom coinciding with lower DO.

The majority of concentrations or values from laboratory analyzed parameters were comparable between the middepth and bottom samples (Appendix E.5). However, differences between mid-depth and bottom depths were observed in one or more seasons for 11 parameters:

- Turbidity values and TSS concentrations at most lake stations in July were higher at the mid-depth compared to the bottom (Appendix E.5); this pattern in turbidity values and TSS concentrations was also observed in August but to a lesser extent (Appendix E.5). Higher mid-depth turbidity values and TSS concentrations may be related to observed algae blooms in the euphotic zone (i.e., upper layer of the water column which receives sunlight) during the summer.
- The vertical patterns of lab pH were typically consistent with those observed for field pH in July and August (i.e., lower at the two locations deeper than 5 m compared to the mid-depth samples; Appendix E.5).

Total and dissolved manganese concentrations were higher (i.e., up to 594 and 547 μg/L, respectively) at the bottom compared to mid-depth samples in July and August 2022. At the deepest sampling station in the lake (Mid Lake 1) in August, total manganese concentrations were approximately 10-times higher, and dissolved manganese concentrations were approximately 500-times higher at the bottom compared to the mid-depth (Appendix E.5). The higher concentrations at the bottom relative to the mid-depth are likely related to the reductive dissolution of manganese from sediments under low dissolved oxygen or anoxic conditions near the lake bottom.

- Total iron demonstrated similar trends as total and dissolved manganese in July and August 2022: concentrations were typically higher at the bottom compared to mid-depth; total iron concentration at the Mid Lake 1 station in August was six-times higher at the bottom compared to the mid-depth in August (Appendix E.5). Dissolved iron concentrations were less than the detection limits in July and August 2022, except for the bottom sample at the Mid Lake 1 station in August (60 μg/L; Appendix E.5). Similar to manganese, the vertical trends of iron may also be related to reductive dissolution of sediments related to low dissolved oxygen concentrations at the bottom of the lake.
- Total ammonia, dissolved selenium, and dissolved sulphur concentrations were higher at the bottom compared to the mid-depth at the Mid Lake 1 station in August 2022, which may also be related to low DO concentrations at the lake bottom (Appendix E.5).
- Dissolved lithium concentrations were higher at the lake bottom at the Southwest Bay station in March and August 2022; the cause for the occasional elevated concentrations of dissolved lithium at the bottom of this station is unclear (Appendix E.5).

Horizontal Patterns in Jackfish Lake

Water quality concentrations at mid-depth across Jackfish Lake were typically similar during each field program. Consistent gradients in water quality concentrations that would indicate clear or consistent water quality changes across Jackfish Lake were not observed during the field programs. However, higher, or lower, concentrations of some parameters were observed in the inflow relative to lake concentrations. Higher concentrations of dissolved organic carbon and some total and dissolved metals (i.e., aluminum, sodium, nickel, and iron) were observed in the inflow compared to those in Jackfish Lake and at the outflow of Jackfish Lake while, concentrations of silica, total and dissolved arsenic, barium, and silicon were lower in the inflow compared to concentrations in Jackfish Lake and at the outflow of Jackfish Lake (Appendix E.5). Higher concentrations of dissolved lithium at the bottom of the lake were observed at the Southwest Bay station in March and August 2022 (Appendix E.5).

Water quality concentrations at the outflow of Jackfish Lake were generally similar to those in Jackfish Lake, with the exception of total aluminum. Total aluminum concentrations at the outflow of Jackfish Lake were approximately 2 to 3 times higher than those in Jackfish Lake (Appendix E.5). Overall, consistent within-lake horizontal patterns were not observed in Jackfish Lake during the thermal plume study (Appendix E.5).

Seasonal Patterns

Seasonal patterns in the September 2021 to August 2022 monitoring period were observed in multiple field and routine parameters (pH, DO, TSS, turbidity, nitrogen parameters [nitrate, nitrite, nitrate + nitrite, and total ammonia]), and one metal (zinc).

DO concentrations and percent saturations were seasonally stratified in summer. Concentrations and percent saturation values of DO in the upper portions of the water column in Jackfish Lake were typically highest in summer and lowest in winter. DO concentrations and saturations in the lower portions of the water column were highest in late fall, and lowest in summer (Appendix E.4). Lower values of DO in winter and in the lower portions of the water column in summer were likely a result of lower mixing and interaction with the ambient air, i.e., an algal bloom during the summer likely contributed to the higher DO values in the upper portions of the water column (Appendix E.4).

Field pH was also seasonally stratified. Field pH values in Jackfish Lake were consistently higher in the upper portions of the water column in early and late summer (July and August 2022), and lower at the lower portions of the water column in early and late summer, and in the whole water column during late winter (March 2022) and spring freshet (May 2022) (Appendix E.4). The elevated pH values during the summer months are likely related to the higher DO concentrations and the algae blooms observed during this period.

Mid-depth concentrations or values of TSS and turbidity were typically higher in summer, and fall (September/October 2021, July and August 2022) compared to winter and spring freshet (March and May 2022); TSS concentrations at all depths were lowest during the winter (Appendix E.5). The seasonally high turbidity values and TSS concentrations in summer and fall may be related to particulate matter from algae blooms, and the low winter turbidity values and TSS concentrations may be related to limited runoff and wind-driven mixing of sediment during ice-covered conditions.

Concentrations of nitrogen parameters (nitrate, nitrite, nitrate + nitrite, and total ammonia) were typically higher at Jackfish Lake stations in March and May, compared to September/October 2021, and July and August 2022 (Appendix E.5). This seasonal pattern was likely related to biological uptake of nutrients.

Total and dissolved zinc concentrations were slightly higher in Jackfish Lake in late fall (September/October 2021) and late winter (March 2022) compared to May to August 2022. Potential contamination in the blanks may have caused the seasonal pattern of total and dissolved zinc. The equipment blank for the two programs and the field blank on 24 March 2022 had total and dissolved zinc concentrations detected at similar levels to concentrations in Jackfish Lake (Appendix B).

2.5.3.3 Influence of Lake Inflows

The assessment of influence from the inflow was conducted for three sampling events based on when the inflow (Inflow to NW Bay 2) was sampled: late fall (30 September and 1 October 2021), spring freshet (24 to 26 May 2022), and early summer (5 and 6 July 2022).

Concentrations that were notably higher (20% higher) at the Inflow to NW Bay 2 station relative to the Southwest Bay station (located farthest from the inflows) were summarized in Appendix E.3, Table E.3-1. Concentrations that were notably higher at the Northwest Bay – N station (located closest to the inflows) relative to other stations in Jackfish Lake were summarized in Appendix E.3, Table E.3-2. Parameter concentrations meeting both criteria included:

- Field measurements (percent saturation and concentrations of DO)
- Nutrients (total ammonia)
- Total metals (aluminum, iron, lead, molybdenum, nickel, selenium, and zinc)

Dissolved metals (aluminum, copper, manganese, and zinc)

For most parameters, both criteria were only met in one sampling event and total and dissolved aluminum, total iron, and dissolved manganese were the only parameters for which both criteria were met in more than one sampling event (Appendix E.3, Tables E.3-1 and E.3-2).

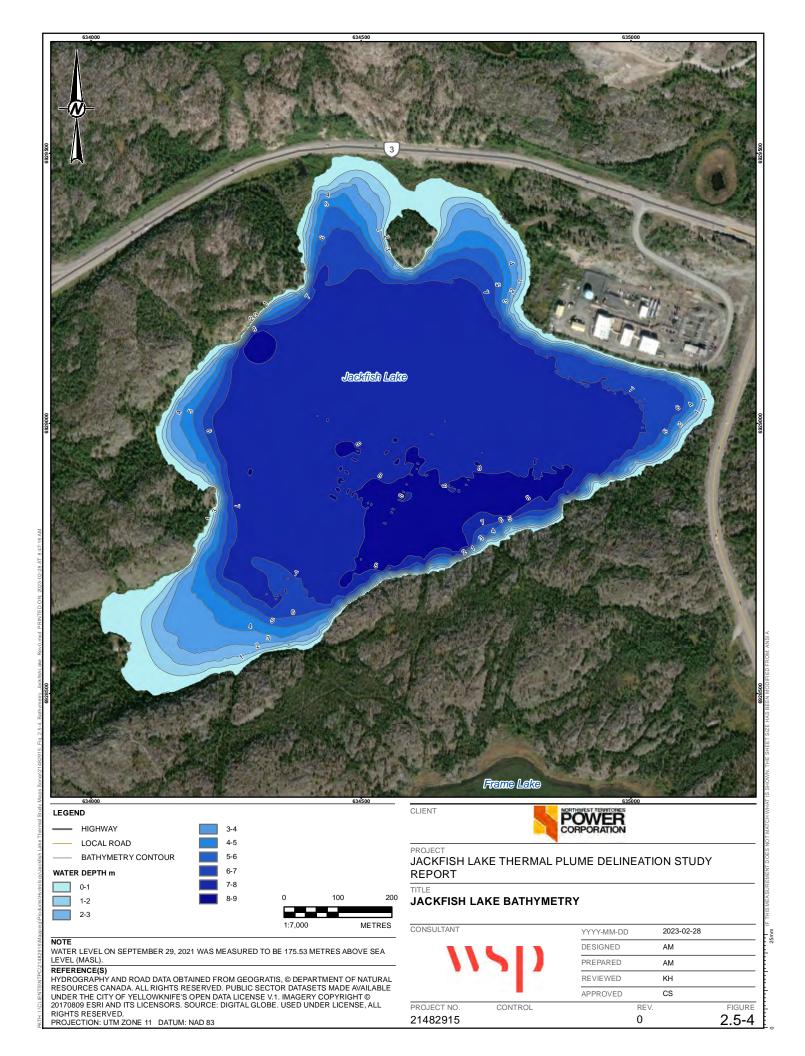
Percent saturation and concentrations of DO did meet both criteria; however, elevated DO levels in the inflow are not expected to have negative impacts on water quality or aquatic life in Jackfish Lake. Concentrations of all other parameters that met both criteria were below relevant CWQGs. Therefore, if concentrations in Jackfish Lake were influenced by this monitored inflow (Inflow to NW Bay 2), these changes were unlikely to have effects on aquatic life. Additionally, none of these parameters demonstrated a decreasing trend in concentrations in Jackfish Lake with distance from the inflow.

Based on the inconsistency in meeting both criteria for most parameters and the absence of concentrations above CWQGs and lake-wide horizontal patterns for all the parameters that met both criteria, the influence of the monitored inflow to Jackfish Lake on water quality in Jackfish Lake is expected to be negligible.

2.5.4 Fish and Fish Habitat

The bathymetry data shows a maximum depth of approximately 8.4 m and an average depth of 5.5 m. The bathymetric surface generated from the side-scan sonar data is shown in Figure 2.5-4. Based on the side-scan sonar data and visual observation of the shoreline and littoral areas, most of the substrate in Jackfish Lake was characterized as mud (i.e., organics with silt and some sand). Cobbles and boulders were recorded around the perimeter of Jackfish Lake and at some of the mid-lake locations. Submergent or emergent vegetation (i.e., macrophytes) were not observed from the sonar imagery; however, submergent and emergent macrophytes were observed in littoral areas of the lake by the field crew during the survey. Emergent and submergent vegetation appear to be co-localized with mud around the perimeter of Jackfish Lake and account for up to 20% cover over the soft substrate. The habitat within the thermal plume is consistent with the habitat in the rest of Jackfish Lake. The substrate analysis from sonar data is shown in Figure 2.5-5.

Shallow areas on the shores could provide spawning habitat for Northern Pike and are suitable for all life stages of small-bodied fish (e.g., Trout-perch). The fish community in the lake has access to deeper, cooler water within Jackfish Lake and areas that are not impacted by the thermal plume. The shoreline bordering the plant and in proximity to the discharge locations is primarily mud bottom out in the lake with cobbles along the shoreline (Figure 2.5-5). Vegetation was assessed as sparse along the shoreline closest to the discharge location (10% submergent vegetation by area; Photo 2.5-1) and more abundant closer to the outlet in the Northwest corner of the lake (20% combined submergent and emergent vegetation by area; Photo 2.5-2). Generally, vegetation coverage in the immediate vicinity of the discharge locations is less abundant than other areas of the lake, however abundant vegetation coverage is available in the bay and throughout the lake.


Three species of fish were documented in Jackfish Lake: Lake Whitefish, Northern Pike, and Trout-perch. The captured fish were primarily adult Lake Whitefish as the dominant species in the lake, all of which were in good body condition with full stomachs. Northern Pike adults were also captured but were potentially in poor body condition (e.g., underweight). Also, one juvenile or young-of-year Northern Pike was captured suggesting reproduction is occurring in the lake. Mercury tissue concentrations in Lake Whitefish and Northern Pike were below CFIA (2018) guidelines. Mean total dissolved gas concentrations were lower than the threshold of 110% and no evidence of gas bubble trauma was documented.

Water from Jackfish Lake flows to Great Slave Lake through a culvert. This culvert is likely a barrier to fish moving in or out of the lake when water levels are low and there is no water flowing through the culvert. Upstream movement of fish through the culvert would depend on the species, the gradient and water velocities of the culvert, and the drop between the culvert and water level of receiving waters. In recent years, water levels have been high enough to allow for water to flow consistently through the culvert to Great Slave Lake.

The large-bodied fish target distribution data from the side-scan survey on 29 September 2021 is presented in Figure 2.5-6. At the time of the survey, fish targets were concentrated in the deeper areas in Jackfish Lake. Some large-bodied fish targets were noted in the southeast shore, but overall, shallow areas typically had less fish targets than deeper areas. Although this analysis provides information regarding fish distribution, the analysis is biased towards large-bodied fish that were within the water column (i.e., not in, or on, the benthic sediments) and represents a snapshot of large-bodied fish distribution throughout the monitoring period on the lake. Of note, the survey does suggest that all areas of the lake are used by large-bodied fish such as Lake Whitefish and Northern Pike).

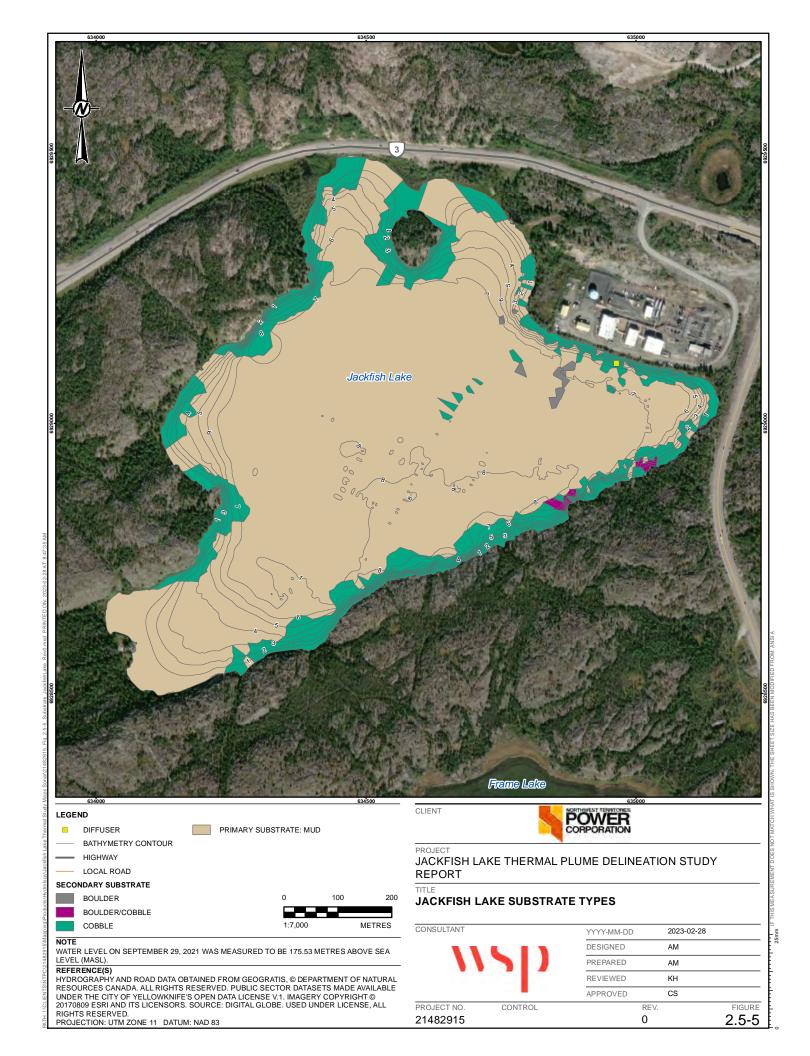
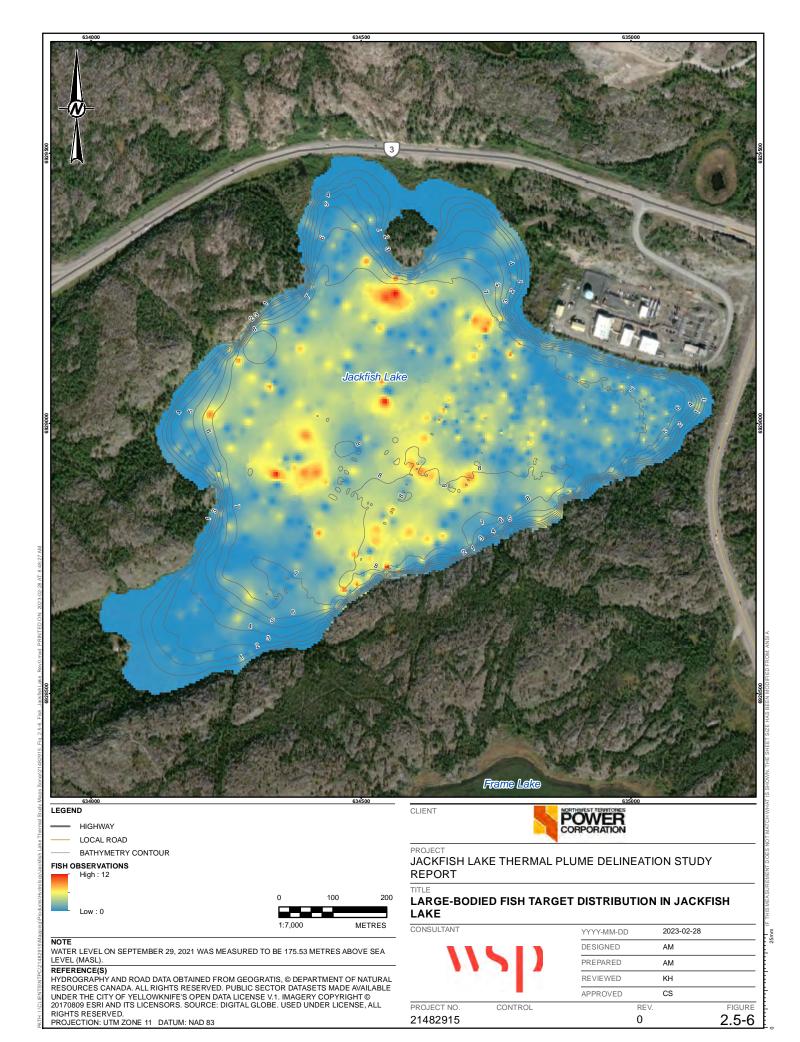



Photo 2.5-1: Shoreline in close proximity to the discharge pipe locations.

Photo 2.5-2: Shoreline with submergent and emergent vegetation apparent at the boat launch in the Northwest corner of the lake close to the outlet.

3.0 THERMAL PLUME EFFECTS ASSESSMENT

The purpose of the thermal plume delineation study was to evaluate if there are effects from the thermal discharges of the Facility on the aquatic receiving environment in Jackfish Lake. Thermal discharges from the Facility may result in prolonged and more stable thermal stratification in the lake, which in turn may result in prolonged anoxia at the lake bottom and greater release of the limiting nutrient (phosphorus) and metals from sediments. Increased temperatures can also have an adverse effect when combined synergistically with toxicants (EC 2014). With increasing temperature, toxicity of some contaminants increases (e.g., ammonia; CCME 1999) and the resistance for fish species to disease is lowered. Increased temperatures may also result in increased rates of metabolism and respiration, and increased activity and food consumption (EC 2014). Temperature can affect reproduction, growth, and longevity and can adversely affect species diversity and trophic relationships (Golder 2019a; Spotila et al. 1979).

A thermal model was used to delineate the thermal plume (Section 3.1.1) and provide simulated non-operational (baseline), measured operational, and hypothetical operational discharge conditions (Section 3.2.1) that were then used by the water quality and fish and fish habitat components to evaluate if operational effects to the aquatic environment are occurring under existing conditions or have the potential to cause effects under the hypothetical discharge scenario (i.e., peak measured worst-case scenario; Sections 3.2.2 and 3.2.3, respectively).

3.1 Assessment Approach

The following sections detail the data analysis and modelling method, and assessment approach to meet the requirements of the Thermal Plume Study Design as set out in by the Water Licence and presented in Section 1.3. Specific details on the modelling approach for the Jackfish Lake thermal model can be found in Appendix A.

3.1.1 Thermal Plume Delineation - Thermal Modelling

Thermal modelling was conducted using MIKE3 FM, a three-dimensional (3-D) modelling application developed by the Danish Hydraulic Institute. MIKE3 FM is fundamentally a hydrodynamic modelling platform that combines a number of computational components in either two-dimensional (2-D) or 3-D environments including, hydrodynamics, thermodynamics, advective transport, water quality, sediment and mud transport, and spectral wave attenuation (e.g., Ma et al. 2009; Dewey 2011).

The modelling approach used measured environmental inputs (physiographic, meteorological, hydrological) and measured operational inputs (flows, and corresponding temperature increase, through each station at the Facility) to simulate the lake's processes during the 6 October 2021 through 27 September 2022 monitoring period. Input data were used for the purposes of calibrating the model, validating model performance, and for simulating lake conditions under operational (effect) and non-operational (baseline) conditions. By carrying out these simulations and extracting modelled results at each model node throughout the model domain for each time step of operational and non-operational simulations, the temperature differences resulting from operational influences alone could be calculated to understand the magnitude of change and spatial extent of changes related to discharged heat loads on the lake across the year. Because operational heat loads during the monitoring period were highly infrequent, and plume delineations corresponding to operational effects under five seasonal scenarios (late fall, late winter, spring freshet, early summer and late summer) were required, a subsequent hypothetical modelling scenario was developed using the peak quasi-continuous heat load from operations (measured between 23 and 25 December 2021) to Jackfish Lake for informational purposes.

The median and maximum extent of operational effects were subsequently plotted using the 50th percentile and the 95th percentile operational effect statistics to illustrate the extents and magnitudes of operational effects within Jackfish Lake. A separate series of 95th percentile temperatures simulated at lake surface and lake bottom over the monitoring period were developed to illustrate annual temperature conditions in the lake. Isopleths (i.e., temperatures at different depths), providing temperature time series over depth and time were also developed to establish whether modelled discharges were having a meaningful effect on the thermal structure of the lake. Several model result extractions were completed at specific points of interest (i.e., at water quality sampling stations and areas of interest for fish and fish habitat) to assist other components with their interpretation of temperature conditions at the time site visits were conducted, to illustrate temperature effects during each seasonal condition, and to provide a characterisation of temperature conditions throughout the year.

All input data were screened and, where justified, adjusted to fill data gaps or provide more representative information with which to simulate lake conditions. Key stages of model development, calibration, simulation, and interpretation of results were reviewed following QA/QC procedures outlined in Golder's Global Numerical Modelling QA/QC Process provided in Attachment B of Appendix A.

3.1.2 Assessment of Effects to Water Quality

A qualitative assessment of the potential effect of cooling water discharge on lake stratification was completed using temperature modelling results from the 2022 summer period (1 June 2022 to 1 August 2022¹). Modelled time series of surface, mid-depth and bottom temperature differences (i.e., differences between modelled operational and non-heat waste load scenarios) during the 2022 summer period were reviewed to assess changes in temperatures at different depths due to waste heat discharges that occurred in the summer of 2022. Modelled time series of temperature isopleths (i.e., temperatures at different depths) for the 2022 summer period and two hypothetical scenarios in early and late summer were reviewed. The hypothetical scenarios were based on the largest waste heat discharged during the thermal plume study (i.e., 23 to 25 December 2021), which were used to simulate the potential change in lake temperatures if this discharge occurred during the early and late summer periods.

3.1.3 Assessment of Effects to Fish and Fish Habitat

The bathymetry data was used to characterize the oxythermal habitat for Lake Whitefish for ice-covered (winter) and open-water (summer) seasons using updated results from the thermal modelling. These results supplement information generated from previously collected bathymetry data in 2018 (Golder 2019b).

To assess the operational effects on the aquatic ecosystem of jackfish lake, fish habitat (based on depth and substrate) and fish distribution maps were compared to the results from the thermal modelling. For the fisheries assessment, predicted model temperatures under the non-operational scenario and the hypothetical operational discharge (i.e., peak measured worst-case scenario), relative to published maximum optimal thermal ranges for Lake Whitefish. Lake Whitefish, which is a cold water adapted species, were chosen over Northern Pike, as the sentinel species due to their sensitivity to warmer thermal regimes. An optimal thermal niche of 15.5°C to 19.5°C for juvenile Lake Whitefish growth (Edsall 1999) was used as a generalised reference range for evaluating operational effects on fish community long-term growth. Alternate guidelines are available for specific Lake Whitefish life history stages (e.g., egg incubation, rearing, and spawning; BCMOE 1981); however, this information was not available to assess the dynamics of these life stages and a generalised approach was

¹ 1 August 2022 was the end of the 2022 operations scenario (Appendix A).

43

required to assess impacts on the fish community in Jackfish Lake as a whole. The assessment was also bound to the early and late summer model periods when the impacts of thermal discharge from the plant were likely to be most apparent.

An intermediate point located 100 m from the discharge points was used as the measurement point for the fisheries assessment, with the objective of evaluating thermal conditions in the centre of the thermal plume predicted by the hypothetical scenario, but away from the discharge locations, which were measured directly with temperature loggers. The shape of the thermal plume predicted by the thermal model during the early and late summer model period was considered in selecting the measurement points. For each time period, a point was selected 100 m out in the lake located in the centre of the predicted thermal plume (Table 3.1-1).

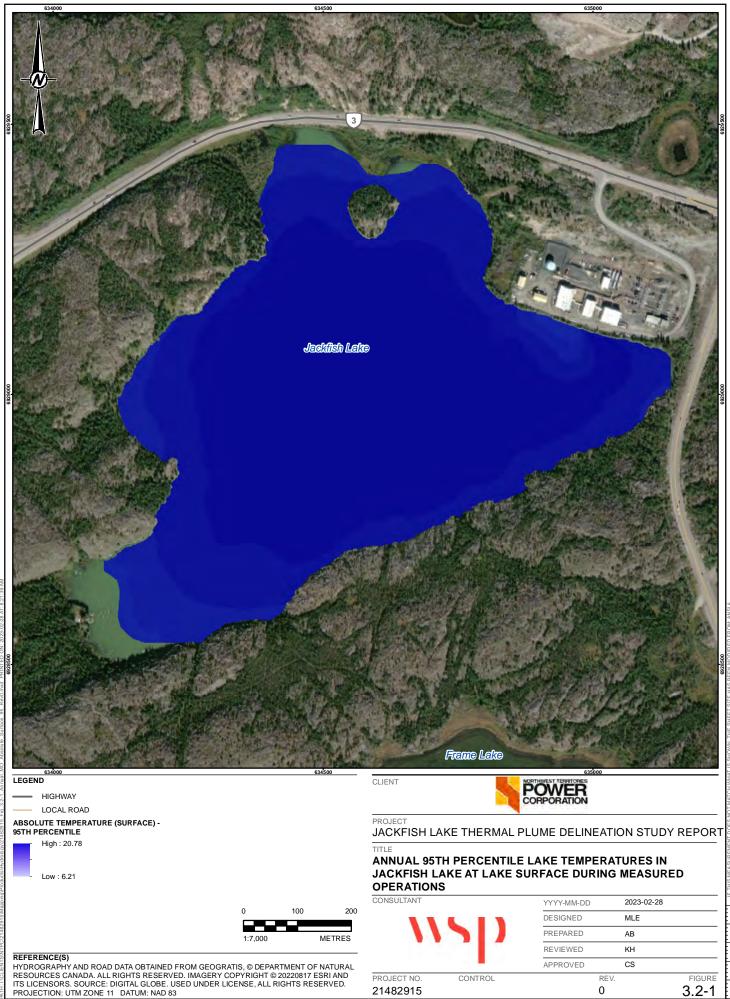
Table 3.1-1: Measurement Locations in the Thermal Plumes 100 m from the Discharge Point

		UTM Coordinates (NAD 83, Zone 11)		
Location	Total Depth (m)	Easting (m)	Easting (m)	
Baseline Discharge Point	-	634930	6929122	
Early Summer Thermal Plume (1 to 5 July 2022)	7.2	634994	6929045	
Late Summer Thermal Plume (1 to 5 August 2022)	5.3	635025	6929091	

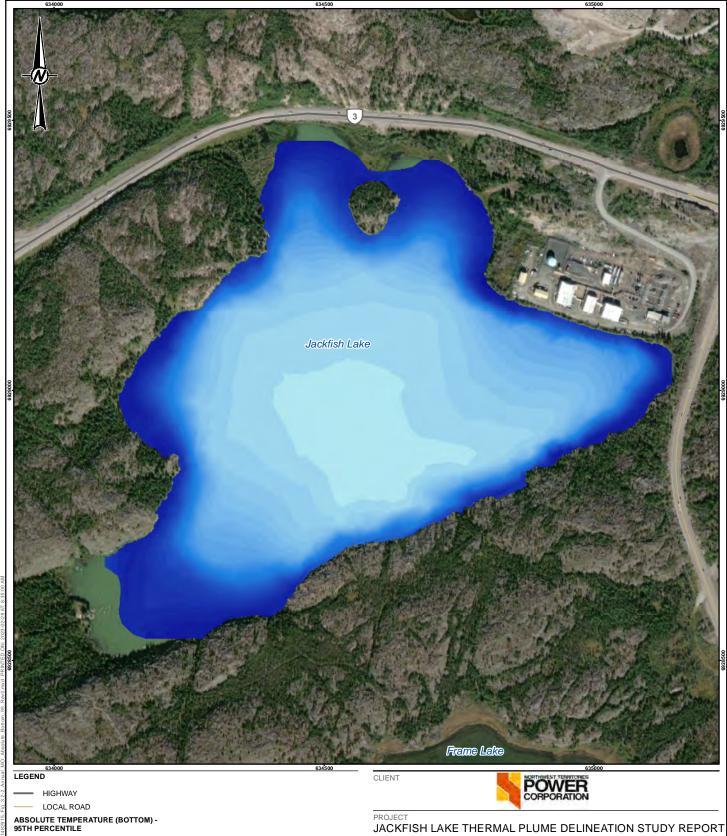
UTM = Universal Transverse Mercator; NAD = North American Datum of 1983, Zone 11; "-"= not depicted.

3.2 Assessment Results

3.2.1 Thermal Plume Delineation


The following subsections present the results of the thermal modelling study for Jackfish Lake. Supporting details for the Jackfish Lake thermal model can be found in Appendix A. The thermal model simulated three modelling scenarios: (i) a non-operational (baseline) scenario, (ii) a measured operational conditions scenario, both for the purposes of delineating thermal plumes, and (iii) a hypothetical operational discharge scenario (the peak measured heat load applied to Jackfish Lake) for the purposes of characterising thermal plumes during the five seasonal conditions identified in Schedule 1, item 1a (i.e., spring freshet, early summer, late summer, late fall and late under ice). Maps illustrating the extent of the thermal plume and any seasonal changes documented are also provided, including a calculation of maximum thermal plume extents as a percentage of the lake area.

3.2.1.1 Water Temperatures in Jackfish Lake under Measured Operational Conditions


The 95th percentile plots of measured operational conditions at lake surface and lake bottom between 6 October 2021 and 27 September 2022 (noting that no operational conditions were simulated from 1 August 2022 onwards) are provided in Figures 3.2-1 and 3.2-2, respectively. Given that operational discharges over a delta-T (temperature difference) of 1°C occur less than five percent of the simulation period, both figures largely reflect a natural thermal state for Jackfish Lake, with some minor exceptions. Surface temperatures reflect warmer surface temperatures within the deeper portions of the lake resulting from atmospheric heating throughout the ice-free period, while cooler surface temperatures in the shallows along the southwestern, western, and northern shorelines reflect the influence of cooler substrate temperatures. The surface area around the discharges reflects the influence of continuous circulation of cooler bottom waters being drawn in via the intakes and discharged to surface through the system when heat loads are rarely applied. Bottom temperatures within the deeper portion of the lake remain less warm due to the influence of cooler substrate temperatures and reduced light penetration with depth, while 95th percentile bottom temperatures in the shallows remain warmer and close to, though slightly below 95th percentile surface temperatures at those locations.

In brief, very little operational influence, other than the circulation of cooler bottom waters through the plant cooling systems, is visually detectable under measured conditions, largely because operational discharges equal to or greater than 1°C occur for less than five percent of the simulation period.

25mm | 17115 MB

High: 20.78

Low: 6.21

REFERENCE(S)

HYDROGRAPHY AND ROAD DATA OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. IMAGERY COPYRIGHT © 20220817 ESRI AND ITS LICENSORS. SOURCE: DIGITAL GLOBE. USED UNDER LICENSE, ALL RIGHTS RESERVED. PROJECTION: UTM ZONE 11 DATUM: NAD 83

ANNUAL 95TH PERCENTILE LAKE TEMPERATURES IN JACKFISH LAKE AT LAKE BOTTOM DURING MEASURED **OPERATIONS**

,	YYYY-MM-DD	2023-02-28
Ī	DESIGNED	MLE
I	PREPARED	AB
i	REVIEWED	KH
,	APPROVED	CS

FIGURE PROJECT NO. CONTROL REV. 0 3.2-2 21482915

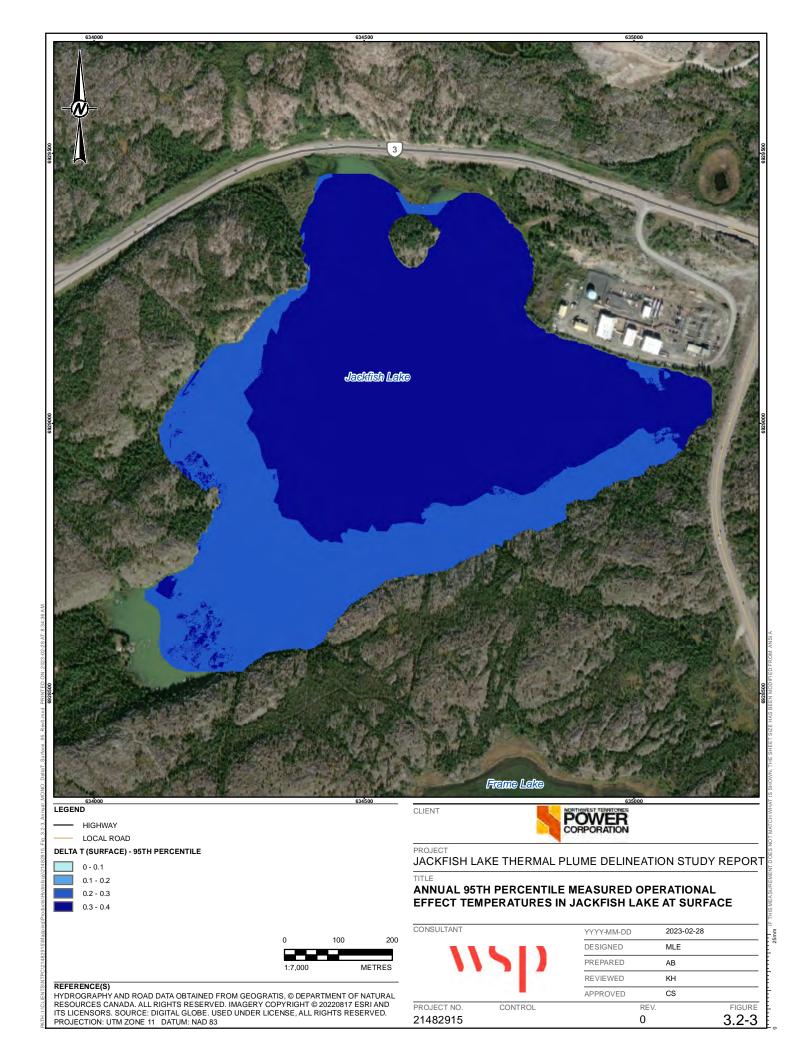
3.2.1.2 Effect of Measured Operational Discharges on Jackfish Lake

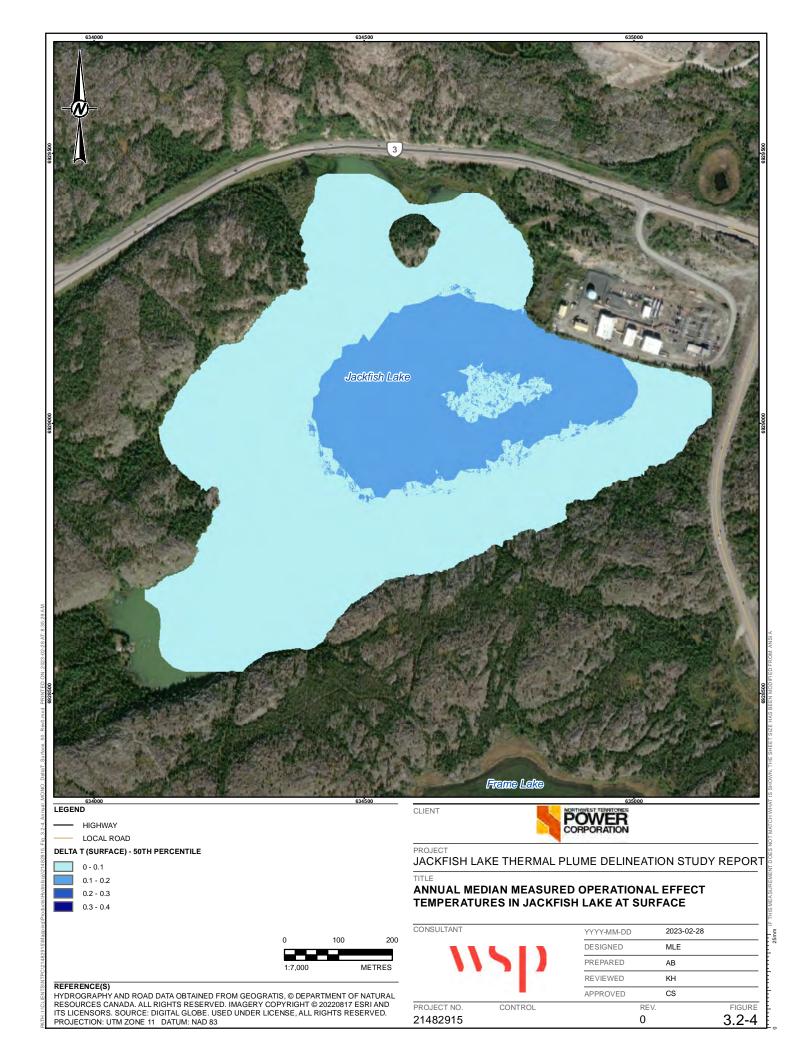
The notable absence of visually detectable thermal impacts on Jackfish Lake are illustrated in Figures 3.2-3 through 3.2-6. These figures provide a visualization of the 95th percentile temperature differences between measured and operational conditions (Figures 3.2-3 and 3.2-5), as well as 50th percentile (median) temperature differences between measured and operational conditions (Figures 3.2-4 and 4-6).

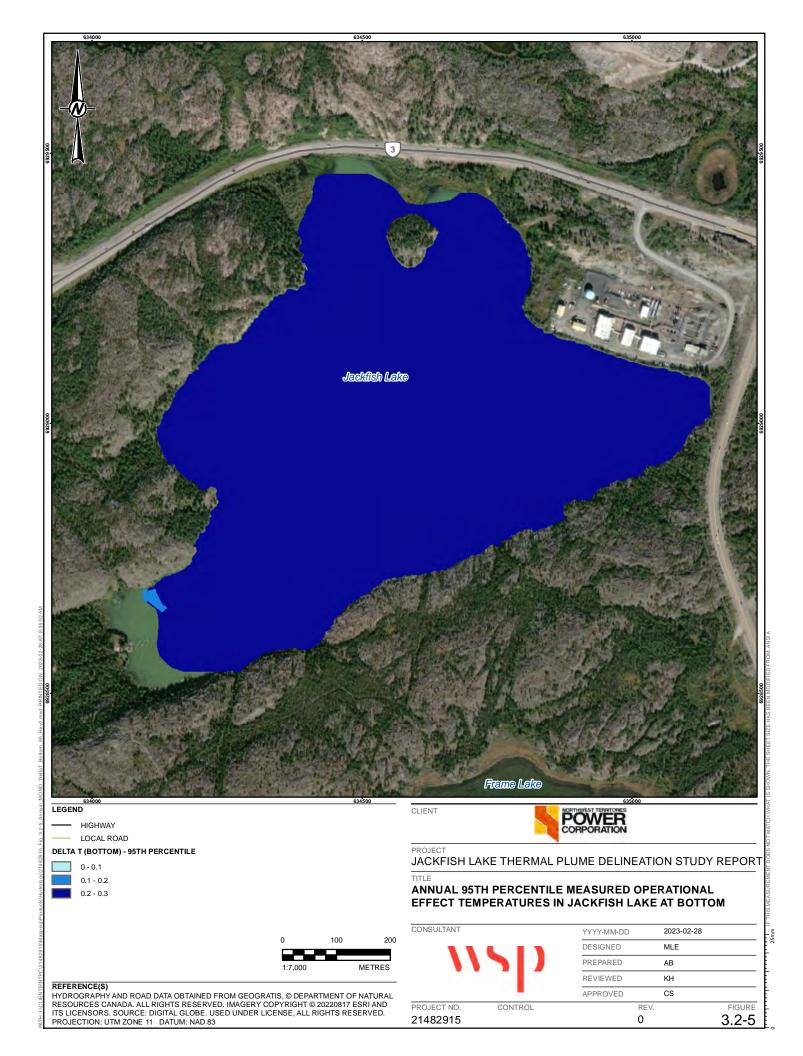
The 95th percentile (Figure 3.2-3) and median temperature (Figure 3.2-4) differences at the lake surface resulting from operational effects indicate that the thermal effects of measured operations over the simulation window were extremely small, i.e., generally between 0.2°C and 0.4°C and between 0°C and 0.2°C, respectively. Similar increases in temperature were observed at lake bottom, with the 95th percentile temperature increase amounting to between 0.1°C and 0.4°C (Figure 3.2-5), and the median temperature increase amounting to between 0°C and 0.2°C (Figure 3.2-6). These changes largely reflect the residual effects of assimilated temperature increases after discharges have occurred, which collectively occur less than five percent of the time at an increase of 1°C or higher. The 95th percentile and median aerial extent of operational effects on Jackfish Lake are presented in Tables 3.2-1 and 3.2-2.

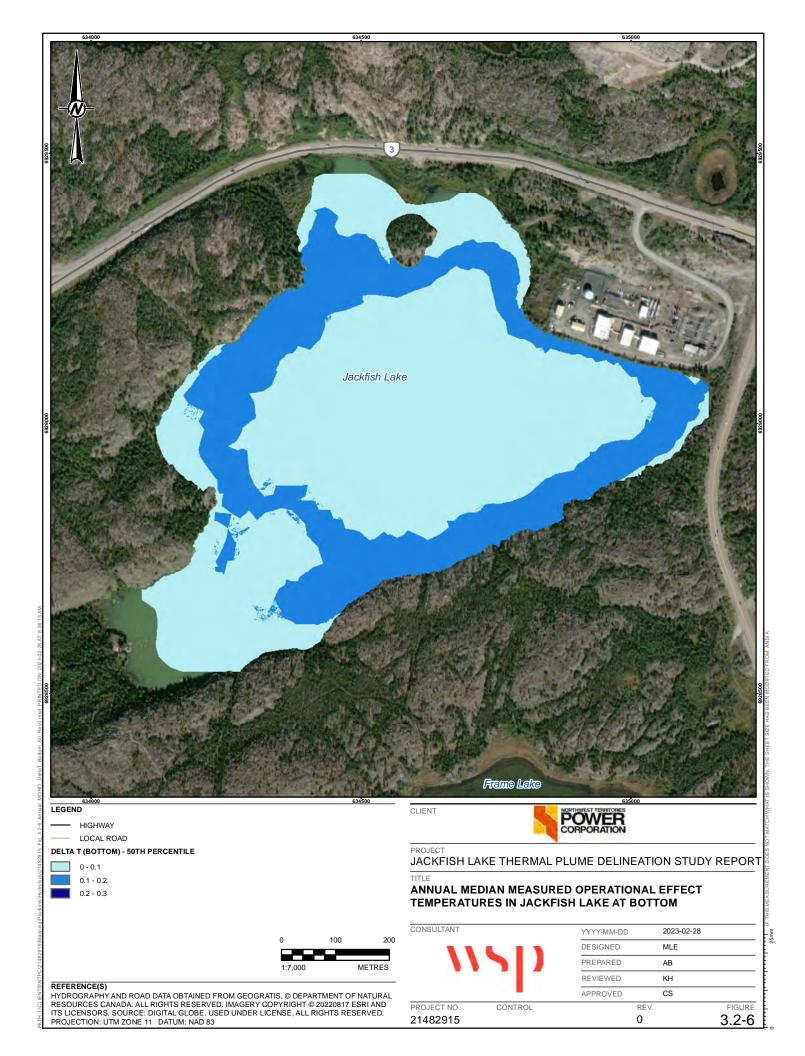
These findings indicate that the magnitude of thermal effects from operational heat loads applied to the lake was relatively small from October 2021 through July 2022 (after which operational data were screened out).

Table 3.2-1: Aerial Extent of 95th Percentile and Median Measured Operational Effects on Jackfish Lake at Lake Surface (6 October 2021 to 27 September 2022 Simulation Period)


Temperature Effect	95 th Percentile Extents (ha)	95 th Percentile Extents (% of Extracted Area)	50 th Percentile Extents (ha)	50 th Percentile Extents (% of Extracted Area)
0°C to 0.1°C	1	-	35.9	70
0.1°C to 0.2°C	-	-	15.4	30
0.2°C to 0.3°C	18.7	36	-	-
0.3°C to 0.4°C	32.6	62	-	-
>0.4	0.9	2	-	-


ha = hectares; "-" = not applicable.


Table 3.2-2: Aerial Extent of 95th Percentile and Median Measured Operational Effects on Jackfish Lake at Lake Bottom (6 October 2021 to 27 September 2022 Simulation Period)


Temperature Effect	95 th Percentile Extents (ha)	95 th Percentile Extents (% of Extracted Area)	50 th Percentile Extents (ha)	50 th Percentile Extents (% of Extracted Area)
0°C to 0.1°C	-	-	33.8	66
0.1°C to 0.2°C	0.1	0	17.5	34
0.2°C to 0.3°C	0.2	0	-	-
>0.3°C	51	99	-	-

ha = hectares; "-" = not applicable.

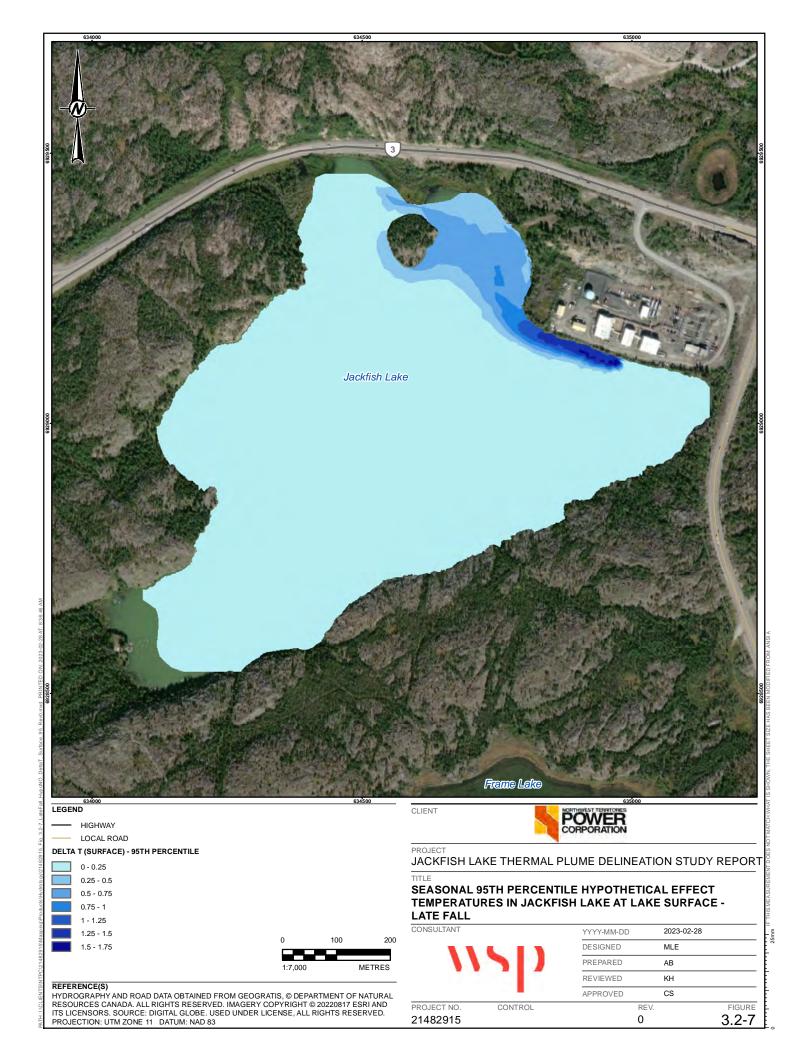
3.2.1.3 Seasonal Water Temperatures in Jackfish Lake resulting from Hypothetical Maximum Operational Discharges

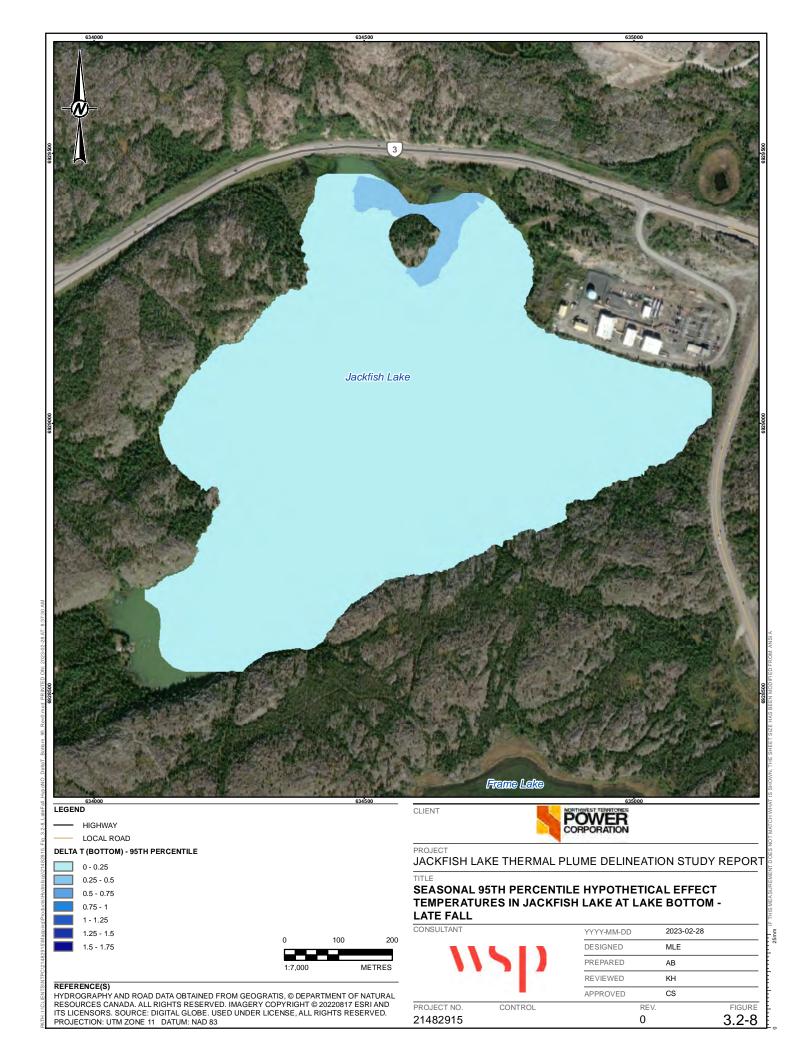
The following hypothetical simulation results reflect identical operational heat loads being applied to Jackfish Lake for each of the five seasonal conditions. In interpreting these results it should be noted that all differences observed are related to environmental differences including different wind directions and speeds, different thermal structures, and atmospheric forcings associated with each simulation window.

3.2.1.3.1 Late Fall

The late fall condition reflects the 95th percentile temperature differences between the two-and-a-half-day hypothetical discharge scenario and non-operational scenario, calculated over a four-day period commencing at the start of discharge. Figures 3.2-7 and 3.2-8 illustrate the 95th percentile temperature difference between hypothetical operational lake conditions and non-operational lake conditions between 21 and 25 October 2021 at lake surface and lake bottom, respectively.

The fall discharge event coincided with wind conditions that directed currents to the northwest. Given the lake's cooling temperatures at this time, the figures illustrate that the resulting thermal plume generally remained positively buoyant for most of this period. Vertical mixing was also relatively limited until it reached the shallows surrounding the lakes northern island, where sufficient vertical mixing and/or thermal diffusion resulted in a slight elevation (less than 0.5°C) of lake bottom temperatures. Table 3.2-3 presents the sizes of the surface and bottom plumes associated with this discharge event demonstrating that the magnitude of operational effects during fall is negligible even under maximum heat output conditions recorded between 6 October 2021 and 31 July 2022. Overall, these results indicate that the magnitude of temperature increases in the late fall period was relatively small.


Table 3.2-3: Aerial Extent of 95th Percentile and Median Hypothetical Operational Effects on Jackfish Lake during Late Fall (21 and 25 October 2021 Simulation Period)

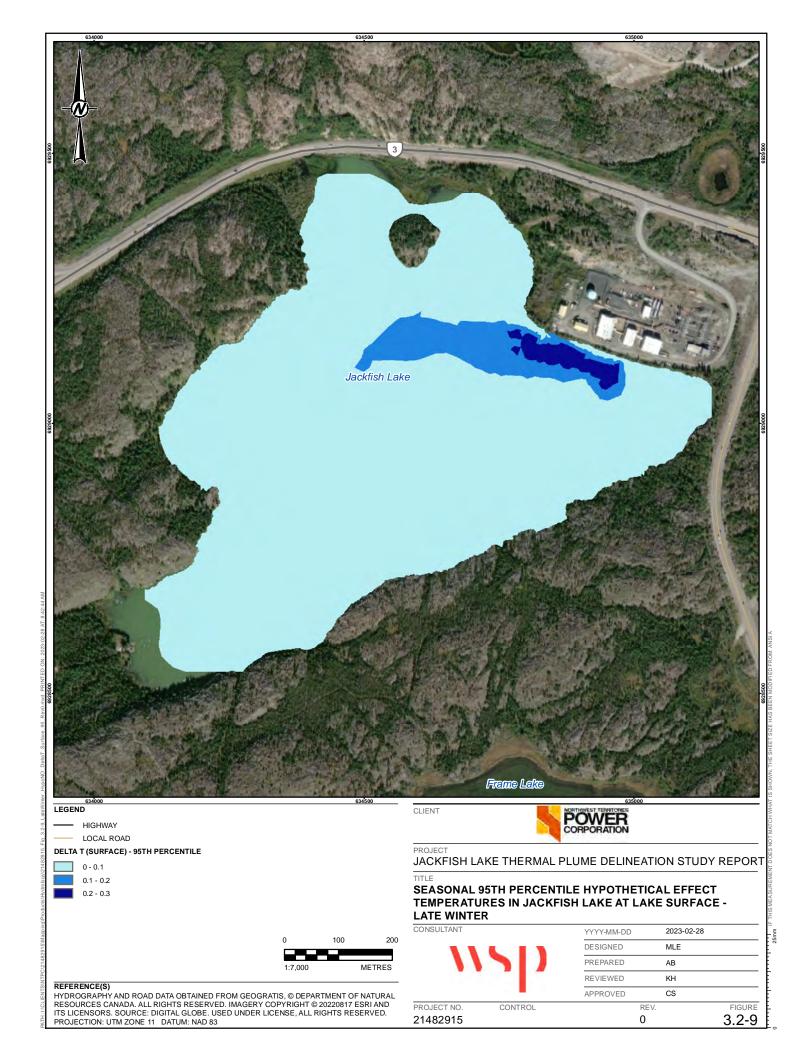

3 ,				
Temperature Effect	95 th Percentile Extents (ha) at Surface	95 th Percentile Extents (% of Extracted Area) at Surface	95 th Percentile Extents (ha) at Bottom	95 th Percentile Extents (% of Extracted Area) at Bottom
0°C to 0.25°C	46.5	91	49.8	97
0.25°C to 0.5°C	1.8	3	1.5	3
0.5°C to 0.75°C	2.2	4	-	-
0.75°C to 1°C	0.4	1	-	-
1°C to 1.25°C	0.2	0	-	-
1.25°C to 1.5°C	0.3	1	-	-
1.5°C to 1.75°C	-	-	-	-
>1.75°C	-	-	-	-

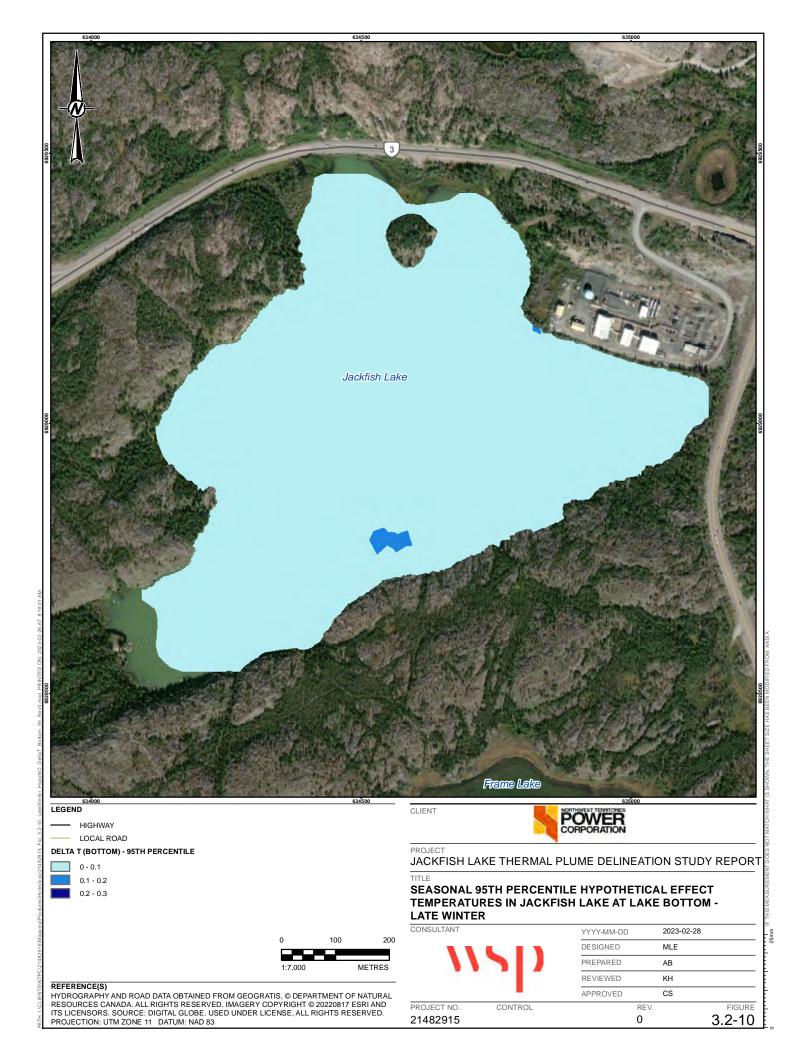
Note: Tabulated values may not sum to 100% in all instances due to a function of rounding.

ha = hectares; "-" = not applicable.

3.2.1.3.2 Late Winter

The late winter condition reflects the 95th percentile temperature differences between the two-and-a-half-day hypothetical discharge scenario and non-operational scenario, calculated over a four-day period commencing at the start of discharge a few weeks prior to ice break-up. Figures 3.2-9 and 3.2-10 illustrate the 95th percentile temperature difference between hypothetical operational lake conditions and non-operational lake conditions between 10 and 14 April 2022 at lake surface and lake bottom, respectively. Table 3.2-4 presents the aerial extent of the 95th percentile surface and bottom temperature increases resulting from this discharge event.


As illustrated on Figures 3.2-9 and 3.2-10, the thermal plume remained largely confined to surface, with very little heating of bottom waters in the discharge area, and only negligible bottom contact identified in the area to the northwest of the discharge. A relatively small area of localized temperature increases is illustrated at lake bottom in the deep portions of the lake towards the south (Figure 3.2-10), which may suggest that the plume had cooled sufficiently to begin sinking as it cooled to within 0.1°C to 0.2°C of ambient lake temperatures. Overall, these results indicate that the magnitude of temperature increases in the late winter period was extremely small.


Table 3.2-4: Aerial Extent of 95th Percentile and Median Hypothetical Operational Effects on Jackfish Lake during Late Winter (10 and 14 April 2022 Simulation Period)

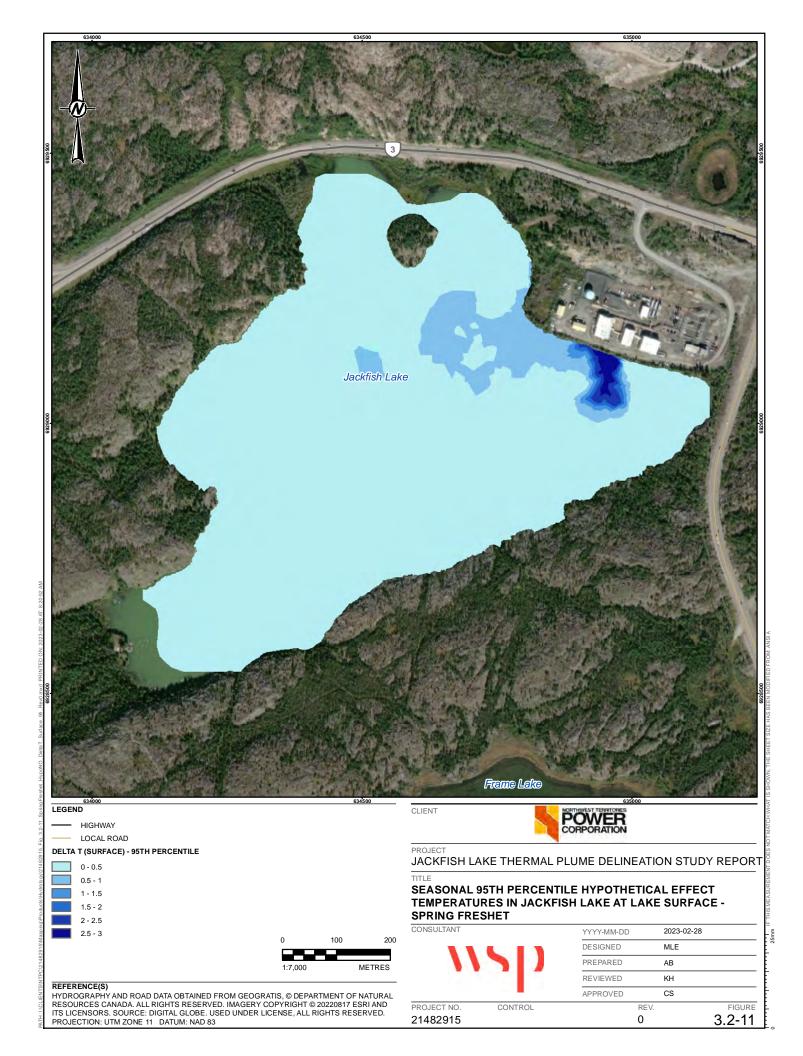
Temperature Effect	95 th Percentile Extents (ha) at Surface	95 th Percentile Extents (% of Extracted Area) at Surface	95 th Percentile Extents (ha) at Bottom	95 th Percentile Extents (% of Extracted Area) at Bottom
0°C to 0.1°C	47.7	93	51	100
0.1°C to 0.2°C	2.9	6	0.3	0
0.2°C to 0.3°C	0.7	1	•	-
>0.3°C	0.1	0	-	-

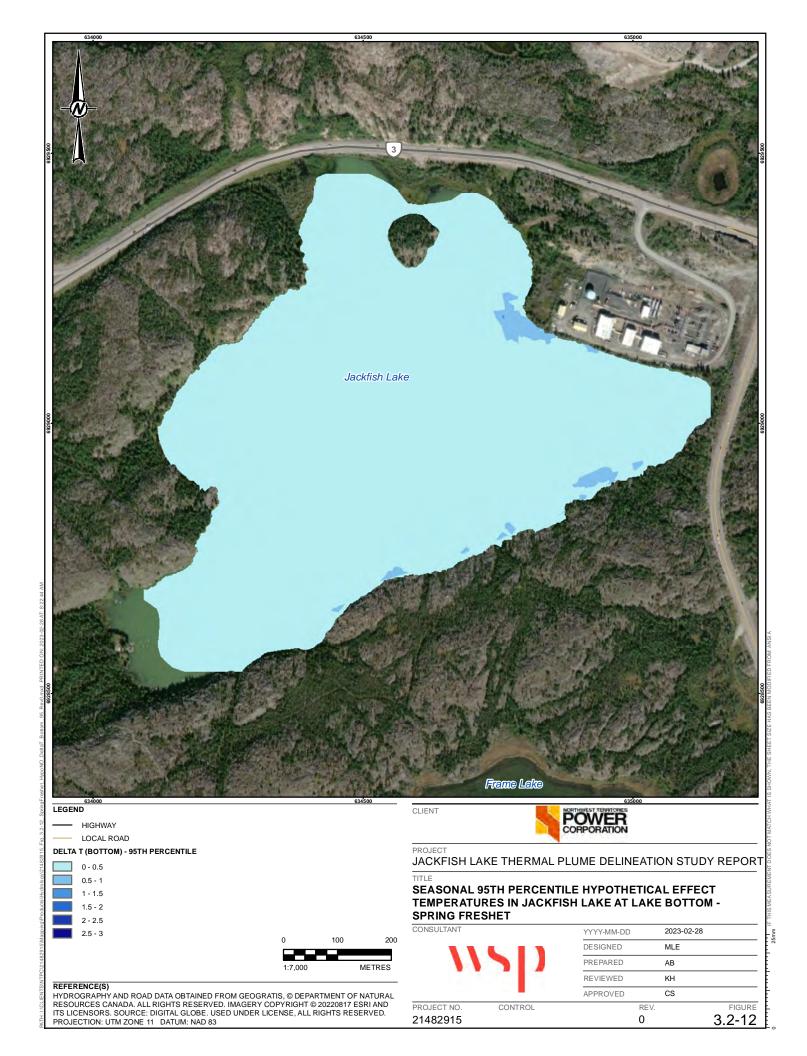
Note: Tabulated values may not sum to 100% in all instances due to a function of rounding. ha = hectares; "-" = not applicable.

3.2.1.3.3 Spring Freshet

The spring freshet condition reflects the 95th percentile temperature differences between the two-and-a-half-day hypothetical discharge scenario and non-operational scenario, calculated over a four-day period commencing at the start of discharge during spring freshet. Figures 3.2-11 and 3.2-12 illustrate the 95th percentile temperature difference between hypothetical operational lake conditions and non-operational lake conditions between 25 and 29 May 2022 at lake surface and lake bottom, respectively. Table 3.2-5 presents the aerial extent of the 95th percentile surface and bottom increases resulting during this discharge event, noting that some of the temperature increases along the lake's south-eastern shoreline are not necessarily directly related to operational heating.

The surface plume illustrated on Figure 3.2-11 suggests that a current reversal may have occurred during active discharge with minor temperature increases located to the north and west of the discharge array and slightly larger temperature increases to the south. Figure 3.2-12 illustrates minor increases of bottom temperatures along both trajectories; a small, localized area of 0.5°C increase is located to the northwest of the discharge array. Several similar temperature increases are also shown along the lakes south-eastern shoreline that could be the direct result of the thermal plume or simply an artifact of moderately altered thermal structures at this location that would manifest themselves in phasal shifts of diurnal temperature fluctuations and thus not reflect direct heating of the plume. Overall, these results indicate that the magnitude of temperature increases during the spring freshet period was relatively small.


Table 3.2-5: Aerial Extent of 95th Percentile and Median Hypothetical Operational Effects on Jackfish Lake during Spring Freshet (25 and 29 May 2022 Simulation Period)


	• • •	•		
Temperature Effect	95 th Percentile Extents (ha) at Surface	95 th Percentile Extents (% of Extracted Area) at Surface	95 th Percentile Extents (ha) at Bottom	95 th Percentile Extents (% of Extracted Area) at Bottom
0°C to 0.5°C	47.1	92	50.5	98
0.5°C to 1°C	3.4	7	0.8	2
1°C to 1.5°C	0.2	0	0	0
1.5°C to 2°C	0.2	0	-	-
2°C to 2.5°C	0.2	0	-	-
2.5°C to 3°C	0.2	0	-	-
>3°C	-	-	-	-

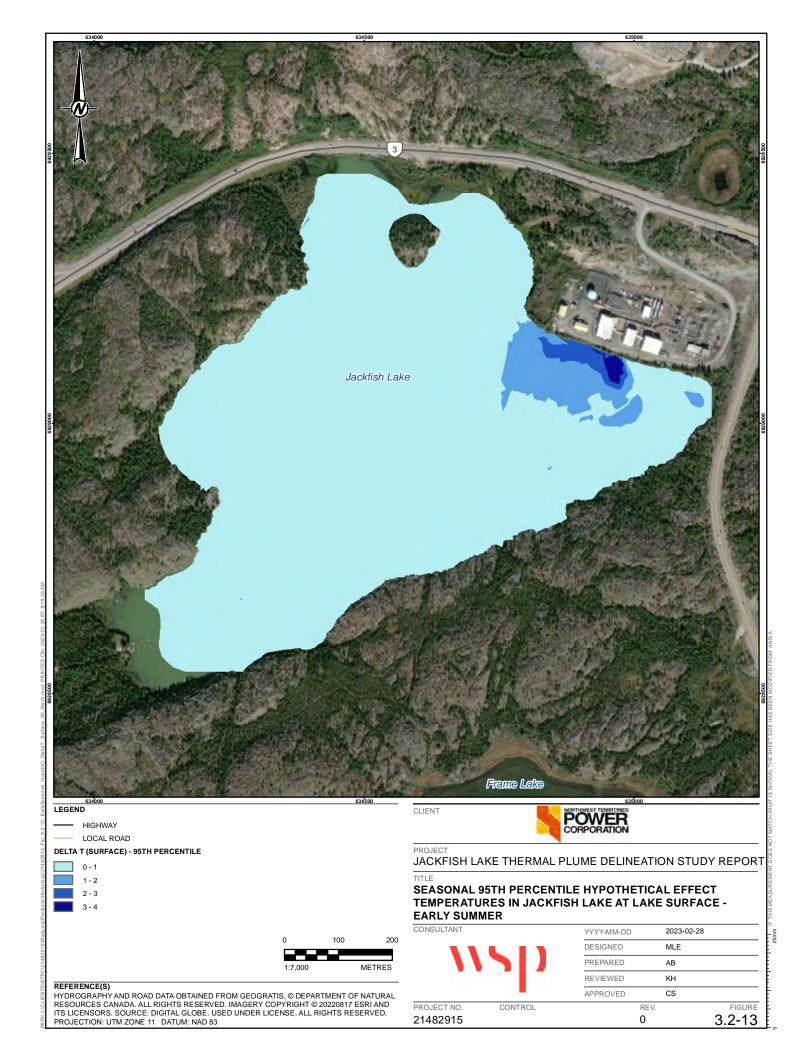
Note: Tabulated values may not sum to 100% in all instances due to a function of rounding.

ha = hectares; "-" = not applicable.

3.2.1.3.4 Early Summer

The early summer condition reflects the 95th percentile temperature differences between the two-and-a-half-day hypothetical discharge scenario and non-operational scenario, calculated over a four-day period commencing at the start of discharge during the early summer. Figures 3.2-13 and 3.2-14 illustrate the 95th percentile temperature difference between hypothetical operational lake conditions and non-operational lake conditions between 1 and 5 July 2022 at lake surface and lake bottom, respectively. Table 3.2-6 presents the aerial extent of the 95th percentile surface and bottom increases resulting during this discharge event.

Figure 3.2-13 depicts the surface plume resulting from the hypothetical discharge event at a time when current conditions were reasonably calm, and only slightly directed to the east. Small, localized, temperature differences are depicted to the southwest and north of the lake and are the product of small alterations in thermal structure that result in minor phasal shifts in temperature fluctuation and thus not illustrative of thermal impacts. Figure 3.2-14 indicates that some changes to bottom temperatures in the vicinity of the discharges resulted from the hypothetical discharge event. However, it is considered unlikely that operational effects contributed directly to temperature differences observed towards the southern extent of Jackfish Lake; a phasal shift resulting from slightly modified thermal structure is likely the cause. Overall, these results indicate that the aerial extent of temperature increases greater than 1°C were relatively small during the early summer period.


Table 3.2-6: Aerial Extent of 95th Percentile and Median Hypothetical Operational Effects on Jackfish Lake during Early Summer (1 and 5 July 2022 Simulation Period)

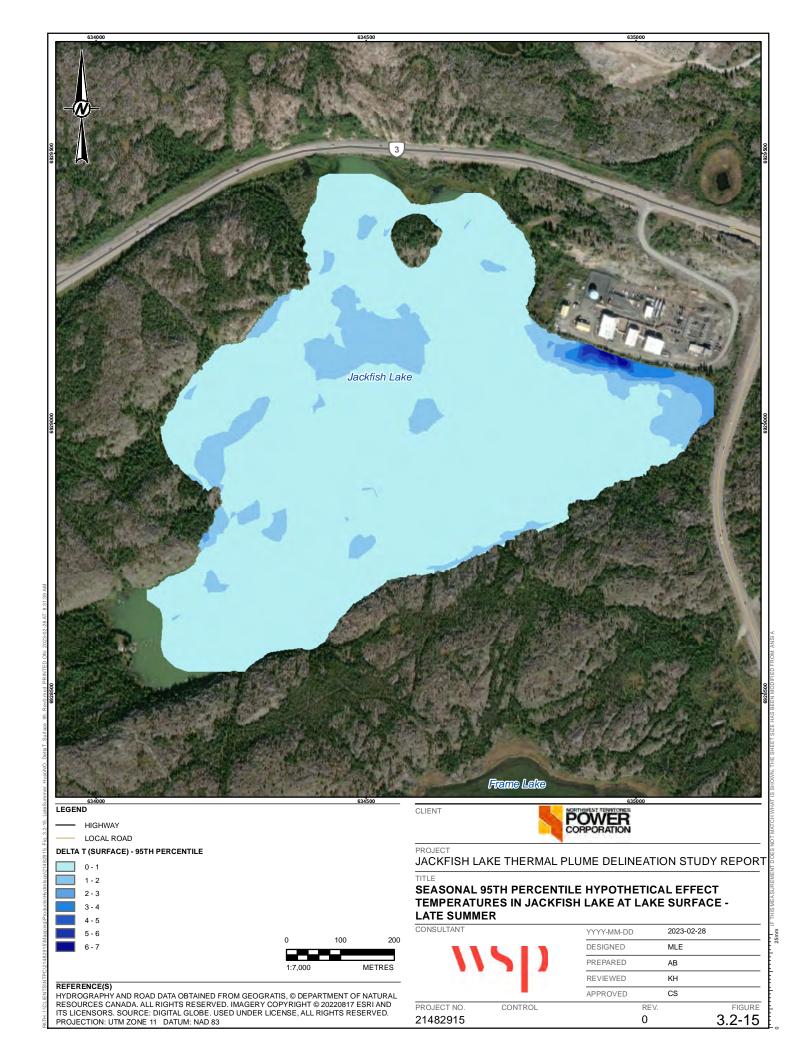
Temperature Effect	95 th Percentile Extents (ha) at Surface	95 th Percentile Extents (% of Extracted Area) at Surface	95 th Percentile Extents (ha) at Bottom	95 th Percentile Extents (% of Extracted Area) at Bottom
0°C to 1°C	48.3	94	50.2	98
1°C to 2°C	2.3	5	1	2
2°C to 3°C	0.5	1	0.1	0
3°C to 4°C	0.1	0	0	0
>4°C	0	0	-	-

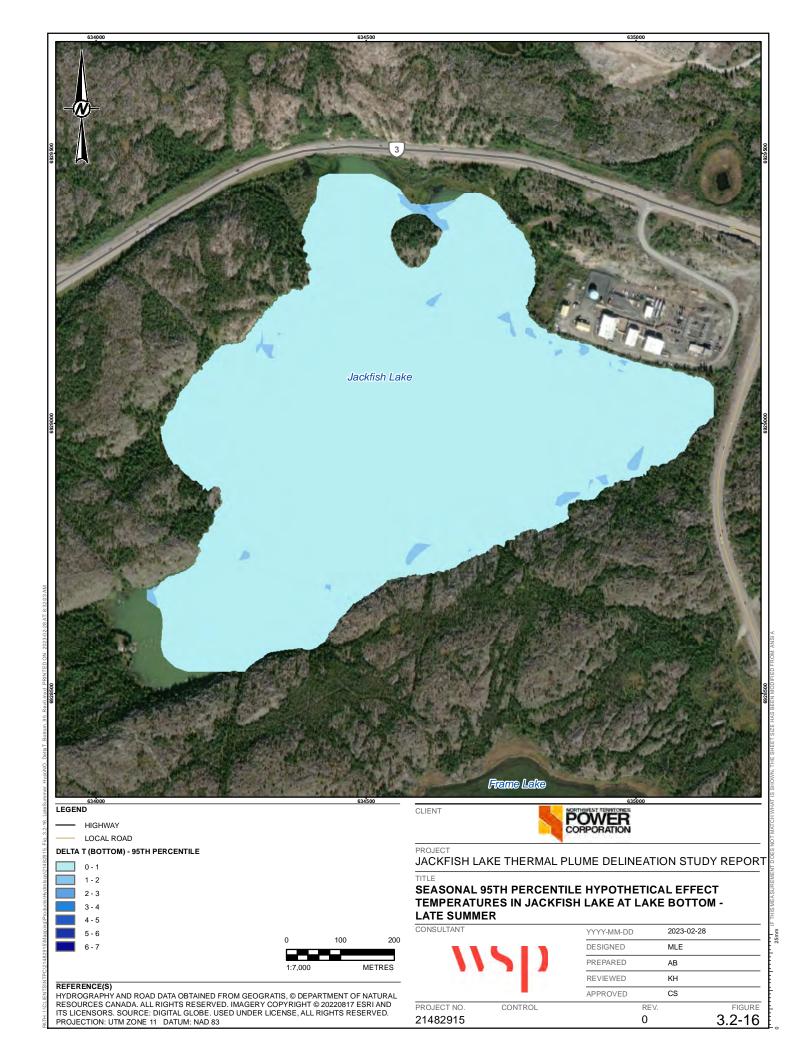
Note: Tabulated values may not sum to 100% in all instances due to a function of rounding.

ha = hectares; "-" = not applicable.

3.2.1.3.5 Late Summer

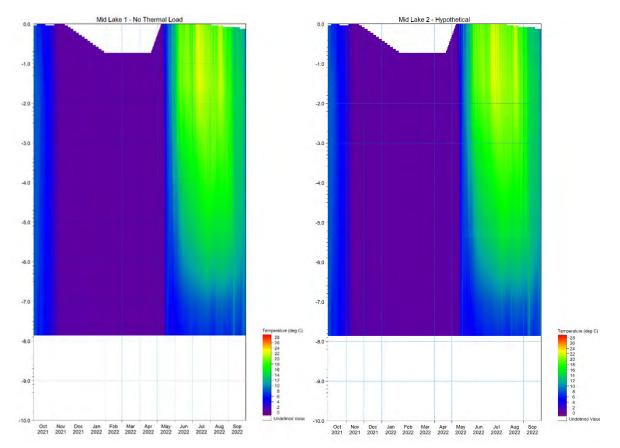
The late summer condition reflects the 95th percentile temperature differences between the two-and-a-half-day hypothetical discharge scenario and non-operational scenario, calculated over a four-day period commencing at the start of discharge during the late summer. Figures 3.2-15 and 3.2-16 illustrate the 95th percentile temperature difference between hypothetical operational lake conditions and non-operational lake conditions between 1 and 5 August 2022 at lake surface and lake bottom, respectively. Table 3.2-7 presents the aerial extent of the 95th percentile surface and bottom increases resulting during this discharge event.


Figure 3.2-15 illustrates surface temperature differences between the hypothetical operational and non-operational simulations over the four-day period. While some localized changes in the vicinity of the discharges are indicative of operational heat loads introduced to the lake, most of the temperature differences shown on the lake are illustrative of modified thermal structures in the lake that result in slightly modified timings of peak surface temperatures and manifest themselves as statistically notable temperatures at lake surface. In terms of lake bottom temperature differences, these are mostly unrelated to the direct thermal effects of the thermal plume (Figure 3.2-16) but are likely the result of indirect effects that slightly modify the thermal structure of the lake and cause temporal differences in temperature responses to diurnal atmospheric effects. Overall, these results indicate that the aerial extent of temperature increases greater than 1°C were relatively small during the late summer period.


Table 3.2-7: Aerial Extent of 95th Percentile and Median Hypothetical Operational Effects on Jackfish Lake during Late Summer (1 and 5 August 2022 Simulation Period)

Temperature Effect	95 th Percentile Extents (ha) at Surface	95 th Percentile Extents (% of Extracted Area) at Surface	95 th Percentile Extents (ha) at Bottom	95 th Percentile Extents (% of Extracted Area) at Bottom
0°C to 1°C	44.0	86	50.5	98
1°C to 2°C	6.2	12	0.8	1
2°C to 3°C	0.6	1	0	0
3°C to 4°C	0.3	1	-	-
>4°C	0.2	0	-	-

Note: Tabulated values may not sum to 100% in all instances due to a function of rounding. ha = hectares; "-" = not applicable.



3.2.1.4 Thermal Structure of Jackfish Lake

Figure 3.2-17 provides an overview of the thermal structure of Jackfish Lake over time at the Mid-Lake monitoring location for non-operational (baseline) and hypothetical discharge conditions. Despite minor temporal differences at this location observed in the form of time series data, the illustrated isopleths demonstrate that no substantial changes to the thermal structure of Jackfish Lake have occurred as a result of the hypothetical discharges.

Figure 3.2-17: Thermal Structure of Jackfish Lake (Mid-Lake Location) under Hypothetical and Non-Operational Conditions (6 October 2021 through 27 September 2022)

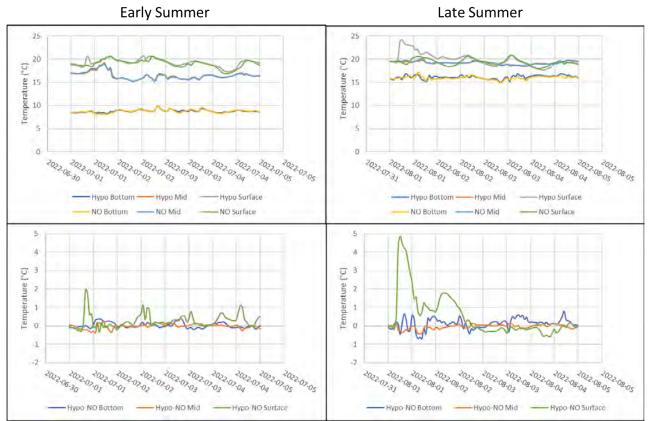
3.2.1 Influence of Cooling Water Discharge on Water Quality

The timing of field programs did not align when both stratification occurred (i.e., summer programs) and cooling water discharges from the Facility or immediately after (i.e., one or two days following) cooling water discharges. Therefore, a qualitative assessment of the potential effect of cooling water discharge on lake stratification was completed using temperature modelling results from the 2022 summer period (1 June 2022 to 1 August 2022).

Modelled timeseries data of surface, mid-depth and bottom temperature differences (i.e., differences between the measured operational and non-operational scenarios) at locations throughout Jackfish Lake showed small to negligible difference in temperatures due to the waste heat loadings during the summer. At the three depths (surface, mid-depth, and bottom) and ten locations in the lake (locations identified in Table 2.2-1 and Figure 2.2-1), modelled temperature differences due to the waste heat load discharge were typically within 1°C (Appendix E, E 6-1 to E.6-10). Modelled temperature differences greater than 1.1°C were observed at K Discharge – In Lake at the bottom and surface (Figure E.6-1), EMD Discharge – In Lake at the surface only (Figure E.6-2), and Near the Outflow – In Lake at the surface only (Figure E.6-10). The largest modelled temperature increase was observed at the surface of EMD Discharge - In Lake (Figure E.6-2), where the modelled surface temperature increased by up to 2.7°C after a waste heat load discharge event on 29 July 2022; the increase in temperature at the surface was limited to within 24 hours of the end of this waste heat load discharge event. The second largest modelled temperature increases were observed at the bottom of K Discharge - In Lake, where temperature increases of up to 2.5°C were observed after a waste heat load discharge event that occurred on 12 July 2022 (Figure E.6-1); the increase in temperature at the bottom was limited to within 24 hours of the end of the waste heat load discharge event. During this same waste heat load discharge event, the surface temperatures at K Discharge - In Lake also increased by up to 1.6°C; this increase in temperature also continued for less than 24 hours. Overall, the modelled differences in temperature at the different depths during the summer did not indicate a potential for influencing thermal stratification on a lake-wide or extended temporal (e.g., more than 24 hrs from the end of the waste heat discharge) basis. The pattern in the modelled temperatures are consistent with the observation of similar patterns in thermal stratification, based on measured temperature profiles, between locations closest to the discharge (i.e., EMD Discharge – In Lake, K Discharge – In Lake and CAT Discharge – In Lake) and locations farther from the discharge (e.g., Mid Lake 1, 2 and 3, Near Outflow - In Lake and Southwest Bay) during the summer field programs (Appendix E, Figure E.4-1; July and August).

A qualitative review of the isopleth temperature plots, which showed temperatures with depth over the summer modelling period, indicated negligible differences (i.e., negligible visual differences in plots) in stratification during the summer in 2022 and during the two hypothetical waste heat load scenarios during the summer (Appendix E, Figures E.6-11 to E.6-20). The modelled temperatures in the isopleth plots at different depths are similar between the operational and non-operational (i.e., no thermal load) scenarios for locations closest to the discharges (i.e., EMD Discharge – In Lake, K Discharge – In Lake and CAT Discharge – In Lake) during the summer 2022 period (Appendix E, Figures E.6-11 to E.6-13). Temperature differences between the non-operational and hypothetical scenarios (i.e., maximum observed waste heat load during the thermal plume study was modelled during early and late summer conditions) at all monitored locations in the lake (Table 2.2-1 and Figure 2.2-1) were negligible when the isopleths were visually reviewed (Appendix E, Figures E.6-11 to E.6-20). This is consistent with the modelled time series of temperatures differences which indicated that the influence of waste heat discharges on temperatures in Jackfish Lake was negligible (typically within 1°C) and limited in time (i.e., negligible influence after 24 hrs from the end of the waste heat load discharge event).

3.2.2 Influence of Operational Discharge on Fish and Fish Habitat


Model predictions for the two operational scenarios demonstrated similar trends (Figure 3.2-18). In the absence of thermal input from the Facility, temperature stratification in the lake was apparent and surface water temperatures were stable under non-operational conditions at 19.0°C and 19.3°C during the early summer and late summer, respectively. The non-operational model scenario also predicted gradual heating of the bottom strata from an average of 8.8°C in early summer to 16.0°C in late summer, as the lake naturally heated, and stratification depth increased. Under non-operational conditions, these results suggest that average temperatures at the surface were approaching the maximum thermal optimum for Lake Whitefish in both periods, and that temperatures at the surface were occasionally above the maximum thermal range for periods of time, although suitable temperatures were available deeper in the lake during both periods.

Under the hypothetical operational discharge scenario, temperatures were similar to the non-operational model scenario at the bottom and mid-depth in the water column; however, the surface water temperatures were generally elevated above the non-operational model scenario temperatures. This represents the attenuation of the discharge water at the surface as it dissipates through the plume. Temperatures at the surface were on average 0.27°C and 0.53°C higher than non-operational conditions in the early and late summer; however, the distribution of temperatures was largely skewed towards the modelled period of discharge for the hypothetical operational discharge scenario (i.e., the first two-and-a-half days), with temperatures reaching maximum values of 1.96°C and 4.86°C above non-operational conditions (Figure 3.2-18), 100 m away from the discharge point. During both periods, temperatures return to stable conditions quickly and remain within approximately 1°C of the non-operational model scenario for the remainder of the model period. These results indicate that under the maximum discharge conditions of the hypothetical operational discharge scenario, the operation of the Facility is capable of boosting water temperatures at the surface well above the thermal optimum for Lake Whitefish growth, particularly in late summer (maximum = 24.1°C), the effect is limited to the surface and to periods when the Facility is operating; the plume dissipates quickly thereafter.

The thermal model results demonstrated that the thermal discharges from the Facility did not result in prolonged thermal stratification in the lake and did not result in prolonged anoxia at the lake bottom. Internal loads of phosphorus from the sediment to the water column may still be occurring in Jackfish Lake as a result of historical phosphorus loads. However, the thermal model results do not suggest that the Facility is affecting thermal stratification or furthering prolonged anoxia that could enhance phytoplankton growth and thereby increase the likelihood of spring or summer algal blooms.

Figure 3.2-18: Model Predictions for Thermal Plume Temperatures, 100 metres from the Discharge Point During Early and Late Summer Periods

Notes: Top panels show predicted temperatures by date and scenario. The bottom panels show the relative difference in predicted temperature between the NO and Hypo model scenarios.

NO = non-operational conditions scenario; Hypo = predicted hypothetical operational discharge scenario; Hypo-NO = difference in model predictions at each time step.

4.0 CONCLUSIONS AND RECOMENDATIONS

The results of the thermal plume study indicate that the Facility had a negligible impact on temperature in Jackfish Lake. The small changes that were observed were likely the result of the highly intermittent nature and low heat loads discharged to the lake during the thermal plume study.

The assessment of the hypothetical operational discharge scenario (i.e., peak measured worst-case scenario) carried out for late fall, late winter, spring freshet, early summer, and late summer demonstrated that the thermal extent of the temperature increases were generally negligible or relatively small. For the late fall, late winter, and spring freshet period these increases were less than 1°C for less than 1% of the lake surface. In the early and late summer, the effect on lake surface temperatures was generally within 1°C, with small portions of the lake surface (1%) increasing by more than 2°C, while the effect on lake bottom temperatures was generally within 1°C of non-operational (baseline) lake temperatures, with only a small portion of the lake bottom (2% or less) increasing by more than 1°C. Although the thermal structure of the lake experienced minor modifications outside the turbulent mixing zone of the discharges, they are not visually detectable at the mid-lake location meaning discharges of the nature observed in September 2021 through July 2022 are not altering the thermal structure or behaviour of the lake.

The results indicate that there are negligible effects of operations on water quality, and as such, the potential operational effects on the fish community, including Lake Whitefish, would also be negligible. Potential effects were localised and intermittent in nature. The maximum expected temperatures within 100 m of the discharge point were evaluated and although temperatures above the thermal optima for Lake Whitefish growth are present at the surface, thermal refuge remains at deeper depths and throughout the rest of the lake, and elevated temperatures at the surface dissipate to non-operational conditions soon after discharge of warm waters cease. However, the thermal plume model does indicate that there is a potential for longer term and larger waste heat loads to have a larger influence on temperature if operational discharge of warm water continues for longer periods than observed during the thermal plume study.

Based on the results of the thermal plume delineation study, it is recommended that the Aquatic Effects Monitoring Program (AEMP) Design Plan include continuous temperature monitoring throughout the open-water period, with emphasis on the summer period when maximum temperatures were observed. An adaptive management approach should be considered, based on temperature values, for the initiation and further monitoring of water quality and biological components, if required.

Signature Page

WSP Canada Inc.

ORIGINAL SIGNED

Laurence Bonin Project Manager

ORIGINAL SIGNED

Kelly Hille Lead Aquatic Scientist

ORIGINAL SIGNED

Cameron MacKenzie Senior Fisheries Biologist

ORIGINAL SIGNED

Alison Humphries
Principal Water Quality Scientist

LB/CS/KH/EH/CM/GR/AH/jjm

ORIGINAL SIGNED

Cameron Stevens
Project Director, Principal Aquatic Biologist

ORIGINAL SIGNED

Ed Hunt, P.Eng.

Water Resources Engineer

ORIGINAL SIGNED

Greg Rose
Principal Modelling Specialist

https://golderassociates.sharepoint.com/sites/150938/project files/6 deliverables/04_report/rev0/21482915-004-r-rev0-jackfish thermal plume delineation study.docx

5.0 REFERENCES

BC ENV (British Columbia Ministry of Environment and Climate Change Strategy). 2021. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Available at: https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-guidelines/bc_env_working_water_quality_guidelines.pdf. Accessed November 2022.

- BC MOE (British Columbia Ministry of Environment). 1981. Ambient water quality guidelines for temperature: overview. Environment Management Act. National Library of Canada Cataloguing in Publication Data. Accessed online January 2023: https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-guidelines/approved-wqgs/temperature-or.pdf
- Buscombe D. 2017. Shallow water benthic imaging and substrate characterization using recreational-grade sidescan-sonar. Environmental Modeling and Software 89: 1–18.
- CCME (Canadian Council of Ministers of the Environment). 1999. Canadian environmental quality guidelines. 1999. Canadian environmental quality guidelines summary table, with updates to 2021. Winnipeg, MB, Canada. Available at https://www.ccme.ca/en/current-activities/canadian-environmental-quality-quidelines. Accessed May 2021.
- CCME. 2004. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Phosphorus: Canadian Guideline Framework for the Management of Freshwater System. In: Canadian Environmental Quality Guidelines, 2004, CCME, Winnipeg.
- CFIA (Canadian Food Inspection Agency). 2018. Canadian food inspection agency fish products standards and methods manual: Appendix 3: Canadian guidelines for chemical contaminants and toxins in fish and fish products. Ottawa, ON, Canada.
- EC (Environment Canada). 2012. Metal Mining Technical Guidance Document for Environmental Effects Monitoring (EEM). National EEM Office, Ottawa, ON.
- EC. 2014. Guidance document: Environmental Effects Assessment of Freshwater Thermal Discharge. National EEM office, Ottawa, ON.
- Edsall TA. 1999. The growth–temperature relation of juvenile lake whitefish. Transactions of the American Fisheries Society 128:962–964.
- Dewey R. 2011. Spill Scenario Modelling for Lake Ontario Lakes Assessment Report for Five Source Water Protection Areas (SPAs) Under Ontario's Clean Water Act. Prepared for the Lake Ontario Collaborative. December 2011. 187 pp.
- Golder (Golder Associates Ltd.). 2019a. 2018 Discharge Quality Report, Jackfish Facility. Prepared for the Northwest Territories Power Corporation. Submitted to the Mackenzie Valley Land and Water Board, February 2019. Yellowknife, NT.
- Golder. 2019b. 2018 Environmental Monitoring Report Jackfish Lake. Prepared for Northwest Territories Power Corporation, Hay River, NWT, Canada.
- Golder. 2021. Thermal Plume Delineation Study Design Plan. Version 2.1. Submitted to the Northwest Territories Power Corporation, May 2021. Yellowknife, NT.

Hart BT, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredity C, Swadling K. 1990. Effects of Salinity on River, Stream, and Wetland Ecosystems in Victoria, Australia. Water Research 24(9): 1103-1117.

- Ma T, Liu WH, Song C, Cheng W. 2009. Application of MIKE3 in prediction analysis of the water temperature of reservoir. Power Syst. Clean Energy 25:68-71
- Mitchell P, Prepas E. 1990. Atlas of Alberta Lakes. The University of Alberta Press. Edmonton, AB.
- MVLWB (Mackenzie Valley Land and Water Board). 1995. Water Licence #N1L1-1632. Yellowknife, NT.
- MVLWB. 2019a. Letter of Approval of Water Licence MV2019L1-0001 Northwest Territories Power Corporation, 18 October 2019.
- MVLWB. 2019b. Water Licence MV2019L1-0001 Northwest Territories Power Corporation, October 2019.
- MVLWB. 2020. Northwest Territories Power Corporation (NTPC) Thermal Plume Study Design staff report and comments (MV2019L1-0001). 8 October 2020.
- Palmer MJ, Galloway JM, Jamieson HE, Patterson RT, Falck H, Kokelj SV. 2015. The concentration of arsenic in lake waters of the Yellowknife area; Northwest Territories Geological Survey, NWT Open File 2015-06. 25p.
- Schindler DW, Fee EJ. 1974. Experimental Lakes Area: Whole-lake Experiments in Eutrophication. Journal of the Fisheries Board of Canada, 31(5): 937-953.
- Spotila JR, Terpin KM, Koons RR, Bonati RL. 1979. Temperature requirements of fishes from eastern Lake Erie and the upper Niagara River: a review of the literature. Environmental Biology of Fishes 4: 281-307.
- Terzi RA, Winkler T, Routledge B. 1994. Hydrometric Field and Related Manual, Water Survey of Canada. Environment Canada, Ottawa, ON.
- US EPA (United States Environmental Protection Agency). 1973. Water Quality Criteria 1972. Environmental Studies Board, U.S. Environmental Protection Agency, Washington, D.C. EPA-R-73-033. 127-129 p.
- Wentworth CK. 1922. A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology, The University of Chicago Press. Chicago IL.

APPENDIX A

Thermal Modelling Report

Table of Contents

1.0	INTR	ODUCTION	1
	1.1	Background	1
	1.1.1	Technical Background	1
	1.2	Purpose	2
	1.3	Objectives	2
2.0	MODI	EL INPUTS AND MODEL SETUP	2
	2.1	Selected Model Software	3
	2.2	Model Inputs	3
	2.2.1	Bathymetric and Topographical Inputs	3
	2.2.2	Meteorological Inputs	4
	2.2.3	Ice Cover	5
	2.2.4	Lake Substrate Temperature Inputs	5
	2.2.5	Hydrological Inflows and Outflow	6
	2.2.6	Inflow Temperature Inputs	8
	2.2.7	Operational Inputs	8
	2.3	Model Calibration and Validation Data	9
	2.3.1	Temperature Timeseries	9
	2.3.2	Water Level Inputs	9
	2.4	Data Screening, Adjustment or Synthesis	9
	2.4.1	Bathymetric and Topographical Data	9
	2.4.2	Meteorological Data	.10
	2.4.3	Ice Cover	.11
	2.4.4	Lake Substrate Temperature	.11
	2.4.5	Water Level Data	.13
	2.4.6	Hydrological Inflows and Outflow Data	.14
	2.4.7	Inflow Temperature Data	.16
	2.4.8	Operational Data	.17

i

	2.5	Model Setup	22
	2.5.1	Model Domain	22
	2.5.2	Vertical Discretisation	24
	2.5.3	Model Simulation Periods	26
3.0	MODE	EL CALIBRATION AND VALIDATION	26
	3.1	Model Calibration and Validation Approach	26
	3.1.1	Calibration Parameters	26
	3.1.2	Performance Statistical Metrics	27
	3.1.3	Reference Statistical Metrics	28
	3.2	Model Calibration and Validation Results	29
	3.2.1	Model Calibration Results	30
	3.2.2	Model Validation Results	37
4.0		RONMENTAL AND OPERATIONAL SCENARIOS CONSIDERED FOR PRODUC	
	4.1	Environmental Conditions	41
	4.2	Operational Conditions	42
	4.3	Simulated Model Scenarios	42
5.0	MODE	EL ASSUMPTIONS AND LIMITATIONS	44
6.0	RESU	LTS	44
	6.1	Foreword	44
	6.2	Water Temperatures in Jackfish Lake under Measured Operational Conditions - October 2021 th September 2022	_
	6.3	Effect of Measured Operational Discharges on Jackfish Lake – October 2021 through Septembe	
	6.4	Seasonal Water Temperatures in Jackfish Lake resulting from Hypothetical Maximum Opera	
	6.4.1	Late Fall	53
	6.4.2	Late Winter	56
	6.4.3	Spring Freshet	59
	6.4.4	Early Summer	62
	6.4.5	Late Summer	65

	.5 Thermal Structure of Jackfish Lake	68
7.0	CONCLUSIONS	69
8.0	REFERENCES	70
TAB		_
	1: Ice Thickness Measurements Collected during Ice Cover Period	
	2: Observation of Inflow Conditions to Jackfish Lake on Five Occasions during Study Period	
Tabl	3: Outflow Water Level and Streamflow Measurements collected within Jackfish Lake's Discharge	
Tabl	4: Retained Operational Time Periods Applied in Thermal Modelling	19
Tabl	5: Model Initialization and Simulation Periods Considered for the Jackfish Thermal Plume Study	26
Tabl	6: Summary of Model Fit Parameters from Literature	29
Tabl	7: Summary of Model Fit Benchmarks Selected to Assess Jackfish Lake Model	29
Tabl	8: Water Temperature Calibration Performance for Jackfish Lake	30
Tabl	9: Water Temperature Validation Performance for Jackfish Lake	38
Tabl	10: Model Scenarios simulated for the Purposes of Establishing Operational Effects on Jackfish Lak	(e43
Tabl	11: Aerial Extent of 95 th Percentile and Median Measured Operational Effects on Jackfish Lake Surface (6 October 2021 to 27 September 2022 Simulation Period)	
Tabl	12: Aerial Extent of 95 th Percentile and Median Measured Operational Effects on Jackfish Lake Bottom (6 October 2021 to 27 September 2022 Simulation Period)	
Tabl	13: Aerial Extent of 95 th Percentile and Median Hypothetical Operational Effects on Jackfish Lake du Fall (21 and 25 October 2021 Simulation Period)	
Tabl	14: Aerial Extent of 95 th Percentile and Median Hypothetical Operational Effects on Jackfish Lake du Winter (10 and 14 April 2022 Simulation Period)	
Tabl	15: Aerial Extent of 95 th Percentile and Median Hypothetical Operational Effects on Jackfish Lak Spring Freshet (25 and 29 May 2022 Simulation Period)	
Tabl	16: Aerial Extent of 95 th Percentile and Median Hypothetical Operational Effects on Jackfish Lake dur Summer (1 and 5 July 2022 Simulation Period)	
Tabl	17: Aerial Extent of 95 th Percentile and Median Hypothetical Operational Effects on Jackfish Lake du Summer (1 and 5 August 2022 Simulation Period)	
FIGI	RES	
Figu	1: Bathymetric, Topographic, and Land-water Boundary Data Obtained for the Purposes of Mesh Ge	
Figu	2: Lake Monitoring Locations	7
Figu	3: Hypsographic Curves for Jackfish Lake	10

Figure 4: Illustration of Synthesized Substrate Temperatures for Jackfish Lake	12
Figure 5: Lake-Bed Temperatures measured at Mid-Lake, Northwest Bay, Southwest Bay from October 202 September 2022	
Figure 6: Water Level Elevation Recorded for Jackfish Lake	14
Figure 7 : Inflow Timeseries Applied to the Model for Jackfish Lake	15
Figure 8: Outflow Timeseries Developed from Rating Curve	16
Figure 9: Air Temperatures and Synthesized Watercourse Temperatures	17
Figure 10: Instantaneous and Cumulative Heat Waste Output Over Period of Record for EMD Plant, K Plant, CAT Plant Combined in MegaWatts	
Figure 11: Maximum Cumulative Heat Load Event Measured between 23 December 2021 12:30 and 25 Decer 2021 19:00	
Figure 12 : Aerial Perspective of Finalized Mesh Configuration for Jackfish Lake Thermal Model	23
Figure 13: Cross-sectional Perspective of Vertical Discretisation Illustrating Variability of Spatial Resolution Depth	
Figure 14: Modelled Water Temperature Performance at CAT Plant (Top)	31
Figure 15: Modelled Water Temperature Performance at CAT Plant (Middle)	31
Figure 16: Modelled Water Temperature Performance at CAT Plant (Bottom)	32
Figure 17: Modelled Water Temperature Performance at K Plant (Top)	32
Figure 18: Modelled water Temperature Performance at K Plant Bottom	33
Figure 19: Modelled Water Temperature Performance at Southwest Bay (Top)	33
Figure 20: Modelled Water Temperature Performance at Southwest Bay (Middle)	34
Figure 21: Modelled Water Temperature Performance at Southwest Bay (Bottom)	34
Figure 22: Modelled Water Temperature Performance at Mid lake (Top)	35
Figure 23: Modelled Water Temperature Performance at Mid Lake (Middle)	35
Figure 24: Modelled Water Temperature Performance at Mid Lake (Middle 2)	36
Figure 25: Modelled Water Temperature Performance at Mid Lake (Bottom)	36
Figure 26: Modelled Water Level Performance during Ice-Free Period between 6 October 2021 and 27 Septer 2022	
Figure 27: Modelled Water Temperature Performance at EMD Plant (Top)	38
Figure 28: Modelled Water Temperature Performance at EMD Plant (Middle)	39
Figure 29: Modelled Water Temperature Performance at EMD Plant (Bottom)	39
Figure 30: Modelled Water Temperature Performance at Northwest Bay (Top)	40
Figure 31: Modelled Water Temperature Performance at Northwest Bay (Middle)	.40
Figure 32: Modelled Water Temperature Performance at Northwest Bay (Bottom)	.41

Figure 33:	Annual 95 th Percentile Lake Temperatures in Jackfish Lake at Lake Surface during Measured Operations46
	Annual 95th Percentile Lake Temperatures in Jackfish Lake at Lake Bottom during Measured Operations47
	Annual 95th Percentile Measured Operational Effect Temperatures in Jackfish Lake at Lake Surface49
Figure 36:	Annual Median Measured Operational Effect Temperatures in Jackfish Lake at Lake Surface50
Figure 37:	Annual 95th Percentile Measured Operational Effect Temperatures in Jackfish Lake at Lake Bottom51
Figure 38:	Annual Median Measured Operational Effect Temperatures in Jackfish Lake at Lake Bottom52
Figure 39:	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Surface - Late Fall
-	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Bottom - Late Fall
-	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Surface - Late Winter57
	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Bottom - Late Winter58
	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Surface - Spring Freshet
	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Bottom - Spring Freshet61
•	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Surface - Early Summer63
	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Bottom - Late Winter64
_	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Surface - Late Summer66
	Seasonal 95th Percentile Hypothetical Effect Temperatures in Jackfish Lake at Lake Bottom - Late Summer67
	Thermal Structure of Jackfish Lake (Mid-Lake Location) under Hypothetical and Non-Operational Conditions (6 October 2021 through 27 September 2022)68

APPENDICES

ATTACHMENT A

ATTACHMENT B

1.0 INTRODUCTION

This model calibration/validation report has been prepared for Northwest Territories Power Corporation (NTPC) by WSP Canada Inc. (WSP) and provides the technical support for the model calibration and validation of the Thermal Plume Delineation Study (Thermal Plume Study) for Jackfish Lake.

1.1 Background

The Jackfish diesel generating facility, which is located on the northeast shore of Jackfish Lake in Yellowknife, Northwest Territories (NT), contributes power to the North Slave electrical system, when required, and is comprised of three separate plants: the CAT plant, EMD plant, and K plant. Each plant has an engine cooling system that uses water from Jackfish Lake. These cooling systems and their use of water from Jackfish Lake are regulated under Water Licence MV2019L1-0001 (the Water Licence) issued by the Mackenzie Valley Land and Water Board (MVLWB) on 18 October 2019 (MVLWB 2019).

The K and EMD plant each have one intake through which cooling water is drawn from the lake and one discharge each, through which cooling water and excess heat load are discharged back into the lake for thermodynamic assimilation. CAT plant comprises two intakes and one discharge through which excess heat loads are delivered to Jackfish Lake. Flow and temperature measurements for each plant were recorded from October 2021 through September 2022 and used in model calibration and validation.

1.1.1 Technical Background

Several lake processes are relevant to the fate and behaviour of thermal discharges in Jackfish Lake. The most relevant of these processes include:

- Circulation and hydrodynamics: Lake circulation and wind-driven currents can dictate the rate at which temperature plumes are advected and dispersed and, ultimately, influence thermocline development and the timing of turnover events.
- lce formation: ice cover can substantially reduce advection and mixing within reservoir waters for a large period of the year, allowing mild inverse thermoclines to develop during winter stratification periods. Ice formation also limits heat exchange between the lake and atmosphere ultimately affecting the water temperature under ice.
- Temperature stratification: the establishment of thermoclines occurs in response to seasonal variations in temperature. The more pronounced a temperature gradient becomes, the greater the potential for it to impede vertical mixing by wind-driven sheer. It has been assumed that chemical inputs are insignificant, and therefore, stratification driven by chemistry gradients is not considered to be a relevant lake process that could affect the fate of thermal plumes.
- Water and heat balance: the balance of inputs, including direct precipitation, and potentially, watercourse inflows, as well as losses through surface evaporation and outflows, drive the lake water balance and determine lake-wide residence time. Atmospheric and, given Jackfish Lake's location within the discontinuous permafrost zone, substrate heating/cooling effects ultimately drive the heat balance within a body of water and dictate the rate at which cooling, or heating of a waterbody occurs. Heat exchange between the lake and atmosphere as well as between the lake and underlying substrate directs both the long-term (e.g., seasonal) and short-term (e.g., diurnal) thermal characteristics of the lake.

1.2 Purpose

The purpose of this report is to document the technical inputs and approach, relevant assumptions and limitations, model construction, calibration, and validation as well as results of the Jackfish Thermal Plume Study.

1.3 Objectives

The principal objectives of the Jackfish Lake thermal modelling report are to provide tabular and graphical information to document lake temperatures during the 2021 through 2022 period of interest and establish an understanding of operational effects on lake temperatures during this time frame. Specific objectives include:

- Documentation of data review, inputs, adjustments, and assumptions
- Documentation of model calibration and validation and commentary on model performance
- Visualisation and quantification of annual spatial extents of thermal plumes resulting from operational influences at the lake surface and lakebed by comparing the lake's thermal regime in the presence and absence of operational influences to derive environmental delta-T plots and calculations that characterize temperature increases resulting from measured operations
- Establishment of seasonal characterisations of thermal plumes resulting from operational influences by simulating the lake's thermal regime in the presence and absence of operational influences¹ during:
 - late fall (October 2021 or September 2022),
 - late winter immediately before ice break up (March/April 2022),
 - spring freshet (May/June 2022),
 - early summer (July 2022) and
 - late summer (August 2022).

Additional outputs from these model simulations are provided separately for the purposes of the fish and fish habitat and water quality study components and contour plots are provided in Attachment A.

2.0 MODEL INPUTS AND MODEL SETUP

The following subsections detail the sources, evaluation and preparation of model inputs developed for the purposes of driving model simulations. It should be noted that all aspects of model development, the preparation of model inputs, model calibration and validation, and analysis of modelling results were completed in conformance with our internal Global Numerical Modelling Quality Assurance and Quality Control Process provided in Appendix B.

¹ It is noted that because operational influences are only intermittent, synthesised hypothetical operational simulations of thermal effects are used to define operational effects for each of these times.

2

2.1 Selected Model Software

MIKE 3 FM, a three-dimensional (3-D) modelling application developed by the Danish Hydraulic Institute, was used to simulate the effects of thermal discharges to Jackfish Lake relative to baseline (non-operational conditions). MIKE3 FM is fundamentally a hydrodynamic modelling platform that combines a number of computational components in either two-dimensional (2-D) or 3-D environments including, but not limited to, hydrodynamics, thermodynamics, advective transport, water quality, sediment and mud transport, and spectral wave attenuation (e.g., Ma et al. 2009; Dewey 2011). Only two of these components are necessary for the purposes of simulating the hydrodynamics and thermodynamics of Jackfish Lake, but the flexibility of this platform can easily be extended to other components for other future investigations, if ever required.

MIKE3 FM is recognized as one of the leading, if not the premiere, computational platforms for replicating and investigating lake hydrodynamic and thermodynamic behaviour and is capable of providing highly accurate information to address current, as well as potential future, questions regarding operational effects on the lake. It combines all the relevant physical process underlying thermal plume fate within one platform, avoiding the need to produce overly conservative outcomes associated with more simplistic computational approaches.

2.2 Model Inputs

Bathymetric, water level, hydrological and inflow temperature data used to develop inputs to the model were collected by WSP's technical field specialists over the period between October 2021 and September 2022. Descriptions of the sampling methods, data management, reporting, and modelling required for the Thermal Plume Study are provided in the Thermal Plume Delineation Study Design Plan (Golder 2021).

Additional input data used to characterize operational inputs, including discharge flows and temperature increases between each intake and discharge were collected and provided to WSP by NTPC following third-party installation of in-plant instrumentation.

2.2.1 Bathymetric and Topographical Inputs

Bathymetric data was collected by WSP on 29 September 2021. The average water elevation was 174.55 meters above sea level (masl) on the day the survey was conducted, and measured depths ranged from 8.36 m to 0.06 m. The land water boundary was defined based on digital imagery from the date the survey was conducted. A review of both inputs, as well as topographic contours along the perimeter of Jackfish Lake and historical digital imagery of Jackfish Lake, suggest little material variability in the wetted area as a result of seasonal changes in water levels. Figure 1 shows the topographic contour at 180 masl, the estimated land water boundary and locates of the bathymetric survey, demonstrating that the perimeter of the Lake is bound by topographic highs, except for localized areas on the northwest and southwest bay shorelines.

Figure 1: Bathymetric, Topographic, and Land-water Boundary Data Obtained for the Purposes of Mesh Generation

2.2.2 Meteorological Inputs

Meteorological inputs are the key drivers of lake circulation and thermal dynamics. The meteorological input data required for the Jackfish Lake model were hourly air temperature, wind speed and direction, air pressure, relative humidity, short and long-wave radiation, clearness coefficient (i.e., cloud cover), and precipitation. Most variable inputs were obtained from measurements recorded at Yellowknife A climate station (Station 2204101; ECCC 2022). It is noted that precipitation data for the modelling period yielded a total of 170 mm, compared to 288 mm for an average year.

Meanwhile, evaporation was calculated internally by the model during each computational timestep based on the difference between air and water temperature, as well as a combination of inputted meteorological variables and short and long wave radiation. These were calculated in the model using information on latitude, longitude, and inherent empirical functions, including formulations for short and long wave radiation provided within the modelling environment.

2.2.3 Ice Cover

Measurements of ice thickness during the 2021 through 2022 ice cover period were collected by WSP's technical field specialists on two occasions (7 December 2021 and 24 March 2022), recording a maximum ice thickness of 0.8 m at the centre of the lake towards the end of March, to provide an indication of ice thickness to be applied to the model. Ice thickness measurements collected during the winter period are presented in Table 1. Periods of ice cover were separately obtained from SentinelHub (2022) and NDWI (2022).

Table 1: Ice Thickness Measurements Collected during Ice Cover Period

Date	Location/Comment	Thickness
7 Dec 2021	lce was only recorded for safety verification >0.30 m near shore, approximately 0.40 SW Bay station	
22 Mar 2022	SW Bay	0.70 m
24 Mar 2022	NW Bay N	0.65 m
24 Mar 2022	Mid Lake 1	0.80 m
24 Mar 2022	Mid Lake 2	0.75 m
24 Mar 2022	Mid Lake 3	0.80 m
25 Mar 2022	"Near Outflow" station	0.44 m

SW = southwest; NW = northwest; N = north.

2.2.4 Lake Substrate Temperature Inputs

Jackfish Lake is situated in the discontinuous permafrost zone (Heginbottom et al. 1995) and is therefore influenced by an underlying thermal regime not typical of lakes further to the south. Limited data exists to characterize permafrost temperatures in the Yellowknife area (Karunaratne 2008) and understanding of permafrost conditions in Yellowknife generally dates back to a period before the effects of warming climates were documented (Brown 1973, Wolfe 1998).

Karunaratne (2008) measured ground, and subsurface temperatures at depths of 50 cm and 100 cm below surface at four sites in the vicinity of Yellowknife between 2004 and 2006. All four sites were located in peatlands; conditions within this substrate type were described as commonly saturated.

Given substrates within Jackfish Lake are inundated and influenced be seasonal heating throughout much of the year, the influence of frozen ground temperatures on lake thermal regimes are smaller than land--based measurements would suggest. Nevertheless, lower strata temperatures do exercise an influence on lake temperatures throughout the year, particularly in waters within proximity to the lakebed.

In his study, Karunaratne (2008) illustrates the difference between mean daily air and ground surface temperatures measured across a two-year study at one site, that was used to synthesize lake substrate temperatures for the Jackfish Lake model.

2.2.5 Hydrological Inflows and Outflow

2.2.5.1 Lake Inflows

According to field observations, hydrological inflows to the lake only occur periodically, mainly during freshet and occasionally following heavy overland precipitation during spring, summer, and fall. Two main inflow locations (Figure 2), located on the northern shore of the lake along the MacKenzie Highway, were identified as conveying intermittent flows to Jackfish Lake, however, one of which dry during the study period and non-point inputs are likely from land runoff from smaller adjoining catchments along the lake.

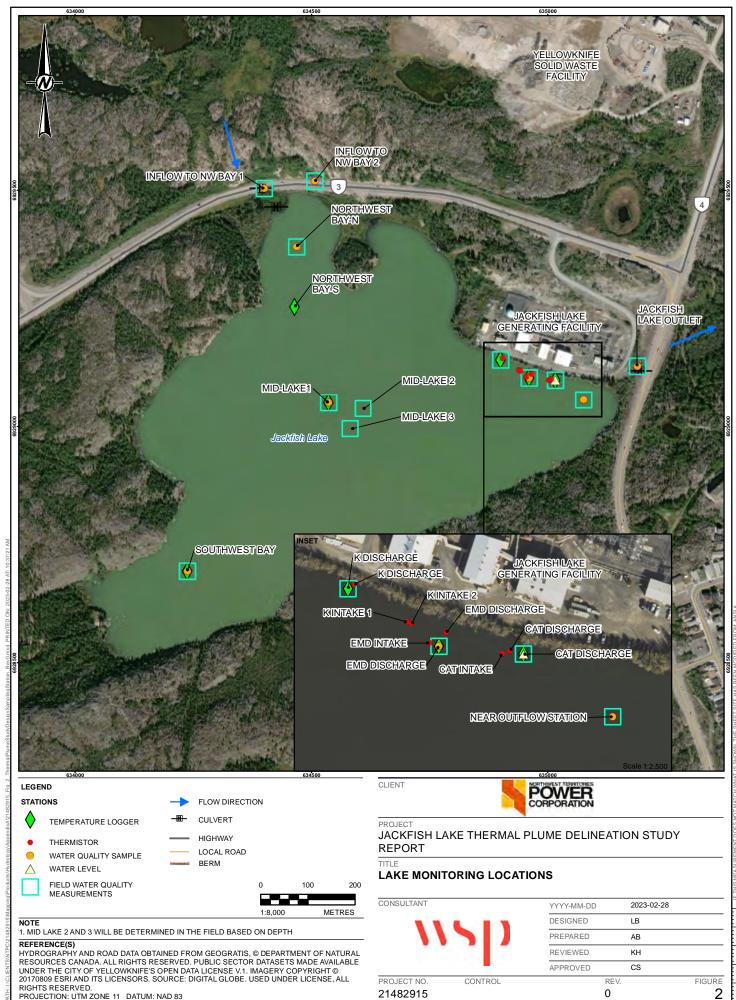

Measurements of instream flows were collected within the two identified watercourses (NW Bay 1 and NW Bay 2) on five occasions; dates and observed inflows are summarized on Table 2. The available inflow data at NW Bay 1 and NW Bay 2 were insufficient to develop a rating curve with which to abstract a flow timeseries but indicate that inflows to the lake, even during freshet, are extremely limited.

Table 2: Observation of Inflow Conditions to Jackfish Lake on Five Occasions during Study Period

Date (MDT; UTC-06)	Inflow to NW Bay 1 (m³/s)	Inflow to NW Bay 2 (m³/s)
30 Sep 2021 12:45	No flow observed	0.002
22 Mar 2022 16:00	No flow observed	No flow observed
26 May 2022 13:00	No flow observed	0.01
06 Jul 2022 17:10	No flow observed	0.00085
24 Aug 2022 11:00	No flow observed	No flow observed

MDT = Mountain Daylight Time; UTC = Universal Coordinated Time; NW = northwest; m³/S = cubic metres per second.

25mm

2.2.5.2 Lake Outflows

Manually measured lake levels and instream flow measurements, collected on seven occasions (Table 3), were used to develop a rating curve between lake levels and outflows for the lake outlet located in the northeast corner of Jackfish Lake shown on Figure 2. Data collected by the water level logger, located within the lake in the vicinity of the lake outlet was consequently converted into outlet flow timeseries to represent lake outflows for the period of simulation.

Table 3: Outflow Water Level and Streamflow Measurements collected within Jackfish Lake's Discharge Channel

Date (MDT; UTC-06)	Surveyed Water Surface Elevation (m; geodetic)	Measured Outflow (m3/s)
29 Sep 2021 17:00	174.549	No flow observed
30 Sep 2021 11:20	174.549	No flow observed
23 Mar 2022 16:10	174.639	No flow observed
24 May 2022 11:45	174.791	0.0137
06 Jul 2022 14:05	174.600	0.0015
24 Aug 2022 11:30	174.475	No flow observed
27 Sep 2022 10:45	174.421	No flow observed

MDT = Mountain Daylight Time; UTC = Universal Coordinated Time; NW = northwest; m³/S = cubic metres per second.

2.2.6 Inflow Temperature Inputs

Insufficient flow from watercourses at both inlets to Jackfish Lake resulted in long periods when deployed loggers reflected air, rather than water temperature. As a result, no observational data for water temperatures collected at the inlets was used as input to the model and inflow temperatures were synthesised according to the methods discussed in Section 2.4.7.

2.2.7 Operational Inputs

2.2.7.1 Intake and Discharge Configuration

Each plant discharge was surveyed (e.g., depth and location) by the WSP field technician team during a field visit conducted on 29 September 2021. Approximate intake locations, assumed to be located at the lakebed, were estimated from design drawings received from NTPC. Information regarding the precise orientation and diameter of each discharge and intake are not known and were estimated using CORMIX (Section 2.4.8.1).

2.2.7.2 Cooling Water Flow and Delta Temperature (Delta-T)

Operational data, measured by instrumentation installed by a third-party supplier, was measured at 15-minute increments between 1 October 2021 and 30 September 2022 for each of the three facilities. The operational data were provided to WSP by NTPC. The specific operational inputs for the model provided by NTPC included:

- Water used (cumulative discharge flow in metres cubed per quarter hour)
- Intake temperature (in degrees Celsius)
- Discharge temperature (in degrees Celsius)

Measured intake and discharge temperatures for reach plant were used to derive delta-T temperatures. These delta-T temperatures were calculated to develop a timeseries of unit heat increases for each 15-minute timestep. Cumulative quarter-hour discharge flows were divided by 900 to derive cubic metres per second (m³/s) values.

2.3 Model Calibration and Validation Data

Field data not used as model inputs were used to initially calibrate the model using reiterative adjustments to model setup and subsequently validated using a separate array of location data.

2.3.1 Temperature Timeseries

Multi-depth logger arrays were deployed at six locations throughout Jackfish Lake between 1 October 2021 and 30 September 2022. Each location was equipped with two to four loggers positioned at different depths in order to obtain a continuous timeseries of thermal profiles.

A subset of four of these logger arrays: Southwest Bay, Mid-Lake, CAT discharge and K discharge, were dedicated to model calibration with the remaining two being used for model validation: Northwest Bay and EMD discharge.

2.3.2 Water Level Inputs

Water levels were recorded at 15-minute intervals between 30 September 2021 and 27 September 2022, at a location close to the outlet to Jackfish Lake (Figure 2). These data were used for calibrating the water balance component of the model.

2.4 Data Screening, Adjustment or Synthesis

2.4.1 Bathymetric and Topographical Data

Bathymetric and topographic data were visually inspected to identify outliers that could erroneously affect the interpolation and meshing processes. No outliers or visually detectable errors were identified, and no adjustments or elimination of values were deemed necessary.

The spatial discretization of the model domain and interpolated water depths derived from bathymetric surveys of Jackfish Lake are illustrated on Figure 3.

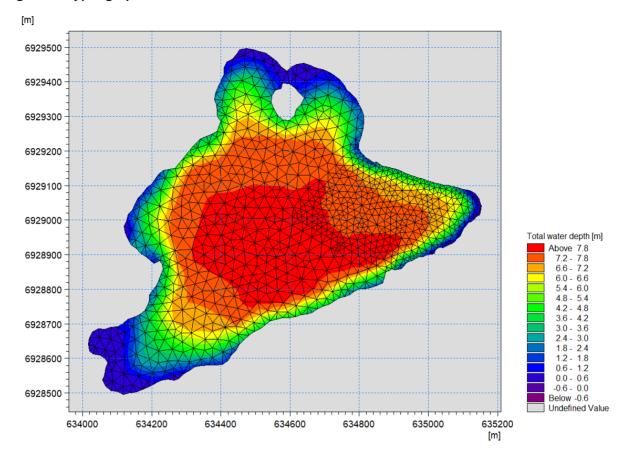


Figure 3: Hypsographic Curves for Jackfish Lake

2.4.2 Meteorological Data

Meteorological data obtained from Environment Canada (Station 2204101; ECCC 2022) were inspected to identify data gaps or anomalies. No anomalies were noted, but a number of data gaps were addressed, where possible. Details of each meteorological input requiring gap filling and assumptions are provided below:

- Data gaps in the hourly air temperature timeseries obtained from Yellowknife A climate station (Station 2204101; ECCC 2022) were filled using linear interpolation given the small length and number of gaps in the data series.
- Precipitation data were used as provided though it is noted that total recorded rainfall for the simulation period was below the long-term annual average and may reflect some gaps that cannot be manually filled.
- Cloud cover was assumed to be 70%, which is consistent with values used in other models developed for the region (Golder 2022) and applied in the model in the form of a clearness coefficient.

2.4.3 Ice Cover

Ice thickness and time of ice formation and thawing are based on input timeseries developed using monitored data collected by technical field specialists (Section 2.2.3). Because MIKE 3FM does not include a dynamic ice module that calculates ice thicknesses based on wind, air, and water temperature influences, these dynamics need to be manually applied to the model using synthesized inputs.

To replicate the effects of ice on water temperatures in MIKE 3FM a blanket ice cover is applied to reduce thermal energy exchanges between atmosphere and the lake. However, the evolution of ice thickness influences water level i.e., as ice thickness increases and eventually recedes; therefore, synthesised ice thickness developed from observational data were input into the model using the following methodology:

- Water was gradually withdrawn from the lake surface via excess evaporation to compensate for the rate of ice development. Water is gradually removed over the ice formation period to simulate the reduction in volume and, in cases of shallow water applications, the reduction in cross-sectional area through which water can move. To simulate the effects of ice on water temperatures the following assumptions were made:
 - Ice thickness was assumed to be constant across the entire lake.
 - Ice formation was applied over a 168-day period from 22 November 2021 to 10 May 2022.
 - Ice thawing was applied over a 20-day period from 21 April 2022 to 10 May 2022.
- A maximum ice thickness of 0.8 m was assumed based on measurements described in Section 2.2.3.
- Precipitation (i.e., snow, as water equivalent) that accumulated over ice was gradually added to the lake surface in the form of precipitation over the lake to simulate the effects during the melting period, along with precipitation to simulate ice melt.
- The volume of water removed to form ice and returned during melting was adjusted by a factor of 0.92 to account for the density difference between ice and freshwater.

2.4.4 Lake Substrate Temperature

Lake substrate temperatures were defined below the lakebed as a function of bed depth across the lake to simulate the influence of discontinuous permafrost on deep water temperatures. Literature values were examined to provide a general sense of suitable ground surface boundary conditions to simulate the influence of sub-lakebed temperatures on the thermal regime of Jackfish Lake and to avoid the logistical challenges of obtaining reliable measurements of in-lake substrate temperatures.

Karunaratne (2008) defined peatland near surface temperatures at nine locations in the vicinity of Yellowknife as annual averages (0.9°C), during the freezing season (-3.6°C) and during the thawing season (7.3°C). These were interpreted to generate a synthesized substrate temperature series under Jackfish Lake. Due to the thermal influence of Jackfish Lake itself, it was assumed that winter (November through ice-off in mid-May) substrate temperatures under the lake would remain approximately 1°C warmer than measured with peat (i.e., approximately 2°C) and summer substrate temperatures in the lake under the lake would remain about 2°C cooler than measured within peat (i.e., approximately 5°C). The transition of these two substrate temperature periods was assumed to be reasonably quick (i.e., over a period of 31 days from summer to winter and over a period of 41 days from winter to summer as shown on Figure 4). The conductivity of these temperatures was consequently refined throughout the model calibration process to reflect the observed depth-varying influence of substrate temperatures on lake bottom temperatures (Figure 5).

8
7
(0 o) earnstant 4
3
2
1
0

Tolory Tolo

Figure 4: Illustration of Synthesized Substrate Temperatures for Jackfish Lake

25
(C) 20
October 15
October 10
O

Figure 5: Lake-Bed Temperatures measured at Mid-Lake, Northwest Bay, Southwest Bay from October 2021 to September 2022

2.4.5 Water Level Data

Over the deployment period, negative pressure caused by the formation of lake ice was found to have compromised the data, particularly data collected between 6 December 2021 and 22 March 2022. Because ice pressure can compromise logger transducer readings in such environments, all data coinciding to the ice cover period between 22 November 2021 through 10 May 2022 were screened out (Figure 6), allowing comparisons between observed and simulated water levels to be made for the ice-free period alone.

174.9

(Table 174.8

(Table 174.7

(Table 17

Figure 6: Water Level Elevation Recorded for Jackfish Lake

masl = metres above sea level

2.4.6 Hydrological Inflows and Outflow Data 2.4.6.1 Lake Inflows

Given the limited flow data with which to quantify inflows to Jackfish Lake from the two contributing catchments, lake inflow timeseries were synthesized as a calibration parameter focused on the water level performance of the model. Following several iterations, which considered the variable influence of water temperatures and evaporative rates on lake levels, the timeseries illustrated on Figure 7 was used to characterise runoff from adjacent catchments to the lake and assigned to the two inflow locations shown on Figure 2. The resulting inflows show reasonable agreement with generally low inflow rates measured at each of these locations.

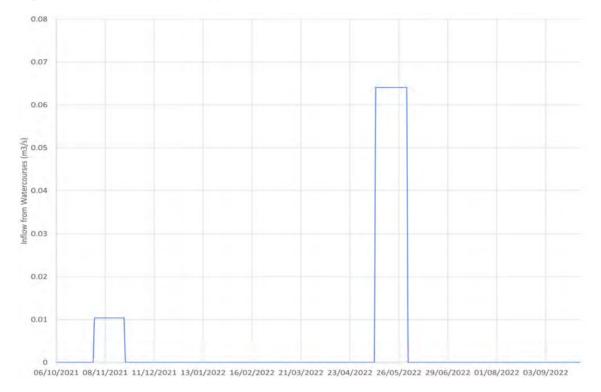


Figure 7: Inflow Timeseries Applied to the Model for Jackfish Lake

m³/s = cubic metres per second

2.4.6.2 Lake Outflows

Outflows from Jackfish Lake were calculated based on an open water rating curve that was developed using measured lake levels and corresponding discharge flows, with no outflows assumed to occur during the ice cover period. Equation 1 was used to calculate the rating curve for the open water period:

$$Q = 0.0912 \times ((Stage))^{1.0630}$$
 Equation (1)

The datum elevation for the rating curve is 174.579 m. There is a period when the lake water surface elevation was above the outlet invert for this rating curve during the ice cover period; this is likely misrepresented due to the effects of ice formation. An assumption of no outflow was made throughout this period as the presence of lake ice would likely physically obstruct the outlet. Outflow values were calculated for the open water period between 11 May 2022 and 21 November 2022 (Figure 8).

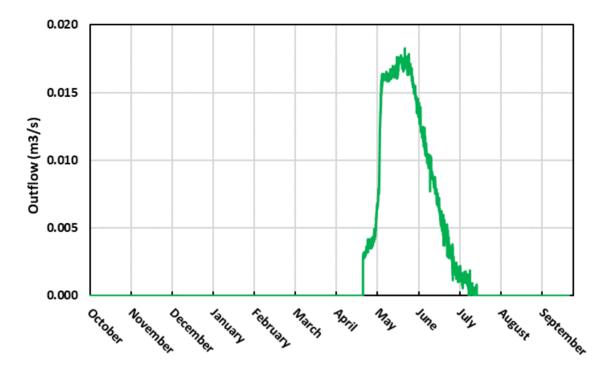


Figure 8: Outflow Timeseries Developed from Rating Curve

2.4.7 Inflow Temperature Data

Inflow temperature inputs, corresponding to weekly rolling average air temperatures capped at a minimum discharge temperature of 0°C, were generated using the meteorological data discussed in Section 2.2.2. These temperature data were applied to all non-operational inflow timeseries data applied to the model. Synthesized inflow water temperatures applied to the model during flow periods as well as the air temperature measurements upon which these were based are presented in Figure 9.

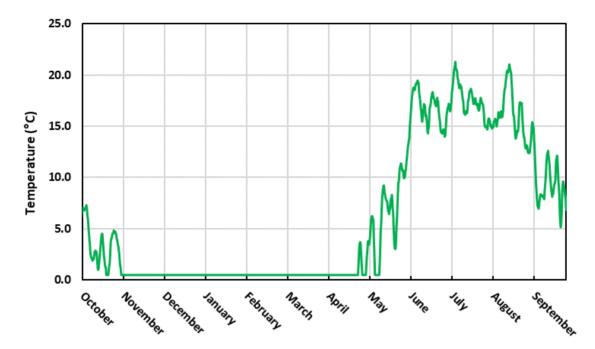


Figure 9: Air Temperatures and Synthesized Watercourse Temperatures

2.4.8 Operational Data

A number of assumptions and adjustments were made to configure the model for Jackfish Lake for a simulation of the operational effects. These are detailed in the following subsections.

2.4.8.1 Intake and Discharge Configurations

A schematic configuration of the plants including the approximate location of intakes and discharges were provided to WSP by NTPC, with approximations for each discharge confirmed through field data collection by WSP's technical field specialists.

Historical Google Earth Imagery was examined under a variety of lake conditions to estimate the aerial sizes of turbulent mixing zones for each of the three discharges during operational conditions. These estimates, as well as corresponding typical discharge flow rates, were consequently used to estimate orifice size and jet velocity at each of the discharges. The resulting information was input into the Jackfish Lake model to represent the easting, northing, depth, orientation, and orifice size of each discharge.

Discharges from the facility to Jackfish Lake for the simulation period were represented as flow and delta-T linked sources to each of the intakes, with hourly flows based on measured data provided by NTPC and delta-T's over modelled intake temperatures, calculated from measured intake and discharge temperature data provided by NTPC.

2.4.8.2 Review and Adjustment of Operational Data

The operational data received from NTPC were screened to identify data gaps and anomalies. Identified data issues were shortlisted with four suggestions for approval by NTPC; deletion (deletion of outliers identified as being associated with operational maintenance activities), interpolation (using interpolated values to fill gaps in the record of up to one hour), global adjustments (to correct for observed temperature shifts in recorded values) or removal (to eliminate sequences deemed unreliable due to data integrity issues).

A number of adjustments and deletions were consequently made to the operational inputs prior to converting operational data received from NTPC into model inputs. In summary these adjustments include:

- Interpolation of operational values to fill data gaps:
 - 06 October 2021 16:45 for K plant
 - 26 October 2021 15:45 to 26 October 2021 16:15 for K plant
 - 28 October 2021 8:15 for EMD plant
 - 03 November 2021 12:00 for EMD and CAT plants
 - 30 December 2021 16:45 for CAT plant
 - 06 June 2022 14:30 and 06 June 2022 14:45 for EMD plant
 - 09 June 2022 8:15 for K plant
 - 09 June 2022 15:15 for K plant
 - 11 September 2022 11:30 to 11 September 2022 12:00 for K plant
 - 11 September 2022 16:15 and 11 September 2022 16:30 for K plant
- Adjustments to operational values to correct for observed shift in values:
 - 01 December 2021 0:00 to 30 September 2022 23:45: 0.26°C decrease in intake temperatures at CAT plant; 0.26°C increase in discharge values at CAT plant to adjust for instantaneous shift in recorded temperatures, excluding those coinciding with active thermal discharges
 - 06 October 2021 16:15 to 30 September 2022 23:45; global increase in all delta-T temperatures for K plant to eliminate/reduce negative temperature increases during non-operations
 - 11 September 2022 11:30; value interpolated across pre- and post-timestep values due to instantaneous large negative flow value at EMD and CAT plants
- Eliminated operational data:
 - 23 March 2022 9:30 to 23 March 2022 15:15 at all three plants due to maintenance activities
 - 02 May 2022 12:45 to 03 May 2022 13:00 at all three plants due to negative or null value flows at CAT plant

- 05 June 2022 9:15 to 06 June 2022 13:15 at all three plants due to negative or null value flows at CAT plant
- 01 August 2022 00:00 to 23 August 2022 14:30 at all three plants due to unexplained instantaneous 10°C decrease at K plant
- 17 August 2022 17:30 to 31 August 2022 8:45 at all three plants due to null values at CAT plant
- 17 August 2022 17:30 to 31 August 2022 8:45 at all three plants due to null values at CAT plant
- 06 September 2022 4:45 to 08 September 2022 18:30 at all three plants due to null values at EMD plant
- 08 September 2022 18:45 to 30 September 2022 23:45 at all three plants due to unreliable discharge temperature measurements at K plant
- Initially queried but retained anomalous data:
 - 08 October 2021 9:30 to 08 October 2021 10:00 initially identified as temporary high flux variation

The four measured operational time periods, amounting to a total period of 295.8 days, deemed reasonably suitable for use as model input to define operational influences are presented in Table 4.

Table 4: Retained Operational Time Periods Applied in Thermal Modelling

Time Period ID	Period Start	Period End
1	06 Oct 202116:15	23 Mar 2022 9:15
2	23 Mar 2022 15:30	02 May 2022 12:30
3	03 May 2022 13:15	05 July 2022 9:00
4	06 Jul 2022 13:30	31 July 2022 23:45

ID = identification

2.4.8.3 Application of Operational Data to Thermal Modelling Assessment

The screened operational data were employed as inputs for a number of modelling applications in the manner described below.

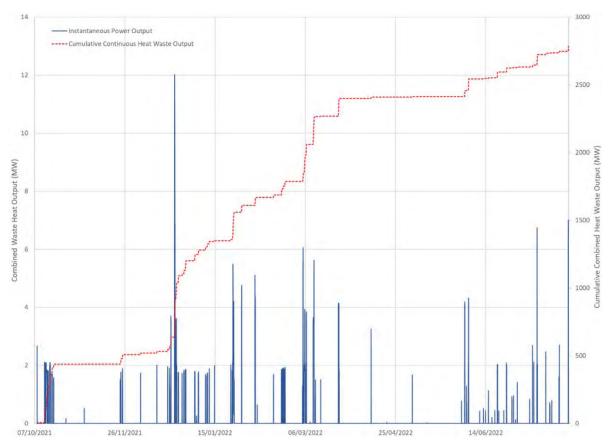
Model Calibration and Validation

The full screened operational data available were employed to simulate hydrodynamic and thermodynamic conditions in Jackfish Lake between 06 October 2021 16:15 (having applied a simulated model warm-up period) and 07 August 2022 23:45 (allowing for the assimilation of the last operational discharge on 31 July 2022 23:45 for one week after end of discharge). Short intervals i.e., less than 1.2 days, between the retained operational data were infilled with null data to allow for a continuous simulation (Table 4). See Section 3 for further details.

Determination of Median and Maximum (95th percentile) Operational Effects across Period of Record

The same simulation period used for the purposes of model calibration and validation was employed for characterising median (50th percentile) and maximum (95th percentile) absolute (operational and meteorological influences combined) lake surface and lake-bed temperature extents and magnitudes over the period of record.

Characterisation of Hypothetical Seasonal Operational Effects


Owing to the extremely intermittent nature of operational discharges between October 2021 and July 2021 (e.g., diesel generators were only operated during peak demand periods), it was not possible to develop a consistently meaningful characterisation of representative seasonal thermal plumes during the following time frames:

- late fall (October 2021 or September 2022),
- late winter immediately before ice break up (March/April 2022),
- spring freshet (May/June 2022),
- early summer (July 2022) and
- late summer (August 2022)

Instead, the screened operational data identified in Table 4 were reviewed to identify the maximum combined operational heat load period for all three plants operating in unison over the period of record. Periods when delta-T (the difference between intake and discharge temperatures) were lower than 1.0°C were not considered for this specific exercise as these generally include periods of no power generation when ambient factors (such as diffusive heat flux from indoor pipes) contributed to heat load. By summing the individual heat loads generated by each plant during periods of power production, a timeseries of waste heat output directed to the lake was developed (Figure 10) and visually scrutinized to identify the period corresponding to the maximum continuous heat waste output. For the purposes of this exercise, it was assumed that discharge heat loads could have a residual thermal footprint in Jackfish Lake for up to 24 hours, meaning that the period corresponding to the highest combined cumulative heat load, not separated by 24 hours or more of intermittency, was identified to determine a Hypothetical Seasonal Operational Effect scenario (also referred to as hypothetical discharge scenario). Based on the information screened, the maximum continuous combined output for the Jackfish Lake Generating Facility amounted to a total of 453.82 megawatts (MW), or an average rate of 2,313 watts per second (W/s), of heat load discharged to Jackfish Lake between 23 December 2021 12:30 and 25 December 2021 19:00 (Figure 11).

Figure 10: Instantaneous and Cumulative Heat Waste Output Over Period of Record for EMD Plant, K Plant, and CAT Plant Combined in MegaWatts

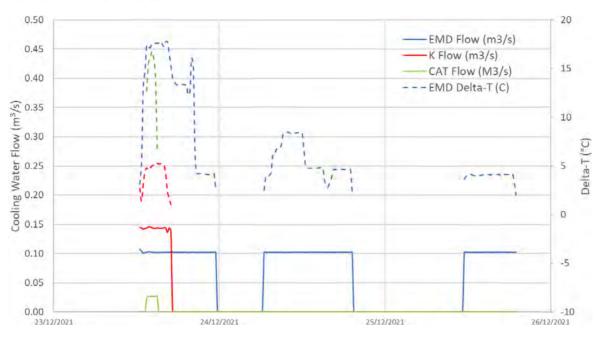


Figure 11: Maximum Cumulative Heat Load Event Measured between 23 December 2021 12:30 and 25 December 2021 19:00

2.5 Model Setup

2.5.1 Model Domain

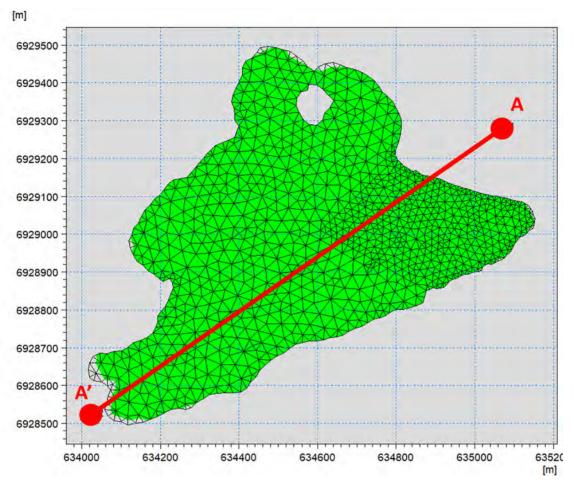
A 3-D flexible computational domain of the Jackfish Lake was developed in MIKE Zero (the external data processing interface provided in MIKE) and MIKE Mesh Generator. The available bathymetric data described in Section 2.2.1 were coupled with a digitized land-water boundary of the lake (based on digital imagery taken on the date when the bathymetric survey was conducted, i.e., 29 September 2021), and the measured average water level elevation of 174.55 masl over the survey period. The model domain is capable of simulating future lake conditions under higher than measured water levels, if required in the future, assuming a maximum wetted surface consistent with that observed in satellite imagery.

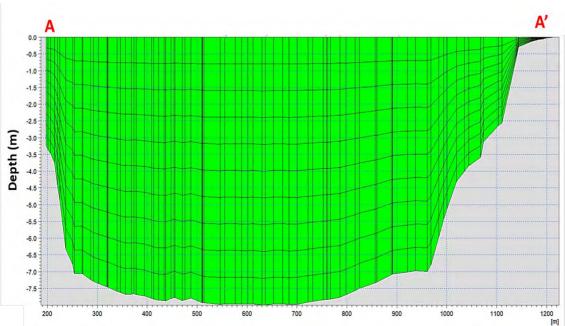
Model resolution varies across the domain from approximately 10 m resolution in nearshore areas and areas of increased hydrodynamic complexity, i.e., the area around intake and discharge infrastructure, up to approximately 40 m in the centre of the lake.

Bathymetric values for the computational mesh were interpolated and smoothed using surveyed bathymetry. The digitized land-water boundary and topographic data were interpolated and smoothed using a Natural Neighbour method (Sibson 1980). Following interpolation, the MIKE Mesh Analyze tool was used to identify and refine (to reduce the geometric angles of intercept along some nodes) some mesh elements to optimize model run times. Figure 12 illustrates the finalised mesh configuration from an aerial perspective.

[m] 6929500 Lake Inflow 6929400 6929300 6929200 6929100 6929000 **Lake Outflow** 6928900 6928800 6928700 Discharge EM Discharge 6928600 CAT Discharge 6928500 K Intake 634000 634200 634400 634600 634800 **EMD** Intake **CAT Intake**

Figure 12: Aerial Perspective of Finalized Mesh Configuration for Jackfish Lake Thermal Model




2.5.2 Vertical Discretisation

Given the shallow nature of the lake (average water depth of 5.0 m and maximum water depth of 7.8 m [Golder 2019]), and the relatively small range of water level fluctuations (0.64 m [Golder 2019]), the vertical resolution of the model was represented using ten equidistant sigma layers (i.e., depth-integrated layers that each represent a vertical fraction of the water column at any given point). This modelling approach provides variable thickness of layers based on the total depth of the water column, with increased resolution at nearshore and operational infrastructure locations. Figure 13 illustrates the variation in vertical discretisation by depth for a nominal cross-section of Jackfish Lake.

Figure 13: Cross-sectional Perspective of Vertical Discretisation Illustrating Variability of Spatial Resolution with Depth

2.5.3 Model Simulation Periods

The calibration and validation periods, as well as production simulation periods considered in this report, are limited to the periods over which operational data were available to simulate the thermal effects of operations on Jackfish Lake (Section 2.4.8). Seasonal thermal effects simulations, simulated using the Hypothetical Seasonal Operational Effects scenario specified in Section 2.4.8.3, were conducted over 4-day simulation periods coinciding with seasonal periods of interest.

Model warm up simulations or "hot" starts are typically needed prior to sequencing production simulations that render meaningful results as meteorological influences on the lake need to be simulated for an extended period of time before lake conditions mimic lake processes. Such warm-up periods are eliminated from simulation results as they do not provide meaningful information regarding operational influences. Table 5 details the start and end dates of all simulations conducted for the purposes of developing results documented in this assessment report.

Table 5: Model Initialization and Simulation Periods Considered for the Jackfish Thermal Plume Study

Characterization Burnage	Simulation Period		
Characterisation Purpose	Start	End	
Calibration and Validation	06 Oct 2021 00:00 ^(a)	27 Sep 2022 00:00 ^(a)	
Annual Thermal Plume	06 Oct 2021 00:00 ^(a)	27 Sep 2022 23:00 ^(a)	
Late Fall	21 Oct 2021 00:00	25 Oct 2021 00:00	
Late Winter before Ice Break Up	10 Apr 2022 00:00	14 Apr 2022 00:00	
Spring Freshet	25 May 2022 00:00	29 May 2022 00:00	
Early Summer	01 Jul 2022 00:00	05 Jul 2022 00:00	
Late Summer	01 Aug 2022 00:00	05 Aug 2022 00:00	

Notes: (a) excludes possible operational interactions with Jackfish Lake between 23 Mar 2022 9:15 and 23 Mar 2022 15:30; between 02 May 2022 12:30 and 03 May 2022 13:15; between 05 Jul 2022 9:00 and 06 Jul 2022 13:30; and between 01 Aug 2022, 00:00 and 27 Sep 2022 00:00, as these were eliminated during the data screening process (Section 2.4.8).

3.0 MODEL CALIBRATION AND VALIDATION

3.1 Model Calibration and Validation Approach

3.1.1 Calibration Parameters

A number of model setup parameters were considered for optimizing model performance across the calibration period:

- applying variable computational timesteps
- variable horizontal and vertical eddy viscosity
- bed roughness
- the wind friction coefficient
- horizontal and vertical dispersion
- watershed inflows
- transfer coefficient for heating and cooling

- substrate temperature characteristics
- light extinction coefficient
- β in Beer's Law

Using different combinations of these calibration parameters, 51 separate calibration simulations (with varying configurations) were created and iteratively tested against measurement parameters collected for calibration locations to gradually improve model performance. The aim of the calibration effort was to configure a model set up in which the reasonable results could be achieved at each of the selected calibration locations discussed in Section 2.3.

3.1.2 Performance Statistical Metrics

To evaluate model performance in predicting lake hydrodynamics and thermodynamics, several quantitative statistical metrics and qualitative comparisons can be used to assess confidence in a model's ability to provide predictions with precision. "Goodness-of-fit" quantifies the ability of a model to predict observed conditions, recognising that no model can always deliver absolute accuracy in all areas. Measuring the "goodness-of-fit" for a 3-D hydrothermal model is difficult since model errors can occur both spatially and temporally. Results for "goodness-of-fit" should be interpreted with caution and should also include a visual inspection of the predicted and measured values to distinguish errors attributed to small temporal shifts, which can be considered inconsequential for many numerical applications, from absolute errors.

Calibration and validation results for the Jackfish Lake model are presented and discussed throughout the following sections in qualitative terms (graphical format as time series) and quantitative terms (tabular format) according to the model performance metrics outlined below.

Two of the most common methods used to determine a model's accuracy are (i) the correlation coefficient and (ii) Root Mean Squared Error (RMSE). For comparisons between predicted and measured water levels and water temperatures at selected depth intervals (i.e., surface, mid depth and bottom), this study has applied the correlation coefficient and RMSE as measures of accuracy.

3.1.2.1 Correlation Coefficient

The Pearson product-moment correlation coefficient (also referred to as Pearson's r) is a measure of the linear correlation between two variables, where a value of 1 is a perfect correlation, a value of 0 indicates no correlation and a value below 0 indicates a negative correlation. In the case of dynamic models, the two variables compared are measured (x_0) and predicted/calculated (x_0) values. Each model parameter must be evaluated separately (e.g., water temperature, water levels).

The general formula for the correlation coefficient is:

$$r = \frac{\sum (x_{o,i} - \overline{x_o})(x_{c,i} - \overline{x_c})}{\sqrt{\sum (x_{o,i} - \overline{x_o})^2 \sum (x_{c,i} - \overline{x_c})^2}}$$
 Equation (2)

Where; $x_{o,i}$ measured value at time i,

 \overline{x}_o mean of measured values,

 $x_{c,i}$ predicted value at time i, and

 \bar{x}_c mean of measured values.

Based on the literature values reported in Table 6, the correlation coefficients for comparisons of predicted water temperature to measured values are typically greater than 0.8. Only one paper (He et al., 2011) reported correlation coefficients for current components with a range of 0.25 to 0.67. Typical correlation coefficients for comparison of water levels are not available. In evaluating this calibration metric, it is important to note that lower correlation values can often coincide with reduced RMSE but do not necessarily constitute poor model performance given that these minor discrepancies are negligible in terms of the reliability of the model.

3.1.2.2 Root Mean Squared Error

The RMSE provides a weighted indication of model accuracy and can be used to evaluate the model ability to predict water temperature or water level. It should be noted that because RMSE is a weighted error formulation, RMSE generally produces a higher error value than would be expected to be the case for average error. An RMSE value of zero, which has the same units as the parameter being evaluated, indicates a perfect model fit to the measured values. RMSE is calculated as follows:

$$RMSE = \sqrt{\frac{1}{M} \sum (x_{o,i} - x_{c,i})^2}$$
 Equation (3)

Where; M number of observations (time steps),

 $x_{o,i}$ observed value at time i, and $x_{c,i}$ predicted value at time i.

Based on the literature values reported (Table 6), the RMSE for comparisons of predicted water temperature to measured values are typically less than 0.5°C at depths greater than 50 m (depths which are irrelevant for Jackfish Lake given its shallow profile) and ranged from 0.9°C to 3.6°C at the surface. Typical RMSE values for comparison of water levels are not available.

3.1.3 Reference Statistical Metrics

Several literature sources related to hydrodynamic modelling in the Great Lakes (which generally include the most common and authoritative lake models produced in Canada) were reviewed to determine the typical statistical results when model predictions were compared to measured values for currents and water temperature. The statistical results presented in Table 6 include correlation coefficients and RMSE for water temperature. None of the papers reviewed reported comparisons for water levels. The type of statistic reported for various parameters was not consistent between the references.

Table 6: Summary of Model Fit Parameters from Literature

Watashada	Water Temperatu		
Waterbody	Software Used	Correlation Coefficient	Root Mean Squared Error (°C)
Lake Michigan (Beletsky and Schwab, 2001)	POM	0.78 to 0.99	1.2 to 1.5 at surface 2.5 at 15 m 0.7 at 50 m
Lake Michigan (Beletsky et al. 2006)	РОМ	_2	2.9 above 20 m 1.6 at 59 m 0.3 below 100 m
Green Bay (Hamidi et al. 2015)	РОМ	0.98 ¹	1.79 ¹
Lake Ontario (Huang et al. 2010a)	РОМ	-	0.95 to 1.43
	РОМ	0.96 to 0.98	0.89 to 1.12
Lake Ontario (Huang et al. 2010b)	CANDIE	0.96 to 0.97	1.01 to 1.42
(Fidalig et al. 2010b)	ELCOM	0.96 to 0.98	0.85 to 1.73
Lake Ontario (Dewey 2013)	MIKE3	0.82	3.65

Notes: ¹RMSE for temperatures reported for ensemble (all locations) data sets, range not reported.

RMSE = Root Mean Squared Error.

The statistics presented in Table 6 were reviewed to develop model fit benchmarks for water temperatures that could be used to assess the performance of the Jackfish Lake model. The selected benchmarks are provided in Table 7.

Table 7: Summary of Model Fit Benchmarks Selected to Assess Jackfish Lake Model

Benchmark	Water Temperature	Water Level
Correlation Coefficient	>0.81	none available
RMSE	<50m depth: 0.9 to 3.6°C ²	none available

Notes: ¹Beletsky and Schwab, 2001; Hamidi et al., 2015, Huang et al., 2010b & Dewey 2013

RMSE = Root Mean Squared Error.

3.2 Model Calibration and Validation Results

The following subsections present model calibration results at selected calibration locations (Section 2.3) for the best performing simulation that was then examined for performance at independent validation locations (Section 2.3).

²Metrics not reported in source document.

²Dewey 2013.

3.2.1 Model Calibration Results

3.2.1.1 Thermal Calibration Results

The performance metrics at each thermal calibration location (CAT Plant, K Plant, Southwest Bay and Mid Lake) for the best performing calibration simulation are presented in Table 8, with graphical illustrations of performance at each calibration location provided in Figures 14 through 25. The results are generally indicative of extremely high performance with some minor temporal issues resulting in accelerated cooling of the water column following ice cover relative to observed water temperatures, slightly accelerated heating of the water column following ice cover and some localized challenges in replicating observed temperature conditions at the "Middle 2" location during these times. The statistical metrics are all well within the range of published literature values and indicate the model is capable of delivering good performance at all evaluated water temperature stations used during the calibration process. It is noted that although operational influences may have occurred in Jackfish Lake between 1 August 2022 and 27 September 2022, these were not included in the model due to data integrity issues described in Section 2.4.8.

Table 8: Water Temperature Calibration Performance for Jackfish Lake

Calibration Location	RMSE (°C)	Correlation Coefficient
CAT Bottom	1.14	0.99
CAT Middle	1.50	0.99
CAT Top	1.30	0.99
K Bottom	1.19	0.99
К Тор	1.21	0.99
Southwest Bay Bottom	1.76	0.97
Southwest Bay Middle	1.82	0.98
Southwest Bay Top	1.96	0.99
Mid Lake Bottom	1.88	0.89
Mid Lake Middle 2	1.91	0.96
Mid Lake Middle	1.26	0.99
Mid Lake Top	1.46	0.99

RMSE = Root Mean Squared Error.

Figure 14: Modelled Water Temperature Performance at CAT Plant (Top)

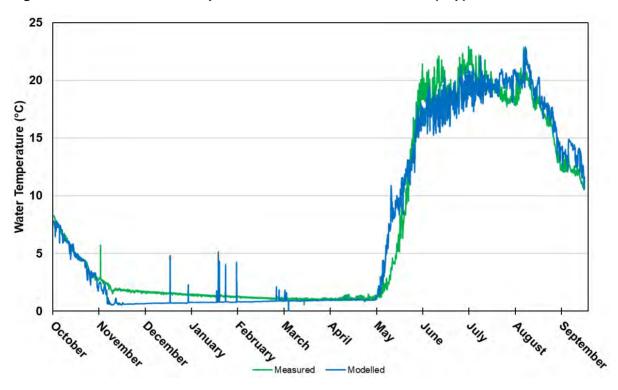


Figure 15: Modelled Water Temperature Performance at CAT Plant (Middle)

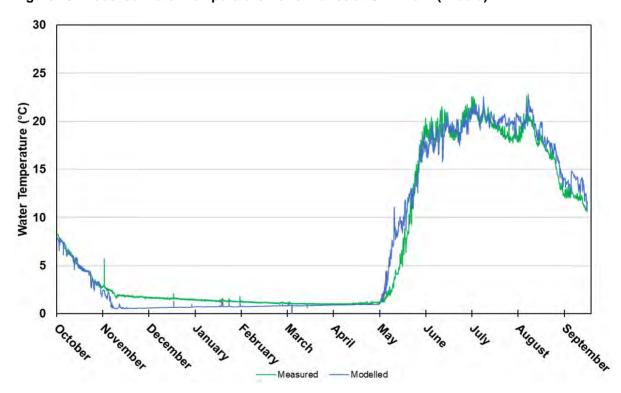


Figure 16: Modelled Water Temperature Performance at CAT Plant (Bottom)

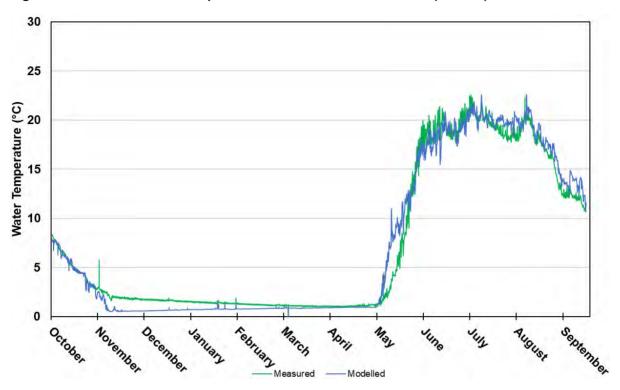


Figure 17: Modelled Water Temperature Performance at K Plant (Top)

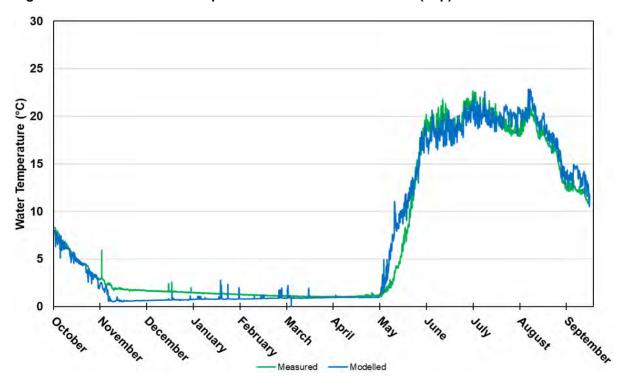


Figure 18: Modelled water Temperature Performance at K Plant Bottom

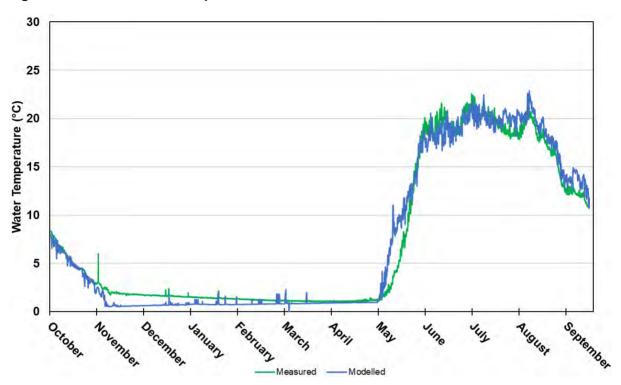


Figure 19: Modelled Water Temperature Performance at Southwest Bay (Top)

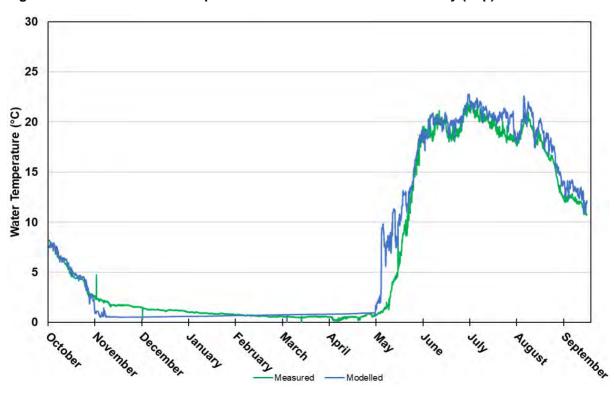


Figure 20: Modelled Water Temperature Performance at Southwest Bay (Middle)

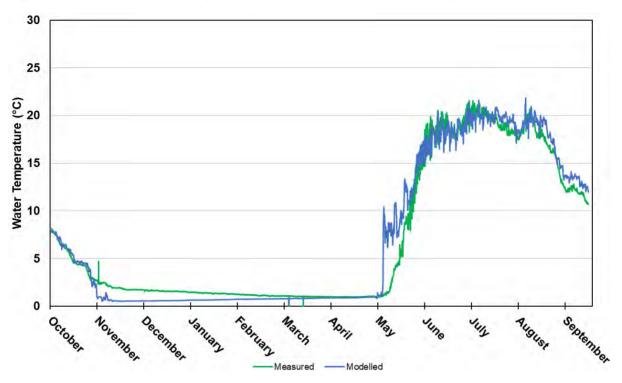


Figure 21: Modelled Water Temperature Performance at Southwest Bay (Bottom)

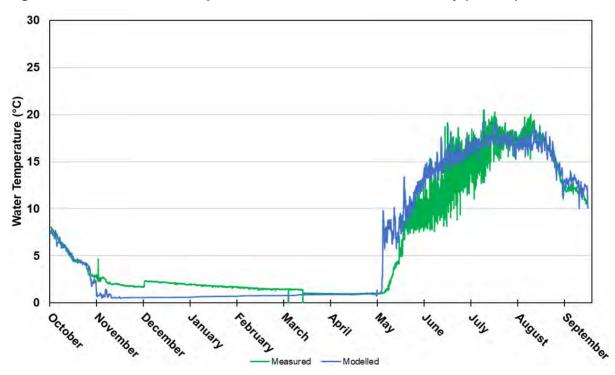


Figure 22: Modelled Water Temperature Performance at Mid lake (Top)

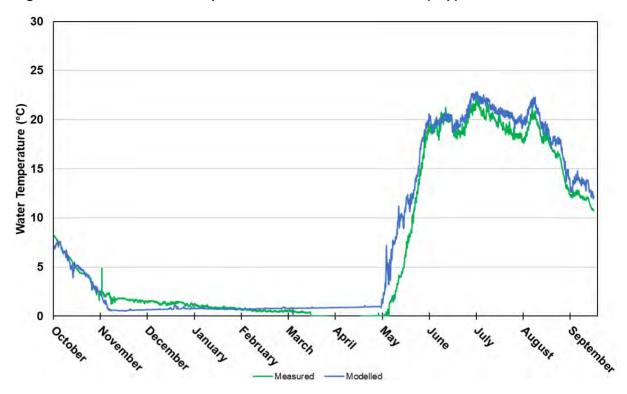


Figure 23: Modelled Water Temperature Performance at Mid Lake (Middle)

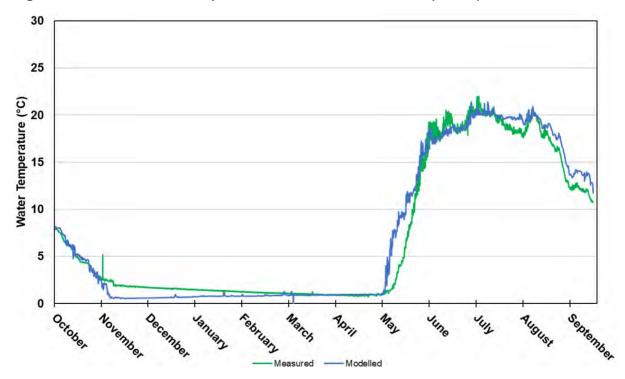


Figure 24: Modelled Water Temperature Performance at Mid Lake (Middle 2)

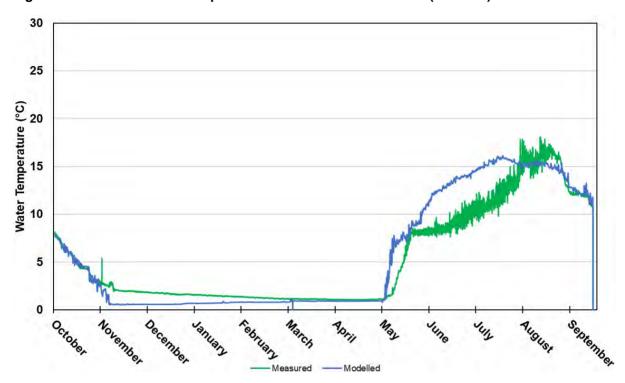
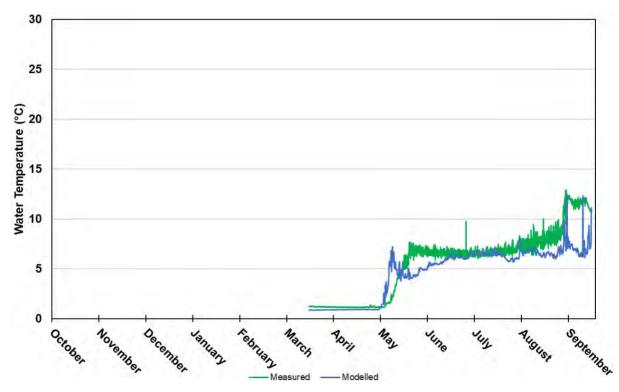
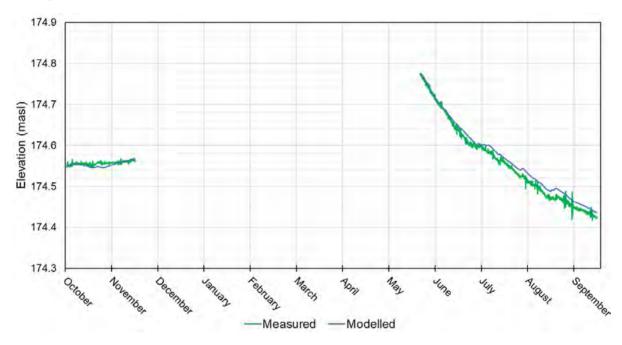



Figure 25: Modelled Water Temperature Performance at Mid Lake (Bottom)



3.2.1.2 Water Level Calibration Results

The performance metrics for modelled water level elevations for the period between 6 October 2021 and 21 November 2021 and between 1 June 2022 and 27 September 2022 delivered an RMSE of 0.01 m and a correlation coefficient of 0.99. A visual examination of modelled and measure water levels over these periods are provided in Figure 26. In summary, the model can provide a very good replication of observed water level conditions during the ice-free period.

Figure 26: Modelled Water Level Performance during Ice-Free Period between 6 October 2021 and 27 September 2022

3.2.2 Model Validation Results

The performance metrics at each thermal validation location (EMD Plant and Northwest Bay) are presented in Table 9, with graphical illustrations of performance at each calibration location provided in Figures 27 through 32. As for the calibration locations, the results presented are indicative of extremely high performance with some minor temporal issues resulting in accelerated cooling of the water column following ice cover relative to observed water temperatures and slightly accelerated heating of the water column following ice cover. The statistical metrics are all well within the range of published literature values and verify the model can deliver good performance at all evaluated water temperature stations used during the calibration and validation process.

Table 9: Water Temperature Validation Performance for Jackfish Lake

Calibration Location	RMSE (°C)	Correlation Coefficient
EMD Bottom	1.34	0.98
EMD Middle	1.13	0.99
EMD Top	1.60	0.99
Northwest Bay Bottom	1.46	0.99
Northwest Bay Middle	1.21	0.99
Northwest Bay Top	1.23	0.99

RMSE = Root Mean Squared Error.

Figure 27: Modelled Water Temperature Performance at EMD Plant (Top)

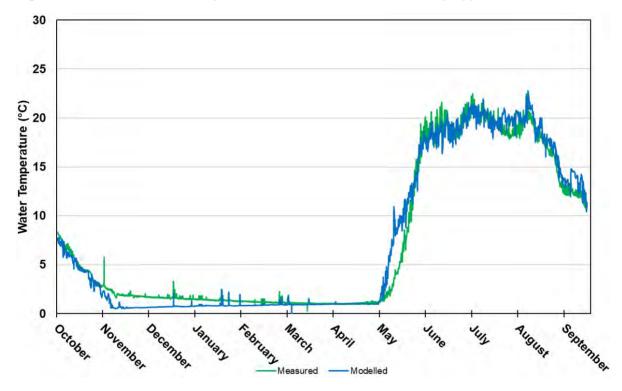


Figure 28: Modelled Water Temperature Performance at EMD Plant (Middle)

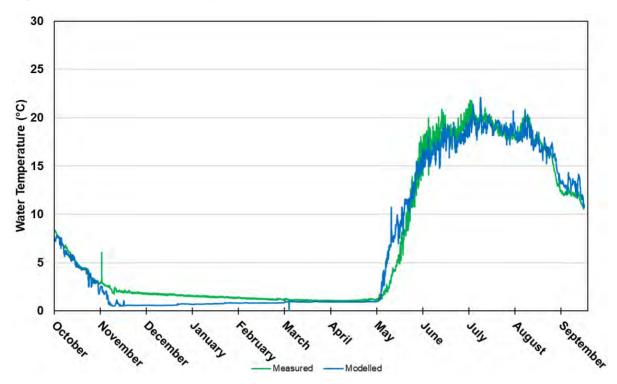
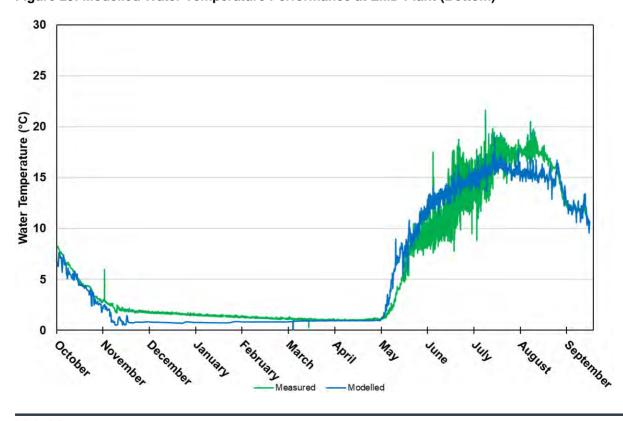



Figure 29: Modelled Water Temperature Performance at EMD Plant (Bottom)

WSD

Figure 30: Modelled Water Temperature Performance at Northwest Bay (Top)

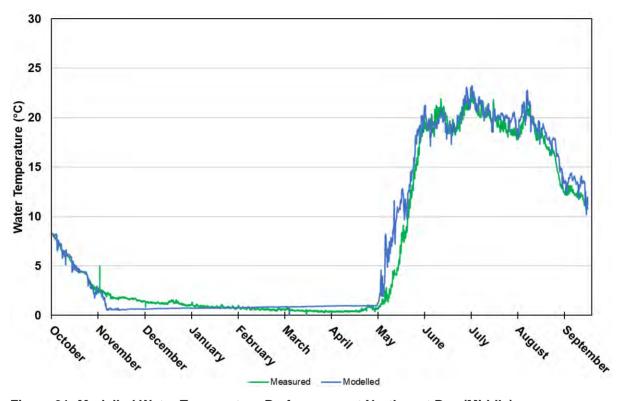
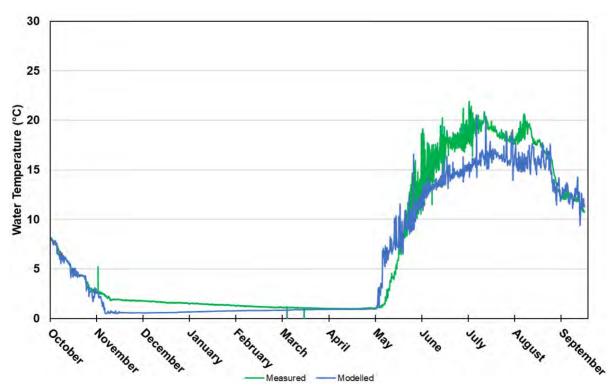



Figure 31: Modelled Water Temperature Performance at Northwest Bay (Middle)

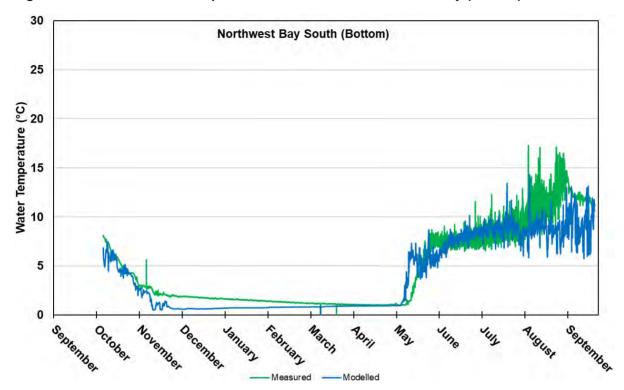


Figure 32: Modelled Water Temperature Performance at Northwest Bay (Bottom)

4.0 ENVIRONMENTAL AND OPERATIONAL SCENARIOS CONSIDERED FOR PRODUCTION SIMULATIONS

The following subsections detail the environmental and operational scenarios considered for production simulations that pertain to the results presented in Section 6.

4.1 Environmental Conditions

Several environmental conditions corresponding to the October 2021 through September 2022 study period were considered for the purposes of production simulations to address the objectives of the thermal plume study for Jackfish Lake. The following environmental scenarios were considered:

■ The full study period, for the purposes of developing actual median and maximum (95th percentile) water temperatures under measured operational conditions as well as for developing median and maximum (95th percentile) temperature differences (delta Ts) at lake surface and lake bottom relative to non-operational conditions.

- Thermal discharges did not occur during each of the seasonal conditions when thermal plume representations were stated in the Thermal Plume Delineation Study Design Plan (Golder 2021). Instead, for the purposes of providing a meaningful output, hypothetical operational implications resulting from seasonal event-based discharges during each of the seasonal conditions requested by regulators were examined:
 - late fall (simulated to coincide with environmental conditions between 21 October 2021 at 00:00 and 25 October 2021 at 00:00)
 - late winter immediately before ice break up (simulated to coincide with environmental conditions between 10 April 2022 at 00:00 and 14 April 2022 at 00:00)
 - spring freshet, (simulated to coincide with environmental conditions between 25 May 2022 at 00:00 and 29 May 2022 at 00:00)
 - early summer, (simulated to coincide with environmental conditions 1 July 2022 at 00:00 and 5 July 2022 at 00:00)
 - late summer (simulated to coincide with environmental conditions between 1 August 2022 at 00:00 and 5 August 2022 at 00:00)

It is noted that all environmental conditions coinciding with the above simulation windows were directly developed from operational and hydrological conditions obtained from government or field-measured data.

4.2 Operational Conditions

Production simulations were carried out to simulate thermal influences on Jackfish Lake for the following operational scenarios:

- **Non-Operational Conditions** between 6 October 2021 and 27 September 2022 to establish environmental baseline conditions against which to compare operational effects on Jackfish Lake.
- **Measured Operational Conditions** between 6 October 2021 and 27 September 2022 corresponding to the screened operational output documented in Section 2.4.8.3.
- Hypothetical Operational Conditions corresponding to the maximum combined operational heat output event recorded in screened operational data between 23 December 2021 at 12:30 and 25 December 2021 at 19:00. This operational scenario was selected in the absence of operational outputs during some seasonal conditions to ensure that hypothetical operational effects during the seasonal event-based conditions could be quantified in a meaningful manner.

4.3 Simulated Model Scenarios

Table 10 outlines the model scenarios developed and simulated for the purposes of examining the combined effects of operational/non-operational and measured environmental conditions. Corresponding results are presented in Section 6.

Table 10: Model Scenarios simulated for the Purposes of Establishing Operational Effects on Jackfish Lake

Model Scenario	Simulation Period	Operational Condition	Environmental Condition
Non-Operational Scenario	6 Oct 2021 to 27 Sep 2022	No heat load applied	As measured between 6 Oct 2021 and 27 Sep 2022
Measured Operational Scenario	6 Oct 2021 to 27 Sep 2022	Measured heat load for 6 Oct 2021 to 27 Sep 2022 applied (Section 2.4.8.3)	As measured between 6 Oct 2021 and 27 Sep 2022
Hypothetical Operational Scenario – Late Fall	21 Oct 2021 to 25 Oct 2021	Measured heat load (Section 2.4.8.3) for 23 Dec 2021 to 25 Dec 2021 applied to 21 Oct 2021 to 23 Oct 2021	As measured between 21 Oct 2021 to 25 Oct 2021
Hypothetical Operational Scenario – Late Winter	10 Apr 2022 to 14 Apr 2022	Measured heat load (Section 2.4.8.3) for 23 Dec 2021 to 25 Dec 2021 applied to 10 Apr 2022 to 16 Apr 2022	As measured between 10 Apr 2022 to 14 Apr 2022
Hypothetical Operational Scenario – Spring Freshet	25 May 2022 to 29 May 2022	Measured heat load (Section 2.4.8.3) for 23 Dec2021 to 25 Dec 2021 applied to 25 May 2022 to 27 May 2022	As measured between 25 May 2022 to 29 May 2022
Hypothetical Operational Scenario – Early Summer	1 Jul 2022 to 5 Jul 2022	Measured heat load (Section 2.4.8.3) for 23 Dec 2021 to 25 Dec 2021 applied to 1 Jul 2022 to 3 Jul 2022	As measured between 1 Jul 2022 to 7 Jul 2022
Hypothetical Operational Scenario – Late Summer	1 Aug 2022 to 5 Aug 2022	Measured heat load (Section 2.4.8.3) for 23 Dec 2021 to 25 Dec 2021 applied to 1 Aug 2022 to 3 Aug 2022	As measured between 1 Aug 2022 to 5 Aug 2022

5.0 MODEL ASSUMPTIONS AND LIMITATIONS

A number of assumptions and limitations apply to the information presented in this report, including:

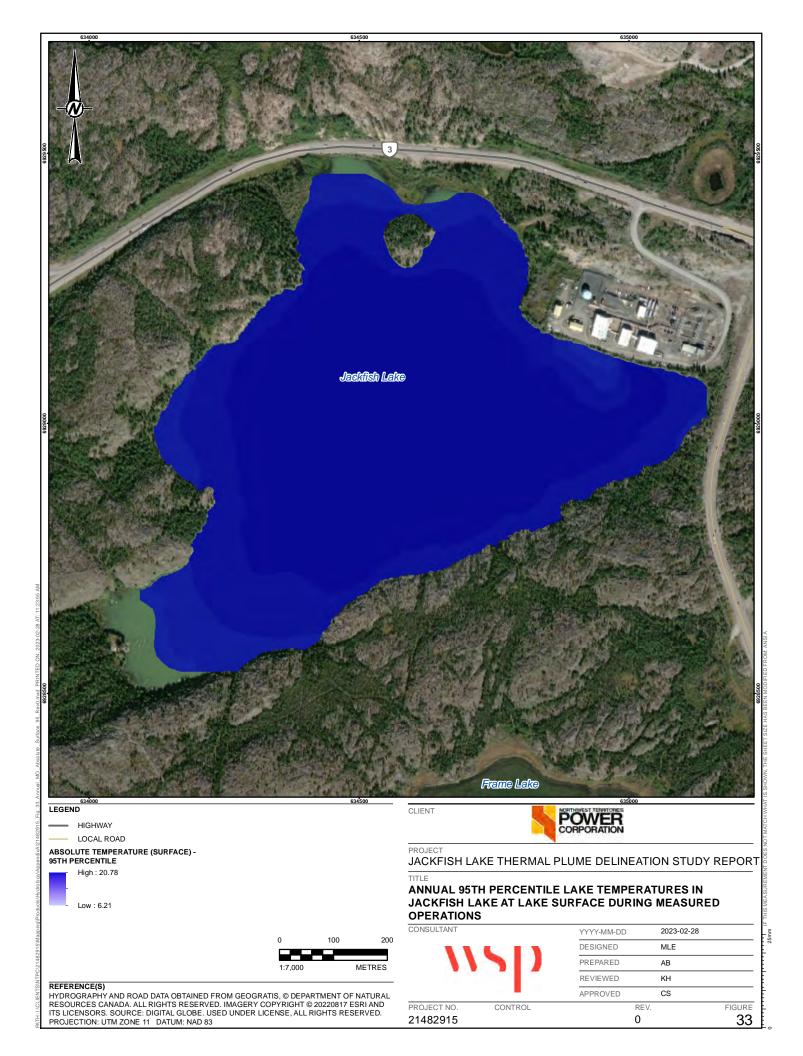
- All operational data screened into the assessment, including minor gap-filling and adjustments, provide
 a reasonably accurate representation of operational heat loads discharged from the plant during the
 October 2021 through September 2022 monitoring period.
- Ice thickness remained consistent across Jackfish Lake for the duration of ice cover.
- Minor infilling of meteorological data, where short data gaps were identified, provides acceptable characterizations of conditions at the time.
- Simulation of natural inflows to Jackfish Lake to maintain the water balance and substrate temperatures under Jackfish Lake required to match the lake's thermal profiles represent a reasonable proxy for actual conditions.
- Synthesis of natural inflow temperatures using a modified interpretation of air temperatures, when inflows are active, are a reasonable approximation of actual conditions.
- Orifice sizes for each discharge, estimated using CORMIX to match turbulent mixing zones observed in Google Earth imagery, are reasonable.

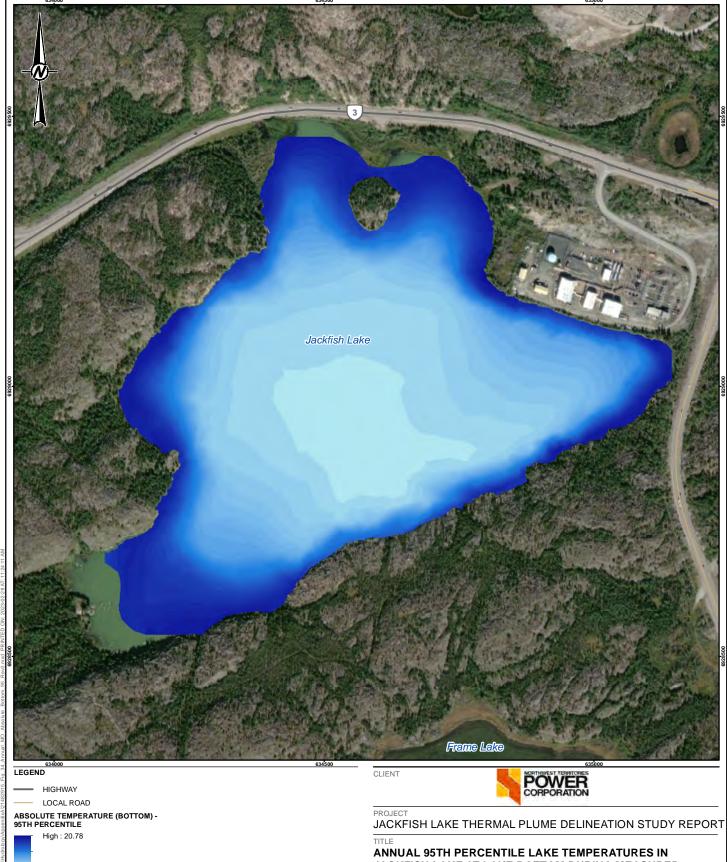
6.0 RESULTS

6.1 Foreword

Complex thermal and hydrodynamic processes are simulated within the Jackfish Lake model that include the combined cumulative and inter-linked hydrodynamic and thermodynamic effects of meteorological variations, substrate temperature variations, and operational variations, among others. These effects can manifest themselves in slightly modified temperatures throughout the domain when localized changes in one area of the lake are caused by the accumulation of thermal load from operations that remained small throughout the 2021 through 2022 monitoring period. As such, while the emphasis of operational effects is maintained in the presentation of results, it should be noted that ancillary effects that can cause increases or decreases over non-operational conditions do not necessarily reflect the direct effects of operational thermal loads introduced to the lake. These effects can occur within isolated areas of the lake as a result of minor modified thermal structures that can be unrelated to operational effects. In such instances, small phasal shifts in temperature fluctuations of an hour or more can yield results that do not directly represent the effect of thermal loadings from operations.

As a result of these infrequent and low heat loads introduced to the lake over the 2021 through 2022 monitoring period, comparisons of 95th percentile and median plume delineations for operational effects were rendered largely meaningless under the seasonal scenarios requested by regulators. Accordingly, presented results include annual 95th percentile thermal plume and median thermal plume plots for measured operational effects alone, while hypothetical operational discharges (discussed in Section 2.4.8.3) were simulated during each seasonal condition to provide an indication of thermal effects relating to the maximum discharge event recorded over the monitoring period.


The following subsection presents modelling results in a number of formats intended to confer an easily interpreted means of surface and bottom temperatures in Jackfish Lake between 6 October 2021 and 27 September 2022, the effect of operational influences on these and, lastly, the effect that hypothetical operational discharges, measured at the facility between 23 and 25 December 2021 would have during each of the seasonal conditions requested by regulators.


6.2 Water Temperatures in Jackfish Lake under Measured Operational Conditions - October 2021 through September 2022

The 95th percentile plots of measured operational conditions at lake surface and lake bottom between 6 October 2021 and 27 September 2022 (noting that no operational conditions were simulated from 1 August 2022 onwards) are provided in Figures 33 and 34, respectively. Given that operational discharges over a delta-T of 1°C occur less than five percent of the simulation period, both figures largely reflect a natural thermal state for Jackfish Lake, with some minor exceptions. Surface temperatures reflect warmer surface temperatures within the deeper portions of the lake resulting from atmospheric heating throughout the ice-free period, while cooler surface temperatures in the shallows along the southwestern, western, and northern shorelines reflect the influence of cooler substrate temperatures. The surface area around the discharges reflects the influence of continuous circulation of cooler bottom waters being drawn in via the intakes and discharged to surface through the system when heat loads are rarely applied. Bottom temperatures within the deeper portion of the lake remain less warm due to the influence of cooler substrate temperatures and reduced light penetration with depth, while 95th percentile bottom temperatures in the shallows remain warmer and close to, though slightly below 95th percentile surface temperatures at those locations.

In brief, very little operational influence, other than the circulation of cooler bottom waters through the plant cooling systems, is visually detectable under measured conditions, largely because operational discharges equal to or greater than 1°C occur for less than five percent of the simulation period.

Low: 6.21

REFERENCE(S)

HYDROGRAPHY AND ROAD DATA OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. IMAGERY COPYRIGHT © 20220817 ESRI AND ITS LICENSORS. SOURCE: DIGITAL GLOBE. USED UNDER LICENSE, ALL RIGHTS RESERVED. PROJECTION: UTM ZONE 11 DATUM: NAD 83

JACKFISH LAKE AT LAKE BOTTOM DURING MEASURED **OPERATIONS**

nsp

CONSULTANT

YYYY-MM-DD	2023-02-28
DESIGNED	MLE
PREPARED	AB
REVIEWED	KH
APPROVED	CS

FIGURE PROJECT NO. CONTROL REV. 34 21482915 0

6.3 Effect of Measured Operational Discharges on Jackfish Lake – October 2021 through September 2022

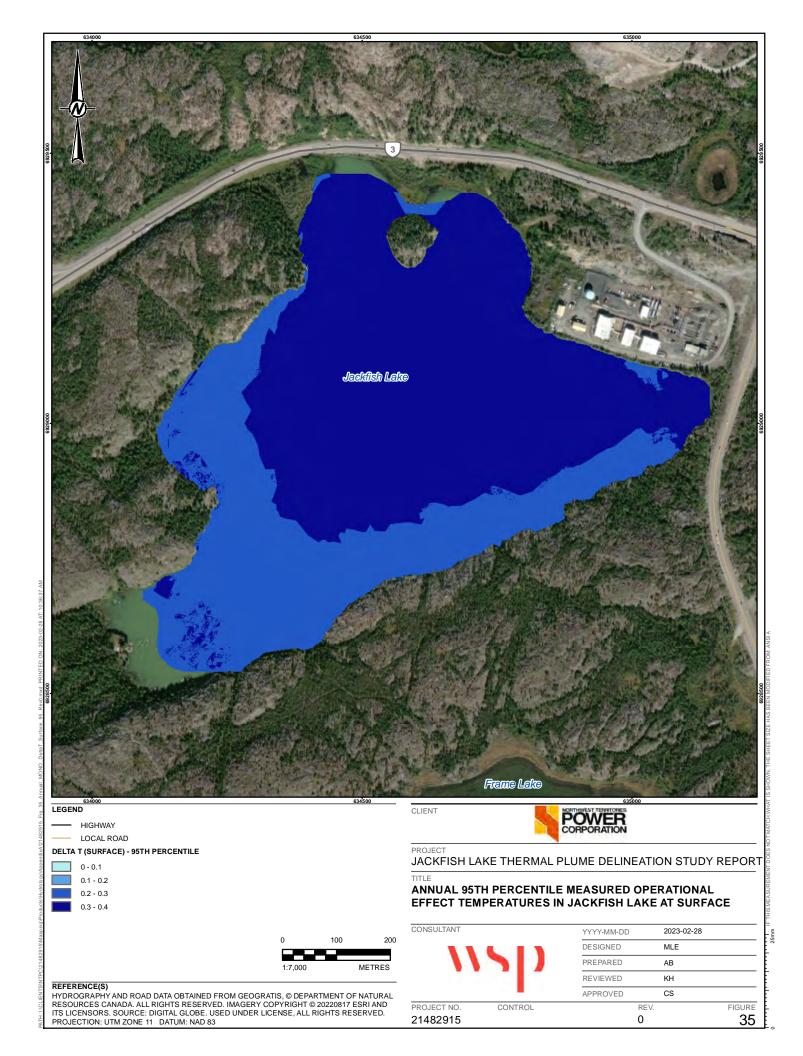
The notable absence of visually detectable thermal impacts on Jackfish Lake are illustrated in Figures 35 through 38. These figures provide a visualization of the 95th percentile temperature differences between measured and operational conditions (Figures 35 and 37), as well as 50th percentile (median) temperature differences between measured and operational conditions (Figures 36 and 38).

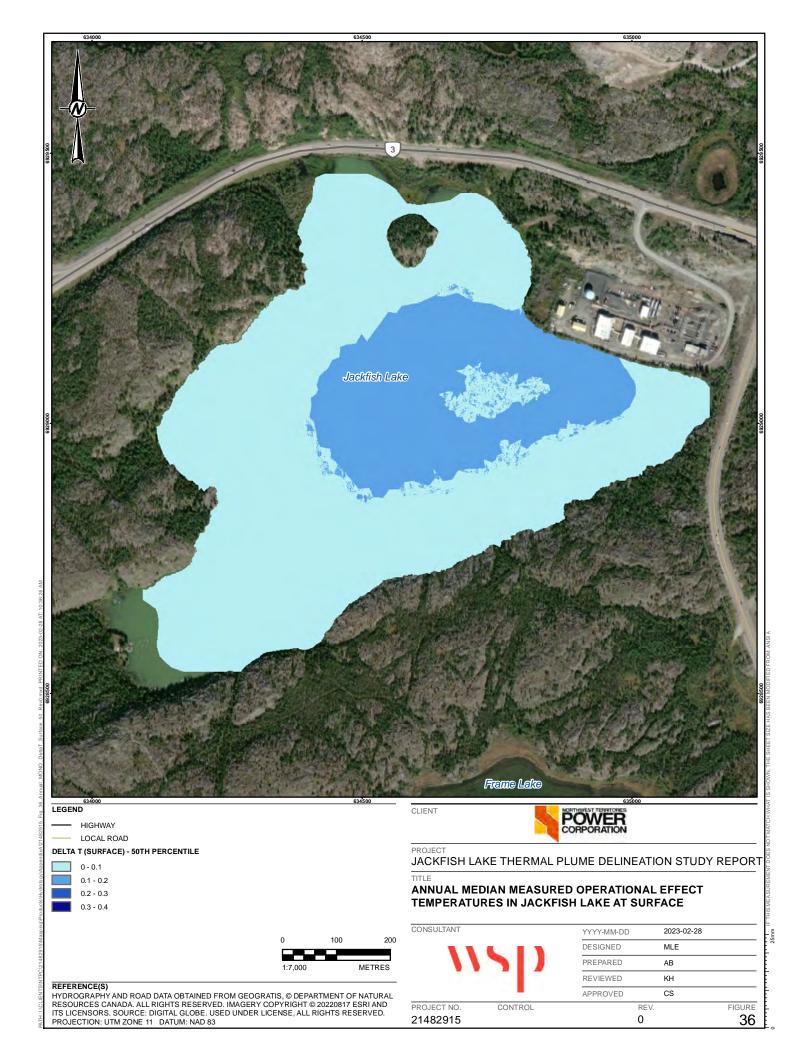
The 95th percentile (Figure 35) and median temperature (Figure 36) differences at the lake surface resulting from operational effects indicate that the thermal effects of measured operations over the simulation window were extremely small. i.e., generally between 0.2°C and 0.4°C and between 0°C and 0.2°C, respectively. Similar increases in temperature were observed at lake bottom, with the 95th percentile temperature increase amounting to between 0.1°C and 0.4°C (Figure 37), and the median temperature increase amounting to between 0°C and 0.2°C (Figure 38). These changes largely reflect the residual effects of assimilated temperature increases after discharges have occurred, which collectively occur less than five percent of the time at an increase of 1°C or higher. The 95th percentile and median aerial extents of operational effects on Jackfish Lake are presented in Tables 11 and 12.

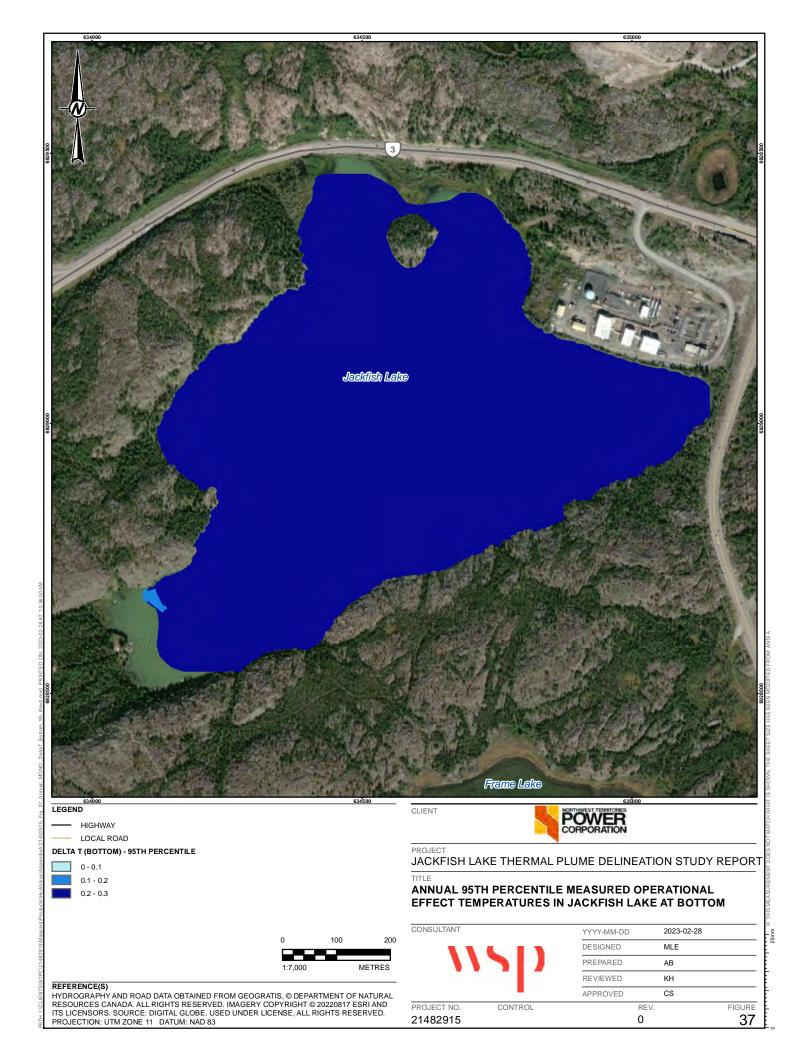
These findings indicate that the magnitude of thermal effects from operational heat loads applied to the lake was relatively small from over the October 2021 through July 2022 (after which operational data were screened out) simulation period.

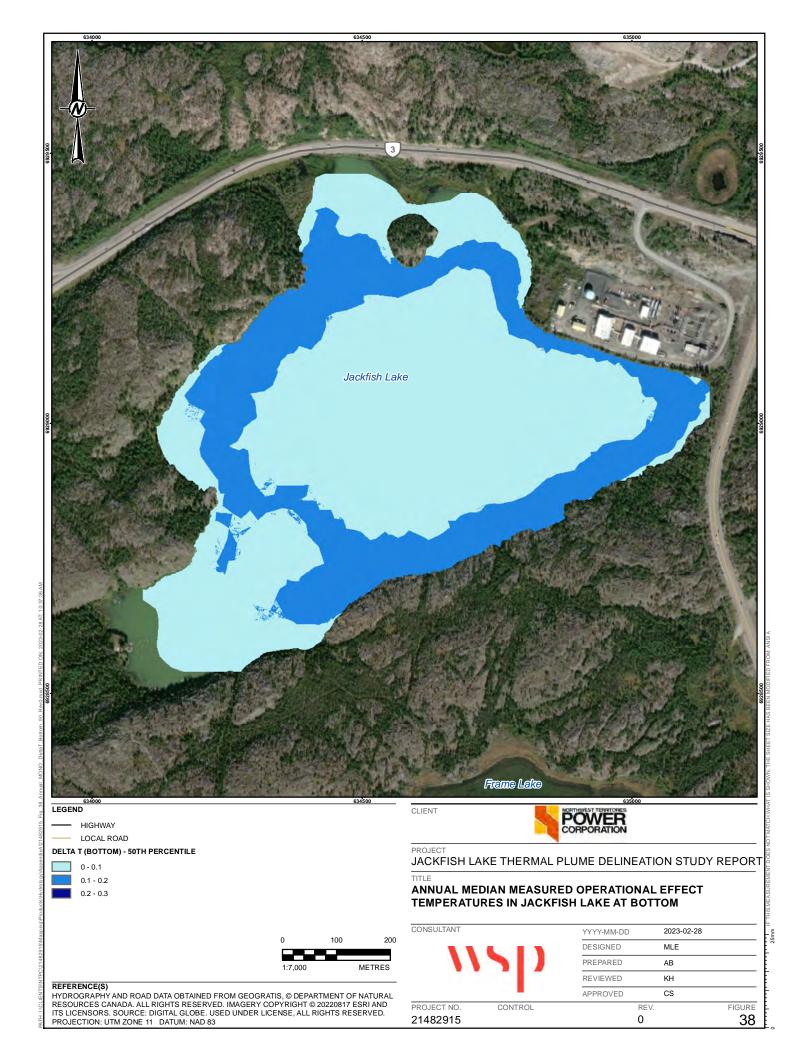
Table 11: Aerial Extent of 95th Percentile and Median Measured Operational Effects on Jackfish Lake at Lake Surface (6 October 2021 to 27 September 2022 Simulation Period)

Temperature Effect	95 th Percentile Extents (ha)	95 th Percentile Extents (% of Extracted Area)	50 th Percentile Extents (ha)	50 th Percentile Extents (% of Extracted Area)
0°C to 0.1°C	-	-	35.9	70
0.1°C to 0.2°C	-	-	15.4	30
0.2°C to 0.3°C	18.7	36	•	-
0.3°C to 0.4°C	32.6	62	•	-
>0.4	0.9	2	-	-


ha = hectares


Table 12: Aerial Extent of 95th Percentile and Median Measured Operational Effects on Jackfish Lake at Lake Bottom (6 October 2021 to 27 September 2022 Simulation Period)


Temperature Effect	95 th Percentile Extents (ha)	95 th Percentile Extents (% of Extracted Area)	50 th Percentile Extents (ha)	50 th Percentile Extents (% of Extracted Area)
0°C to 0.1°C	-	-	33.8	66
0.1°C to 0.2°C	0.1	0	17.5	34
0.2°C to 0.3°C	0.2	0	-	-
>0.3°C	51	99	-	-

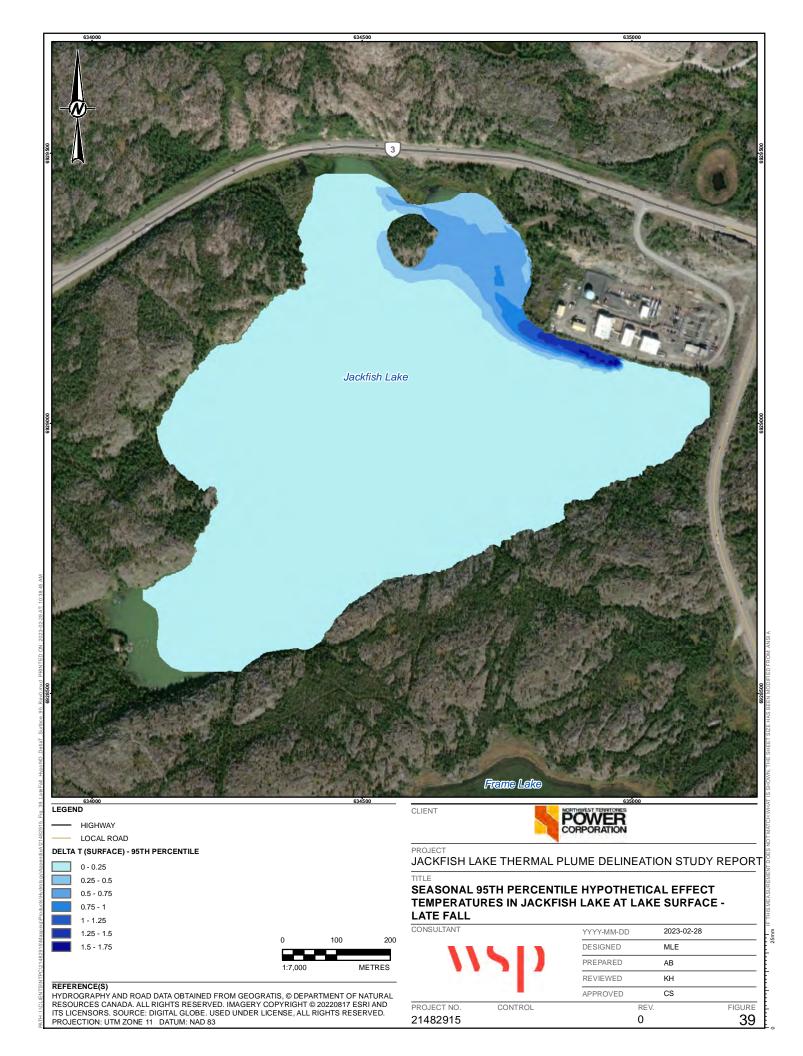

ha = hectares; "-" = not applicable.

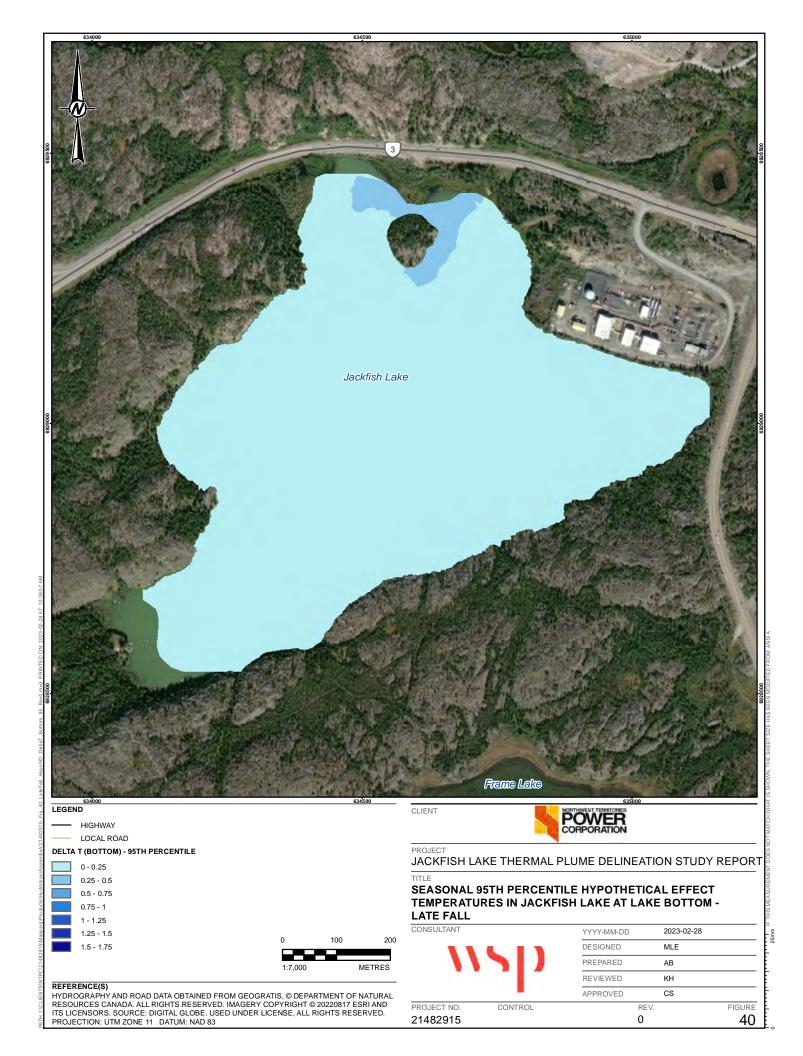
6.4 Seasonal Water Temperatures in Jackfish Lake resulting from Hypothetical Maximum Operational Discharges

The following hypothetical simulation results reflect identical operational heat loads being applied to Jackfish Lake for each of the five seasonal conditions. In interpreting these results it should be noted that all differences observed are related to environmental differences including different wind directions and speeds, different thermal structures and atmospheric forcings associated with each simulation window.

6.4.1 Late Fall

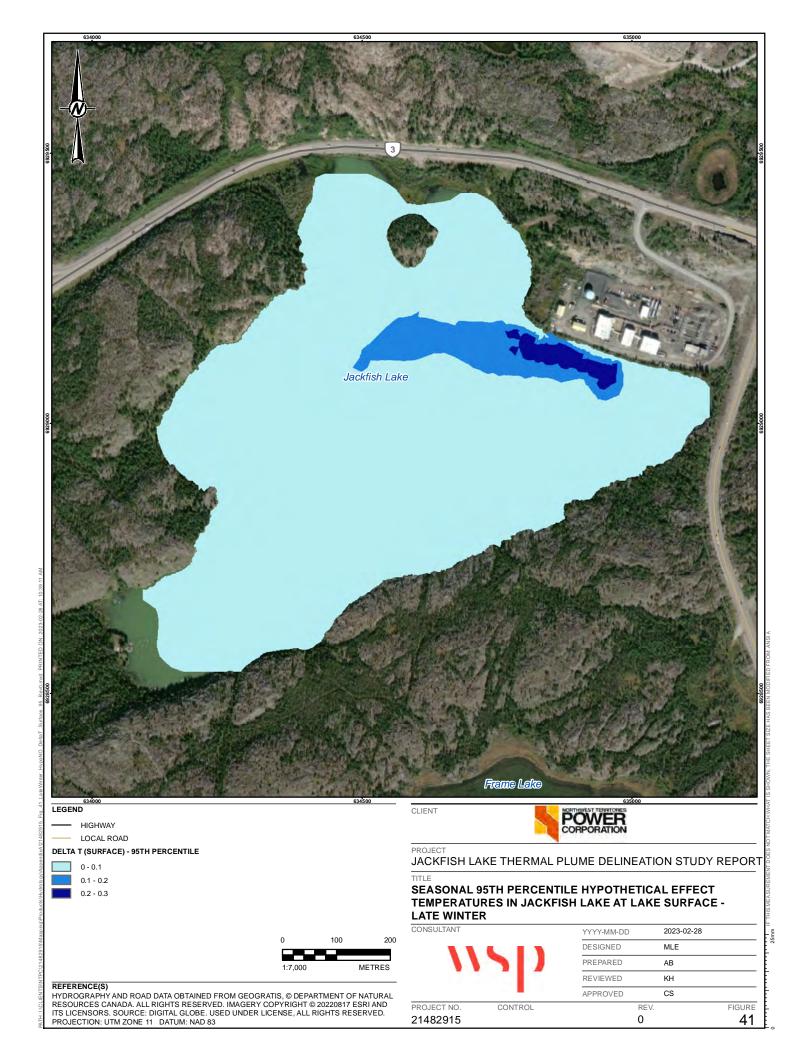
The late fall condition reflects the 95th percentile temperature differences between the two-and-a-half-day hypothetical discharge scenario and non-operational scenario, calculated over a four-day period commencing at the start of discharge. Figures 39 and 40 illustrate the 95th percentile temperature difference between hypothetical operational lake conditions and non-operational lake conditions between 21 and 25 October 2021 at lake surface and lake bottom, respectively.


The fall discharge event coincided with wind conditions that directed currents to the northwest. Given the lake's cooling temperatures at this time, the figures illustrate that the resulting thermal plume generally remained positively buoyant for most of this period. Vertical mixing was also relatively limited until it reached the shallows surrounding the lakes northern island, where sufficient vertical mixing and/or thermal diffusion resulted in a slight elevation (less than 0.5°C) of lake bottom temperatures. Table 13 presents the sizes of the surface and bottom plumes associated with this discharge event demonstrating that the magnitude of operational effects during fall is negligible even under maximum heat output conditions recorded between 6 October 2021 and 31 July 2022. Overall, these results indicate that the magnitude of temperature increases in the late fall period was relatively small.


Table 13: Aerial Extent of 95th Percentile and Median Hypothetical Operational Effects on Jackfish Lake during Late Fall (21 and 25 October 2021 Simulation Period)

Temperature Effect	95 th Percentile Extents (ha) at Surface	95 th Percentile Extents (% of Extracted Area) at Surface	95 th Percentile Extents (ha) at Bottom	95 th Percentile Extents (% of Extracted Area) at Bottom
0°C to 0.25°C	46.5	91 49.8		97
0.25°C to 0.5°C	1.8	3	1.5	3
0.5°C to 0.75°C	2.2	4	-	-
0.75°C to 1°C	0.4	1	-	-
1°C to 1.25°C	0.2	0	-	-
1.25°C to 1.5°C	0.3	1	-	-
1.5°C to 1.75°C	-	-	-	-
>1.75°C	-	-	-	-

Note: Tabulated values may not sum to 100% in all instances due to a function of rounding. ha = hectares; "-" = not applicable.



6.4.2 Late Winter

The late winter condition reflects the 95th percentile temperature differences between the two-and-a-half-day hypothetical discharge scenario and non-operational scenario, calculated over a four-day period commencing at the start of discharge a few weeks prior to ice break-up. Figures 41 and 42 illustrate the 95th percentile temperature difference between hypothetical operational lake conditions and non-operational lake conditions between 10 and 14 April 2022 at lake surface and lake bottom, respectively. Table 14 presents the aerial extent of the 95th percentile surface and bottom temperature increases resulting from this discharge event.

As illustrated on Figures 41 and 42, the thermal plume remained largely confined to surface, with very little heating of bottom waters in the area of the discharge area, and only minimal bottom contact identified in the area to the northwest of the discharge. A relatively small area of localized temperature increases is illustrated at lake bottom in the deep portions of the lake towards the south (Figure 42), which may suggest that the plume had cooled sufficiently to begin sinking as it cooled to within 0.1°C to 0.2°C of ambient lake temperatures. Overall, these results indicate that the magnitude of temperature increases in the late winter period was extremely small.

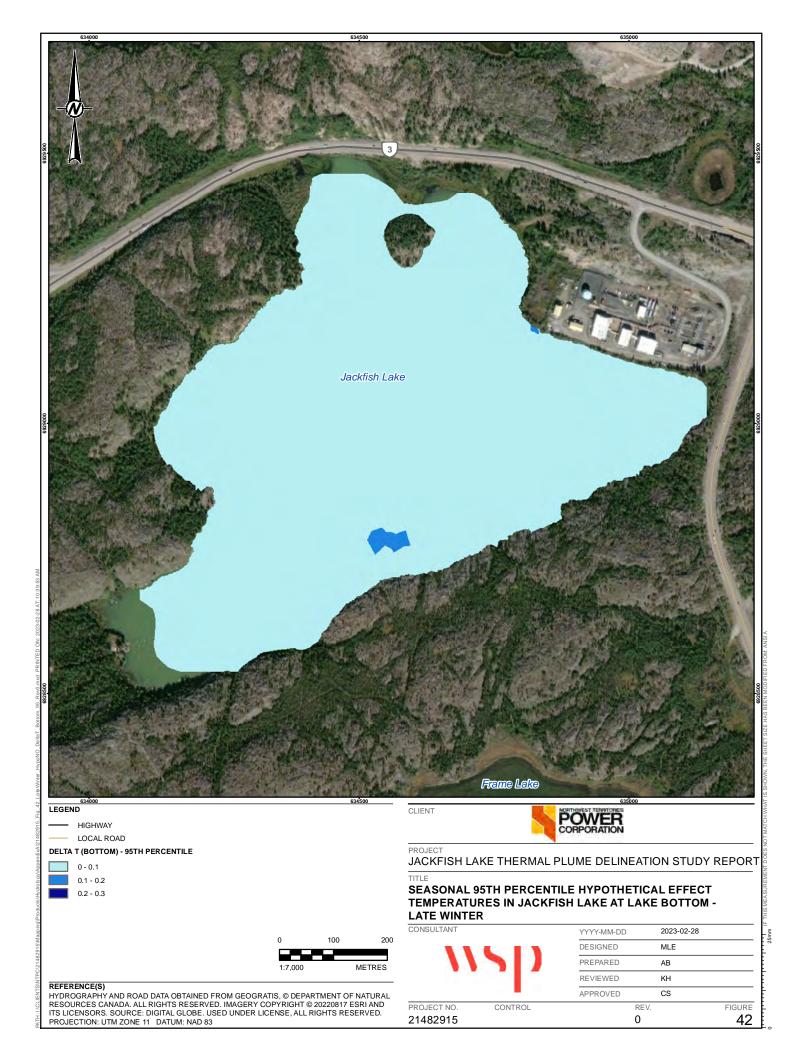


Table 14: Aerial Extent of 95th Percentile and Median Hypothetical Operational Effects on Jackfish Lake during Late Winter (10 and 14 April 2022 Simulation Period)

Temperature Effect	95 th Percentile Extents (ha) at Surface	95 th Percentile Extents (% of Extracted Area) at Surface	95 th Percentile Extents (ha) at Bottom	95 th Percentile Extents (% of Extracted Area) at Bottom
0°C to 0.1°C	47.7	93	51	100
0.1°C to 0.2°C	2.9	6	0.3	0
0.2°C to 0.3°C	0.7	1	-	-
>0.3°C	0.1	0	-	-

Note: Tabulated values may not sum to 100% in all instances due to a function of rounding. ha = hectares: "-" = not applicable.

6.4.3 Spring Freshet

The spring freshet condition reflects the 95th percentile temperature differences between the two-and-a-half-day hypothetical discharge scenario and non-operational scenario, calculated over a four-day period commencing at the start of discharge during spring freshet. Figures 43 and 44 illustrate the 95th percentile temperature difference between hypothetical operational lake conditions and non-operational lake conditions between 25 and 29 May 2022 at lake surface and lake bottom, respectively. Table 15 presents the aerial extent of the 95th percentile surface and bottom increases resulting during this discharge event, noting that some of the temperature increases along the lake's south-eastern shoreline are not necessarily directly related to operational heating.

The surface plume illustrated on Figure 43 suggests that a current reversal may have occurred during active discharge with minor temperature increases located to the north and west of the discharge array and slightly larger temperature increases to the south. Figure 44 illustrates minor increases of bottom temperatures along both of these trajectories; a small localized area of 0.5°C increase is located to the northwest of the discharge array. A number of similar temperature increases are also shown along the lakes south-eastern shoreline that could be the direct result of the thermal plume or simply an artifact of moderately altered thermal structures at this location that would manifest themselves in phasal shifts of diurnal temperature fluctuations and thus not reflect direct heating of the plume. Overall, these results indicate that the magnitude of temperature increases during the spring freshet period was relatively small.

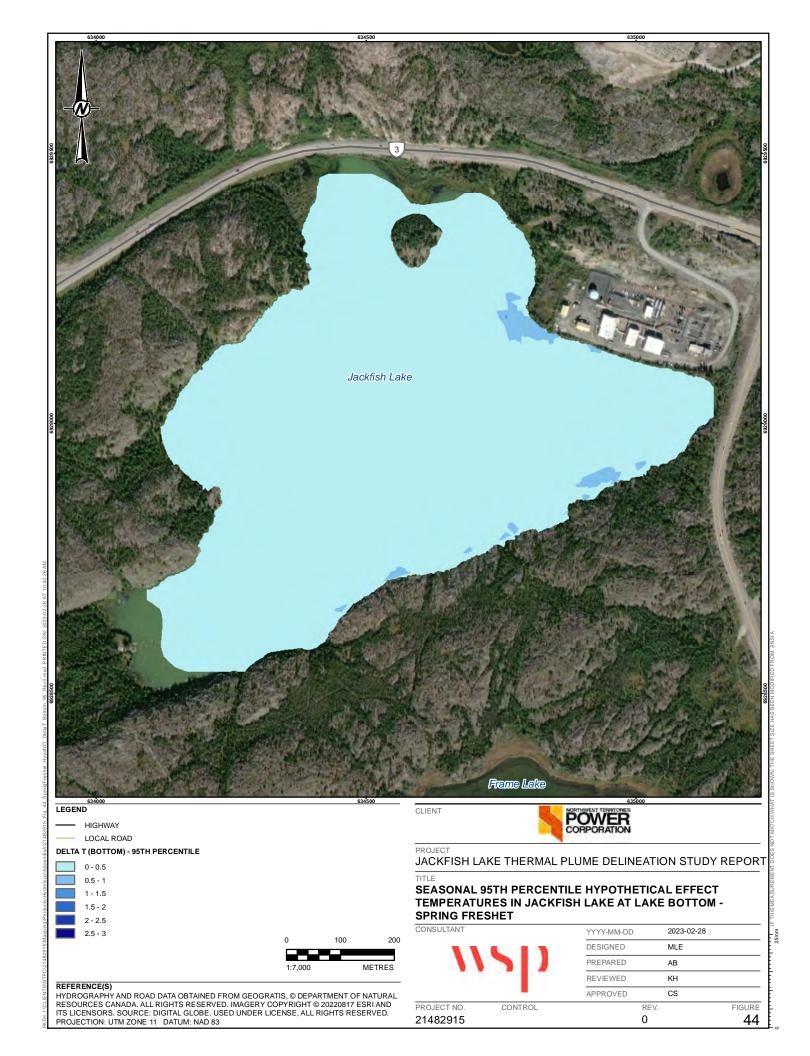


Table 15: Aerial Extent of 95th Percentile and Median Hypothetical Operational Effects on Jackfish Lake during Spring Freshet (25 and 29 May 2022 Simulation Period)

Temperature Effect	95 th Percentile Extents (ha) at Surface	95 th Percentile Extents (% of Extracted Area) at Surface	95 th Percentile Extents (ha) at Bottom	95 th Percentile Extents (% of Extracted Area) at Bottom
0°C to 0.5°C	47.1	92	50.5	98
0.5°C to 1°C	3.4	7	0.8	2
1°C to 1.5°C	0.2	0	0	0
1.5°C to 2°C	0.2	0	-	-
2°C to 2.5°C	0.2	0	-	-
2.5°C to 3°C	0.2	0	-	-
>3°C	-	-	-	-

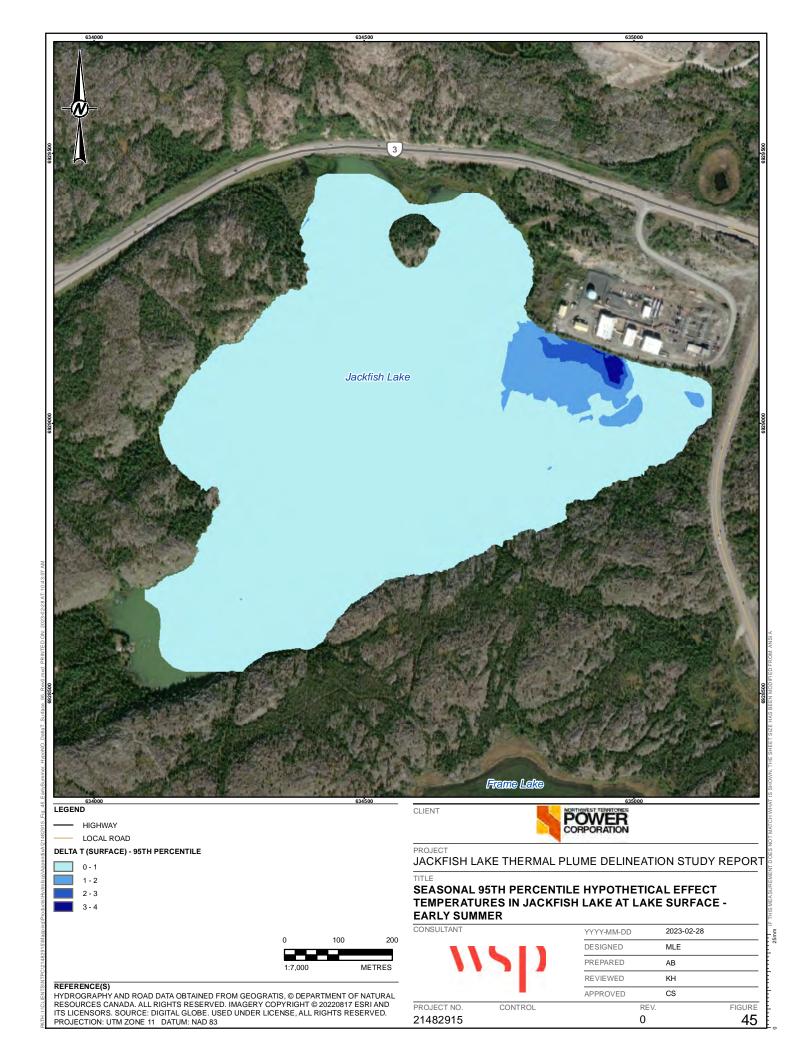
Note: Tabulated values may not sum to 100% in all instances due to a function of rounding.

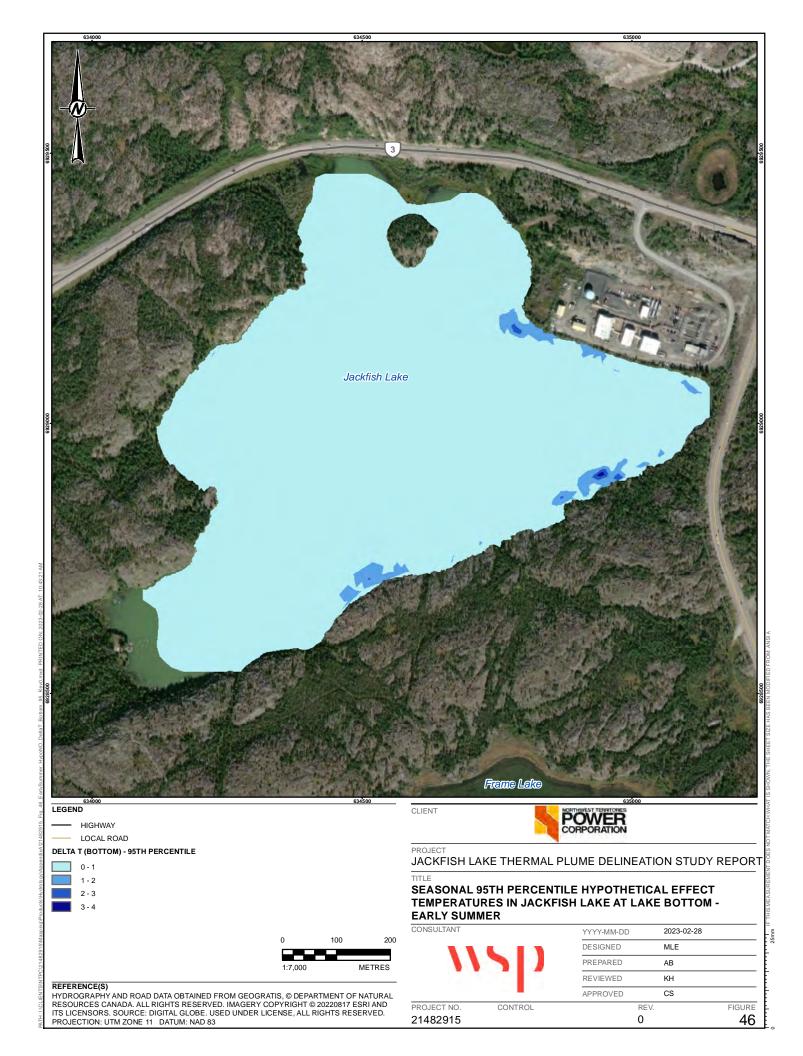
ha = hectares; "-" = not applicable.

6.4.4 Early Summer

The early summer condition reflects the 95th percentile temperature differences between the two-and-a-half-day hypothetical discharge scenario and non-operational scenario, calculated over a four-day period commencing at the start of discharge during the early summer. Figures 45 and 46 illustrate the 95th percentile temperature difference between hypothetical operational lake conditions and non-operational lake conditions between 1 and 5 July 2022 at lake surface and lake bottom, respectively. Table 16 presents the aerial extent of the 95th percentile surface and bottom increases resulting during this discharge event.

Figure 45 depicts the surface plume resulting from the hypothetical discharge event at a time when current conditions were reasonably calm, and only slightly directed to the east. Small, localized, temperature differences are depicted to the southwest and north of the lake and are the product of small alterations in thermal structure that result in minor phasal shifts in temperature fluctuation and thus not illustrative of thermal impacts. Figure 46 indicates that some changes to bottom temperatures in the vicinity of the discharges resulted from the hypothetical discharge event; however, it is considered unlikely that operational effects contributed directly to temperature differences observed towards the southern extent of Jackfish Lake; a phasal shift resulting from slightly modified thermal structure is likely the cause. Overall, these results indicate that the aerial extent of temperature increases greater than 1°C were relatively small during the early summer period.


Table 16: Aerial Extent of 95th Percentile and Median Hypothetical Operational Effects on Jackfish Lake during Early Summer (1 and 5 July 2022 Simulation Period)

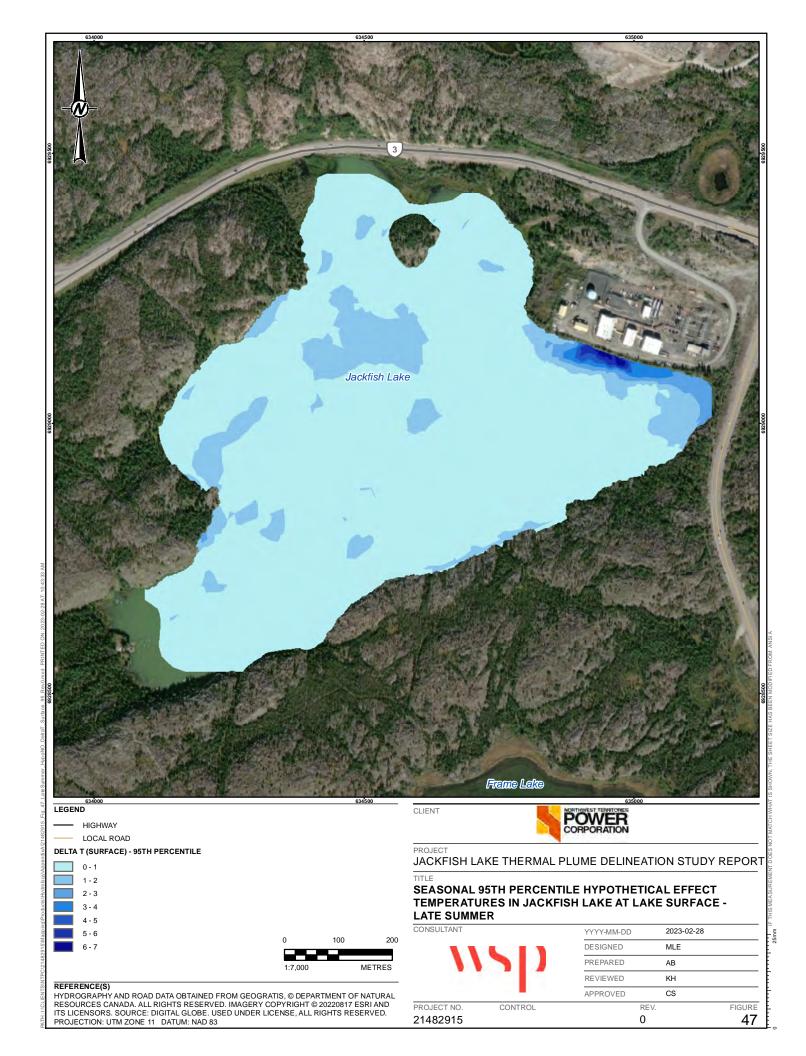

_	•	•	•	
Temperature Effect	95 th Percentile Extents (ha) at Surface	95 th Percentile Extents (% of Extracted Area) at Surface	95 th Percentile Extents (ha) at Bottom	95 th Percentile Extents (% of Extracted Area) at Bottom
0°C to 1°C	48.3	94	50.2	98
1°C to 2°C	2.3	5	1	2
2°C to 3°C	0.5	1	0.1	0
3°C to 4°C	0.1	0	0	0
>4°C	0	0	-	-

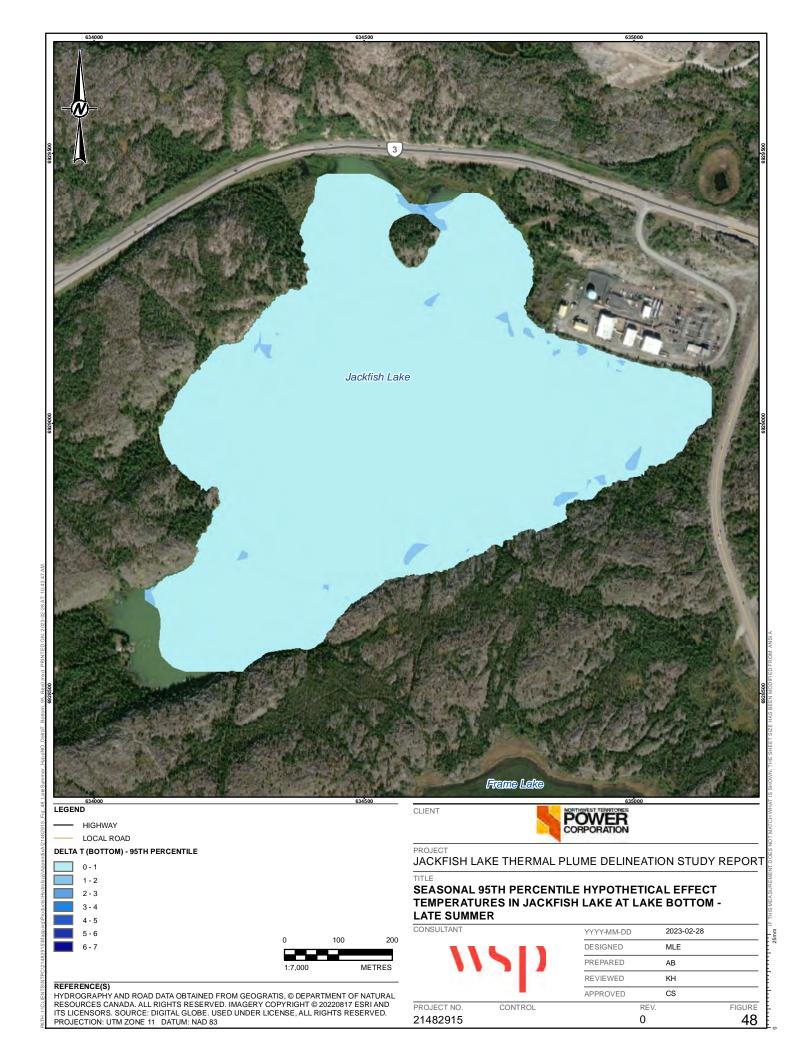
Note: Tabulated values may not sum to 100% in all instances due to a function of rounding.

ha = hectares; "-" = not applicable.

6.4.5 Late Summer

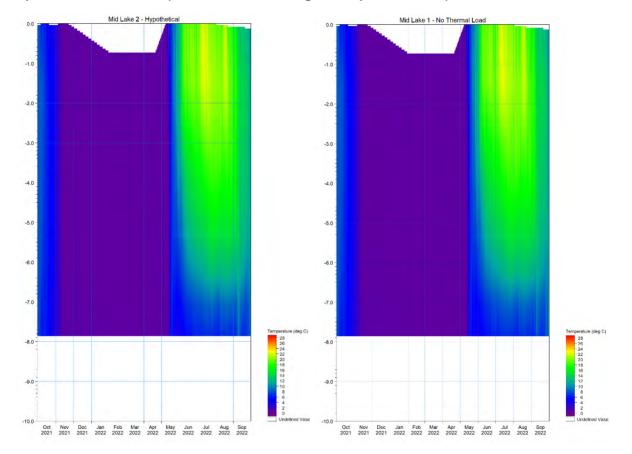
The late summer condition reflects the 95th percentile temperature differences between the two-and-a-half-day hypothetical discharge scenario and non-operational scenario, calculated over a four-day period commencing at the start of discharge during the late summer. Figures 47 and 48 illustrate the 95th percentile temperature difference between hypothetical operational lake conditions and non-operational lake conditions between 1 and 5 August 2022 at lake surface and lake bottom, respectively. Table 17 presents the aerial extent of the 95th percentile surface and bottom increases resulting during this discharge event.


Figure 47 illustrates surface temperature differences between the hypothetical operational and non-operational simulations over the four-day period. While some localized changes in the vicinity of the discharges are indicative of operational heat loads introduced to the lake, most of the temperature differences shown on the lake are illustrative of modified thermal structures in the lake that result in slightly modified timings of peak surface temperatures and manifest themselves as statistically notable temperatures at lake surface. In terms of lake bottom temperature differences, these are mostly unrelated to the direct thermal effects of the thermal plume (Figure 48) but are likely the result of indirect effects that slightly modify the thermal structure of the lake and cause temporal differences in temperature responses to diurnal atmospheric effects. Overall, these results indicate that the aerial extent of temperature increases greater than 1°C were relatively small during the late summer period.


Table 17: Aerial Extent of 95th Percentile and Median Hypothetical Operational Effects on Jackfish Lake during Late Summer (1 and 5 August 2022 Simulation Period)

Temperature Effect	95 th Percentile Extents (ha) at Surface	95 th Percentile Extents (% of Extracted Area) at Surface	95 th Percentile Extents (ha) at Bottom	95 th Percentile Extents (% of Extracted Area) at Bottom
0°C to 1°C	44.0	86	50.5	98
1°C to 2°C	6.2	12	0.8	1
2°C to 3°C	0.6	1	0	0
3°C to 4°C	0.3	1	-	-
>4°C	0.2	0	-	-

Note: Tabulated values may not sum to 100% in all instances due to a function of rounding. ha = hectares; "-" = not applicable.



6.5 Thermal Structure of Jackfish Lake

Figure 33 provides an overview of the thermal structure of Jackfish Lake over time at the Mid-Lake monitoring location for non-operational (baseline) and hypothetical discharge conditions. Despite minor temporal differences at this location observed in the form of timeseries data, the illustrated isopleths demonstrate that no substantial changes to the thermal structure of Jackfish Lake have occurred as a result of the hypothetical discharges.

Figure 49: Thermal Structure of Jackfish Lake (Mid-Lake Location) under Hypothetical and Non-Operational Conditions (6 October 2021 through 27 September 2022)

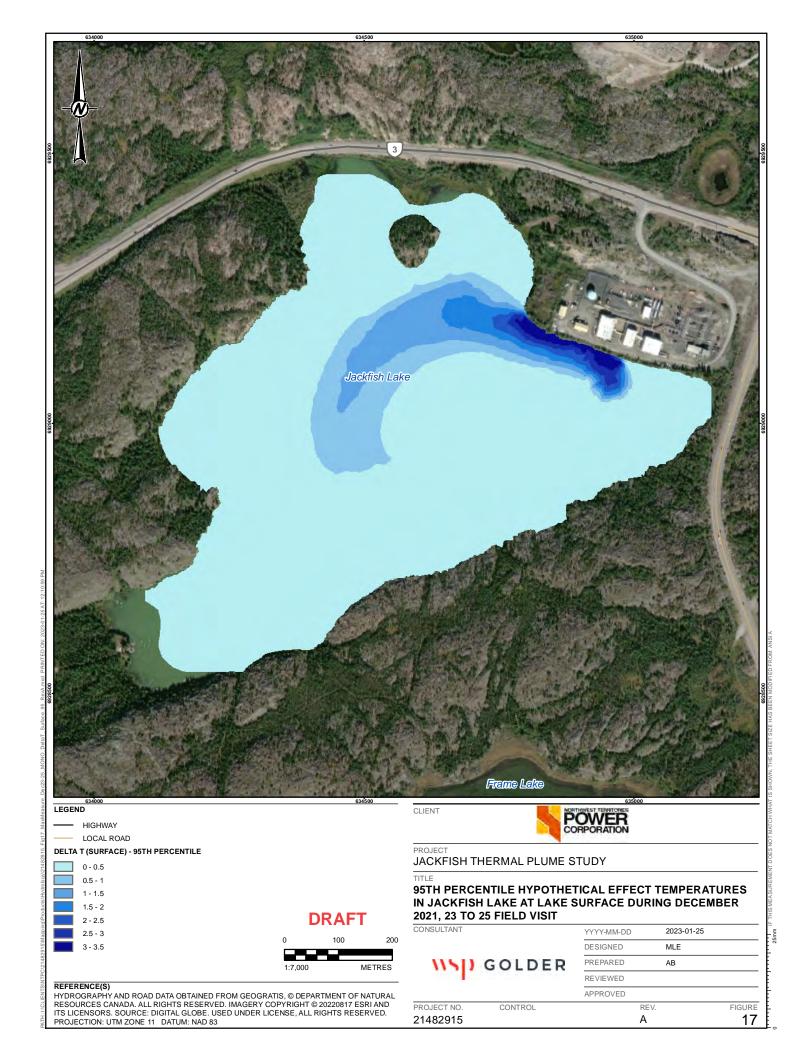
7.0 CONCLUSIONS

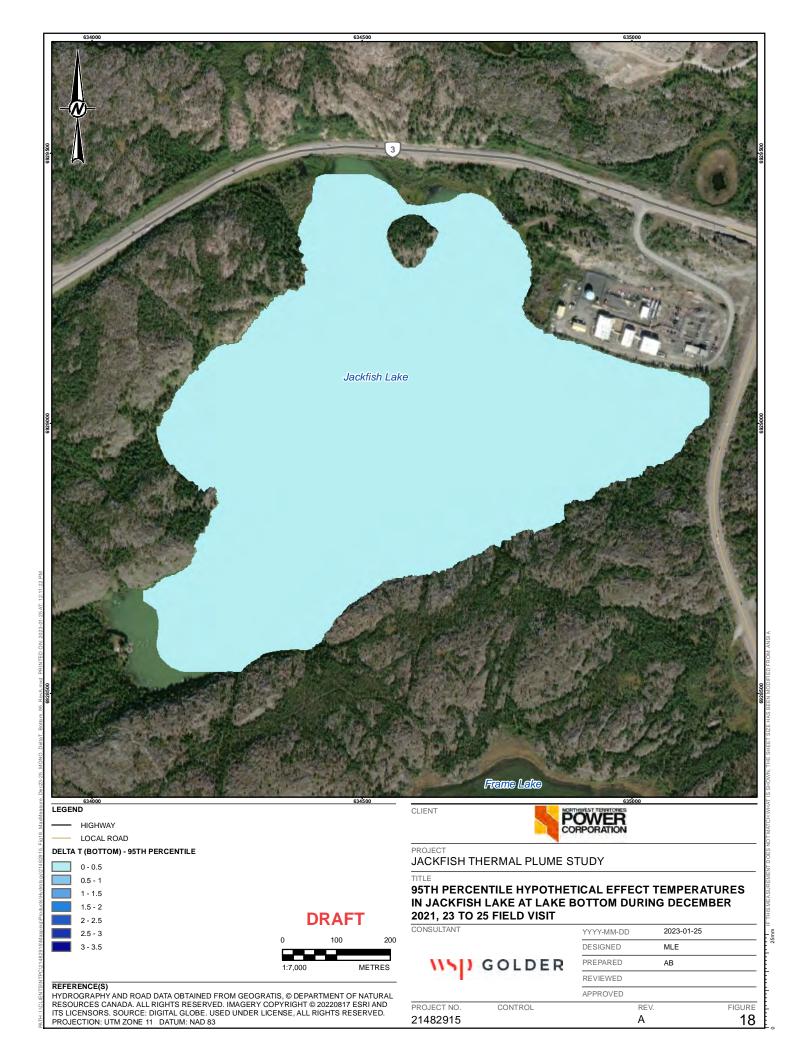
The following conclusions are based on the assumptions and limitations documented in Section 5:

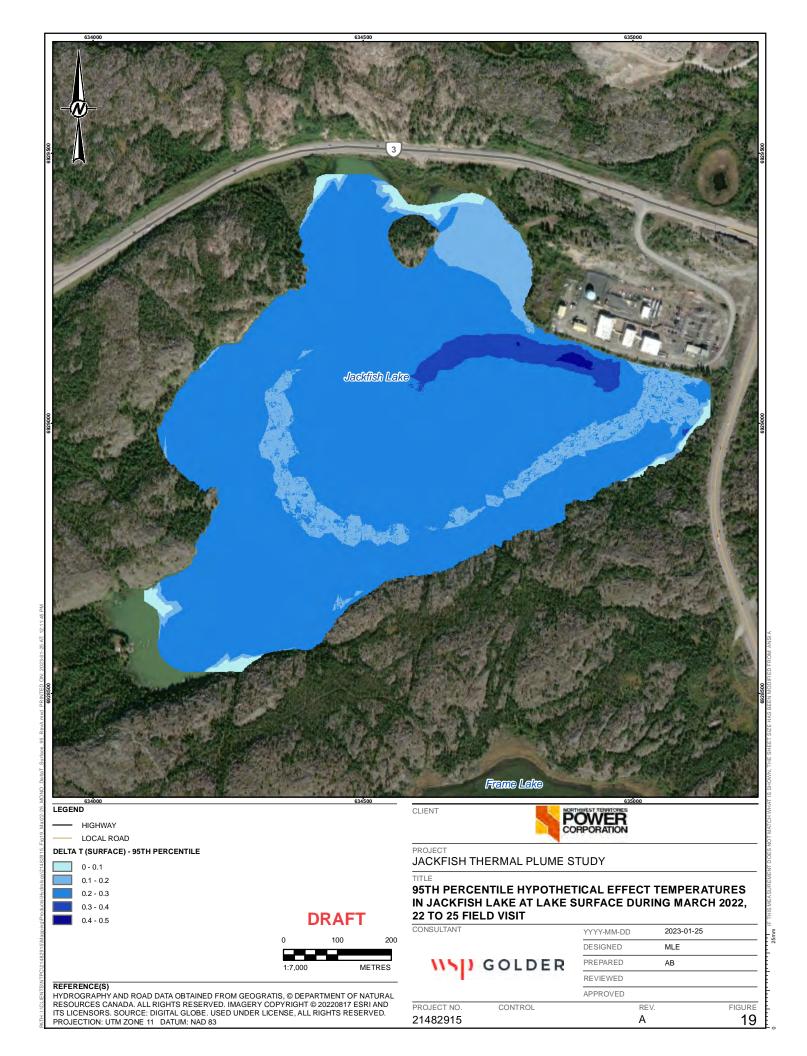
- The model developed for Jackfish Lake performs well and within published literature values for other 3-D model applications, and the model is considered fit for the purposes of simulating the thermal effects of operations on Jackfish Lake.
- The thermal impacts from the NTPC facility on Jackfish Lake between 6 October 2021 and 31 July 2022 were very small, i.e., the 95th percentile effect of measured operations at the facility on Jackfish Lake was generally within 0.4°C of non-operational (baseline) conditions for the lake, while the median temperature change was with 0.2°C of non-operational conditions. These small changes are likely the result of the highly intermittent nature and low heat loads discharged to the lake during this time. However, a full evaluation of representative thermal plume extents under the operational conditions measured during this period was not possible for each of the seasonal conditions requested by regulators.
- An assessment of hypothetical operational effects, based on the maximum measured heat load directed to the lake during the monitoring period, was carried out for late fall, late winter, spring freshet, early summer, and late summer. The results indicated that the thermal extents of the 95th percentile temperature increases were generally negligible or relatively small based on the following:
 - In late fall, the 95th percentile effect on lake surface temperatures was generally within 1°C, while the 95th percentile effect on lake bottom temperatures was within 0.5°C of non-operational (baseline) lake temperatures.
 - In late winter, the 95th percentile effect on lake surface temperatures was generally within 0.3°C, while the 95th percentile effect on lake bottom temperatures was within 0.2°C of non-operational (baseline) lake temperatures.
 - During spring freshet, the 95th percentile effect on lake surface and bottom temperatures generally remained within 1°C.
 - In early summer, the 95th percentile effect on lake surface temperatures was generally within 1°C, with small portions of the lake surface (1%) increasing by more than 2°C. The 95th percentile effect on lake bottom temperatures was generally within 1°C of non-operational (baseline) lake temperatures, with only a small portion of the lake bottom (2%) increasing by more than 1°C.
 - In late summer, the 95th percentile effect on lake surface temperatures was generally within 1°C, with only small portions of the lake surface (2%) increasing by more than 2°C over non-operational (baseline) temperatures. The 95th percentile effect on lake bottom temperatures generally remained within 1°C of non-operational (baseline) lake temperatures, with less than 2% of the lake bottom increasing by more than 1°C over non-operational conditions.
- Temperature effects of hypothetical maximum measured operations tended to peak in summer and be lowest over the winter months.
- Although the thermal structure of the lake experienced minor modifications outside the turbulent mixing zone of the discharges, they are not visually detectable at the mid-lake location meaning discharges of the nature observed in September 2021 through July 2022 are not altering the thermal structure or behaviour of the lake.

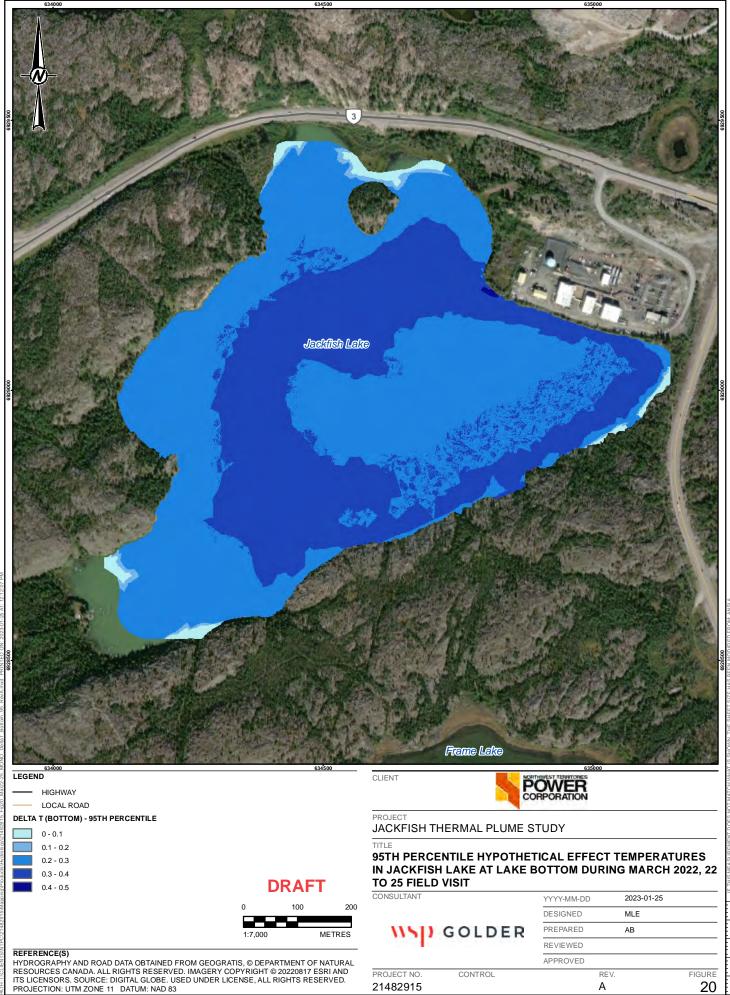
8.0 REFERENCES

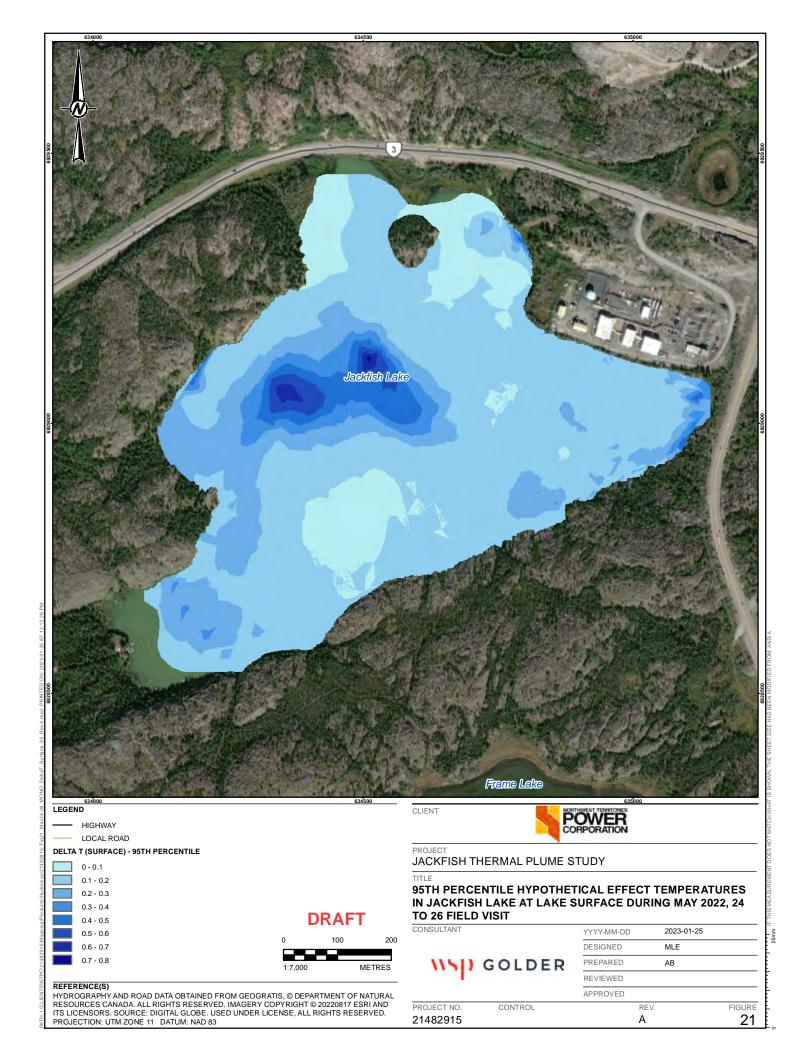
- Beletski D, Schwab DJ. 2001. Modelling circulation and thermal structure in Lake Michigan: Annual cycle and interannual variability. Journal of Geophysical Research.
- Beletsky D, Schwab D, McCormick, M. 2006. Modelling the 1998–2003 summer circulation and thermal structure in Lake Michigan. Journal of Geophysical Research.
- Brown RJE, 1973. Influence of climatic and terrain factors on ground temperatures at three locations in the permafrost region of Canada. Proceedings of the Second International Conference on Permafrost, North American Contribution, Yakutsk, USSR, July 13-28, 1973: 27-34
- Dewey R. 2011. Spill Scenario Modelling for Lake Ontario Lakes Assessment Report for Five Source Water Protection Areas (SPAs) Under Ontario's Clean Water Act. Prepared for the Lake Ontario Collaborative. December 2011. 187 pp.
- ECCC (Environment Canada and Climate Change). 2022. Hourly Data for Yellowknife A Climate Station, Climate ID: 2204101. Downloaded from https://climate.weather.gc.ca/climate_data/hourly_data_e.html?hlyRange=2013-01-15%7C2022-12-21&dlyRange=2013-01-17%7C2022-12-21&mlyRange=%7C&StationID=51058&Prov=NT&urlExtension=_e.html&searchType=stnName&optLimit=y earRange&StartYear=1840&EndYear=2022&selRowPerPage=25&Line=0&searchMethod=contains&Month=12&Day=21&txtStationName=yellowknife&timeframe=1&Year=2022 on October 24, 2022.
- Golder (Golder Associates Ltd.). 2019. 2018 Discharge Quality Report, Jackfish Facility. Prepared for the Northwest Territories Power Corporation. Submitted to the Mackenzie Valley Land and Water Board, February 2019. Yellowknife, NT.
- Golder. 2021. Thermal Plume Delineation Study Design Plan. Version 2.1. Submitted to the Northwest Territories Power Corporation, May 2021. Yellowknife, NT.
- Golder. 2022. "Hydrodynamic and Water Quality Modelling of Pit Lakes and Lac de Gras". Prepared for Diavik Diamond Mines (2012) Inc. May 2022. Yellowknife, NT.
- Hamidi SA, Brave HR, Klump JV, Waples JT. 2015. The role of circulation and heat fluxes in the formation of stratification leading to hypoxia in Green Bay, Lake Michigan. Journal of Great Lakes Research.
- Huang A, Rao YR, Lu Y. 2010a. Evaluation of a 3-D hydrodynamic model and atmospheric forecast forcing using observations in Lake Ontario. Journal of Geophysical Research.
- Huang A, Rao YR, Lu Y, Zhao J. 2010b. Hydrodynamic modelling of Lake Ontario: an intercomparison of three models. Journal of Geophysical Research.
- Heginbottom JA, Dubreuil MA, Harker PA. 1995. Canada-Permafrost. In: National Atlas of Canada 5th Edition. Ottawa: National Atlas Information Service, Natural Resources Canada, Plate 2.1 MCR 4177.
- Karunaratne KC, Burn CR, Kokelj S. 2008. Near-surface permafrost conditions near Yellowknife, Northwest Territories, Canada. Ninth International Conference on Permafrost. At: F. Volume 1. June 2008.
- Ma T, Liu WH, Song C, Cheng W. 2009. Application of MIKE3 in prediction analysis of the water temperature of reservoir. Power Syst. Clean Energy 25:68-71

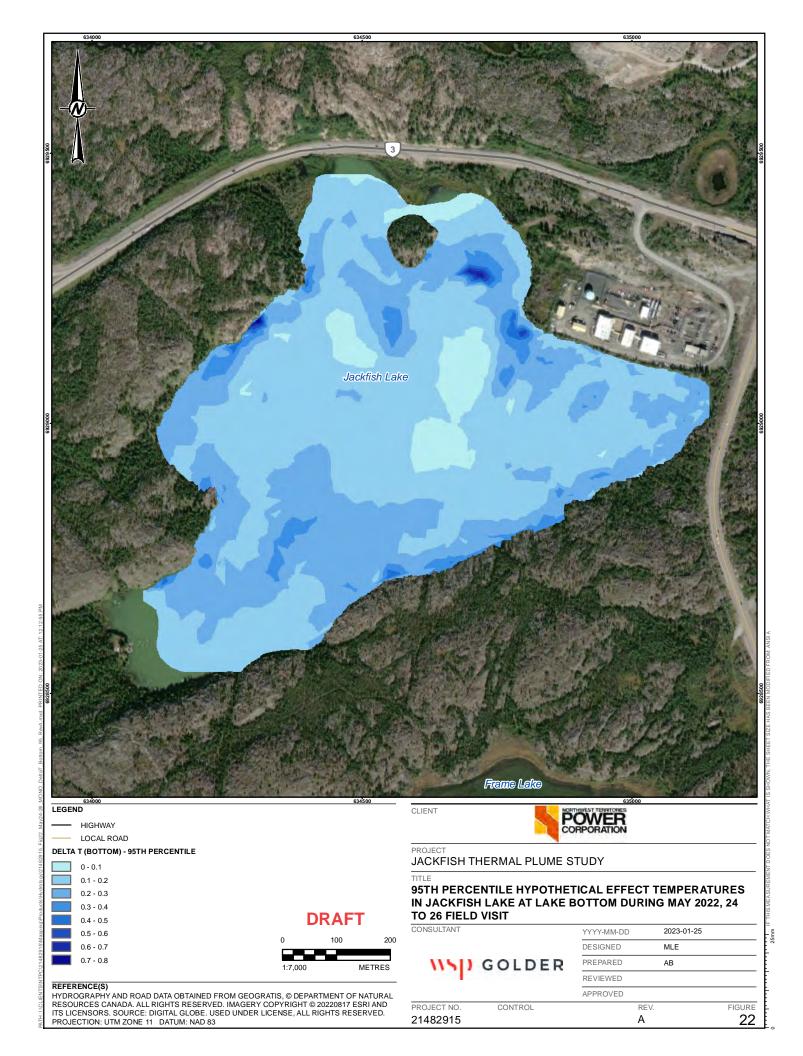


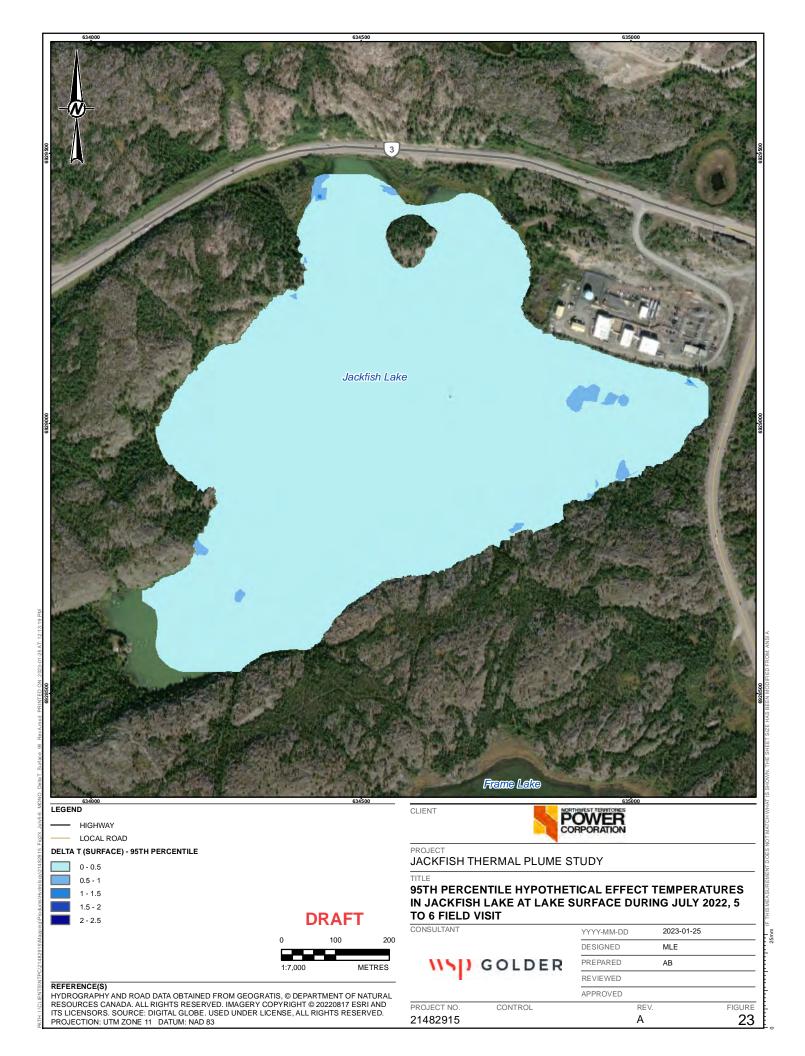

- Normalized Difference Water Index (NDWI). 2022. Normalized Difference Water Index. https://eos.com/make-an-analysis/ndwi/. Downloaded October 13, 2022.
- MVLWB. 2019. Letter of Approval of Water Licence MV2019L1-0001 Northwest Territories Power Corporation, 18 October 2019.
- SentinelHub. 2022. https://apps.sentinel-hub.com/eo-browser/?zoom=16&lat=62.46851&lng=-114.38676&themeId=DEFAULT-THEME&toTime=2022-11-22T23%3A22%3A27.126Z. Downloaded October 13, 2022.
- Sibson R. 1980. A Vector Identity for the Dirichlet Tessellation. Mathematical Proceedings of the Cambridge Philosophical Society. 87(1): 151-155. Wolfe SA. 1998. Living with frozen ground: A field guide to permafrost in Yellowknife, Northwest Territories. Geological Survey of Canada, Miscellaneous Report No. 64. 71pp

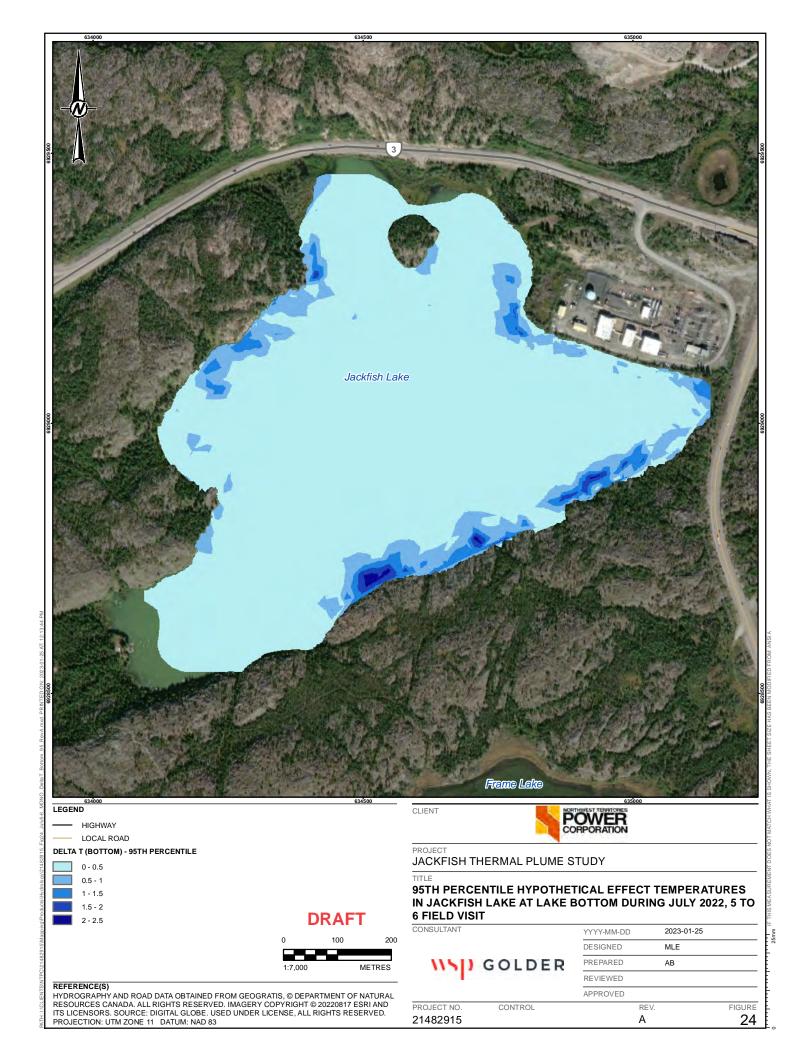



ATTACHMENT A









25mm

ATTACHMENT B

1.0 PURPOSE

As part of our technical excellence initiatives, Golder is committed to high standards in the planning, implementation, and management of quality assurance and quality control (QA/QC) activities for numerical modeling projects. This document provides guidance on how to achieve and meet the intent of Golder's quality requirements for the development of models and includes guidance on roles and responsibilities, version tracking, and critical retention of documentation.

This document must be read in conjunction with <u>Global Procedure 1: Project Delivery Manual</u>, which describes the approach to project delivery and key processes that are the fundamental component to achieve QA/QC objectives.

2.0 SCOPE

The described processes are intended to be applicable to all types of numerical models and applied to the various stages of model development to ensure appropriate representation of a physical system, characterized by agreed upon parameters, calibrated over an appropriate range (as necessary), and suitable for predictive scenarios in which it has been applied. The intention is that these processes will be applicable over a wide range of modeling scenarios, and therefore the specific implementation will be tailored to reflect the software being used, the scale and/or complexity of the model and other aspects of the assignment. The processes address the following key objectives:

- software used for modeling is within its intended purpose
- model parameters have been verified
- numerical model geometry/configuration adequately reflects the actual/expected conditions
- parameters have been correctly assigned within the model
- · version history of input/output files is maintained
- · model results have been independently checked

The expectation is that the objectives of this protocol will be met for all numerical modeling assignments, but the mechanisms used to achieve the objectives will be tailored accordingly.

3.0 RESPONSIBILITIES

The key personnel within the project team typically consist of the Project Manager, Project Director, Modeler, Peer Reviewer, and Approved Reviewer. For the purpose of this document, it is assumed that each of these roles will be held by distinct individuals; however, it is understood that more than one role may be held by the same individual (e.g., Approved Reviewer may be the Project Director).

A RASCI (Responsible, Accountable, Support, Consulted, Informed) Matrix is provided in **Table 1** as a guideline to bring clarity to the roles of the key personnel who are responsible, accountable, provide support, and, where appropriate, who needs to be consulted or informed for key process action items and tasks.

Responsible (R): the team member who does the work to complete the task. Every task needs a minimum of one responsible party, but the completion of the task can be assigned to other team members.

Numerical Modeling QA/QC Process

- **Accountable (A):** person who delegates the work and is the last one to review the task or deliverable before it is deemed complete.
- **Support (S):** person providing support during the task or process.
- **Consulted (C):** person consulted to provide input based on their domain expertise.
- Informed (I): team members who need to be informed but are not directly involved.

Table 1: RASCI Matrix

Section	QA/QC Responsibilities Matrix	Project Manager	Modeler	Peer Reviewer	Approved Reviewer	Project Director
4.0	Planning the Modeling Approach					
4.1	Selection of appropriate software and verification of suitability for the assignment	S	R		Α	S
4.2	Identify personnel roles and responsibilities, including communication of results to and from the client.	R	S	I	Ø	А
4.3	Document input requirements, input data, validation requirements, and frequency of checking. Note: This could be detailed in a proposal, workplan, schedule, or a management plan, etc	А	_	I	R	S
4.4	Define filing protocols for storing data (see Appendix A). Note: Reference the location of project records that are stored outside of SharePoint to comply with GAIMS and Complex Data Protocols.	R	S	I	S	А
5.0	Executing					
5.0	Create subfolder structure as per <i>Appendix A File and Folder</i> Structure or as defined.	S	R		Α	S
5.1	Store received and processed data. Maintain and update a <i>Data Received Log</i> or alternate format to document all data received.	R	Ø	S	S	Α
5.2	Maintain and update the <i>Model Tracking Spreadsheet</i> or another format to document checks/review.	S	R	S	Α	I
5.2.1	Conduct initial QA/QC checks on input parameters for model construction and on any revisions to properties during this process.	S	R	S	А	S

Section	QA/QC Responsibilities Matrix	Project Manager	Modeler	Peer Reviewer	Approved Reviewer	Project Director
5.2.1	Execute and monitor QA/QC activities for model construction (Table 3).	S	R	S	А	S
5.2.2	Execute and monitor QA/QC activities for model calibration (Table 4).	S	R	S	А	S
5.2.3	Execute and monitor QA/QC activities for predictive analyses (Table 5).	S	R	S	А	S
5.2.1- 5.2.3	Provide feedback on inconsistencies or errors discovered. Provides points of interrogation into model for anything providing unexpected results. Determine if comments have been addressed appropriately.	S	R	S	А	_
5.2.1- 5.2.3	Communicate and manage deliverables.	R	S		I	А
6.0	Project Closure					
6.0	Merge base folder with SharePoint folder (Transfer files from modeling server to SharePoint) at project closure.	А	R		S	I
6.0	Confirm all project delivery requirements have been met, including record filing and retention.	R	S	S	S	Α

Note: Approved Reviewers are senior staff as agreed by the Operating Company to review outgoing documents and deliverables on behalf of Golder. The Approved Reviewer must have expertise within the specific modeling processes to appropriately review the development of the model, the overall implementation within the software package, the form and values of input parameters, and the outputs, or they may work in conjunction with a Peer Reviewer having such experience.

4.0 PLANNING THE MODELING APPROACH

4.1 Selection of the Modeling Software

The Modeler and Approved Reviewer should identify the appropriate software to utilize to conduct numerical modeling based on the needs identified by the project team. The software selected may be commercially available software or Golder-developed software. The choice of software and intended application will govern if additional *software verification* is required prior to project use. Software verification is the process of confirming that a software package correctly calculates or implements its intended functionality. This is certainly applicable to

Numerical Modeling QA/QC Process

Golder-developed software, for example, as independent or third-party verification has not occurred. However, there are also many examples where commercially available software may require additional verification when the intended use may be in a different technical discipline (for example, applying geotechnical software in the nuclear industry requires additional verification).

In the majority of cases additional software verification is not required, so the intent of this requirement is primarily to highlight and schedule a deliberate discussion on the use of software for the particular application.

4.2 Assembling the Modeling Project Team

Resources and the right level of competence required to meet the quality requirements for project deliverables should be identified at the planning stage of a project. The Project Manager with support from the Project Director should identify project resources, including who will be involved in managing quality and when and what their specific duties will be. They should also determine the project communication plan and define authorization levels for direct communication of results to and from the client.

Along with the key personnel described in Section 3.0, additional roles may also be identified by the Project Manager and Project Director, which may or may not overlap with the key personnel. For example, a Professional of Record may take responsibility for the technical works, recommendations, and professional judgment registered in the jurisdiction. Where appropriate, the project team may include a QA/QC Manager who tracks compliance to this protocol. They may work with the Modeler, Project Manager, and Approved Reviewer to ensure that the QA/QC protocols documented here are adhered to throughout the execution of modeling work and that records are maintained in the project file.

4.3 QA/QC Criteria

A key responsibility of the Project Manager is communicating the QA/QC requirements to the project personnel and monitoring project performance against these project metrics to confirm that project personnel are conducting their work in accordance with the project scope, schedule, specifications, technical procedures, and QA/QC requirements. Key quality efforts that should be documented include:

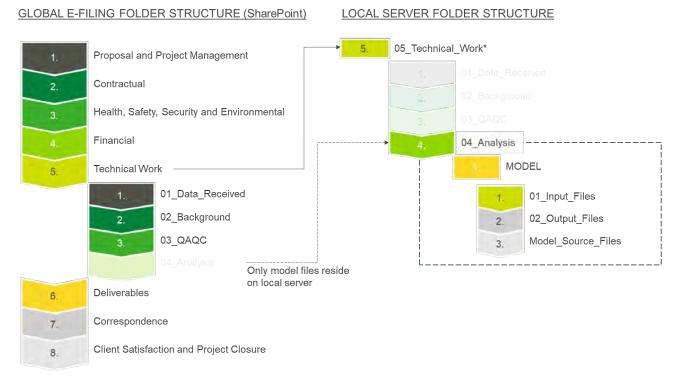
- identifying input requirements that must be met or used as the basis for the model development approach (acceptance criteria, contractual requirements, regulatory requirements, and any applicable internal/external procedures or guidelines)
- defining requirements associated with the verification of modeling software (as required) or spreadsheets to confirm they are performing as intended
- identifying the input data that will be received and the checking requirements (to confirm data is current, complete, accurate, suitable, and sufficient for the purposes for which it will be used). The <u>Data Received Log</u> should be utilized to track data received from the client
- agreeing upon the frequency and types of checks required during model development based on the scope of work, level of complexity, and input requirements; all staff completing tasks associated with QA/QC are to ensure that appropriate review records are maintained and uploaded to SharePoint when possible
- the Model Tracking Spreadsheet should be utilized to document review efforts with supporting detailed QA/QC Documentation targeted for the different stages of review. Additional Discipline-Specific QA/QC Documentation are available for the purposes of reviewing input and output model parameters specific to the type of model constructed. All completed documents should be stored in the QA/QC folder on SharePoint

Numerical Modeling QA/QC Process

if applicable, planning for the use of version control system (VCS) software to track revision histories of files more explicitly. If a version control system is not used, at a minimum, the Modeler and Approved Reviewer should discuss the version history process. Each model run or simulation should be saved with a 'unique case name' and referenced in the log (i.e., Simulation 001, Simulation 002, etc). See *Appendix B* for more details.

As part of project kick-off, the quality requirements should be documented and reviewed by all team members prior to commencing work.

4.4 Modeling Document Management


A consistent file and folder structure for projects involving modeling components, adds transparency to the modeling processes, facilitates more comprehensive reviews, and permits a smooth transition of projects between modelers. Electronic filing of project documents must follow the high-level folder structure defined in the Global E-filing Structure for Project Files (GP1 Appendix A).

All modeling work will be contained in the <code>05_Technical_Work</code> folder, either on SharePoint or the local server. SharePoint is preferred for smaller modeling projects but not always possible when working with large amounts of data or file types. The naming convention (<code>05_Technical_Work</code>) is derived from the Global E-filing structure above but customized given the limitations of working with large data in the SharePoint environment (Figure 1). The 'underscores' are not required, but certain software interpret spaces differently so were added for (modeling) convenience.

For the purposes of this protocol, it is assumed that a local server will be used. The base folder path of all modeling components on the local server should mirror the SharePoint structure preferably in the Complex Data folder. Subfolders have been customized for the local server to reflect the typical modeling workflow and are described in more detail in *Appendix A: File and Folder Structure*. When a local server is required, the storage approach attempts to separate more standard project related files (SharePoint compatible) from application specific modeling files (local server). See Figure 1 for a high-level schematic.

The <code>05_Technical_Work</code> folder on SharePoint and in the local server are intended to be complementary—there should be no overlap, with the exception of data received, as described in Section 5.1. A reference to the local server location must be added to SharePoint to identify where the modeling files are stored.

^{*} Location of local server storage to follow guidelines developed for local file storage on Complex Data drive:

 $\verb|\colored| Name \end{| Site_Name} Project Number \& Description \end{| 05_Technical_Work \end{| Work \end{| Name \end{| Name$

Figure 1: Schematic view of Global E-Filing structure for SharePoint and derived Technical Work folder on Local Server (if required)

5.0 EXECUTING

The Modeler, in discussion with the Approved Reviewer, will begin the execution of the project by developing the filing structure suitable to the needs of the scope. Throughout the execution stage of modeling, different data file terminology will be mentioned. To summarize, all data related to modeling can be clearly classified as "model input," "model output," or "model construction" project files as outlined in Table 2.

Table 2: Classification of Modeling Files by Type

File Type	Description
Model input files	Files external to the numerical modeling tool, imported or processed for inclusion in the model. Examples include tables from Excel (xlsx), CAD files (dxf, dwg), other documents (doc, pdf), 3D models received from the client, separate work product from internal Golder personnel working on separate scopes of work, etc.
Model output files	Any data that has been produced by executing a numerical model or developed based upon model results in support of project delivery. Output files could be images (png, jpg), PowerPoint files (pptx), native software save files (dac, sav), tables, etc.

File Type	Description
Model construction project files	Model files and scripts/code used to construct the models. Examples include ASCII-based model construction files (dat), FISH files (fis), Python scripts (py), and project files (prj) or binary save files such as FEFLOW (fem) files, RS2/RS3/Plaxis model setup files, etc.

5.1 Receiving and Processing Data

Proper data storage and processing protocols reduce the risk of error in complex models and provide a history of model development. The intent is to achieve clarity regarding where data received from the client related to this project resides, and what data is original and what data was processed for use in the model.

It should be noted that these protocols sacrifice storage space for the purpose of transparency in model development. It is acknowledged that files are duplicated in the data received folders of SharePoint and the local server and may again be duplicated as we process the files for inclusion in the model. This duplication is necessary to achieve the above objective.

5.1.1 Receiving Data

When receiving information from the client, from other external sources, or internally from Golder colleagues working on the project, the data should be collected and stored in a consistent manner. A key objective of this process is to ensure the data received is not altered and is protected prior to processing. When any external data is received, the following process is recommended:

- 1) Create a new folder in the 05_Technical_Work\01_Data_Received [on SharePoint]. Name the folder in the format YYYYMMDD_Data_Description. The description is meant to help identify the data. The date, ordered by year, month, and day, sorts documents in a chronological order received for easy viewing on computer file systems and SharePoint.
- 2) Save the data received to this folder. Ensure the original file is named as received. Do not change the name of the file.
- 3) Create a record in the <u>Data Received Log</u>, which resides in the Data Received folder on SharePoint. All information related to receiving data should be tracked, including:
 - a) date the data was received
 - b) who received the data, and the person from whom it was received
 - c) how the data was transmitted
 - d) brief description of the data received
- 4) Save any email(s) related to the data transmission in this folder. When data is not received via email, for easy reference, a Readme.txt (Ascii text file) can be added into the folder, with a description. For example, "New pit shells for LOM design options received by John Doe (Golder) from Jane Doe (Mining Company) on July 1, 2018, via email."

Although the data received now resides on SharePoint, the model may reside on a local server (as described in Section 4.3 Modeling Document Management). Therefore, if this data will be used in the model in some way, the

Numerical Modeling QA/QC Process

data and all associated files should be copied to the local server by creating a Data Received folder in the <code>01_Input_Files</code> folder (as they are specific to the model development):

05_Technical_Work\04_Analysis\MODEL\01_Input_Files\01_Data_Received\YYYYMMDD_Data_Description

The 'MODEL' folder is a placeholder to be provided by a more descriptive name in case multiple modeling scopes exist within the project. At the end of the project, this folder should be a subset of the SharePoint version of the <code>05_Technical_Work\01_Data_Received</code> folder if all data receiving processes were adhered to (since not all data received may be related to the numerical model).

5.1.2 Processing Data

During the course of the project, the data received may need to be processed prior to use in analysis or design. If it does require processing, **DO NOT** edit the data in the <code>01_Data_Received</code> folder on SharePoint. Instead, mirror this directory in the following folder on the local server (or SharePoint if there is no requirement for a local server):

 $05_Technical_Work\\ \\ 04_Analysis\\ \\ MODEL\\ \\ 01_Input_Files\\ \\ \textbf{02_Data_Processed}\\ \\ YYYYMMDD_Data_Description$

Then process the data accordingly. It is also good practice to include a Readme.txt file to describe why the processing was necessary and what specifically was performed in the processing. Any files used to process the data (for example, Python scripts) should also be included. This provides a transparent record of data receipt and processing (i.e., data was received and stored on SharePoint, copied to the modeling project for use, and potentially edited prior to inclusion).

5.2 Model Development Processes

The following sections provide guidance on the three general stages in the development of a model that should undergo a documented QA/QC check: construction, calibration, and predictive analyses. It is understood that these practices will need to be adapted to the size, complexity, and nature of the modeling work, and QA/QC activities are therefore discussed in a generic manner with this need for flexibility in mind.

The <u>Model Tracking Spreadsheet</u> should be stored on SharePoint in 05_Technical_Work\03_QAQC and should be used throughout all stages of model development to document QA/QC steps detailed in Tables 3 to 5. The following information related to model development data should be tracked either in this spreadsheet or via another method (i.e., within readme text) including:

- a) project number
- b) phase number of project (typically modeling projects have independent phases for construction, calibration, predictive, sensitivity analyses)
- c) input parameters or change in input parameters
- d) purpose or intent of change
- e) who conducted the check/review

5.2.1 Model Construction

Model construction refers to the development of the mesh or geometry or initial files that will be used to assign of characteristics/parameters to the model. Table 3 shows the key steps or tasks involved in model construction stage.

Table 3: Quality Assurance / Quality Control Milestones for Model Construction

Step or Task	What Should be Checked	Checking Frequency
Development of conceptual model and/or geometry	A conceptual or wireframe model presents a clear understanding of the objectives of the project. The Modeler (with Peer Reviewer), in discussion with the Approved Reviewer, should document the conceptual model prior to model construction.	 At commencement of project. Following any significant change in conceptual understanding.
Developing input parameters	■ Input parameters are reviewed and accepted by the Approved Reviewer and submitted to the Modeler for implementation. Note that parameters are often developed during the characterization phase or prior to Golder's involvement with the project. However, it is necessary that the confirmation of proper review and documentation be achieved here.	 On completion of the initial Model Tracking Spreadsheet (prior to implementation into the model) Following all subsequent revisions to the properties
Implementation of input parameters	 Once the input parameters are entered into the model (or updated in the case of a revision), the Modeler will export the parameters from each unique unit within the model and conduct a self-check to ensure they match the source data. The exported parameters will then be compared to the 	 Each time parameters are exported and prior to each model run
	input parameters by a Peer Reviewer to check that the correct properties have been assigned.	
	Where possible, the Modeler will also provide figures (i.e., cut sections through the model) as a secondary visual check.	
	Once the model has run, the Modeler will export images of key results, which would typically be presented in a PowerPoint file to review with the Approved Reviewer. These documents should be stored in the SharePoint folder 05_Technical_Work\03_QAQC.	
	Review of geometry and/or meshes (i.e., quality) developed during implementation, if applicable, will be contained in the QA/QC documentation.	

Step or Task	What Should be Checked	Checking Frequency
	This documentation should be linked back to the conceptual model outlined earlier.	
Full model review	 The full code and model files for the base case model should be checked by a Peer Reviewer followed by the Approver Reviewer. Where applicable, user-specified scripts or data processing steps require validation and formal approval by the Approved Reviewer. Note: Previous scripts that have gone through comprehensive review and have not been changed for the current application do not need to go through this process. 	 Once, when the base case model is complete Code and/or scripts should be reviewed when edits have been performed.
proceeding to sub	QA/QC documentation of all protocols outlined in Table 3 must mission to client (if applicable) for approval or initiation of mode vent that any of the above items are updated, this Hold Point A	el calibration or predictive
Approval	Once the model has been constructed and the above steps have been undertaken, a summary PowerPoint will be sent to the client including all inputs assumed and notes documenting the reference files used, their date, and their approval from the Approved Reviewer and client as applicable. Note: Deliverables must be approved for issue. Ensure all correspondence to/from the client are stored on SharePoint.	Prior to commencing model calibration

5.2.2 Model Calibration

Model calibration typically refers to the process of reviewing/adjusting/refining of parameters as necessary such the model reasonably matches measured current conditions, and hence achieve a credible basis for predicting future scenarios. As model calibration is an iterative process, version history is of the utmost importance, as are continuous checks throughout the various calibration runs.

The <u>Model Tracking Spreadsheet</u> ensures accurate documentation of each calibration case that is run, and any changes made to achieve calibration. It includes columns for the Modeler to document the key attributes of the run (or case), the status of the run, the reviewer signoff, and notes on the results/conclusions of each case. In conjunction with this tracking spreadsheet, Modelers will implement a version history workflow, as seen appropriate by the Project Manager. In some instances, a version control system (see *Appendix B*) may be utilized. The objective of a comprehensive version history is to provide transparency into the modeling process and allow more experienced engineers to follow (and guide) the decision process of the individual Modeler. In practice, this could

Numerical Modeling QA/QC Process

be as simple as having the Modeler save each unique model case in a predefined folder structure at each stage of model development/calibration.

Table 4 shows the key steps or tasks of the model calibration stage. Every calibration case should be given its own unique case name as discussed earlier, with the model files stored in the Model Source Files directory (see Figure 1) and the corresponding output stored in the Output Files folder structure (Figure 1). Model file folders will be named in a sequential order and with a unique case name to provide transparency in relating each model to each set of outputs (suggested naming: 001_Simulation1, 002_Simulation2, etc.).

Table 4: Quality Assurance / Quality Control Milestones for Model Calibration

Step or Task	What Should be Checked	Checking Frequency
Each calibration run (case)	 The Peer Reviewer will confirm that the parameters that have been revised for a particular run have been implemented properly in the model. The Approved Reviewer will review the results of each calibration run with the Modeler. This check will be looking at the results and behavior to confirm the output of the models are consistent with practical or theoretical expectations. 	 Prior to commencing each run Following completion of each run
Calibration achieved	 A detailed review by the Approved Reviewer of the code, input and output parameters, and the results/plots will be undertaken on the final run, which achieves calibration. All results presented for review will be cross-referenced to the model output files and a redundant check will be performed to demonstrate that the presented results can be produced from the referenced model result. 	 On reaching calibration and prior to presenting the results to the client
	 QA/QC and proper documentation of all protocols outlined in ng to submission to client and initiating predictive modeling. 	Table 4 must be fully executed
Approval	Once the model has been calibrated, the summary results will typically be presented in a meeting for acceptance and approval from the Approved Reviewer and client as applicable. Note: Wherever practicable, all advice provided to a client, whether in meetings, telephone conversations etc., must be documented and appropriately reviewed. Ensure all correspondence to/from the client is stored on SharePoint.	 Prior to commencing predictive analyses and sensitivity runs

5.2.3 Predictive Analyses

Once the model has been accepted as calibrated, the base case models will be run for the chosen predictive scenarios. Table 5 summarizes the key steps or tasks for the predictive analyses that will be documented in the Model Tracking Spreadsheet.

Every predictive case should be given its own unique case name with results stored within a folder in the Output Files (Figure 1) folder structure, named in a sequential order. Each folder should contain the relevant results for an associated model file, as documented in the *Model Tracking Spreadsheet* and stored in the Model Source Files (Figure 1) directory.

Table 5: Quality Assurance / Quality Control Milestones for Predictive Analyses

Step or Task	What Should be Checked	Checking Frequency
Predictive case	A review will be undertaken by a Peer Reviewer followed by the Approved Reviewer to confirm that the correct configuration has been included in the model for the predictive case.	Prior to the run commencing
Predictive case results	The results of the predictive case will be reviewed by the Approved Reviewer with the Modeler. Note: Formal PowerPoint presentations are not required for results. The Approved Reviewer will validate incremental changes between individual predictive case models and deem if results may be considered the final results. All individual cases will however be documented in the Model Tracking Spreadsheet.	 On completion of each predictive case
Final predictive case	A detailed review by the Approved Reviewer of the input and output parameters will be undertaken on each predictive case.	 On completion of the predictive case, and prior to providing the results to the client
Approval	Once the final predictive analyses have been completed, the results will be presented in a meeting for acceptance and approval by the Approved Reviewer and client as applicable. Note: Wherever practicable, all advice provided to a client, whether in meetings, telephone conversations etc. must be documented and appropriately reviewed. Ensure all correspondence to/from the client are stored on SharePoint.	 On completion of predictive analyses

In addition to the high-level activities documented above, the following QA/QC guidelines should also be followed:

Numerical Modeling QA/QC Process

- All figures generated from the modeling software will be set up such that they are repeatable and include unique case identifier (if possible); all figures and exports should be stored in the Output Files folder (Figure 1) within a subfolder which represents the case name.
- All presentations will include the model file name (or unique case name identifier) on each PowerPoint slide which presents results (or upfront in a summary slide).
- The QA/QC PowerPoint for each calibration and/or predictive case, must be stored on SharePoint in the QA/QC folder to be visible to the entire project team (even if duplicated from the base folder).
- All code that is regularly used or may be used at later date will be checked by an Approved Reviewer approved for use and stored in a version control system (see Appendix B). This provides transparency and consistency in using code or scripts on projects and is considered an easy addition for people involved in code development.

6.0 PROJECT CLOSURE

At the end of each project, the contents of the folder on the local server (if utilized) will be merged with the SharePoint folder and archived to the appropriate location. As a rule of thumb, all files related to model construction and simulation will be stored in this base folder on the local server and all other files (presentations, reports, QA/QC documents, background information) will be stored on SharePoint. In the typical workflow of a numerical modeling project, the modeling input/output/construction files will reside on the local server and all other files will reside on SharePoint.

The Project Manager is accountable for confirming Project Delivery requirements have been met including record filing and retention. For modeling projects, which are often incompatible with SharePoint storage, it is important to validate that all modeling files (with supporting files) are centrally located following the SharePoint / local server structure outlined in this protocol. Documentation that is required to be stored is referenced in the Global Project Delivery Manual Section 6.0 and in the North America Electronically Stored Information Guidance.

7.0 REFERENCE DOCUMENTS

- Global Procedure 1: Project Delivery Manual
- Global E-filing Structure for Project Files (GP1 Appendix A)
- North America Electronically Stored Information Guidance.
- Canada: Final Word on Signing (Policy on Review and Signing of Documents)
- Canada: Project Deliverable Approved Signatory List
- US: PMiG Deliverables and Review Requirements Section 7.0 Deliverables and Review Requirements
- BIS Guidance for Working with Complex Files (CAD, GIS, Models, etc.)

DOCUMENT HISTORY

This document will be reviewed and updated annually. Revision to the document will be tracked in the Document History and Approval table below.

Table 6: Document History and Approval Record

Version	Section	Description	Date	Approval	
RL1		First Edition	January 25, 2021	Richard Beddoes	

APPENDIX A: FILE AND FOLDER STRUCTURE

A.1 Base Folder Structure

All modeling work will be contained in <code>05_Technical_Work</code>, either on SharePoint or the local server as discussed in Section 4.4. The <code>05_Technical_Work</code> folders in both locations are intended to be complementary—there should be no overlap (with the exception of data received). The <code>05_Technical_Work</code> content is split between SharePoint and the server base folder location as follows:

A.1.1 Located on SharePoint

- 05_Technical_Work\01_Data_Received
 - This folder contains an unedited version of all data received from the client of external or internal source for model construction, calibration, or predictive purposes. The structure of this folder is discussed in Section 5.1.
- 05_Technical_Work\02_Background
 - This folder contains any background information (e.g., previous Golder reports, documents providing background information on the site or project).
- 05_Technical_Work\03_QAQC
 - This folder contains QA/QC documents for the modeling and review as developed. This may include model reviews conducted by other engineers, automated review documents generated by other tools, or email correspondence documenting reviews. The Model Tracking Spreadsheet, which documents the case history and/or model scenario evolution, should also be located in this folder. Model or scenario tracking is considered a critical QA/QC record in this history. This spreadsheet should reference the unique case identifier discussed in Section 5.2.

A.1.2 Located on the Local Server

- 05_Technical_Work\04_Analysis\MODEL\
 - This folder contains all model files, including input files, scripts, output files, processed results, etc.
 - This folder should be a standalone working copy of any models and as such may contain duplicate data. For example, files received from the client and stored in the 05_Technical_Work\01_Data_Received folder on SharePoint will be duplicated within 04_Analysis\MODEL—it should work as a standalone independent folder.
 - "Model" in this path is a placeholder for a specific name which can contain a brief description of the model (e.g., 04_Analysis\1400458040_RTKC_SW3DModel). In the case multiple modeling tools are used, create unique Model folders for each scope. Further details of 05_Technical_Work\04_Analysis\Model are provided in Section A.2.

A.2 Model Folder Structure

The model folder (04_Analysis\Model) structure presented in this section was developed to be applicable to any modeling project. The structure is intentionally kept simple so that it can be scaled to many types of projects involving modeling.

The general structure for the modeling folder structure is as follows:

- 04_Analysis\MODEL\01_Input_Files
 - This folder contains all received and processed input files required to construct and run the numerical model. These could be geometry files, mechanical parameters, testing data, Excel workbooks, etc.
 - Both original and processed files should be contained in this folder, consistent with data receipt and processing requirements outlined in Section 5.1. All data required for input into the numerical model should be contained in this folder (even if it is duplicated from another location).
 - Unedited input files should be included in 04_Analysis\MODEL\01_Input_Files\01_Data_Received\.
 - Processed input files should be included in 04_Analysis\MODEL\01_Input_Files\02_Data_Processed\.
 - Do not add shortcuts or hyperlinks to other locations as these become dead links when directories change or projects are archived.
 - The files contained in this folder should be generic and not specific to any one calibration or predictive unique case. If certain files are only used for specific model cases, additional documentation should be provided.
- 04 Analysis\MODEL\02 Output Files
 - This folder contains all output files and interpretation of model results. When multiple model simulations/sensitivities/cases exist, create subfolders to store case-specific data. For many products, this structure can be automatically created for a specific case using a scripting language such as Python.
 - Every set of analyses should have a unique case number/identifier, which will be referenced when tracking the work completed in the current scope. Unique case names should be created for complete simulations, partial simulations, or investigative analyses in support of client requests. Consistent case number nomenclature should be determined at the onset of the project.
 - In practice, it is helpful to add an integer identifier to the beginning of the case name, similar to how documents are issued to clients. For example, case 001_Model_ConstructionA and case 002_Model_ConstructionB are potential names (though more descriptive text is desirable).
 - During the life of the model, the case names can be reflected/tracked in a version control system (VCS) so that the work and output folders are linked to specific code instances. If a VCS is not employed, the Modeler should be diligent to keep results from each case in a specific reference directory the Model Tracking Spreadsheet is even more important in the case a VCS is not used, so that the details and version history of each model is captured.
 - The specific structure below the 02_Output_Files directory (described in Appendix B) is purpose or application specific. File types for your specific applications should be classified by category. An example

Numerical Modeling QA/QC Process

of such classification is model log files (detailing construction), model binary save files, and model images (post-processed to visualize results).

- 04_Analysis\MODEL\Model_Source_Files
 - This folder contains the "source files" for the analysis, i.e., all **model files and scripts/code that construct models**. For example, for Itasca products, all the ASCII-based model construction files (.dat files), FISH files (.fis), Python scripts (.py), and project files (.prj) should be located within this directory. These could also be source FEFLOW (.fem) files or MODFLOW (or Visual Modflow/GW Vistas) source files.
 - Binary graphical user interface (GUI) based model construction files will also be saved here and, if applicable, should be saved in subfolders that follow the unique case name methodology.

APPENDIX B: VERSION CONTROL SYSTEMS

Numerical modeling projects are often complex and involve many iterations, alternative approaches, or sensitivity investigations. As such, models are continuously updated, leading to many revisions that are unforeseen at the commencement of the project. The most difficult task of the modeling project documentation is implementing transparent means of tracking of these dynamic processes. To address this challenge, strict adherence to a detailed folder structure with the version history referenced in the *Model Tracking Spreadsheet* is recommended.

Fortunately, there are additional tools, developed in the software development industry, focused on capturing version history when coding and/or scripting is used. A Version Control System (VCS) or Source Control Manager (SCM) is software used to track revision histories of files and permit concurrent work. SharePoint acts as an SCM or VCS in the way it tracks Microsoft Word files to permit collaboration. For coding and scripting, an example would be Git, which is a widely used SCM/VCS. Git is a free and open source example, originating in the software development industry to coordinate work among multiple contributing programmers, but it has immediate application in our numerical modeling projects. If the project involves custom code or scripting, the use of a VCS is **highly recommended**—if not integrated, tracking of revision history is not possible. The revision history is tracked using the VCS, and individual cases can be differentiated using branches (VCS terminology).

Whenever model development involves custom code or scripting, the 04_Analysis\Model\Source folder should be tracked using a VCS such as Git. Git can be used to track any ASCII-based text files, which are commonly used to develop custom code or scripts for our models. Git Large File Storage is available to track binary files, but it has not been incorporated into the QA/QC workflow to date. This is intentional. The goal is to track ASCII-based text or coding related files that are used to construct the model, not the large client-specific (confidential) input files or large save files from the models. Note that under this protocol, it is only possible to use Git when "coding" or "scripting" files are used to generate/run models (ASCII-based text files are used). When models are constructed completely in the GUI of the software product, VCSs are not as effective, but the unique case name/identifier protocol is still recommended in developing and processing results.

B.1 Version Control System Specific Instructions

When using a VCS such as Git, all model construction files should reside in the 04_Analysis\Model\Source folder and be tracked using a VCS. The 01_Input_Files and 02_Output_Files folders can be added to the ".gitignore" file so that their contents are not tracked in the Git repository (confidential client-specific data and large output files should not be included in the Git repository). The advantage of a VCS is that it tracks the full history of the numerical model evolution on a case by case (branch) basis. As a result, the files to reproduce model output for a specific case are available and tracked.

Files within the source folder will use specific files in the 01_Input_Files folder during model construction, calibration, or predictive analysis. Using a VCS, edits to model scripts or construction files are tracked for different cases. Therefore, if code or input files change from one case to another, there is a full history of the model changes. Coupled with the clear history of data received, this provides us with a complete history of the model development. Additional details on Git is being provided, but existing user groups withing Golder (Python User Group, R User Group, Rock Mechanics Modeling Group) are familiar with their use and can act as a resource to other practitioners.

B.2 Detailed Folder Structure Specific Instructions

In the event a VCS cannot be used, adhere to a subfolder structure that uses a unique case name/identifier for each case. Files within the Source folder should be separate versions of models, with a new version saved when

Numerical Modeling QA/QC Process

the model deviates (for the purpose of model construction, calibration, or predictive simulation). **Note:** We as engineers or scientists are not traditionally trained to work in this way. It is easy to change one specific parameter, save the file and rerun the analyses. As we try to track the numerical modeling workflow, we must be diligent in our file processing, and this will likely be the most difficult practice to modify. Coupled with the clear history of data received, and *Model Tracking Spreadsheet*, this provides us with a complete history of the model development.

28 February 2023 21482915

APPENDIX B

Quality Assurance and Quality Control Procedures and Results

Table of Contents

1.0	INTRO	DDUCTION	.1
2.0	WATE	R LEVEL AND FLOW	.1
	2.1	Procedures	.1
	2.1.1	Field Quality Assurance and Quality Control Procedures	.1
	2.1.2	Office Quality Assurance and Quality Control Procedures	.2
	2.1.3	Data Management	.2
	2.2	Results and Discussion	.2
	2.3	Conclusions	.2
3.0	WATE	R TEMPERATURE	.3
	3.1	Procedures	.3
	3.1.1	Field Quality Assurance and Quality Control Procedures	.3
	3.1.2	Office Quality Assurance and Quality Control Procedures	.3
	3.1.3	Data Management	.3
	3.2	Results and Discussion	.4
	3.3	Conclusions	.5
4.0	WATE	R QUALITY	.6
	4.1	General QA/QC Procedures	.6
	4.1.1	Fieldwork	.6
	4.1.2	Laboratory Analyses	.7
	4.1.3	Data Management, Validation, and Analyses	.7
	4.2	Data QA/QC Procedures	.8
	4.2.1	In Situ Field Measurements	.8
	4.2.2	Required Parameters	.9
	4.2.3	Analytical Methods	.9
	4.2.4	Detection Limits	.9
	4.2.5	Units	.9
	4.2.6	Hold Times	.9

i

	4.2.7	Laboratory Data Qualifiers	10
	4.2.8	Laboratory Internal Quality Control Samples	10
	4.2.9	Total versus Dissolved Concentrations	10
	4.2.10	Duplicate Samples	10
	4.2.11	Blank Samples	11
	4.2.12	Review of Individual Data Points	11
	4.3	QA/QC Results and Discussion	12
	4.3.1	In Situ Field Measurements	12
	4.3.2	Required Parameters	12
	4.3.3	Analytical Methods	12
	4.3.4	Detection Limits	13
	4.3.5	Units	17
	4.3.6	Hold Times	17
	4.3.7	Laboratory Data Qualifiers	17
	4.3.8	Laboratory Internal Quality Control Samples	17
	4.3.9	Total versus Dissolved Concentrations	18
	4.3.10	Duplicate Samples	19
	4.3.11	Blank Samples	23
	4.3.12	Review of Individual Data Points	27
	4.4	Conclusions	27
5.0	FISH AI	ND FISH HABITAT	29
	5.1 F	Procedures	29
	5.1.1	Field Quality Assurance and Quality Control Procedures	29
	5.1.2	Office Quality Assurance and Quality Control Procedures	29
	5.1.3	Data Management	29
	5.2 F	Results and Discussion	29
	5.3	Conclusions	29
6.0	RFFFR	FNCES	30

_	•	_		_	_
	А	в	L	⊢ .	S

TABLES	
Table 4-1: Detection Limits for Water Quality Samples, September 2021 to August 2022	14
Table 4-2: Quality Control Duplicate Sample Results, September 2021 to August 2022	20
Table 4-3: Quality Control Blank Sample Results, September 2021 to August 2022	24
FIGURES	
Figure 3-1: Results of the Duplicate Temperature Loggers Deploy at the Northwest Bay South Station	5

1.0 INTRODUCTION

Quality assurance (QA) refers to plans or programs encompassing internal and external management and technical practices designed to ensure that data of known quality are collected, and that such collections match the intended use of those data (EC 2012). Quality control (QC) is an internal aspect of quality assurance. It includes the techniques used to measure and assess data quality and the remedial actions to be taken when QC assessment criteria are not met. The QA/QC procedures ensure that field sampling, laboratory analyses, and report preparation produce technically sound and scientifically defensible results.

The QA/QC procedures for the Thermal Plume Delineation Study Report (Thermal Plume Study Report) applied to the following program components:

- field program (e.g., staff training, procedures and responsibilities, technical procedures, and specific work instructions to field crews)
- sample collection (e.g., equipment calibration and cleaning; avoidance of cross contamination; duplicate samples; field, travel, and equipment blanks)
- documentation (e.g., field logs, labelling, chain of custody)
- sample handling and shipping
- sample analysis (e.g., assessment of data quality and decision rules for acceptance/rejection, data entry, manipulations, and analyses)
- data management (e.g., the use of EQuIS for water quality data management)
- model validation, simulation, processing, and reporting (Appendix A, Attachment B)
- report preparation

This appendix provides the detailed QA/QC assessment conducted for the components of the thermal plume study, except for the thermal modelling aspects of the study including model validation, simulation, processing, and reporting, which can be found in Appendix A, Attachment B. The QA/QC results are summarized in Section 3.0 of the Thermal Plume Study Report.

2.0 WATER LEVEL AND FLOW

2.1 Procedures

2.1.1 Field Quality Assurance and Quality Control Procedures

Field Methods

Water surface elevation measurements were taken using a rod and level during each of the water quality field programs and the data were used to correct and validate Levelogger data. Measurements of water surface elevation were taken during each site visit with two independent setups of a survey optical level until two or more results were within 5 mm, to show repeatability of survey results and to reduce rod reading errors.

Flow measurements were performed using handheld velocity meters in a manner that was consistent with technical procedures and practices used by Water Survey of Canada (Terzi et al. 1994). Field measurements that were input into equipment for storage and calculation were also recorded on field datasheets as a redundancy measure.

The water pressure and atmospheric pressure transducers and data loggers (Solinst Leveloggers and Barologger) were tested for proper function in a controlled environment prior to deployment. During the study, a redundant Levelogger was deployed for the whole duration to mitigate the potential loss of data, particularly during the period of ice formation and ice breakup. A redundant Barologger was deployed during the late winter and early spring because data quality issues arise when data loggers are exposed to cold air temperatures (e.g., -40°C). A project-standard time zone for continuous field instrumentation of Mountain Daylight Time (the time zone during open-water season and the majority of the field programs) was adopted for consistency of data.

Equipment

Equipment was calibrated, serviced, and/or tested as part of routine QA/QC for field operations.

2.1.2 Office Quality Assurance and Quality Control Procedures

Any calculations completed by field equipment, or the field crew were independently repeated and checked. Completed data sheets and data files from the equipment were exported and filed in the project folder.

2.1.3 Data Management

Data were checked on an ongoing basis for accuracy and consistency with expected values. Relevant data were plotted to visually confirm trends and agreement. Any inconsistent or unexpected results were investigated further, using adaptive management as applicable to reduce the likelihood of reoccurrence.

2.2 Results and Discussion

Measurements of water surface elevation by level survey and measurement of inflows and outflows using handheld velocity meters were collected without noted issues. Due to intermittent, but frequent erroneous readings (i.e., unrealistic spikes and null values of pressure and temperature) from the Barologger due to cold temperatures, water surface elevation timeseries data were not available from 6 December 2021 to 22 March 2022. Data became available when the redundant Barologger was deployed during the late winter sampling program. This gap in the data was during the winter when there was no outflow expected due to frozen conditions.

2.3 Conclusions

The QA/QC assessment results indicated that:

- The direct measurements of lake water level, lake inflows, and lake outflow are acceptable.
- A water level data gap exists during the winter period, which has no impact to the study as it was during a period when there was no lake outflow.

Overall, the water level and flow data collected during the thermal plume study are considered to be of acceptable quality and adequate to address the objectives of the study.

3.0 WATER TEMPERATURE

3.1 Procedures

3.1.1 Field Quality Assurance and Quality Control Procedures

Field Methods

As part of routine practices for field operations, the following QA procedures were completed on the temperature loggers:

- One duplicate HOBO Pendant MX2204 temperature logger was installed at mid-depth at a single in-lake station to verify repeatability of logged values.
- Serial numbers of temperature loggers and their deployment stations and locations were recorded and updated as necessary to avoid data handling errors.
- Spare temperature loggers were available during sampling programs to replace malfunctioning or lost data loggers.
- Before and after each data download, the location of the instrumentation assembly was recorded.
- An additional field program was included after freeze-up (December 2021), and field planning of the spring freshet sampling program after ice breakup (May 2022) was timed to assess and correct the locations of temperature monitoring equipment to allow prompt correction so continuous data were collected at the intended locations.

The data downloaded from the temperature loggers were checked for validity and completion and for data logger timekeeping agreement. The recorded temperatures were compared to expected ranges and checked to ensure that the logging period was complete. A project-standard time zone for continuous field instrumentation of Mountain Daylight Time (i.e., the time zone during open-water season and the majority of field programs) was adopted for consistency of data.

Equipment

Temperature data loggers and other materials used for deployment for the Study were new to minimize likelihood of failure. Temperature data loggers were specifically selected without a removable portion to avoid water ingress.

3.1.2 Office Quality Assurance and Quality Control Procedures

Datasheets were independently checked for completeness. Downloaded datafiles from individual dataloggers were filed in the project folder and kept as their native file format for posterity, and the uploaded datafiles were checked for completeness.

3.1.3 Data Management

Temperature data were compiled and screened using information recorded on field datasheets, such as location and position by serial number and the "found" and redeployment coordinates of loggers were used to identify data to exclude data or identify data requiring further qualification.

3.2 Results and Discussion

The data collected from the duplicate QC temperature logger are shown in Figure 3-1. During the full thermal study period, excluding times when the loggers were removed from water for download, the average of absolute temperature difference was 0.04°C. The largest instantaneous difference of temperature was 4.2°C was measured on 24 June 2022. If a rolling average of 30 minute timesteps is applied to mitigate the influence of varying timekeeping, the largest measured difference between duplicate temperature loggers is reduced to 2.4°C. The largest variability between the duplicate temperature loggers occurred during the open-water season, when the greatest variability of temperature was observed in the lake. During the winter, when the least variability was observed, the absolute difference in temperature measured during winter, under relatively static conditions was less than 0.07°C.

Operation of the temperature logger stations was successful during the thermal plume study. However, the following deviations were noted:

- There were three instances of temperature loggers that could not be downloaded in the field during the late winter sampling program (March 2022). The three temperature loggers were replaced in the field. Two of the three temperature loggers were able to be downloaded in the office, but data could not be recovered from the third and as a result, data from the Mid Lake 1 station at the 1 m from lake bottom depth are not available from October 2021 to March 2022.
- Freeze-up did not cause considerable shifts to the locations of instrumentation (less than 5 m). However, during the field program in December 2021 to confirm positions of temperature loggers after freeze-up, the Southwest Bay and Northwest Bay S stations were mistakenly redeployed to the incorrect locations, which triggered a review of procedures to prevent reoccurrence. The positions of these were corrected during the late winter program (March 2022).
- Break-up resulted in considerable shifts (up to 100 m) to the locations of instrumentation that were located away from the Facility (i.e., Southwest Bay, Mid Lake 1, Northwest Bay S). Positions were checked and corrected as soon as practical during the spring freshet program (May 2022).

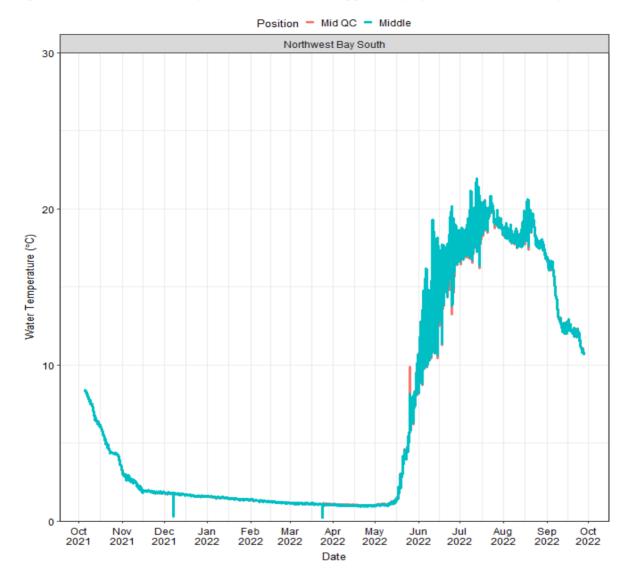


Figure 3-1: Results of the Duplicate Temperature Loggers Deploy at the Northwest Bay South Station

3.3 Conclusions

The QA/QC assessment results indicated that:

- Data from the temperature loggers deployed in duplicate at Northwest Bay S station exhibit good agreement.
- The temperature logger data set is largely complete with minimal missing data (i.e., only one data logger out of the 19 resulted in missing data; 6 months of data).
- Shifting of instrumentation because of ice formation and ice breakup was monitored and controlled.
- Instances of data gaps or data collected from wrong locations occurred during winter when under-ice temperatures were generally stable and predictable.

Overall, the water temperature data collected during the thermal plume study are considered to be of acceptable quality and adequate to address the objectives of the study.

4.0 WATER QUALITY

4.1 General QA/QC Procedures

Water quality QA/QC procedures cover three areas: fieldwork, laboratory analysis, and data management, validation and analyses. Fieldwork QA/QC procedures pertain to the maintenance and operation of equipment and instrumentation, sampling methods, sample handling, and shipping. Laboratory analysis QA/QC procedures incorporate protocols developed by analytical laboratories. Data management, validation and analyses QA/QC procedures include validation of field data and analytical results provided by the respective laboratories.

4.1.1 Fieldwork

Field crew members from WSP are trained to be proficient in standardized field sampling procedures, data recording, and equipment operations. Field work was completed according to relevant requirements of the Thermal Plume Delineation Study Design (Golder 2021), approved specific work instructions (SWI) and established WSP technical procedures. Specific work instructions are standardized forms that reference appropriate technical procedures and provide specific sampling instructions for the work to be undertaken. For example, specific work instructions provide field staff with descriptions of exact sampling locations, equipment needs and calibration requirements, sample handling and storage requirements, sample labelling and shipping protocols, and internal and laboratory contacts. Specific work instructions also provide guidelines for field record keeping and sample tracking. WSP technical procedures are consistent with information described in the relevant scientific literature (e.g., APHA 2012), and outline relevant information regarding protocols for field sample collection and in situ field measurements.

Other key QA processes applicable to field crews were:

- A pre-field meeting with the field crew and the project/task manager was held before the field work to discuss the purpose of the field program, specify the roles of crew members, address questions regarding the specific work instructions, and discuss equipment needs, field logistics, and contingency plans.
- During field work, field data were recorded on standardized field datasheets and in a bound waterproof field notebook, according to established field record-keeping procedures. All field datasheets and notebooks were scanned into electronic copies at the end of the field program. Field crews also wrote daily field reports summarizing tasks completed of the day and plans for the next day.
- Field crews checked in with task managers after each field program to provide an update on work completed.
- All field data were checked at the end of each sampling event or field day for completeness and accuracy and a 10% transcription check was completed by a second qualified person.
- Calibrations were performed on field equipment (e.g., water quality meters) at the beginning of each field day according to the manufacturer's specifications to maintain accuracy of the field data; meters were only used if calibration was successful (i.e., calibration criteria ranges were met). Results of each calibration and any required maintenance were recorded on pre-printed, waterproof calibration sheets. End-of-day calibration checks were completed to evaluate potential drift in the calibration during the field program. Records of calibration and end-of-day checks were reviewed if unexpected field readings were measured.

- Samples were documented using laboratory-provided chain-of-custody (COC) forms and receipt of samples by the analytical laboratory was confirmed. Field crews were responsible for managing sample shipment to the analytical laboratory. Prior to sample shipment, field crews confirmed the following:
 - All required samples were collected and accounted for prior to shipping.
 - COC and analytical request forms were completed.
 - Proper container labelling and documentation procedures were followed.

Four types of QC samples were used in the sampling programs to evaluate the quality of data from samples collected in the field:

- Travel blanks consist of laboratory-filled deionized water in sampling bottles. Travel blanks accompany the samples through collection and transportation. These are shipped, handled, stored, and treated the same as the collected samples, but are not opened in the field. Travel blanks are used to detect potential sample contamination that may be due to ambient conditions, or that may have occurred during shipping and laboratory analysis. Travel blanks were collected during the fall, freshet and late summer programs.
- Field blanks consist of deionized water provided by the analytical laboratory that is transferred to sample bottles in the field. Field blanks are handled the same and analyzed for the same constituents as the water samples collected during the field program (e.g., preserved, filtered). Field blanks are used to detect potential sample contamination during sample collection, handling, shipping, and analysis. Field blanks were collected during the winter and early summer programs.
- Equipment blanks consist of deionized water provided by the analytical laboratory that is used to rinse the water quality sampling equipment (Kemmerer samplers). The equipment blanks were collected during each program.
- Duplicate samples are additional samples collected at the same time and location as the required samples collected during a field program, using the same sampling methods. They are used to check within-site variation, and the precision of field sampling methods or laboratory analysis, or both. Duplicate samples were taken at the Northwest Bay N station during the fall, freshet and late summer programs, and at the Near Outflow In lake station during the winter and early summer programs.

4.1.2 Laboratory Analyses

ALS Group (ALS), an analytical laboratory accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA), was subcontracted to analyze water quality samples collected by WSP during the thermal plume study. Under CALA's accreditation program, performance evaluation assessments are routinely conducted to check laboratory procedures and the results of internal QC samples. Therefore, the analytical data reported by ALS were considered reliable.

4.1.3 Data Management, Validation, and Analyses

Relevant QA procedures for data management, validation and analyses were:

- using appropriately trained personnel for each data management, analysis, and reporting task
- using standardized data manipulation and summary tools, where applicable
- filing hard-copy, electronic data, and project information according to standardized protocols

- using a data management system (e.g., EQuIS for water quality samples) to maintain an organized, consistent system to store, check and export field and laboratory data
- following standardized data validation procedures for laboratory and field results
- reviewing work products (e.g., tables, figures, result descriptions) at appropriate milestones

4.2 Data QA/QC Procedures

A series of twelve data validation checks were performed for *in situ* field measurements and water chemistry results to identify potential data quality issues:

- review of in situ field measurements
- confirm required parameters were analyzed and reported on ALS Certificates of Analyses (CoAs)
- review of laboratory analytical methods
- review of detection limits
- review of hold times exceedances
- review of units
- review of laboratory data qualifiers
- review of internal laboratory QA/QC results
- compare total and dissolved concentrations
- compare concentrations in duplicate samples
- check for contamination in blank samples
- review of individual datapoints

4.2.1 In Situ Field Measurements

Field data were entered into a Microsoft Excel spreadsheet at the end of each sampling trip and at least 10% of the data entered electronically were verified by a second qualified person to identify transcription errors. Calibration documentation was reviewed for possible issues with calibrating the field instruments. Electronic copies of the field data were also reviewed for transcription errors using the hardcopy field datasheets. The electronic data were then submitted to the EQUIS database.

The reliability of 2022 field DO, pH and conductivity data were assessed by comparing multi-meter field data to Winkler titration samples (for DO) and laboratory measurements (for pH, turbidity, and conductivity), and by comparing unexpected results to historical results or results collected at the same day from different stations.

Field DO measurements were compared to the corresponding Winkler titration results measured on the same day, at the same station and depth. If the Winkler titration results were not within 1.5 milligrams per litre (mg/L) of the field DO measurement, the multi-meter measurement and Winkler result were considered notably different, and additional Winkler titrations were completed to confirm results. Field DO measurements were reviewed further if confirmed to be notably different from Winkler titrations to determine whether results were inconsistent with expected results (e.g., inconsistent with seasonal historical data or data collected during the same program.

The relative percent difference (RPD) was used to determine the variability between field-measured and laboratory values of specific conductivity and turbidity. The RPD was calculated using the following formula:

RPD = [(field measurement – laboratory value)] x 100 (field measurement + laboratory value)/2

Variability in field-measured and laboratory values was assessed as notable if the calculated RPD was greater than 20% between the field measurement and laboratory value.

Notable differences in pH were identified if field-measured and laboratory values were greater than 1.0 pH unit.

In situ field measurements (i.e., water temperature, specific conductivity, pH, dissolved oxygen, and turbidity) were also compared to the historical results to identify field measurements outside of expected ranges; these values were further reviewed to assess the need to invalidate or qualify the field measurement.

4.2.2 Required Parameters

Field datasheets were reviewed to check whether required field parameters were collected per the Thermal Plume Delineation Study Design (Golder 2021); the laboratory results reported on the CoAs were reviewed against the Thermal Plume Delineation Study Design (Golder 2021) and the laboratory quote to confirm analysis of all required parameters.

4.2.3 Analytical Methods

Analytical methods were specified for each parameter or group of parameters for sampling programs. The project standard methods and the methods used by the laboratory for individual samples were compared. If laboratory methods differed from standard methods, the laboratory was contacted to determine the reason for the deviation in method.

4.2.4 Detection Limits

The analytical method detection limits (MDL) used by ALS to analyze substances are the minimum concentration of analyte that can be detected, inclusive of all analytical steps, for a given method and matrix, from the absence of that substance (blank) within a specified confidence. The analytical reported detection limit (RDL) is the limit of reliable, quantitative measurement for a specific analyte in a specific sample after any adjustments have been made for sample size, matrix effects and/or dilutions. The RDL was referred to as the detection limit (DL) in the Thermal Plume Study Report. To obtain high quality data, ALS and WSP worked together to develop standard DLs for the required parameters.

4.2.5 Units

Reported units from the electronic data were reviewed against the hard copy report provided by ALS and expected units for each parameter. If units differed from expected units, the laboratory was contacted to correct the units.

4.2.6 Hold Times

Hold times between sample collection and analysis for each parameter are specified by ALS. Exceedances of hold times have the potential to reduce the reliability of results, particularly when hold times are exceeded by a long time period relative to the hold time. Results analyzed after hold times were reviewed to assess the potential for the hold time exceedance to affect the results.

4.2.7 Laboratory Data Qualifiers

Qualifiers, or alphabetical codes, were assigned by the laboratory to results when the laboratory identified a potential issue with the result. If a parameter was frequently assigned a qualifier code, the laboratory was questioned to determine the reason and correct the issue if possible. If results qualified by the laboratory were inconsistent with expected trends or patterns, then further discussions with the laboratory were conducted.

4.2.8 Laboratory Internal Quality Control Samples

Internal laboratory QC samples were analyzed by ALS to demonstrate analytical data quality. Internal laboratory QC samples included laboratory duplicate, laboratory control, method blank, and method spikes samples. A laboratory duplicate sample is a randomly selected intra-laboratory replicate sample. Laboratory duplicate samples provide information regarding method precision and sample heterogeneity. A laboratory control sample is an analyte-free matrix that has been fortified with test analytes at a known concentration and processed in an identical manner to test samples. Laboratory control samples are used to monitor and control test method accuracy and precision, independent of test sample matrix. A method blank sample is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method blank sample results are used to monitor and control for potential contamination from the laboratory environment and reagents. A matrix spike sample is a randomly selected intra-laboratory replicate sample that has been fortified with analytes at a known concentration and processed in an identical manner to test samples. Matrix spike samples provide information regarding analyte recovery and potential matrix effects.

4.2.9 Total versus Dissolved Concentrations

The dissolved concentration of any given metal, metalloid, or other parameter (e.g., organic carbon) should, by definition, be less than or equal to the associated total concentration. Due to inherent variability in reported results, sample heterogeneity and analyses of total and dissolved parameters from different bottles (i.e., total and dissolved results were not analyzed from the same aliquot of water), dissolved concentrations that were greater than total concentrations by 30% or more (i.e., notably higher) were typically confirmed by ALS. These criteria are consistent with those used by ALS for their internal QA/QC procedures (Gregg 2019a, pers. comm.). Reported dissolved concentrations that were notably higher than reported total concentrations for more than 10% of the parameters indicate the potential for errors in laboratory analysis (Dang 2008, pers. comm.) or field collection protocols.

4.2.10 Duplicate Samples

Duplicate water samples were collected at the Northwest Bay — N station on 30 September 2021, 25 May and 25 August 2022 and at the Near Outflow — In lake station on 25 March and 6 July 2022, to assess variability during sample collection, handling, and analysis. The duplicate samples were analyzed for the same set of parameters as the collected water samples. The relative percent difference (RPD) was used to determine the variability between laboratory analysis of the duplicate sample and corresponding field sample. Before calculating the RPD, concentrations below the DL were replaced with the DL value in cases when only one of the concentrations for a given parameter was detectable. The RPD was calculated using the following formula:

RPD = [(field sample concentration - duplicate sample concentration)] x 100 average of field and duplicate sample concentration

If both concentrations were less than five time the relevant DL used by ALS, the RPD was not calculated. Variability in parameter concentrations between the field and duplicate samples was assessed as notable if the calculated RPD was greater than 20% between sample results. These criteria are consistent with those used by ALS for their

internal QC procedures (Dang 2007, pers. comm.). The five times DL threshold takes into account the potential for analytical uncertainty when concentrations approach DLs (APHA 2012, Weiner 2000).

Field and duplicate sample results that were notably different and outside the range of analytical variability (i.e., absolute difference between field and duplicate samples is above five times the DL) were typically verified by re-analysis (Gregg 2019a, pers. comm.).

Variability between the field and duplicate samples was rated as follows:

- Low, if less than 10% of the parameters included in the duplicate analysis were notably different from one another.
- Moderate, if 10 to 30% of the parameters included in the duplicate analysis were notably different from one another.
- High, if more than 30% of the parameters included in the duplicate analysis were notably different from one another.

4.2.11 Blank Samples

Blank samples were collected to assess for contamination that may occur during collection, handling, shipping and analyses of samples. Three types of blank samples were collected as part of the Thermal Plume Delineation Study Design (Golder 2021):

- Travel blanks: 1 October 2021, 26 May 2022, and 25 August 2022
- Field blanks: 24 March 2022 and 6 July 2022
- Equipment blanks: 30 September 2021, 22 March 2022, 24 May 2022, 5 July 2022, and 24 August 2022

Results above five times the DL in travel, field, and equipment blanks were considered notable, and indicate potential contamination in the samples.

4.2.12 Review of Individual Data Points

Field Data

Field data were reviewed to identify values that were inconsistent with other values in the water quality profile, laboratory data, or historically observed values. Field notes, calibration logs, and historical data from the same location and season were reviewed to determine whether there was a potential cause for the anomalous results. When an error was identified to be the likely cause of the anomalous field data, these data were invalidated and excluded from further assessment; otherwise, the data were qualified providing the rationale for the qualification but used in the assessment. Field data that were invalidated or qualified were flagged with appropriate notes to explain the invalidation or qualification of the data (Appendices F.1 and F.2); invalidated data were excluded from the assessment.

Laboratory Data

Laboratory data were reviewed to identify values that were inconsistent relative to the other data collected during the same program or historically observed values. Field notes, laboratory qualifiers, the results of QC samples, and historical data were reviewed to determine whether there was a potential cause for the anomalous results. ALS completed data rechecks and reanalysis on identified values to confirm the data in question. Occasionally, due to laboratory contamination or sample mix-ups, ALS provided revised CoAs, which would be uploaded to the EQuIS

database to replace the original results. Laboratory data that were invalidated or qualified were flagged with appropriate notes to explain the invalidation or qualification of the data (Appendix F.2); invalidated data were removed from the assessment.

4.3 QA/QC Results and Discussion

4.3.1 In Situ Field Measurements

Field measurements (i.e., DO, pH, specific conductivity, and turbidity) were confirmed by Winkler titration for DO concentration, and laboratory results for pH, specific conductivity and turbidity, respectively.

All field DO concentrations were within 1.5 mg/L of the Winkler titration results. The Winkler kit was not available in the early summer program; however, with the use of the second AquaTROLL, field DO concentrations were confirmed to be within the 1.5 mg/L difference.

Most of field and laboratory pH values were within 1 pH unit. Notable differences (greater than1 pH unit) between field and laboratory pH values were found for 4 out of 56 field samples. The greatest difference, 1.3 pH unit, was observed at the Mid Lake 1 station on 6 July 2022 and at the Near Outflow — In lake station on 25 May 2022. Due to the short hold time of pH (15 minutes), the field pH values were considered more reliable.

Most field and laboratory specific conductivity values were not notably different. Three notable RPD values (greater than 20%) between field and laboratory specific conductivity values were observed at the Mid Lake 1 (mid-depth) station on 1 October 2022, and at the Southwest Bay station on 22 March 2022 for both mid-depth and bottom samples. Additionally, the six field specific conductivity values (106, 106, 125, 203, 401, and 400 μ S/cm) at the Southwest Bay station on 22 March 2022 were substantially lower than the range observed at other stations (465 to 512 μ S/cm) in March 2022.

High variability between field and laboratory turbidity measurements was observed with RPDs greater than 20% in 32 out of 55 samples. The majority of laboratory turbidity values (46 of the 55 samples) were higher than the field turbidity; the reason for this was unknown. No issues were identified in the calibration of field turbidity or the sampling procedure; although exceedances of the 3-day hold time for laboratory turbidity occurred frequently (i.e., 53 of the 55 samples); these exceedances are unlikely to result in the observed differences (Government of Newfoundland 2010). The differences may be related to inherent variability in turbidity values; both field-measured and laboratory turbidity values were retained in the assessment and the results tables.

No issues were identified in the calibration of the AquaTROLL or field turbidity meter. Therefore, data were retained in the database and in Appendix F.1.

4.3.2 Required Parameters

Field turbidity at the Inflow to NW Bay 2 on 26 May 2022 was not taken due to a field crew oversight. Laboratory parameters required for analyses as part of the Thermal Plume Delineation Study Design (Golder 2021) were analyzed as requested and reported on the CoAs.

4.3.3 Analytical Methods

Parameters were analyzed per the requested analytical methods in the laboratory quote.

4.3.4 Detection Limits

Analytical DLs for most parameters were reported at the DLs provided in the laboratory quote. In some samples, chloride, fluoride, xylenes, m,p-xylenes, and o-xylene were reported with detection limits lower than the DLs in the laboratory quote (Table 4-1).

Raised DLs were observed in one or more samples for total dissolved solids, total nitrogen, total and dissolved phosphorus by colorimetric, total lithium and titanium, and dissolved silver. The majority of the raised DLs were due to sample matrix effects or a dilution required to minimize ionic interference. During analyses, particularly high parameter concentrations must be reduced by dilution so that the concentration is reduced to the analytical range for that parameter or reduces the ability of the high parameter concentration to interfere with the analyses of another parameter (Gregg 2019a, pers. comm.).

Table 4-1: Detection Limits for Water Quality Samples, September 2021 to August 2022

Table 4-1. Detection Limits for Wat	1		Reported Detection Limits							
Parameter	Unit	ALS Method Detection Limit ^(a)	Field and Duplicate Samples							
i arameter			Inflow to NW Bay 2	Northwest Bay - N	Mid Lake 1	Southwest Bay	EMD Discharge - In lake	Near Outflow - In lake	Outflow of Jackfish Lake	Travel, Field, and Equipment Blanks
Conventional Parameters			minow to itw buy 2	Horaiwest Bay It	ima Lake 1	Southwest Buy	Emb bisonarge in lake	Hear Carrow III lake	Oddiow of Odokiish Lake	1
PH	-	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Specific conductivity	μS/cm	2	2	2	2	2	2	2	2	2
Hardness, as CaCO ₃	mg/L	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Total alkalinity, as CaCO ₃	mg/L	1	1	1	1	1	1	1	1	1
Alkalinity, Phenolphthalein as CaCO ₃	mg/L	1	1	1	1	1	1	1	1	1
Total dissolved solids	mg/L	10	20	20	20	20	20	20	20	10
Total dissolved solids (calculated)	mg/L	1	1	1	1	1	1	1	1	1
Total suspended solids	mg/L	3	3	3	3	3	3	3	3	3
Dissolved organic carbon	mg/L	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Turbidity	NTU	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Major lons	ı			<u>I</u>	- I	l	<u> </u>	l	I	
Bicarbonate, as CaCO ₃	mg/L	1	1	1	1	1	1	1	1	1
Calcium	mg/L	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Carbonate, as CaCO ₃	mg/L	1	1	1	1	1	1	1	1	1
Chloride	mg/L	0.5	0.1 to 0.5	0.1 to 0.5	0.1 to 0.5	0.1 to 0.5	0.1 to 0.5	0.1 to 0.5	0.1 to 0.5	0.1 to 0.5
Fluoride	mg/L	0.02	0.01 to 0.02	0.01 to 0.02	0.01 to 0.02	0.01 to 0.02	0.01 to 0.02	0.01 to 0.02	0.01 to 0.02	0.01 to 0.02
Hydroxide, as CaCO₃	mg/L	1	1	1	1	1	1	1	1	1
Magnesium	mg/L	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Potassium	mg/L	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Sodium	mg/L	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Sulphate	mg/L	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Reactive silica	mg/L	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Nutrients			3.0							
Nitrate	mg-N/L	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Nitrite	mg-N/L	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Nitrate + nitrite	mg-N/L	0.005	0.0051	0.0051	0.0051	0.0051	0.0051	0.0051	0.0051	0.0051
Total ammonia	mg-N/L	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Total nitrogen	mg-N/L	0.03	0.03	0.03 to 0.15	0.03 to 0.06	0.03 to 0.09	0.03	0.03 to 0.15	0.03 to 0.15	0.03
Total phosphorus (colorimetric)	mg-P/L	0.002	0.002	0.002 to 0.02	0.002 to 0.02	0.002 to 0.02	0.002	0.002 to 0.02	0.002 to 0.02	0.002
Total phosphorus (ICPMS)	mg-P/L	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Dissolved phosphorus (colorimetric)	mg-P/L	0.002	0.002	0.002 to 0.02	0.002 to 0.02	0.002	0.002	0.002	0.002	0.002
Dissolved phosphorus (ICPMS)	mg-P/L	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
General Organics					1	I		ļ.		•
Total oil and grease	mg/L	5	-	5	-	-	-	5	-	5
Volatile hydrocarbons (C6-C10)	mg/L	0.1	-	0.1	-	-	-	0.1	-	0.1
Volatile petroleum hydrocarbons (C6-C10)	mg/L	0.1	-	0.1	-	-	-	0.1	-	0.1
Total Metals						•				
Aluminum	μg/L	3	3	3	3	3	3	3	3	3
Antimony	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Arsenic	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Barium	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Beryllium	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Bismuth	μg/L	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Boron	μg/L	10	10	10	10	10	10	10	10	10
Cadmium	μg/L	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Calcium	μg/L	50	50	50	50	50	50	50	50	50
Cesium	µg/L	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Chromium	μg/L	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Cobalt	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
***		<u> </u>	<u> </u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·	<u> </u>	· ***	<u> </u>	

Table 4-1: Detection Limits for Water Quality Samples, September 2021 to August 2022

		ALS Method Detection Limit ^(a)	Reported Detection Limits							
Parameter	Unit		Field and Duplicate Samples							
			Inflow to NW Bay 2	Northwest Bay - N	Mid Lake 1	Southwest Bay	EMD Discharge - In lake	Near Outflow - In lake	Outflow of Jackfish Lake	Travel, Field, and Equipment Blanks
Copper	μg/L	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Iron	μg/L	10	10	10	10	10	10	10	10	10
Lead	μg/L	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Lithium	μg/L	1	1 - 5	1	1	1	1	1	1	1
Magnesium	μg/L	5	5	5	5	5	5	5	5	5
Manganese	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Mercury	μg/L	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Molybdenum	μg/L	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Nickel	μg/L	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Potassium	μg/L	50	50	50	50	50	50	50	50	50
Rubidium	μg/L	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Selenium	μg/L	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Silicon	μg/L	100	100	100	100	100	100	100	100	100
Silver	μg/L	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Sodium	μg/L	50	50	50	50	50	50	50	50	50
Strontium	μg/L	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Sulphur	μg/L	500	500	500	500	500	500	500	500	500
Tellurium	μg/L	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Thallium	μg/L	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Thorium	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Tin	µg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Titanium	µg/L	0.3	0.3	0.3 to 0.6	0.3	0.3	0.3	0.3	0.3	0.3
Tungsten	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Uranium	μg/L	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Vanadium	µg/L	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Zinc	µg/L	3	3	3	3	3	3	3	3	3
Zirconium	µg/L	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Dissolved Metals	1 13	-	-				-	<u> </u>	-	-
Aluminum	μg/L	1	1	1	1	1	1	1	1	1
Antimony	µg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Arsenic	µg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Barium	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Beryllium	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Bismuth	μg/L	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Boron	μg/L	10	10	10	10	10	10	10	10	10
Cadmium	μg/L	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Cesium	µg/L	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Chromium	μg/L	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Cobalt	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Copper	μg/L	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Iron	μg/L	10	10	10	10	10	10	10	10	10
Lead	µg/L	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Lithium	µg/L	1	1	1	1	1	1	1	1	1
Manganese	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Mercury	µg/L	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Molybdenum	µg/L	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Nickel	µg/L	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Rubidium	µg/L	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Selenium	μg/L	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	µg/L	50	50	50	50	50	50	50	50	50

Table 4-1: Detection Limits for Water Quality Samples, September 2021 to August 2022

Parameter		ALS Method Detection Limit ^(a)	Reported Detection Limits							
	Unit		Field and Duplicate Samples							Travel, Field, and
			Inflow to NW Bay 2	Northwest Bay - N	Mid Lake 1	Southwest Bay	EMD Discharge - In lake	Near Outflow - In lake	Outflow of Jackfish Lake	Equipment Blanks
Silver	μg/L	0.01	0.01	0.01 to 0.05	0.01	0.01	0.01	0.01	0.01	0.01
Strontium	μg/L	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Sulphur	μg/L	500	500	500	500	500	500	500	500	500
Tellurium	μg/L	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Thallium	μg/L	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Thorium	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Tin	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Titanium	μg/L	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Tungsten	μg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Uranium	μg/L	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Vanadium	μg/L	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Zinc	μg/L	1	1	1	1	1	1	1	1	1
Zirconium	μg/L	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Volatile Organics										
Benzene	μg/L	0.5	-	0.5	-	•	-	0.5	-	0.5
Ethylbenzene	μg/L	0.5	-	0.5	-	-	-	0.5	-	0.5
Toluene	μg/L	0.5	-	0.5	-	-	-	0.5	-	0.5
Xylenes	μg/L	0.75	-	0.5 to 0.75	-	-	-	0.5 to 0.75	-	0.5 to 0.75
m,p-Xylenes	μg/L	0.5	-	0.4 to 0.5	-	-	-	0.4 to 0.5	-	0.4 to 0.5
o-Xylene	μg/L	0.5	-	0.3 to 0.5	-	-	-	0.3 to 0.5	-	0.3 to 0.5
Styrene	μg/L	0.5	-	0.5	-	-	-	0.5	-	0.5
Methyl tert-butyl ether	μg/L	0.5	-	0.5	-	-	-	0.5	-	0.5
F1 (C6-C10)-BTEX	μg/L	100	-	100	-	-	-	100	-	100
F1 (C6-C10)	μg/L	100	-	100	-	-	-	100	-	100
F2 (C10-C16)	μg/L	300	-	300	-	-	-	300	-	300
F3 (C16-C34)	μg/L	300	-	300	-	-	-	300	-	300
F4 (C34-C50)	μg/L	300	-	300	-	-	-	300	-	300

Notes:

a) ALS method detection limits were provided on the laboratory quote.

Bolded values are above ALS method detection limits.

Lake stations (Northwest Bay - N, Mid Lake 1, Southwest Bay, EMD Discharge - In lake, and Near Outflow - In lake) included samples from mid-depth and bottom.

 μ S/cm = microsiemens per centimetre; NTU = nephelometric turbidity units; CaCO₃ = calcium carbonate; mg-N/L = milligrams phosphorus per litre; mg-P/L =

4.3.5 Units

Reported units were correct and no issues were identified during the review of electronic data against the expected units (per the laboratory quote) and the hard copy report provided by ALS.

4.3.6 Hold Times

Parameters with hold time exceedances were:

- laboratory pH (15 minutes): all samples
- turbidity (3 days): samples collected on 30 September 2021 and 1 October 2021; 22 to 25 March 2022; 25 and 26 May 2022; 5 and 6 July 2022; and 24 and 25 August 2022
- nitrate and nitrite (3 days): samples collected on 30 September 2021 and 1 October 2021; 22 to 25 March 2022; 25 May 2022; 5 and 6 July 2022; and 24 and 25 August 2022

Shorter hold times (i.e., 3 days or less) were generally exceeded due to shipping and staffing constraints from ALS locations in Yellowknife and Vancouver (Gregg 2019b, 2020, pers. comm.), and due to logistical constraints caused by the COVID-19 pandemic. The hold time for pH expires within 15 minutes (APHA 2012) and samples cannot be collected, transported, and processed by ALS within this time limit. Therefore, field pH was used for assessment of water quality. The limited exceedances of hold times for nitrate, nitrite, and turbidity are unlikely to have resulted in inaccurate laboratory results based on studies by the Government of Newfoundland and Labrador (2010) and Love et al. (2016).

4.3.7 Laboratory Data Qualifiers

Several data qualifiers were identified during the review of CoAs for all samples (Appendix F.6). Most of these data qualifiers were related to reported detection limit adjustments for sample matrix effects, the necessity for dilution of the sample, dissolved concentration greater than the total, and repeat analysis to verify results. The qualifiers had a negligible to minimal effect on the assessment of water quality because they were limited in number and typically applicable to dissolved concentrations (total concentrations are typically used for comparisons to water quality guidelines), or the results were verified by repeat analysis. Reactive silica results were qualified when sample filtration was required due to turbidity interference; the required sample filtrations were not anticipated to affect water quality.

4.3.8 Laboratory Internal Quality Control Samples

Laboratory QC samples analyzed by ALS and are presented in Appendix F.6. The majority of internal laboratory QC samples met laboratory data quality objectives, and the results were considered acceptable.

4.3.9 Total versus Dissolved Concentrations

Dissolved concentrations exceeded total concentrations by more than 30% for the following parameters:

- aluminum at EMD Discharge In lake (bottom) on 1 October 2021
- copper and lead at Inflow to NW Bay 2 on 30 September 2021
- lithium at Southwest Bay (bottom) on 22 March and 25 August 2022
- molybdenum at EMD Discharge In lake (bottom) on 24 May 2022, at Near Outflow In lake (bottom) and Southwest Bay (bottom) on 25 May 2022
- selenium at Mid Lake 1 (bottom) on 25 August 2022 and at the Outflow of Jackfish Lake on 30 September 2021
- silver at Northwest Bay N (mid-depth) on 25 August 2022
- sulphur at Mid Lake 1 (bottom) on 25 August 2022
- tin at Inflow to NW Bay 2 on 30 September 2021 and at EMD Discharge In lake (bottom) on 23 March 2022
- uranium at Southwest Bay (bottom) on 25 May 2022
- zinc at Inflow to NW Bay 2 on 30 September 2021
- zirconium at EMD Discharge In lake (bottom) on 1 October 2021

Overall, dissolved concentrations greater than total concentrations accounted for 1% of the total number of metals analyzed during the Thermal Plume Delineation Study (Golder 2021). Dissolved concentrations were typically below total concentrations.

4.3.10 Duplicate Samples

Five duplicate samples were collected, accounting for approximately 9% of the total number of water samples submitted for analysis. Concentrations of parameters with a notable RPD (i.e., RPD between field and duplicate samples above 20%, when concentrations of one or both parameters were above five times the DL), were identified for the following duplicate samples (Table 4-2):

- Northwest Bay N (bottom) on 30 September 2021: carbonate as CaCO₃ and total uranium (i.e., 2% of total parameters analyzed)
- Northwest Bay N (bottom) on 25 August 2022: total lithium and dissolved manganese (i.e., 2% of total parameters analyzed)
- Near Outflow —In lake (bottom) on 25 March 2022: laboratory pH (i.e., 1% of total parameters analyzed)
- Near Outflow In lake (bottom) on 6 July 2022: laboratory pH, carbonate as CaCO₃, total phosphorus by colorimetric, and dissolved manganese (i.e., 3% of total parameters analyzed)

The RPDs between field and duplicate parameter concentrations were below 20% for the duplicate samples collected at the Northwest Bay – N (bottom) station on 25 May 2022.

Overall, sample variability was assessed as low based on the results from duplicate samples because less than 10% of parameters had a notable RPD between the field and duplicate sample.

Table 4-2: Quality Control Duplicate Sample Results, September 2021 to August 2022

		Station				Northwest Bay - N							Ne	ar Outfle	ow - In lake		
		Sample Depth	4	m		4	m		4	m		4.8	3 m		5	5 m	
		Sample Date	30-S	ep-21	222	25-Ma	ay-22	200	25-A	ug-22	555	25-N	ar-22	555	6-J	lul-22	200
		Sample Type	Sample	Duplicate	RPD	Sample	Duplicate	RPD	Sample	Duplicate	RPD	Sample	Duplicate	RPD	Sample	Duplicate	RPD
		ALS Sample ID	YL2101440-002	YL2101440-003		YL2200527-001	YL2200527-009		YL2201326-001	YL2201326-011		YL2200265-005	YL2200265-007		YL2200852-007	YL2200852-009	Л
Parameter	Unit	Detection Limit															
Conventional Parameters																	
pH	-	0.1	8.42	8.35	16%	8.23	8.29	14%	8.47	8.49	5%	8.07	7.98	21%	8.47	8.36	25%
Specific conductivity	μS/cm	2	446	450	1%	440	446	1%	446	442	1%	503	501	0%	483	443	9%
Hardness, as CaCO₃	mg/L	0.6	140	142	1%	135	131	3%	149	148	1%	161	160	1%	144	147	2%
Total alkalinity, as CaCO ₃	mg/L	1	118	116	2%	108	108	0%	113	111	2%	122	121	1%	110	110	0%
Alkalinity, Phenolphthalein as CaCO ₃	mg/L	1	3.6	1.7	-	<1	<1	-	3.7	4.3	-	<1	<1	-	3.6	2.8	-
Total dissolved solids	mg/L	20	285	279	2%	278	276	1%	290	274	6%	315	320	2%	262	274	4%
Total dissolved solids (calculated)	mg/L	1	249	248	0%	240	236	2%	252	251	0%	275	276	0%	247	249	1%
Total suspended solids	mg/L	3	14.2	11.8	-	7.7	6.7	-	9.7	7.5	-	<3	<3	-	11.8	12.4	-
Dissolved organic carbon	mg/L	0.5	12.3	12	2%	12.1	13.6	12%	11.3	11.8	4%	14.1	13	8%	12.5	12.8	2%
Turbidity	NTU	0.1	21.1	21	0%	7.24	6.63	9%	9.13	8.51	7%	1.18	1.31	10%	15.2	15.7	3%
Major Ions		1	1	•		•			•	1					•	•	
Bicarbonate, as CaCO ₃	mg/L	1	110	112	2%	108	108	0%	106	103	3%	122	121	1%	103	105	2%
Calcium	mg/L	0.05	36.3	37.4	3%	37.1	36.1	3%	37.9	38.4	1%	42	42.6	1%	36.9	37.7	2%
Carbonate, as CaCO ₃	mg/L	1	7.3	3.3	75%	<1	<1	-	7.4	8.6	15%	<1	<1	-	7.2	5.6	25%
Chloride	mg/L	0.1 to 0.5	59.6	59.6	0%	59.3	59	1%	61.7	62	0%	67.8	68	0%	60.8	61.3	1%
Fluoride	mg/L	0.01 to 0.02	0.084	0.086	-	0.083	0.083	0%	0.086	0.083	4%	0.1	0.102	2%	0.077	0.079	3%
Hydroxide, as CaCO₃	mg/L	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
Magnesium	mg/L	0.005	12	11.9	1%	10.3	9.83	5%	13.2	12.6	5%	13.6	13.7	1%	12.6	12.9	2%
Potassium	mg/L	0.05	4.01	4.04	1%	4.32	4.08	6%	4.13	4.27	3%	4.59	4.29	7%	4.22	4.28	1%
Sodium	mg/L	0.05	32.4	32.1	1%	30.6	29.2	5%	33.5	33.2	1%	34.1	35.4	4%	33.2	33.5	1%
Sulphate	mg/L	0.3	25.3	25.3	0%	25.5	25.5	0%	25.6	25.7	0%	29.8	29.8	0%	25	25.2	1%
Reactive silica	mg/L	0.5	13	12.6	3%	12.8	12.8	0%	13.3	13.3	0%	14.6	14.8	1%	12.6	12.6	0%
Nutrients	9/ =	0.0			0,0	.2.0		0,0	10.0	10.0	0,70			.,,			
Nitrate	mg-N/L	0.005	<0.005	<0.005	_	0.0926	0.0906	2%	<0.005	<0.005	-	0.137	0.138	1%	<0.005	<0.005	-
Nitrite	mg-N/L	0.001	<0.001	<0.001	-	0.0072	0.0076	5%	<0.001	<0.001	-	0.0049	0.0048	-	<0.001	<0.001	-
Nitrate + nitrite	mg-N/L	0.0051	<0.0051	<0.0051	_	0.0998	0.0982	2%	<0.0051	<0.0051	-	0.142	0.143	1%	<0.0051	<0.0051	
Total ammonia	mg-N/L	0.005	0.0069	0.0079	_	0.0585	0.0599	2%	0.0087	0.009	-	0.0576	0.0562	2%	0.0114	0.014	-
Total nitrogen	mg-N/L	0.03 to 0.15	1.73	1.68	3%	1.28	1.26	2%	1.06	1.09	3%	0.846	0.833	2%	1.21	1.39	14%
Total phosphorus (colorimetric)	mg-P/L	0.002 to 0.02	0.109	0.112	3%	0.0875	0.089	2%	0.0442	0.0448	1%	0.0333	0.031	7%	0.104	0.0453	79%
Total phosphorus (ICPMS)	mg-P/L	0.05	0.081	0.113	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	0.097	0.083	-
Dissolved phosphorus (colorimetric)	mg-P/L		0.0143	0.0132	8%	0.0177	0.0185	4%	0.0131	0.0148	12%	0.0235	0.0218	8%	0.0177	0.017	4%
Dissolved phosphorus (ICPMS)	mg-P/L		<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
General Organics	1 9		10.00						10.00	10.00				1			
Total oil and grease	mg/L	5	<5	<5	_	<5	<5	-	<5	<5	-	<5	<5	-	<5	<5	-
Volatile hydrocarbons (C6-C10)	mg/L	0.1	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-
Volatile petroleum hydrocarbons (C6-C10)	mg/L	0.1	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	_	<0.1	<0.1	-
Total Metals	IIIg/L	0.1	νο. 1	νο. 1	1	νο. 1	νο. 1		νο. 1	νο. 1		νο. 1	νο. 1	I	νο. 1	40.1	
Aluminum	μg/L	3	6.5	8.5	T -	10.8	11.6	-	12.5	13.8	-	5.6	4.8	-	<3	4.4	_
Antimony	μg/L	0.1	1.21	1.27	5%	1.2	1.16	3%	1.25	1.27	2%	1.27	1.3	2%	1.27	1.26	1%
Arsenic	μg/L	0.1	70.5	71.4	1%	59.7	60.7	2%	74.4	75.1	1%	74.6	72.1	3%	60.8	63.5	4%
Barium	μg/L	0.1	31.4	31.3	0%	29.9	31.3	5%	31.4	31.3	0%	36.8	36.9	0%	27.6	28.8	4%
Beryllium	μg/L μg/L	0.1	<0.1	<0.1	-	<0.1	<0.1	3%	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	470
Bismuth		0.1	<0.05	<0.05	-	<0.05	<0.05		<0.05	<0.05	 	<0.05	<0.05	-	<0.05	<0.15	-
Boron	μg/L	10	29	30	-	<0.05 27	<0.05 27	-	31	<0.05 29	 	32	33	-	<0.05 27	<0.05 26	-
	μg/L							+			 			-			_
Cadmium	μg/L	0.005	<0.005	<0.005	-	<0.005	<0.005	-	<0.005	<0.005	-	<0.005	<0.005	-	<0.005	<0.005	-

Table 4-2: Quality Control Duplicate Sample Results, September 2021 to August 2022

Table 4-2. Quality Control i		Station				Northwest Bay - N							Ne	ar Outfl	ow - In lake		
		Sample Depth	4	m			m		4	m		4.8	8 m		5	m	
		Sample Date	30-Se	ep-21	222	25-M	ay-22	555	25-Aug-22		222	25-Mar-22		555	6-Jı	ul-22	
		Sample Type	Sample	Duplicate	RPD	Sample	Duplicate	RPD	Sample	Duplicate	RPD	Sample	Duplicate	RPD	Sample	Duplicate	RPD
		ALS Sample ID	YL2101440-002	YL2101440-003		YL2200527-001	YL2200527-009		YL2201326-001	YL2201326-011		YL2200265-005	YL2200265-007		YL2200852-007	YL2200852-009	
Parameter	Unit	Detection Limit															
Calcium	μg/L	50	39500	40600	3%	36100	37100	3%	37700	37800	0%	42600	44700	5%	35300	34500	2%
Cesium	μg/L	0.01	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-
Chromium	μg/L	0.5	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-
Cobalt	μg/L	0.1	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-
Copper	μg/L	0.5	1.43	1.42	-	1.81	1.86	-	1.6	1.59	-	1.96	2.01	-	1.5	1.62	-
Iron	μg/L	10	16	18	-	18	17	-	14	17	-	10	<10	-	14	14	-
Lead	μg/L	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
Lithium	μg/L	1	6.2	6.2	0%	5.9	5.8	2%	8.9	6.9	25%	6.7	6.9	3%	5.2	5.2	0%
Magnesium	μg/L	5	12200	12200	0%	11100	11300	2%	12500	12900	3%	14300	15200	6%	10600	11400	7%
Manganese	μg/L	0.1	89.7	92.2	3%	63.5	66.3	4%	45.1	46.7	3%	52.7	52	1%	72	59.6	19%
Mercury	μg/L	0.005	<0.005	<0.005	-	<0.005	<0.005	-	<0.005	<0.005	-	<0.005	<0.005	-	<0.005	< 0.005	-
Molybdenum	μg/L	0.05	0.177	0.194	-	0.226	0.204	-	0.175	0.192	-	0.191	0.223	-	0.224	0.214	-
Nickel	μg/L	0.5	<0.5	0.58	-	0.53	0.52	-	<0.5	0.51	-	<0.5	<0.5	-	<0.5	0.58	-
Potassium	μg/L	50	4130	4150	0%	4090	4220	3%	4050	4100	1%	4470	4610	3%	3590	3850	7%
Rubidium	μg/L	0.2	2.53	2.55	1%	2.41	2.38	1%	2.65	2.82	6%	2.85	2.82	1%	2.23	2.31	4%
Selenium	μg/L	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
Silicon	μg/L	100	6120	6200	1%	6400	6400	0%	6730	6590	2%	7180	7380	3%	5630	5830	3%
Silver	μg/L	0.01	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-
Sodium	μg/L	50	32400	32500	0%	29800	30200	1%	34400	35200	2%	36800	37600	2%	27300	29200	7%
Strontium	μg/L	0.2	87.8	92.9	6%	85.3	85.9	1%	91.4	92.7	1%	100	103	3%	92.5	92	1%
Sulphur	μg/L	500	9530	9620	1%	9620	9550	1%	8790	8630	2%	10100	10500	4%	8420	8560	2%
Tellurium	μg/L	0.2	<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	-
Thallium	μg/L	0.01	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-
Thorium	μg/L	0.1	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-
Tin	μg/L	0.1	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-
Titanium	μg/L	0.3	<0.3	<0.3	-	<0.3	<0.3	-	<0.3	0.35	-	<0.3	<0.3	-	<0.3	<0.3	-
Tungsten	μg/L	0.1	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-
Uranium	μg/L	0.01	0.443	0.554	22%	0.456	0.396	14%	0.516	0.524	2%	0.586	0.622	6%	0.529	0.572	8%
Vanadium	μg/L	0.5	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-
Zinc	μg/L	3	5	5.7	-	<3	<3	-	<3	<3	-	5	4.6	-	<3	<3	-
Zirconium	μg/L	0.2	<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	
Dissolved Metals	T	T .	1		1	T .	T	1	Ι	1	1		T	1	1		
Aluminum	μg/L	1	1.4	<1	-	4	3.9	-	4.4	4.2	-	1.3	1.6	-	2.2	1.7	-
Antimony	μg/L	0.1	1.16	1.17	1%	1.23	1.2	2%	1.2	1.14	5%	1.33	1.21	9%	1.22	1.26	3%
Arsenic	μg/L	0.1	71.7	71.8	0%	65.5	61.7	6%	75.1	76.4	2%	71.6	65.3	9%	72.5	72.9	1%
Barium	μg/L	0.1	30.2	30.1	0%	31.6	29.3	8%	30.1	31.2	4%	34.4	33.2	4%	31.7	31	2%
Beryllium	μg/L	0.1	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-
Bismuth	μg/L	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
Boron	µg/L	10	28	28	-	28	28	-	27	28	-	31	30	-	27	28	-
Cadmium	µg/L	0.005	<0.005	<0.005	-	<0.005	<0.005	-	<0.005	<0.005	-	<0.005	<0.005	-	<0.005	<0.005	-
Cesium	μg/L	0.01	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-
Chromium	μg/L	0.5	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-
Cobalt	μg/L	0.1	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-
Copper	μg/L	0.2	1.07	1.08	1%	1.85	1.82	2%	1.36	1.37	1%	1.74	1.69	3%	1.45	1.58	9%
Iron	μg/L	10	<10	<10	-	10	10	-	<10	<10	-	<10	<10	-	<10	<10	-
Lead	μg/L	0.05	< 0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-

Table 4-2: Quality Control Duplicate Sample Results, September 2021 to August 2022

		Station				Northwest Bay - N						Near Outflow - In lake						
		Sample Depth	4	m		4	m		4	m		4.8 m			5 m			
		Sample Date	30-S	ep-21	RPD	25-May-22		BBB	25-Aug-22		555	25-Mar-22		000	6-Jul-22		RPD	
		Sample Type	Sample	Duplicate		Sample	Duplicate	RPD	Sample	Duplicate	RPD	Sample	Duplicate	RPD	Sample	Duplicate	RPD	
		ALS Sample ID	YL2101440-002	YL2101440-003		YL2200527-001	YL2200527-009		YL2201326-001	YL2201326-011		YL2200265-005	YL2200265-007		YL2200852-007	YL2200852-009	Л.,	
Parameter	Unit	Detection Limit																
Lithium	μg/L	1	6.4	6.4	0%	5.6	5.5	2%	6.2	6	3%	7.1	6.5	9%	6.1	6.3	3%	
Manganese	μg/L	0.1	1.73	1.7	2%	55.9	53.8	4%	1.44	1.97	31%	1.31	1.34	2%	65.6	40.8	47%	
Mercury	μg/L	0.005	< 0.005	<0.005	-	<0.005	<0.005	-	<0.005	< 0.005	-	<0.005	<0.005	-	< 0.005	<0.005	-	
Molybdenum	μg/L	0.05	0.177	0.173	-	0.191	0.221	-	0.168	0.173	-	0.199	0.197	-	0.185	0.205	-	
Nickel	μg/L	0.5	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	
Rubidium	μg/L	0.2	2.57	2.42	6%	2.79	2.55	9%	2.68	2.71	1%	2.82	2.64	7%	2.68	2.66	1%	
Selenium	μg/L	0.05	< 0.05	<0.05	-	0.053	<0.05	-	<0.05	<0.05	-	0.054	<0.05	-	<0.05	<0.05	-	
Silicon	μg/L	50	6420	6440	0%	6010	5960	1%	6480	6490	0%	7260	6880	5%	6300	6350	1%	
Silver	μg/L	0.01	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	
Strontium	μg/L	0.2	91	90	1%	90.8	92.1	1%	91	84.3	8%	103	101	2%	92	92.2	0%	
Sulphur	μg/L	500	9390	9590	2%	9020	8990	0%	9680	9630	1%	10200	10200	0%	8470	8960	6%	
Tellurium	μg/L	0.2	<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	-	
Thallium	µg/L	0.01	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	
Thorium	μg/L	0.1	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	
Tin	μg/L	0.1	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	
Titanium	μg/L	0.3	<0.3	<0.3	_	<0.3	<0.3	_	<0.3	<0.3	-	<0.3	<0.3	-	<0.3	<0.3	-	
Tungsten	μg/L	0.1	<0.1	<0.1	_	<0.1	<0.1	_	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	
Uranium	μg/L	0.01	0.48	0.485	1%	0.568	0.572	1%	0.558	0.545	2%	0.579	0.592	2%	0.504	0.516	2%	
Vanadium	μg/L	0.5	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	
Zinc	μg/L	1	4.7	4.8	_	<1	<1	_	<1	<1	-	5.1	4.9	4%	<1	<1	-	
Zirconium	μg/L	0.2	<0.2	<0.2	_	<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	-	
Volatile Organics			10.2		l	1,412					-L			l	10.2			
Benzene	μg/L	0.5	<0.5	<0.5	_	<0.5	<0.5	l -	<0.5	<0.5	T -	<0.5	<0.5	-	<0.5	<0.5	-	
Ethylbenzene	μg/L	0.5	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	+ -	<0.5	<0.5	-	<0.5	<0.5	_	
Toluene	μg/L	0.5	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	
Xylenes	μg/L	0.5 to 0.75	<0.75	<0.75	-	<0.5	<0.5	-	<0.5	<0.5	+ -	<0.5	<0.5	-	<0.5	<0.5	-	
m,p-Xylenes	μg/L	0.4 to 0.5	<0.5	<0.5	_	<0.4	<0.4	-	<0.4	<0.4	-	<0.4	<0.4	_	<0.4	<0.4	_	
o-Xylene	μg/L	0.3 to 0.5	<0.5	<0.5	_	<0.3	<0.3	-	<0.3	<0.3	† <u>-</u>	<0.3	<0.3	_	<0.3	<0.3	_	
Styrene	μg/L	0.5	<0.5	<0.5	_	<0.5	<0.5	-	<0.5	<0.5	+ -	<0.5	<0.5	-	<0.5	<0.5	-	
Methyl tert-butyl ether	μg/L	0.5	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	+ -	<0.5	<0.5	-	<0.5	<0.5	_	
F1 (C6-C10)-BTEX	μg/L	100	<100	<100	_	<100	<100	 	<100	<100	-	<100	<100	_	<100	<100	-	
F1 (C6-C10)	μg/L	100	<100	<100	_	<100	<100	-	<100	<100	-	<100	<100	-	<100	<100	+ -	
F2 (C10-C16)	μg/L	300	<300	<300	_	<300	<300		<300	<300	+-	<300	<300	_	<300	<300	+-	
F3 (C16-C34)	μg/L	300	<300	<300	-	<300	<300	-	<300	<300	+ -	<300	<300	-	<300	<300	+ -	
F4 (C34-C50)	μg/L	300	<300	<300	_	<300	<300	-	<300	<300	+ -	<300	<300	-	<300	<300	$+ \vdots$	
Summary	l μg/L	300	\300	\300		\300	\300	1 -	\ 300	\300	1 -	\300	\300		\300	\300	<u> </u>	
Total number of parameters				_	120	_	_	120	_		120	_	_	120	_	1 -	120	
rotal number of parameters	n	-	-	-	2	-	-	0	-	-	120	-	-	120	-	-	4	
RPD values over 20%	n o/					+		+										
	%	=	-	-	1.7	-	-	0	-	=	1.7	-	-	8.0	-	-	3.3	

Bolded values represent notable relative percent differences (i.e., RPD exceeding 20%).

The RPD was calculated when at least one parameter concentration was equal to or greater than five times the detection limit.

ID = identification; RPD = relative percent difference; μS/cm = microsiemens per centimetre; NTU = nephelometric turbidity units; n = number; CaCO₃ = calcium carbonate; mg-N/L = milligrams nitrogen per litre; mg-P/L = milligrams phosphorus per litre; μg/L = micrograms per litre; lCPMS = inductively coupled plasma mass spectrometry; BTEX = benzene, toluene, ethylbenzene, and xylenes; - = not applicable or no data.

4.3.11 Blank Samples

Notable concentrations in the field, travel, and equipment blanks (i.e., concentrations greater than five times the DL) were detected for the following parameters (Table 4-3):

- nitrate and nitrate + nitrite on 5 July 2022 in the equipment blank
- total barium on 24 August 2022 in the equipment blank
- dissolved zinc on 30 September 2021 and 22 March 2022 in the equipment blank

These results in the equipment blanks were confirmed by the laboratory via data recheck or re-analysis. Notable concentrations in equipment blanks indicate a potential contamination. Concentrations in the field and travel blanks were non-detectable or below five times the DL.

The number of parameters with notable concentrations in the blank samples were typically low (0.4% of total parameters analyzed), indicating an overall low potential for contamination in the samples.

Table 4-3: Quality Control Blank Sample Results, September 2021 to August 2022

Table 4-3. Quality Control Blank Can		Sample Type			Equipment Blank			Field	Blank		Travel Blank	
		Sample Date	30-Sep-21	22-Mar-22	24-May-22	5-Jul-22	24-Aug-22	24-Mar-22	6-Jul-22	1-Oct-21	26-May-22	25-Aug-22
ALS Sample ID			YL2101440-008	YL2200260-005	YL2200516-004	YL2200829-005	YL2201326-012	YL2200265-008	YL2200852-010	YL2101444-001	YL2200533-002	YL2201326-013
Parameter	Unit	Detection Limit										
Conventional Parameters												
pH	_	0.1	5.06	5.25	5.74	4.95	5.45	5.35	5.51	5.19	5.27	5.44
Specific conductivity	μS/cm	2	<2	<2	<2	5.2	<2	<2	<2	2.1	<2	<2
Hardness, as CaCO₃	mg/L	0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Total alkalinity, as CaCO₃	mg/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Alkalinity, Phenolphthalein as CaCO₃	mg/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Total dissolved solids	mg/L	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Total dissolved solids (calculated)	mg/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Total suspended solids	mg/L	3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Dissolved organic carbon	mg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Turbidity	NTU	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.23	<0.1
Major Ions	<u> </u>	<u> </u>		1	1				1		1	1
Bicarbonate, as CaCO ₃	mg/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Calcium	mg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Carbonate, as CaCO ₃	mg/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloride	mg/L	0.10 - 0.50	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1
Fluoride	mg/L	0.010 - 0.020	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01
Hydroxide, as CaCO ₃	mg/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Magnesium	mg/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Potassium	mg/L	0.05	< 0.05	0.093	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Sodium	mg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Sulphate	mg/L	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Reactive silica	mg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nutrients	, ,	Į.							1		1	
Nitrate	mg-N/L	0.005	<0.005	<0.005	< 0.005	0.206	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nitrite	mg-N/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Nitrate + nitrite	mg-N/L	0.0051	<0.0051	<0.0051	<0.0051	0.206	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051
Total ammonia	mg-N/L	0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005
Total nitrogen	mg-N/L	0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03	<0.03	<0.03	< 0.03
Total phosphorus (colorimetric)	mg-P/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Total phosphorus (ICPMS)	mg-P/L	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dissolved phosphorus (colorimetric)	mg-P/L	0.002	0.0029	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Dissolved phosphorus (ICPMS)	mg-P/L	0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
General Organics												
Total oil and grease	mg/L	5	<5	<5	<5	<5	<5	-	-	-	-	-
Volatile hydrocarbons (C6-C10)	mg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-
Volatile petroleum hydrocarbons (C6-C10)	mg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-
Total Metals												
Aluminum	μg/L	3	<3	<3	<3	<3	4.4	<3	<3	<3	<3	<3
Antimony	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arsenic	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Barium	μg/L	0.1	0.16	0.12	<0.1	<0.1	0.69	0.1	<0.1	<0.1	<0.1	<0.1
Beryllium	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bismuth	μg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Boron	μg/L	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium	μg/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Calcium	μg/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cesium	μg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Table 4-3: Quality Control Blank Sample Results, September 2021 to August 2022

Table 4-3. Quality Control Blank Car		Sample Type			Equipment Blank			Field	Blank		Travel Blank	
		Sample Date	30-Sep-21	22-Mar-22	24-May-22	5-Jul-22	24-Aug-22	24-Mar-22	6-Jul-22	1-Oct-21	26-May-22	25-Aug-22
ALS Sample ID			YL2101440-008	YL2200260-005	YL2200516-004	YL2200829-005	YL2201326-012	YL2200265-008	YL2200852-010	YL2101444-001	YL2200533-002	YL2201326-013
Parameter	Unit	Detection Limit										
Chromium	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Copper	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Iron	μg/L	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Lead	μg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Lithium	μg/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Magnesium	μg/L	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Manganese	μg/L	0.1	0.12	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mercury	μg/L	0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Molybdenum	μg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Nickel	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Potassium	μg/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Rubidium	μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Selenium	μg/L	0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
Silicon	μg/L	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Silver	μg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	μg/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Strontium	μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Sulphur	μg/L	500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500
Tellurium	μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	μg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thorium	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	μg/L	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Tungsten	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	μg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	μg/L	3	4.9	5.4	<3	<3	<3	4.8	<3	<3	<3	<3
Zirconium	μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dissolved Metals												
Aluminum	μg/L	1	<1	<1	<1	<1	1.9	<1	<1	<1	<1	<1
Antimony	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arsenic	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Barium	μg/L	0.1	0.18	0.13	<0.1	<0.1	0.41	0.12	<0.1	<0.1	<0.1	<0.1
Beryllium	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bismuth	μg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05
Boron	μg/L	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium	μg/L	0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Cesium	μg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chromium	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Copper	μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Iron	μg/L	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Lead	μg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Lithium	μg/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Manganese	μg/L	0.1	0.26	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mercury	μg/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Molybdenum	μg/L	0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05

Table 4-3: Quality Control Blank Sample Results, September 2021 to August 2022

ALS Sample ID Parameter		Sample Date	20 Con 24						Blank	Travel Blank			
·			30-Sep-21	22-Mar-22	24-May-22	5-Jul-22	24-Aug-22	24-Mar-22	6-Jul-22	1-Oct-21	26-May-22	25-Aug-22	
Parameter			YL2101440-008	YL2200260-005	YL2200516-004	YL2200829-005	YL2201326-012	YL2200265-008	YL2200852-010	YL2101444-001	YL2200533-002	YL2201326-013	
	Unit	Detection Limit											
Nickel	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Rubidium	μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Selenium	μg/L	0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	
Silicon	μg/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	
Silver	μg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Strontium	μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Sulphur	μg/L	500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	
Tellurium	μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Thallium	μg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Thorium	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Tin	μg/L	0.1	<0.1	0.25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Titanium	μg/L	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
Tungsten	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Uranium	μg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Vanadium	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Zinc	μg/L	1	6.8	5.7	<1	<1	<1	4.3	<1	<1	<1	4.9	
Zirconium	μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Volatile Organics													
Benzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	
Ethylbenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	
Toluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	
Xylenes	μg/L	0.50 to 0.75	<0.75	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	
m,p-Xylenes	μg/L	0.40 to 0.50	<0.5	<0.4	<0.4	<0.4	<0.4	-	-	-	-	-	
o-Xylene	μg/L	0.30 to 0.50	<0.5	<0.3	<0.3	<0.3	<0.3	-	-	-	-	-	
Styrene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	
Methyl tert-butyl ether	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	
F1 (C6-C10)-BTEX	μg/L	100	<100	<100	<100	<100	<100	-	-	-	-	-	
F1 (C6-C10)	μg/L	100	<100	<100	<100	<100	<100	-	-	-	-	-	
F2 (C10-C16)	μg/L	300	<300	<300	<300	<300	<300	-	-	-	-	-	
F3 (C16-C34)	μg/L	300	<300	<300	<300	<300	<300	-	-	-	-	-	
F4 (C34-C50)	μg/L	300	<300	<300	<300	<300	<300	-	-	-	-	-	

Bolded values were greater than five times the detection limit.

 μ S/cm = microsiemens per centimetre; NTU = nephelometric turbidity units; CaCO₃ = calcium carbonate; mg-N/L = milligrams nitrogen per litre; mg-P/L = milligrams phosphorus per litre; HCPMS = inductively coupled plasma mass spectrometry; BTEX = benzene, toluene, ethylbenzene, and xylenes; - = no data.

4.3.12 Review of Individual Data Points

Field Data

In situ field measurements were within expected ranges (e.g., historical ranges; Golder 2019), except for six specific conductivity measurements (106, 106, 125, 203, 401, and 400 μ S/cm) at the Southwest Bay station on 22 March 2022. The historical range of field specific conductivity in 2018 was 405 to 564 μ S/cm (Golder 2019); other field specific conductivity measurements collected during the March 2022 field program were between 465 and 512 μ S/cm (Appendices F.1 and F.2); notable differences (i.e., values with RPDs greater than 20%) between field and laboratory specific conductivity values were observed for both mid-depth and bottom samples associated with these six field conductivity measurements (Section 4.3.1). Consequently, the six field specific conductivity values were invalidated and excluded from further assessment.

The unexpected low specific conductivity measurements at this station were likely due to a field error; no issues were identified in the calibration of the AquaTROLL, and specific conductivity data collected at other stations in March 2022 were within expected ranges. The potential cause was that specific conductivity readings were taken before stabilization of the probe was complete. The Southwest Bay station was the first station monitored on 22 March 2022 and field specific conductivity values increased (i.e., became more similar to other conductivity measurements collected on this day) with depth and time at this station.

Laboratory Data

During the review of the laboratory data, unexpectedly high total or dissolved molybdenum (1.3 to 2.2 micrograms per litre $[\mu g/L]$) concentrations were identified in seven samples at the EMD Discharge — In lake, Mid Lake 1, Near Outflow — In lake, and Southwest Bay stations in May 2022; concentrations of molybdenum were higher than concentrations in other months during the thermal plume study (0.15 to 0.66 $\mu g/L$ for total molybdenum and 0.12 to 0.60 $\mu g/L$ for dissolved molybdenum; Appendix F.2) and were outside of historical ranges (0.20 to 0.28 $\mu g/L$ for total molybdenum; Golder 2019). ALS was contacted to verify these results, and the high molybdenum concentrations were confirmed via reanalysis. Due to insufficient evidence of field contamination and laboratory error, these data points were qualified but retained for use in the assessment.

One dissolved copper concentration of 29 μ g/L at the Inflow to NW Bay 2 station on 30 September 2021 was 18 times higher than the total concentration (1.6 μ g/L). ALS confirmed both total and dissolved copper concentrations via reanalysis. The Inflow to NW Bay 2 station was not monitored historically for water quality; therefore, copper concentrations in the other samples of the thermal plume study were used for comparisons. Total copper concentrations were 1.4 and 1.2 μ g/L, and dissolved copper were 1.4 and 1.3 μ g/L on 26 May 2022 and 6 July 2022, respectively. The dissolved copper concentration of 29 μ g/L was outside of the total and dissolved copper ranges from September 2021 to August 2022, and therefore invalidated from further analysis.

4.4 Conclusions

The QA/QC assessment results indicated that:

- Most of the parameters were analyzed at the target DLs.
- Due to travel time constraints to the laboratories, hold times were frequently exceeded for parameters with short hold times (3 days or less): pH, turbidity, nitrate, and nitrite. However, no results were invalidated due to lengthy hold time exceedances.

- Dissolved concentrations were notably above total concentrations in samples occasionally (in 1% of data points).
- Contamination in all three types of blank samples (i.e., equipment, field, and travel) were typically low (0.4% of total parameters analyzed), indicating an overall low level of contamination in the samples.
- Based on the duplicate results, the within-site variability and field sampling precision were rated as low and high, respectively.
- Six field specific conductivity measurements at the Southwest Bay station on 22 March 2022 were outside of expected range and invalidated; all the other field measurements were retained in the database.
- Unexpectedly high molybdenum (total or dissolved) concentrations were identified in seven samples in May 2022. Due to insufficient evidence of field contamination and laboratory error, these data points were qualified and retained for further assessment.
- One dissolved copper concentration of 29 μg/L at the Inflow to NW Bay 2 station on 30 September 2021 was invalidated because it was 18 times higher than the total concentration (1.6 μg/L) and outside of the expected range from September 2021 to August 2022.

Overall, the water chemistry data collected during the thermal plume study are considered to be of acceptable quality and adequate to address the objectives of the Thermal Plume Study Report.

5.0 FISH AND FISH HABITAT

5.1 Procedures

5.1.1 Field Quality Assurance and Quality Control Procedures

Field Methods

Field staff were knowledgeable of fish habitat requirements, data recording, and sonar equipment operations. Specific work instructions outlining each field task in detail were provided to the field personnel by the task manager and reviewed prior to the start of the field program. Data were checked at the end of each field day for completeness and accuracy. Data recorded digitally were downloaded and backed up as a specific QA/QC measure. Tables containing summary data were reviewed and values verified by a second person.

Equipment

Sonar equipment was configured and tested as part of routine QA/QC for field operations, following specific work instructions developed for the field program.

5.1.2 Office Quality Assurance and Quality Control Procedures

Office QA/QC requirements consist of procedures to validate field data, as well as the results of the data analyses. The office data management system provides an organized and consistent system of data control and analysis. This management system has procedures for tracking data entry, validation, and modifications.

5.1.3 Data Management

Data were checked on an ongoing basis for accuracy and consistency with expected values and, where appropriate, data were plotted to visually confirm significant statistical results for temporal trends. Data or statistical results observed to be inconsistent with expected concentrations or results were investigated further. Sonar data processing outputs were corroborated against field notes taken during field collections. Data were copied directly from the software output files for analysis to avoid transcription errors.

5.2 Results and Discussion

The equipment was configured in the field to provide the best possible imagery for analysis. The equipment records data internally that was validated after the survey was completed. No deviations from the study design occurred. The sonar recorded some mid-lake depths as zero, but these data were omitted because the depth at the mid-lake locations was greater than zero. Data surrounding these points were interpolated to fill the gaps. No other QA/QC issues were identified when completing the bathymetry and fish habitat analysis.

5.3 Conclusions

The QA/QC assessment results indicated that:

- The sonar data from the 2021 survey, evaluated through the QA/QC process, was sufficient for evaluating the objectives of the study.
- Sonar survey data were consistent with field observations

Overall, the fish and fish habitat data collected during the thermal plume study are considered to be of good quality and adequate for addressing the objectives of the study.

6.0 REFERENCES

Literature Cited

- APHA (American Public Health Association). 2012. Standard Methods for the Examination of Water and Wastewater, 22nd Edition, with updates to 2015. Washington, DC, USA.
- CCME (Canadian Council of Ministers of the Environment). 1999. Canadian environmental quality guidelines. 1999. Canadian environmental quality guidelines summary table, with updates to 2021. Winnipeg, MB, Canada. Available at https://www.ccme.ca/en/current-activities/canadian-environmental-quality-guidelines. Accessed May 2021.
- EC (Environment Canada). 2012. Metal Mining Technical Guidance Document for Environmental Effects Monitoring (EEM). National EEM Office, Ottawa, ON.
- Golder (Golder Associates Ltd.). 2019. 2018 Environmental Monitoring Report Jackfish Lake. Prepared for Northwest Territories Power Corporation, Hay River, NWT, Canada.
- Golder (Golder Associates Ltd.). 2021. Thermal Plume Delineation Study Design Plan. Version 2.1. Submitted to the Northwest Territories Power Corporation, May 2021. Yellowknife, NT.
- Government of Newfoundland and Labrador. 2010. Assessment of the Effects of Holding Time on Various Water Quality Parameters. Department of Environment and Conservation. Water Resources Management Division, St. John's, NL, Canada.
- Love J, Humphries A, Hall T. 2016. Nitrate and nitrite holding time study completed for a northern Canadian mine. Integr Environ Assess Manag. 12(4): 823-824.
- Terzi RA, Winkler T, Routledge B. 1994. Hydrometric Field and Related Manual, Water Survey of Canada. Environment Canada, Ottawa, ON.
- Weiner ER. 2000. Applications of environmental chemistry: a practical guide for environmental professionals. Lewis Publishers, Boca Raton, FL. 288 pp.

Personal Communications

- Dang C. 2008. ALS Group, Environmental Division. 2008. Personal Communication with Golder Associates. 28 February 2008.
- Gregg O. 2019a. ALS Group, Environmental Division. 2019b. Personal Communication with Golder Associates. 23 July 2019.
- Gregg O. 2019b. ALS Group, Environmental Division. 2019a. Personal Communication with Golder Associates. 18 July 2019.
- Gregg O. 2020. ALS Group, Environmental Division. 2020c. Personal Communication with Golder Associates. 22 October 2020.

28 February 2023 21482915

APPENDIX C

Water Level and Flow (Excel)

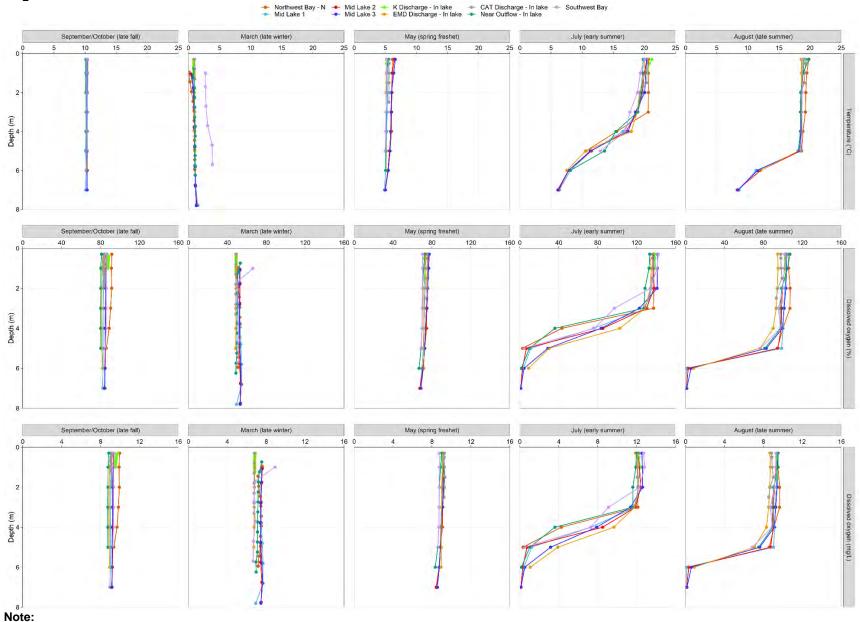
This appendix is submitted electronically

28 February 2023 21482915

APPENDIX D

Water Temperature (Excel)

This appendix is submitted electronically


28 February 2023 21482915

APPENDIX E

Water Quality

Appendices E1, E2, E3, E7 are provided electronically and E4, E5, E6 are provided in this Appendix E

Figure E.4-1: Field Profiles of Temperature, Dissolved Oxygen Percent Saturation and Concentration in Jackfish Lake, September 2021 to August 2022

Depth included ice thickness for samples collected in March 2022.

 Northwest Bay - N
 Mid Lake 2
 K Discharge - In lake
 CAT Discharge - In lake
 Southwest Bay
 Mid Lake 3
 EMD Discharge - In lake
 Near Outflow - In lake September/October (late fall) August (late summer) March (late winter) May (spring freshet) 10 6 Depth (m) 200 300 400 500 200 300 400 Depth (m)

Figure E.4-2: Field Profiles of pH and Specific Conductivity in Jackfish Lake, September 2021 to August 2022

Depth included ice thickness for samples collected in March 2022.
Field specific conductivity measurements at Southwest Bay on 22 March 2022 were invalidated and excluded from the assessment (Section 4.3.12 in Appendix B). μS/cm = microsiemens per centimetre.

Figure E.5-1: Percent Saturation of Dissolved Oxygen in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

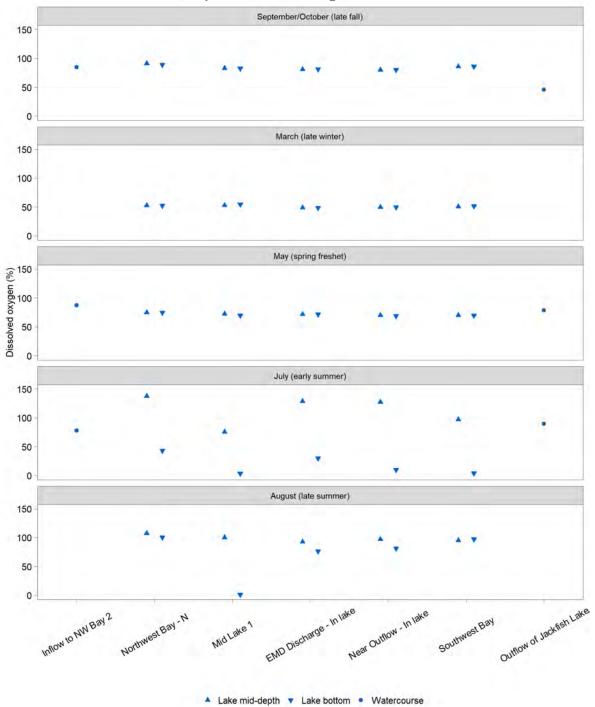
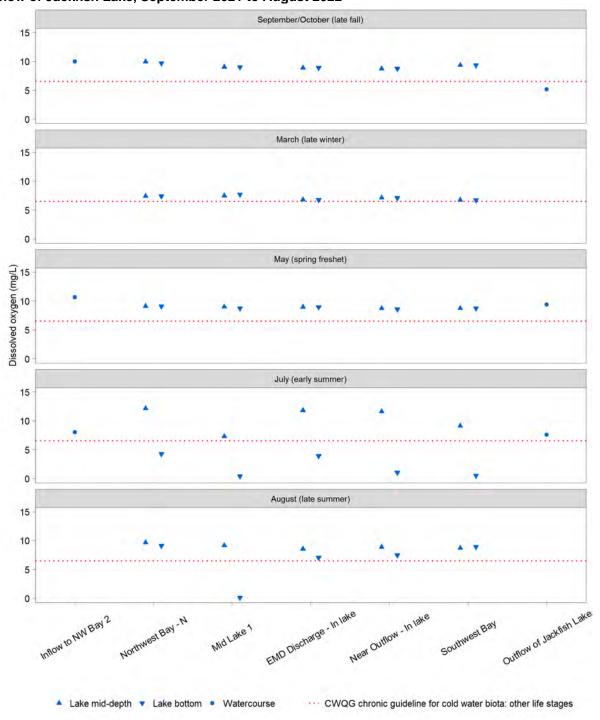



Figure E.5-2: Dissolved Oxygen Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

The CWQG guideline for cold water biota is the minimum guideline.

CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-3: Field pH in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

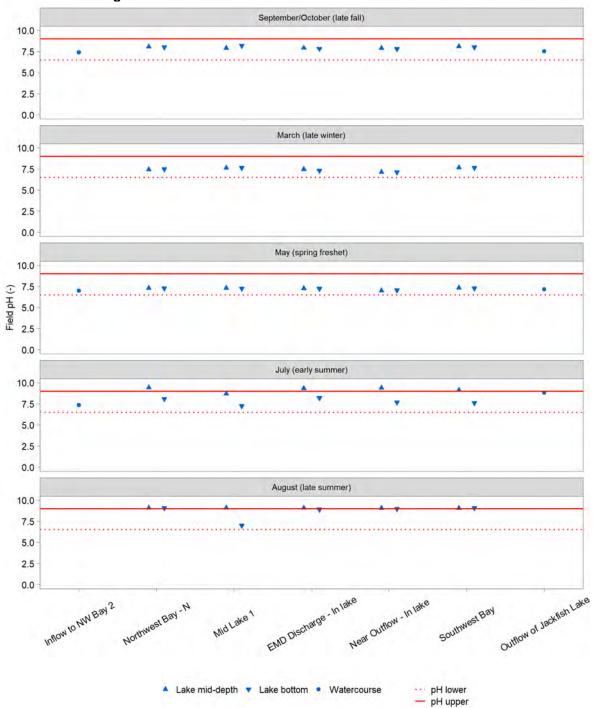
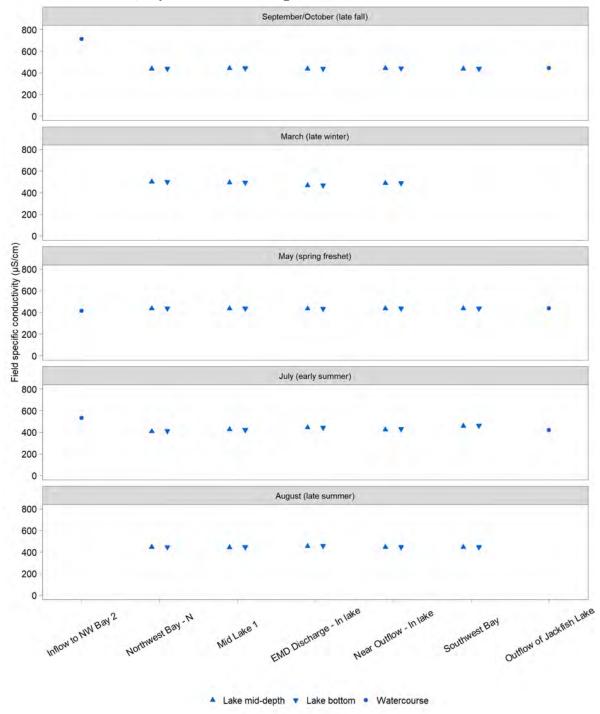



Figure E.5-4: Field Specific Conductivity in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

Field specific conductivity measurements at Southwest Bay on 22 March 2022 were invalidated and excluded from further analysis. See details in Section 4.3.12 of Appendix B. μ S/cm = microsiemens per centimetre.

Figure E.5-5: Temperatures in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

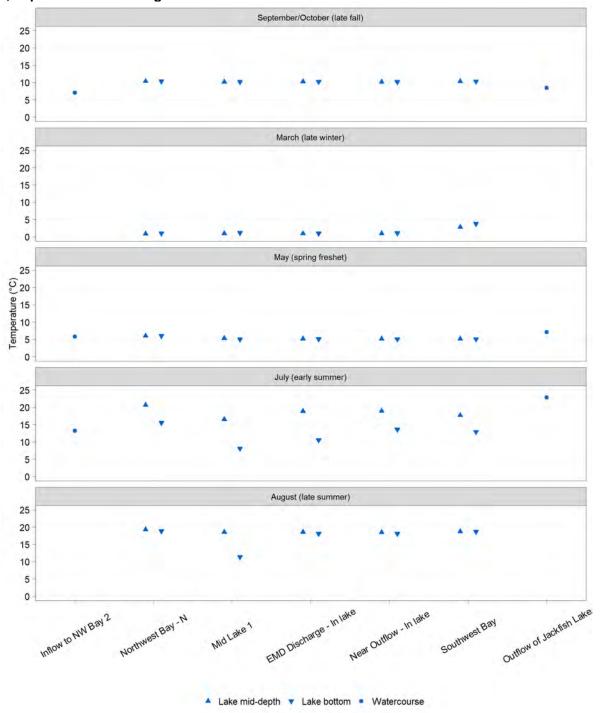
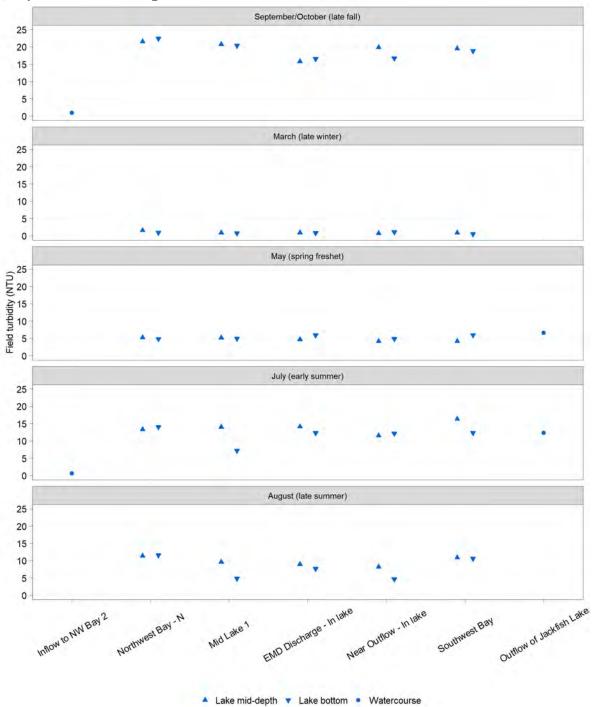



Figure E.5-6: Field Turbidity in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

An elevated field turbidity value of 53 NTU at the Outflow of Jackfish Lake station was removed from the September/October (late fall) plot to help identify seasonal and spatial patterns.

NTU = nephelometric turbidity units.

Figure E.5-7: Dissolved Organic Carbon Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

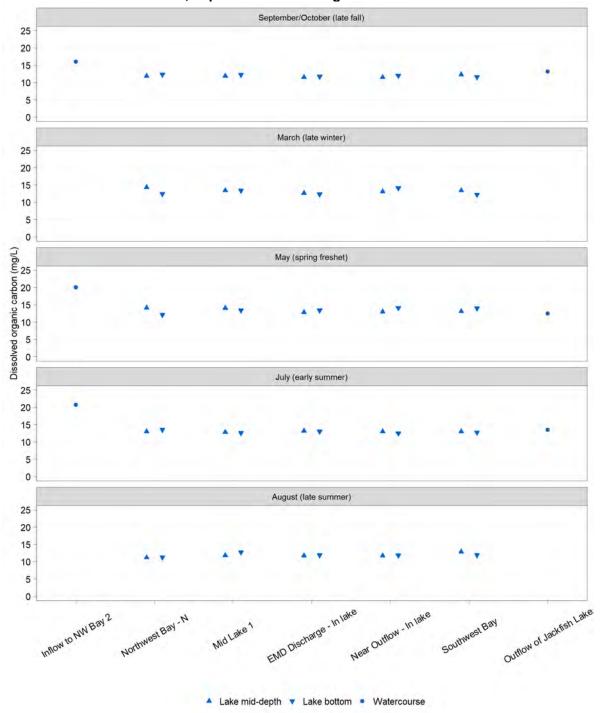
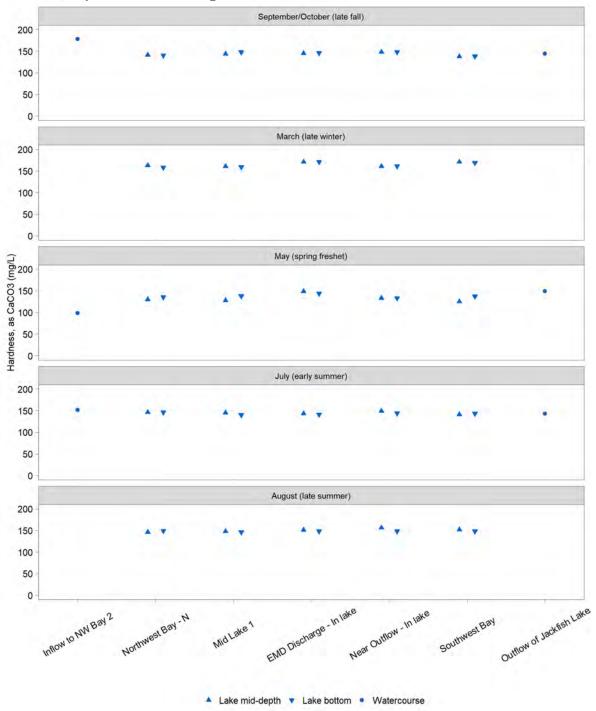



Figure E.5-8: Hardness, as CaCO₃ in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

 $CaCO_3$ = calcium carbonate.

Figure E.5-9: Laboratory pH in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

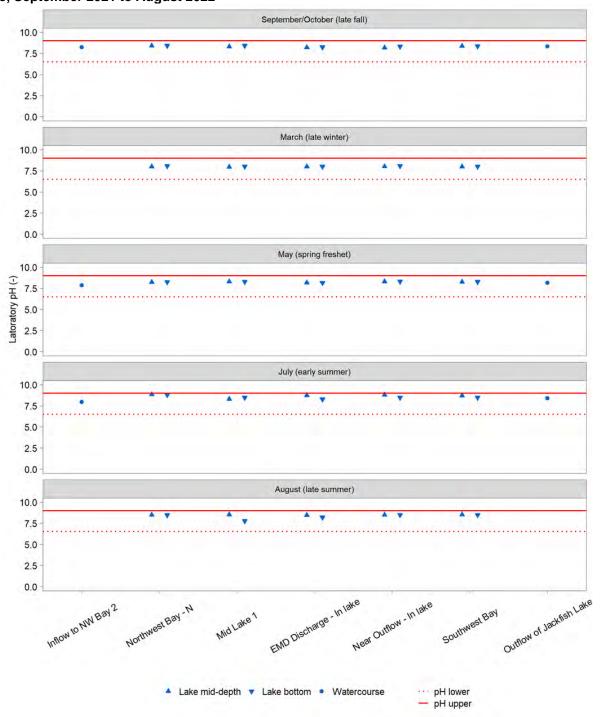
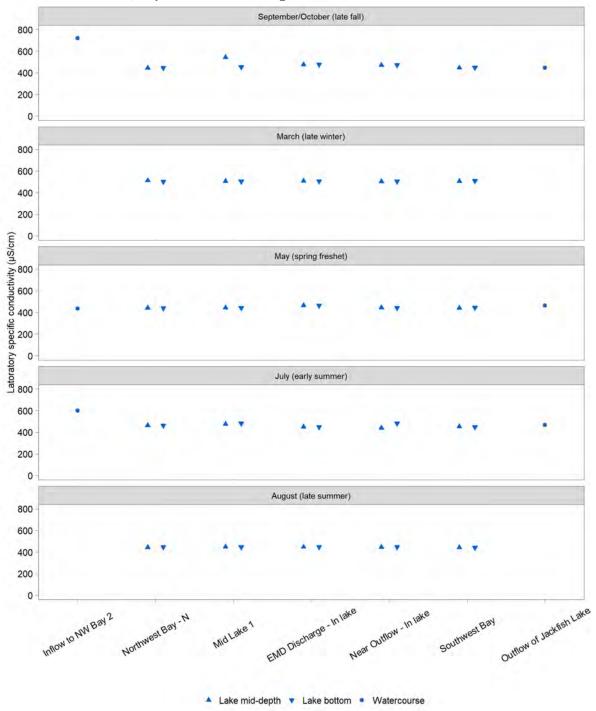
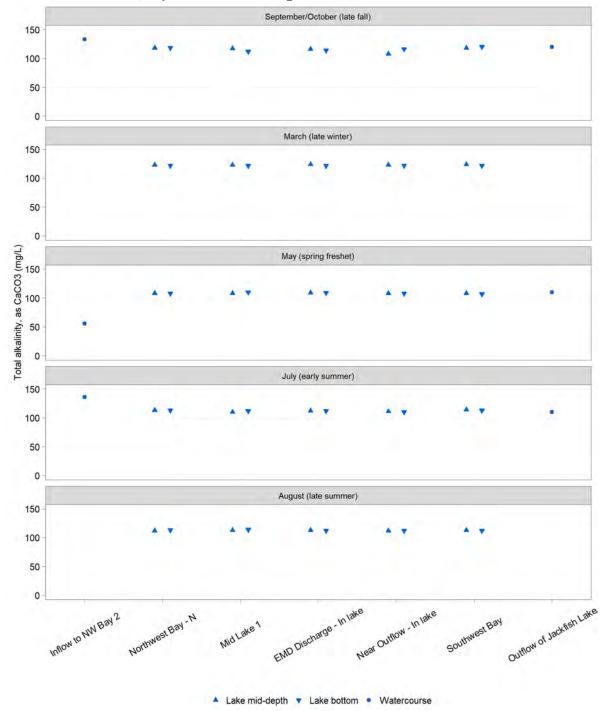




Figure E.5-10: Laboratory Specific Conductivity in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

 μ S/cm = microsiemens per centimetre.

Figure E.5-11: Total Alkalinity, as CaCO₃ in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

 $CaCO_3$ = calcium carbonate.

Figure E.5-12: Calculated Total Dissolved Solids Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

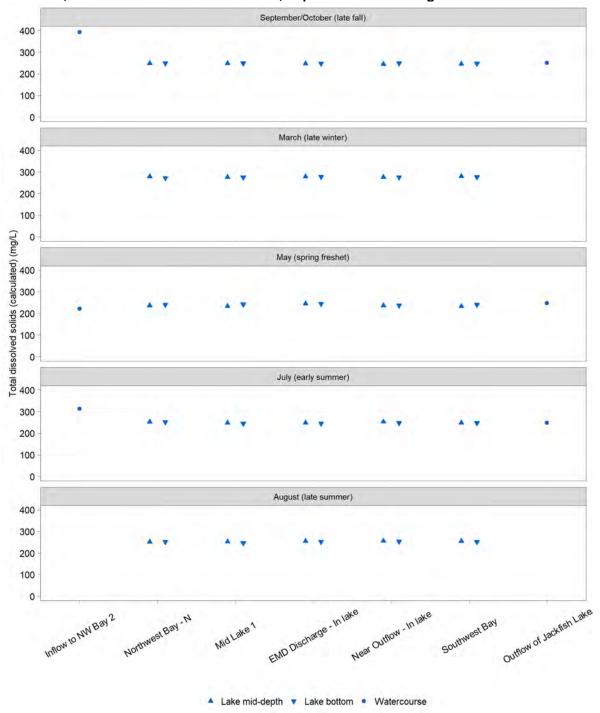


Figure E.5-13: Measured Total Dissolved Solids Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

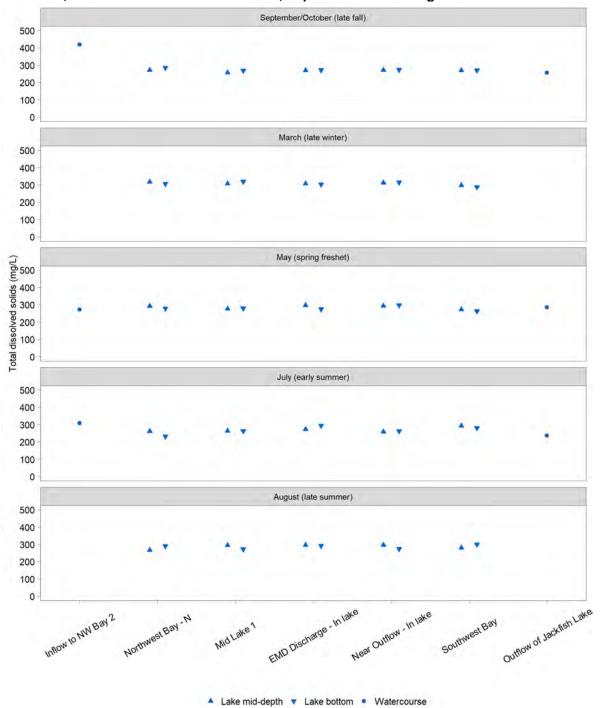
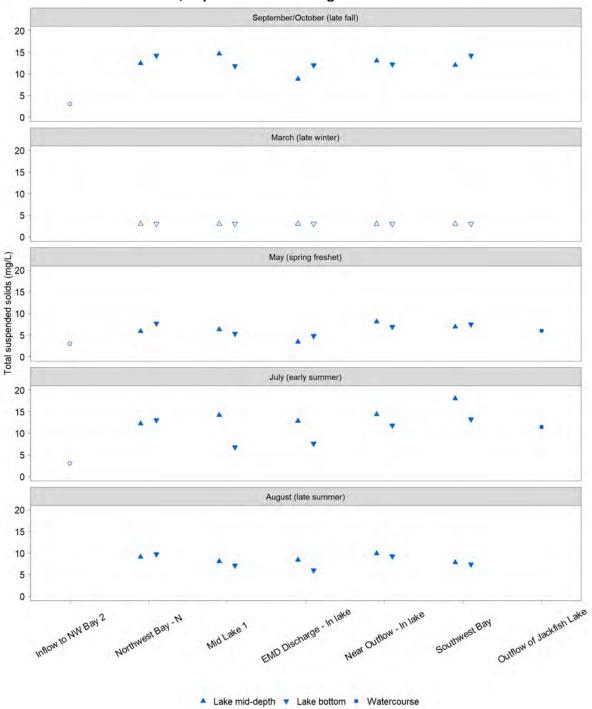
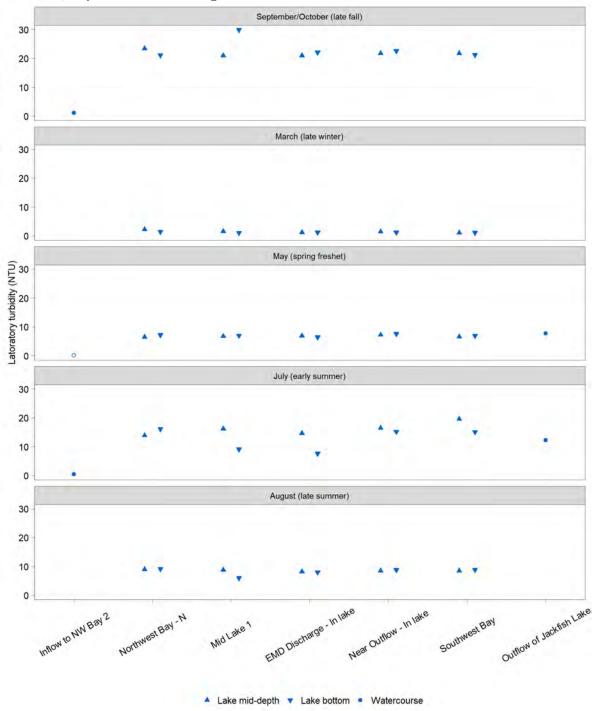




Figure E.5-14: Total Suspended Solids Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

Concentrations below the detection limit are shown at the detection limit as open markers. An elevated total suspended solids value of 55 mg/L at the Outflow of Jackfish Lake station was not shown on the September/October (late fall) plot to help identify seasonal and spatial patterns.

Figure E.5-15: Laboratory Turbidity in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

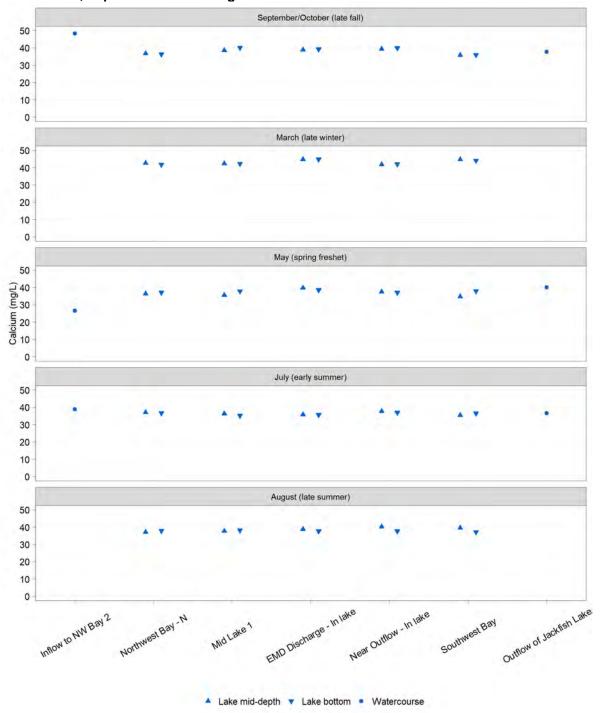
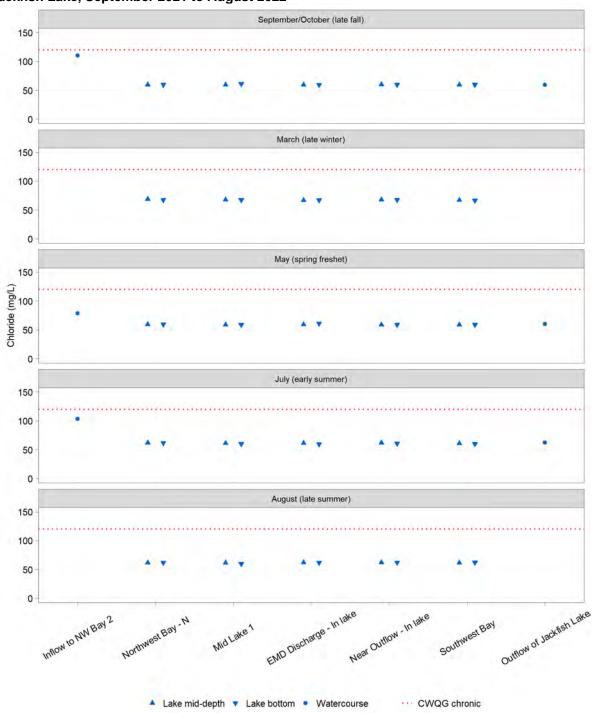
Concentrations below the detection limit are shown at the detection limit as open markers.

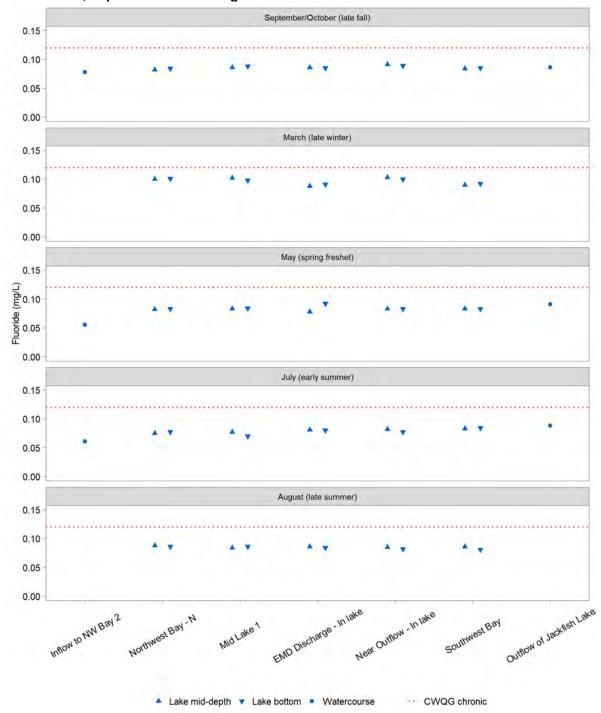
An elevated laboratory turbidity value of 72 NTLL at the Outflow of Jackfish Lake station was not shown on the 5

An elevated laboratory turbidity value of 72 NTU at the Outflow of Jackfish Lake station was not shown on the September/October (late fall) plot to help identify seasonal and spatial patterns.

NTU = nephelometric turbidity units.

Figure E.5-16: Calcium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022


Figure E.5-17: Chloride Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

The acute CWQG for chloride is 640 mg/L.

CWQG = Canadian water quality guideline for the protection of freshwater aquatic life.

Figure E.5-18: Fluoride Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-19: Magnesium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

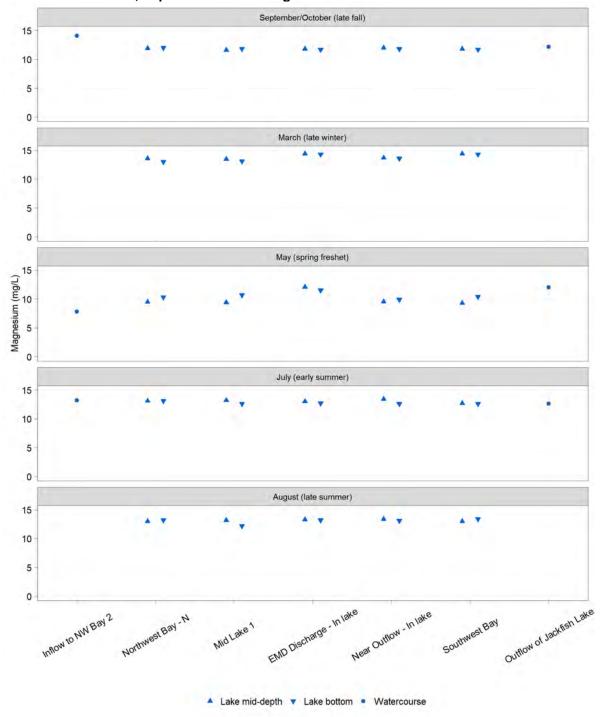


Figure E.5-20: Potassium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

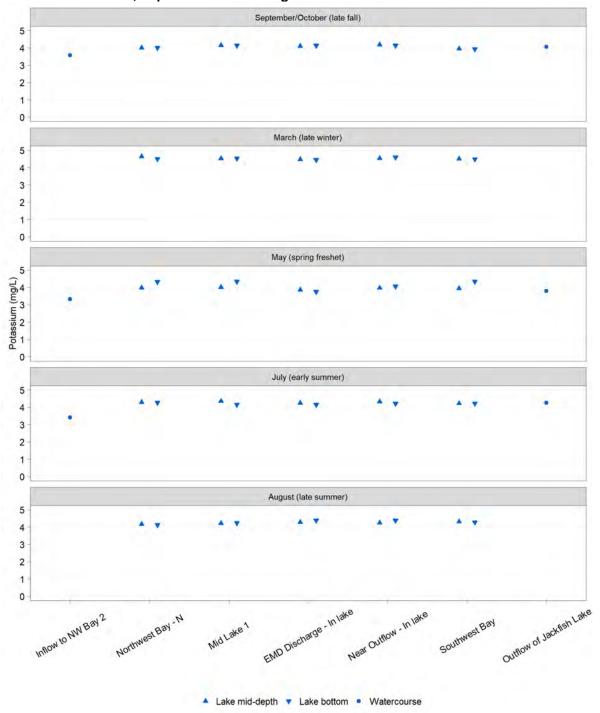


Figure E.5-21: Silica Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

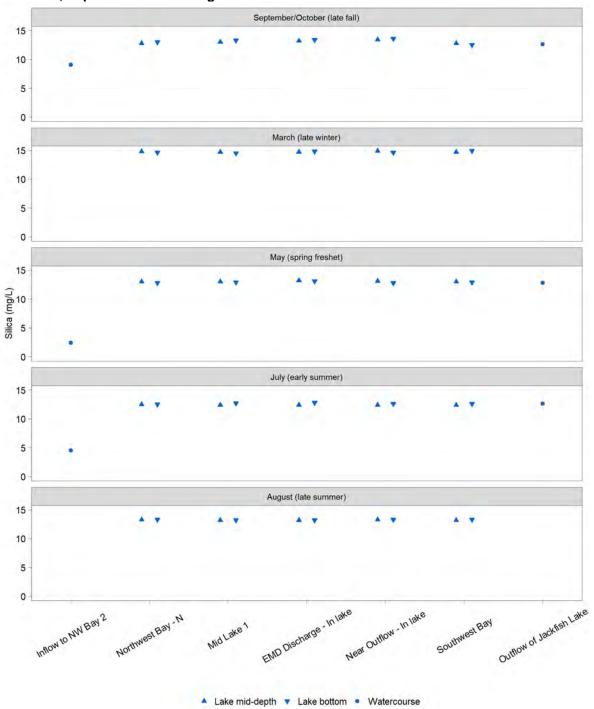


Figure E.5-22: Sodium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

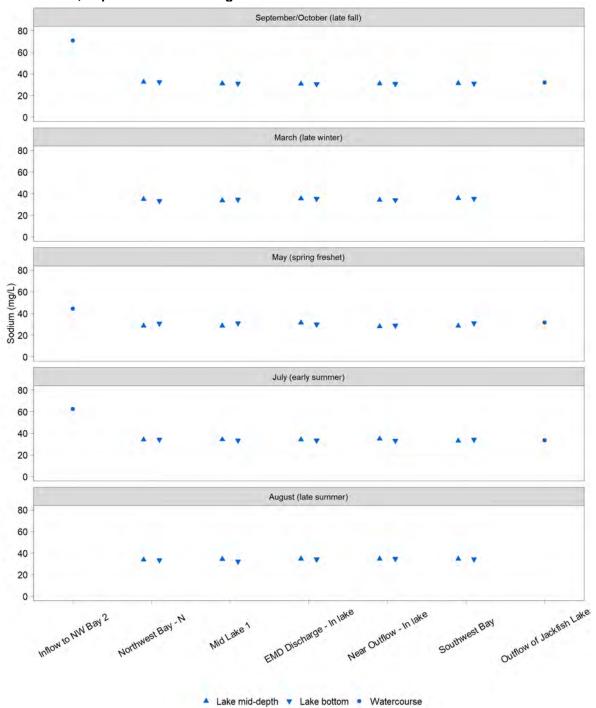


Figure E.5-23: Sulphate Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

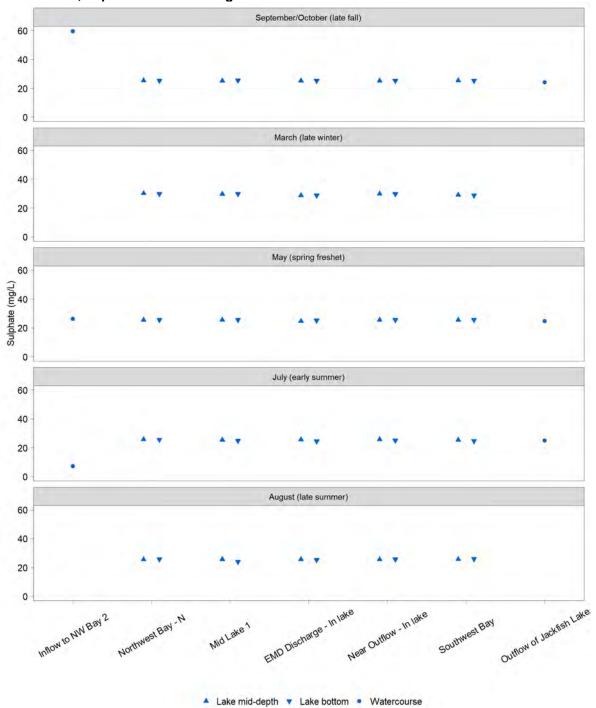
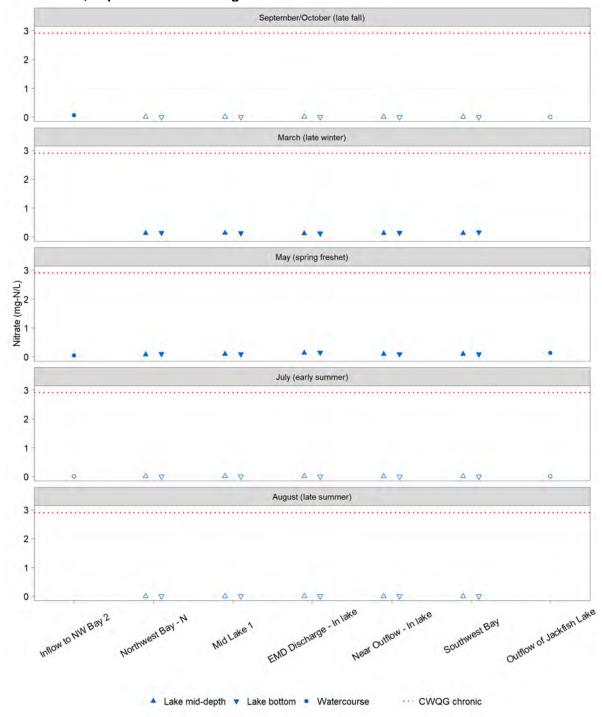
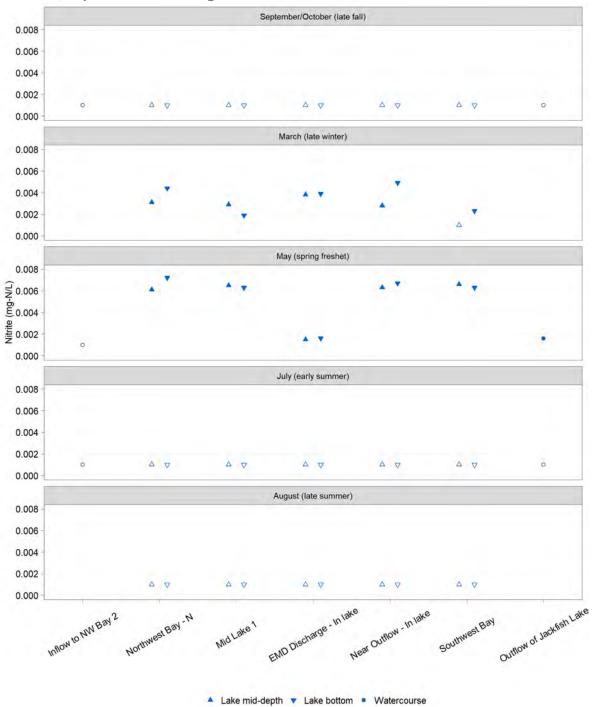



Figure E.5-24: Nitrate Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

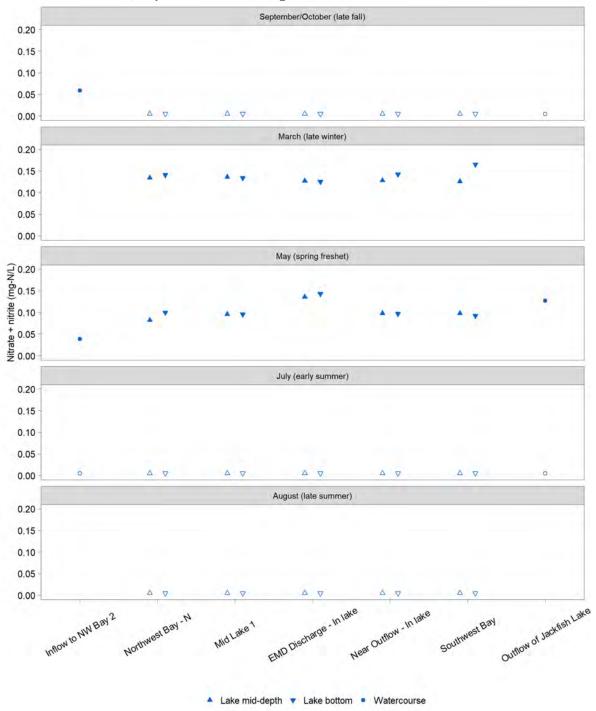


Concentrations below the detection limit are shown at the detection limit as open markers.

The acute CWQG for nitrate is 124 mg/L.

mg-N/L = milligrams nitrogen per litre; CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-25: Nitrite Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022



Notes

Concentrations below the detection limit are shown at the detection limit as open markers. The CWQG for nitrite is $0.06\ mg/L$.

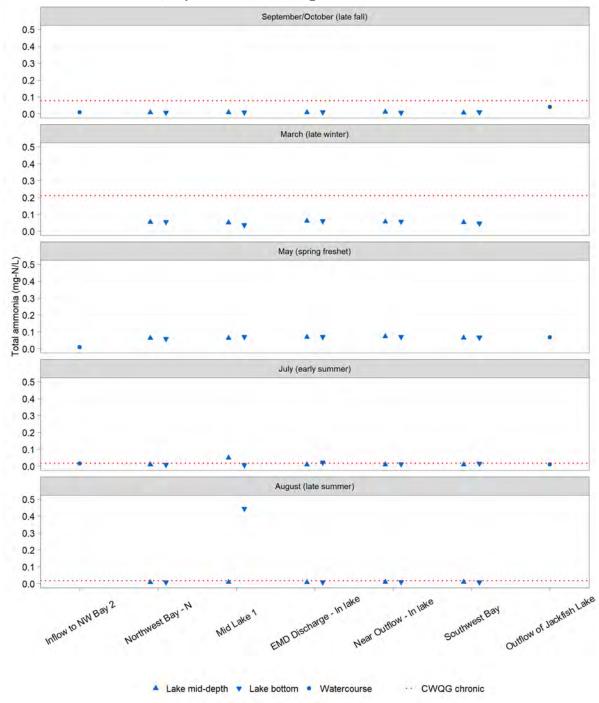

mg-N/L = milligrams nitrogen per litre; CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-26: Nitrate + Nitrite Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

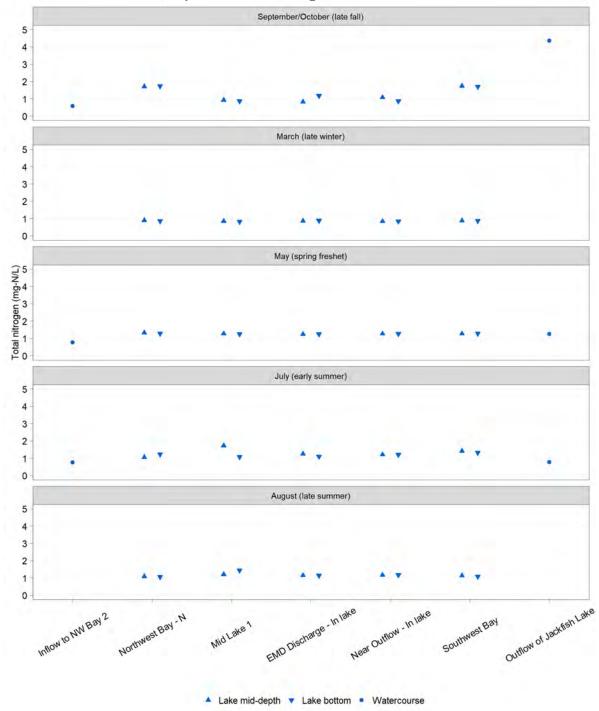

Concentrations below the detection limit are shown at the detection limit as open markers. mg-N/L = milligrams nitrogen per litre.

Figure E.5-27: Total Ammonia Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

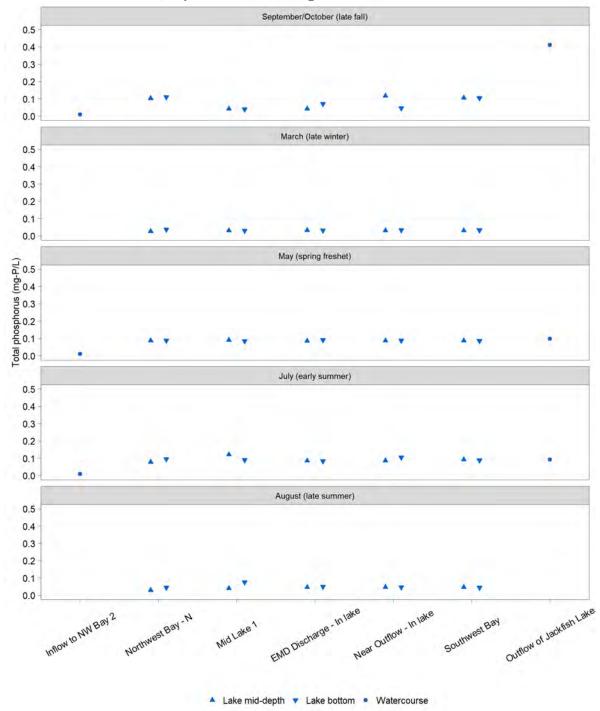

The CWQG for ammonia is temperature and pH dependent; the minimum applicable CWQGs for each season were plotted. The minimum CWQG for total ammonia in May (spring freshet) is 0.63 mg/L. mg-N/L = milligrams nitrogen per litre; CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-28: Total Nitrogen Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

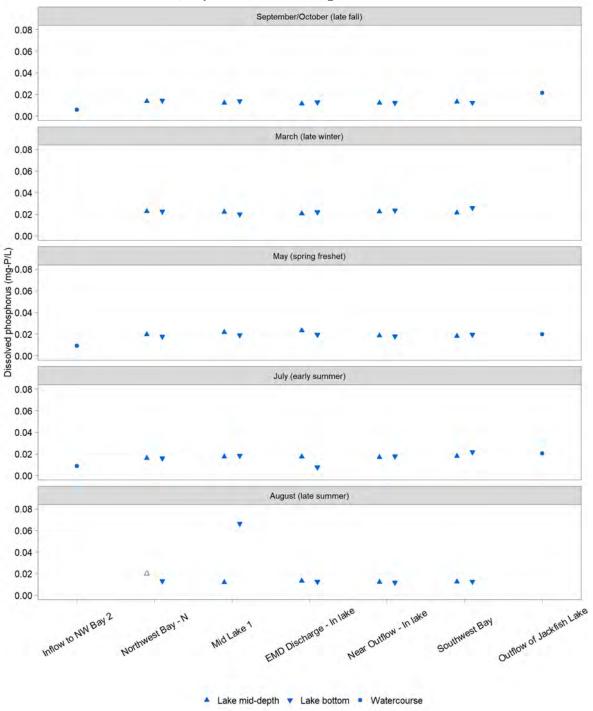

mg-N/L = milligrams nitrogen per litre.

Figure E.5-29: Total Phosphorus Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

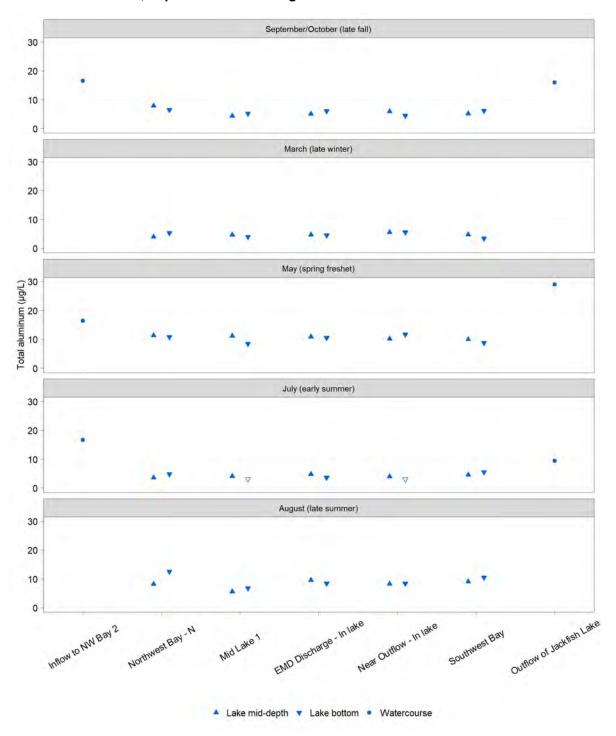

mg-P/L = milligrams phosphorus per litre.

Figure E.5-30: Dissolved Phosphorus Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

Concentrations below the detection limit are shown at the detection limit as open markers. mg-P/L = milligrams phosphorus per litre.

Figure E.5-31: Total Aluminum Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

Concentrations below the detection limit are shown at the detection limit as open markers. The CWQG for total aluminum is pH dependent. The minimum CWQG for total aluminum is 100 µg/L. CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-32: Total Antimony Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

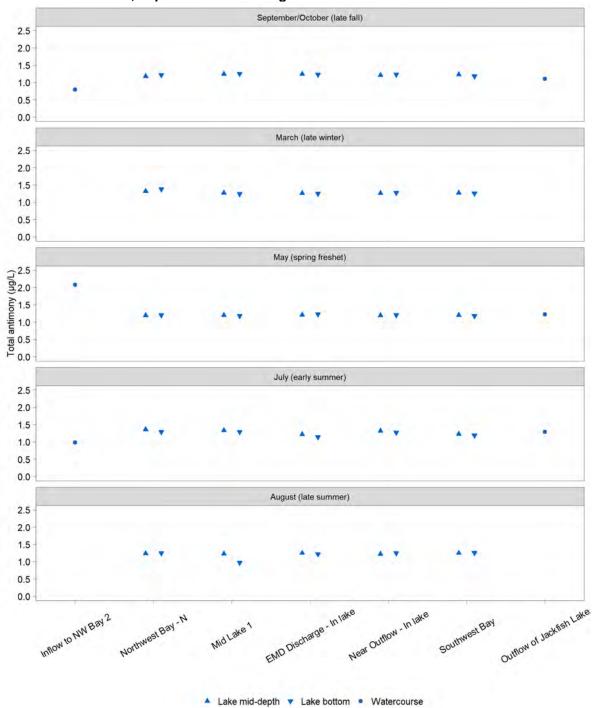
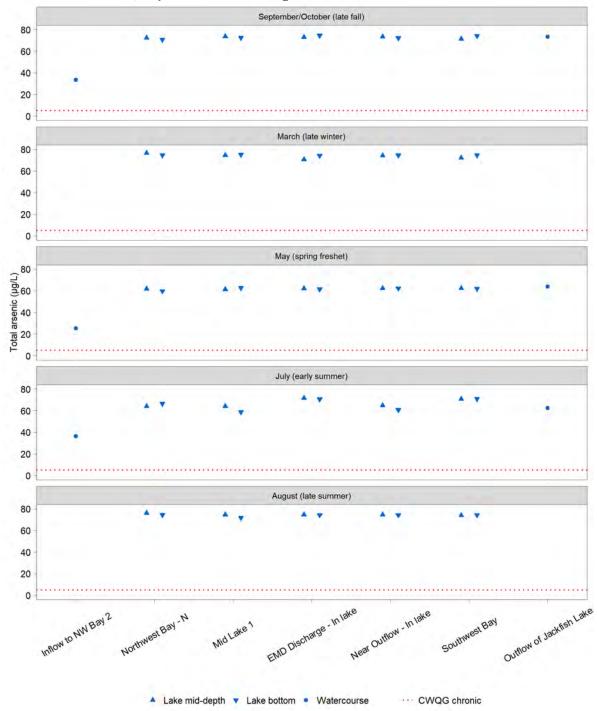



Figure E.5-33: Total Arsenic Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-34: Total Barium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

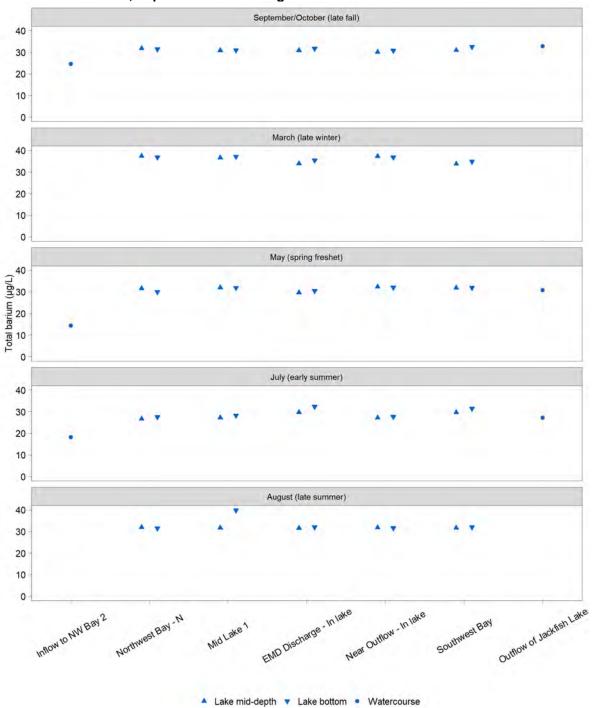
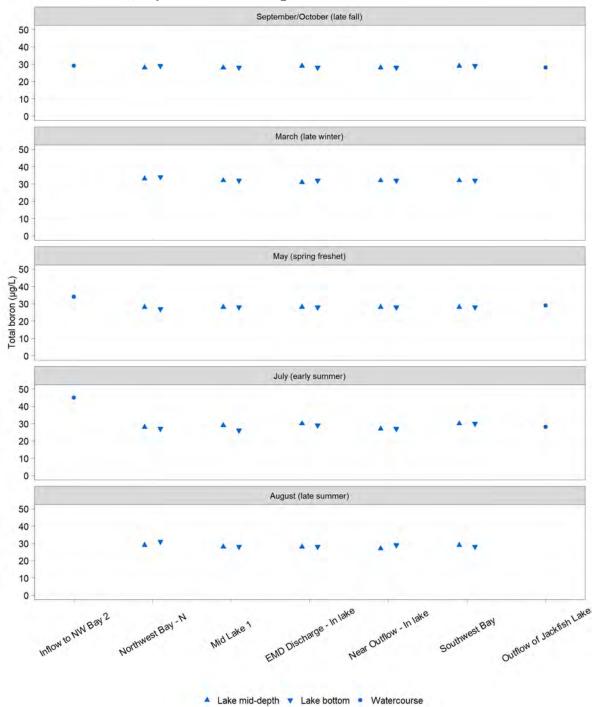



Figure E.5-35: Total Boron Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

The acute CWQG for total boron is $29,000 \mu g/L$.

The chronic CWQG for total boron is 1,500 µg/L. CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-36: Total Cobalt Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

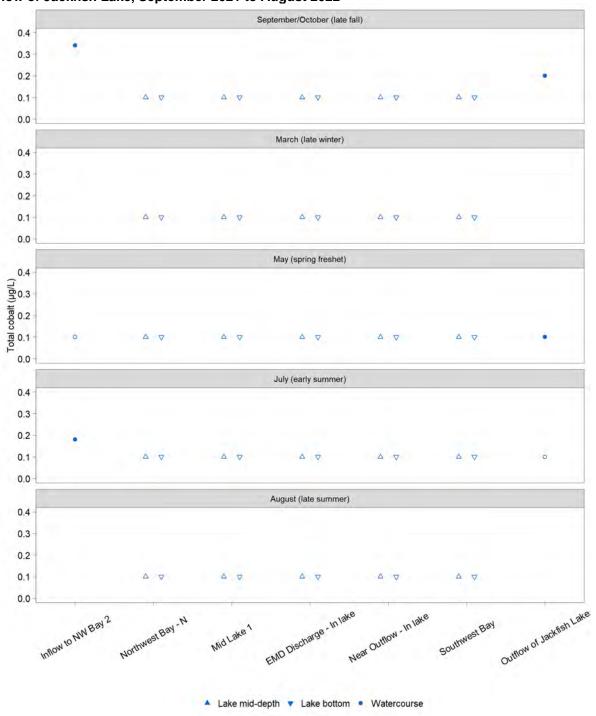
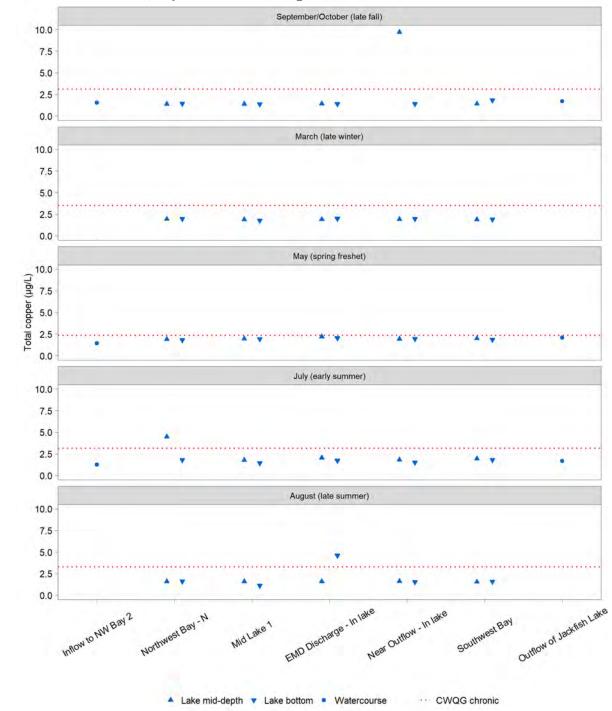
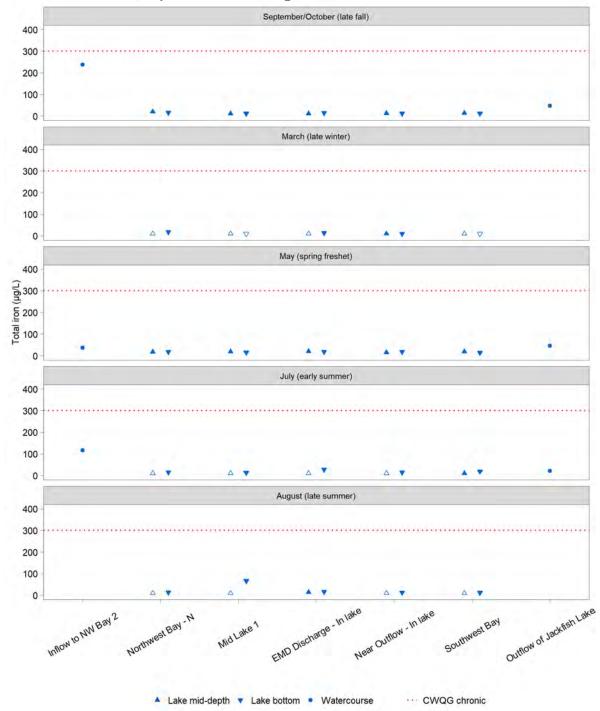




Figure E.5-37: Total Copper Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

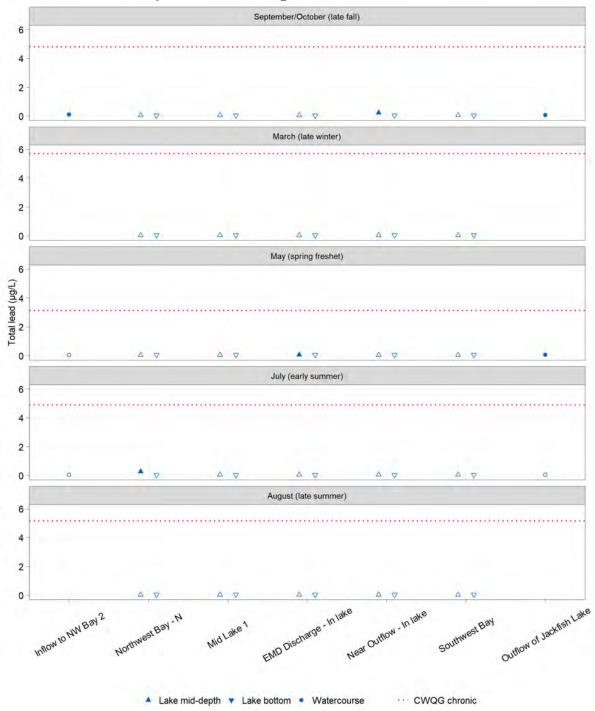

The CWQG for total copper is hardness dependent; the minimum applicable CWQGs for each season were plotted. CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-38: Total Iron Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

Concentrations below the detection limit are shown at the detection limit as open markers. CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-39: Total Lead Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

Notes

Concentrations below the detection limit are shown at the detection limit as open markers. The CWQG for total lead is hardness dependent; the minimum applicable CWQGs for each season were plotted. CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-40: Total Lithium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

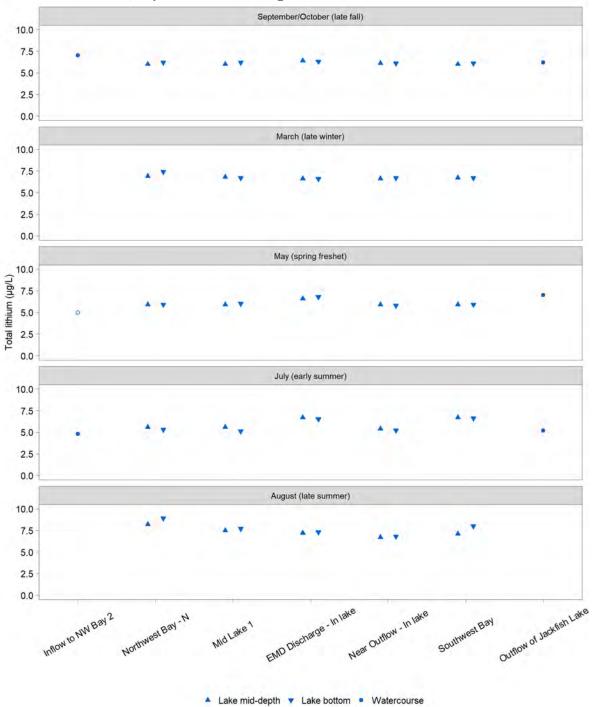


Figure E.5-41: Total Manganese Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

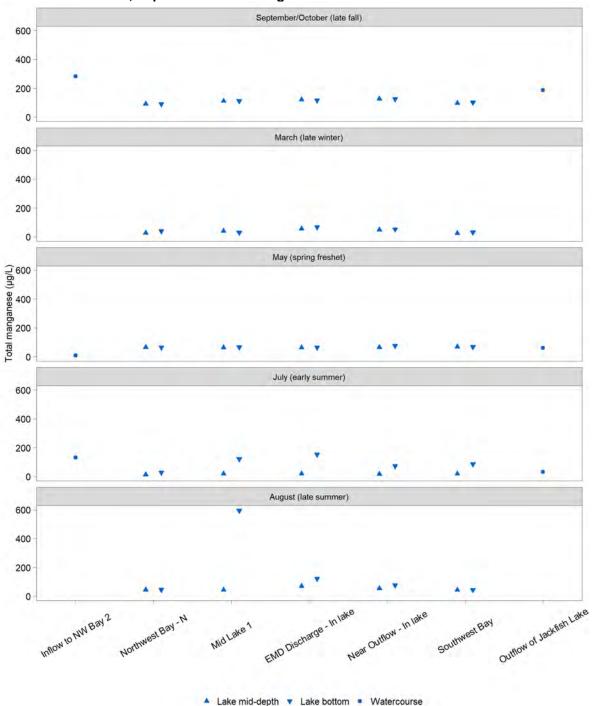
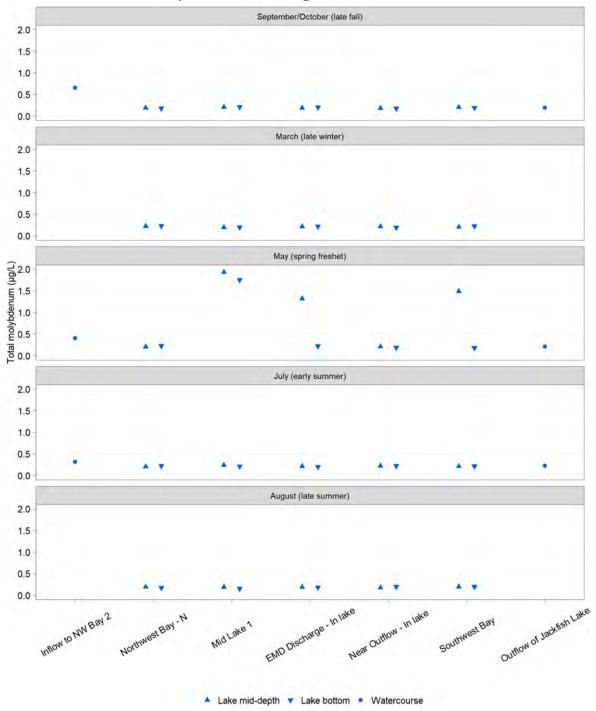
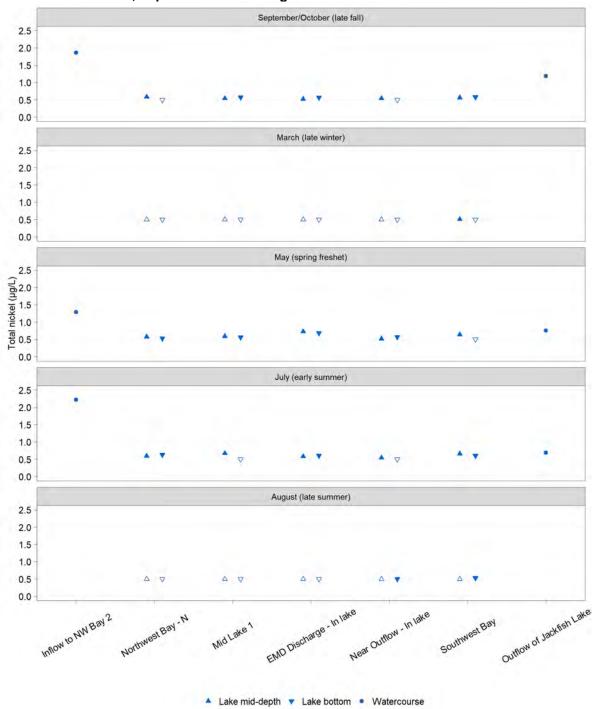



Figure E.5-42: Total Molybdenum Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022



The chronic CWQG for total molybdenum is 73 $\mu g/L$.

Four total molybdenum concentrations (greater than 1 µg/L) at Mid Lake 1, EMD Discharge - In lake, and Southwest Bay in May 2022 were outside of historical ranges. Due to insufficient evidence of field contamination and laboratory error, these data points were qualified.

CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-43: Total Nickel Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

Notes

Concentrations below the detection limit are shown at the detection limit as open markers. The CWQG for total nickel is hardness dependent. The minimum CWQG for total nickel is 95 μ g/L. CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-44: Total Rubidium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

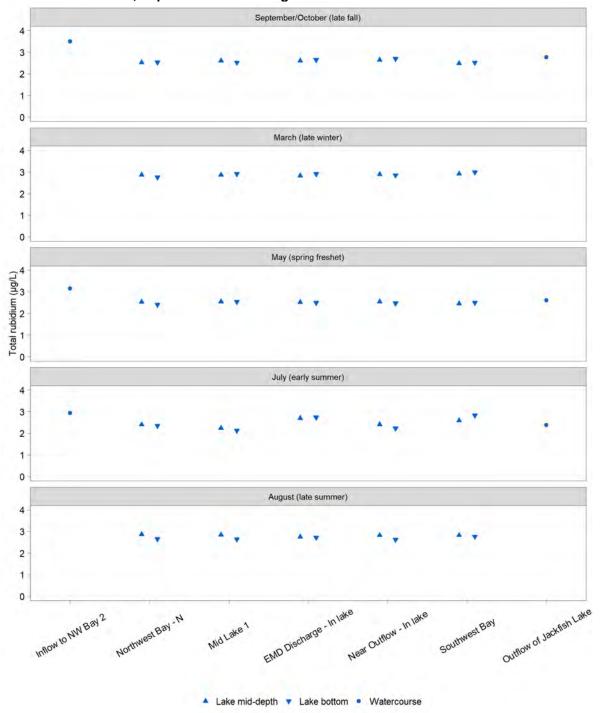
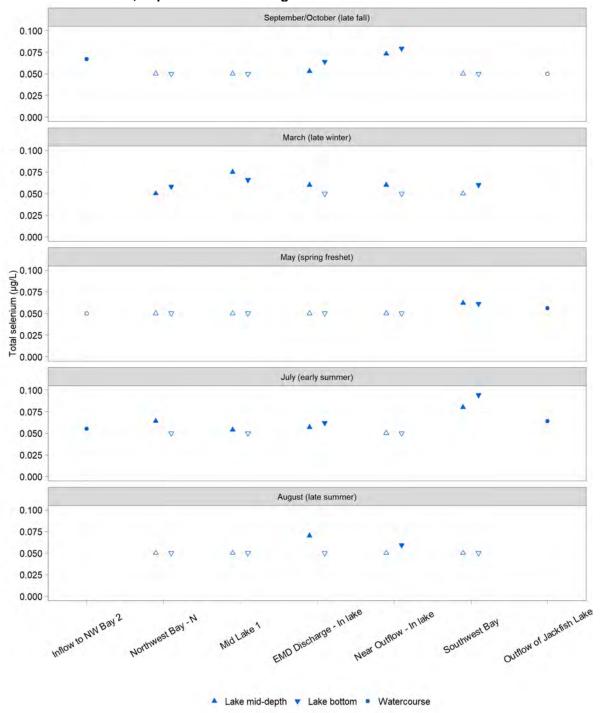



Figure E.5-45: Total Selenium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

Concentrations below the detection limit are shown at the detection limit as open markers. The chronic CWQG for total selenium is 1 μ g/L.

CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-46: Total Silicon Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

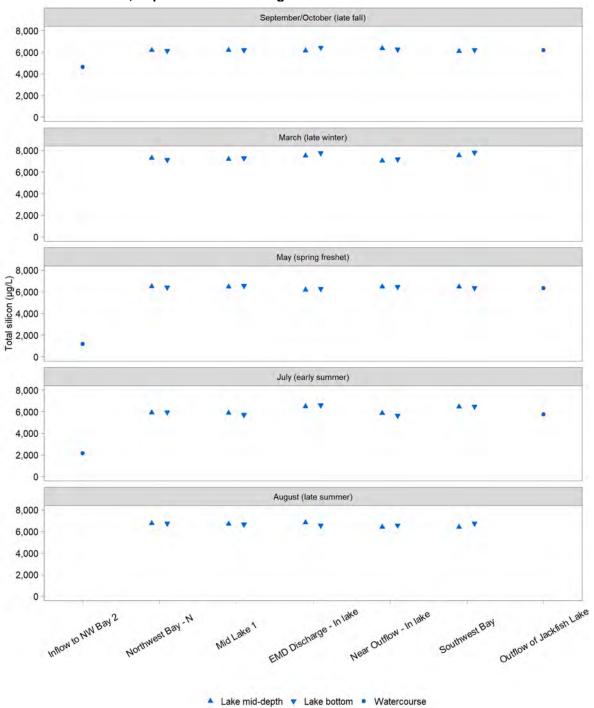


Figure E.5-47: Total Strontium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

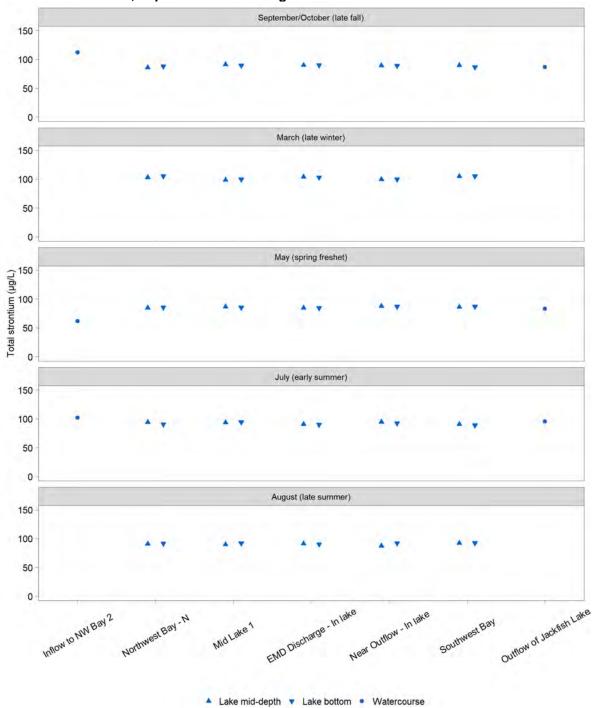


Figure E.5-48: Total Sulphur Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

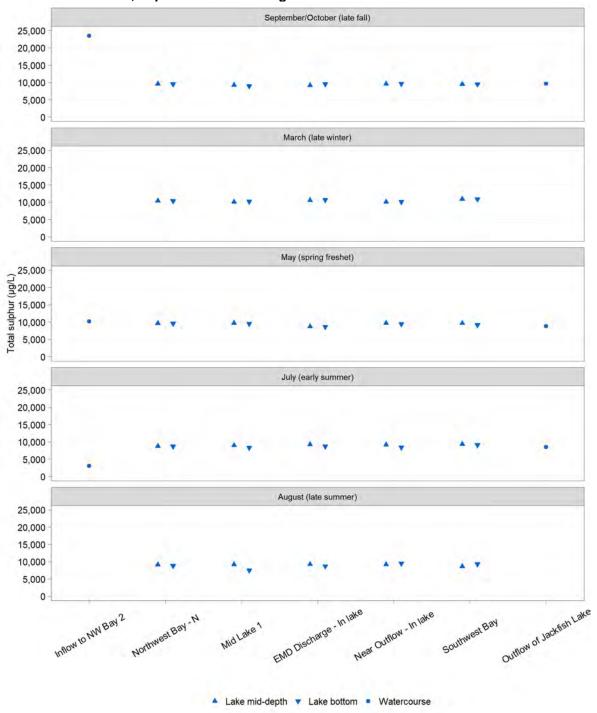


Figure E.5-49: Total Titanium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

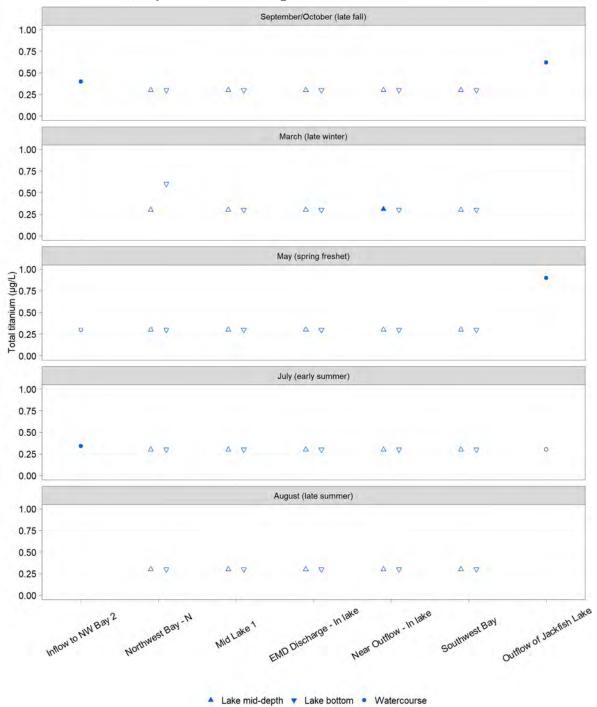
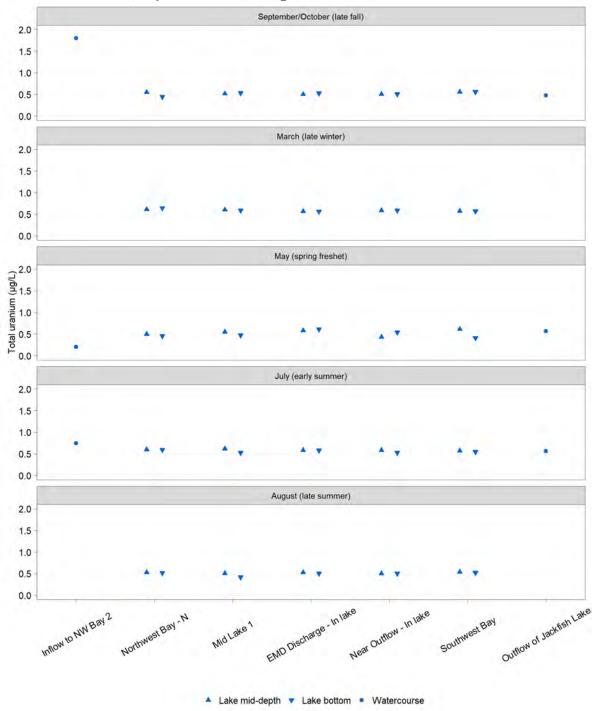



Figure E.5-50: Total Uranium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

The acute CWQG for total uranium is 33 μ g/L, and the chronic CWQG is 15 μ g/L. CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-51: Total Zinc Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

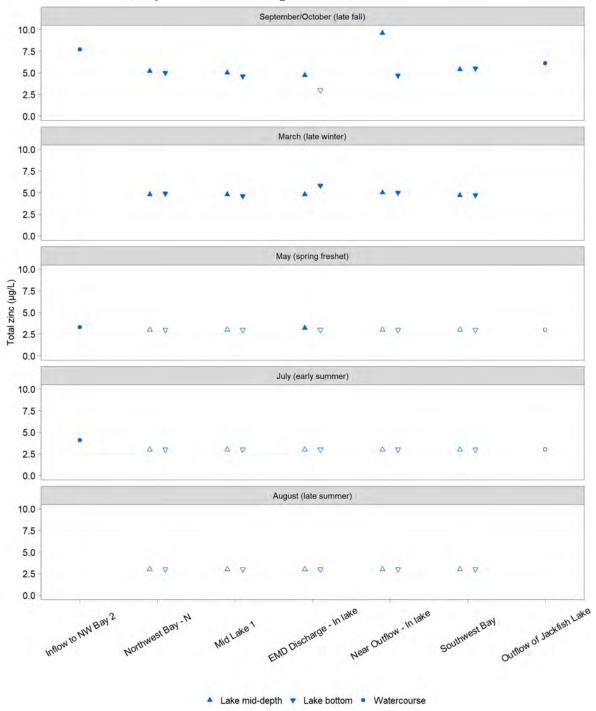


Figure E.5-52: Dissolved Aluminum Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

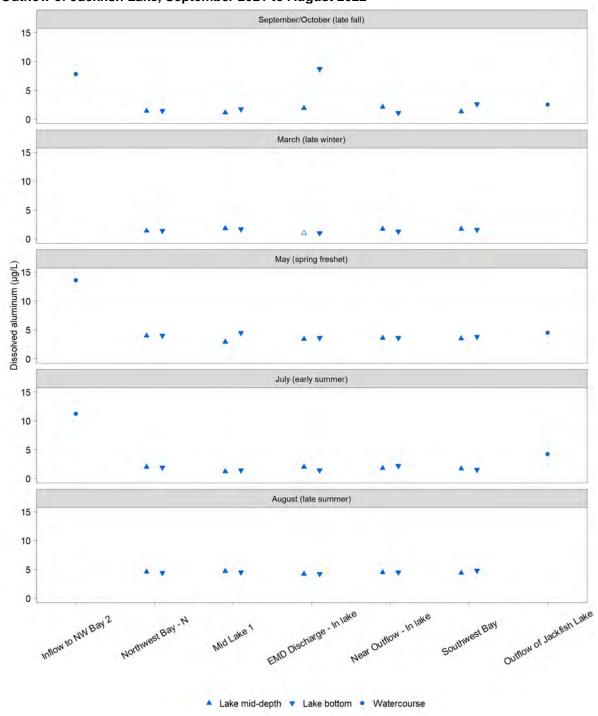


Figure E.5-53: Dissolved Antimony Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

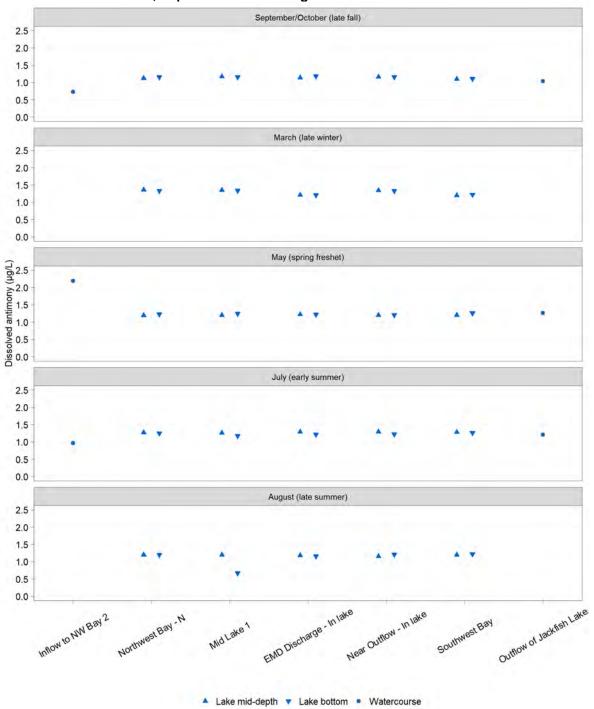


Figure E.5-54: Dissolved Arsenic Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

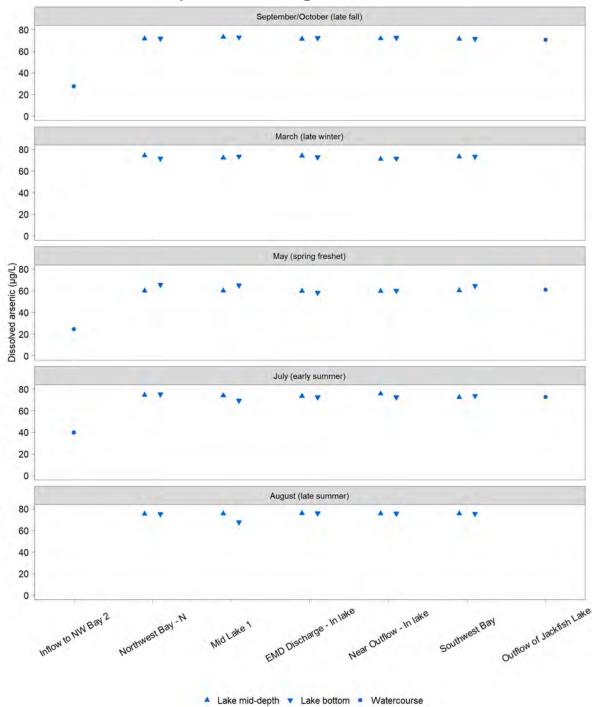


Figure E.5-55: Dissolved Barium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

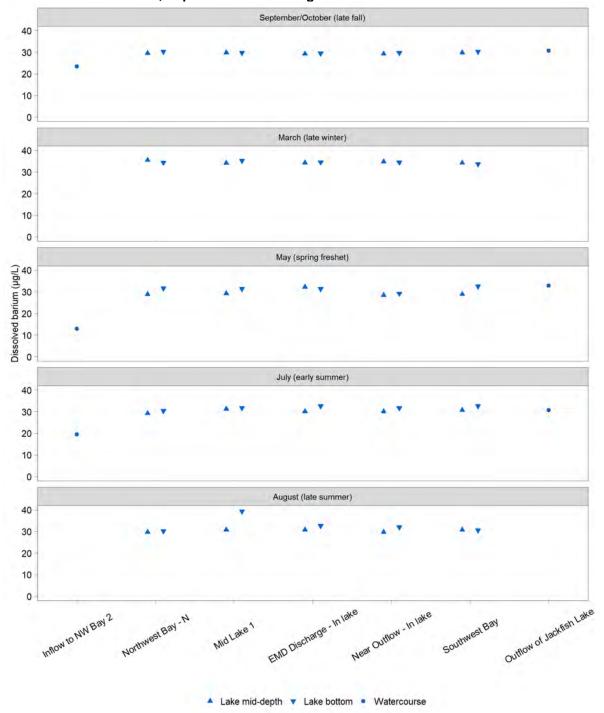


Figure E.5-56: Dissolved Boron Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

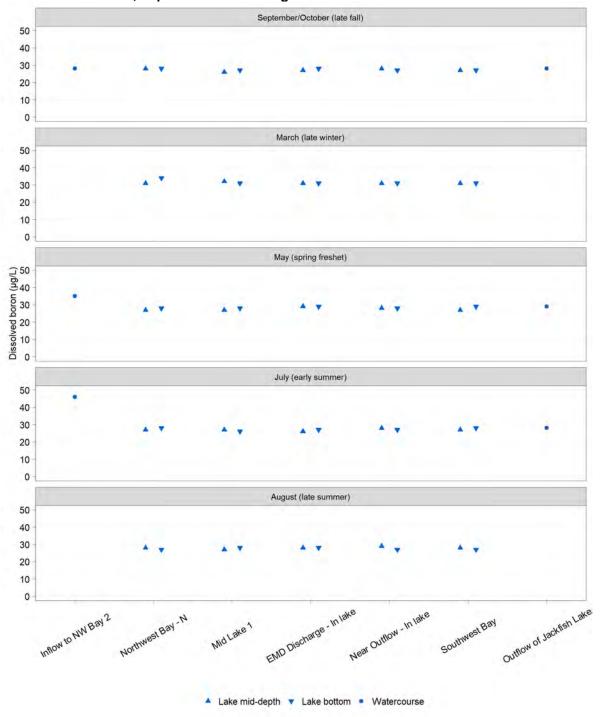
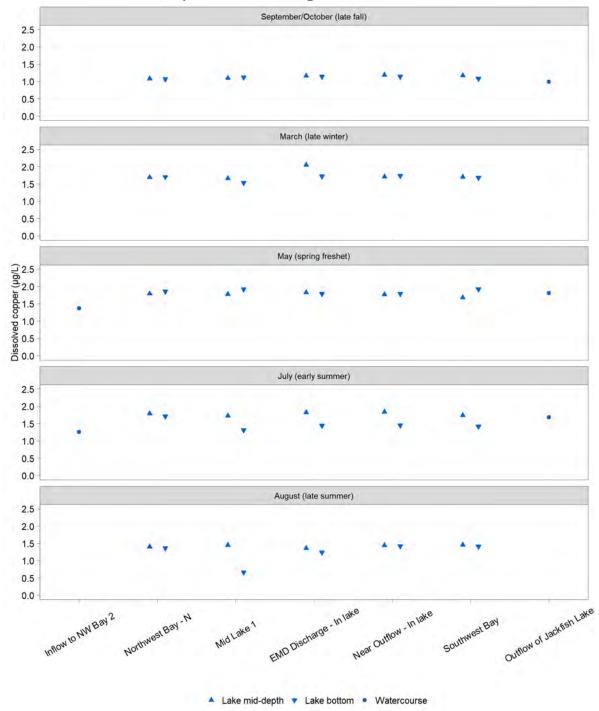



Figure E.5-57: Dissolved Copper Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022 Note:

An elevated dissolved copper value of 29 μ g/L at the Inflow to NW Bay 2 station was invalidated and excluded from further analysis. See details in Section 4.3.12 of Appendix B.

Figure E.5-58: Dissolved Iron Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

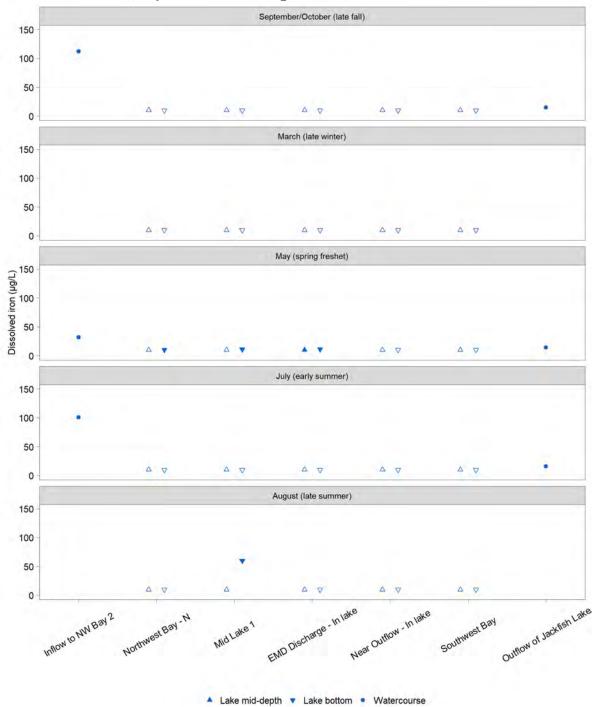


Figure E.5-59: Dissolved Lithium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

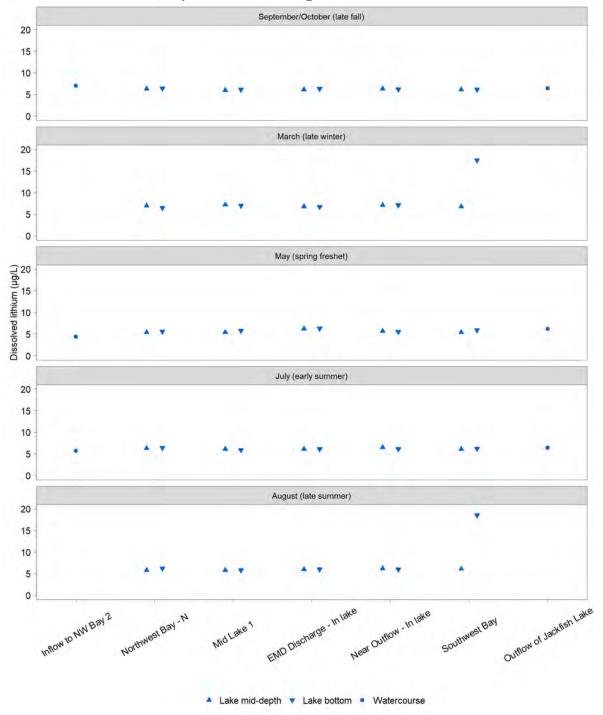
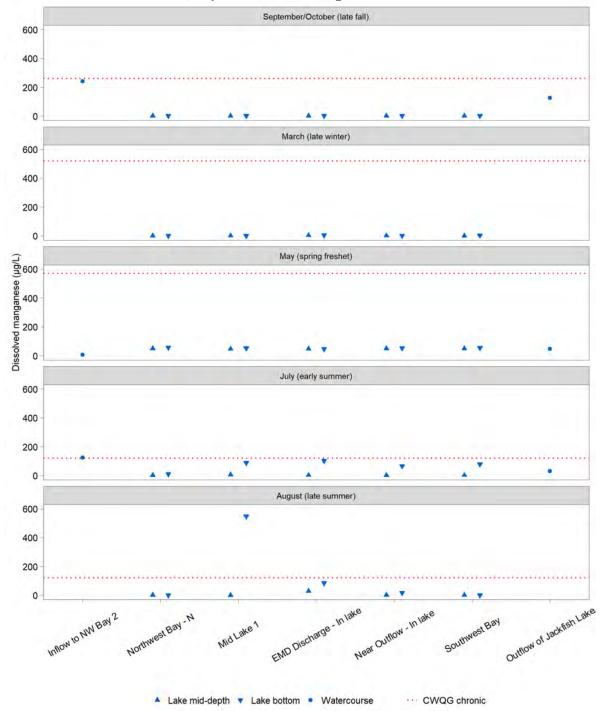
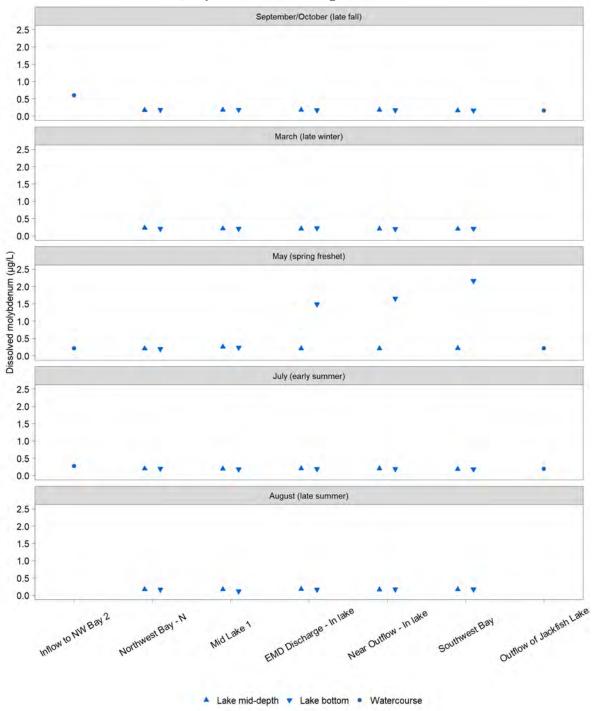



Figure E.5-60: Dissolved Manganese Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022



The acute CWQG for dissolved manganese is hardness dependent. The minimum acute CWQG for dissolved manganese is $6,575 \mu g/L$.

The chronic CWQG for dissolved manganese is pH and hardness dependent. The minimum applicable chronic CWQGs for each season were plotted.

CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life.

Figure E.5-61: Dissolved Molybdenum Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

Three total molybdenum concentrations (greater than 1 μ g/L) at EMD Discharge - In lake, Near Outflow - In lake, and Southwest Bay in May 2022 were outside of historical ranges. Due to insufficient evidence of field contamination and laboratory error, these data points were qualified.

Figure E.5-62: Dissolved Nickel Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

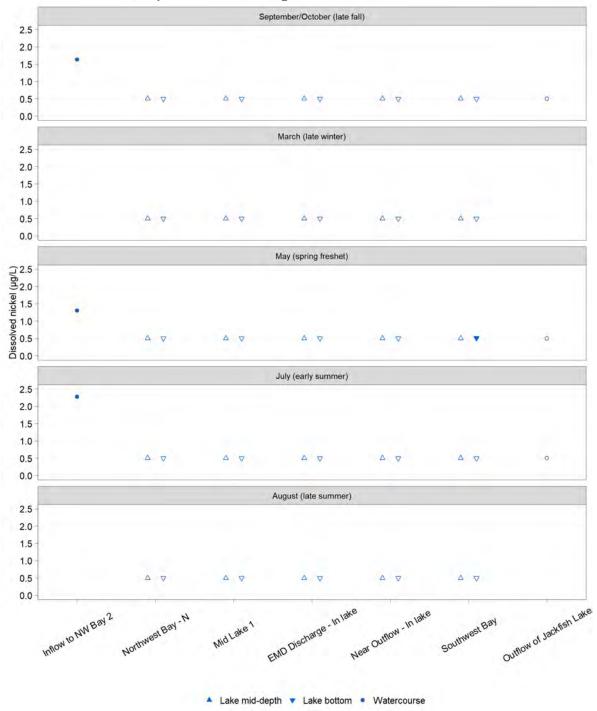


Figure E.5-63: Dissolved Rubidium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

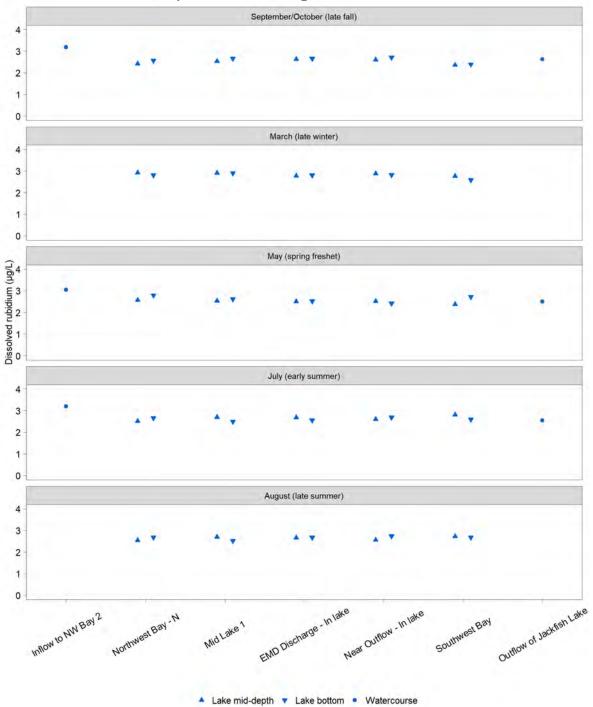


Figure E.5-64: Dissolved Selenium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

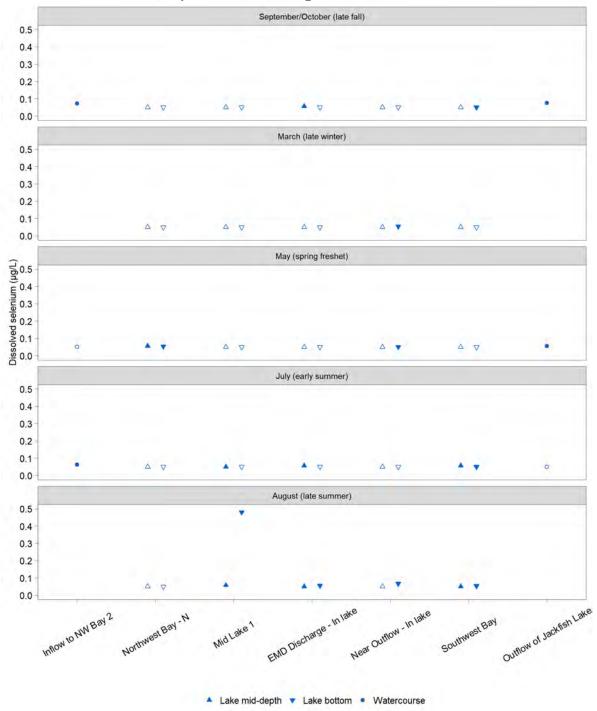


Figure E.5-65: Dissolved Silicon Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

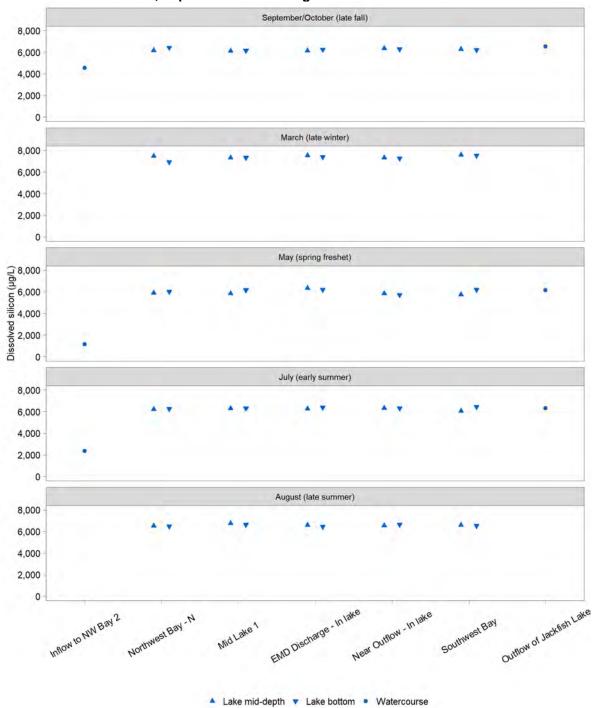


Figure E.5-66: Dissolved Strontium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

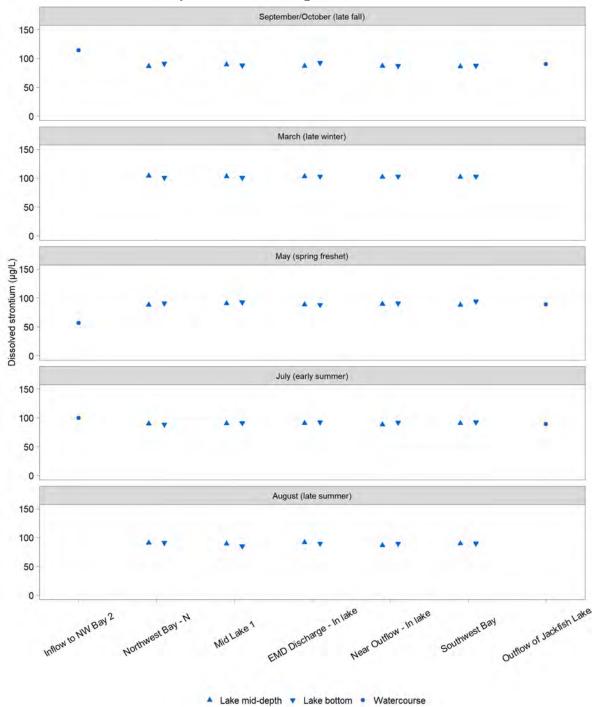


Figure E.5-67: Dissolved Sulphur Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

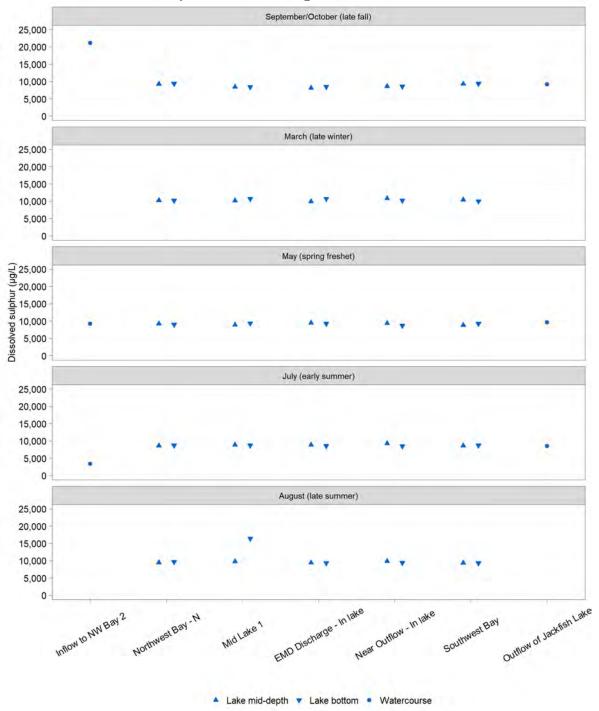


Figure E.5-68: Dissolved Tin Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

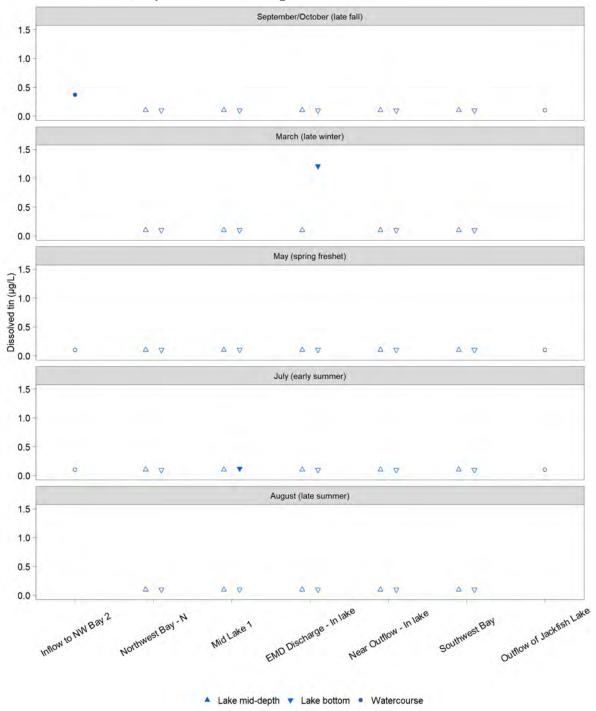


Figure E.5-69: Dissolved Uranium Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

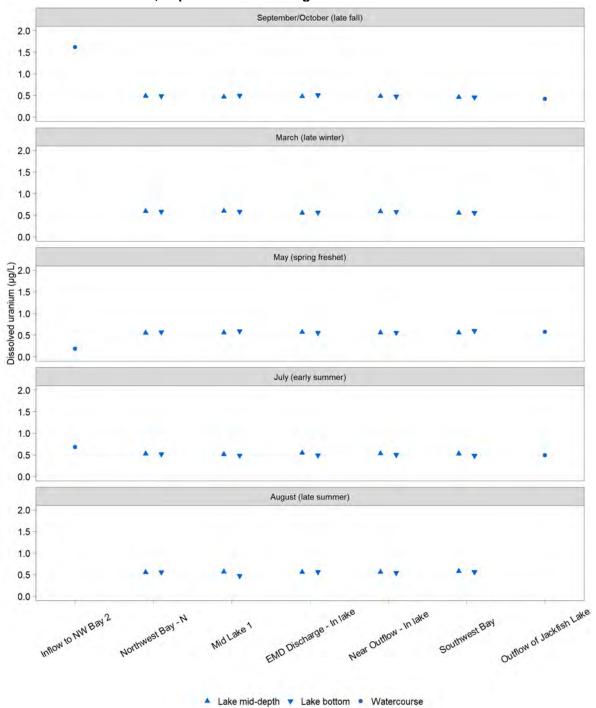
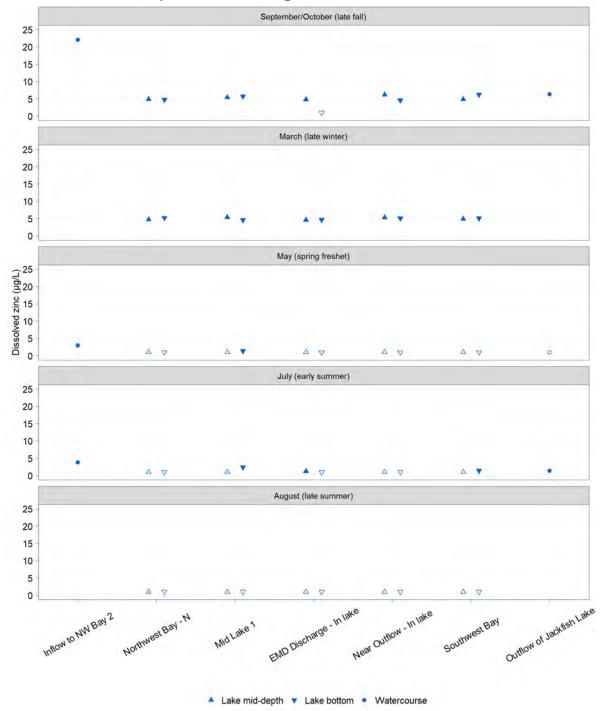



Figure E.5-70: Dissolved Zinc Concentrations in the Inflow to Jackfish Lake, Jackfish Lake, and the Outflow of Jackfish Lake, September 2021 to August 2022

Notes

Concentrations below the detection limit are shown at the detection limit as open markers. The acute CWQG for dissolved zinc is hardness and DOC dependent. The minimum acute CWQG for dissolved zinc is 154 μ g/L. The chronic CWQG for dissolved zinc is pH, hardness, and DOC dependent. The minimum chronic CWQG for dissolved zinc is 40 μ g/L. CWQG = Canadian Water Quality Guideline for the protection of freshwater aquatic life; DOC = dissolved organic carbon.

Figure E.6-1: Modelled Temperature Differences between Non-Operational and Measured Operational Scenarios at K Discharge - In Lake, 1 June to 1 August 2022

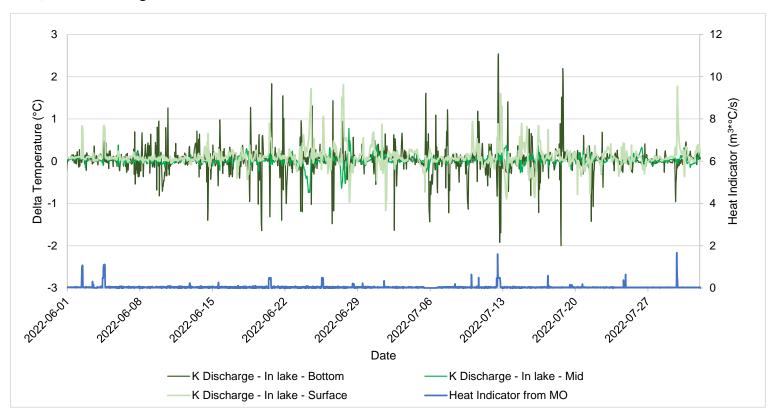


Figure E.6-2: Modelled Temperature Differences between Non-Operational and Measured Operational Scenarios at EMD Discharge - In Lake, 1 June to 1 August 2022

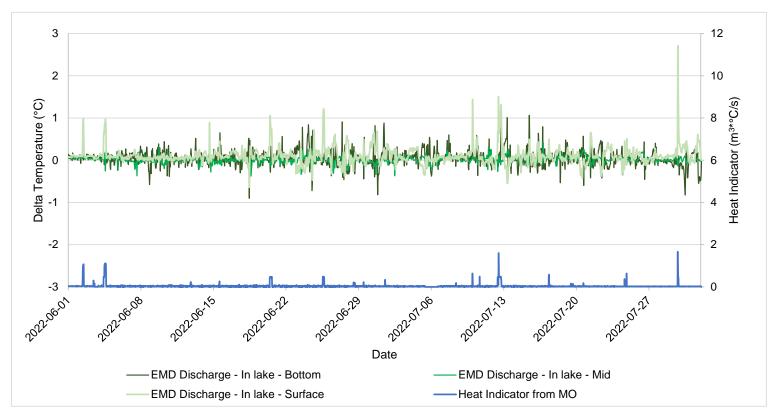


Figure E.6-3: Modelled Temperature Differences between Non-Operational and Measured Operational Scenarios at CAT Discharge - In Lake, 1 June to 1 August 2022

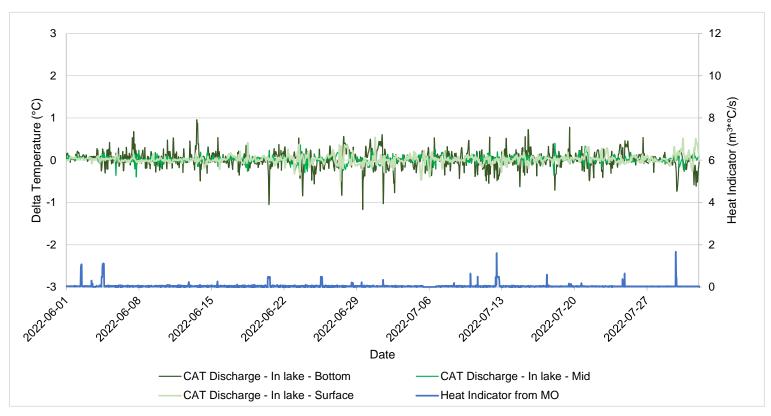


Figure E.6-4: Modelled Temperature Differences between Non-Operational and Measured Operational Scenarios at Northwest Bay - N, 1 June to 1 August 2022



Figure E.6-5: Modelled Temperature Differences between Non-Operational and Measured Operational Scenarios at Northwest Bay - S, 1 June to 1 August 2022

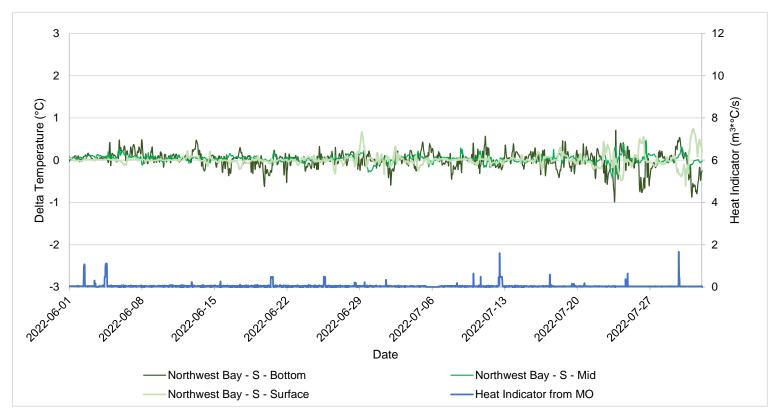


Figure E.6-6: Modelled Temperature Differences between Non-Operational and Measured Operational Scenarios at Mid Lake 1, 1 June to 1 August 2022

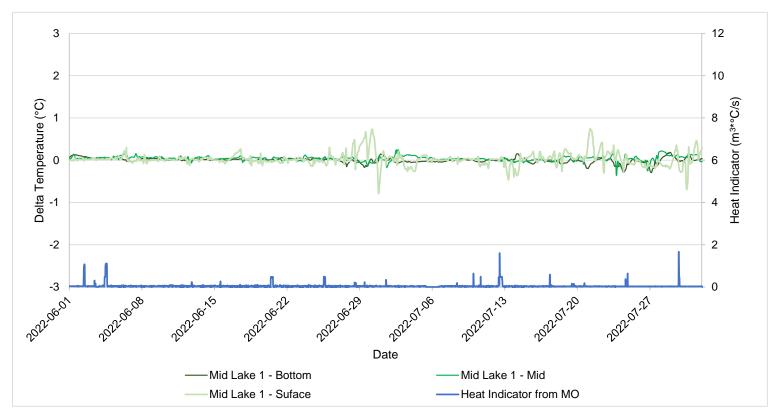


Figure E.6-7: Modelled Temperature Differences between Non-Operational and Measured Operational Scenarios at Mid Lake 2, 1 June to 1 August 2022

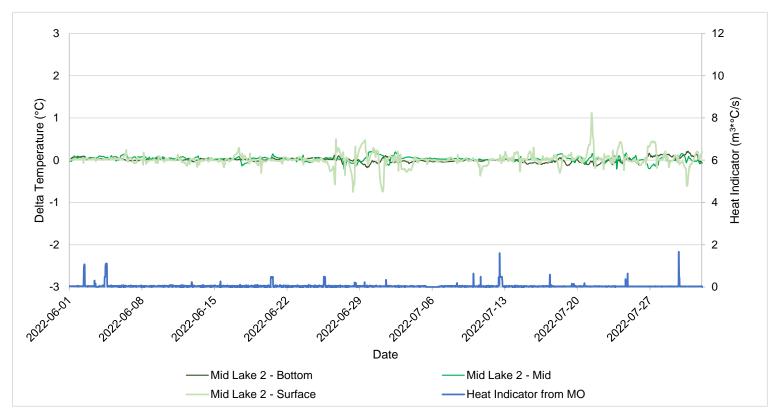


Figure E.6-8: Modelled Temperature Differences between Non-Operational and Measured Operational Scenarios at Mid Lake 3, 1 June to 1 August 2022

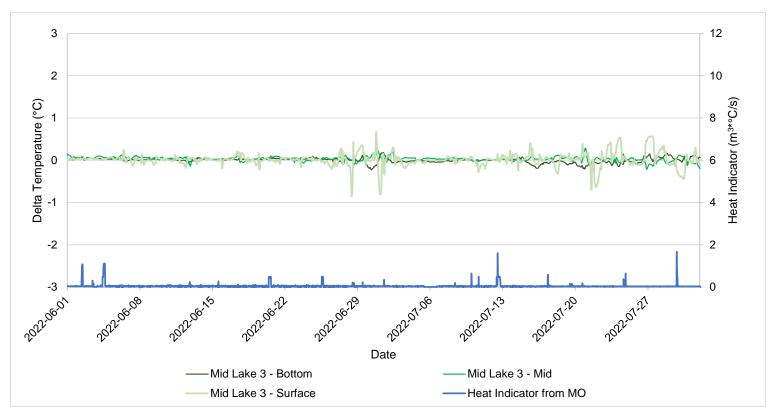
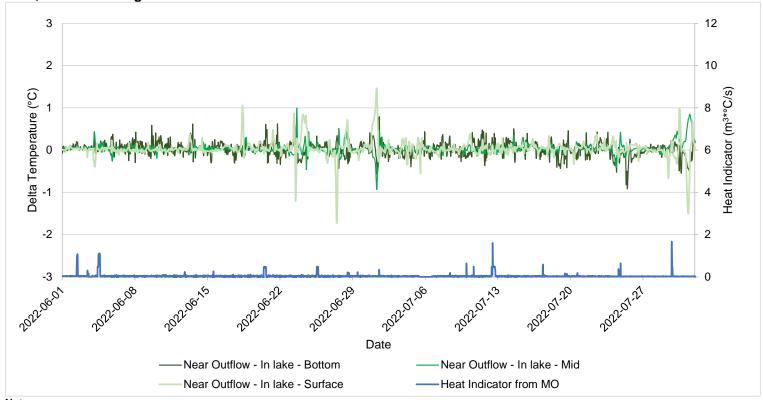



Figure E.6-9: Modelled Temperature Differences between Non-Operational and Measured Operational Scenarios at Southwest Bay, 1 June to 1 August 2022

Figure E.6-10: Modelled Temperature Differences between Non-Operational and Measured Operational Scenarios at Near Outflow - In Lake, 1 June to 1 August 2022

K Discharge - In lake - Non-Operational K Discharge - In lake - Measured Operations K Discharge - In lake - Hypothetical -1.0 -1.0 -2.0 --2.0 --3.0 -3.0 -5.0 -5.0 Temperature

Above 24.5
24.0 - 24.5
24.0 - 24.5
23.5 - 24.0
23.0 - 23.5
22.5 - 23.5
22.5 - 23.5
22.5 - 23.5
22.5 - 23.5
22.5 - 23.5
20.5 - 21.0
20.0 - 20.5
19.5 - 20.0
19.0 - 19.5
10.5 - 19.0
10.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 -Temperature Above 24.5
24.0 - 24.5
24.0 - 24.5
24.0 - 24.5
24.0 - 24.5
24.0 - 24.5
24.0 - 24.5
24.0 - 24.5
24.0 - 24.5
24.0 - 24.5
22.5 - 23.0
22.0 - 22.5
21.5 - 22.0
21.0 - 21.5
20.5 - 21.0
20.0 - 20.5
19.5 - 20.0
19.9 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.5
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19.6
19.6 - 19.6 - 19 -6.0 -6.0 -7.0 -8.0 -8.0 -9.0 -10.0 -10.0

Figure E.6-11: Modelled Temperature Isopleths at K Discharge - In Lake, 1 June to 31 August

Figure E.6-12: Modelled Temperature Isopleths at EMD Discharge - In Lake, 1 June to 31 August EMD Discharge - In lake - Non-Operational EMD Discharge - In lake - Measured Operations EMD Discharge - In lake - Hypothetical -1.0 -1.0 -1.0 -2.0 --2.0 -2.0 -3.0 -3.0 -3.0 -4.0 -5.0 -5.0 -5.0 Temperature

Above 24.5
24.0 - 24.5
24.0 - 24.5
23.5 - 24.0
23.0 - 23.5
22.5 - 23.5
22.5 - 23.5
22.5 - 22.5
20.5 - 21.0
20.0 - 20.5
19.5 - 20.0
19.0 - 19.5
10.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 - 19.0
11.5 --6.0 -6.0 -6.0 -7.0 -7.0 -8.0 -8.0 -8.0 -9.0 -10.0 -10.0 -10.0 July 2022 June 2022 July 2022

Figure E.6-13: Modelled Temperature Isopleths at CAT Discharge - In Lake, 1 June to 31 August CAT Discharge - In lake - Non-Operational CAT Discharge - In lake - Measured Operations CAT Discharge - In lake - Hypothetical -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 -3.0 -3.0 -3.0 -4.0 -5.0 -5.0 -5.0 Above 24.5
240-245
230-245
235-240
230-235
22.5-230
22.5-230
220-225
21.5-220
210-215
200-205
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190
190-190 -6.0 -6.0 -6.0 -7.0 -7.0 -7.0 -8.0 -8.0 -8.0 -10.0 -10.0 -10.0 July 2022

Figure E.6-14: Modelled Temperature Isopleths at Northwest Bay - N, 1 June to 31 August

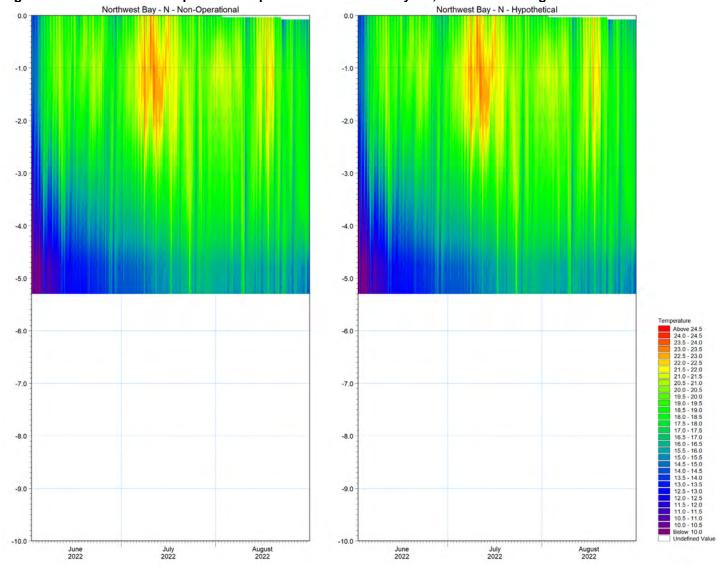
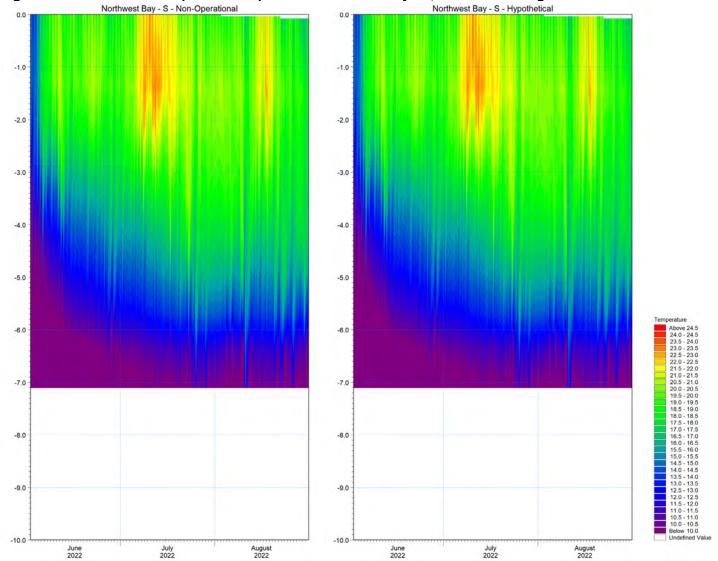



Figure E.6-15: Modelled Temperature Isopleths at Northwest Bay - S, 1 June to 31 August Northwest Bay - S - Hypothetical Northwest Bay - S - Non-Operational

Mid Lake 1 - Non-Operational Mid Lake 1 - Hypothetical -1.0 -1.0 -2.0 -2.0 -3.0 -3.0 -4.0 -4.0 -5.0 -5.0 Above 24.5
240 - 245
230 - 245
230 - 240
230 - 235
22.5 - 230
22.0 - 225
21.5 - 22.0
21.0 - 21.5
20.5 - 21.0
20.0 - 20.5
19.5 - 20.0
19.0 - 19.5
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
18.5 - 19.0
19.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 - 10.5
15.5 -6.0 -6.0 -7.0 -8.0 -8.0 -9.0 -9.0 -10.0 -10.0 June 2022 August 2022 August 2022

Figure E.6-16: Modelled Temperature Isopleths at Mid Lake 1, 1 June to 31 August

Figure E.6-17: Modelled Temperature Isopleths at Mid Lake 2, 1 June to 31 August

Mid Lake 2 - Non-Operational Mid Lake 2 - Hypothetical -1.0 -1.0 -2.0 -2.0 -3.0 -3.0 -4.0 -4.0 -5.0 -5.0 Temperature
Above 24.5
24.0 - 24.5
24.0 - 24.5
23.5 - 24.0
23.0 - 23.5
22.5 - 23.0
22.0 - 22.5
21.5 - 22.0
21.0 - 21.5
20.5 - 21.0
20.0 - 20.5
19.5 - 20.0
19.0 - 19.5
18.5 - 19.0
18.0 - 18.5
17.5 - 18.0
17.0 - 17.5
16.5 - 17.0
16.0 - 16.5
15.5 - 16.0
15.0 - 15.5
14.0 - 13.5
14.0 - 14.5
13.5 - 14.0
13.0 - 13.5
12.5 - 13.0
12.0 - 12.5
11.5 - 12.0
11.0 - 10.5
11.5 - 11.5
10.5 - 11.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - -6.0 -6.0 -7.0 -8.0 -8.0 -9.0 -9.0

-10.0

August 2022

August 2022

Figure E.6-18: Modelled Temperature Isopleths at Mid Lake 3, 1 June to 31 August Mid Lake 3 - Non-Operational Mid Lake 3 - Hypothetical -1.0 -1.0 -2.0 -2.0 -3.0 -3.0 -4.0 -4.0 -5.0 -5.0 Above 24.5
24.0 - 24.5
24.0 - 24.5
24.0 - 24.5
23.5 - 24.0
23.5 - 24.0
23.5 - 24.0
22.0 - 22.5
21.5 - 22.0
21.0 - 21.5
20.0 - 20.5
19.5 - 20.0
19.0 - 19.5
18.5 - 19.0
18.0 - 18.5
17.5 - 18.0
17.0 - 17.5
16.5 - 17.0
16.0 - 16.5
15.5 - 16.0
15.0 - 15.5
14.0 - 14.5
13.5 - 14.0
13.0 - 13.5
14.0 - 14.5
13.5 - 14.0
13.0 - 13.5
12.5 - 13.0
12.0 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - 12.5
11.5 - -8.0 -8.0

-9.0

August 2022

August 2022

-9.0

Figure E.6-19: Modelled Temperature Isopleths at Southwest Bay, 1 June to 31 August Southwest Bay - Non-Operational Southwest Bay - Hypothetical

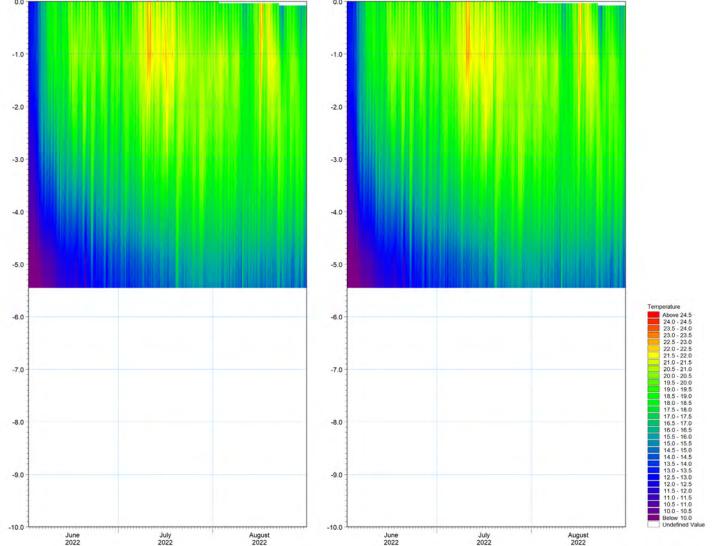


Figure E.6-20: Modelled Temperature Isopleths at Near Outflow - In Lake, 1 June to 31 August Near Outflow - In lake - Hypothetical Near Outflow - In lake - Non-Operational -1.0 -1.0 -2.0 -2.0 -3.0 -3.0 -4.0 -4.0 -5.0 -5.0 Temperature
Above 24.5
24.0 - 24.5
24.0 - 24.5
23.5 - 24.0
23.0 - 23.5
22.5 - 23.0
22.0 - 22.5
21.5 - 22.0
21.0 - 21.5
20.5 - 21.0
20.0 - 20.5
19.5 - 20.0
19.0 - 19.5
18.5 - 19.0
18.0 - 18.5
17.5 - 18.0
17.0 - 17.5
16.5 - 17.0
16.0 - 16.5
15.5 - 16.0
15.0 - 15.5
14.0 - 14.5
13.5 - 14.0
13.0 - 13.5
14.0 - 14.5
13.5 - 14.0
13.0 - 13.5
12.5 - 13.0
12.0 - 12.5
11.5 - 12.0
11.5 - 12.5
11.5 - 12.0
11.5 - 13.5
12.5 - 13.0
12.0 - 12.5
11.5 - 12.0
11.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - 11.5
10.5 - -6.0 -6.0 -7.0

-8.0

-9.0

-10.0

August 2022

August 2022

-8.0

-9.0

CERTIFICATE OF ANALYSIS

Work Order : YL2101440

Client : Golder Associates Ltd.

Contact : Kathy Qin

Address : 9 - 4905 48th Street

Yellowknife NT Canada X1A 3S3

Telephone : ---

Project : 21482915

PO : ---

C-O-C number : --Sampler : --Site : ---

Quote number : NTPC Jackfish Lake

No. of samples received : 8
No. of samples analysed : 8

Page : 1 of 12

Laboratory : Yellowknife - Environmental

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife NT Canada X1A 3T3

Telephone : 1 867 446 5593

Date Samples Received : 01-Oct-2021 09:00

Date Analysis Commenced : 05-Oct-2021

Issue Date : 14-Oct-2021 15:17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia
Ophelia Chiu	Department Manager - Organics	Organics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruby Pham	Lab Assistant	Metals, Burnaby, British Columbia

Page : 2 of 12 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

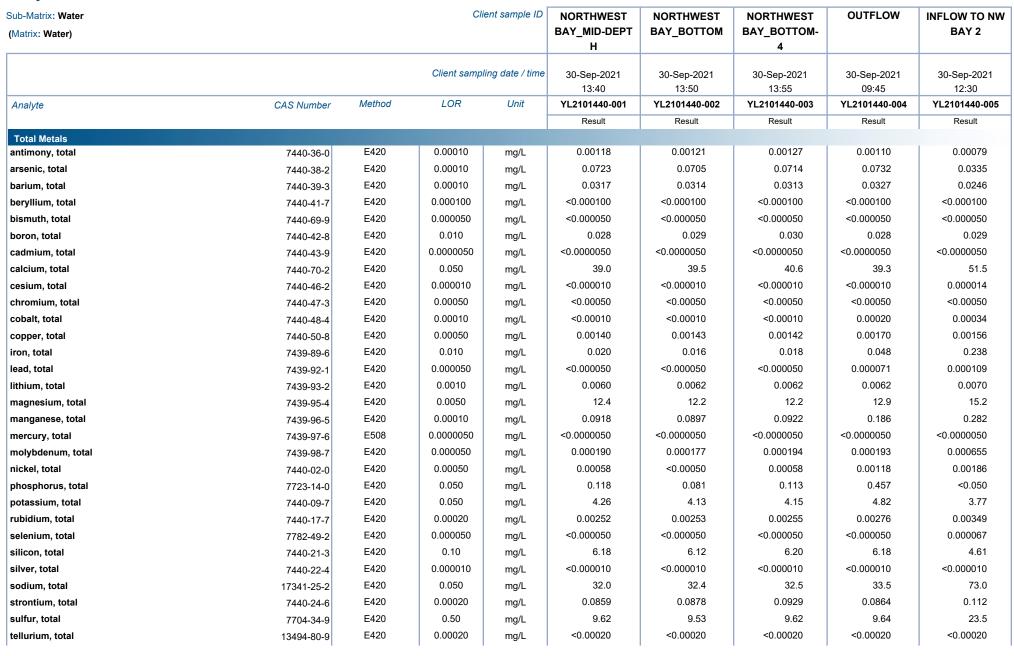
Qualifier	Description
DTC	Dissolved concentration exceeds total. Results were confirmed by re-analysis.
RRV	Reported result verified by repeat analysis.
SFT	Sample was filtered due to turbidity interference. Result reflects soluble analyte concentration.

>: greater than.

Page : 3 of 12 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915



Sub-Matrix: Water (Matrix: Water)		Ci	lient sample ID	NORTHWEST BAY_MID-DEPT H	NORTHWEST BAY_BOTTOM	NORTHWEST BAY_BOTTOM- 4	OUTFLOW	INFLOW TO NW BAY 2	
			Client samp	oling date / time	30-Sep-2021 13:40	30-Sep-2021 13:50	30-Sep-2021 13:55	30-Sep-2021 09:45	30-Sep-2021 12:30
Analyte	CAS Number	Method	LOR	Unit	YL2101440-001	YL2101440-002	YL2101440-003	YL2101440-004	YL2101440-005
					Result	Result	Result	Result	Result
Physical Tests									
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	111	110	112	117	133
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	6.2	7.3	3.3	3.1	<1.0
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	3.1	3.6	1.7	1.5	<1.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	118	118	116	120	133
conductivity		E100	2.0	μS/cm	445	446	450	446	719
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	141	140	142	144	178
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	148	149	152	151	191
рН		E108	0.10	pH units	8.41	8.42	8.35	8.33	8.21
solids, total dissolved [TDS]		E162	10	mg/L	271	285	279	257	419
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	248	249	248	250	392
solids, total suspended [TSS]		E160-H	3.0	mg/L	12.4	14.2	11.8	54.8	<3.0
turbidity		E121	0.10	NTU	23.4	21.1	21.0	72.3	1.08
Anions and Nutrients									1
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0082	0.0069	0.0079	0.0406	0.0097
chloride	16887-00-6	E235.CI	0.50	mg/L	59.4	59.6	59.6	59.3	110
fluoride	16984-48-8	E235.F	0.020	mg/L	0.082	0.084	0.086	0.086	0.078
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	0.0592
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	<0.0051	<0.0051	<0.0051	<0.0051	0.0592
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
nitrogen, total	7727-37-9	E366	0.030	mg/L	1.70	1.73	1.68	4.36	0.585
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.102	0.109	0.112	0.411	0.0082
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0138	0.0143	0.0132	0.0215	0.0059
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	12.8 SFT	13.0 SFT	12.6 SFT	12.6 SFT	9.05 SFT
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	25.3	25.3	25.3	24.2	59.4
Organic / Inorganic Carbon									1
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	11.9	12.3	12.0	13.1	16.0
Total Metals									I
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0079	0.0065	0.0085	0.0160	0.0165

Page : 4 of 12 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Page : 5 of 12 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

ALS

Sub-Matrix: Water (Matrix: Water)	ent sample ID	NORTHWEST BAY_MID-DEPT H	NORTHWEST BAY_BOTTOM	NORTHWEST BAY_BOTTOM- 4	OUTFLOW	INFLOW TO NW BAY 2			
		Client sampling date / time				30-Sep-2021 13:50	30-Sep-2021 13:55	30-Sep-2021 09:45	30-Sep-2021 12:30
Analyte	CAS Number	Method	LOR	Unit	13:40 YL2101440-001	YL2101440-002	YL2101440-003 Result	YL2101440-004	YL2101440-005
Total Metals					Result	Result	Result	Result	Result
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	0.00062	0.00040
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000549	0.000443	0.000554	0.000480	0.00180
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0052	0.0050	0.0057	0.0061	0.0077
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0014	0.0014	<0.0010	0.0025	0.0078
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00112	0.00116	0.00117	0.00104	0.00073
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0715	0.0717	0.0718	0.0705	0.0275
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0295	0.0302	0.0301	0.0306	0.0234
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.028	0.028	0.028	0.028	0.028
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.000050	<0.0000050	<0.0000050	<0.000050	<0.0000050
calcium, dissolved	7440-70-2	E421	0.050	mg/L	36.7	36.3	37.4	37.7	48.2
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	0.000013
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	0.00027
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00108	0.00107	0.00108	0.00099	0.0286 DTC
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	0.015	0.112
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	0.000712 DTC
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0063	0.0064	0.0064	0.0064	0.0070
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	11.9	12.0	11.9	12.2	14.1
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00133	0.00173	0.00170	0.125	0.242
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.0000050	<0.0000050	<0.000050	<0.0000050
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000172	0.000177	0.000173	0.000155	0.000599

Page : 6 of 12 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

ALS

Sub-Matrix: Water (Matrix: Water)	ent sample ID	NORTHWEST BAY_MID-DEPT	NORTHWEST BAY_BOTTOM	NORTHWEST BAY_BOTTOM-	OUTFLOW	INFLOW TO NW BAY 2			
					Н		4		
			Client samp	ling date / time	30-Sep-2021 13:40	30-Sep-2021 13:50	30-Sep-2021 13:55	30-Sep-2021 09:45	30-Sep-2021 12:30
Analyte	CAS Number	Method	LOR	Unit	YL2101440-001	YL2101440-002	YL2101440-003	YL2101440-004	YL2101440-005
Dissolved Metals					Result	Result	Result	Result	Result
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	0.00163
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
potassium, dissolved	7440-09-7	E421	0.050	mg/L	4.00	4.01	4.04	4.06	3.57
rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00242	0.00257	0.00242	0.00262	0.00318
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	0.000075	0.000073
silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.16	6.42	6.44	6.53	4.55
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, dissolved	17341-25-2	E421	0.050	mg/L	32.4	32.4	32.1	31.9	70.7
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0863	0.0910	0.0900	0.0900	0.114
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	9.27	9.39	9.59	9.15	21.1
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	0.00037 DTC
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000489	0.000480	0.000485	0.000422	0.00162
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0049	0.0047	0.0048	0.0063	0.0220 DTC
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
dissolved mercury filtration location		EP509	_	-	Field	Field	Field	Field	Field
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field
Aggregate Organics									
oil & grease (gravimetric)		E567	5.0	mg/L		<5.0	<5.0		
Volatile Organic Compounds [Fuels]									
benzene	71-43-2	E611A	0.00050	mg/L		<0.00050	<0.00050		
ethylbenzene	100-41-4	E611A	0.00050	mg/L		<0.00050	<0.00050		
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.00050	mg/L		<0.00050	<0.00050		
styrene	100-42-5	E611A	0.00050	mg/L		<0.00050	<0.00050		
toluene	108-88-3	E611A	0.00050	mg/L		<0.00050	<0.00050		

Page : 7 of 12 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

ALS

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	NORTHWEST	NORTHWEST	NORTHWEST	OUTFLOW	INFLOW TO NW
(Matrix: Water)					BAY_MID-DEPT	BAY_BOTTOM	BAY_BOTTOM-		BAY 2
					Н		4		
			Client samp	ling date / time	30-Sep-2021	30-Sep-2021	30-Sep-2021	30-Sep-2021	30-Sep-2021
					13:40	13:50	13:55	09:45	12:30
Analyte	CAS Number	Method	LOR	Unit	YL2101440-001	YL2101440-002	YL2101440-003	YL2101440-004	YL2101440-005
					Result	Result	Result	Result	Result
Volatile Organic Compounds [Fuels]									
xylene, m+p-	179601-23-1	E611A	0.00050	mg/L		<0.00050	<0.00050		
xylene, o-	95-47-6	E611A	0.00050	mg/L		<0.00050	<0.00050		
xylenes, total	1330-20-7	E611A	0.00075	mg/L		<0.00075	<0.00075		
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611A	1.0	%		91.4	91.1		
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%		103	104		
Hydrocarbons									
EPH (C10-C19)		E601A-L	0.050	mg/L		<0.050	<0.050		
EPH (C19-C32)		E601A-L	0.050	mg/L		<0.050	<0.050		
F1 (C6-C10)		E581.VH+F1	0.10	mg/L		<0.10	<0.10		
F2 (C10-C16)		E601	0.30	mg/L		<0.30	<0.30		
F3 (C16-C34)		E601	0.30	mg/L		<0.30	<0.30		
F4 (C34-C50)		E601	0.30	mg/L		<0.30	<0.30		
TEH (C10-C30), BC		E601A-L	0.10	mg/L		<0.10	<0.10		
VHw (C6-C10)		E581.VH+F1	0.10	mg/L		<0.10	<0.10		
F1-BTEX		EC580	0.10	mg/L		<0.10	<0.10		
VPHw		EC580A	0.10	mg/L		<0.10	<0.10		
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (EPH surr)	392-83-6	E601A-L	1.0	%		84.2	89.5		
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%		77.2	83.0		
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%		97.1	91.0		

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 8 of 12 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

ALS

Sub-Matrix: Water			C	lient sample ID	SOUTHWEST	SOUTHWEST	JFLQC-1	
(Matrix: Water)					BAY_MID-DEPT H	BAY_BOTTOM		
		Client sampling date / time			30-Sep-2021 15:05	30-Sep-2021 15:10	30-Sep-2021 08:45	
Analyte	CAS Number	Method	LOR	Unit	YL2101440-006	YL2101440-007	YL2101440-008	
Physical Tests					Result	Result	Result	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	109	114	<1.0	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	8.8	6.2	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	4.4	3.1	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	118	120	<1.0	
conductivity		E100	2.0	μS/cm	446	448	<2.0	
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	138	138	<0.60	
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	146	146	<0.60	
pH		E108	0.10	pH units	8.37	8.35	5.06	
solids, total dissolved [TDS]		E162	10	mg/L	270	271	<10	
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	246	247	<1.0	
solids, total suspended [TSS]		E160-H	3.0	mg/L	12.0	14.2	<3.0	
turbidity		E121	0.10	NTU	21.8	21.2	<0.10	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0070	0.0108	<0.0050	
chloride	16887-00-6	E235.CI	0.50	mg/L	59.5	59.5	<0.50	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.084	0.085	<0.020	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	<0.0050	
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	<0.0051	<0.0051	<0.0051	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
nitrogen, total	7727-37-9	E366	0.030	mg/L	1.74	1.70	<0.030	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.105	0.105	<0.0020	
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0132	0.0124	0.0029 RRV	
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	12.8 SFT	12.5 SFT	<0.50 SFT	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	25.3	25.2	<0.30	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	12.3	11.6	<0.50	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0052	0.0062	<0.0030	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00123	0.00118	<0.00010	

Page : 9 of 12 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

ALS

Sub-Matrix: Water (Matrix: Water)			Clie	ent sample ID	SOUTHWEST BAY_MID-DEPT H	SOUTHWEST BAY_BOTTOM	JFLQC-1	
		Client sampling date / time					30-Sep-2021 08:45	
Analyte	CAS Number	Method	LOR	Unit	YL2101440-006	YL2101440-007	YL2101440-008	
					Result	Result	Result	
Total Metals								
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0712	0.0741	<0.00010	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0309	0.0324	0.00016 RRV	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.029	0.029	<0.010	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.000050	<0.000050	
calcium, total	7440-70-2	E420	0.050	mg/L	38.4	38.1	<0.050	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00142	0.00182	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	0.014	0.012	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0060	0.0061	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	12.1	12.4	<0.0050	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0975	0.101	0.00012 RRV	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000204	0.000193	<0.000050	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00056	0.00058	<0.00050	
phosphorus, total	7723-14-0	E420	0.050	mg/L	0.130	0.143	<0.050	
potassium, total	7440-09-7	E420	0.050	mg/L	4.18	4.30	<0.050	
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00249	0.00252	<0.00020	
selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
silicon, total	7440-21-3	E420	0.10	mg/L	6.08	6.20	<0.10	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, total	17341-25-2	E420	0.050	mg/L	32.6	32.8	<0.050	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0897	0.0865	<0.00020	
sulfur, total	7704-34-9	E420	0.50	mg/L	9.53	9.49	<0.50	
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.00010	<0.000010	<0.000010	

Page : 10 of 12 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

ALS

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	SOUTHWEST BAY_MID-DEPT H	SOUTHWEST BAY_BOTTOM	JFLQC-1 30-Sep-2021 08:45	
			Client sampl	ing date / time		30-Sep-2021 15:10		
Analyte	CAS Number	Method	LOR	Unit	YL2101440-006	YL2101440-007	YL2101440-008	
					Result	Result	Result	
Total Metals								
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000556	0.000561	<0.000010	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0054	0.0055	0.0049 RRV	
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0013	0.0026	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00110	0.00111	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0713	0.0714	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0298	0.0302	0.00018 RRV	
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	<0.000100	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.027	0.027	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	35.8	35.9	<0.050	
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00117	0.00108	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0061	0.0061	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	11.8	11.7	<0.0050	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00102	0.00137	0.00026 RRV	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.0000050	<0.000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000164	0.000166	<0.000050	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	

Page : 11 of 12 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

ALS

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	SOUTHWEST BAY_MID-DEPT H	SOUTHWEST BAY_BOTTOM	JFLQC-1	
			Client samp	ling date / time	30-Sep-2021 15:05	30-Sep-2021 15:10	30-Sep-2021 08:45	
Analyte	CAS Number	Method	LOR	Unit	YL2101440-006	YL2101440-007	YL2101440-008	
					Result	Result	Result	
Dissolved Metals								
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	<0.050	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	3.95	3.93	<0.050	
rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00236	0.00239	<0.00020	
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	0.000050	<0.000050	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.27	6.20	<0.050	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	31.2	31.1	<0.050	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0858	0.0874	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	9.30	9.37	<0.50	
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000462	0.000457	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0049	0.0062	0.0068 RRV	
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	
Aggregate Organics								
oil & grease (gravimetric)		E567	5.0	mg/L			<5.0	
Volatile Organic Compounds [Fuels]								
benzene	71-43-2	E611A	0.00050	mg/L			<0.00050	
ethylbenzene	100-41-4	E611A	0.00050	mg/L			<0.00050	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.00050	mg/L			<0.00050	
styrene	100-42-5	E611A	0.00050	mg/L			<0.00050	
toluene	108-88-3	E611A	0.00050	mg/L			<0.00050	
xylene, m+p-	179601-23-1	E611A	0.00050	mg/L			<0.00050	

Page : 12 of 12 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

ALS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			CI	ient sample ID	SOUTHWEST BAY MID-DEPT	SOUTHWEST BAY_BOTTOM	JFLQC-1	
(Matrix. Water)					Н	2711_20110		
			Client samp	ling date / time	30-Sep-2021 15:05	30-Sep-2021 15:10	30-Sep-2021 08:45	
Analyte	CAS Number	Method	LOR	Unit	YL2101440-006	YL2101440-007	YL2101440-008	
					Result	Result	Result	
Volatile Organic Compounds [Fuels]								
xylene, o-	95-47-6	E611A	0.00050	mg/L			<0.00050	
xylenes, total	1330-20-7	E611A	0.00075	mg/L			<0.00075	
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	E611A	1.0	%			91.1	
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%			104	
Hydrocarbons								
EPH (C10-C19)		E601A-L	0.050	mg/L			<0.050	
EPH (C19-C32)		E601A-L	0.050	mg/L			<0.050	
F1 (C6-C10)		E581.VH+F1	0.10	mg/L			<0.10	
F2 (C10-C16)		E601	0.30	mg/L			<0.30	
F3 (C16-C34)		E601	0.30	mg/L			<0.30	
F4 (C34-C50)		E601	0.30	mg/L			<0.30	
TEH (C10-C30), BC		E601A-L	0.10	mg/L			<0.10	
VHw (C6-C10)		E581.VH+F1	0.10	mg/L			<0.10	
F1-BTEX		EC580	0.10	mg/L			<0.10	
VPHw		EC580A	0.10	mg/L			<0.10	
Hydrocarbons Surrogates								
bromobenzotrifluoride, 2- (EPH surr)	392-83-6	E601A-L	1.0	%			99.0	
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%			79.7	
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%			99.0	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Yellowknife NT Canada X1A 3S3

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **YL2101440** Page : 1 of 30

Client : Golder Associates Ltd. Laboratory : Yellowknife - Environmental

Contact : Kathy Qin Account Manager : Oliver Gregg

Address : 9 - 4905 48th Street Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

 Telephone
 : -- Telephone
 : 1 867 446 5593

 Project
 : 21482915
 Date Samples Received
 : 01-Oct-2021 09:00

PO : --- Issue Date : 14-Oct-2021 15:20

C-O-C number : ---Sampler : ---Site : ----

Quote number : NTPC Jackfish Lake

No. of samples received : 8
No. of samples analysed : 8

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 2 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
JFLQC-1	E567	30-Sep-2021	09-Oct-2021	28	9 days	✓	09-Oct-2021	40 days	0 days	✓
				days						
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
NORTHWEST BAY_BOTTOM	E567	30-Sep-2021	09-Oct-2021	28	9 days	✓	09-Oct-2021	40 days	0 days	✓
				days						
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
NORTHWEST BAY_BOTTOM-4	E567	30-Sep-2021	09-Oct-2021	28	9 days	✓	09-Oct-2021	40 days	0 days	✓
				days						
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
SOUTHWEST BAY_BOTTOM	E298	30-Sep-2021	08-Oct-2021				10-Oct-2021	28 days	10 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
JFLQC-1	E298	30-Sep-2021	08-Oct-2021				10-Oct-2021	28 days	11 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										,
INFLOW TO NW BAY 2	E298	30-Sep-2021	07-Oct-2021				07-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										,
NORTHWEST BAY_BOTTOM	E298	30-Sep-2021	07-Oct-2021				07-Oct-2021	28 days	7 days	✓

Page : 3 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) NORTHWEST BAY_BOTTOM-4 E298 30-Sep-2021 07-Oct-2021 07-Oct-2021 28 days 7 days ✓ Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) E298 1 NORTHWEST BAY_MID-DEPTH 30-Sep-2021 07-Oct-2021 07-Oct-2021 28 days 7 days --------Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) OUTFLOW E298 30-Sep-2021 07-Oct-2021 07-Oct-2021 28 days 7 days 1 Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) SOUTHWEST BAY MID-DEPTH E298 30-Sep-2021 07-Oct-2021 07-Oct-2021 28 days 7 days ✓ Anions and Nutrients : Chloride in Water by IC HDPE E235.CI 30-Sep-2021 05-Oct-2021 28 days 5 days ✓ **INFLOW TO NW BAY 2** Anions and Nutrients : Chloride in Water by IC HDPE E235.CI 30-Sep-2021 05-Oct-2021 28 days ✓ NORTHWEST BAY_BOTTOM 5 days Anions and Nutrients : Chloride in Water by IC HDPE NORTHWEST BAY BOTTOM-4 E235.CI 30-Sep-2021 05-Oct-2021 28 days 5 days 1 Anions and Nutrients : Chloride in Water by IC HDPE 28 days 5 days E235.CI ✓ NORTHWEST BAY_MID-DEPTH 30-Sep-2021 05-Oct-2021 Anions and Nutrients : Chloride in Water by IC HDPE E235.CI 05-Oct-2021 ✓ OUTFLOW 30-Sep-2021 28 days 5 days --------

Page : 4 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Date Rec Actual Actual Anions and Nutrients : Chloride in Water by IC HDPE 30-Sep-2021 SOUTHWEST BAY_BOTTOM E235.CI 05-Oct-2021 28 days 5 days ✓ Anions and Nutrients : Chloride in Water by IC HDPE SOUTHWEST BAY_MID-DEPTH E235.CI 1 30-Sep-2021 05-Oct-2021 28 days 5 days ----Anions and Nutrients : Chloride in Water by IC HDPE JFLQC-1 E235.CI 30-Sep-2021 05-Oct-2021 28 days 6 days 1 Anions and Nutrients : Fluoride in Water by IC HDPE INFLOW TO NW BAY 2 E235.F 30-Sep-2021 05-Oct-2021 28 days 5 days Anions and Nutrients: Fluoride in Water by IC HDPE E235.F 30-Sep-2021 05-Oct-2021 28 days 5 days NORTHWEST BAY_BOTTOM Anions and Nutrients : Fluoride in Water by IC HDPE E235.F 30-Sep-2021 05-Oct-2021 28 days 5 days ✓ NORTHWEST BAY_BOTTOM-4 Anions and Nutrients : Fluoride in Water by IC HDPE NORTHWEST BAY MID-DEPTH E235.F 30-Sep-2021 05-Oct-2021 28 days 5 days 1 Anions and Nutrients : Fluoride in Water by IC HDPE 28 days 5 days E235.F 05-Oct-2021 ✓ OUTFLOW 30-Sep-2021 Anions and Nutrients : Fluoride in Water by IC HDPE E235.F 30-Sep-2021 05-Oct-2021 ✓ SOUTHWEST BAY BOTTOM 28 days 5 days ----

Page : 5 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date Anions and Nutrients : Fluoride in Water by IC HDPE SOUTHWEST BAY_MID-DEPTH E235.F 30-Sep-2021 05-Oct-2021 28 days 5 days ✓ Anions and Nutrients : Fluoride in Water by IC HDPE E235.F ✓ JFLQC-1 30-Sep-2021 05-Oct-2021 28 days 6 days ----Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE INFLOW TO NW BAY 2 E235.NO3-L 30-Sep-2021 05-Oct-2021 3 days 5 days æ EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 30-Sep-2021 05-Oct-2021 3 days NORTHWEST BAY BOTTOM 5 days æ EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE 3 days E235.NO3-L 30-Sep-2021 05-Oct-2021 5 days æ NORTHWEST BAY BOTTOM-4 EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 30-Sep-2021 05-Oct-2021 NORTHWEST BAY_MID-DEPTH 3 davs 5 days æ EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE OUTFLOW E235.NO3-L 30-Sep-2021 05-Oct-2021 3 days 5 days * EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE SOUTHWEST BAY BOTTOM E235.NO3-L 30-Sep-2021 05-Oct-2021 3 days 5 days × EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 05-Oct-2021 SOUTHWEST BAY MID-DEPTH 30-Sep-2021 3 days 5 days 30 ----EHT

Page : 6 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water						aluation. * -	Holding time exce			nolaling
Analyte Group	Method	Sampling Date		raction / Pr				Analys		
Container / Client Sample ID(s)			Preparation		7 Times	Eval	Analysis Date		g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrate in Water by IC (Low Level)								T T		
HDPE JFLQC-1	E235.NO3-L	30-Sep-2021					05-Oct-2021	3 days	6 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE INFLOW TO NW BAY 2	E235.NO2-L	30-Sep-2021					05-Oct-2021	3 days	5 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE NORTHWEST BAY_BOTTOM	E235.NO2-L	30-Sep-2021					05-Oct-2021	3 days	5 days	x EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)				_						
HDPE NORTHWEST BAY_BOTTOM-4	E235.NO2-L	30-Sep-2021					05-Oct-2021	3 days	5 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE NORTHWEST BAY_MID-DEPTH	E235.NO2-L	30-Sep-2021					05-Oct-2021	3 days	5 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE OUTFLOW	E235.NO2-L	30-Sep-2021					05-Oct-2021	3 days	5 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE SOUTHWEST BAY_BOTTOM	E235.NO2-L	30-Sep-2021					05-Oct-2021	3 days	5 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE SOUTHWEST BAY_MID-DEPTH	E235.NO2-L	30-Sep-2021					05-Oct-2021	3 days	5 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE JFLQC-1	E235.NO2-L	30-Sep-2021					05-Oct-2021	3 days	6 days	* EHT

Page : 7 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date **Anions and Nutrients: Reactive Silica by Colourimetry** HDPE **INFLOW TO NW BAY 2** E392 30-Sep-2021 08-Oct-2021 28 days 8 days ✓ Anions and Nutrients: Reactive Silica by Colourimetry HDPE 1 JFLQC-1 E392 30-Sep-2021 08-Oct-2021 28 days 8 days ----Anions and Nutrients : Reactive Silica by Colourimetry HDPE NORTHWEST BAY BOTTOM E392 30-Sep-2021 08-Oct-2021 28 days 8 days ✓ Anions and Nutrients : Reactive Silica by Colourimetry HDPE E392 30-Sep-2021 08-Oct-2021 28 days 8 days NORTHWEST BAY BOTTOM-4 Anions and Nutrients : Reactive Silica by Colourimetry HDPE E392 30-Sep-2021 08-Oct-2021 28 days 8 days ✓ NORTHWEST BAY MID-DEPTH Anions and Nutrients : Reactive Silica by Colourimetry HDPE OUTFLOW E392 30-Sep-2021 08-Oct-2021 28 days ✓ 8 days Anions and Nutrients : Reactive Silica by Colourimetry HDPE SOUTHWEST BAY BOTTOM E392 30-Sep-2021 08-Oct-2021 28 days 8 days 1 Anions and Nutrients : Reactive Silica by Colourimetry HDPE 28 days 8 days ✓ SOUTHWEST BAY_MID-DEPTH E392 30-Sep-2021 08-Oct-2021 Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 ✓ **INFLOW TO NW BAY 2** 30-Sep-2021 05-Oct-2021 28 days 5 days ----

Page : 8 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date Anions and Nutrients : Sulfate in Water by IC HDPE NORTHWEST BAY_BOTTOM E235.SO4 30-Sep-2021 05-Oct-2021 28 days 5 days ✓ Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 ✓ NORTHWEST BAY BOTTOM-4 30-Sep-2021 05-Oct-2021 28 days 5 days ----Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 30-Sep-2021 05-Oct-2021 28 days 5 days 1 NORTHWEST BAY MID-DEPTH Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 30-Sep-2021 05-Oct-2021 28 days 5 days OUTFLOW Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 30-Sep-2021 05-Oct-2021 28 days 5 days ✓ SOUTHWEST BAY BOTTOM Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 30-Sep-2021 05-Oct-2021 28 days ✓ SOUTHWEST BAY_MID-DEPTH 5 davs Anions and Nutrients : Sulfate in Water by IC HDPE JFLQC-1 E235.SO4 30-Sep-2021 05-Oct-2021 28 days 6 days 1 Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) INFLOW TO NW BAY 2 E375-T 28 days 9 days ✓ 30-Sep-2021 07-Oct-2021 09-Oct-2021 **Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level)** Amber glass dissolved (sulfuric acid) E375-T 30-Sep-2021 08-Oct-2021 ✓ JFLQC-1 09-Oct-2021 28 days 9 days ----

Page : 9 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date **Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level)** Amber glass dissolved (sulfuric acid) NORTHWEST BAY_BOTTOM E375-T 30-Sep-2021 07-Oct-2021 09-Oct-2021 28 days 9 days ✓ Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) E375-T ✓ NORTHWEST BAY BOTTOM-4 30-Sep-2021 07-Oct-2021 09-Oct-2021 28 days 9 days --------Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) E375-T 30-Sep-2021 07-Oct-2021 09-Oct-2021 28 days 9 days 1 NORTHWEST BAY MID-DEPTH Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) E375-T 30-Sep-2021 07-Oct-2021 09-Oct-2021 28 days 9 days ✓ OUTFLOW Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) SOUTHWEST BAY BOTTOM E375-T 30-Sep-2021 08-Oct-2021 09-Oct-2021 28 days 9 days ✓ **Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level)** Amber glass dissolved (sulfuric acid) SOUTHWEST BAY_MID-DEPTH E375-T 30-Sep-2021 07-Oct-2021 09-Oct-2021 28 days ✓ 9 davs Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) JFLQC-1 E366 30-Sep-2021 08-Oct-2021 13-Oct-2021 28 days 13 days 1 Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) 28 days 13 days ✓ SOUTHWEST BAY BOTTOM E366 30-Sep-2021 08-Oct-2021 13-Oct-2021 **Anions and Nutrients : Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) 07-Oct-2021 INFLOW TO NW BAY 2 E366 30-Sep-2021 08-Oct-2021 28 days 8 days ✓ --------

Page : 10 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date **Anions and Nutrients : Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) NORTHWEST BAY_BOTTOM E366 30-Sep-2021 07-Oct-2021 08-Oct-2021 28 days 8 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) ✓ NORTHWEST BAY BOTTOM-4 E366 30-Sep-2021 07-Oct-2021 08-Oct-2021 28 days 8 days ----Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) E366 30-Sep-2021 07-Oct-2021 08-Oct-2021 28 days 8 days 1 NORTHWEST BAY MID-DEPTH **Anions and Nutrients : Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) 30-Sep-2021 07-Oct-2021 08-Oct-2021 28 days 8 days ✓ OUTFLOW E366 Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) SOUTHWEST BAY MID-DEPTH E366 30-Sep-2021 07-Oct-2021 08-Oct-2021 28 days 8 days ✓ Anions and Nutrients: Total Phosphorus by Colourimetry (Ultra Trace) Amber glass total (sulfuric acid) JFLQC-1 E372-U 30-Sep-2021 08-Oct-2021 09-Oct-2021 28 days 10 days ✓ Anions and Nutrients: Total Phosphorus by Colourimetry (Ultra Trace) Amber glass total (sulfuric acid) INFLOW TO NW BAY 2 E372-U 30-Sep-2021 07-Oct-2021 09-Oct-2021 28 days 9 days 1 Anions and Nutrients: Total Phosphorus by Colourimetry (Ultra Trace) Amber glass total (sulfuric acid) E372-U 28 days 9 days ✓ NORTHWEST BAY BOTTOM 30-Sep-2021 07-Oct-2021 09-Oct-2021 Anions and Nutrients: Total Phosphorus by Colourimetry (Ultra Trace) Amber glass total (sulfuric acid) E372-U 07-Oct-2021 ✓ NORTHWEST BAY BOTTOM-4 30-Sep-2021 09-Oct-2021 28 days 9 days --------

Page : 11 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients: Total Phosphorus by Colourimetry (Ultra Trace) Amber glass total (sulfuric acid) NORTHWEST BAY_MID-DEPTH E372-U 30-Sep-2021 07-Oct-2021 09-Oct-2021 28 days 9 days ✓ Anions and Nutrients: Total Phosphorus by Colourimetry (Ultra Trace) Amber glass total (sulfuric acid) E372-U ✓ **OUTFLOW** 30-Sep-2021 07-Oct-2021 09-Oct-2021 28 days 9 days ----Anions and Nutrients: Total Phosphorus by Colourimetry (Ultra Trace) Amber glass total (sulfuric acid) SOUTHWEST BAY BOTTOM E372-U 30-Sep-2021 08-Oct-2021 09-Oct-2021 28 days 9 days 1 Anions and Nutrients: Total Phosphorus by Colourimetry (Ultra Trace) Amber glass total (sulfuric acid) SOUTHWEST BAY MID-DEPTH E372-U 30-Sep-2021 07-Oct-2021 09-Oct-2021 28 days 9 days **Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) **INFLOW TO NW BAY 2** E509 30-Sep-2021 09-Oct-2021 09-Oct-2021 28 days 9 days Dissolved Metals: Dissolved Mercury in Water by CVAAS Glass vial dissolved (hydrochloric acid) JFLQC-1 E509 30-Sep-2021 09-Oct-2021 09-Oct-2021 28 days ✓ 9 davs **Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) NORTHWEST BAY BOTTOM E509 30-Sep-2021 09-Oct-2021 09-Oct-2021 28 days 9 days 1 **Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) 28 days 9 days ✓ NORTHWEST BAY BOTTOM-4 E509 30-Sep-2021 09-Oct-2021 09-Oct-2021 **Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) E509 09-Oct-2021 ✓ 30-Sep-2021 09-Oct-2021 28 days 9 days NORTHWEST BAY MID-DEPTH --------

Page : 12 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date **Holding Times** Eval Rec Actual Rec Actual Date Dissolved Metals: Dissolved Mercury in Water by CVAAS Glass vial dissolved (hydrochloric acid) OUTFLOW E509 30-Sep-2021 09-Oct-2021 09-Oct-2021 28 days 9 days ✓ Dissolved Metals: Dissolved Mercury in Water by CVAAS Glass vial dissolved (hydrochloric acid) ✓ SOUTHWEST BAY BOTTOM E509 30-Sep-2021 09-Oct-2021 09-Oct-2021 28 days 9 days ----**Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) SOUTHWEST BAY MID-DEPTH E509 30-Sep-2021 09-Oct-2021 09-Oct-2021 28 days 9 days 1 Dissolved Metals: Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid) E421 30-Sep-2021 07-Oct-2021 08-Oct-2021 ✓ INFLOW TO NW BAY 2 180 7 days days Dissolved Metals: Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid) E421 30-Sep-2021 07-Oct-2021 08-Oct-2021 8 days ✓ JFLQC-1 180 days Dissolved Metals: Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid) NORTHWEST BAY_BOTTOM E421 30-Sep-2021 07-Oct-2021 08-Oct-2021 ✓ 180 8 davs days Dissolved Metals: Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid) NORTHWEST BAY BOTTOM-4 E421 30-Sep-2021 07-Oct-2021 08-Oct-2021 8 days 1 180 days Dissolved Metals: Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid) E421 ✓ NORTHWEST BAY MID-DEPTH 30-Sep-2021 07-Oct-2021 08-Oct-2021 180 8 days days Dissolved Metals: Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid) E421 07-Oct-2021 ✓ OUTFLOW 30-Sep-2021 08-Oct-2021 8 days 180 ---days

Page : 13 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date **Holding Times** Eval Rec Actual Rec Actual Date Dissolved Metals: Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid) SOUTHWEST BAY_BOTTOM E421 30-Sep-2021 07-Oct-2021 08-Oct-2021 8 days ✓ 180 days Dissolved Metals: Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid) ✓ SOUTHWEST BAY MID-DEPTH E421 30-Sep-2021 07-Oct-2021 08-Oct-2021 180 8 days -------days Hydrocarbons: BC PHC - EPH by GC-FID (Low level) Amber glass/Teflon lined cap (sodium bisulfate) JFLQC-1 E601A-L 30-Sep-2021 12-Oct-2021 ✓ 13-Oct-2021 40 days 1 days 1 14 12 days davs Hydrocarbons: BC PHC - EPH by GC-FID (Low level) Amber glass/Teflon lined cap (sodium bisulfate) 1 E601A-L 30-Sep-2021 08-Oct-2021 10-Oct-2021 40 days 2 days ✓ NORTHWEST BAY BOTTOM 14 8 days days Hydrocarbons : BC PHC - EPH by GC-FID (Low level) Amber glass/Teflon lined cap (sodium bisulfate) NORTHWEST BAY BOTTOM-4 E601A-L 30-Sep-2021 08-Oct-2021 8 days 1 10-Oct-2021 40 days 2 days ✓ 14 days Hydrocarbons: CCME PHC - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) JFLQC-1 E601 30-Sep-2021 12-Oct-2021 ✓ 13-Oct-2021 ✓ 14 12 40 days 1 davs days days Hydrocarbons: CCME PHC - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) NORTHWEST BAY BOTTOM E601 30-Sep-2021 08-Oct-2021 8 days 1 13-Oct-2021 40 days 5 days 1 14 days Hydrocarbons: CCME PHC - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) ✓ 40 days 5 days ✓ NORTHWEST BAY BOTTOM-4 E601 30-Sep-2021 08-Oct-2021 14 8 days 13-Oct-2021 days Hydrocarbons: VH and F1 by Headspace GC-FID Glass vial (sodium bisulfate) E581.VH+F1 09-Oct-2021 ✓ JFLQC-1 30-Sep-2021 11-Oct-2021 14 days 11 days --------

Page : 14 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Hydrocarbons: VH and F1 by Headspace GC-FID Glass vial (sodium bisulfate) NORTHWEST BAY_BOTTOM E581.VH+F1 30-Sep-2021 09-Oct-2021 11-Oct-2021 14 days 11 days ✓ Hydrocarbons: VH and F1 by Headspace GC-FID Glass vial (sodium bisulfate) ✓ NORTHWEST BAY BOTTOM-4 E581.VH+F1 30-Sep-2021 09-Oct-2021 11-Oct-2021 14 days 11 days ----Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) JFLQC-1 E358-L 30-Sep-2021 08-Oct-2021 09-Oct-2021 28 days 10 days 1 Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 30-Sep-2021 07-Oct-2021 08-Oct-2021 28 days 7 days ✓ **INFLOW TO NW BAY 2** Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) NORTHWEST BAY BOTTOM E358-L 30-Sep-2021 07-Oct-2021 08-Oct-2021 28 days 7 days Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) NORTHWEST BAY_BOTTOM-4 E358-L 30-Sep-2021 07-Oct-2021 08-Oct-2021 28 days 7 days ✓ Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) NORTHWEST BAY MID-DEPTH E358-L 30-Sep-2021 07-Oct-2021 08-Oct-2021 28 days 7 days 1 Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L ✓ OUTFLOW 30-Sep-2021 07-Oct-2021 08-Oct-2021 28 days 7 days Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 07-Oct-2021 ✓ SOUTHWEST BAY MID-DEPTH 30-Sep-2021 08-Oct-2021 28 days 7 days --------

Page : 15 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) 30-Sep-2021 SOUTHWEST BAY_BOTTOM E358-L 08-Oct-2021 09-Oct-2021 28 days 9 days ✓ Physical Tests : Alkalinity Species by Titration HDPE E290 1 INFLOW TO NW BAY 2 30-Sep-2021 06-Oct-2021 14 days 6 days --------Physical Tests: Alkalinity Species by Titration HDPE JFLQC-1 E290 30-Sep-2021 06-Oct-2021 14 days 6 days ✓ Physical Tests: Alkalinity Species by Titration HDPE E290 30-Sep-2021 06-Oct-2021 14 days 6 days ✓ NORTHWEST BAY BOTTOM Physical Tests : Alkalinity Species by Titration HDPE E290 30-Sep-2021 06-Oct-2021 14 days 6 days ✓ NORTHWEST BAY BOTTOM-4 Physical Tests: Alkalinity Species by Titration HDPE E290 30-Sep-2021 06-Oct-2021 6 days ✓ NORTHWEST BAY_MID-DEPTH 14 days Physical Tests : Alkalinity Species by Titration HDPE OUTFLOW E290 30-Sep-2021 06-Oct-2021 14 days 6 days 1 Physical Tests: Alkalinity Species by Titration HDPE 14 days 6 days ✓ SOUTHWEST BAY BOTTOM E290 30-Sep-2021 06-Oct-2021 Physical Tests : Alkalinity Species by Titration HDPE E290 06-Oct-2021 ✓ SOUTHWEST BAY MID-DEPTH 30-Sep-2021 14 days 6 days --------

Page : 16 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water					E	valuation: ≭ =	Holding time exce	edance ;	✓ = Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation Date	Holding Rec	7 Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Physical Tests : Conductivity in Water										
HDPE INFLOW TO NW BAY 2	E100	30-Sep-2021					06-Oct-2021	28 days	6 days	✓
Physical Tests : Conductivity in Water										
HDPE JFLQC-1	E100	30-Sep-2021					06-Oct-2021	28 days	6 days	✓
Physical Tests : Conductivity in Water										
HDPE NORTHWEST BAY_BOTTOM	E100	30-Sep-2021					06-Oct-2021	28 days	6 days	√
Physical Tests : Conductivity in Water										
NORTHWEST BAY_BOTTOM-4	E100	30-Sep-2021					06-Oct-2021	28 days	6 days	✓
Physical Tests : Conductivity in Water										
HDPE NORTHWEST BAY_MID-DEPTH	E100	30-Sep-2021					06-Oct-2021	28 days	6 days	✓
Physical Tests : Conductivity in Water										
HDPE OUTFLOW	E100	30-Sep-2021					06-Oct-2021	28 days	6 days	√
Physical Tests : Conductivity in Water										
HDPE SOUTHWEST BAY_BOTTOM	E100	30-Sep-2021					06-Oct-2021	28 days	6 days	✓
Physical Tests : Conductivity in Water										
HDPE SOUTHWEST BAY_MID-DEPTH	E100	30-Sep-2021					06-Oct-2021	28 days	6 days	√
Physical Tests : pH by Meter										
HDPE SOUTHWEST BAY_BOTTOM	E108	30-Sep-2021					06-Oct-2021	0.25 hrs	141 hrs	* EHTR-FM

Page : 17 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time Matrix: Water Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Date Rec Actual Actual Physical Tests : pH by Meter HDPE 30-Sep-2021 SOUTHWEST BAY_MID-DEPTH E108 06-Oct-2021 141 hrs æ 0.25 EHTR-FM hrs Physical Tests : pH by Meter HDPE NORTHWEST BAY_BOTTOM E108 30-Sep-2021 06-Oct-2021 0.25 142 hrs × --------EHTR-FM hrs Physical Tests : pH by Meter HDPE NORTHWEST BAY BOTTOM-4 E108 30-Sep-2021 06-Oct-2021 142 hrs 30 0.25 EHTR-FM hrs Physical Tests : pH by Meter HDPE E108 30-Sep-2021 06-Oct-2021 142 hrs NORTHWEST BAY MID-DEPTH 0.25 EHTR-FM hrs Physical Tests : pH by Meter HDPE E108 30-Sep-2021 06-Oct-2021 144 hrs æ **INFLOW TO NW BAY 2** 0.25 EHTR-FM hrs Physical Tests : pH by Meter HDPE OUTFLOW E108 30-Sep-2021 06-Oct-2021 146 hrs 0.25 hrs EHTR-FM Physical Tests : pH by Meter HDPE 30-Sep-2021 JFLQC-1 E108 06-Oct-2021 147 hrs 0.25 hrs EHTR-FM **Physical Tests: TDS by Gravimetry** HDPE **INFLOW TO NW BAY 2** ✓ 07-Oct-2021 7 days E162 30-Sep-2021 7 days **Physical Tests: TDS by Gravimetry** HDPE E162 30-Sep-2021 07-Oct-2021 1 JFLQC-1 7 days 7 days --------

Page : 18 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Analyte Group

Method Sampling Date Extraction / Preparation Analysis

Analyte Group	Method	Sampling Date	Extraction / Preparation				Analys	is		
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE NORTHWEST BAY_BOTTOM	E162	30-Sep-2021					07-Oct-2021	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE NORTHWEST BAY_BOTTOM-4	E162	30-Sep-2021					07-Oct-2021	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE NORTHWEST BAY_MID-DEPTH	E162	30-Sep-2021					07-Oct-2021	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE OUTFLOW	E162	30-Sep-2021					07-Oct-2021	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE SOUTHWEST BAY_BOTTOM	E162	30-Sep-2021					07-Oct-2021	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE SOUTHWEST BAY_MID-DEPTH	E162	30-Sep-2021					07-Oct-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry										
HDPE INFLOW TO NW BAY 2	E160-H	30-Sep-2021					07-Oct-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry										
HDPE JFLQC-1	E160-H	30-Sep-2021					07-Oct-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry										
HDPE NORTHWEST BAY_BOTTOM	E160-H	30-Sep-2021					07-Oct-2021	7 days	7 days	✓

Page : 19 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Date Rec Actual Actual Physical Tests : TSS by Gravimetry HDPE 30-Sep-2021 NORTHWEST BAY_BOTTOM-4 E160-H 07-Oct-2021 7 days 7 days ✓ **Physical Tests: TSS by Gravimetry** HDPE 1 NORTHWEST BAY_MID-DEPTH E160-H 30-Sep-2021 07-Oct-2021 7 days 7 days --------Physical Tests: TSS by Gravimetry HDPE OUTFLOW E160-H 30-Sep-2021 07-Oct-2021 7 days 7 days ✓ Physical Tests: TSS by Gravimetry HDPE E160-H 30-Sep-2021 07-Oct-2021 7 days 7 days ✓ SOUTHWEST BAY BOTTOM **Physical Tests: TSS by Gravimetry** HDPE E160-H 30-Sep-2021 07-Oct-2021 7 days 7 days ✓ SOUTHWEST BAY_MID-DEPTH **Physical Tests: Turbidity by Nephelometry** HDPE E121 30-Sep-2021 05-Oct-2021 **INFLOW TO NW BAY 2** 3 days 5 days æ EHT **Physical Tests: Turbidity by Nephelometry** HDPE JFLQC-1 E121 30-Sep-2021 05-Oct-2021 3 days 5 days æ EHT **Physical Tests: Turbidity by Nephelometry** HDPE E121 05-Oct-2021 5 days NORTHWEST BAY_BOTTOM 30-Sep-2021 3 days 30 EHT **Physical Tests: Turbidity by Nephelometry** HDPE E121 30-Sep-2021 05-Oct-2021 NORTHWEST BAY BOTTOM-4 3 days 5 days 30 --------EHT

Page : 20 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water					Eva	aluation: 🗴 =	Holding time exce	edance ; 🕶	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analysis		
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date	Holding		Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Turbidity by Nephelometry					l I					
HDPE NORTHWEST BAY_MID-DEPTH	E121	30-Sep-2021					05-Oct-2021	3 days	5 days	×
		30 334 232						,-	,-	EHT
Physical Tests : Turbidity by Nephelometry										
HDPE										
OUTFLOW	E121	30-Sep-2021					05-Oct-2021	3 days	5 days	×
										EHT
Physical Tests : Turbidity by Nephelometry										
HDPE SOUTHWEST BAY_BOTTOM	E121	30-Sep-2021					05-Oct-2021	3 days	5 days	×
300THWEST BAT_BOTTOM	LIZI	30-3ep-2021					05-001-2021	5 days	Juays	EHT
Physical Tests : Turbidity by Nephelometry										
HDPE										
SOUTHWEST BAY_MID-DEPTH	E121	30-Sep-2021					05-Oct-2021	3 days	5 days	×
										EHT
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) SOUTHWEST BAY BOTTOM	E508	30-Sep-2021					09-Oct-2021	28 days	8 days	√
SOUTHWEST BAT_BOTTOM	L300	30-3ер-2021					09-OCI-2021	20 days	o uays	• I
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
SOUTHWEST BAY_MID-DEPTH	E508	30-Sep-2021					09-Oct-2021	28 days	8 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) INFLOW TO NW BAY 2	E508	30-Sep-2021					09-Oct-2021	28 days	0 daya	√
INFLOW TO NW BAY 2	L300	30-3ер-2021					09-OCI-2021	20 days	9 uays	•
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
JFLQC-1	E508	30-Sep-2021					09-Oct-2021	28 days	9 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)	F500	20 50- 2024					00 0=+ 0004	20 4	0 4	,
NORTHWEST BAY_BOTTOM	E508	30-Sep-2021					09-Oct-2021	28 days	9 days	✓
_		,							·	

Page : 21 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) 30-Sep-2021 NORTHWEST BAY_BOTTOM-4 E508 09-Oct-2021 28 days 9 days ✓ **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) ✓ NORTHWEST BAY_MID-DEPTH E508 30-Sep-2021 09-Oct-2021 28 days 9 days ----Total Metals: Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid) OUTFLOW E508 30-Sep-2021 09-Oct-2021 28 days 9 days 1 Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) INFLOW TO NW BAY 2 E420 30-Sep-2021 09-Oct-2021 ✓ 180 8 days days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) NORTHWEST BAY_BOTTOM E420 30-Sep-2021 09-Oct-2021 8 days ✓ 180 days **Total Metals: Total Metals in Water by CRC ICPMS** HDPE total (nitric acid) NORTHWEST BAY_BOTTOM-4 E420 30-Sep-2021 09-Oct-2021 ✓ 180 8 davs days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) NORTHWEST BAY MID-DEPTH E420 30-Sep-2021 09-Oct-2021 8 days 1 180 days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) ✓ 09-Oct-2021 SOUTHWEST BAY BOTTOM E420 30-Sep-2021 180 8 days days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) E420 30-Sep-2021 ✓ SOUTHWEST BAY MID-DEPTH 09-Oct-2021 8 days 180 ---days

Page : 22 of 30
Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

							riolaing time excet			
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
JFLQC-1	E420	30-Sep-2021					09-Oct-2021	180 days	9 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
OUTFLOW	E420	30-Sep-2021					09-Oct-2021	180 days	9 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
JFLQC-1	E611A	30-Sep-2021	09-Oct-2021				11-Oct-2021	14 days	11 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
NORTHWEST BAY_BOTTOM	E611A	30-Sep-2021	09-Oct-2021				11-Oct-2021	14 days	11 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
NORTHWEST BAY_BOTTOM-4	E611A	30-Sep-2021	09-Oct-2021				11-Oct-2021	14 days	11 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 23 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			С	ount		6)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	311096	1	19	5.2	5.0	1
Ammonia by Fluorescence	E298	313905	2	34	5.8	5.0	✓
BTEX by Headspace GC-MS	E611A	316164	1	16	6.2	5.0	✓
Chloride in Water by IC	E235.CI	311089	1	20	5.0	5.0	√
Conductivity in Water	E100	311095	1	18	5.5	5.0	1
Dissolved Mercury in Water by CVAAS	E509	315582	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	313340	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	313900	2	28	7.1	5.0	1
Fluoride in Water by IC	E235.F	311088	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	311091	1	19	5.2	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	311092	1	19	5.2	5.0	✓
pH by Meter	E108	311094	1	20	5.0	5.0	✓
Reactive Silica by Colourimetry	E392	315339	1	20	5.0	5.0	1
Sulfate in Water by IC	E235.SO4	311090	1	19	5.2	5.0	✓
TDS by Gravimetry	E162	313301	3	45	6.6	5.0	✓
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	313904	2	13	15.3	5.0	✓
Total Mercury in Water by CVAAS	E508	315539	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	313351	2	20	10.0	5.0	✓
Total Nitrogen by Colourimetry	E366	313902	2	12	16.6	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	313903	2	21	9.5	5.0	✓
TSS by Gravimetry	E160-H	313305	2	15	13.3	5.0	✓
Turbidity by Nephelometry	E121	311429	1	20	5.0	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	316163	1	11	9.0	5.0	✓
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	311096	1	19	5.2	5.0	1
Ammonia by Fluorescence	E298	313905	2	34	5.8	5.0	✓
BC PHC - EPH by GC-FID (Low level)	E601A-L	315182	2	3	66.6	5.0	✓
BTEX by Headspace GC-MS	E611A	316164	1	16	6.2	5.0	✓
CCME PHC - F2-F4 by GC-FID	E601	315181	2	5	40.0	5.0	✓
Chloride in Water by IC	E235.CI	311089	1	20	5.0	5.0	✓
Conductivity in Water	E100	311095	1	18	5.5	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	315582	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	313340	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	313900	2	28	7.1	5.0	✓
Fluoride in Water by IC	E235.F	311088	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	311091	1	19	5.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	311092	1	19	5.2	5.0	1

Page : 24 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Quality Control Sample Type			Co	ount		Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued								
Oil & Grease by Gravimetry	E567	315705	1	9	11.1	5.0	1	
pH by Meter	E108	311094	1	20	5.0	5.0	✓	
Reactive Silica by Colourimetry	E392	315339	1	20	5.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	311090	1	19	5.2	5.0	✓	
TDS by Gravimetry	E162	313301	3	45	6.6	5.0	✓	
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	313904	2	13	15.3	5.0	✓	
Total Mercury in Water by CVAAS	E508	315539	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	313351	1	20	5.0	5.0	✓	
Total Nitrogen by Colourimetry	E366	313902	2	12	16.6	5.0	1	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	313903	2	21	9.5	5.0	✓	
TSS by Gravimetry	E160-H	313305	2	15	13.3	5.0	✓	
Turbidity by Nephelometry	E121	311429	1	20	5.0	5.0	✓	
VH and F1 by Headspace GC-FID	E581.VH+F1	316163	1	11	9.0	5.0	✓	
Method Blanks (MB)								
Alkalinity Species by Titration	E290	311096	1	19	5.2	5.0	1	
Ammonia by Fluorescence	E298	313905	2	34	5.8	5.0	1	
BC PHC - EPH by GC-FID (Low level)	E601A-L	315182	2	3	66.6	5.0	<u> </u>	
BTEX by Headspace GC-MS	E611A	316164	1	16	6.2	5.0	1	
CCME PHC - F2-F4 by GC-FID	E601	315181	2	5	40.0	5.0	<u> </u>	
Chloride in Water by IC	E235.CI	311089	1	20	5.0	5.0	<u>√</u>	
Conductivity in Water	E100	311095	1	18	5.5	5.0	1	
Dissolved Mercury in Water by CVAAS	E509	315582	1	20	5.0	5.0	<u> </u>	
Dissolved Metals in Water by CRC ICPMS	E421	313340	1	20	5.0	5.0	√	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	313900	2	28	7.1	5.0	1	
Fluoride in Water by IC	E235.F	311088	1	20	5.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	311091	1	19	5.2	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	311092	1	19	5.2	5.0	✓	
Oil & Grease by Gravimetry	E567	315705	1	9	11.1	5.0	✓	
Reactive Silica by Colourimetry	E392	315339	1	20	5.0	5.0	1	
Sulfate in Water by IC	E235.SO4	311090	1	19	5.2	5.0	✓	
TDS by Gravimetry	E162	313301	3	45	6.6	5.0	✓	
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	313904	2	13	15.3	5.0	✓	
Total Mercury in Water by CVAAS	E508	315539	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	313351	2	20	10.0	5.0	✓	
Total Nitrogen by Colourimetry	E366	313902	2	12	16.6	5.0	✓	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	313903	2	21	9.5	5.0	✓	
TSS by Gravimetry	E160-H	313305	2	15	13.3	5.0	✓	
Turbidity by Nephelometry	E121	311429	1	20	5.0	5.0	✓	
VH and F1 by Headspace GC-FID	E581.VH+F1	316163	1	11	9.0	5.0	1	

Page : 25 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

				one of the		a o moquement in	op oom out or
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Ammonia by Fluorescence	E298	313905	2	34	5.8	5.0	✓
BTEX by Headspace GC-MS	E611A	316164	1	16	6.2	5.0	✓
Chloride in Water by IC	E235.CI	311089	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	315582	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	313340	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	313900	2	28	7.1	5.0	✓
Fluoride in Water by IC	E235.F	311088	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	311091	1	19	5.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	311092	1	19	5.2	5.0	✓
Reactive Silica by Colourimetry	E392	315339	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	311090	1	19	5.2	5.0	✓
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	313904	2	13	15.3	5.0	✓
Total Mercury in Water by CVAAS	E508	315539	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	313351	1	20	5.0	5.0	✓
Total Nitrogen by Colourimetry	E366	313902	2	12	16.6	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	313903	2	21	9.5	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	316163	1	11	9.0	5.0	✓

Page : 26 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Vancouver -	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
	Environmental			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results,
	Vancouver - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Vancouver -			
	Environmental			
TSS by Gravimetry	E160-H	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Vancouver -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at $180 \pm 2^{\circ}\text{C}$ for 16 hours or to constant weight,
	Vancouver -			with gravimetric measurement of the residue.
Chloride in Water by IC	Environmental	Water	EDA 200 1 (mod)	
Chloride III Water by IC	E235.CI	vvaler	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Vancouver -			
	Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental			

Page : 27 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Vancouver -	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
	Environmental			
Ammonia by Fluorescence	E298	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
	Vancouver -			
Dissolved Organic Carbon by Combustion (Low Level)	Environmental E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
	Vancouver - Environmental			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Nitrogen by Colourimetry	E366 Vancouver -	Water	APHA 4500-P J (mod)	Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
	Environmental	10/	ADUA 4500 D E (*****)	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
	Vancouver -			
Total Discobused Dhasenhamis by Calavisias street	Environmental E375-T	Water	APHA 4500-P E (mod).	Total Dissolved Dhasebanes is determined adjusting this wife and dissort and approximate and the second and the
Total Dissolved Phosphorus by Colourimetry (Trace Level)		vvalei	AFIIA 4500-F E (IIIOU).	Total Dissolved Phosphorus is determined colourimetrically using a discrete analyzer after filtration through a 0.45 micron filter followed by heated persulfate digestion of the
	Vancouver -			sample.
Reactive Silica by Colourimetry	Environmental	Water	ADUA 4500 C:O2 F	Ciliante (malubilitate reactive cilian) is determined by the malubilitate between by blue
Reactive Silica by Colourinetry	E392	vvalei	APHA 4500-SiO2 E (mod)	Silicate (molybdate-reactive silica) is determined by the molybdosilicate-heteropoly blue colourimetric method using a discrete analyzer. Method Limitation: Arsenic (5+) above
	Vancouver -			100 mg/L is a negative interference on this test
Total Matala in Water by CDC ICDMS	Environmental	Water	EDA 000 0/0000	Middle and the second of the s
Total Metals in Water by CRC ICPMS	E420	vvaler	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Vancouver -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	Vancouver -		,	
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	Vancouver -			
	Environmental			

Page : 28 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Oil & Grease by Gravimetry	E567 Vancouver - Environmental	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
VH and F1 by Headspace GC-FID	E581.VH+F1 Vancouver - Environmental	Water	BC MOE Lab Manual / CCME PHC in Soil - Tier 1 (mod)	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
CCME PHC - F2-F4 by GC-FID	E601 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	CCME Fractions 2-4 (F2-F4) are analyzed by GC-FID.
BC PHC - EPH by GC-FID (Low level)	E601A-L Vancouver - Environmental	Water	BC MOE Lab Manual (EPH in Water by GC/FID) (mod)	Extractable Petroleum Hydrocarbons (EPH) are analyzed by GC-FID.
BTEX by Headspace GC-MS	E611A Vancouver - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Hardness (Calculated) from Total Ca/Mg	EC100A Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
TDS in Water (Calculation) Using APHA Analyte List	EC103.APHA Vancouver - Environmental	Water	АРНА 1030Е	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis).
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Vancouver - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).

Page : 29 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
F1-BTEX	EC580 Vancouver -	Water	CCME PHC in Soil - Tier 1	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).
	Environmental			
VPH: VH-BTEX-Styrene	EC580A	Water	BC MOE Lab Manual (VPH in Water and	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHw = Volatile Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and
	Vancouver - Environmental		Solids) (mod)	styrene.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Vancouver -			
	Environmental			
Preparation for Dissolved Organic Carbon for Combustion	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
	Vancouver -			
Di di 6 Talahi	Environmental	147.1	ADUA (500 D. I.(I)	
Digestion for Total Nitrogen in water	EP366	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
Digestion for Total Phosphorus in water	Environmental EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Digestion for Total Phosphorus in water	EP372	vvalei	AFHA 4500-F E (IIIou).	Samples are neated with a persunate digestion reagent.
	Vancouver -			
	Environmental			
Digestion for Dissolved Phosphorus in water	EP375	Water	APHA 4500-P E (mod).	Samples are filtered through a 0.45 micron membrane filter and then heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Vancouver -			
Dissolved Moreum Water Filtration	Environmental	Water	APHA 3030B	Water complex are filtered (0.45 µm), and presented with HCI
Dissolved Mercury Water Filtration	EP509	vvalei	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			
Oil & Grease Extraction for Gravimetry	EP567	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane by liquid-liquid extraction.
	Vancouver -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	Vancouver -			GC/MS-FID system.
	Environmental			

Page : 30 of 30 Work Order : YL2101440

Client : Golder Associates Ltd.

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order Page :YL2101440 : 1 of 21

Client : Golder Associates Ltd. Laboratory : Yellowknife - Environmental

Contact **Account Manager** : Oliver Gregg : Kathy Qin

> Address :9 - 4905 48th Street :314 Old Airport Road, Unit 116

Yellowknife NT Canada X1A 3S3 Yellowknife, Northwest Territories Canada X1A 3T3

Telephone Telephone :1 867 446 5593 · ----Project :21482915 **Date Samples Received** :01-Oct-2021 09:00

PO **Date Analysis Commenced** :05-Oct-2021

C-O-C number :14-Oct-2021 15:17 Issue Date Sampler

Quote number : NTPC Jackfish Lake : 8

No. of samples analysed : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

No. of samples received

Address

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia
Ophelia Chiu	Department Manager - Organics	Organics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruby Pham	Lab Assistant	Metals, Burnaby, British Columbia

Page : 2 of 21
Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Page : 3 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

ALS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water							Labora	ntory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	C Lot: 311094)										
YL2101440-001	NORTHWEST BAY_MID-DEPTH	pH		E108	0.10	pH units	8.41	8.41	0.00%	4%	
Physical Tests (QC	C Lot: 311095)										
YL2101440-001	NORTHWEST BAY_MID-DEPTH	conductivity		E100	2.0	μS/cm	445	445	0.00%	10%	
Physical Tests (QC	C Lot: 311096)										
YL2101440-001	NORTHWEST BAY_MID-DEPTH	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	111	108	2.90%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	6.2	7.9	1.8	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	3.1	4.0	0.9	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	118	116	1.20%	20%	
Physical Tests (QC	Lot: 311429)						ı				
VA21C1847-001	Anonymous	turbidity		E121	0.10	NTU	1.01	1.06	0.05	Diff <2x LOR	
Physical Tests (QC	Lot: 313301)										
VA21C1793-017	Anonymous	solids, total dissolved [TDS]		E162	13	mg/L	104	108	4	Diff <2x LOR	
Physical Tests (QC	Lot: 313305)						ı				
VA21C2066-001	Anonymous	solids, total suspended [TSS]		E160-H	3.0	mg/L	25.2	27.2	2.0	Diff <2x LOR	
Physical Tests (QC	Lot: 313626)										
VA21C1859-002	Anonymous	solids, total suspended [TSS]		E160-H	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Physical Tests (QC	CL of: 313632)										
VA21C1658-007	Anonymous	solids, total dissolved [TDS]		E162	10	mg/L	30	28	2	Diff <2x LOR	
Physical Tests (QC	C Lot: 313633)										
YL2101440-002	NORTHWEST BAY BOTTOM	solids, total dissolved [TDS]		E162	20	mg/L	285	275	3.57%	20%	
Anions and Nutrien	its (QC Lot: 311088)										
FJ2101042-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.082	0.082	0.0001	Diff <2x LOR	
Anions and Nutrien	nts (QC Lot: 311089)										
FJ2101042-001	Anonymous	chloride	16887-00-6	E235.CI	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 311090)										
FJ2101042-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	51.7	52.0	0.664%	20%	
Anions and Nutrien	its (QC Lot: 311091)										
FJ2101042-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	

Page : 4 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrien	nts (QC Lot: 311092)										
FJ2101042-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	nts (QC Lot: 313902)										
VA21C1544-001	Anonymous	nitrogen, total	7727-37-9	E366	1.50	mg/L	26.5	27.3	3.09%	20%	
Anions and Nutrien	nts (QC Lot: 313903)										
CG2104573-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0400	mg/L	0.729	0.702	3.72%	20%	
Anions and Nutrien	nts (QC Lot: 313904)										
VA21C1544-001	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0088	0.0074	0.0015	Diff <2x LOR	
Anions and Nutrien	nts (QC Lot: 313905)										
VA21C1544-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.372	0.372	0.0647%	20%	
Anions and Nutrion	its (QC Lot: 315339)					-					
YL2101356-001	Anonymous	silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	0.86	0.81	0.05	Diff <2x LOR	
	·					<u> </u>					
YL2101440-007	southwest	nitrogen, total	7727-37-9	E366	0.060	mg/L	1.70	1.66	2.03%	20%	
122101440-007	BAY_BOTTOM	milogen, total	1121-51-5	2300	0.000	mg/L	1.70	1.00	2.0070	2070	
Anions and Nutrien	nts (QC Lot: 315435)										
YL2101440-007	SOUTHWEST BAY_BOTTOM	phosphorus, total	7723-14-0	E372-U	0.0200	mg/L	0.105	0.0907	0.0139	Diff <2x LOR	
Anions and Nutrien	nts (QC Lot: 315436)										
YL2101440-007	SOUTHWEST BAY BOTTOM	phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0124	0.0121	0.0003	Diff <2x LOR	
Anions and Nutrien	nts (QC Lot: 315437)										
YL2101440-007	SOUTHWEST BAY BOTTOM	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0108	0.0109	0.00005	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 3139	00)									
VA21C1544-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.60	1.66	0.06	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 3154	33)									
YL2101440-007	SOUTHWEST BAY BOTTOM	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	11.6	13.1	11.8%	20%	
Total Metals (QC L	_										
YL2101442-001	Anonymous	chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
YL2101442-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0790	0.0776	1.76%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00011	0.00010	0.000004	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00038	0.00036	0.00002	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.258	0.233	10.2%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	1.10	1.15	4.37%	20%	
		·	7440-43-9	E420	0.0000050	mg/L	0.000187	0.000195	3.83%	20%	
		cadmium, total	1440-43-9	L42U	0.0000000	mg/L	0.000107	0.000195	3.0370	2070	

Page : 5 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
otal Metals (QC Lo	ot: 313351) - continued										
′L2101442-001	Anonymous	calcium, total	7440-70-2	E420	0.050	mg/L	109	112	2.70%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	0.000089	0.000093	0.000004	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00517	0.00511	1.29%	20%	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00134	0.00134	0.000005	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.310	0.305	1.77%	20%	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000057	0.000062	0.000005	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0109	0.0114	4.39%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	39.2	38.0	3.22%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.667	0.639	4.24%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00620	0.00636	2.46%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.0172	0.0169	2.14%	20%	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	31.1	29.2	6.40%	20%	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.0278	0.0272	2.21%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.000107	0.000172	0.000065	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	4.93	4.79	2.85%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.050	mg/L	81.4	81.2	0.264%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	1.12	1.14	1.36%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	23.6	22.6	4.53%	20%	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	0.00021	0.00021	0.000005	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000080	0.000080	0.0000004	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00237	0.00211	0.00026	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000927	0.000909	1.98%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0191	0.0187	0.0004	Diff <2x LOR	
		zirco, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
-4-1 M-4-1- (00-1-	-4: 245520)	Ziroomam, totai	1440 01 1		3.00020	my, L	-0.00020	-0.00020		2.11 ·2.x 2.010	
otal Metals (QC Lo A21C2080-016	ot: 315539) Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		mercury, total	1438-81-0	LJ00	0.0000000	my/L	\U.UUUUUUU	\U.UUUUUUU	U	Dill \ZX LUR	
issolved Metals (,	ahuniaum diasahu l	7400 00 5	E424	0.0040	ma er /1	40.0040	-0.0040		D:# <0:-1 OD	
G2104587-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00108	0.00109	0.565%	20%	

Page : 6 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Dissolved Metals (QC	Client sample ID C Lot: 313340) - cont Anonymous	Analyte tinued arsenic, dissolved barium, dissolved	CAS Number	Method	LOR	Unit	Original	Duplicate	RPD(%) or	Duplicate	Qualifie
•	,	arsenic, dissolved	7440 20 0				Result	Result	Difference	Limits	
CG2104587-001	Anonymous		7440 00 0								
		barium dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barrarri, alboorroa	7440-39-3	E421	0.00010	mg/L	0.0198	0.0191	3.53%	20%	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.049	0.048	0.0007	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	1.39 µg/L	0.00132	5.40%	20%	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	334	336	0.640%	20%	
		cesium, dissolved	7440-46-2	E421	0.000010	mg/L	0.000063	0.000064	0.0000010	Diff <2x LOR	
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.10	mg/L	0.78 μg/L	0.00075	0.00003	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00058	0.00057	0.00002	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	0.016	0.016	0.0002	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.581	0.580	0.162%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	159	151	4.65%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00190	0.00180	5.27%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00408	0.00407	0.0689%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.0950	0.0914	3.82%	20%	
		phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	11.0	10.5	3.92%	20%	
		rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00974	0.00926	5.04%	20%	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	265 μg/L	0.284	6.68%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.17	2.20	1.61%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.050	mg/L	7.35	7.08	3.80%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.526	0.526	0.0310%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	287	301	4.57%	20%	
		tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.00020	mg/L	0.00020	0.000093	0.000002	Diff <2x LOR	
		thorium, dissolved	7440-20-0	E421	0.00010	mg/L	<0.0001	<0.00010	0.000002	Diff <2x LOR	
		tin. dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		·				_					
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, dissolved vanadium, dissolved	7440-61-1 7440-62-2	E421	0.000010 0.00050	mg/L mg/L	0.0220 <0.00050	0.0217 <0.00050	1.54%	20% Diff <2x LOR	

Page : 7 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

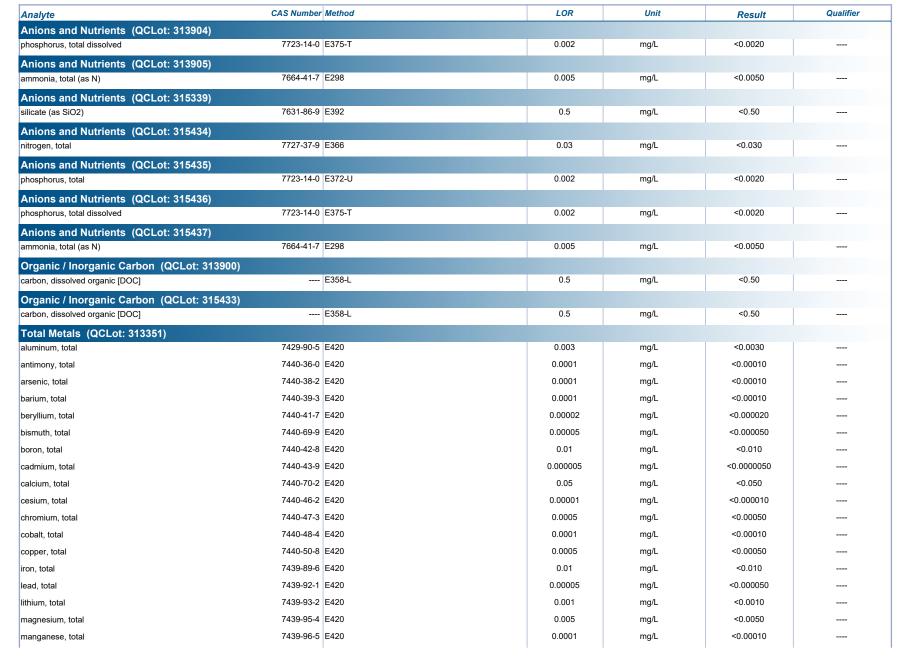
Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals(QC Lot: 313340) - co	ntinued									
CG2104587-001	Anonymous	zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.228	0.222	2.70%	20%	
		zirconium, dissolved	7440-67-7	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
Dissolved Metals (0	QC Lot: 315582)										
CG2104612-003	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Volatile Organic Co	mpounds (QC Lot: 3	16164)									
FJ2101052-004	Anonymous	benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		styrene	100-42-5	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 316163)										
FJ2101052-004	Anonymous	F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	
		VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	

Page : 8 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Method Blank (MB) Report


A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 311095)					
conductivity	E100	1	μS/cm	1.0	
Physical Tests (QCLot: 311096)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, phenolphthalein (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 311429)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 313301)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 313305)					
solids, total suspended [TSS]	E160-H	3	mg/L	<3.0	
Physical Tests (QCLot: 313626)				<u>'</u>	
solids, total suspended [TSS]	E160-H	3	mg/L	<3.0	
Physical Tests (QCLot: 313632)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 313633)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 311088)				<u>'</u>	
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 311089)					
chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 311090)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 311091)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 311092)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 313902)					
nitrogen, total	7727-37-9 E366	0.03	mg/L	<0.030	
Anions and Nutrients (QCLot: 313903)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	

Page : 9 of 21 Work Order : YL2101440

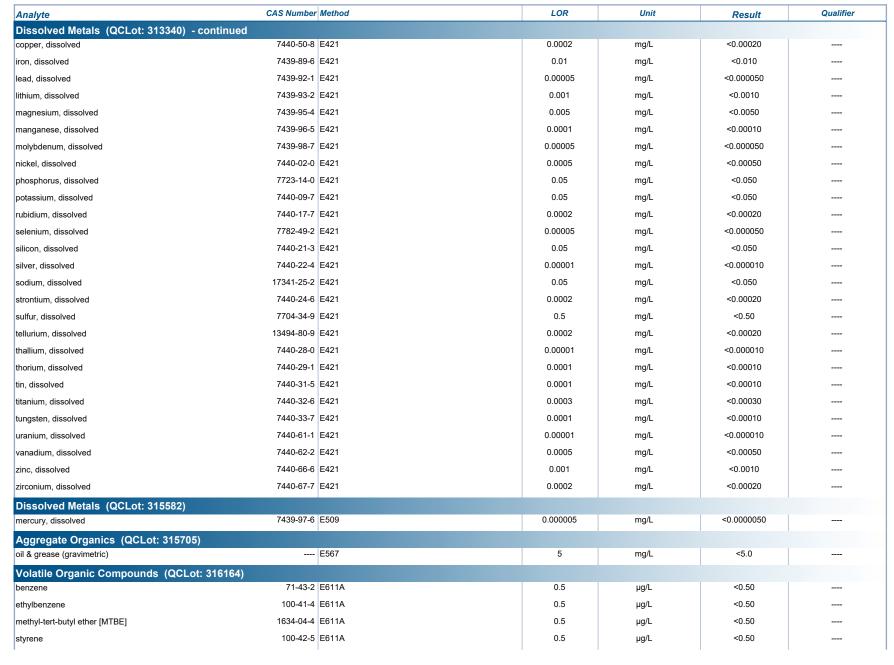
Client : Golder Associates Ltd.

Project : 21482915

Page : 10 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915


Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 313351) - conti	nued					
molybdenum, total	7439-98-7 I	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 I	E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0 I	E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7 I	E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7 I	E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2 I	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 I	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 I	E420	0.00001	mg/L	<0.000010	
sodium, total	17341-25-2 I	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 I	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 I	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9 I	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0 I	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1 [E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5 E	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6 E	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7 I	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1 I	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2 I	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6 I	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7 I	E420	0.0002	mg/L	<0.00020	
Total Metals (QCLot: 315539)						
mercury, total	7439-97-6 I	E508	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 313340)						
aluminum, dissolved	7429-90-5 I	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 I	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 I	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 I	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7 E	E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9 I	E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8 I	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 I	E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2 I	E421	0.05	mg/L	<0.050	
cesium, dissolved	7440-46-2 I	E421	0.00001	mg/L	<0.000010	
chromium, dissolved	7440-47-3 I	E421	0.0005	mg/L	<0.00050	
cobalt, dissolved	7440-48-4 I	E421	0.0001	mg/L	<0.00010	
I	1		I	l	I	

Page : 11 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Page : 12 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Analyte CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCLot: 316164) - continued					
toluene 108-88-3	E611A	0.5	μg/L	<0.50	
xylene, m+p- 179601-23-1	E611A	0.4	μg/L	<0.40	
xylene, o- 95-47-6	E611A	0.3	μg/L	<0.30	
Hydrocarbons (QCLot: 315181)					
F2 (C10-C16)	E601	100	μg/L	<100	
F3 (C16-C34)	E601	250	μg/L	<250	
F4 (C34-C50)	E601	250	μg/L	<250	
Hydrocarbons (QCLot: 315182)					
EPH (C10-C19)	E601A-L	50	μg/L	<50	
EPH (C19-C32)	E601A-L	50	μg/L	<50	
TEH (C10-C30), BC	E601A-L	100	μg/L	<100	
Hydrocarbons (QCLot: 316163)					
F1 (C6-C10)	E581.VH+F1	100	μg/L	<100	
VHw (C6-C10)	E581.VH+F1	100	μg/L	<100	
Hydrocarbons (QCLot: 316781)					
F2 (C10-C16)	E601	100	μg/L	<100	
F3 (C16-C34)	E601	250	μg/L	<250	
F4 (C34-C50)	E601	250	μg/L	<250	
Hydrocarbons (QCLot: 316782)					
EPH (C10-C19)	E601A-L	50	μg/L	<50	
EPH (C19-C32)	E601A-L	50	μg/L	<50	
TEH (C10-C30), BC	E601A-L	100	μg/L	<100	

Page : 13 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 311094)										
рН		E108		pH units	7 pH units	99.8	98.0	102		
Physical Tests (QCLot: 311095)										
conductivity		E100	1	μS/cm	146.9 μS/cm	97.8	90.0	110		
Physical Tests (QCLot: 311096)										
alkalinity, phenolphthalein (as CaCO3)		E290	1	mg/L	229 mg/L	108	75.0	125		
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	108	85.0	115		
Physical Tests (QCLot: 311429)										
turbidity		E121	0.1	NTU	200 NTU	106	85.0	115		
Physical Tests (QCLot: 313301)										
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	94.5	85.0	115		
Physical Tests (QCLot: 313305)										
solids, total suspended [TSS]		E160-H	3	mg/L	150 mg/L	86.0	85.0	115		
Physical Tests (QCLot: 313626)										
solids, total suspended [TSS]		E160-H	3	mg/L	150 mg/L	88.7	85.0	115		
Physical Tests (QCLot: 313632)										
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	96.8	85.0	115		
Physical Tests (QCLot: 313633)										
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	95.3	85.0	115		
Anions and Nutrients (QCLot: 311088)										
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	103	90.0	110		
Anions and Nutrients (QCLot: 311089)										
chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	99.7	90.0	110		
Anions and Nutrients (QCLot: 311090)										
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110		
Anions and Nutrients (QCLot: 311091)										
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	99.9	90.0	110		
Anions and Nutrients (QCLot: 311092)										
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	102	90.0	110		
Anions and Nutrients (QCLot: 313902)									1	
nitrogen, total	7727-37-9	E366	0.03	mg/L	0.5 mg/L	101	75.0	125		
Anions and Nutrients (QCLot: 313903)									I	
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	93.6	80.0	120		
T. Control of the Con		I .	T	l	1			l	I	

Page : 14 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Anions and Nutrients (QCLot: 313904)										
phosphorus, total dissolved	7723-14-0	E375-T	0.002	mg/L	0.05 mg/L	96.1	80.0	120		
Anions and Nutrients (QCLot: 313905)										
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	97.4	85.0	115		
Anions and Nutrients (QCLot: 315339)										
silicate (as SiO2)	7631-86-9	E392	0.5	mg/L	10 mg/L	96.4	85.0	115		
Anions and Nutrients (QCLot: 315434)										
nitrogen, total	7727-37-9	E366	0.03	mg/L	0.5 mg/L	100	75.0	125		
Anions and Nutrients (QCLot: 315435)										
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	92.0	80.0	120		
Anions and Nutrients (QCLot: 315436)										
phosphorus, total dissolved	7723-14-0	E375-T	0.002	mg/L	0.05 mg/L	90.3	80.0	120		
Anions and Nutrients (QCLot: 315437)										
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	96.1	85.0	115		
					-					
Organic / Inorganic Carbon (QCLot: 313900)										
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	104	80.0	120		
Organic / Inorganic Carbon (QCLot: 315433)										
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	106	80.0	120		
Total Metals (QCLot: 313351)										
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	105	80.0	120		
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	103	80.0	120		
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	100	80.0	120		
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	103	80.0	120		
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	102	80.0	120		
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	101	80.0	120		
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	100	80.0	120		
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	102	80.0	120		
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	102	80.0	120		
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	106	80.0	120		
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	101	80.0	120		
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	103	80.0	120		
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	101	80.0	120		
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	106	80.0	120		
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	105	80.0	120		
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	102	80.0	120		
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	98.5	80.0	120		

Page : 15 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 313351) - con	tinued								
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	105	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	102	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	102	80.0	120	
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	110	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	102	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	105	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	99.7	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	101	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	102	80.0	120	
sodium, total	17341-25-2	E420	0.05	mg/L	50 mg/L	102	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	101	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	98.6	80.0	120	
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	96.2	80.0	120	
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	104	80.0	120	
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	100.0	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	103	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	98.4	80.0	120	
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	109	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	113	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	102	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	101	80.0	120	
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	94.4	80.0	120	
Total Metals (QCLot: 315539)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	86.0	80.0	120	
Dissolved Metals (QCLot: 313340)									
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	105	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	98.8	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	98.4	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	98.9	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	98.0	80.0	120	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	99.3	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	92.5	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	98.4	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	95.3	80.0	120	
cesium, dissolved	7440-46-2	E421	0.00001	mg/L	0.05 mg/L	95.2	80.0	120	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	95.6	80.0	120	

Page : 16 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report							
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS Nui	ber Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 313340) - continued								
cobalt, dissolved 7440-	8-4 E421	0.0001	mg/L	0.25 mg/L	98.8	80.0	120	
copper, dissolved 7440-	0-8 E421	0.0002	mg/L	0.25 mg/L	97.5	80.0	120	
iron, dissolved 7439-	9-6 E421	0.01	mg/L	1 mg/L	97.0	80.0	120	
lead, dissolved 7439-	2-1 E421	0.00005	mg/L	0.5 mg/L	95.2	80.0	120	
lithium, dissolved 7439-	3-2 E421	0.001	mg/L	0.25 mg/L	98.2	80.0	120	
magnesium, dissolved 7439-	5-4 E421	0.005	mg/L	50 mg/L	98.3	80.0	120	
manganese, dissolved 7439-	6-5 E421	0.0001	mg/L	0.25 mg/L	98.2	80.0	120	
molybdenum, dissolved 7439-	8-7 E421	0.00005	mg/L	0.25 mg/L	92.6	80.0	120	
nickel, dissolved 7440-	2-0 E421	0.0005	mg/L	0.5 mg/L	96.0	80.0	120	
phosphorus, dissolved 7723-	4-0 E421	0.05	mg/L	10 mg/L	105	80.0	120	
potassium, dissolved 7440-	9-7 E421	0.05	mg/L	50 mg/L	101	80.0	120	
rubidium, dissolved 7440-	7-7 E421	0.0002	mg/L	0.1 mg/L	101	80.0	120	
selenium, dissolved 7782-	9-2 E421	0.00005	mg/L	1 mg/L	98.6	80.0	120	
silicon, dissolved 7440-	1-3 E421	0.05	mg/L	10 mg/L	100	80.0	120	
silver, dissolved 7440-	2-4 E421	0.00001	mg/L	0.1 mg/L	93.8	80.0	120	
sodium, dissolved 17341-	5-2 E421	0.05	mg/L	50 mg/L	105	80.0	120	
strontium, dissolved 7440-	4-6 E421	0.0002	mg/L	0.25 mg/L	99.9	80.0	120	
sulfur, dissolved 7704-	4-9 E421	0.5	mg/L	50 mg/L	99.6	80.0	120	
tellurium, dissolved 13494-	0-9 E421	0.0002	mg/L	0.1 mg/L	95.8	80.0	120	
thallium, dissolved 7440-	8-0 E421	0.00001	mg/L	1 mg/L	99.3	80.0	120	
thorium, dissolved 7440-	9-1 E421	0.0001	mg/L	0.1 mg/L	84.2	80.0	120	
tin, dissolved 7440-	1-5 E421	0.0001	mg/L	0.5 mg/L	90.8	80.0	120	
titanium, dissolved 7440-	2-6 E421	0.0003	mg/L	0.25 mg/L	96.4	80.0	120	
tungsten, dissolved 7440-	3-7 E421	0.0001	mg/L	0.1 mg/L	93.5	80.0	120	
uranium, dissolved 7440-	1-1 E421	0.00001	mg/L	0.005 mg/L	94.4	80.0	120	
vanadium, dissolved 7440-	2-2 E421	0.0005	mg/L	0.5 mg/L	99.0	80.0	120	
zinc, dissolved 7440-	6-6 E421	0.001	mg/L	0.5 mg/L	102	80.0	120	
zirconium, dissolved 7440-	7-7 E421	0.0002	mg/L	0.1 mg/L	89.9	80.0	120	
mercury, dissolved 7439-	7-6 E509	0.000005	mg/L	0.0001 mg/L	100	80.0	120	
Aggregate Organics (QCLot: 315705)								
oil & grease (gravimetric)	E567	5	mg/L	100 mg/L	103	70.0	130	
Volatile Organic Compounds (QCLot: 316164)								
	3-2 E611A	0.5	μg/L	100 μg/L	81.9	70.0	130	
ethylbenzene 100-	1-4 E611A	0.5	μg/L	100 μg/L	100.0	70.0	130	
methyl-tert-butyl ether [MTBE] 1634-	4-4 E611A	0.5	μg/L	100 μg/L	97.9	70.0	130	
styrene 100-	2-5 E611A	0.5	μg/L	100 μg/L	102	70.0	130	

Page : 17 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot:	316164) - continued								
toluene	108-88-3	E611A	0.5	μg/L	100 μg/L	89.6	70.0	130	
xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	106	70.0	130	
xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	103	70.0	130	
Hydrocarbons (QCLot: 315181)									
F2 (C10-C16)		E601	100	μg/L	3538 μg/L	105	70.0	130	
F3 (C16-C34)		E601	250	μg/L	7053 μg/L	96.3	70.0	130	
F4 (C34-C50)		E601	250	μg/L	5051 μg/L	101	70.0	130	
Hydrocarbons (QCLot: 315182)									
EPH (C10-C19)		E601A-L	50	μg/L	6491 μg/L	90.3	70.0	130	
EPH (C19-C32)		E601A-L	50	μg/L	3363 µg/L	88.9	70.0	130	
TEH (C10-C30), BC		E601A-L	100	μg/L	9202 μg/L	89.8	70.0	130	
Hydrocarbons (QCLot: 316163)									
F1 (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	90.6	70.0	130	
VHw (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	89.2	70.0	130	
Hydrocarbons (QCLot: 316781)									
F2 (C10-C16)		E601	100	μg/L	3538 μg/L	101	70.0	130	
F3 (C16-C34)		E601	250	μg/L	7053 μg/L	90.5	70.0	130	
F4 (C34-C50)		E601	250	μg/L	5051 μg/L	94.2	70.0	130	
Hydrocarbons (QCLot: 316782)									
EPH (C10-C19)		E601A-L	50	μg/L	6491 µg/L	99.1	70.0	130	
EPH (C19-C32)		E601A-L	50	μg/L	3363 µg/L	98.2	70.0	130	
TEH (C10-C30), BC		E601A-L	100	μg/L	9202 μg/L	98.9	70.0	130	

Page : 18 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Project : 21482915

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water		Matrix Spike (MS) Report								
					Spi	ke	Recovery (%)	Recovery	y Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutri	ients (QCLot: 311088)									
FJ2101042-002	Anonymous	fluoride	16984-48-8	E235.F	1.02 mg/L	1 mg/L	102	75.0	125	
Anions and Nutr	ients (QCLot: 311089)									
FJ2101042-002	Anonymous	chloride	16887-00-6	E235.CI	99.6 mg/L	100 mg/L	99.6	75.0	125	
Anions and Nutri	ients (QCLot: 311090)									
FJ2101042-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	99.1 mg/L	100 mg/L	99.1	75.0	125	
Anions and Nutr	ients (QCLot: 311091)									
FJ2101042-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.48 mg/L	2.5 mg/L	99.4	75.0	125	
Anions and Nutr	ients (QCLot: 311092)									
FJ2101042-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.504 mg/L	0.5 mg/L	101	75.0	125	
Anions and Nutr	ients (QCLot: 313902)									
VA21C1568-001	Anonymous	nitrogen, total	7727-37-9	E366	0.394 mg/L	0.4 mg/L	98.4	70.0	130	
Anions and Nutr	ients (QCLot: 313903)									
CG2104573-003	Anonymous	phosphorus, total	7723-14-0	E372-U	0.451 mg/L	0.5 mg/L	90.2	70.0	130	
Anions and Nutr	ients (QCLot: 313904)									
VA21C1568-001	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0481 mg/L	0.05 mg/L	96.3	70.0	130	
Anions and Nutr	ients (QCLot: 313905)									
VA21C1568-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.104 mg/L	0.1 mg/L	104	75.0	125	
Anions and Nutr	ients (QCLot: 315339)									
YL2101356-002	Anonymous	silicate (as SiO2)	7631-86-9	E392	9.88 mg/L	10 mg/L	98.8	75.0	125	
Anions and Nutr	ients (QCLot: 315434)									
YL2101440-008	JFLQC-1	nitrogen, total	7727-37-9	E366	0.399 mg/L	0.4 mg/L	99.7	70.0	130	
Anions and Nutr	ients (QCLot: 315435)									
YL2101440-008	JFLQC-1	phosphorus, total	7723-14-0	E372-U	0.0496 mg/L	0.05 mg/L	99.3	70.0	130	
Anions and Nutri	ients (QCLot: 315436)						<u>'</u>			
YL2101440-008	JFLQC-1	phosphorus, total dissolved	7723-14-0	E375-T	0.0464 mg/L	0.05 mg/L	92.8	70.0	130	
Anions and Nutr	ients (QCLot: 315437)						<u> </u>			
YL2101440-008	JFLQC-1	ammonia, total (as N)	7664-41-7	E298	0.107 mg/L	0.1 mg/L	107	75.0	125	

Page : 19 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
Organic / Inorga	nic Carbon (QCLot: 31	3900)								
WR2101410-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	5.58 mg/L	5 mg/L	112	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 31	5433)								
YL2101440-008	JFLQC-1	carbon, dissolved organic [DOC]		E358-L	5.02 mg/L	5 mg/L	100	70.0	130	
Total Metals (QC	Lot: 313351)									
VA21C1347-002	Anonymous	aluminum, total	7429-90-5	E420	0.212 mg/L	0.2 mg/L	106	70.0	130	
		antimony, total	7440-36-0	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130	
		arsenic, total	7440-38-2	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0409 mg/L	0.04 mg/L	102	70.0	130	
		bismuth, total	7440-69-9	E420	0.00986 mg/L	0.01 mg/L	98.6	70.0	130	
		boron, total	7440-42-8	E420	0.086 mg/L	0.1 mg/L	85.8	70.0	130	
		cadmium, total	7440-43-9	E420	0.00426 mg/L	0.004 mg/L	106	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, total	7440-46-2	E420	0.0106 mg/L	0.01 mg/L	106	70.0	130	
		chromium, total	7440-47-3	E420	0.0417 mg/L	0.04 mg/L	104	70.0	130	
		cobalt, total	7440-48-4	E420	0.0210 mg/L	0.02 mg/L	105	70.0	130	
		copper, total	7440-50-8	E420	0.0205 mg/L	0.02 mg/L	103	70.0	130	
		iron, total	7439-89-6	E420	2.05 mg/L	2 mg/L	102	70.0	130	
		lead, total	7439-92-1	E420	0.0199 mg/L	0.02 mg/L	99.4	70.0	130	
		lithium, total	7439-93-2	E420	0.102 mg/L	0.1 mg/L	102	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0196 mg/L	0.02 mg/L	97.9	70.0	130	
		nickel, total	7440-02-0	E420	0.0416 mg/L	0.04 mg/L	104	70.0	130	
		phosphorus, total	7723-14-0	E420	11.7 mg/L	10 mg/L	117	70.0	130	
		potassium, total	7440-09-7	E420	4.33 mg/L	4 mg/L	108	70.0	130	
		rubidium, total	7440-17-7	E420	0.0206 mg/L	0.02 mg/L	103	70.0	130	
		selenium, total	7782-49-2	E420	0.0405 mg/L	0.04 mg/L	101	70.0	130	
		silicon, total	7440-21-3	E420	9.46 mg/L	10 mg/L	94.6	70.0	130	
		silver, total	7440-22-4	E420	0.00388 mg/L	0.004 mg/L	97.0	70.0	130	
		sodium, total	17341-25-2	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	21.8 mg/L	20 mg/L	109	70.0	130	
		tellurium, total	13494-80-9	E420	0.0370 mg/L	0.04 mg/L	92.5	70.0	130	
		thallium, total	7440-28-0	E420	0.00383 mg/L	0.004 mg/L	95.8	70.0	130	
	T.	thorium, total	7440-29-1	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130	

Page : 20 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Sub-Matrix: Water				Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	CLot: 313351) - conti	inued								
/A21C1347-002	Anonymous	tin, total	7440-31-5	E420	0.0197 mg/L	0.02 mg/L	98.7	70.0	130	
		titanium, total	7440-32-6	E420	0.0419 mg/L	0.04 mg/L	105	70.0	130	
		tungsten, total	7440-33-7	E420	0.0205 mg/L	0.02 mg/L	102	70.0	130	
		uranium, total	7440-61-1	E420	0.00419 mg/L	0.004 mg/L	105	70.0	130	
		vanadium, total	7440-62-2	E420	0.106 mg/L	0.1 mg/L	106	70.0	130	
		zinc, total	7440-66-6	E420	0.409 mg/L	0.4 mg/L	102	70.0	130	
		zirconium, total	7440-67-7	E420	0.0391 mg/L	0.04 mg/L	97.8	70.0	130	
otal Metals (QC	CLot: 315539)									
/L2101440-001	NORTHWEST BAY_MID-DEPTH	mercury, total	7439-97-6	E508	0.0000875 mg/L	0.0001 mg/L	87.5	70.0	130	
issolved Metals	s (QCLot: 313340)									
CG2104587-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.410 mg/L	0.4 mg/L	102	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0416 mg/L	0.04 mg/L	104	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0408 mg/L	0.04 mg/L	102	70.0	130	
		barium, dissolved	7440-39-3	E421	0.0370 mg/L	0.04 mg/L	92.6	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0776 mg/L	0.08 mg/L	97.0	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.0167 mg/L	0.02 mg/L	83.6	70.0	130	
		boron, dissolved	7440-42-8	E421	0.202 mg/L	0.2 mg/L	101	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00809 mg/L	0.008 mg/L	101	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	8 mg/L	ND	70.0	130	
		cesium, dissolved	7440-46-2	E421	0.0214 mg/L	0.02 mg/L	107	70.0	130	
		chromium, dissolved	7440-47-3	E421	0.0772 mg/L	0.08 mg/L	96.4	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0379 mg/L	0.04 mg/L	94.8	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0370 mg/L	0.04 mg/L	92.5	70.0	130	
		iron, dissolved	7439-89-6	E421	3.80 mg/L	4 mg/L	95.0	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0370 mg/L	0.04 mg/L	92.6	70.0	130	
		lithium, dissolved	7439-93-2	E421	ND mg/L	0.2 mg/L	ND	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	2 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0382 mg/L	0.04 mg/L	95.4	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0386 mg/L	0.04 mg/L	96.4	70.0	130	
		nickel, dissolved	7440-02-0	E421	ND mg/L	0.08 mg/L	ND	70.0	130	
		phosphorus, dissolved	7723-14-0	E421	21.9 mg/L	20 mg/L	109	70.0	130	
		potassium, dissolved	7440-09-7	E421	ND mg/L	8 mg/L	ND	70.0	130	
		rubidium, dissolved	7440-17-7	E421	0.0392 mg/L	0.04 mg/L	98.1	70.0	130	
		selenium, dissolved	7782-49-2	E421	ND mg/L	0.08 mg/L	ND	70.0	130	
	T .	silicon, dissolved	7440-21-3	E421	19.0 mg/L	20 mg/L	95.0	70.0	130	

Page : 21 of 21 Work Order : YL2101440

Client : Golder Associates Ltd.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metal	s (QCLot: 313340) -	continued								
CG2104587-002	Anonymous	silver, dissolved	7440-22-4	E421	0.00740 mg/L	0.008 mg/L	92.5	70.0	130	
		sodium, dissolved	17341-25-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.04 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	40 mg/L	ND	70.0	130	
		tellurium, dissolved	13494-80-9	E421	0.0824 mg/L	0.08 mg/L	103	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00717 mg/L	0.008 mg/L	89.6	70.0	130	
		thorium, dissolved	7440-29-1	E421	0.0406 mg/L	0.04 mg/L	102	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0376 mg/L	0.04 mg/L	94.0	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0789 mg/L	0.08 mg/L	98.6	70.0	130	
		tungsten, dissolved	7440-33-7	E421	0.0389 mg/L	0.04 mg/L	97.3	70.0	130	
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.008 mg/L	ND	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.205 mg/L	0.2 mg/L	102	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.770 mg/L	0.8 mg/L	96.3	70.0	130	
		zirconium, dissolved	7440-67-7	E421	0.0822 mg/L	0.08 mg/L	103	70.0	130	
Dissolved Metal	s (QCLot: 315582)									
CG2104612-004	Anonymous	mercury, dissolved	7439-97-6	E509	0.000100 mg/L	0.0001 mg/L	100	70.0	130	
Volatile Organic	Compounds (QCLo	t: 316164)								
VA21C1754-001	Anonymous	benzene	71-43-2	E611A	81.8 μg/L	100 µg/L	81.8	60.0	140	
		ethylbenzene	100-41-4	E611A	104 μg/L	100 µg/L	104	60.0	140	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	102 μg/L	100 µg/L	102	60.0	140	
		styrene	100-42-5	E611A	106 µg/L	100 µg/L	106	60.0	140	
		toluene	108-88-3	E611A	94.1 μg/L	100 μg/L	94.1	60.0	140	
		xylene, m+p-	179601-23-1	E611A	224 µg/L	200 µg/L	112	60.0	140	
		xylene, o-	95-47-6	E611A	108 μg/L	100 µg/L	108	60.0	140	
Hydrocarbons (QCLot: 316163)						'			
VA21C1938-027	Anonymous	F1 (C6-C10)		E581.VH+F1	5770 μg/L	6310 μg/L	91.4	60.0	140	
		VHw (C6-C10)		E581.VH+F1	5680 µg/L	6310 µg/L	90.0	60.0	140	

PURCHASE ORDER NO.: PROJECT MANAGER: Kathy Qin SAMPLER: EMAIL REPORTS TO: Kathy_Qin@golder.co SPECIAL HANDLING/STORAGE OR DISPOSAL: ALS USE ONLY SAMPLE DETAILS	Kathy Qin CONTACT PH: SAMPLER MOBILE: Kathy_Qin@golder.com; alison_humphries@golder.com RAGE OR DISPOSAL: SAMPLE DETAILS Solid(5) Water(W)	306 370 6141 SILE: MATRIX:	ALS QUOTE EQUIS facilit Project Num EMAIL INVO EMAIL INVO CONTAINER INFORMATION	ALS QUOTE NC YL21-GOL EQUIS facility code: 18382 Project Number: 21482915 EMAIL INVOICE TO: LARS SONTAINER FORMATION	ALS QUOTE NC YLZ1-GOLD100-008 EQUIS facility code: 183827250 Project Number: 21482915 EMAIL INVOICE TO: LAURENG_borned CONTAINER FORMATION	-GOLD100-008 83927250 2015 Laurense_bonnificacidet.com		ANALY ANALY	88	Random Sample Temperature on Receipt: Other comments: REQUIRED	tis:	D R	
SAMPLE	will appear on the			TOTAL CONTAINERS	Routine Bottle (500mL Polyethylene)	Total Nutrients (100mL Amber glass)	Dissolved Nutrients (100mL Amber glass)	Total Metals (80mL HDPE)	Dissolved Metals	(80mL HDPE)	Total Marcury	Total Mercury (40mL glass)	Total Mercury (40mL glass) Dissolved Mercury
4	Workhwest Bay Mid-Depth		*	+	×	×		×	0.1		*	*	×
2	Morthwest Buy Bothom	\$ -04-33	Marie	13	×	*	×	×		×	1	×	×
	No Must Bing - Bottom - 4	100-10-10-10-10-10-10-10-10-10-10-10-10-	13:35W	N T	* *	××	* *	××		* *	* *		× ×
5	Inflo to NW B. 2	4:61 MC-10-19	W	+	×	×	×	×	- 1	×	×		×
6	7	D-04-2001 15105	05 W	7	×	×	×	×		×	×		×
7	Bin	30-09-2031 15:10	0 W	4	×	×	×	×		×	×		×
	1-1	\$1-09-201 8:45	W	W	×	×	×	×		×		×	×
*			TOTAL			×							Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : YL2101444

Client : Golder Associates Ltd.

Contact : Kathy Qin

Address : 9 - 4905 48th Street

Yellowknife NT Canada X1A 3S3

Telephone : ---

Project : Jackfish NTPC Thermal Plume Del

C-O-C number : -Sampler : --

Site : ---

Quote number : NTPC Jackfish Lake

No. of samples received : 7
No. of samples analysed : 7

Page : 1 of 11

Laboratory : Yellowknife - Environmental

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife NT Canada X1A 3T3

Telephone : 1 867 446 5593

Date Samples Received : 01-Oct-2021 15:30

Date Analysis Commenced : 07-Oct-2021

Issue Date : 19-Oct-2021 11:22

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Cindy Tang	Team Leader - Inorganics	Inorganics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia
Ophelia Chiu	Department Manager - Organics	Organics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

Page : 2 of 11 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Workorder Comments

Re-analysis of solids parameters (total suspended and dissolved) in sample JFLQC-2 took place after the holding time had expired. Initial analysis was within the holding time, but required confirmation or re-testing.

Qualifiers

Qualifier	Description
DTMF	Dissolved concentration exceeds total for field-filtered metals sample. Metallic
	contaminants may have been introduced to dissolved sample during field filtration.
SFT	Sample was filtered due to turbidity interference. Result reflects soluble analyte
	concentration.

>: greater than.

Page : 3 of 11 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Sub-Matrix: Water (Matrix: Water)			C _i	lient sample ID	JFLQC-2	Near Outflow-In Lake_Mid-dept h	Near Outflow-In Lake_Bottom	EMD Discharge-In Lake_Mid-dept h	EMD Discharge-In Lake_Bottom
			Client samp	oling date / time	01-Oct-2021 14:00	01-Oct-2021 10:45	01-Oct-2021 10:50	01-Oct-2021 12:30	01-Oct-2021 12:35
Analyte	CAS Number	Method	LOR	Unit	YL2101444-001	YL2101444-002	YL2101444-003	YL2101444-004	YL2101444-005
					Result	Result	Result	Result	Result
Physical Tests									
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	<1.0	108	109	116	114
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	7.0	<1.0	<1.0
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	3.5	<1.0	<1.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	<1.0	108	116	116	114
conductivity		E100	2.0	μS/cm	2.1	471	472	476	477
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	<0.60	148	148	145	146
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	<0.60	146	147	151	152
рН		E108	0.10	pH units	5.19	8.18	8.31	8.21	8.24
solids, total dissolved [TDS]		E162	10	mg/L	<10	271	273	270	272
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	<1.0	245	249	247	247
solids, total suspended [TSS]		E160-H	3.0	mg/L	<3.0	13.0	12.2	8.8	12.0
turbidity		E121	0.10	NTU	<0.10	21.8	22.6	21.0	22.1
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	0.0115	0.0074	0.0083	0.0099
chloride	16887-00-6	E235.CI	0.50	mg/L	<0.50	59.9	59.6	59.3	59.4
fluoride	16984-48-8	E235.F	0.020	mg/L	<0.020	0.091	0.089	0.086	0.085
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
nitrogen, total	7727-37-9	E366	0.030	mg/L	<0.030	1.08	0.860	0.822	1.17
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	0.117	0.0454	0.0414	0.0705
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	<0.0020	0.0123	0.0123	0.0114	0.0127
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	<0.50	13.4	13.6	13.2	13.4
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	<0.30	25.2	25.2	25.2	25.2
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	11.5	12.0	11.5	11.7
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	0.0059	0.0045	0.0051	0.0061

Page : 4 of 11 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

ALS

Sub-Matrix: Water			Cli	ent sample ID	JFLQC-2	Near Outflow-In	Near Outflow-In	EMD	EMD
(Matrix: Water)						Lake_Mid-dept h	Lake_Bottom	Discharge-In	Discharge-In
						"		Lake_Mid-dept h	Lake_Bottom
			Client sampl	ing date / time	01-Oct-2021	01-Oct-2021	01-Oct-2021	01-Oct-2021	01-Oct-2021
					14:00	10:45	10:50	12:30	12:35
Analyte	CAS Number	Method	LOR	Unit	YL2101444-001	YL2101444-002	YL2101444-003	YL2101444-004	YL2101444-005
					Result	Result	Result	Result	Result
Total Metals	7440.00.0	E420	0.00010	ma et //	<0.00010	0.00121	0.00123	0.00124	0.00123
antimony, total	7440-36-0			mg/L					
arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	0.0734	0.0721	0.0728	0.0746
barium, total	7440-39-3	E420	0.00010	mg/L	<0.00010	0.0301	0.0307	0.0308	0.0316
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	0.028	0.028	0.029	0.028
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050
calcium, total	7440-70-2	E420	0.050	mg/L	<0.050	39.2	38.8	40.7	40.7
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	0.00968	0.00141	0.00142	0.00140
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	0.013	0.012	0.012	0.014
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	0.000223	<0.000050	<0.000050	<0.000050
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	0.0061	0.0061	0.0064	0.0063
magnesium, total	7439-95-4	E420	0.0050	mg/L	<0.0050	11.8	12.1	12.0	12.3
manganese, total	7439-96-5	E420	0.00010	mg/L	<0.00010	0.127	0.125	0.121	0.115
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.0000050
molybdenum, total	7439-98-7	E420	0.000050	mg/L	<0.000050	0.000181	0.000178	0.000189	0.000203
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	0.00054	<0.00050	0.00052	0.00056
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	0.118	0.104	0.121	0.094
potassium, total	7440-09-7	E420	0.050	mg/L	<0.050	4.24	4.18	4.27	4.35
rubidium, total	7440-17-7	E420	0.00020	mg/L	<0.00020	0.00264	0.00270	0.00260	0.00265
selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	0.000073	0.000079	0.000053	0.000064
silicon, total	7440-21-3	E420	0.10	mg/L	<0.10	6.35	6.26	6.13	6.42
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, total	17341-25-2	E420	0.050	mg/L	<0.050	30.4	30.7	30.7	31.6
strontium, total	7440-24-6	E420	0.00020	mg/L	<0.00020	0.0893	0.0890	0.0900	0.0900
sulfur, total	7704-34-9	E420	0.50	mg/L	<0.50	9.56	9.62	9.18	9.54
1,	7704-04-0		''''			1.55			3.3.

Page : 5 of 11 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

ALS

Sub-Matrix: Water			Cli	ent sample ID	JFLQC-2	Near Outflow-In	Near Outflow-In	EMD	EMD
(Matrix: Water)						Lake_Mid-dept	Lake_Bottom	Discharge-In	Discharge-In
						h		Lake_Mid-dept	Lake_Bottom
								h	
			Client samn	ling date / time	01-Oct-2021	01-Oct-2021	01-Oct-2021	01-Oct-2021	01-Oct-2021
			Onem sampi	ing date / time	14:00	10:45	10:50	12:30	12:35
Analyte	CAS Number	Method	LOR	Unit	YL2101444-001	YL2101444-002	YL2101444-003	YL2101444-004	YL2101444-005
7 mayes	orto riambor				Result	Result	Result	Result	Result
Total Metals									
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	0.000506	0.000508	0.000503	0.000527
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	0.0096	0.0047	0.0047	<0.0030
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	0.0021	0.0011	0.0019	0.0087
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	0.00116	0.00116	0.00114	0.00118
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	0.0717	0.0724	0.0712	0.0722
barium, dissolved	7440-39-3	E421	0.00010	mg/L	<0.00010	0.0292	0.0297	0.0292	0.0294
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	0.028	0.027	0.027	0.028
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.0000050
calcium, dissolved	7440-70-2	E421	0.050	mg/L	<0.050	39.4	39.9	38.8	39.3
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	0.00119	0.00114	0.00116	0.00114
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	<0.0010	0.0063	0.0062	0.0061	0.0063
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	<0.0050	12.0	11.8	11.8	11.7
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	0.00209	0.00161	0.00200	0.00170
	-1		1	- 1					1

Page : 6 of 11 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

ALS

Sub-Matrix: Water			Cli	ent sample ID	JFLQC-2	Near Outflow-In	Near Outflow-In	EMD	EMD
(Matrix: Water)						Lake_Mid-dept h	Lake_Bottom	Discharge-In Lake_Mid-dept h	Discharge-In Lake_Bottom
			Client sampl	ing date / time	01-Oct-2021 14:00	01-Oct-2021 10:45	01-Oct-2021 10:50	01-Oct-2021 12:30	01-Oct-2021 12:35
Analyte	CAS Number	Method	LOR	Unit	YL2101444-001	YL2101444-002	YL2101444-003	YL2101444-004	YL2101444-005
					Result	Result	Result	Result	Result
Dissolved Metals									
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.000050	<0.000050	<0.0000050
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	<0.000050	0.000177	0.000169	0.000174	0.000172
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
potassium, dissolved	7440-09-7	E421	0.050	mg/L	<0.050	4.18	4.14	4.10	4.14
rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	<0.00020	0.00260	0.00271	0.00263	0.00266
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	0.000056	<0.000050
silicon, dissolved	7440-21-3	E421	0.050	mg/L	<0.050	6.36	6.28	6.15	6.24
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, dissolved	17341-25-2	E421	0.050	mg/L	<0.050	31.0	30.8	30.6	30.5
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	<0.00020	0.0870	0.0868	0.0866	0.0924
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	<0.50	8.60	8.57	8.11	8.44
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	<0.000010	0.000484	0.000478	0.000477	0.000508
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	0.0062	0.0046	0.0048	<0.0010
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	0.00462 DTMF
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	Field
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field
Aggregate Organics									
oil & grease (gravimetric)		E567	5.0	mg/L			<5.0		
Volatile Organic Compounds [Fuels]									
benzene	71-43-2	E611A	0.00050	mg/L			<0.00050		
ethylbenzene	100-41-4	E611A	0.00050	mg/L			<0.00050		
	•						,		

Page : 7 of 11 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	JFLQC-2	Near Outflow-In Lake_Mid-dept h	Near Outflow-In Lake_Bottom	EMD Discharge-In Lake_Mid-dept	EMD Discharge-In Lake_Bottom
						.,		h	Lake_Bottom
			Client samp	ling date / time	01-Oct-2021 14:00	01-Oct-2021 10:45	01-Oct-2021 10:50	01-Oct-2021 12:30	01-Oct-2021 12:35
Analyte	CAS Number	Method	LOR	Unit	YL2101444-001	YL2101444-002	YL2101444-003	YL2101444-004	YL2101444-005
					Result	Result	Result	Result	Result
Volatile Organic Compounds [Fuels]									
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.00050	mg/L			<0.00050		
styrene	100-42-5	E611A	0.00050	mg/L			<0.00050		
toluene	108-88-3	E611A	0.00050	mg/L			<0.00050		
xylene, m+p-	179601-23-1	E611A	0.00050	mg/L			<0.00050		
xylene, o-	95-47-6	E611A	0.00050	mg/L			<0.00050		
xylenes, total	1330-20-7	E611A	0.00075	mg/L			<0.00075		
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611A	1.0	%			97.2		
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%			103		
Hydrocarbons									
EPH (C10-C19)		E601A-L	0.050	mg/L			<0.050		
EPH (C19-C32)		E601A-L	0.050	mg/L			<0.050		
F1 (C6-C10)		E581.VH+F1	0.10	mg/L			<0.10		
F2 (C10-C16)		E601	0.30	mg/L			<0.30		
F3 (C16-C34)		E601	0.30	mg/L			<0.30		
F4 (C34-C50)		E601	0.30	mg/L			<0.30		
TEH (C10-C30), BC		E601A-L	0.10	mg/L			<0.10		
VHw (C6-C10)		E581.VH+F1	0.10	mg/L			<0.10		
F1-BTEX		EC580	0.10	mg/L			<0.10		
VPHw		EC580A	0.10	mg/L			<0.10		
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (EPH surr)	392-83-6	E601A-L	1.0	%			117		
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%			85.4		
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%			91.4		

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 8 of 11 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Sub-Matrix: Water			CI	ient sample ID	Midlake	Midlake	 	
(Matrix: Water)					1_Mid-depth	1_Bottom		
			Client samp	ling date / time	01-Oct-2021 09:30	01-Oct-2021 09:35	 	
Analyte	CAS Number	Method	LOR	Unit	YL2101444-006	YL2101444-007	 	
					Result	Result	 	
Physical Tests								
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	109	109	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	7.6	3.0	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	3.8	1.5	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	117	112	 	
conductivity		E100	2.0	μS/cm	544	453	 	
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	144	148	 	
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	149	149	 	
pH		E108	0.10	pH units	8.30	8.42	 	
solids, total dissolved [TDS]		E162	10	mg/L	257	268	 	
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	248	249	 	
solids, total suspended [TSS]		E160-H	3.0	mg/L	14.6	11.8	 	
turbidity		E121	0.10	NTU	21.0	29.9	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0081	0.0090	 	
chloride	16887-00-6	E235.CI	0.50	mg/L	59.4	61.2	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.086	0.088	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	 	
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	<0.0051	<0.0051	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	 	
nitrogen, total	7727-37-9	E366	0.030	mg/L	0.919	0.861	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0426	0.0391	 	
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0123	0.0138	 	
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	13.0 SFT	13.3 SFT	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	25.2	25.4	 	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	11.9	12.2	 	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0044	0.0052	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00124	0.00125	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0737	0.0724	 	
	'			'			1	

Page : 9 of 11 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

ALS

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	Midlake	Midlake		
(Matrix: Water)					1_Mid-depth	1_Bottom		
			Client sampl	ling date / time	01-Oct-2021 09:30	01-Oct-2021 09:35		
Analyte	CAS Number	Method	LOR	Unit	YL2101444-006	YL2101444-007		
					Result	Result		
Total Metals								
barium, total	7440-39-3	E420	0.00010	mg/L	0.0308	0.0309		
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100		
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050		
boron, total	7440-42-8	E420	0.010	mg/L	0.028	0.028		
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.000050		
calcium, total	7440-70-2	E420	0.050	mg/L	39.4	39.6		
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010		
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050		
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010		
copper, total	7440-50-8	E420	0.00050	mg/L	0.00139	0.00138		
iron, total	7439-89-6	E420	0.010	mg/L	0.012	0.012		
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050		
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0060	0.0062		
magnesium, total	7439-95-4	E420	0.0050	mg/L	12.3	12.2		
manganese, total	7439-96-5	E420	0.00010	mg/L	0.112	0.112		
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050		
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000207	0.000208		
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00054	0.00057		
phosphorus, total	7723-14-0	E420	0.050	mg/L	0.094	0.131		
potassium, total	7440-09-7	E420	0.050	mg/L	4.34	4.29		
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00260	0.00252		
selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	<0.000050		
silicon, total	7440-21-3	E420	0.10	mg/L	6.20	6.19		
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010		
sodium, total	17341-25-2	E420	0.050	mg/L	31.4	31.0		
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0910	0.0893		
sulfur, total	7704-34-9	E420	0.50	mg/L	9.27	8.96		
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020		
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010		
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010		
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010		
1, ,,,,,	7.1.0-01-0	-	1 / 1					l l

Page : 10 of 11 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

ALS

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	Midlake	Midlake		
(Matrix: Water)					1_Mid-depth	1_Bottom		
			Client sampl	ing date / time	01-Oct-2021 09:30	01-Oct-2021 09:35		
Analyte	CAS Number	Method	LOR	Unit	YL2101444-006	YL2101444-007		
					Result	Result		
Total Metals								
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030		
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010		
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000516	0.000534		
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050		
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0050	0.0046		
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020		
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0011	0.0017		
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00117	0.00116		
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0730	0.0728		
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0298	0.0297		
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100		
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050		
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.026	0.027		
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050		
calcium, dissolved	7440-70-2	E421	0.050	mg/L	38.6	40.0		
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010		
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050		
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010		
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00110	0.00112		
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010		
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050		
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0060	0.0061		
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	11.6	11.8		
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00119	0.00184		
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.000050		
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000175	0.000184		
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050		
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050		
potassium, dissolved	7440-09-7	E421	0.050	mg/L	4.15	4.14		
rubidium, dissolved	7440-09-7	E421	0.00020	mg/L	0.00253	0.00266		
iusiaiaii, aissoivea	1440-11-1	L72 I	0.00020	mg/L	0.00200	0.00200		

Page : 11 of 11 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	Midlake	Midlake	 	
(Matrix: Water)					1_Mid-depth	1_Bottom		
			Client samp	ling date / time	01-Oct-2021 09:30	01-Oct-2021 09:35	 	
Analyte	CAS Number	Method	LOR	Unit	YL2101444-006	YL2101444-007	 	
					Result	Result	 	
Dissolved Metals								
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.11	6.15	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	30.9	31.0	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0892	0.0880	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	8.42	8.36	 	
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	 	
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000469	0.000493	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0054	0.0057	 	
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	
			1	1				

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **YL2101444** Page : 1 of 28

Client : Golder Associates Ltd. Laboratory : Yellowknife - Environmental

Contact : Kathy Qin Account Manager : Oliver Gregg

Address : 9 - 4905 48th Street Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

Telephone : ---- Telephone : 1 867 446 5593

Project : Jackfish NTPC Thermal Plume Del Date Samples Received : 01-Oct-2021 15:30
PO : ---- Issue Date : 19-Oct-2021 11:22

PO : --C-O-C number : --Sampler : ---

Yellowknife NT Canada X1A 3S3

Site : ---Quote number : NTPC Jackfish Lake

No. of samples received : 7
No. of samples analysed : 7

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers occur - please see following pages for full details.

Page : 2 of 28 : YL2101444 Work Order

Client : Golder Associates Ltd.

: Jackfish NTPC Thermal Plume Del Project

Outliers: Quality Control Samples
Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Anions and Nutrients	QC-MRG6-3146980		chloride	16887-00-6	E235.CI	1.01 ^B	0.5 mg/L	Blank result exceeds
	01					mg/L		permitted value

Result Qualifiers

Qualifier	Description
В	Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.

Page : 3 of 28 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
Near Outflow-In Lake_Bottom	E567	01-Oct-2021	08-Oct-2021	28	7 days	✓	08-Oct-2021	40 days	0 days	✓
				days						
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
EMD Discharge-In Lake_Bottom	E298	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
EMD Discharge-In Lake_Mid-depth	E298	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
JFLQC-2	E298	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
Midlake 1_Bottom	E298	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
Midlake 1_Mid-depth	E298	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
Near Outflow-In Lake_Bottom	E298	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓

Page : 4 of 28
Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

viatrix: water						diddion.	noiding time exce	oudinoo ,	***************************************	riolaling rill
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
Near Outflow-In Lake_Mid-depth	E298	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
EMD Discharge-In Lake_Bottom	E235.CI	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
EMD Discharge-In Lake_Mid-depth	E235.CI	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
JFLQC-2	E235.CI	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
Midlake 1_Mid-depth	E235.CI	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
Near Outflow-In Lake_Bottom	E235.CI	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
Near Outflow-In Lake_Mid-depth	E235.CI	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
Midlake 1_Bottom	E235.CI	01-Oct-2021					10-Oct-2021	28 days	9 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
EMD Discharge-In Lake_Bottom	E235.F	01-Oct-2021					08-Oct-2021	28 days	7 days	✓

Page : 5 of 28 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Matrix: Water						/aluation. * -	Holding time exce	edance, v	– vvitriiri	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
EMD Discharge-In Lake_Mid-depth	E235.F	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
JFLQC-2	E235.F	01-Oct-2021					08-Oct-2021	28 days	7 davs	✓
									,	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
Midlake 1_Mid-depth	E235.F	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Initiative I_initiative	2200.1	01 000 2021					00 000 2021	20 dayo	, dayo	
Anions and Nutrients : Fluoride in Water by IC				1				I		
HDPE	F225 F	01 Oct 2021					00 Oat 2021	20 days	7 daya	√
Near Outflow-In Lake_Bottom	E235.F	01-Oct-2021					08-Oct-2021	28 days	7 days	•
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
Near Outflow-In Lake_Mid-depth	E235.F	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
Midlake 1_Bottom	E235.F	01-Oct-2021					10-Oct-2021	28 days	9 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
EMD Discharge-In Lake_Bottom	E235.NO3-L	01-Oct-2021					08-Oct-2021	3 days	7 days	*
										EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
EMD Discharge-In Lake Mid-depth	E235.NO3-L	01-Oct-2021					08-Oct-2021	3 days	7 davs	je.
····· 3 - ··· - -···- <u>-</u> ····									,-	EHT
Aniana and Nutrianta - Nitrata in Matar keel (1 and 1 and 1)										
Anions and Nutrients : Nitrate in Water by IC (Low Level)							I			
HDPE JFLQC-2	E235.NO3-L	01-Oct-2021					08-Oct-2021	3 days	7 days	×
UI EQU-Z	L200.1400-L	01-06-2021					00-001-2021	Juays	, uays	EHT
										LU1

Page : 6 of 28
Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Matrix: water							Holding time excee	Judinoo ,	***************************************	riolaling rii
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Eval	
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
Midlake 1_Mid-depth	E235.NO3-L	01-Oct-2021					08-Oct-2021	3 days	7 days	*
										EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
Near Outflow-In Lake_Bottom	E235.NO3-L	01-Oct-2021					08-Oct-2021	3 days	7 days	3 0
										EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
Near Outflow-In Lake_Mid-depth	E235.NO3-L	01-Oct-2021					08-Oct-2021	3 days	7 days	*
										EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
Midlake 1_Bottom	E235.NO3-L	01-Oct-2021					10-Oct-2021	3 days	9 days	*
										EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
EMD Discharge-In Lake_Bottom	E235.NO2-L	01-Oct-2021					08-Oct-2021	3 days	7 days	3¢
										EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
EMD Discharge-In Lake_Mid-depth	E235.NO2-L	01-Oct-2021					08-Oct-2021	3 days	7 days	3c
										EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
JFLQC-2	E235.NO2-L	01-Oct-2021					08-Oct-2021	3 days	7 days	3c
										EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)									1	
HDPE										
Midlake 1_Mid-depth	E235.NO2-L	01-Oct-2021					08-Oct-2021	3 days	7 days	*
										EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
Near Outflow-In Lake_Bottom	E235.NO2-L	01-Oct-2021					08-Oct-2021	3 days	7 days	se
							I			EHT

Page : 7 of 28
Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE Near Outflow-In Lake_Mid-depth	E235.NO2-L	01-Oct-2021					08-Oct-2021	3 days	7 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE Midlake 1_Bottom	E235.NO2-L	01-Oct-2021					10-Oct-2021	3 days	9 days	* EHT
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE EMD Discharge-In Lake_Bottom	E392	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE EMD Discharge-In Lake_Mid-depth	E392	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE JFLQC-2	E392	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE Midlake 1_Bottom	E392	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE Midlake 1_Mid-depth	E392	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry								1		
HDPE Near Outflow-In Lake_Bottom	E392	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE Near Outflow-In Lake_Mid-depth	E392	01-Oct-2021					08-Oct-2021	28 days	7 days	✓

Page : 8 of 28 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Matrix: Water						raidation. • -	Holding time exce	cuarice , •	- *************************************	riolaling riini
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Anions and Nutrients : Sulfate in Water by IC										
HDPE EMD Discharge-In Lake_Bottom	E235.SO4	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE EMD Discharge-In Lake_Mid-depth	E235.SO4	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE JFLQC-2	E235.SO4	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE Midlake 1_Mid-depth	E235.SO4	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE Near Outflow-In Lake_Bottom	E235.SO4	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE Near Outflow-In Lake_Mid-depth	E235.SO4	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE Midlake 1_Bottom	E235.SO4	01-Oct-2021					10-Oct-2021	28 days	9 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level)										
Amber glass dissolved (sulfuric acid) EMD Discharge-In Lake_Bottom	E375-T	01-Oct-2021	08-Oct-2021				09-Oct-2021	28 days	8 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level)										
Amber glass dissolved (sulfuric acid) EMD Discharge-In Lake_Mid-depth	E375-T	01-Oct-2021	08-Oct-2021				09-Oct-2021	28 days	8 days	✓

Page : 9 of 28
Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

viaurix: water							noiding time exce	,	**********	
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level))									
Amber glass dissolved (sulfuric acid)										
JFLQC-2	E375-T	01-Oct-2021	08-Oct-2021				09-Oct-2021	28 days	8 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level)										
Amber glass dissolved (sulfuric acid)										
Midlake 1_Bottom	E375-T	01-Oct-2021	08-Oct-2021				09-Oct-2021	28 days	8 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level)										
Amber glass dissolved (sulfuric acid)										
Midlake 1_Mid-depth	E375-T	01-Oct-2021	08-Oct-2021				09-Oct-2021	28 days	8 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level)										
Amber glass dissolved (sulfuric acid)										
Near Outflow-In Lake_Bottom	E375-T	01-Oct-2021	08-Oct-2021				09-Oct-2021	28 days	8 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level										
Amber glass dissolved (sulfuric acid)	5075 T									,
Near Outflow-In Lake_Mid-depth	E375-T	01-Oct-2021	08-Oct-2021				09-Oct-2021	28 days	8 days	✓
Anions and Nutrients : Total Nitrogen by Colourimetry							1			
Amber glass total (sulfuric acid)	F200	04 0-4 0004	00 0-+ 0004				44 0 -4 0004	00 4	40	✓
EMD Discharge-In Lake_Bottom	E366	01-Oct-2021	08-Oct-2021				11-Oct-2021	20 days	10 days	•
Anions and Nutrients : Total Nitrogen by Colourimetry								I		
Amber glass total (sulfuric acid) EMD Discharge-In Lake Mid-depth	E366	01-Oct-2021	08-Oct-2021				11-Oct-2021	28 days	10 dovo	✓
EMD Discharge-in Lake_Mid-depth	L300	01-001-2021	00-001-2021				11-001-2021	20 days	10 days	•
A transmitted of Table Const. A to the										
Anions and Nutrients : Total Nitrogen by Colourimetry							I	I		
Amber glass total (sulfuric acid) JFLQC-2	E366	01-Oct-2021	08-Oct-2021				11-Oct-2021	28 days	10 dave	✓
U LQU-Z		31-001-2021	00 001 2021				11-001-2021	Lo days	.o days	•
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										
Midlake 1_Bottom	E366	01-Oct-2021	08-Oct-2021				11-Oct-2021	28 davs	10 days	1
		3. 33. 232.								

Page : 10 of 28
Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

matrix: water					aldation. • -	illon. * - Holding time exceedance, * - Within Holding				
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										
Midlake 1_Mid-depth	E366	01-Oct-2021	08-Oct-2021				11-Oct-2021	28 days	10 days	✓
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										
Near Outflow-In Lake_Bottom	E366	01-Oct-2021	08-Oct-2021				11-Oct-2021	28 days	10 days	✓
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										
Near Outflow-In Lake_Mid-depth	E366	01-Oct-2021	08-Oct-2021				11-Oct-2021	28 days	10 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										,
EMD Discharge-In Lake_Bottom	E372-U	01-Oct-2021	08-Oct-2021				09-Oct-2021	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)	E372-U	01-Oct-2021	08-Oct-2021				09-Oct-2021	28 days	0 days	√
EMD Discharge-In Lake_Mid-depth	E372-U	01-OCI-2021	06-OCI-202 I				09-Oct-2021	20 days	o days	•
A translation of the state of the state of the state of										
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace) Amber glass total (sulfuric acid)							l e	I		
JFLQC-2	E372-U	01-Oct-2021	08-Oct-2021				09-Oct-2021	28 days	8 days	✓
51 EQU 2	20.2 0	0.00.202.	00 001 202 1				00 00 202 .	20 44,0	o uuyo	
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)							<u> </u>			
Amber glass total (sulfuric acid)										
Midlake 1_Bottom	E372-U	01-Oct-2021	08-Oct-2021				09-Oct-2021	28 days	8 days	✓
_								_	_	
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
Midlake 1_Mid-depth	E372-U	01-Oct-2021	08-Oct-2021				09-Oct-2021	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
Near Outflow-In Lake_Bottom	E372-U	01-Oct-2021	08-Oct-2021				09-Oct-2021	28 days	8 days	✓

Page : 11 of 28 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Matrix: Water						/aluation. 🔻 –	ion: × = Holding time exceedance ; ✓ = Within Holding				
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is		
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval	
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)											
Amber glass total (sulfuric acid) Near Outflow-In Lake_Mid-depth	E372-U	01-Oct-2021	08-Oct-2021				09-Oct-2021	28 days	8 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS							<u> </u>				
Glass vial dissolved (hydrochloric acid) EMD Discharge-In Lake_Bottom	E509	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid) EMD Discharge-In Lake_Mid-depth	E509	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid) JFLQC-2	E509	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid) Midlake 1_Bottom	E509	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS							<u> </u>				
Glass vial dissolved (hydrochloric acid) Midlake 1_Mid-depth	E509	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid) Near Outflow-In Lake_Bottom	E509	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid) Near Outflow-In Lake_Mid-depth	E509	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS											
HDPE dissolved (nitric acid) EMD Discharge-In Lake_Bottom	E421	01-Oct-2021	08-Oct-2021				08-Oct-2021	180 days	7 days	✓	

Page : 12 of 28
Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

ding Times c Actual 7 days	days •
7 days 7 days 7 days 7 days 7 days 7 days	days •
7 days 7 days 7 days 7 days 7 days 7 days	days •
7 days 7 days 7 days 7 days	days 🗸
7 days 7 days 7 days 7 days	days 🗸
7 days 7 days 7 days 7 days	days 🗸
7 days 7 days 7 days 7 days	days ✓
7 days 7 days 7 days	days ✓
7 days 7 days 7 days	days ✓
7 days 7 days 7 days	days ✓
7 days	
7 days	days ✓
rs .	days ✓
rs .	days ✓
rs .	days
7 days	days ✓
rs	
7 days	days ✓
'S	
ays 2 days	days ✓
ays 0 days	days ✓
ays 9 days	days ✓
4	ays 2

Page : 13 of 28
Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Matrix: Water

Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Analyte Group

Method Sampling Date Extraction / Preparation

Analysis

Analyte Group	Method	Sampling Date						Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid)										
EMD Discharge-In Lake_Bottom	E358-L	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid)	E050 I	04 0 4 0004	00.0.4.0004					00.1		
EMD Discharge-In Lake_Mid-depth	E358-L	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid) JFLQC-2	E358-L	01-Oct-2021	08-Oct-2021				08-Oct-2021	OO days	7 days	✓
JFLQC-2	E330-L	01-Oct-2021	06-OCI-2021				06-OCI-2021	28 days	7 days	Y
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)						I			
Amber glass dissolved (sulfuric acid) Midlake 1_Bottom	E358-L	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	√
Wildiake I_Dottoffi	L330-L	01-001-2021	00-001-2021				00-001-2021	20 days	1 days	•
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level	1									
Amber glass dissolved (sulfuric acid))									
Midlake 1 Mid-depth	E358-L	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓
- '									,	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid)	,									
Near Outflow-In Lake_Bottom	E358-L	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid)										
Near Outflow-In Lake_Mid-depth	E358-L	01-Oct-2021	08-Oct-2021				08-Oct-2021	28 days	7 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										_
EMD Discharge-In Lake_Bottom	E290	01-Oct-2021					08-Oct-2021	14 days	7 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE	F200	04 0-4 0004					00 0-4 0004	44 4	7 -1	
EMD Discharge-In Lake_Mid-depth	E290	01-Oct-2021					08-Oct-2021	14 days	/ days	✓

Page : 14 of 28 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Matrix: Water					LV	aluation. * =	tion: × = Holding time exceedance; ✓ = Within Holding				
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is		
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval	
Physical Tests : Alkalinity Species by Titration											
HDPE JFLQC-2	E290	01-Oct-2021					08-Oct-2021	14 days	7 days	✓	
Physical Tests : Alkalinity Species by Titration											
HDPE Midlake 1_Mid-depth	E290	01-Oct-2021					08-Oct-2021	14 days	7 days	✓	
Physical Tests : Alkalinity Species by Titration											
HDPE Near Outflow-In Lake_Bottom	E290	01-Oct-2021					08-Oct-2021	14 days	7 days	✓	
Physical Tests : Alkalinity Species by Titration											
HDPE Near Outflow-In Lake_Mid-depth	E290	01-Oct-2021					08-Oct-2021	14 days	7 days	✓	
Physical Tests : Alkalinity Species by Titration											
HDPE Midlake 1_Bottom	E290	01-Oct-2021					09-Oct-2021	14 days	8 days	✓	
Physical Tests : Conductivity in Water											
HDPE EMD Discharge-In Lake_Bottom	E100	01-Oct-2021					08-Oct-2021	28 days	7 days	✓	
Physical Tests : Conductivity in Water											
HDPE EMD Discharge-In Lake_Mid-depth	E100	01-Oct-2021					08-Oct-2021	28 days	7 days	✓	
Physical Tests : Conductivity in Water											
HDPE JFLQC-2	E100	01-Oct-2021					08-Oct-2021	28 days	7 days	✓	
Physical Tests : Conductivity in Water											
HDPE Midlake 1_Mid-depth	E100	01-Oct-2021					08-Oct-2021	28 days	7 days	✓	

Page : 15 of 28 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Matrix: Water						aluation. * -	ation: × = Holding time exceedance ; ✓ = Within Holding				
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	sis		
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval	
Physical Tests : Conductivity in Water											
HDPE Near Outflow-In Lake_Bottom	E100	01-Oct-2021					08-Oct-2021	28 days	7 days	✓	
Physical Tests : Conductivity in Water											
HDPE Near Outflow-In Lake_Mid-depth	E100	01-Oct-2021					08-Oct-2021	28 days	7 days	✓	
Physical Tests : Conductivity in Water											
HDPE Midlake 1_Bottom	E100	01-Oct-2021					09-Oct-2021	28 days	8 days	✓	
Physical Tests : pH by Meter											
HDPE JFLQC-2	E108	01-Oct-2021					08-Oct-2021	0.25 hrs	168 hrs	# EHTR-FM	
Physical Tests : pH by Meter											
HDPE EMD Discharge-In Lake_Bottom	E108	01-Oct-2021					08-Oct-2021	0.25 hrs	169 hrs	# EHTR-FM	
Physical Tests : pH by Meter											
HDPE EMD Discharge-In Lake_Mid-depth	E108	01-Oct-2021					08-Oct-2021	0.25 hrs	169 hrs	* EHTR-FM	
Physical Tests : pH by Meter											
HDPE Near Outflow-In Lake_Bottom	E108	01-Oct-2021					08-Oct-2021	0.25 hrs	171 hrs	* EHTR-FM	
Physical Tests : pH by Meter											
HDPE Near Outflow-In Lake_Mid-depth	E108	01-Oct-2021					08-Oct-2021	0.25 hrs	171 hrs	# EHTR-FM	
Physical Tests : pH by Meter											
HDPE Midlake 1_Mid-depth	E108	01-Oct-2021					08-Oct-2021	0.25 hrs	172 hrs	* EHTR-FM	

Page : 16 of 28 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Matrix: Water						/aluation. * -	lation: × = Holding time exceedance ; ✓ = Within Holding			
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE										
Midlake 1_Bottom	E108	01-Oct-2021					09-Oct-2021	0.25	198 hrs	*
								hrs		EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE										
EMD Discharge-In Lake_Bottom	E162	01-Oct-2021					07-Oct-2021	7 days	6 days	✓
_								-		
Physical Tests : TDS by Gravimetry										
HDPE										
EMD Discharge-In Lake_Mid-depth	E162	01-Oct-2021					07-Oct-2021	7 davs	6 days	1
									'	
Physical Tests a TDO by Considerators										
Physical Tests : TDS by Gravimetry HDPE							l	<u> </u>		
JFLQC-2	E162	01-Oct-2021					07-Oct-2021	7 days	6 days	√
31 LQO-2	L102	01-001-2021					07-001-2021	r days	0 days	•
Physical Tests : TDS by Gravimetry								T	I	
HDPE	E162	01-Oct-2021					07-Oct-2021	7 days	6 days	✓
Near Outflow-In Lake_Bottom	E102	01-06-2021					07-Oct-2021	7 days	6 days	•
Physical Tests : TDS by Gravimetry							ı			
HDPE	5400	04.0.4.0004					27.0			,
Near Outflow-In Lake_Mid-depth	E162	01-Oct-2021					07-Oct-2021	7 days	6 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
Midlake 1_Bottom	E162	01-Oct-2021					07-Oct-2021	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
Midlake 1_Mid-depth	E162	01-Oct-2021					07-Oct-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry									1	
HDPE										
EMD Discharge-In Lake_Bottom	E160-H	01-Oct-2021					07-Oct-2021	7 days	6 days	✓
							l			

Page : 17 of 28
Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

watrix: water						Evaluation: * - Holding time exceedance , * - Within Hold				
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date		g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry										
HDPE										
EMD Discharge-In Lake Mid-depth	E160-H	01-Oct-2021					07-Oct-2021	7 days	6 days	✓
- '										
Physical Tests - TCC by Crayimetry										
Physical Tests : TSS by Gravimetry HDPE							1	T T		
JFLQC-2	E160-H	01-Oct-2021					07-Oct-2021	7 days	6 days	✓
JFLQC-2	L 100-11	01-001-2021					07-001-2021	1 uays	0 days	•
Physical Tests : TSS by Gravimetry										
HDPE										
Near Outflow-In Lake_Bottom	E160-H	01-Oct-2021					07-Oct-2021	7 days	6 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
Near Outflow-In Lake_Mid-depth	E160-H	01-Oct-2021					07-Oct-2021	7 days	6 days	✓
Physical Tests : TSS by Gravimetry										
HDPE							1			
Midlake 1 Bottom	E160-H	01-Oct-2021					07-Oct-2021	7 days	7 days	1
Wildiake I_Dottofff	2100-11	01-001-2021					07-001-2021	r days	1 days	•
Physical Tests : TSS by Gravimetry										
HDPE	E400.11	04 0 4 0004					07.0 . 000.			
Midlake 1_Mid-depth	E160-H	01-Oct-2021					07-Oct-2021	/ days	7 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
EMD Discharge-In Lake_Bottom	E121	01-Oct-2021					07-Oct-2021	3 days	6 days	*
										EHT
Physical Tests : Turbidity by Nephelometry										
HDPE										
EMD Discharge-In Lake_Mid-depth	E121	01-Oct-2021					07-Oct-2021	3 days	6 days	3 2
EMB Bisonarge-in Earce_Mila-acptil	2.2.	01 000 2021					07 000 2021	o dayo	o dayo	EHT
										L1
Physical Tests : Turbidity by Nephelometry										
HDPE										
JFLQC-2	E121	01-Oct-2021					07-Oct-2021	3 days	6 days	*
										EHT

Page : 18 of 28
Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

wainx: water						valuation. * - Holding time exceedance, * - within Holdi					
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Physical Tests : Turbidity by Nephelometry											
HDPE											
Midlake 1_Bottom	E121	01-Oct-2021					07-Oct-2021	3 days	6 days	34	
										EHT	
Physical Tests : Turbidity by Nephelometry											
HDPE											
Midlake 1_Mid-depth	E121	01-Oct-2021					07-Oct-2021	3 days	6 days	*	
										EHT	
Physical Tests : Turbidity by Nephelometry											
HDPE											
Near Outflow-In Lake_Bottom	E121	01-Oct-2021					07-Oct-2021	3 days	6 days	*	
										EHT	
Physical Tests : Turbidity by Nephelometry											
HDPE											
Near Outflow-In Lake_Mid-depth	E121	01-Oct-2021					07-Oct-2021	3 days	6 days	*	
										EHT	
Total Metals : Total Mercury in Water by CVAAS											
Glass vial total (hydrochloric acid)											
EMD Discharge-In Lake_Bottom	E508	01-Oct-2021					08-Oct-2021	28 days	7 days	✓	
Total Metals : Total Mercury in Water by CVAAS											
Glass vial total (hydrochloric acid)											
EMD Discharge-In Lake_Mid-depth	E508	01-Oct-2021					08-Oct-2021	28 days	7 days	✓	
Total Metals : Total Mercury in Water by CVAAS											
Glass vial total (hydrochloric acid)											
JFLQC-2	E508	01-Oct-2021					08-Oct-2021	28 days	7 days	✓	
Total Metals : Total Mercury in Water by CVAAS											
Glass vial total (hydrochloric acid)											
Midlake 1_Bottom	E508	01-Oct-2021					08-Oct-2021	28 days	7 days	✓	
Total Metals : Total Mercury in Water by CVAAS											
Glass vial total (hydrochloric acid)											
Midlake 1_Mid-depth	E508	01-Oct-2021					08-Oct-2021	28 days	7 days	✓	

Page : 19 of 28
Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Matrix: water				aluation. • -	idation. * - Holding time exceedance , * - vvitnin Holdin					
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
Near Outflow-In Lake_Bottom	E508	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
Near Outflow-In Lake_Mid-depth	E508	01-Oct-2021					08-Oct-2021	28 days	7 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
EMD Discharge-In Lake_Bottom	E420	01-Oct-2021					08-Oct-2021	180	7 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
EMD Discharge-In Lake_Mid-depth	E420	01-Oct-2021					08-Oct-2021	180	7 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
JFLQC-2	E420	01-Oct-2021					08-Oct-2021	180	7 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
Midlake 1_Bottom	E420	01-Oct-2021					08-Oct-2021	180	7 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
Midlake 1_Mid-depth	E420	01-Oct-2021					08-Oct-2021	180	7 days	\checkmark
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
Near Outflow-In Lake_Bottom	E420	01-Oct-2021					08-Oct-2021	180	7 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
Near Outflow-In Lake_Mid-depth	E420	01-Oct-2021					08-Oct-2021	180	7 days	✓
								days		

Page : 20 of 28 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date Extraction / Preparation						Analysis		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
Near Outflow-In Lake_Bottom	E611A	01-Oct-2021	09-Oct-2021				10-Oct-2021	14 days	9 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 21 of 28 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	314705	2	12	16.6	5.0	1
Ammonia by Fluorescence	E298	315277	1	15	6.6	5.0	✓
BTEX by Headspace GC-MS	E611A	315342	1	8	12.5	5.0	1
Chloride in Water by IC	E235.CI	314698	2	14	14.2	5.0	1
Conductivity in Water	E100	314704	2	14	14.2	5.0	1
Dissolved Mercury in Water by CVAAS	E509	314641	1	7	14.2	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	314586	1	8	12.5	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	314797	1	19	5.2	5.0	1
Fluoride in Water by IC	E235.F	314701	2	13	15.3	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	314700	2	14	14.2	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	314699	2	14	14.2	5.0	1
pH by Meter	E108	314706	2	13	15.3	5.0	1
Reactive Silica by Colourimetry	E392	315210	1	15	6.6	5.0	1
Sulfate in Water by IC	E235.SO4	314703	2	15	13.3	5.0	1
TDS by Gravimetry	E162	314516	1	7	14.2	5.0	1
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	314798	1	19	5.2	5.0	√
Total Mercury in Water by CVAAS	E508	314592	1	14	7.1	5.0	1
Total Metals in Water by CRC ICPMS	E420	314544	1	20	5.0	5.0	√
Total Nitrogen by Colourimetry	E366	315275	1	7	14.2	5.0	1
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	315276	1	7	14.2	5.0	√
TSS by Gravimetry	E160-H	314514	1	7	14.2	5.0	√
Turbidity by Nephelometry	E121	314374	1	17	5.8	5.0	1
VH and F1 by Headspace GC-FID	E581.VH+F1	315343	1	1	100.0	5.0	√
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	314705	2	12	16.6	5.0	1
Ammonia by Fluorescence	E298	315277	1	15	6.6	5.0	1
BC PHC - EPH by GC-FID (Low level)	E601A-L	314523	1	1	100.0	5.0	1
BTEX by Headspace GC-MS	E611A	315342	1	8	12.5	5.0	1
CCME PHC - F2-F4 by GC-FID	E601	314522	1	1	100.0	5.0	√
Chloride in Water by IC	E235.CI	314698	2	14	14.2	5.0	√
Conductivity in Water	E100	314704	2	14	14.2	5.0	√
Dissolved Mercury in Water by CVAAS	E509	314641	1	7	14.2	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	314586	1	8	12.5	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	314797	1	19	5.2	5.0	
Fluoride in Water by IC	E235.F	314701	2	13	15.3	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	314700	2	14	14.2	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	314699	2	14	14.2	5.0	1

Page : 22 of 28
Work Order : YL2101444

Client : Golder Associates Ltd.

Quality Control Sample Type			Co	ount		Frequency (%)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Oil & Grease by Gravimetry	E567	314521	1	1	100.0	5.0	1
pH by Meter	E108	314706	2	13	15.3	5.0	√
Reactive Silica by Colourimetry	E392	315210	1	15	6.6	5.0	1
Sulfate in Water by IC	E235.SO4	314703	2	15	13.3	5.0	√
TDS by Gravimetry	E162	314516	1	7	14.2	5.0	1
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	314798	1	19	5.2	5.0	1
Total Mercury in Water by CVAAS	E508	314592	1	14	7.1	5.0	1
Total Metals in Water by CRC ICPMS	E420	314544	1	20	5.0	5.0	1
Total Nitrogen by Colourimetry	E366	315275	1	7	14.2	5.0	√
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	315276	1	7	14.2	5.0	1
TSS by Gravimetry	E160-H	314514	1	7	14.2	5.0	1
Turbidity by Nephelometry	E121	314374	1	17	5.8	5.0	1
VH and F1 by Headspace GC-FID	E581.VH+F1	315343	1	1	100.0	5.0	1
Method Blanks (MB)							_
Alkalinity Species by Titration	E290	314705	2	12	16.6	5.0	1
Ammonia by Fluorescence	E298	315277	1	15	6.6	5.0	1
BC PHC - EPH by GC-FID (Low level)	E601A-L	314523	1	1	100.0	5.0	√
BTEX by Headspace GC-MS	E611A	315342	1	8	12.5	5.0	1
CCME PHC - F2-F4 by GC-FID	E601	314522	1	1	100.0	5.0	1
Chloride in Water by IC	E235.CI	314698	2	14	14.2	5.0	√
Conductivity in Water	E100	314704	2	14	14.2	5.0	1
Dissolved Mercury in Water by CVAAS	E509	314641	1	7	14.2	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	314586	1	8	12.5	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	314797	1	19	5.2	5.0	1
Fluoride in Water by IC	E235.F	314701	2	13	15.3	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	314700	2	14	14.2	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	314699	2	14	14.2	5.0	√
Oil & Grease by Gravimetry	E567	314521	1	1	100.0	5.0	✓
Reactive Silica by Colourimetry	E392	315210	1	15	6.6	5.0	√
Sulfate in Water by IC	E235.SO4	314703	2	15	13.3	5.0	✓
TDS by Gravimetry	E162	314516	1	7	14.2	5.0	1
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	314798	1	19	5.2	5.0	√
Total Mercury in Water by CVAAS	E508	314592	1	14	7.1	5.0	√
Total Metals in Water by CRC ICPMS	E420	314544	1	20	5.0	5.0	√
Total Nitrogen by Colourimetry	E366	315275	1	7	14.2	5.0	√
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	315276	1	7	14.2	5.0	√
TSS by Gravimetry	E160-H	314514	1	7	14.2	5.0	<u>√</u>
Turbidity by Nephelometry	E121	314374	1	17	5.8	5.0	√
VH and F1 by Headspace GC-FID	E581.VH+F1	315343	1	1	100.0	5.0	1

Page : 23 of 28
Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Matrix: Water

Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification.

Matrix. Water		Evaluati	on. 🗸 – QC nequ	ericy outside spe	ecincation, 🗸 – (ac irequericy wit	illii specilicali
Quality Control Sample Type			C	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Ammonia by Fluorescence	E298	315277	1	15	6.6	5.0	✓
BTEX by Headspace GC-MS	E611A	315342	1	8	12.5	5.0	√
Chloride in Water by IC	E235.Cl	314698	2	14	14.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	314641	1	7	14.2	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	314586	1	8	12.5	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	314797	1	19	5.2	5.0	√
Fluoride in Water by IC	E235.F	314701	2	13	15.3	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	314700	2	14	14.2	5.0	√
Nitrite in Water by IC (Low Level)	E235.NO2-L	314699	2	14	14.2	5.0	√
Reactive Silica by Colourimetry	E392	315210	1	15	6.6	5.0	√
Sulfate in Water by IC	E235.SO4	314703	2	15	13.3	5.0	√
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	314798	1	19	5.2	5.0	√
Total Mercury in Water by CVAAS	E508	314592	1	14	7.1	5.0	√
Total Metals in Water by CRC ICPMS	E420	314544	1	20	5.0	5.0	√
Total Nitrogen by Colourimetry	E366	315275	1	7	14.2	5.0	√
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	315276	1	7	14.2	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	315343	0	1	0.0	5.0	×

Page : 24 of 28 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions							
Conductivity in Water	E100 Vancouver -	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.							
	Environmental			campine contacting measurement are compensated to 20 c.							
pH by Meter	E108 Vancouver -	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conduct at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test result pH should be measured in the field within the recommended 15 minute hold time.							
Turbidity by Nephelometry	Environmental E121 Vancouver -	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.							
	Environmental										
TSS by Gravimetry	E160-H Vancouver - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.							
TDS by Gravimetry	E162 Vancouver - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.							
Chloride in Water by IC	E235.Cl Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.							
Fluoride in Water by IC	E235.F Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.							
Nitrite in Water by IC (Low Level)	E235.NO2-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.							
Nitrate in Water by IC (Low Level)	E235.NO3-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.							
Sulfate in Water by IC	E235.SO4 Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.							

Page : 25 of 28
Work Order : YL2101444

Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Vancouver - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Vancouver - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Vancouver - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Nitrogen by Colourimetry	E366 Vancouver - Environmental	Water	APHA 4500-P J (mod)	Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Dissolved Phosphorus is determined colourimetrically using a discrete analyzer after filtration through a 0.45 micron filter followed by heated persulfate digestion of the sample.
Reactive Silica by Colourimetry	E392 Vancouver - Environmental	Water	APHA 4500-SiO2 E (mod)	Silicate (molybdate-reactive silica) is determined by the molybdosilicate-heteropoly blue colourimetric method using a discrete analyzer. Method Limitation: Arsenic (5+) above 100 mg/L is a negative interference on this test
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS

Page : 26 of 28 Work Order : YL2101444

Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCI, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Oil & Grease by Gravimetry	E567 Vancouver - Environmental	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
VH and F1 by Headspace GC-FID	E581.VH+F1 Vancouver - Environmental	Water	BC MOE Lab Manual / CCME PHC in Soil - Tier 1 (mod)	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
CCME PHC - F2-F4 by GC-FID	E601 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	CCME Fractions 2-4 (F2-F4) are analyzed by GC-FID.
BC PHC - EPH by GC-FID (Low level)	E601A-L Vancouver - Environmental	Water	BC MOE Lab Manual (EPH in Water by GC/FID) (mod)	Extractable Petroleum Hydrocarbons (EPH) are analyzed by GC-FID.
BTEX by Headspace GC-MS	E611A Vancouver - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Hardness (Calculated) from Total Ca/Mg	EC100A Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
TDS in Water (Calculation) Using APHA Analyte List	EC103.APHA Vancouver - Environmental	Water	АРНА 1030Е	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis).
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Vancouver - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).

Page : 27 of 28
Work Order : YL2101444

Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
F1-BTEX	EC580	Water	CCME PHC in Soil - Tier	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene,
			1	ethylbenzene and xylenes (BTEX).
	Vancouver -			
	Environmental			
VPH: VH-BTEX-Styrene	EC580A	Water	BC MOE Lab Manual	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHw = Volatile
			(VPH in Water and	Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and
	Vancouver -		Solids) (mod)	styrene.
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Vancouver -			
	Environmental			
Preparation for Dissolved Organic Carbon for	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Combustion	555		,	
	Vancouver -			
	Environmental			
Digestion for Total Nitrogen in water	EP366	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
Discourse for Total Planet and in contrast	Environmental			
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			
Digestion for Dissolved Phosphorus in water	EP375	Water	APHA 4500-P E (mod).	Samples are filtered through a 0.45 micron membrane filter and then heated with a
				persulfate digestion reagent.
	Vancouver -			
Dissolved Metals Water Filtration	Environmental	Water	APHA 3030B	Water according to the sead (O.45 com) and massage of with LINOS
Dissolved Metals Water Filtration	EP421	vvater	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Vancouver -			
	Environmental			
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			
Oil & Grease Extraction for Gravimetry	EP567	Water	BC MOE Lab Manual	The entire water sample is extracted with hexane by liquid-liquid extraction.
	2. 007		(Oil & Grease) (mod)	
	Vancouver -		(2 & 3.3835) (34)	
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
				headspace autosampler. An aliquot of the headspace is then injected into the
	Vancouver -			GC/MS-FID system.
	Environmental			

Page : 28 of 28 Work Order : YL2101444

Client : Golder Associates Ltd.

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions					
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.					
	Vancouver -								
	Environmental								

QUALITY CONTROL REPORT

Work Order Page :YL2101444

Client : Golder Associates Ltd. Laboratory : Yellowknife - Environmental

Contact **Account Manager** : Oliver Gregg : Kathy Qin

> Address :9 - 4905 48th Street :314 Old Airport Road, Unit 116

> > Yellowknife, Northwest Territories Canada X1A 3T3

: 1 of 21

Telephone Telephone :1 867 446 5593 Project : Jackfish NTPC Thermal Plume Del **Date Samples Received** :01-Oct-2021 15:30

PO Date Analysis Commenced :07-Oct-2021

C-O-C number : 19-Oct-2021 11:23 Issue Date

Sampler

Quote number : NTPC Jackfish Lake

No. of samples received : 7 No. of samples analysed . 7

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Yellowknife NT Canada X1A 3S3

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Address

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Cindy Tang	Team Leader - Inorganics	Inorganics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia
Ophelia Chiu	Department Manager - Organics	Organics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

Page : 2 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Page : 3 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

ub-Matrix: Water							Labora	ntory Duplicate (D	иг) кероп		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 314374)										
-J2101053-016	Anonymous	turbidity		E121	0.10	NTU	0.77	0.82	0.04	Diff <2x LOR	
Physical Tests (QC	Lot: 314514)										
YL2101444-001	JFLQC-2	solids, total suspended [TSS]		E160-H	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 314516)										
YL2101444-001	JFLQC-2	solids, total dissolved [TDS]		E162	10	mg/L	<10	<10	0	Diff <2x LOR	
Physical Tests (QC	Lot: 314704)										
YL2101444-001	JFLQC-2	conductivity		E100	2.0	μS/cm	2.1	<2.0	0.1	Diff <2x LOR	
Physical Tests (QC	Lot: 314705)										
YL2101444-001	JFLQC-2	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
	alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
	alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
		alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
Physical Tests (QC											
YL2101444-001	JFLQC-2	pH		E108	0.10	pH units	5.19	5.13	1.16%	4%	
Physical Tests (QC	Lot: 316120)										
YL2101444-007	Midlake 1_Bottom	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	109	110	0.549%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	3.0	3.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	1.5	1.5	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	112	112	0.535%	20%	
Physical Tests (QC	Lot: 316121)										
YL2101444-007	Midlake 1_Bottom	conductivity		E100	2.0	μS/cm	453	453	0.00%	10%	
Physical Tests (QC	Lot: 316122)										
YL2101444-007	Midlake 1_Bottom	рН		E108	0.10	pH units	8.42	8.40	0.238%	4%	
Anions and Nu <u>trien</u>	ts (QC Lot: 314698)								-		
/A21C2122-001	Anonymous	chloride	16887-00-6	E235.CI	50.0	mg/L	32000	30000	6.27%	20%	
nions and Nutrien	ts (QC Lot: 314699)										
/A21C2122-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	

Page : 4 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrier	nts (QC Lot: 314700) - c	ontinued									
VA21C2122-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.500	mg/L	<0.500	<0.500	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 314701)										
VA21C2122-001	Anonymous	fluoride	16984-48-8	E235.F	2.00	mg/L	3.10	2.95	0.146	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 314703)										
VA21C2122-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	30.0	mg/L	743	695	6.66%	20%	
Anions and Nutrier	nts (QC Lot: 314798)										
FJ2101024-001	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0716	0.0710	0.814%	20%	
Anions and Nutrier	nts (QC Lot: 315210)										
YL2101441-001	Anonymous	silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	9.72	10.0	2.93%	20%	
Anions and Nutrier	nts (QC Lot: 315275)										
YL2101444-001	JFLQC-2	nitrogen, total	7727-37-9	E366	0.030	mg/L	<0.030	<0.030	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 315276)										
YL2101444-001	JFLQC-2	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrier	its (QC Lot: 315277)										
VA21C1090-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.128	0.126	0.925%	20%	
Anions and Nutrier	nts (QC Lot: 316123)										
YL2101449-001	Anonymous	chloride	16887-00-6	E235.CI	0.50	mg/L	52.3	52.1	0.412%	20%	
Anions and Nutrier	nts (QC Lot: 316124)										
YL2101449-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.092	0.092	0.00009	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 316125)										
YL2101449-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	135	133	1.12%	20%	
Anions and Nutrier	nts (QC Lot: 316126)										
YL2101449-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0871	0.0847	2.81%	20%	
Anions and Nutrier	nts (QC Lot: 316127)										
YL2101449-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 31479	97)									
FJ2101024-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.14	1.09	0.05	Diff <2x LOR	
Total Metals (QC L	ot: 314544)										
VA21C1666-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00041	0.00042	0.00001	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00016	0.00018	0.00002	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0225	0.0227	0.846%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.021	0.021	0.0005	Diff <2x LOR	

Page : 5 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

ub-Matrix: Water				I				tory Duplicate (D			
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
•	ot: 314544) - continue										
A21C1666-001	Anonymous	cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.00145	0.00151	3.91%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	274	275	0.395%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	0.000019	0.000016	0.000003	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00097	0.00093	0.00003	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0402	0.0388	3.76%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	182	180	0.885%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00082	0.00080	0.00001	Diff <2x LOR	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00186	0.00181	2.64%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.0396	0.0391	1.22%	20%	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	2.63	2.62	0.517%	20%	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00208	0.00201	3.67%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.399	0.402	0.784%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.74	2.74	0.168%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.050	mg/L	2.47	2.41	2.49%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.180	0.183	1.97%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	374	374	0.0878%	20%	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000027	0.000027	0.0000001	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		tungsten, total	7440-32-0	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-53-7	E420	0.00010	mg/L	0.0175	0.0178	1.90%	20%	
		vanadium, total	7440-61-1	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		•	7440-62-2	E420	0.0030	•	0.0680	0.0680	0.104%	20%	
		zinc, total		-		mg/L					
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
tal Metals (QC Lo	,		7400 07 5	5500	0.000000		.0.0000055	.0.0000055		D.WC. 1.05	
_2101441-002	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Page : 6 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
issolved Metals (QC Lot: 314586) - con	tinued									
'A21C2123-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0050	mg/L	0.0066	0.0076	0.0010	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00050	mg/L	0.00078	0.00081	0.00003	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00050	mg/L	0.0871	0.0891	2.27%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000250	mg/L	<0.000250	<0.000250	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.050	mg/L	0.106	0.112	0.006	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000250	mg/L	<0.0000250	<0.0000250	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.250	mg/L	94.3	94.4	0.0989%	20%	
		cesium, dissolved	7440-46-2	E421	0.000050	mg/L	0.00122	0.00128	4.14%	20%	
		chromium, dissolved	7440-47-3	E421	0.00250	mg/L	<0.00250	<0.00250	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00100	mg/L	0.00230	0.00217	0.00013	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000250	mg/L	0.000430	0.000422	0.000008	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0050	mg/L	0.0241	0.0252	0.0010	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0250	mg/L	175	179	2.62%	20%	
		manganese, dissolved	7439-96-5	E421	0.00050	mg/L	0.105	0.107	1.82%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000250	mg/L	0.00201	0.00211	0.000099	Diff <2x LOR	
		nickel, dissolved	7440-02-0	E421	0.00250	mg/L	<0.00250	<0.00250	0	Diff <2x LOR	
		phosphorus, dissolved	7723-14-0	E421	0.250	mg/L	0.493	0.586	0.093	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.250	mg/L	77.8	78.4	0.845%	20%	
		rubidium, dissolved	7440-17-7	E421	0.00100	mg/L	0.142	0.144	0.997%	20%	
		selenium, dissolved	7782-49-2	E421	0.000250	mg/L	<0.000250	<0.000250	0	Diff <2x LOR	
		silicon, dissolved	7440-21-3	E421	0.250	mg/L	11.7	11.8	0.686%	20%	
		silver, dissolved	7440-22-4	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.250	mg/L	1400	1430	1.89%	20%	
		strontium, dissolved	7440-24-6	E421	0.00100	mg/L	0.981	1.02	3.62%	20%	
		sulfur, dissolved	7704-34-9	E421	2.50	mg/L	37.5	38.6	2.69%	20%	
		tellurium, dissolved	13494-80-9	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		thorium, dissolved	7440-29-1	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00150	mg/L	<0.00150	<0.00150	0	Diff <2x LOR	
		tungsten, dissolved	7440-33-7	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	

Page : 7 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Sub-Matrix: Water							Labora	tory Duplicate (Dl	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (0	QC Lot: 314586) - contin	ued									
VA21C2123-001	Anonymous	uranium, dissolved	7440-61-1	E421	0.000050	mg/L	0.000309	0.000315	0.000006	Diff <2x LOR	
		vanadium, dissolved	7440-62-2	E421	0.00250	mg/L	<0.00250	<0.00250	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0050	mg/L	0.0147	0.0151	0.0004	Diff <2x LOR	
		zirconium, dissolved	7440-67-7	E421	0.00150	mg/L	<0.00150	<0.00150	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 314641)										
YL2101444-001	JFLQC-2	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Volatile Organic Co	mpounds (QC Lot: 3153	42)									
FJ2101036-001	Anonymous	benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		styrene	100-42-5	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 315343)										
YL2101444-003	Near Outflow-In Lake Bottom	F1 (C6-C10)		E581.VH+F1	0.10	μg/L	<0.10 mg/L	<100	0.0%	30%	
	Lake_Bottom	VHw (C6-C10)		E581.VH+F1	0.10	μg/L	<0.10 mg/L	<100	0.0%	30%	

Page : 8 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

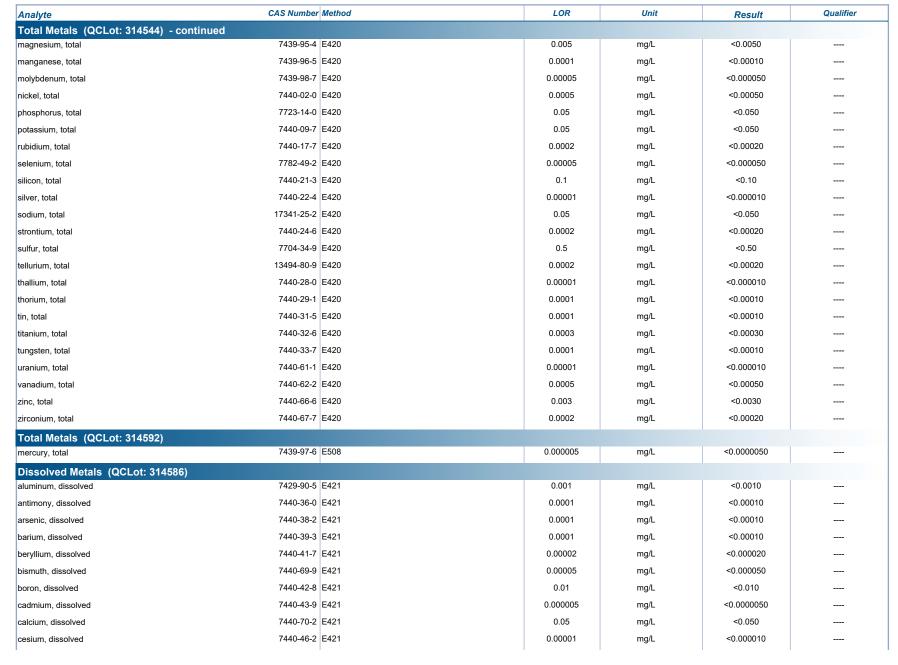
Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 314374)					
urbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 314514)					
solids, total suspended [TSS]	Е160-Н	3	mg/L	<3.0	
Physical Tests (QCLot: 314516)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 314704)					
conductivity	E100	1	μS/cm	1.3	
Physical Tests (QCLot: 314705)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, phenolphthalein (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 316120)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	1.1	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, phenolphthalein (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	1.1	
Physical Tests (QCLot: 316121)					
conductivity	E100	1	μS/cm	<1.0	
Anions and Nutrients (QCLot: 314698)					
chloride	16887-00-6 E235.CI	0.5	mg/L	# 1.01	В
Anions and Nutrients (QCLot: 314699)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 314700)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 314701)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 314703)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 314798)					
phosphorus, total dissolved	7723-14-0 E375-T	0.002	mg/L	<0.0020	

Page : 9 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

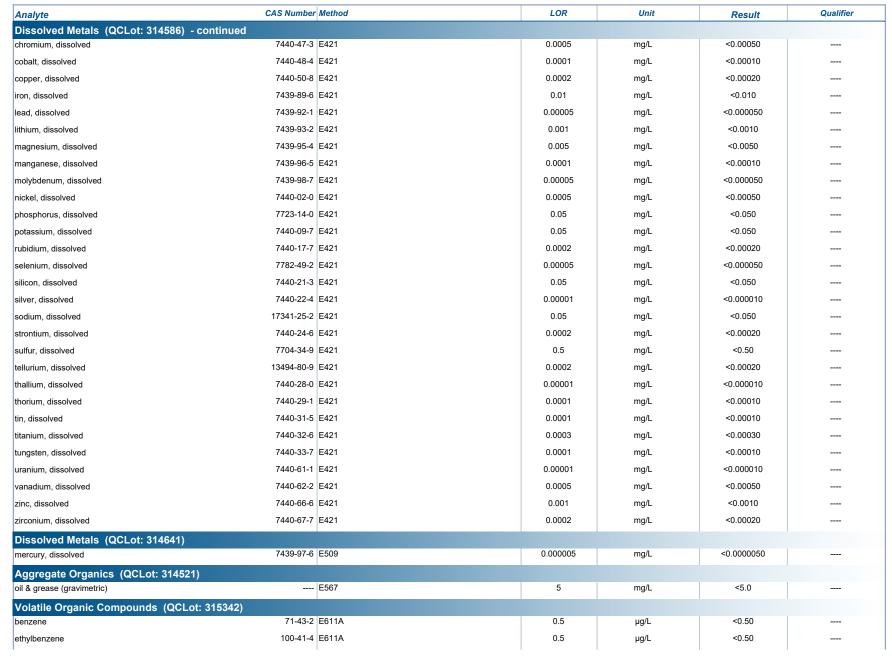

Project : Jackfish NTPC Thermal Plume Del

Sub-Matrix: water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 315210)						
silicate (as SiO2)	7631-86-9	E392	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 315275)						
nitrogen, total	7727-37-9	E366	0.03	mg/L	<0.030	
Anions and Nutrients (QCLot: 315276)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 315277)						
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 316123)						
chloride	16887-00-6	E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 316124)						
fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 316125)						
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 316126)						
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 316127)						
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	<0.0010	
Organic / Inorganic Carbon (QCLot: 31479	7)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 314544)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2	E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
		E420	0.0001	mg/L	<0.00010	
cobalt, total	7440-48-4	= ·= ·				
copper, total	7440-48-4 7440-50-8		0.0005	mg/L	<0.00050	
,		E420	0.0005 0.01	mg/L mg/L	<0.00050 <0.010	
copper, total	7440-50-8	E420				

Page : 10 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

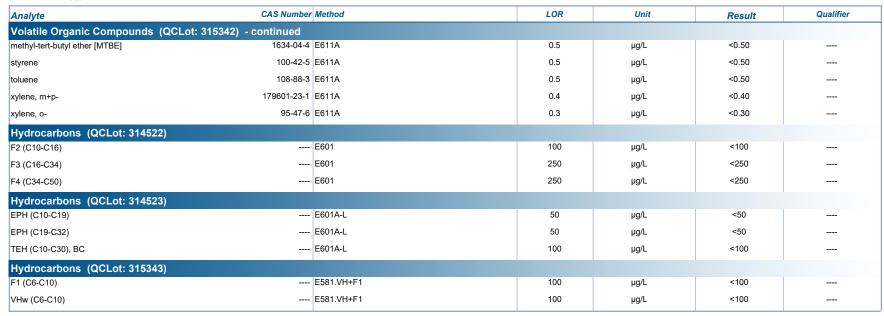
Project : Jackfish NTPC Thermal Plume Del



Page : 11 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del



Page : 12 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Sub-Matrix: Water

Qualifiers

Qualifier	Description
R	Method Blank exceeds ALS DOO. Associated sample results which are < Limit of Penarting or > 5

Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.

Page : 13 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	-Matrix: Water						Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier				
Physical Tests (QCLot: 314374)													
turbidity		E121	0.1	NTU	200 NTU	98.5	85.0	115					
Physical Tests (QCLot: 314514)													
solids, total suspended [TSS]		E160-H	3	mg/L	150 mg/L	93.0	85.0	115					
Physical Tests (QCLot: 314516)													
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	95.8	85.0	115					
Physical Tests (QCLot: 314704)													
conductivity		E100	1	μS/cm	146.9 µS/cm	106	90.0	110					
Physical Tests (QCLot: 314705)									1				
alkalinity, phenolphthalein (as CaCO3)		E290	1	mg/L	229 mg/L	78.1	75.0	125					
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	102	85.0	115					
Physical Tests (QCLot: 314706)									1				
рН		E108		pH units	7 pH units	101	98.0	102					
Physical Tests (QCLot: 316120)													
alkalinity, phenolphthalein (as CaCO3)		E290	1	mg/L	229 mg/L	80.0	75.0	125					
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	102	85.0	115					
Physical Tests (QCLot: 316121)									1				
conductivity		E100	1	μS/cm	146.9 μS/cm	99.0	90.0	110					
Physical Tests (QCLot: 316122)													
pH		E108		pH units	7 pH units	100	98.0	102					
Anions and Nutrients (QCLot: 314698)	16887-00-6	E225 CI	0.5	mg/L	400 #	00.5	00.0	440					
	10007-00-0	E233.CI	0.5	IIIg/L	100 mg/L	99.5	90.0	110					
Anions and Nutrients (QCLot: 314699) nitrite (as N)	14707.65.0	E235.NO2-L	0.001	mg/L	0.5	102	90.0	110					
	14797-05-0	E233.NO2-L	0.001	IIIg/L	0.5 mg/L	102	90.0	110					
Anions and Nutrients (QCLot: 314700) nitrate (as N)	14707 55 8	E235.NO3-L	0.005	mg/L	2 E ma/l	99.2	90.0	110					
()	14797-33-0	L233.NO3-L	0.003	IIIg/L	2.5 mg/L	99.2	90.0	110					
Anions and Nutrients (QCLot: 314701)	16984-48-8	F235 F	0.02	mg/L	1 mg/L	102	90.0	110					
	10304-40-0		0.02	mg/L	i ilig/L	102	90.0	110					
Anions and Nutrients (QCLot: 314703) sulfate (as SO4)	14808-79-8	F235 SO4	0.3	mg/L	100 mg/L	99.8	90.0	110					
, ,	14000-19-0		0.0	Illg/L	TOO HIG/L	99.0	90.0	110					
Anions and Nutrients (QCLot: 314798) phosphorus, total dissolved	7723-14-0	F375-T	0.002	mg/L	0.05 mg/L	91.3	80.0	120					
	7725-14-0	2010 1	0.002	mg/L	0.05 mg/L	91.3	60.0	120					
Anions and Nutrients (QCLot: 315210)													

Page : 14 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Allones and Nutrients (OCLot: 315210) - continued allocate 15 2007	Sub-Matrix: Water					Laboratory Control Sample (LCS) Report				
Anions and Nutrients (OCLot: 316210) - continued Anions and Nutrients (OCLot: 316276) Integes, field T727-57-79 [5986] T728-57-79 [5986] T728-57-79 [5986] T728						Spike	Recovery (%)	Recovery	Limits (%)	
Anions and Nutrients (OCLot: 316128) White So 1964 41-8 E285 MO3.1 0.001 mgl. 10.0 85.0 115 11	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 316275) Introgen, Ioal	``									
## Allons and Nutrients (QCLot: 316124) ## Allons and Nutrients (QCLot: 316125) ## Allons and Nutrients (QCLot: 316126) ## Allons and Nutrients (QCLot: 316127) ## Allons and Nutrients (QCLot: 316128) ## Al	silicate (as SiO2)	7631-86-9	E392	0.5	mg/L	10 mg/L	103	85.0	115	
Anions and Nutrients (QCLot: 315276) 7725-14-0 572-1	Anions and Nutrients (QCLot: 315275)									
Anions and Nutrients (OCLot: 316123) Anions and Nutrients (OCLot: 316124) Incorde 16887-00.6 E235.Cl 0.5 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (OCLot: 316124) Incorde 16887-00.6 E235.Cl 0.5 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (OCLot: 316125) Incorde 16887-00.6 E235.NO3-L 0.005 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (OCLot: 316126) Incorde 14987-90.6 E235.NO3-L 0.005 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (OCLot: 316126) Incorde 14987-90.6 E235.NO3-L 0.005 mg/L 0.5 mg/L 102 90.0 110 Anions and Nutrients (OCLot: 316127) Incorde (as N) 14797-90.6 E235.NO3-L 0.005 mg/L 0.5 mg/L 101 90.0 110 Anions and Nutrients (OCLot: 316127) Incorde (as N) 14797-90.6 E235.NO3-L 0.001 mg/L 0.5 mg/L 101 90.0 110 Anions and Nutrients (OCLot: 316127) Incorde (as N) 14797-90.6 E235.NO3-L 0.001 mg/L 0.5 mg/L 101 90.0 110 Anions and Nutrients (OCLot: 316127) Incorde (as N) 14797-90.6 E235.NO3-L 0.001 mg/L 0.5 mg/L 101 90.0 110 Anions and Nutrients (OCLot: 316127) Incorde (as N) 14797-90.6 E235.NO3-L 0.001 mg/L 0.5 mg/L 100 80.0 120 Incorde (as N) 14797-90.6 E235.NO3-L 0.001 mg/L 1 mg/L 106 80.0 120 Incorde (as N) 14797-90.6 E235.NO3-L 0.0001 mg/L 1 mg/L 106 80.0 120 Incorde (as N) 14797-90.6 E235.NO3-L 0.0001 mg/L 1 mg/L 90.5 80.0 120 Incorde (as N) 14797-90.6 E235.NO3-L 0.0001 mg/L 1 mg/L 90.6 80.0 120 Incorde (as N) 14797-90.6 E235.NO3-L 0.0001 mg/L 0.5 mg/L 11 mg/L 90.6 80.0 120 Incorder (as N) 14797-90.6 E235.NO3-L 0.0001 mg/L 0.5 mg/L 11 mg/L	nitrogen, total	7727-37-9	E366	0.03	mg/L	0.5 mg/L	100	75.0	125	
Anions and Nutrients (OCLot: 315277)	Anions and Nutrients (QCLot: 315276)									
Anions and Nutrients (OCLot: 316123)	phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	92.4	80.0	120	
Anions and Nutrients (QCLot: 316123) Anions and Nutrients (QCLot: 316124) Anions and Nutrients (QCLot: 316124) Anions and Nutrients (QCLot: 316125) Aliable (as SQL) 1400-78-8 [235.SQL 0.02 mg/L 100 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 316125) Anions and Nutrients (QCLot: 316126) Anions and Nutrients (QCLot: 316126) Anions and Nutrients (QCLot: 316127) Anions and Nutrients (QCLot: 316126) Anions and Nutrients (QCLo	Anions and Nutrients (QCLot: 315277)									
Anions and Nutrients (QCLot: 316124) Nutrients (QCLot: 316124) Nutrients (QCLot: 316126) Nutrients (QCLot: 316127) Nutrien	ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	99.2	85.0	115	
Anions and Nutrients (QCLot: 316124) Nutrients (QCLot: 316124) Nutrients (QCLot: 316126) Nutrients (QCLot: 316127) Nutrien	Anions and Nutrients (QCLot: 316123)									
No.	chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	101	90.0	110	
No.	Anions and Nutrients (QCLot: 316124)									
Anions and Nutrients (QCLot: 316126) Anions and Nutrients (QCLot: 316127) Initrie (as N)	fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 316126) Anions and Nutrients (QCLot: 316127) Initrie (as N)	Anions and Nutrients (QCLot: 316125)									
Anions and Nutrients (QCLot: 316127) Initrie (as N)	sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 316127) Initrie (as N)	Anions and Nutrients (QCI of: 316126)									
Companie Carbon	nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	102	90.0	110	
Companie Carbon	Anions and Nutrients (OCI of: 316127)									
E358-L 0.5 mg/L 8.57 mg/L 87.8 80.0 120	nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	101	90.0	110	
E358-L 0.5 mg/L 8.57 mg/L 87.8 80.0 120										
E358-L 0.5 mg/L 8.57 mg/L 87.8 80.0 120	Organic / Inorganic Carbon (QCLot: 314797)									
antimorny, total 7429-90-5 E420 0.003 mg/L 2 mg/L 100 80.0 120	carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	87.8	80.0	120	
antimorny, total 7429-90-5 E420 0.003 mg/L 2 mg/L 100 80.0 120										
antimony, total 7440-36-0 E420 0.0001 mg/L 1 mg/L 98.5 80.0 120	Total Metals (QCLot: 314544)									
arsenic, total 7440-38-2 E420 0.0001 mg/L 1 mg/L 98.5 80.0 120	aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	100	80.0	120	
barium, total 7440-39-3 E420 0.0001 mg/L 0.25 mg/L 94.8 80.0 120	antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	106	80.0	120	
beryllium, total 7440-41-7 E420 0.00002 mg/L 0.1 mg/L 96.6 80.0 120 bismuth, total 7440-69-9 E420 0.00005 mg/L 1 mg/L 96.6 80.0 120 boron, total 7440-42-8 E420 0.00005 mg/L 1 mg/L 90.3 80.0 120 boron, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 90.3 80.0 120 boron, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 94.5 80.0 120 boron, total 7440-70-2 E420 0.000 mg/L 50 mg/L 103 80.0 120 boron, total 7440-46-2 E420 0.0001 mg/L 0.05 mg/L 101 80.0 120 boron, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 101 80.0 120 boron, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 101 80.0 120 boron, total 7440-69-8 E420 0.0001 mg/L 0.25 mg/L 102 80.0 120 boron, total 7439-89-6 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 boron, total 7439-89-6 E420 0.001 mg/L 1 mg/L 96.5 80.0 120 boron, total 7439-89-6 E420 0.001 mg/L 1 mg/L 96.5 80.0 120 boron, total	arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	98.5	80.0	120	
bismuth, total 7440-69-9 E420 0.00005 mg/L 1 mg/L 96.6 80.0 120 boron, total 7440-42-8 E420 0.01 mg/L 1 mg/L 90.3 80.0 120 boron, total 7440-43-9 E420 0.000005 mg/L 0.1 mg/L 94.5 80.0 120 boron, total 7440-70-2 E420 0.05 mg/L 50 mg/L 103 80.0 120 boron, total 7440-46-2 E420 0.0001 mg/L 0.05 mg/L 103 80.0 120 boronium, total 7440-46-2 E420 0.0001 mg/L 0.05 mg/L 101 80.0 120 boronium, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 101 80.0 120 boronium, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 102 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 102 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 10 mg/L 10 mg/L 96.5 80.0 120 boronium, total 7440-50-8 E420 0.0005 mg/L 10 mg/L 10 mg/L 10 mg/L 96.5 80.0 120 boronium, total 96.5 80.0 120 boronium, t	barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	94.8	80.0	120	
boron, total 7440-42-8 E420 0.01 mg/L 1 mg/L 90.3 80.0 120 cadmium, total 7440-43-9 E420 0.00005 mg/L 0.1 mg/L 94.5 80.0 120 calcium, total 7440-40-2 E420 0.05 mg/L 50 mg/L 103 80.0 120 cesium, total 7440-46-2 E420 0.0001 mg/L 0.05 mg/L 101 80.0 120 chromium, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 101 80.0 120 cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 101 80.0 120 cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 102 80.0 120 copper, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 corporation, total 1 mg/L 96.5 80.0 120 corporation, total 1 mg/L 96.5 80.0 120	beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	102	80.0	120	
cadmium, total 7440-43-9 E420 0.000005 mg/L 0.1 mg/L 94.5 80.0 120 calcium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 103 80.0 120 cesium, total 7440-46-2 E420 0.00001 mg/L 0.05 mg/L 101 80.0 120 chromium, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 101 80.0 120 cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 102 80.0 120 copper, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 corp, total 7439-89-6 E420 0.001 mg/L 0.25 mg/L 98.5 80.0 120 corp, total 7439-89-6 E420 0.001 mg/L 1 mg/L 96.5 80.0 120	bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	96.6	80.0	120	
Calcium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 103 80.0 120 cesium, total 7440-46-2 E420 0.00001 mg/L 0.05 mg/L 101 80.0 120 chromium, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 101 80.0 120 cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 102 80.0 120 copper, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 0.25 mg/L 98.5 80.0 120 copper, total 7439-89-6 E420 0.01 mg/L 1 mg/L 96.5 80.0 120	boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	90.3	80.0	120	
cesium, total 7440-46-2 E420 0.0001 mg/L 0.05 mg/L 101 80.0 120 chromium, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 101 80.0 120 cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 102 80.0 120 copper, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 copper, total 7439-89-6 E420 0.01 mg/L 1 mg/L 96.5 80.0 120	cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	94.5	80.0	120	
chromium, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 101 80.0 120 cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 102 80.0 120 copper, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 copper, total 7439-89-6 E420 0.01 mg/L 1 mg/L 96.5 80.0 120	calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	103	80.0	120	
cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 102 80.0 120 copper, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.5 80.0 120 giron, total 7439-89-6 E420 0.01 mg/L 1 mg/L 96.5 80.0 120	cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	101	80.0	120	
copper, total 7440-50-8 (ron, total) E420 0.0005 (mg/L) 0.25 mg/L 98.5 80.0 120 (ron, total) 439-89-6 (ron, total) 439-89-6 (ron, total) 6420 0.01 mg/L 1 mg/L 96.5 80.0 120 (ron, total)	chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	101	80.0	120	
rion, total 7439-89-6 E420 0.01 mg/L 1 mg/L 96.5 80.0 120	cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	102	80.0	120	
The state of the s	copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	98.5	80.0	120	
ead, total 7439-92-1 E420 0.00005 mg/L 0.5 mg/L 96.4 80.0 120	iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	96.5	80.0	120	
	lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	96.4	80.0	120	

Page : 15 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Sub-Matrix: Water			Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 314544) - continue	d								
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	99.8	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	96.4	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	101	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	103	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	99.0	80.0	120	
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	110	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	103	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	97.3	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	95.3	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	99.3	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	99.0	80.0	120	
sodium, total	17341-25-2	E420	0.05	mg/L	50 mg/L	101	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	102	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	85.3	80.0	120	
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	102	80.0	120	
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	99.6	80.0	120	
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	92.3	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	98.3	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	96.9	80.0	120	
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	94.4	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	96.5	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	102	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	99.6	80.0	120	
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	98.4	80.0	120	
Total Metals (QCLot: 314592)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	100	80.0	120	
Dissolved Metals (QCLot: 314586)									
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	101	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	99.6	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	99.8	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	97.4	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	100	80.0	120	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	96.1	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	89.0	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	97.4	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	99.4	80.0	120	

Page : 16 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 314586) - continued									
cesium, dissolved	7440-46-2	E421	0.00001	mg/L	0.05 mg/L	98.2	80.0	120	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	102	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	102	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	99.6	80.0	120	
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	99.5	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	94.2	80.0	120	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	97.0	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	96.5	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	99.9	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	100.0	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	101	80.0	120	
phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	102	80.0	120	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	104	80.0	120	
rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	0.1 mg/L	106	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	99.5	80.0	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	101	80.0	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	97.1	80.0	120	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	50 mg/L	103	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	98.1	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	86.1	80.0	120	
tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	0.1 mg/L	92.8	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	98.8	80.0	120	
thorium, dissolved	7440-29-1	E421	0.0001	mg/L	0.1 mg/L	93.4	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	97.7	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	99.8	80.0	120	
tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	0.1 mg/L	94.8	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	96.6	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	102	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	103	80.0	120	
zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	95.0	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	97.1	80.0	120	
Aggregate Organics (QCLot: 314521)									
oil & grease (gravimetric)		E567	5	mg/L	100 mg/L	99.4	70.0	130	
Volatile Organic Compounds (QCLot: 315342) benzene	71-43-2	F611A	0.5	μg/L	100 ug/l	84.1	70.0	130	
ethylbenzene	100-41-4		0.5	μg/L	100 μg/L	104			
euryiberizerie	100-41-4	LUITA	0.0	µg/∟	100 μg/L	104	70.0	130	

Page : 17 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Sub-Matrix: Water	Matrix: Water						Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier				
Volatile Organic Compounds (QCLot: 3	15342) - continued												
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.5	μg/L	100 μg/L	97.3	70.0	130					
styrene	100-42-5	E611A	0.5	μg/L	100 μg/L	101	70.0	130					
toluene	108-88-3	E611A	0.5	μg/L	100 μg/L	93.5	70.0	130					
xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	108	70.0	130					
xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	105	70.0	130					
Hydrocarbons (QCLot: 314522)													
F2 (C10-C16)		E601	100	μg/L	3538 μg/L	101	70.0	130					
F3 (C16-C34)		E601	250	μg/L	7053 μg/L	89.4	70.0	130					
F4 (C34-C50)		E601	250	μg/L	5051 μg/L	96.4	70.0	130					
Hydrocarbons (QCLot: 314523)													
EPH (C10-C19)		E601A-L	50	μg/L	6491 μg/L	93.7	70.0	130					
EPH (C19-C32)		E601A-L	50	μg/L	3363 μg/L	92.2	70.0	130					
TEH (C10-C30), BC		E601A-L	100	μg/L	9202 μg/L	93.3	70.0	130					
Hydrocarbons (QCLot: 315343)													
F1 (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	96.4	70.0	130					
VHw (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	94.9	70.0	130					

Page : 18 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Project : Jackfish NTPC Thermal Plume Del

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND - Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nut	rients (QCLot: 314698)									
VA21C2122-002	Anonymous	chloride	16887-00-6	E235.CI	ND mg/L	10000 mg/L	ND	75.0	125	
Anions and Nut	rients (QCLot: 314699)									
VA21C2122-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	51.5 mg/L	50 mg/L	103	75.0	125	
Anions and Nut	rients (QCLot: 314700)									
VA21C2122-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	254 mg/L	250 mg/L	102	75.0	125	
Anions and Nut	rients (QCLot: 314701)									
VA21C2122-002	Anonymous	fluoride	16984-48-8	E235.F	108 mg/L	100 mg/L	108	75.0	125	
Anions and Nut	rients (QCLot: 314703)									
VA21C2122-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	10200 mg/L	10000 mg/L	102	75.0	125	
Anions and Nut	rients (QCLot: 314798)									
FJ2101024-002	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0501 mg/L	0.05 mg/L	100	70.0	130	
Anions and Nut	rients (QCLot: 315210)									
YL2101441-002	Anonymous	silicate (as SiO2)	7631-86-9	E392	ND mg/L	10 mg/L	ND	75.0	125	
Anions and Nut	rients (QCLot: 315275)									
YL2101444-002	Near Outflow-In Lake Mid-depth	nitrogen, total	7727-37-9	E366	ND mg/L	0.4 mg/L	ND	70.0	130	
Anions and Nut	rients (QCLot: 315276)									
YL2101444-002	Near Outflow-In Lake Mid-depth	phosphorus, total	7723-14-0	E372-U	ND mg/L	0.05 mg/L	ND	70.0	130	
Anions and Nut	rients (QCLot: 315277)									
VA21C1090-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.106 mg/L	0.1 mg/L	106	75.0	125	
Anions and Nut	rients (QCLot: 316123)									
YL2101449-001	Anonymous	chloride	16887-00-6	E235.CI	103 mg/L	100 mg/L	103	75.0	125	
Anions and Nut	rients (QCLot: 316124)									
YL2101449-001	Anonymous	fluoride	16984-48-8	E235.F	0.962 mg/L	1 mg/L	96.2	75.0	125	
Anions and Nut	rients (QCLot: 316125)									
YL2101449-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125	
Anions and Nut	rients (QCLot: 316126)									
YL2101449-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.64 mg/L	2.5 mg/L	106	75.0	125	

Page : 19 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	ents (QCLot: 316127)									
YL2101449-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.500 mg/L	0.5 mg/L	100	75.0	125	
Organic / Inorgar	nic Carbon (QCLot: 314	797)								
FJ2101024-002	Anonymous	carbon, dissolved organic [DOC]		E358-L	5.30 mg/L	5 mg/L	106	70.0	130	
otal Metals (QC	Lot: 314544)									
/A21C1666-002	Anonymous	aluminum, total	7429-90-5	E420	0.382 mg/L	0.4 mg/L	95.4	70.0	130	
		antimony, total	7440-36-0	E420	0.0409 mg/L	0.04 mg/L	102	70.0	130	
		arsenic, total	7440-38-2	E420	0.0394 mg/L	0.04 mg/L	98.5	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0824 mg/L	0.08 mg/L	103	70.0	130	
		bismuth, total	7440-69-9	E420	0.0180 mg/L	0.02 mg/L	89.8	70.0	130	
		boron, total	7440-42-8	E420	0.197 mg/L	0.2 mg/L	98.4	70.0	130	
		cadmium, total	7440-43-9	E420	0.00750 mg/L	0.008 mg/L	93.7	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, total	7440-46-2	E420	0.0206 mg/L	0.02 mg/L	103	70.0	130	
		chromium, total	7440-47-3	E420	0.0792 mg/L	0.08 mg/L	99.0	70.0	130	
		cobalt, total	7440-48-4	E420	0.0379 mg/L	0.04 mg/L	94.8	70.0	130	
		copper, total	7440-50-8	E420	0.0362 mg/L	0.04 mg/L	90.6	70.0	130	
		iron, total	7439-89-6	E420	3.68 mg/L	4 mg/L	92.0	70.0	130	
		lead, total	7439-92-1	E420	0.0365 mg/L	0.04 mg/L	91.2	70.0	130	
		lithium, total	7439-93-2	E420	ND mg/L	0.1 mg/L	ND	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0392 mg/L	0.04 mg/L	98.0	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0418 mg/L	0.04 mg/L	104	70.0	130	
		nickel, total	7440-02-0	E420	0.0719 mg/L	0.08 mg/L	89.8	70.0	130	
		phosphorus, total	7723-14-0	E420	21.5 mg/L	20 mg/L	108	70.0	130	
		potassium, total	7440-09-7	E420	ND mg/L	4 mg/L	ND	70.0	130	
		rubidium, total	7440-17-7	E420	0.0394 mg/L	0.04 mg/L	98.6	70.0	130	
		selenium, total	7782-49-2	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		silicon, total	7440-21-3	E420	18.4 mg/L	20 mg/L	92.1	70.0	130	
		silver, total	7440-22-4	E420	0.00767 mg/L	0.008 mg/L	95.8	70.0	130	
		sodium, total	17341-25-2	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		tellurium, total	13494-80-9	E420	0.0820 mg/L	0.08 mg/L	102	70.0	130	
		thallium, total	7440-28-0	E420	0.00746 mg/L	0.008 mg/L	93.3	70.0	130	
	I	thorium, total	7440-29-1	E420	0.0404 mg/L	0.04 mg/L	101	70.0	130	

Page : 20 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ike	Recovery (%)	Recovery	Limits (%)			
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie		
otal Metals (QC	CLot: 314544) - cont	inued										
VA21C1666-002	Anonymous	tin, total	7440-31-5	E420	0.0391 mg/L	0.04 mg/L	97.8	70.0	130			
		titanium, total	7440-32-6	E420	0.0796 mg/L	0.08 mg/L	99.5	70.0	130			
		tungsten, total	7440-33-7	E420	0.0386 mg/L	0.04 mg/L	96.4	70.0	130			
		uranium, total	7440-61-1	E420	ND mg/L	0.004 mg/L	ND	70.0	130			
		vanadium, total	7440-62-2	E420	0.205 mg/L	0.2 mg/L	102	70.0	130			
		zinc, total	7440-66-6	E420	0.717 mg/L	0.8 mg/L	89.6	70.0	130			
		zirconium, total	7440-67-7	E420	0.0839 mg/L	0.08 mg/L	105	70.0	130			
otal Metals (QC	CLot: 314592)											
YL2101441-003	Anonymous	mercury, total	7439-97-6	E508	0.0000953 mg/L	0.0001 mg/L	95.3	70.0	130			
issolved Metals	(QCLot: 314586)											
/L2101444-001	JFLQC-2	aluminum, dissolved	7429-90-5	E421	0.199 mg/L	0.2 mg/L	99.3	70.0	130			
		antimony, dissolved	7440-36-0	E421	0.0193 mg/L	0.02 mg/L	96.4	70.0	130			
		arsenic, dissolved	7440-38-2	E421	0.0193 mg/L	0.02 mg/L	96.7	70.0	130			
		barium, dissolved	7440-39-3	E421	0.0191 mg/L	0.02 mg/L	95.6	70.0	130			
		beryllium, dissolved	7440-41-7	E421	0.0405 mg/L	0.04 mg/L	101	70.0	130			
		bismuth, dissolved	7440-69-9	E421	0.00868 mg/L	0.01 mg/L	86.8	70.0	130			
		boron, dissolved	7440-42-8	E421	0.091 mg/L	0.1 mg/L	90.9	70.0	130			
		cadmium, dissolved	7440-43-9	E421	0.00389 mg/L	0.004 mg/L	97.3	70.0	130			
		calcium, dissolved	7440-70-2	E421	4.05 mg/L	4 mg/L	101	70.0	130			
		cesium, dissolved	7440-46-2	E421	0.00966 mg/L	0.01 mg/L	96.6	70.0	130			
		chromium, dissolved	7440-47-3	E421	0.0398 mg/L	0.04 mg/L	99.4	70.0	130			
		cobalt, dissolved	7440-48-4	E421	0.0201 mg/L	0.02 mg/L	101	70.0	130			
		copper, dissolved	7440-50-8	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130			
		iron, dissolved	7439-89-6	E421	1.89 mg/L	2 mg/L	94.4	70.0	130			
		lead, dissolved	7439-92-1	E421	0.0183 mg/L	0.02 mg/L	91.4	70.0	130			
		lithium, dissolved	7439-93-2	E421	0.0980 mg/L	0.1 mg/L	98.0	70.0	130			
		magnesium, dissolved	7439-95-4	E421	0.939 mg/L	1 mg/L	93.9	70.0	130			
		manganese, dissolved	7439-96-5	E421	0.0198 mg/L	0.02 mg/L	99.2	70.0	130			
		molybdenum, dissolved	7439-98-7	E421	0.0190 mg/L	0.02 mg/L	94.8	70.0	130			
		nickel, dissolved	7440-02-0	E421	0.0399 mg/L	0.04 mg/L	99.7	70.0	130			
		phosphorus, dissolved	7723-14-0	E421	9.73 mg/L	10 mg/L	97.3	70.0	130			
		potassium, dissolved	7440-09-7	E421	4.06 mg/L	4 mg/L	102	70.0	130			
		rubidium, dissolved	7440-17-7	E421	0.0200 mg/L	0.02 mg/L	99.9	70.0	130			
		selenium, dissolved	7782-49-2	E421	0.0384 mg/L	0.04 mg/L	96.0	70.0	130			
		silicon, dissolved	7440-21-3	E421	9.21 mg/L	10 mg/L	92.1	70.0	130			
	T .	silver, dissolved	7440-22-4	E421	0.00381 mg/L	0.004 mg/L	95.2	70.0	130			

Page : 21 of 21 Work Order : YL2101444

Client : Golder Associates Ltd.

Sub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 314586) -	continued								
YL2101444-001	JFLQC-2	sodium, dissolved	17341-25-2	E421	1.99 mg/L	2 mg/L	99.7	70.0	130	
		strontium, dissolved	7440-24-6	E421	0.0192 mg/L	0.02 mg/L	95.8	70.0	130	
		sulfur, dissolved	7704-34-9	E421	19.2 mg/L	20 mg/L	96.0	70.0	130	
		tellurium, dissolved	13494-80-9	E421	0.0389 mg/L	0.04 mg/L	97.3	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00371 mg/L	0.004 mg/L	92.7	70.0	130	
		thorium, dissolved	7440-29-1	E421	0.0198 mg/L	0.02 mg/L	98.8	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0192 mg/L	0.02 mg/L	95.8	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0394 mg/L	0.04 mg/L	98.4	70.0	130	
		tungsten, dissolved	7440-33-7	E421	0.0179 mg/L	0.02 mg/L	89.4	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00363 mg/L	0.004 mg/L	90.8	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.0990 mg/L	0.1 mg/L	99.0	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.422 mg/L	0.4 mg/L	105	70.0	130	
		zirconium, dissolved	7440-67-7	E421	0.0391 mg/L	0.04 mg/L	97.7	70.0	130	
Dissolved Metals	(QCLot: 314641)									
YL2101444-002	Near Outflow-In Lake_Mid-depth	mercury, dissolved	7439-97-6	E509	0.0000997 mg/L	0.0001 mg/L	99.7	70.0	130	
/olatile Organic	Compounds (QCLot	: 315342)								
FJ2101036-002	Anonymous	benzene	71-43-2	E611A	87.0 μg/L	100 μg/L	87.0	60.0	140	
		ethylbenzene	100-41-4	E611A	105 μg/L	100 µg/L	105	60.0	140	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	100 μg/L	100 µg/L	100	60.0	140	
		styrene	100-42-5	E611A	104 μg/L	100 µg/L	104	60.0	140	
		toluene	108-88-3	E611A	94.5 μg/L	100 µg/L	94.5	60.0	140	
		xylene, m+p-	179601-23-1	E611A	221 µg/L	200 μg/L	110	60.0	140	
		xylene, o-	95-47-6	E611A	107 µg/L	100 µg/L	107	60.0	140	

\triangle	CHAIN OF CUSTODY ALS Laboratory	15:30	SAREM BENTIK			RELINQUISHED BY: DATE/TIME:				I-D(T-Z) DATE/TIME: / 5 3 3					
CLIENT:	Golder Associates Ltd. Jackfish NTPC Thermal Plume Del	TURNAROUND REQUIREMENTS: (Standard TAT may be longer for some tests, e.g., Ultra Trace Organics)								FOR LABORATORY USE ONLY (Circle) Custody Seel Intact? Yes No					
ITE:		100000000000000000000000000000000000000								Free ca / for	zen ice bricks	present upo	n receipt?	Yes No NIA	
URCHASE ORDER NO.	ă .		ALS QUOTE NC YL21-GOLD100-008							Random Sa	nple Temper	sture on Rec	ept	7.2 0	
ROJECT MANAGER:	Kathy Qin CONTACT P		EQuiS facility code: 183527250 Project Number: 21482915							Other comm	ents:				
AMPLER:	SAMPLER M	OBILE:							V470. VI. 10						
MAIL REPORTS TO:	Kathy_Qin@golder.com; alison_humphries@golder.com		EMA	IL INVOICE	TO: UNION	Sa Translati	ander com. S	thy Childs	OBY COST						
PECIAL HANDLING/ST	ORAGE OR DISPOSAL:														
ALS USE ONLY	SAMPLE DETAILS Solid(S) Water(W) MATRIX:			CONTAINER INFORMATION			ANALYSIS				i i		Additional Information		
SAMPLE	Sample Identification (This description will appear on the report)		MATRIX	TOTAL CONTAINERS	Routine Bottle (\$60mL Polyethylene)	Total Nutrients (100mL Amber glass)	Dissolved Nutrients (160mL Amber glass)	Total Metals (86mL HDPE)	Dissolved Metals (86mL HDPE)	Total Mercury (40mL glass)	Dissolved Mercury (40mL glass)	Oll and greate (2x250mL Amber glass)	BTEX, F1, F2, F3, F4 (2x46mL visi + 2x66 Amber giass)	Comments on likely contampant levers, dilutoris, semples requiring specific QC enalysis eti.	
1	JFLQC-2	14:01-10-2021	w	7	x	x	x	x	x	x	x				
2		10:45 01-10-221	w	7	x	×	x	×	×	x	x				
3	New Outslaw-In Late Bottom 15	1.50 01-10-201	w	13	x	×	x	x	×	×	×	X	×		
	EMD Dischare - In Lake - Mid-de	ah 3:30	w	7	x	×	x	×	x	x	x				
5	emp Dischary In Lake - Both	12:21	w	1	x	×	x	×	x	x	x				
6	Midlale 1 - Mid-depth	130 01-10-202	w	7	x	×	x	х	x	x	x		Environ	mental Division	
7	Midlated Botton 9:35 0-10-20		w	7	x	x	x	×	×	×	x		Yellowki	44 T 1 4 4 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	
	- Intalcel _ Diving	0 10 0001		1					-		-	Work Order Reference YL2101444			

TOTAL

CERTIFICATE OF ANALYSIS

Work Order : **YL2200260** Page : 1 of 7

Amendment : 1

Address

Client : Golder Associates Ltd. Laboratory : Yellowknife - Environmental

Contact : Sarah Beattie Account Manager : Oliver Gregg

: 9 - 4905 48th Street Address : 314 Old Airport Road, Unit 116

Yellowknife NT Canada X1A 3T3

: 28-Mar-2022

: 19-Apr-2022 12:18

 Telephone
 : 867 873 6319
 Telephone
 : 1 867 446 5593

 Project
 : 21482915
 Date Samples Received
 : 24-Mar-2022 11:45

PO : --- Date Analysis Commenced
C-O-C number : --- Issue Date

Yellowknife NT Canada X1A 3S3

Sampler : --Site : Jackfish NTPC

Quote number : YL21-GOLD100-008

No. of samples received : 5

No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Ruby Pham	Lab Assistant	Metals, Burnaby, British Columbia

Page : 2 of 7

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DTC	Dissolved concentration exceeds total. Results were confirmed by re-analysis.
DTMF	Dissolved concentration exceeds total for field-filtered metals sample. Metallic contaminants may have been introduced to dissolved sample during field filtration.
RRV	Reported result verified by repeat analysis.

>: greater than.

Page : 3 of 7

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Sub-Matrix: Water (Matrix: Water)	ient sample ID	EMD DISCHARGE INLAKE_Bottom	EMD DISCHARGE INLAKE_Mid-de pth	SOUTHWEST BAY_Bottom	SOUTHWEST BAY_Mid-depth	JFLQC_1			
			Client samp	ling date / time	23-Mar-2022 13:40	23-Mar-2022 13:30	22-Mar-2022 11:50	22-Mar-2022 11:45	22-Mar-2022 09:00
Analyte	CAS Number	Method	LOR	Unit	YL2200260-001	YL2200260-002	YL2200260-003	YL2200260-004	YL2200260-005
					Result	Result	Result	Result	Result
Physical Tests									
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	122	124	122	124	<1.0
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	122	124	122	124	<1.0
conductivity		E100	2.0	μS/cm	505	507	508	506	<2.0
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	171	171	169	171	<0.60
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	173	170	175	174	<0.60
pH		E108	0.10	pH units	8.01	8.01	8.02	8.00	5.25
solids, total dissolved [TDS]		E162	10	mg/L	304	308	288	298	<10
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	278	279	277	280	<1.0
solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0
turbidity		E121	0.10	NTU	1.21	1.17	1.09	1.06	<0.10
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0604	0.0610	0.0468	0.0532	<0.0050
chloride	16887-00-6	E235.CI-L	0.10	mg/L	67.1	66.8	66.8	67.2	<0.10
fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.091	0.088	0.092	0.090	<0.010
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.121	0.123	0.163	0.126	<0.0050
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	0.125	0.127	0.165	0.126	<0.0051
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0039	0.0038	0.0023	<0.0010	<0.0010
nitrogen, total	7727-37-9	E366	0.030	mg/L	0.884	0.870	0.874	0.875	<0.030
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0316	0.0329	0.0328	0.0316	<0.0020
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0221	0.0206	0.0260	0.0214	<0.0020
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	14.8	14.7	14.9	14.7	<0.50
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	28.8	28.8	28.8	29.1	<0.30
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	12.3	12.6	12.2	13.4	<0.50
Total Metals aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0045	0.0047	0.0035	0.0048	<0.0030

: 4 of 7

Page Work Order : YL2200260 Amendment 1 Client : Golder Associates Ltd.

Project : 21482915

Sub-Matrix: Water (Matrix: Water)			Clie	ent sample ID	EMD DISCHARGE INLAKE_Bottom	EMD DISCHARGE INLAKE_Mid-de pth	SOUTHWEST BAY_Bottom	BAY_Mid-depth	JFLQC_1
			Client sampl	ing date / time	23-Mar-2022 13:40	23-Mar-2022 13:30	22-Mar-2022 11:50	22-Mar-2022 11:45	22-Mar-2022 09:00
Analyte	CAS Number	Method	LOR	Unit	YL2200260-001	YL2200260-002	YL2200260-003	YL2200260-004	YL2200260-005
					Result	Result	Result	Result	Result
Total Metals									
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00125	0.00126	0.00126	0.00127	<0.00010
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0742	0.0707	0.0747	0.0721	<0.00010
barium, total	7440-39-3	E420	0.00010	mg/L	0.0354	0.0339	0.0348	0.0337	0.00012 RRV
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, total	7440-42-8	E420	0.010	mg/L	0.032	0.031	0.032	0.032	<0.010
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.0000050
calcium, total	7440-70-2	E420	0.050	mg/L	43.9	44.1	44.8	44.9	<0.050
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
copper, total	7440-50-8	E420	0.00050	mg/L	0.00201	0.00191	0.00191	0.00190	<0.00050
iron, total	7439-89-6	E420	0.010	mg/L	0.014	<0.010	<0.010	<0.010	<0.010
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0066	0.0066	0.0067	0.0067	<0.0010
magnesium, total	7439-95-4	E420	0.0050	mg/L	15.3	14.6	15.4	15.1	<0.0050
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0670	0.0563	0.0322	0.0257	<0.00010
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000215	0.000218	0.000224	0.000206	<0.000050
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	0.00051	<0.00050
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
potassium, total	7440-09-7	E420	0.050	mg/L	4.66	4.45	4.66	4.54	<0.050
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00291	0.00283	0.00299	0.00292	<0.00020
selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	0.000060	0.000060	<0.000050	<0.000050
silicon, total	7440-21-3	E420	0.10	mg/L	7.74	7.50	7.79	7.52	<0.10
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, total	7440-23-5	E420	0.050	mg/L	36.6	34.9	36.8	35.9	<0.050
strontium, total	7440-24-6	E420	0.00020	mg/L	0.103	0.104	0.105	0.105	<0.00020
sulfur, total	7704-34-9	E420	0.50	mg/L	10.7	10.6	10.9	10.9	<0.50

Page : 5 of 7 Work Order : YL220

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

ALS

Sub-Matrix: Water (Matrix: Water)	ent sample ID	EMD DISCHARGE INLAKE_Bottom	EMD DISCHARGE INLAKE_Mid-de pth	SOUTHWEST BAY_Bottom	SOUTHWEST BAY_Mid-depth	JFLQC_1			
			Client sampl	ing date / time	23-Mar-2022 13:40	23-Mar-2022 13:30	22-Mar-2022 11:50	22-Mar-2022 11:45	22-Mar-2022 09:00
Analyte	CAS Number	Method	LOR	Unit	YL2200260-001	YL2200260-002	YL2200260-003	YL2200260-004	YL2200260-005
					Result	Result	Result	Result	Result
Total Metals	10101.00.0	E400	0.00000		*0.00000	10,00000	*0.00000	*0 00000	40,00000
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, total	7440-31-5	E420	0.00010	mg/L	0.00026	<0.00010	<0.00010	<0.00010	<0.00010
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000561	0.000567	0.000572	0.000573	<0.000010
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0058	0.0048	0.0047	0.0047	0.0054 RRV
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0010	<0.0010	0.0016	0.0017	<0.0010
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00121	0.00121	0.00122	0.00120	<0.00010
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0728	0.0740	0.0732	0.0731	<0.00010
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0345	0.0343	0.0336	0.0342	0.00013 RRV
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.031	0.031	0.031	0.031	<0.010
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.000050
calcium, dissolved	7440-70-2	E421	0.050	mg/L	44.8	44.8	44.1	44.8	<0.050
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00172	0.00205	0.00168	0.00170	<0.00020
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0067	0.0068	0.0175 DTMF	0.0068	<0.0010
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	14.3	14.4	14.3	14.4	<0.0050
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00517	0.00338	0.00385	0.00063	<0.00010

Page : 6 of 7 Work Order : YL220

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

					INLAKE_Bottom	DISCHARGE INLAKE_Mid-de pth	BAY_Bottom	BAY_Mid-depth	
			Client sampl	ing date / time	23-Mar-2022 13:40	23-Mar-2022 13:30	22-Mar-2022 11:50	22-Mar-2022 11:45	22-Mar-2022 09:00
Analyte	CAS Number	Method	LOR	Unit	YL2200260-001	YL2200260-002	YL2200260-003	YL2200260-004	YL2200260-005
					Result	Result	Result	Result	Result
Dissolved Metals									
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.000050	<0.000050	<0.000050	<0.0000050
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000224	0.000208	0.000211	0.000201	<0.000050
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
potassium, dissolved	7440-09-7	E421	0.050	mg/L	4.45	4.48	4.49	4.51	0.093 RRV
rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00280	0.00278	0.00258	0.00276	<0.00020
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
silicon, dissolved	7440-21-3	E421	0.050	mg/L	7.39	7.53	7.50	7.59	<0.050
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, dissolved	7440-23-5	E421	0.050	mg/L	35.3	35.4	35.3	35.7	<0.050
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.103	0.103	0.103	0.102	<0.00020
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	10.7	9.97	10.0	10.4	<0.50
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, dissolved	7440-31-5	E421	0.00010	mg/L	0.00121 DTMF	<0.00010	<0.00010	<0.00010	0.00025 ptc, RRV
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000563	0.000556	0.000558	0.000555	<0.000010
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0047	0.0046	0.0051	0.0049	0.0057 RRV
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	Field
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field
Aggregate Organics									
oil & grease (gravimetric)		E567	5.0	mg/L					<5.0
Volatile Organic Compounds [Fuels]									
benzene	71-43-2	E611A	0.50	μg/L					<0.50
ethylbenzene	100-41-4	E611A	0.50	μg/L					<0.50

Page : 7 of 7

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Analytical Results

Sub-Matrix: Water (Matrix: Water)					EMD DISCHARGE INLAKE_Bottom	EMD DISCHARGE INLAKE_Mid-de pth	SOUTHWEST BAY_Bottom	SOUTHWEST BAY_Mid-depth	JFLQC_1
			Client samp	ling date / time	23-Mar-2022 13:40	23-Mar-2022 13:30	22-Mar-2022 11:50	22-Mar-2022 11:45	22-Mar-2022 09:00
Analyte	CAS Number	Method	LOR	Unit	YL2200260-001	YL2200260-002	YL2200260-003	YL2200260-004	YL2200260-005
					Result	Result	Result	Result	Result
Volatile Organic Compounds [Fuels]									
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L					<0.50
styrene	100-42-5	E611A	0.50	μg/L					<0.50
toluene	108-88-3	E611A	0.50	μg/L					<0.50
xylene, m+p-	179601-23-1	E611A	0.40	μg/L					<0.40
xylene, o-	95-47-6	E611A	0.30	μg/L					<0.30
xylenes, total	1330-20-7	E611A	0.50	μg/L					<0.50
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611A	1.0	%					93.5
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%					97.4
Hydrocarbons									
F1 (C6-C10)		E581.VH+F1	100	μg/L					<100
F2 (C10-C16)		E601	300	μg/L					<300
F3 (C16-C34)		E601	300	μg/L					<300
F4 (C34-C50)		E601	300	μg/L					<300
VHw (C6-C10)		E581.VH+F1	100	μg/L					<100
F1-BTEX		EC580	100	μg/L					<100
VPHw		EC580A	100	μg/L					<100
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%					89.8
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%					102

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : YL2200260 Page : 1 of 24

Amendment : 1

Client : Golder Associates Ltd. Laboratory : Yellowknife - Environmental

Contact : Sarah Beattie Account Manager : Oliver Gregg

Address : 9 - 4905 48th Street Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

 Telephone
 : 867 873 6319
 Telephone
 : 1 867 446 5593

 Project
 : 21482915
 Date Samples Received
 : 24-Mar-2022 11:45

 PO
 : --- Issue Date
 : 19-Apr-2022 12:18

C-O-C number : ----Sampler : ----

Site : Jackfish NTPC
Quote number : YI 21-GOLD100-008

No. of samples received : 5
No. of samples analysed : 5

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

Yellowknife NT Canada X1A 3S3

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

No Quality Control Sample Frequency Outliers occur.

Page : 3 of 24

YL2200260 Amendment 1 Work Order Client : Golder Associates Ltd.

: 21482915 Project

Outliers: Quality Control Samples
Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment				
Laboratory Control Sample (LCS) Recoveries												
Total Metals	QC-MRG2-4446710		thorium, total	7440-29-1	E420	76.9 % MES	80.0-120%	Recovery less than lower				
	02							control limit				
Dissolved Metals	QC-445278-002		thorium, dissolved	7440-29-1	E421	76.9 % MES	80.0-120%	Recovery less than lower				
								control limit				

Result Qualifiers

Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Page : 4 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Εν	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation Holding		g Times Eval		Eval Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
JFLQC_1	E567	22-Mar-2022	30-Mar-2022	28	8 days	✓	30-Mar-2022	40 days	0 days	✓
				days						
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
JFLQC_1	E298	22-Mar-2022	30-Mar-2022				01-Apr-2022	28 days	10 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
SOUTHWEST BAY_Bottom	E298	22-Mar-2022	30-Mar-2022				01-Apr-2022	28 days	10 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
SOUTHWEST BAY_Mid-depth	E298	22-Mar-2022	30-Mar-2022				01-Apr-2022	28 days	10 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
EMD DISCHARGE INLAKE_Bottom	E298	23-Mar-2022	30-Mar-2022				01-Apr-2022	28 days	9 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
EMD DISCHARGE INLAKE_Mid-depth	E298	23-Mar-2022	30-Mar-2022				01-Apr-2022	28 days	9 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
EMD DISCHARGE INLAKE_Bottom	E235.CI-L	23-Mar-2022					29-Mar-2022	28 days	6 days	✓

Page : 5 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date **Holding Times** Eval Actual Rec Actual Date Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L 23-Mar-2022 29-Mar-2022 28 days 6 days ✓ EMD DISCHARGE INLAKE_Mid-depth Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L ✓ JFLQC 1 22-Mar-2022 29-Mar-2022 28 days 7 days ----Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE SOUTHWEST BAY Bottom E235.CI-L 22-Mar-2022 29-Mar-2022 28 days 7 days 1 Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L 29-Mar-2022 28 days 7 days SOUTHWEST BAY Mid-depth 22-Mar-2022 Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 23-Mar-2022 29-Mar-2022 28 days 6 days EMD DISCHARGE INLAKE Bottom Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 23-Mar-2022 29-Mar-2022 28 days ✓ EMD DISCHARGE INLAKE_Mid-depth 6 days Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE JFLQC 1 E235.F-L 22-Mar-2022 29-Mar-2022 28 days 7 days 1 Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L ✓ SOUTHWEST BAY Bottom 22-Mar-2022 29-Mar-2022 28 days 7 days Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L ✓ 22-Mar-2022 29-Mar-2022 28 days 7 days SOUTHWEST BAY Mid-depth ----

Page : 6 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Actual Rec Actual Date Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE_Bottom E235.NO3-L 23-Mar-2022 29-Mar-2022 3 days 6 days * EHT Anions and Nutrients: Nitrate in Water by IC (Low Level) HDPE E235.NO3-L EMD DISCHARGE INLAKE Mid-depth 23-Mar-2022 29-Mar-2022 3 days 6 days × ----EHT Anions and Nutrients: Nitrate in Water by IC (Low Level) HDPE JFLQC 1 E235.NO3-L 22-Mar-2022 29-Mar-2022 3 days 7 days 30 EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L SOUTHWEST BAY Bottom 22-Mar-2022 29-Mar-2022 3 days 7 days æ EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 22-Mar-2022 29-Mar-2022 7 days æ SOUTHWEST BAY Mid-depth 3 days EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE E235.NO2-L 23-Mar-2022 29-Mar-2022 EMD DISCHARGE INLAKE_Bottom 3 days 6 days æ EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE Mid-depth E235.NO2-L 23-Mar-2022 29-Mar-2022 3 days 6 days * EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE JFLQC 1 E235.NO2-L 22-Mar-2022 29-Mar-2022 3 days 7 days × EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE E235.NO2-L SOUTHWEST BAY Bottom 22-Mar-2022 29-Mar-2022 3 days 7 days 30 EHT

Page : 7 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

nalyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)	ou	Gumpling Bate	Preparation Holding Times			Eval	Analysis Date	Holding Times		Eva
			Date	Rec	Actual	Lvai	Analysis Date	Rec	Actual	-
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE	E235.NO2-L	22-Mar-2022					29-Mar-2022	2 days	7 days	x
SOUTHWEST BAY_Mid-depth	E235.NO2-L	22-Mar-2022					29-Mar-2022	3 days	7 days	EH
nions and Nutrients : Reactive Silica by Colourimetry										
HDPE										
EMD DISCHARGE INLAKE_Bottom	E392	23-Mar-2022					28-Mar-2022	28 days	5 days	✓
nions and Nutrients : Reactive Silica by Colourimetry										
HDPE	F202	00 Mar 0000					00 M-= 0000	00 4	F -l	/
EMD DISCHARGE INLAKE_Mid-depth	E392	23-Mar-2022					28-Mar-2022	28 days	5 days	,
nions and Nutrients : Reactive Silica by Colourimetry										
HDPE JFLQC_1	E392	22-Mar-2022					28-Mar-2022	28 days	6 days	_
JFLQC_I	E392	22-IVIdI-2022					20-IVIAI -2022	20 uays	0 uays	,
nions and Nutrients : Reactive Silica by Colourimetry										
HDPE SOUTHWEST BAY_Bottom	E392	22-Mar-2022					28-Mar-2022	28 days	6 days	_
300TTWEST BAT_BORONI	2002	ZZ-IVIGI-ZOZZ					20-IVIGI -2022	20 days	0 days	Ţ
nions and Nutrients : Reactive Silica by Colourimetry										
HDPE SOUTHWEST BAY_Mid-depth	E392	22-Mar-2022					28-Mar-2022	28 days	6 days	/
ooomweer britz-wiid depui	2002	ZZ Widi ZOZZ					ZO Wai ZOZZ	20 days	o dayo	
nions and Nutrients : Sulfate in Water by IC										
HDPE EMD DISCHARGE INLAKE Bottom	E235.SO4	23-Mar-2022					29-Mar-2022	28 days	6 days	/
									,-	
nions and Nutrients : Sulfate in Water by IC										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E235.SO4	23-Mar-2022					29-Mar-2022	28 days	6 days	_
								,-	,-	
nions and Nutrients : Sulfate in Water by IC										
HDPE JFLQC_1	E235.SO4	22-Mar-2022					29-Mar-2022	28 days	7 dave	_
01 LQO_1	L233.304	ZZ-IVIGI-ZUZZ					20-IVIAI -2022	20 days	r uays	· •

Page : 8 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients : Sulfate in Water by IC HDPE SOUTHWEST BAY_Bottom E235.SO4 22-Mar-2022 29-Mar-2022 28 days 7 days ✓ Anions and Nutrients : Sulfate in Water by IC HDPE ✓ SOUTHWEST BAY_Mid-depth E235.SO4 22-Mar-2022 29-Mar-2022 28 days 7 days ----Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) JFLQC 1 E375-T 22-Mar-2022 30-Mar-2022 01-Apr-2022 28 days 10 days 1 Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) E375-T 01-Apr-2022 28 days 10 days SOUTHWEST BAY Bottom 22-Mar-2022 30-Mar-2022 Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) E375-T 22-Mar-2022 30-Mar-2022 01-Apr-2022 28 days 10 days SOUTHWEST BAY Mid-depth **Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level)** Amber glass dissolved (sulfuric acid) EMD DISCHARGE INLAKE_Bottom E375-T 23-Mar-2022 30-Mar-2022 01-Apr-2022 28 days ✓ 9 davs Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) EMD DISCHARGE INLAKE Mid-depth E375-T 23-Mar-2022 30-Mar-2022 01-Apr-2022 28 days 9 days ✓ **Anions and Nutrients : Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) ✓ EMD DISCHARGE INLAKE Bottom E366 23-Mar-2022 30-Mar-2022 31-Mar-2022 28 days 8 days Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) EMD DISCHARGE INLAKE_Mid-depth E366 23-Mar-2022 30-Mar-2022 31-Mar-2022 28 days 8 days ✓ --------

Page : 9 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

						diddion. • -	Tiolding time exec	e exceedance ; ✓ = Within Holding Analysis				
Analyte Group	Method	Sampling Date	Extraction / Preparation									
Container / Client Sample ID(s)			Preparation Date	Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Actual	Eval		
Anions and Nutrients : Total Nitrogen by Colourimetry												
Amber glass total (sulfuric acid) JFLQC_1	E366	22-Mar-2022	30-Mar-2022				31-Mar-2022	28 days	9 days	✓		
Anions and Nutrients : Total Nitrogen by Colourimetry												
Amber glass total (sulfuric acid) SOUTHWEST BAY_Bottom	E366	22-Mar-2022	30-Mar-2022				31-Mar-2022	28 days	9 days	✓		
Anions and Nutrients : Total Nitrogen by Colourimetry												
Amber glass total (sulfuric acid) SOUTHWEST BAY_Mid-depth	E366	22-Mar-2022	30-Mar-2022				31-Mar-2022	28 days	9 days	✓		
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)												
Amber glass total (sulfuric acid) EMD DISCHARGE INLAKE_Bottom	E372-U	23-Mar-2022	30-Mar-2022				31-Mar-2022	28 days	8 days	✓		
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)												
Amber glass total (sulfuric acid) EMD DISCHARGE INLAKE_Mid-depth	E372-U	23-Mar-2022	30-Mar-2022				31-Mar-2022	28 days	8 days	✓		
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)												
Amber glass total (sulfuric acid) JFLQC_1	E372-U	22-Mar-2022	30-Mar-2022				31-Mar-2022	28 days	9 days	✓		
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)												
Amber glass total (sulfuric acid) SOUTHWEST BAY_Bottom	E372-U	22-Mar-2022	30-Mar-2022				31-Mar-2022	28 days	9 days	✓		
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)												
Amber glass total (sulfuric acid) SOUTHWEST BAY_Mid-depth	E372-U	22-Mar-2022	30-Mar-2022				31-Mar-2022	28 days	9 days	✓		
Dissolved Metals : Dissolved Mercury in Water by CVAAS												
Glass vial dissolved (hydrochloric acid) EMD DISCHARGE INLAKE_Bottom	E509	23-Mar-2022	31-Mar-2022				31-Mar-2022	28 days	8 days	✓		

Page : 10 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

days

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Dissolved Metals: Dissolved Mercury in Water by CVAAS Glass vial dissolved (hydrochloric acid) EMD DISCHARGE INLAKE_Mid-depth E509 23-Mar-2022 31-Mar-2022 31-Mar-2022 28 days 8 days ✓ Dissolved Metals: Dissolved Mercury in Water by CVAAS Glass vial dissolved (hydrochloric acid) ✓ JFLQC 1 E509 22-Mar-2022 31-Mar-2022 31-Mar-2022 28 days 9 days ----**Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) SOUTHWEST BAY Bottom E509 22-Mar-2022 31-Mar-2022 31-Mar-2022 28 days 9 days 1 **Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) 31-Mar-2022 28 days 9 days SOUTHWEST BAY Mid-depth E509 22-Mar-2022 31-Mar-2022 Dissolved Metals: Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid) EMD DISCHARGE INLAKE Bottom E421 23-Mar-2022 29-Mar-2022 29-Mar-2022 ✓ 6 days 180 days Dissolved Metals: Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid) EMD DISCHARGE INLAKE_Mid-depth E421 23-Mar-2022 29-Mar-2022 29-Mar-2022 ✓ 180 6 days days Dissolved Metals: Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid) JFLQC 1 E421 22-Mar-2022 29-Mar-2022 29-Mar-2022 7 days 1 180 days Dissolved Metals: Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid) ✓ SOUTHWEST BAY Bottom E421 22-Mar-2022 29-Mar-2022 29-Mar-2022 180 7 days days Dissolved Metals: Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid) E421 SOUTHWEST BAY Mid-depth 22-Mar-2022 29-Mar-2022 29-Mar-2022 9 days ✓ 180 ----

Page : 11 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Hydrocarbons: CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) JFLQC_1 E601 22-Mar-2022 29-Mar-2022 7 days ✓ 30-Mar-2022 40 days 1 days ✓ 14 days Hydrocarbons: VH and F1 by Headspace GC-FID Glass vial (sodium bisulfate) ✓ JFLQC 1 E581.VH+F1 22-Mar-2022 29-Mar-2022 30-Mar-2022 14 days 8 days ----Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) EMD DISCHARGE INLAKE Bottom E358-L 23-Mar-2022 30-Mar-2022 31-Mar-2022 28 days 7 days 1 Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L EMD DISCHARGE INLAKE Mid-depth 23-Mar-2022 30-Mar-2022 31-Mar-2022 28 days 7 days Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 22-Mar-2022 30-Mar-2022 31-Mar-2022 JFLQC 1 28 days 8 days Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) SOUTHWEST BAY_Bottom E358-L 22-Mar-2022 30-Mar-2022 31-Mar-2022 28 days ✓ 8 davs Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) SOUTHWEST BAY Mid-depth E358-L 22-Mar-2022 30-Mar-2022 31-Mar-2022 28 days 8 days ✓ Physical Tests: Alkalinity Species by Titration HDPE ✓ EMD DISCHARGE INLAKE Bottom E290 23-Mar-2022 29-Mar-2022 14 days 6 days Physical Tests : Alkalinity Species by Titration HDPE E290 ✓ 23-Mar-2022 29-Mar-2022 14 days 6 days EMD DISCHARGE INLAKE Mid-depth ----

Page : 12 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date Physical Tests: Alkalinity Species by Titration HDPE JFLQC_1 E290 22-Mar-2022 29-Mar-2022 14 days 7 days ✓ Physical Tests : Alkalinity Species by Titration HDPE E290 1 SOUTHWEST BAY_Bottom 22-Mar-2022 29-Mar-2022 14 days 7 days --------Physical Tests : Alkalinity Species by Titration HDPE SOUTHWEST BAY_Mid-depth E290 22-Mar-2022 29-Mar-2022 14 days 7 days ✓ Physical Tests : Conductivity in Water HDPE E100 29-Mar-2022 28 days 6 days EMD DISCHARGE INLAKE Bottom 23-Mar-2022 Physical Tests : Conductivity in Water HDPE E100 23-Mar-2022 29-Mar-2022 28 days 6 days ✓ EMD DISCHARGE INLAKE_Mid-depth Physical Tests : Conductivity in Water HDPE 22-Mar-2022 29-Mar-2022 28 days 7 days ✓ JFLQC_1 E100 Physical Tests : Conductivity in Water HDPE SOUTHWEST BAY_Bottom E100 22-Mar-2022 29-Mar-2022 28 days 7 days 1 Physical Tests : Conductivity in Water HDPE 28 days 7 days ✓ SOUTHWEST BAY_Mid-depth E100 22-Mar-2022 29-Mar-2022 Physical Tests : pH by Meter HDPE E108 147 hrs EMD DISCHARGE INLAKE Bottom 23-Mar-2022 29-Mar-2022 0.25 × ----EHTR-FM hrs

Page : 13 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🔹	✓ = Withir	ո Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Physical Tests : pH by Meter										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E108	23-Mar-2022					29-Mar-2022	0.25 hrs	147 hrs	EHTR-FM
Physical Tests : pH by Meter										
HDPE SOUTHWEST BAY_Bottom	E108	22-Mar-2022					29-Mar-2022	0.25 hrs	173 hrs	# EHTR-FM
Physical Tests : pH by Meter										
HDPE SOUTHWEST BAY_Mid-depth	E108	22-Mar-2022					29-Mar-2022	0.25 hrs	173 hrs	# EHTR-FM
Physical Tests : pH by Meter										
HDPE JFLQC_1	E108	22-Mar-2022					29-Mar-2022	0.25 hrs	176 hrs	# EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE EMD DISCHARGE INLAKE_Bottom	E162	23-Mar-2022					28-Mar-2022	7 days	5 days	✓
Physical Tests : TDS by Gravimetry										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E162	23-Mar-2022					28-Mar-2022	7 days	5 days	✓
Physical Tests : TDS by Gravimetry										
HDPE JFLQC_1	E162	22-Mar-2022					28-Mar-2022	7 days	6 days	✓
Physical Tests : TDS by Gravimetry										
HDPE SOUTHWEST BAY_Bottom	E162	22-Mar-2022					28-Mar-2022	7 days	6 days	✓
Physical Tests : TDS by Gravimetry										
HDPE SOUTHWEST BAY_Mid-depth	E162	22-Mar-2022					28-Mar-2022	7 days	6 days	✓

Page : 14 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	7 Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Physical Tests : TSS by Gravimetry										
HDPE EMD DISCHARGE INLAKE_Bottom	E160	23-Mar-2022					28-Mar-2022	7 days	5 days	✓
Physical Tests : TSS by Gravimetry										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E160	23-Mar-2022					28-Mar-2022	7 days	5 days	✓
Physical Tests : TSS by Gravimetry										
HDPE JFLQC_1	E160	22-Mar-2022					28-Mar-2022	7 days	6 days	√
Physical Tests : TSS by Gravimetry										
HDPE SOUTHWEST BAY_Bottom	E160	22-Mar-2022					28-Mar-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry										
HDPE SOUTHWEST BAY_Mid-depth	E160	22-Mar-2022					28-Mar-2022	7 days	6 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE EMD DISCHARGE INLAKE_Bottom	E121	23-Mar-2022					29-Mar-2022	3 days	6 days	* EHT
Physical Tests : Turbidity by Nephelometry										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E121	23-Mar-2022					29-Mar-2022	3 days	6 days	* EHT
Physical Tests : Turbidity by Nephelometry										
HDPE JFLQC_1	E121	22-Mar-2022					29-Mar-2022	3 days	7 days	* EHT
Physical Tests : Turbidity by Nephelometry										
HDPE SOUTHWEST BAY_Bottom	E121	22-Mar-2022					29-Mar-2022	3 days	7 days	* EHT

Page : 15 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date **Physical Tests: Turbidity by Nephelometry** HDPE E121 22-Mar-2022 29-Mar-2022 3 days 7 days SOUTHWEST BAY_Mid-depth * EHT **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) ✓ EMD DISCHARGE INLAKE Bottom E508 23-Mar-2022 31-Mar-2022 28 days 8 days ----Total Metals: Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid) EMD DISCHARGE INLAKE Mid-depth E508 23-Mar-2022 31-Mar-2022 28 days 8 days 1 **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) 31-Mar-2022 28 days 9 days JFLQC 1 E508 22-Mar-2022 **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) E508 22-Mar-2022 31-Mar-2022 28 days 9 days SOUTHWEST BAY_Bottom **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) SOUTHWEST BAY_Mid-depth E508 22-Mar-2022 31-Mar-2022 28 days ✓ 9 days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) EMD DISCHARGE INLAKE Bottom E420 23-Mar-2022 29-Mar-2022 6 days 1 180 days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) ✓ EMD DISCHARGE INLAKE Mid-depth E420 23-Mar-2022 29-Mar-2022 180 6 days days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) E420 7 days ✓ JFLQC 1 22-Mar-2022 29-Mar-2022 180 days

Page : 16 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Exti	raction / Pre	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) SOUTHWEST BAY_Bottom	E420	22-Mar-2022					29-Mar-2022	180 days	7 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) SOUTHWEST BAY_Mid-depth	E420	22-Mar-2022					29-Mar-2022	180 days	7 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) JFLQC_1	E611A	22-Mar-2022	29-Mar-2022				30-Mar-2022	14 days	8 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 17 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		Frequency (%	n)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	444919	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	446370	1	20	5.0	5.0	1
BTEX by Headspace GC-MS	E611A	445451	1	6	16.6	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	444928	1	5	20.0	5.0	✓
Conductivity in Water	E100	444917	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	446692	1	5	20.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	445278	1	18	5.5	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	446364	1	19	5.2	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	444927	1	5	20.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	444922	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	444923	1	20	5.0	5.0	✓
pH by Meter	E108	444918	1	20	5.0	5.0	✓
Reactive Silica by Colourimetry	E392	444642	1	7	14.2	5.0	✓
Sulfate in Water by IC	E235.SO4	444921	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	444577	1	18	5.5	5.0	✓
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	446369	1	13	7.6	5.0	✓
Total Mercury in Water by CVAAS	E508	446696	1	16	6.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	444671	1	20	5.0	5.0	✓
Total Nitrogen by Colourimetry	E366	446366	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	446368	1	13	7.6	5.0	✓
TSS by Gravimetry	E160	444575	1	12	8.3	5.0	✓
Turbidity by Nephelometry	E121	445138	1	10	10.0	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	445450	1	4	25.0	5.0	✓
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	444919	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	446370	1	20	5.0	5.0	✓
BTEX by Headspace GC-MS	E611A	445451	1	6	16.6	5.0	1
CCME PHCs - F2-F4 by GC-FID	E601	445586	1	2	50.0	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	444928	1	5	20.0	5.0	√
Conductivity in Water	E100	444917	1	20	5.0	5.0	√
Dissolved Mercury in Water by CVAAS	E509	446692	1	5	20.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	445278	1	18	5.5	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	446364	1	19	5.2	5.0	√
Fluoride in Water by IC (Low Level)	E235.F-L	444927	1	5	20.0	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	444922	1	20	5.0	5.0	√
Nitrite in Water by IC (Low Level)	E235.NO2-L	444923	1	20	5.0	5.0	√
Oil & Grease by Gravimetry	E567	446330	1	8	12.5	5.0	√

Page : 18 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Quality Control Sample Type				ount		Frequency (%	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued	Wictiod	QO LOT #		, togular	Hotaar	LAPCCICU	
pH by Meter	F400	444918	1	20	5.0	5.0	
Reactive Silica by Colourimetry	E108	444642	1	7	14.2	5.0	√
·	E392	444921	1	20	5.0		√
Sulfate in Water by IC	E235.SO4		1	18	5.5	5.0 5.0	√
TDS by Gravimetry	E162	444577					✓
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	446369	1	13	7.6	5.0	✓
Total Mercury in Water by CVAAS	E508	446696	1	16	6.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	444671	1	20	5.0	5.0	✓
Total Nitrogen by Colourimetry	E366	446366	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	446368	1	13	7.6	5.0	✓
TSS by Gravimetry	E160	444575	1	12	8.3	5.0	✓
Turbidity by Nephelometry	E121	445138	1	10	10.0	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	445450	1	4	25.0	5.0	✓
Method Blanks (MB)							
Alkalinity Species by Titration	E290	444919	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	446370	1	20	5.0	5.0	✓
BTEX by Headspace GC-MS	E611A	445451	1	6	16.6	5.0	✓
CCME PHCs - F2-F4 by GC-FID	E601	445586	1	2	50.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	444928	1	5	20.0	5.0	✓
Conductivity in Water	E100	444917	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	446692	1	5	20.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	445278	1	18	5.5	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	446364	1	19	5.2	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	444927	1	5	20.0	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	444922	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	444923	1	20	5.0	5.0	1
Oil & Grease by Gravimetry	E567	446330	1	8	12.5	5.0	1
Reactive Silica by Colourimetry	E392	444642	1	7	14.2	5.0	_
Sulfate in Water by IC	E235.SO4	444921	1	20	5.0	5.0	1
TDS by Gravimetry	E162	444577	1	18	5.5	5.0	_
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	446369	1	13	7.6	5.0	_
Total Mercury in Water by CVAAS	E508	446696	1	16	6.2	5.0	1
Total Metals in Water by CRC ICPMS	E420	444671	1	20	5.0	5.0	✓
Total Nitrogen by Colourimetry	E366	446366	1	13	7.6	5.0	1
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	446368	1	13	7.6	5.0	√
TSS by Gravimetry	E160	444575	1	12	8.3	5.0	√
Turbidity by Nephelometry	E121	445138	1	10	10.0	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	445450	1	4	25.0	5.0	✓
Matrix Spikes (MS)	2001. 11111						
Ammonia by Fluorescence	E200	446370	1	20	5.0	5.0	
BTEX by Headspace GC-MS	E298 E611A	44570	1	6	16.6	5.0	√ √

Page : 19 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

			4 - 4 -		,		
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Chloride in Water by IC (Low Level)	E235.CI-L	444928	1	5	20.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	446692	1	5	20.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	445278	1	18	5.5	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	446364	1	19	5.2	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	444927	1	5	20.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	444922	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	444923	1	20	5.0	5.0	✓
Reactive Silica by Colourimetry	E392	444642	1	7	14.2	5.0	✓
Sulfate in Water by IC	E235.SO4	444921	1	20	5.0	5.0	√
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	446369	1	13	7.6	5.0	✓
Total Mercury in Water by CVAAS	E508	446696	1	16	6.2	5.0	√
Total Metals in Water by CRC ICPMS	E420	444671	1	20	5.0	5.0	✓
Total Nitrogen by Colourimetry	E366	446366	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	446368	1	13	7.6	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	445450	1	4	25.0	5.0	✓

Page : 20 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Vancouver -	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
	Environmental			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Vancouver - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Vancouver - Environmental			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Vancouver -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at $180 \pm 2^{\circ}\text{C}$ for 16 hours or to constant weight,
	Vancouver - Environmental			with gravimetric measurement of the residue.
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental			
Fluoride in Water by IC (Low Level)	E235.F-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental			

Page : 21 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Vancouver - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Vancouver - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Vancouver - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Nitrogen by Colourimetry	E366 Vancouver - Environmental	Water	APHA 4500-P J (mod)	Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Dissolved Phosphorus is determined colourimetrically using a discrete analyzer after filtration through a 0.45 micron filter followed by heated persulfate digestion of the sample.
Reactive Silica by Colourimetry	E392 Vancouver - Environmental	Water	APHA 4500-SiO2 E (mod)	Silicate (molybdate-reactive silica) is determined by the molybdosilicate-heteropoly blue colourimetric method using a discrete analyzer. Method Limitation: Arsenic (5+) above 100 mg/L is a negative interference on this test
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS

Page : 22 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Oil & Grease by Gravimetry	E567 Vancouver - Environmental	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
VH and F1 by Headspace GC-FID	E581.VH+F1 Vancouver - Environmental	Water	BC MOE Lab Manual / CCME PHC in Soil - Tier 1 (mod)	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
CCME PHCs - F2-F4 by GC-FID	E601 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	Sample extracts are analyzed by GC-FID for CCME hydrocarbon fractions (F2-F4).
BTEX by Headspace GC-MS	E611A Vancouver - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Hardness (Calculated) from Total Ca/Mg	EC100A Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
TDS in Water (Calculation) Using APHA Analyte List	EC103.APHA Vancouver - Environmental	Water	APHA 1030E	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis).
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Vancouver - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).
F1-BTEX	EC580 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).

Page : 23 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VPH: VH-BTEX-Styrene	EC580A Vancouver - Environmental	Water	BC MOE Lab Manual (VPH in Water and Solids) (mod)	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHw = Volatile Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and styrene.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Vancouver - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Preparation for Dissolved Organic Carbon for Combustion	EP358 Vancouver - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Nitrogen in water	EP366 Vancouver - Environmental	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.
Digestion for Total Phosphorus in water	EP372 Vancouver - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Digestion for Dissolved Phosphorus in water	EP375 Vancouver - Environmental	Water	APHA 4500-P E (mod).	Samples are filtered through a 0.45 micron membrane filter and then heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Vancouver - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HCl.
Oil & Grease Extraction for Gravimetry	EP567 Vancouver - Environmental	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane by liquid-liquid extraction.
VOCs Preparation for Headspace Analysis	EP581 Vancouver - Environmental	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the GC/MS-FID system.
PHCs and PAHs Hexane Extraction	EP601 Vancouver - Environmental	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.

Page : 24 of 24

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

QUALITY CONTROL REPORT

Work Order Page :YL2200260 : 1 of 18

Amendment : 1

Client · Golder Associates Ltd. Laboratory · Yellowknife - Environmental

Contact : Sarah Beattie **Account Manager** : Oliver Gregg

> Address :9 - 4905 48th Street :314 Old Airport Road, Unit 116 Yellowknife NT Canada X1A 3S3

Yellowknife, Northwest Territories Canada X1A 3T3

Telephone :867 873 6319 Telephone :1 867 446 5593 **Date Samples Received** Project : 24-Mar-2022 11:45 $\cdot 21482915$

Date Analysis Commenced :28-Mar-2022

C-O-C number Issue Date : 19-Apr-2022 12:18

Sampler Site : Jackfish NTPC

: YL21-GOLD100-008 Quote number No. of samples received : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits

: 5

Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

No. of samples analysed

Address

PO

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Ruby Pham	Lab Assistant	Metals, Burnaby, British Columbia

Page : 2 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

ub-Matrix: Water							Labora	ntory Duplicate (D	иг) кероп		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
hysical Tests (Q	C Lot: 444575)										
/A22A6330-004	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Physical Tests (Q	C Lot: 444577)										
VA22A6252-002	Anonymous	solids, total dissolved [TDS]		E162	13	mg/L	98	100	2	Diff <2x LOR	
Physical Tests (Q	C Lot: 444917)										
/A22A6371-012	Anonymous	conductivity		E100	2.0	μS/cm	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (Q	C Lot: 444918)										
/A22A6371-012	Anonymous	pH		E108	0.10	pH units	5.22	5.24	0.516%	4%	
hysical Tests (Q	C Lot: 444919)										
/A22A6371-012	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, phenolphthalein (as		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		CaCO3) alkalinity, total (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
hysical Tests (Q	C Lot: 445138)										
/A22A6173-001	Anonymous	turbidity		E121	0.10	NTU	>4000	>4000	0.00%	15%	
Anions and Nutrie	nts (QC Lot: 444642)										
/L2200257-001	Anonymous	silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	0.85	0.84	0.02	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 444921)										
/A22A6371-010	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	87.0	86.9	0.155%	20%	
nions and Nutrie	nts (QC Lot: 444922)										
VA22A6371-010	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.146	0.149	2.44%	20%	
Anions and Nutrie	nts (QC Lot: 444923)										
/A22A6371-010	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 444927)										
YL2200260-001	EMD DISCHARGE INLAKE Bottom	fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.091	0.088	0.002	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 444928)										
′L2200260-001	EMD DISCHARGE INLAKE Bottom	chloride	16887-00-6	E235.CI-L	0.10	mg/L	67.1	66.8	0.466%	20%	
Anions and Nutrie	nts (QC Lot: 446366)										
-J2200729-001	Anonymous	nitrogen, total	7727-37-9	E366	0.030	mg/L	0.148	0.154	0.006	Diff <2x LOR	

Page : 4 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

ub-Matrix: Water	Laboratory Duplicate (DUP) Report										
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Anions and Nutrien	ts (QC Lot: 446368) - co	ontinued									
FJ2200729-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0113	0.0118	0.0005	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 446369)										
FJ2200729-001	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0039	0.0037	0.0002	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 446370)										
FJ2200729-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0140	0.0145	0.0005	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 446364	4)									
FJ2200729-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	2.02	1.70	0.32	Diff <2x LOR	
otal Metals (QC Lo	ot: 444671)										
/L2200258-001	Anonymous	aluminum, total	7429-90-5	E420	0.0600	mg/L	<0.0600	<0.0600	0	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00200	mg/L	1.04	1.07	2.80%	20%	
		arsenic, total	7440-38-2	E420	0.00200	mg/L	23.3	24.1	3.66%	20%	
		barium, total	7440-39-3	E420	0.00200	mg/L	0.0327	0.0348	6.10%	20%	
		beryllium, total	7440-41-7	E420	0.000400	mg/L	<0.000400	<0.000400	0	Diff <2x LOR	
	bismuth, total	7440-69-9	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR		
		boron, total	7440-42-8	E420	0.200	mg/L	0.264	0.277	0.013	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.000100	mg/L	0.000281	0.000306	0.0000250	Diff <2x LOR	
		calcium, total	7440-70-2	E420	1.00	mg/L	314	322	2.56%	20%	
		cesium, total	7440-46-2	E420	0.000200	mg/L	0.000587	0.000535	0.000052	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00200	mg/L	<0.00200	<0.00200	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00200	mg/L	0.0365	0.0384	4.90%	20%	
		copper, total	7440-50-8	E420	0.0100	mg/L	<0.0100	<0.0100	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.200	mg/L	<0.200	<0.200	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.00100	mg/L	0.00301	0.00307	0.000055	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0200	mg/L	0.0270	0.0274	0.0004	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.100	mg/L	81.2	83.6	2.88%	20%	
		manganese, total	7439-96-5	E420	0.00200	mg/L	0.418	0.438	4.66%	20%	
		molybdenum, total	7439-98-7	E420	0.00100	mg/L	0.0138	0.0144	4.36%	20%	
		nickel, total	7440-02-0	E420	0.0100	mg/L	0.0490	0.0512	0.00222	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	1.00	mg/L	<1.00	<1.00	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	1.00	mg/L	8.77	9.23	0.462	Diff <2x LOR	
		rubidium, total	7440-17-7	E420	0.00400	mg/L	0.00830	0.00800	0.00030	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		silicon, total	7440-21-3	E420	2.00	mg/L	5.40	5.36	0.03	Diff <2x LOR	
		silver, total	7440-22-4	E420	0.000200	mg/L	<0.000200	<0.000200	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	1.00	mg/L	138	143	3.46%	20%	

Page : 5 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

ub-Matrix: Water	Matrix: Water					Laboratory Duplicate (DUP) Report							
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie		
otal Metals (QC Lo	ot: 444671) - continued												
/L2200258-001	Anonymous	strontium, total	7440-24-6	E420	0.00400	mg/L	3.31	3.42	3.27%	20%			
		sulfur, total	7704-34-9	E420	10.0	mg/L	244	252	3.35%	20%			
		tellurium, total	13494-80-9	E420	0.00400	mg/L	<0.00400	<0.00400	0	Diff <2x LOR			
		thallium, total	7440-28-0	E420	0.000200	mg/L	<0.000200	<0.000200	0	Diff <2x LOR			
		thorium, total	7440-29-1	E420	0.00200	mg/L	<0.00200	<0.00200	0	Diff <2x LOR			
		tin, total	7440-31-5	E420	0.00200	mg/L	<0.00200	<0.00200	0	Diff <2x LOR			
		titanium, total	7440-32-6	E420	0.00600	mg/L	<0.00600	<0.00600	0	Diff <2x LOR			
		tungsten, total	7440-33-7	E420	0.00200	mg/L	<0.00200	<0.00200	0	Diff <2x LOR			
		uranium, total	7440-61-1	E420	0.000200	mg/L	0.00445	0.00467	4.89%	20%			
		vanadium, total	7440-62-2	E420	0.0100	mg/L	<0.0100	<0.0100	0	Diff <2x LOR			
		zinc, total	7440-66-6	E420	0.0600	mg/L	0.0890	0.0925	0.0035	Diff <2x LOR			
		zirconium, total	7440-67-7	E420	0.00400	mg/L	<0.00400	<0.00400	0	Diff <2x LOR			
otal Metals (QC Lo	ot: 446696)												
/A22A5448-009	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR			
issolved Metals (C	DC Lot: 445278)												
S2200998-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0039	0.0036	0.0003	Diff <2x LOR			
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00081	0.00085	0.00004	Diff <2x LOR			
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00148	0.00148	0.0520%	20%			
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0561	0.0563	0.450%	20%			
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR			
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.122	0.125	2.35%	20%			
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR			
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	149	151	1.21%	20%			
		cesium, dissolved	7440-46-2	E421	0.000010	mg/L	0.000109	0.000108	0.200%	20%			
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR			
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	0.00011	0.00001	Diff <2x LOR			
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00078	0.00075	0.00002	Diff <2x LOR			
		iron, dissolved	7439-89-6	E421	0.010	mg/L	0.066	0.067	0.0006	Diff <2x LOR			
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0113	0.0114	1.16%	20%			
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	61.2	61.0	0.362%	20%			
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.159	0.157	1.12%	20%			
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00344	0.00347	1.05%	20%			
		1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '			1	_	1						

Page : 6 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Sub-Matrix: Water	o-Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier			
	QC Lot: 445278) - con	tinued												
KS2200998-001	Anonymous	phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR				
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	13.8	13.3	3.30%	20%				
		rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00618	0.00588	4.96%	20%				
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000122	0.000104	0.000018	Diff <2x LOR				
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	10.5	10.6	1.30%	20%				
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR				
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	66.6	65.6	1.38%	20%				
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	1.51	1.49	1.32%	20%				
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	181	182	0.594%	20%				
		tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR				
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR				
		thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR				
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	0.00071	0.00071	0.000003	Diff <2x LOR				
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR				
		tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	0.00026	0.00028	0.00002	Diff <2x LOR				
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.0138	0.0140	1.07%	20%				
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	0.00117	0.00117	0.000002	Diff <2x LOR				
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0012	0.0013	0.00006	Diff <2x LOR				
		zirconium, dissolved	7440-67-7	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR				
Dissolved Metals (QC Lot: 446692)													
YL2200260-001	EMD DISCHARGE INLAKE Bottom	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR				
Volatile Organic Co	mpounds (QC Lot: 44	I5451)												
VA22A5917-001	Anonymous	benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		styrene	100-42-5	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR				
		xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR				
- Hydrocarbons (QC	Lot: 445450)							<u> </u>		1				
VA22A5917-001	Anonymous	F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%				
		VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%				

Page : 7 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 444575)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 444577)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 444917)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 444919)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, phenolphthalein (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 445138)					
turbidity	E121	0.1	NTU	<0.10	
Anions and Nutrients (QCLot: 444642)					
silicate (as SiO2)	7631-86-9 E392	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 444921)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 444922)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 444923)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 444927)					
luoride	16984-48-8 E235.F-L	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 444928)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 446366)					
itrogen, total	7727-37-9 E366	0.03	mg/L	<0.030	
Anions and Nutrients (QCLot: 446368)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 446369)					
phosphorus, total dissolved	7723-14-0 E375-T	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 446370)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	

Page : 8 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Organic / Inorganic Carbon (QCL	_ot: 446364)				
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 444671)					
ıluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
intimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
rsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
arium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
eryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
sismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8 E420	0.01	mg/L	<0.010	
admium, total	7440-43-9 E420	0.000005	mg/L	<0.0000050	
alcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
esium, total	7440-46-2 E420	0.00001	mg/L	<0.000010	
hromium, total	7440-47-3 E420	0.0005	mg/L	<0.00050	
obalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
opper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
on, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
thium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
ickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
hosphorus, total	7723-14-0 E420	0.05	mg/L	<0.050	
otassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
ubidium, total	7440-17-7 E420	0.0002	mg/L	<0.00020	
elenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
ilicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
ilver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
odium, total	7440-23-5 E420	0.05	mg/L	<0.050	
trontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
ulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
ellurium, total	13494-80-9 E420	0.0002	mg/L	<0.00020	
nallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	
horium, total	7440-29-1 E420	0.0001	mg/L	<0.00010	
n, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	

Page : 9 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 444671) - contin	ued				
tungsten, total	7440-33-7 E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1 E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2 E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7 E420	0.0002	mg/L	<0.00020	
Total Metals (QCLot: 446696)					
mercury, total	7439-97-6 E508	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 445278)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
cesium, dissolved	7440-46-2 E421	0.00001	mg/L	<0.000010	
chromium, dissolved	7440-47-3 E421	0.0005	mg/L	<0.00050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
phosphorus, dissolved	7723-14-0 E421	0.05	mg/L	<0.050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
rubidium, dissolved	7440-17-7 E421	0.0002	mg/L	<0.00020	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	

Page : 10 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 445278) -	continued					
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	<0.00020	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
thorium, dissolved	7440-29-1	E421	0.0001	mg/L	<0.00010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	<0.00010	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	<0.00020	
Dissolved Metals (QCLot: 446692)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.0000050	
Aggregate Organics (QCLot: 446330)					
oil & grease (gravimetric)		E567	5	mg/L	<5.0	
Volatile Organic Compounds (QCLo	t: 445451)					
benzene	71-43-2	E611A	0.5	μg/L	<0.50	
ethylbenzene	100-41-4	E611A	0.5	μg/L	<0.50	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.5	μg/L	<0.50	
styrene	100-42-5	E611A	0.5	μg/L	<0.50	
toluene	108-88-3	E611A	0.5	μg/L	<0.50	
xylene, m+p-	179601-23-1	E611A	0.4	μg/L	<0.40	
xylene, o-	95-47-6	E611A	0.3	μg/L	<0.30	
Hydrocarbons (QCLot: 445450)						
F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	
VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	
Hydrocarbons (QCLot: 445586)						
F2 (C10-C16)		E601	100	μg/L	<100	
F3 (C16-C34)			250	μg/L	<250	
F4 (C34-C50)		E601	250	μg/L	<250	

Page : 11 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	b-Matrix: Water					Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 444575)									
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	91.8	85.0	115	
Physical Tests (QCLot: 444577)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	93.4	85.0	115	
Physical Tests (QCLot: 444917)									
conductivity		E100	1	μS/cm	146.9 μS/cm	100	90.0	110	
Physical Tests (QCLot: 444918)									
рН		E108		pH units	7 pH units	99.8	98.0	102	
Physical Tests (QCLot: 444919)									
alkalinity, phenolphthalein (as CaCO3)		E290	1	mg/L	229 mg/L	93.8	75.0	125	
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	102	85.0	115	
Physical Tests (QCLot: 445138)									
turbidity		E121	0.1	NTU	200 NTU	94.0	85.0	115	
Anions and Nutrients (QCLot: 444642)									
silicate (as SiO2)	7631-86-9	E392	0.5	mg/L	10 mg/L	97.6	85.0	115	
Anions and Nutrients (QCLot: 444921)									
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	105	90.0	110	
Anions and Nutrients (QCLot: 444922)									
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 444923)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	101	90.0	110	
	14707 00 0	2200.1 1 02 E	0.001	mg/L	0.5 Hg/L	101	90.0	110	
Anions and Nutrients (QCLot: 444927)	16984-48-8	F235 F-I	0.01	mg/L	1 mg/L	102	90.0	110	
					T mg/L	102	30.0	110	
Anions and Nutrients (QCLot: 444928)	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	104	90.0	110	
					100 mg/L	104	00.0	110	
Anions and Nutrients (QCLot: 446366)	7727-37-9	E366	0.03	mg/L	0.5 mg/L	116	75.0	125	
Anions and Nutrients (QCLot: 446368)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	93.4	80.0	120	
Anions and Nutrients (QCLot: 446369)									
phosphorus, total dissolved	7723-14-0	E375-T	0.002	mg/L	0.05 mg/L	92.2	80.0	120	
Anions and Nutrients (QCLot: 446370)								I	1
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	104	85.0	115	
Later the first transfer of the first transf		I	I	l		1			

Page : 12 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

b-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Organic / Inorganic Carbon (QCLot: 4											
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	102	80.0	120			
Total Metals (QCLot: 444671)											
aluminum, total	7429-90-5		0.003	mg/L	2 mg/L	96.4	80.0	120			
antimony, total	7440-36-0		0.0001	mg/L	1 mg/L	108	80.0	120			
arsenic, total	7440-38-2		0.0001	mg/L	1 mg/L	100	80.0	120			
parium, total	7440-39-3		0.0001	mg/L	0.25 mg/L	96.7	80.0	120			
peryllium, total	7440-41-7		0.00002	mg/L	0.1 mg/L	97.7	80.0	120			
pismuth, total	7440-69-9		0.00005	mg/L	1 mg/L	87.2	80.0	120			
poron, total	7440-42-8		0.01	mg/L	1 mg/L	92.1	80.0	120			
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	99.8	80.0	120			
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	96.4	80.0	120			
esium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	93.8	80.0	120			
hromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	93.8	80.0	120			
obalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	94.4	80.0	120			
opper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	95.0	80.0	120			
ron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	89.2	80.0	120			
ead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	101	80.0	120			
thium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	95.0	80.0	120			
nagnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	98.0	80.0	120			
nanganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	98.1	80.0	120			
nolybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	99.3	80.0	120			
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	95.4	80.0	120			
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	94.6	80.0	120			
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	99.2	80.0	120			
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	97.9	80.0	120			
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	108	80.0	120			
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	102	80.0	120			
ilver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	90.3	80.0	120			
odium, total	7440-23-5		0.05	mg/L	50 mg/L	98.9	80.0	120			
trontium, total	7440-24-6		0.0002	mg/L	0.25 mg/L	94.4	80.0	120			
ulfur, total	7704-34-9		0.5	mg/L	50 mg/L	91.2	80.0	120			
ellurium, total	13494-80-9		0.0002	mg/L	0.1 mg/L	108	80.0	120			
hallium, total	7440-28-0		0.00001	mg/L	1 mg/L	103	80.0	120			
chorium, total	7440-29-1		0.0001	mg/L	0.1 mg/L	# 76.9	80.0	120	MES		
rin, total	7440-31-5		0.0001	mg/L	0.5 mg/L	94.0	80.0	120			
titanium, total	7440-31-3		0.0003	mg/L	0.5 mg/L	95.8	80.0	120			

Page : 13 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Total Metals (QCLot: 444671) - contin	ued										
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	95.8	80.0	120			
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	93.0	80.0	120			
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	95.9	80.0	120			
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	104	80.0	120			
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	89.6	80.0	120			
Total Metals (QCLot: 446696)											
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	100.0	80.0	120			
Dissolved Metals (QCLot: 445278)											
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	103	80.0	120			
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	110	80.0	120			
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	106	80.0	120			
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	102	80.0	120			
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	109	80.0	120			
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	81.0	80.0	120			
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	102	80.0	120			
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	104	80.0	120			
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	105	80.0	120			
cesium, dissolved	7440-46-2	E421	0.00001	mg/L	0.05 mg/L	100	80.0	120			
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	99.5	80.0	120			
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	98.6	80.0	120			
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	99.3	80.0	120			
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	92.2	80.0	120			
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	108	80.0	120			
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	106	80.0	120			
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	99.5	80.0	120			
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	101	80.0	120			
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	108	80.0	120			
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	99.2	80.0	120			
phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	112	80.0	120			
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	101	80.0	120			
rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	0.1 mg/L	97.8	80.0	120			
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	119	80.0	120			
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	111	80.0	120			
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	96.3	80.0	120			
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	102	80.0	120			
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	109	80.0	120			

Page : 14 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Dissolved Metals (QCLot: 445278) - c	ontinued										
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	103	80.0	120			
tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	0.1 mg/L	119	80.0	120			
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	112	80.0	120			
thorium, dissolved	7440-29-1	E421	0.0001	mg/L	0.1 mg/L	# 76.9	80.0	120	MES		
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	99.2	80.0	120			
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	99.7	80.0	120			
tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	0.1 mg/L	102	80.0	120			
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	99.7	80.0	120			
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	99.5	80.0	120			
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	107	80.0	120			
zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	94.9	80.0	120			
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	97.5	80.0	120			
Aggregate Organics (QCLot: 446330)											
oil & grease (gravimetric)		E567	5	mg/L	100 mg/L	106	70.0	130			
Volatile Organic Compounds (QCLot:	445451)										
benzene	71-43-2	E611A	0.5	μg/L	100 μg/L	118	70.0	130			
ethylbenzene	100-41-4	E611A	0.5	μg/L	100 μg/L	108	70.0	130			
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.5	μg/L	100 μg/L	111	70.0	130			
styrene	100-42-5	E611A	0.5	μg/L	100 µg/L	120	70.0	130			
toluene	108-88-3	E611A	0.5	μg/L	100 μg/L	113	70.0	130			
xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	109	70.0	130			
xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	115	70.0	130			
Hydrocarbons (QCLot: 445450)											
F1 (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	77.1	70.0	130			
VHw (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	70.1	70.0	130			
Hydrocarbons (QCLot: 445586)											
F2 (C10-C16)		E601	100	μg/L	3538 μg/L	111	70.0	130			
F3 (C16-C34)		E601	250	μg/L	7053 μg/L	101	70.0	130			
F4 (C34-C50)		E601	250	μg/L	5051 μg/L	105	70.0	130			
()				r-5 [,] –	0001 kg/L	100	70.0	1.00			

Qualifiers

Qualifier Description

MES

Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Page : 15 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Project : 21482915

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	p-Matrix: Water				Matrix Spike (MS) Report							
					Spil	ke	Recovery (%)	Recovery	Limits (%)			
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
	ients (QCLot: 444642)									•		
YL2200258-001	Anonymous	silicate (as SiO2)	7631-86-9	E392	9.50 mg/L	10 mg/L	95.0	75.0	125			
Anions and Nutri	ients (QCLot: 444921)									1		
VA22A6371-011	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	104 mg/L	100 mg/L	104	75.0	125			
Anions and Nutri	ients (QCLot: 444922)											
VA22A6371-011	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.59 mg/L	2.5 mg/L	104	75.0	125			
Anions and Nutri	ients (QCLot: 444923)											
VA22A6371-011	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.499 mg/L	0.5 mg/L	99.9	75.0	125			
Anions and Nutri	ients (QCLot: 444927)											
YL2200260-002	EMD DISCHARGE INLAKE_Mid-depth	fluoride	16984-48-8	E235.F-L	1.00 mg/L	1 mg/L	100	75.0	125			
Anions and Nutri	ients (QCLot: 444928)											
YL2200260-002	EMD DISCHARGE INLAKE_Mid-depth	chloride	16887-00-6	E235.CI-L	99.9 mg/L	100 mg/L	99.9	75.0	125			
Anions and Nutri	ients (QCLot: 446366)											
FJ2200729-002	Anonymous	nitrogen, total	7727-37-9	E366	ND mg/L	0.4 mg/L	ND	70.0	130			
Anions and Nutri	ients (QCLot: 446368)											
FJ2200729-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0476 mg/L	0.05 mg/L	95.2	70.0	130			
Anions and Nutri	ients (QCLot: 446369)											
FJ2200729-002	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0487 mg/L	0.05 mg/L	97.4	70.0	130			
Anions and Nutri	ients (QCLot: 446370)											
FJ2200729-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.101 mg/L	0.1 mg/L	101	75.0	125			
Organic / Inorgar	nic Carbon (QCLot: 446	6364)										
FJ2200729-002	Anonymous	carbon, dissolved organic [DOC]		E358-L	4.59 mg/L	5 mg/L	91.9	70.0	130			
otal Metals (QC	Lot: 444671)											
YL2200255-001	Anonymous	aluminum, total	7429-90-5	E420	ND mg/L	2 mg/L	ND	70.0	130			
		antimony, total	7440-36-0	E420	0.206 mg/L	0.2 mg/L	103	70.0	130			
		arsenic, total	7440-38-2	E420	0.219 mg/L	0.2 mg/L	109	70.0	130			
		barium, total	7440-39-3	E420	0.209 mg/L	0.2 mg/L	104	70.0	130			
		beryllium, total	7440-41-7	E420	0.410 mg/L	0.4 mg/L	103	70.0	130			

Page : 16 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

ub-Matrix: Water						Matrix Spike (MS) Report						
					Spi	Spike		Recovery Limits (%)				
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie		
	Lot: 444671) - contin	ned										
YL2200255-001	Anonymous	bismuth, total	7440-69-9	E420	0.0802 mg/L	0.1 mg/L	80.2	70.0	130			
		boron, total	7440-42-8	E420	ND mg/L	1 mg/L	ND	70.0	130			
		cadmium, total	7440-43-9	E420	0.0395 mg/L	0.04 mg/L	98.9	70.0	130			
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130			
		cesium, total	7440-46-2	E420	0.0979 mg/L	0.1 mg/L	97.9	70.0	130			
		chromium, total	7440-47-3	E420	0.418 mg/L	0.4 mg/L	104	70.0	130			
		cobalt, total	7440-48-4	E420	0.201 mg/L	0.2 mg/L	100	70.0	130			
		copper, total	7440-50-8	E420	0.193 mg/L	0.2 mg/L	96.7	70.0	130			
		iron, total	7439-89-6	E420	21.1 mg/L	20 mg/L	106	70.0	130			
		lead, total	7439-92-1	E420	0.191 mg/L	0.2 mg/L	95.4	70.0	130			
		lithium, total	7439-93-2	E420	1.03 mg/L	1 mg/L	103	70.0	130			
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130			
		manganese, total	7439-96-5	E420	ND mg/L	0.2 mg/L	ND	70.0	130			
		molybdenum, total	7439-98-7	E420	0.221 mg/L	0.2 mg/L	111	70.0	130			
		nickel, total	7440-02-0	E420	0.393 mg/L	0.4 mg/L	98.4	70.0	130			
		phosphorus, total	7723-14-0	E420	120 mg/L	100 mg/L	120	70.0	130			
		potassium, total	7440-09-7	E420	ND mg/L	40 mg/L	ND	70.0	130			
		rubidium, total	7440-17-7	E420	0.218 mg/L	0.2 mg/L	109	70.0	130			
		selenium, total	7782-49-2	E420	0.424 mg/L	0.4 mg/L	106	70.0	130			
		silicon, total	7440-21-3	E420	111 mg/L	100 mg/L	111	70.0	130			
		silver, total	7440-22-4	E420	0.0393 mg/L	0.04 mg/L	98.2	70.0	130			
		sodium, total	7440-23-5	E420	ND mg/L	20 mg/L	ND	70.0	130			
		strontium, total	7440-24-6	E420	ND mg/L	0.2 mg/L	ND	70.0	130			
		sulfur, total	7704-34-9	E420	ND mg/L	200 mg/L	ND	70.0	130			
		tellurium, total	13494-80-9	E420	0.377 mg/L	0.4 mg/L	94.3	70.0	130			
		thallium, total	7440-28-0	E420	0.0351 mg/L	0.04 mg/L	87.8	70.0	130			
		thorium, total	7440-29-1	E420	0.177 mg/L	0.2 mg/L	88.6	70.0	130			
		tin, total	7440-31-5	E420	0.204 mg/L	0.2 mg/L	102	70.0	130			
		titanium, total	7440-32-6	E420	0.429 mg/L	0.4 mg/L	107	70.0	130			
		tungsten, total	7440-33-7	E420	0.203 mg/L	0.2 mg/L	101	70.0	130			
		uranium, total	7440-61-1	E420	0.0376 mg/L	0.04 mg/L	94.0	70.0	130			
		vanadium, total	7440-62-2	E420	1.11 mg/L	1 mg/L	111	70.0	130			
		zinc, total	7440-66-6	E420	4.12 mg/L	4 mg/L	103	70.0	130			
		zirconium, total	7440-67-7	E420	0.452 mg/L	0.4 mg/L	113	70.0	130			
otal Metals (QC	Lot: 446696)											
'A22A5448-010	Anonymous	mercury, total	7439-97-6	E508	0.000102 mg/L	0.0001 mg/L	102	70.0	130			

Page : 17 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Sub-Matrix: Water	b-Matrix: Water					Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery Limits (%)				
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie		
	(QCLot: 445278)											
(S2200998-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.188 mg/L	0.2 mg/L	93.9	70.0	130			
		antimony, dissolved	7440-36-0	E421	0.0195 mg/L	0.02 mg/L	97.3	70.0	130			
		arsenic, dissolved	7440-38-2	E421	0.0204 mg/L	0.02 mg/L	102	70.0	130			
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		beryllium, dissolved	7440-41-7	E421	0.0385 mg/L	0.04 mg/L	96.3	70.0	130			
		bismuth, dissolved	7440-69-9	E421	0.00922 mg/L	0.01 mg/L	92.2	70.0	130			
		boron, dissolved	7440-42-8	E421	ND mg/L	0.1 mg/L	ND	70.0	130			
		cadmium, dissolved	7440-43-9	E421	0.00382 mg/L	0.004 mg/L	95.4	70.0	130			
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130			
		cesium, dissolved	7440-46-2	E421	0.00939 mg/L	0.01 mg/L	93.9	70.0	130			
		chromium, dissolved	7440-47-3	E421	0.0386 mg/L	0.04 mg/L	96.4	70.0	130			
		cobalt, dissolved	7440-48-4	E421	0.0184 mg/L	0.02 mg/L	92.0	70.0	130			
		copper, dissolved	7440-50-8	E421	0.0178 mg/L	0.02 mg/L	89.2	70.0	130			
		iron, dissolved	7439-89-6	E421	1.88 mg/L	2 mg/L	93.9	70.0	130			
		lead, dissolved	7439-92-1	E421	0.0189 mg/L	0.02 mg/L	94.6	70.0	130			
		lithium, dissolved	7439-93-2	E421	0.0967 mg/L	0.1 mg/L	96.7	70.0	130			
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		molybdenum, dissolved	7439-98-7	E421	0.0204 mg/L	0.02 mg/L	102	70.0	130			
		nickel, dissolved	7440-02-0	E421	0.0351 mg/L	0.04 mg/L	87.8	70.0	130			
		phosphorus, dissolved	7723-14-0	E421	10.1 mg/L	10 mg/L	101	70.0	130			
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130			
		rubidium, dissolved	7440-17-7	E421	0.0184 mg/L	0.02 mg/L	92.0	70.0	130			
		selenium, dissolved	7782-49-2	E421	0.0442 mg/L	0.04 mg/L	110	70.0	130			
		silicon, dissolved	7440-21-3	E421	9.37 mg/L	10 mg/L	93.7	70.0	130			
		silver, dissolved	7440-22-4	E421	0.00379 mg/L	0.004 mg/L	94.6	70.0	130			
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130			
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130			
		tellurium, dissolved	13494-80-9	E421	0.0411 mg/L	0.04 mg/L	103	70.0	130			
		thallium, dissolved	7440-28-0	E421	0.00352 mg/L	0.004 mg/L	88.0	70.0	130			
		thorium, dissolved	7440-29-1	E421	0.0214 mg/L	0.02 mg/L	107	70.0	130			
		tin, dissolved	7440-31-5	E421	0.0194 mg/L	0.02 mg/L	97.2	70.0	130			
		titanium, dissolved	7440-32-6	E421	0.0376 mg/L	0.04 mg/L	94.1	70.0	130			
		tungsten, dissolved	7440-33-7	E421	0.0192 mg/L	0.02 mg/L	96.2	70.0	130			
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.004 mg/L	ND	70.0	130			
	I	vanadium, dissolved	7440-62-2	E421	0.0982 mg/L	0.1 mg/L	98.2	70.0	130			

Page : 18 of 18

Work Order : YL2200260 Amendment 1
Client : Golder Associates Ltd.

Sub-Matrix: Water	b-Matrix: Water					Matrix Spike (MS) Report						
					Sp	ike	Recovery (%)	Recovery	Recovery Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Dissolved Metals	s (QCLot: 445278) - c	continued										
KS2200998-002	Anonymous	zinc, dissolved	7440-66-6	E421	0.361 mg/L	0.4 mg/L	90.3	70.0	130			
		zirconium, dissolved	7440-67-7	E421	0.0421 mg/L	0.04 mg/L	105	70.0	130			
Dissolved Metals	(QCLot: 446692)											
YL2200260-002	EMD DISCHARGE INLAKE_Mid-depth	mercury, dissolved	7439-97-6	E509	0.0000944 mg/L	0.0001 mg/L	94.4	70.0	130			
Volatile Organic	Compounds (QCLot	: 445451)										
VA22A5917-001	Anonymous	benzene	71-43-2	E611A	114 μg/L	100 μg/L	114	70.0	130			
		ethylbenzene	100-41-4	E611A	102 μg/L	100 μg/L	102	70.0	130			
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	116 µg/L	100 μg/L	116	70.0	130			
		styrene	100-42-5	E611A	113 µg/L	100 μg/L	113	70.0	130			
		toluene	108-88-3	E611A	108 μg/L	100 μg/L	108	70.0	130			
		xylene, m+p-	179601-23-1	E611A	207 μg/L	200 μg/L	103	70.0	130			
		xylene, o-	95-47-6	E611A	111 μg/L	100 μg/L	111	70.0	130			
Hydrocarbons (0	QCLot: 445450)											
VA22A5917-002	Anonymous	F1 (C6-C10)		E581.VH+F1	5400 μg/L	6310 µg/L	85.6	60.0	140			
		VHw (C6-C10)		E581.VH+F1	4920 µg/L	6310 µg/L	78.0	60.0	140			

A	CHAIN OF CUSTODY ALS Laboratory		RECEIVED BY: RECEIVED BY: RECEIVED BY: MAX 24/24 DATE/TIME: 1/43			W.	RELINQUISHED BY:		RECEIVED BY: DATE/TIME:			
CLIENT:	Golder Associates Ltd.	TURNAROUND REQUIREMENTS:	☐ Standard TAT (List due date): ✓						FOR LABORATORY USE ONLY (Circle)			
PROJECT:	Jackfish NTPC	(Standard TAT may be longer for some tests e.g., Ultra Trace Organics)	☐ Non Star	ndard or urg	ent TAT (Lis	st due da	te):		Custody Seal Intact?			
SITE:	Sackfish Lake								Free ice / frazen ice b	ncks present upon receipt?	Yes No N/A	
PURCHASE ORDER NO		H: 306 370 6141		UOTE NC			8		Random Sample Ten	nperature on Receipt:	6.10	
ROJECT MANAGER:	Kathy Qin CONTACT P	-	facility cod		7250			Other comments:		-		
MAIL REPORTS TO:	South Beatie SAMPLER M	OBILE: 867 678 CA	-	ct Number: 21482915 LINVOICE TO: Laurence bonin@poider.com, Kathy Qin@poider.com				- Maritanian				
The second second	Kathy_Qin@golder.com; alison_humphries@golder.com		EMAIL	INVOICE T	O: Lauren	nce boni	spanish com, Karry Q	negovider com				
ALS USE ONLY	SAMPLE DETAILS Solid(S) Water(W)	MATRIX:	CONTAL					ANALYSI	SREQUIRED		Additional Information	
100000	Social Hamilton		III OKIIIA	,,,,,,,			1	-	1 1	1 1 1	Comments on likely contaminant levels, dilute	
SAMPLE	Sample identification (This description will appear on the report)	DATE / TIME (dd-mm-yyyy)	MATRIX	TOTAL CONTAINERS		Organica parameter suite					samples requiring specific QC analysis etc.	
1	DUTY LOW		n.		10							
2	NORTHWEST BAY NORTH BODGE		W		1	×						
1	NORTHWEST BAY NORTH_Mid-depth	C T BY TO BE A SE	w	-	× .		30	-	vironmenta	d Division		
4	MID LAKE 1_Bottom	The California Asia	w	-	*				llowknife	II DIVISION _		
6	MID LAKE 1 Mid-dispth		W		v .			_ 16	Work Order F	Reference		
		3.00	0				4	-	YL220	00260 -		
6	EMD DISCHARGE INLAKE_Bottom	83-03-202 131	W		x			-				
7	EMD DISCHARGE INLAKE_Mid-depth	23-03-202 33	w		x							
	SOUTHWEST BAY_Bottom	20-03-2000	w		x							
9	SOUTHWEST BAY_Mid-depth	22-03-2022 145	w		×							
10	NEAR OUTPLOWINLAKE BOTTOM		W		90	×	9					
11	NEAR OUTPLOWINLAKE_MId-depth		W		×			Tel	ephone : +1 867	e73 5593		
12 6	NEAR DUTTLOWINLAKE Bottom 4		w		×	- 41		_	HEARING STREET			
13	JFLQC_1	20-03-222	w		x	×						
14	JFLQC-3	00-03-0001			- TO							
.,	Jacob .		w		X							

THE PROPERTY OF THE PARTY OF TH のできたが、 1900年 19 Distriction Exercise **のできるとのなりののできるのできるのできる。**

: YL21-GOLD100-008

CERTIFICATE OF ANALYSIS

Page **Work Order** : YL2200265 : 1 of 13

Amendment : 1

Address

Quote number

Client Laboratory Golder Associates Ltd. : Yellowknife - Environmental

Contact : Sarah Beattie Account Manager : Oliver Gregg

> Address : 9 - 4905 48th Street : 314 Old Airport Road, Unit 116 Yellowknife NT Canada X1A 3S3

Yellowknife NT Canada X1A 3T3

: 867 873 6319 Telephone : 1 867 446 5593 Telephone Date Samples Received **Project** : Jackfish NTPC : 25-Mar-2022 13:41

PO **Date Analysis Commenced** : 29-Mar-2022 C-O-C number Issue Date : 19-Apr-2022 10:20

Sampler : Sarah Beattie

Site : Jackfish NTPC

No. of samples received : 8 No. of samples analysed : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Ann Ho	Laboratory Analyst	Metals, Burnaby, British Columbia
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia
Ophelia Chiu	Department Manager - Organics	Organics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruby Pham	Lab Assistant	Metals, Burnaby, British Columbia

Page : 3 of 13

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.

Project : Jackfish NTPC

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).
RRV	Reported result verified by repeat analysis.

>: greater than.

Page : 4 of 13

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analytical Results

Sub-Matrix: Water (Matrix: Water)	NORTHWEST BAY NORTH_Bottom	NORTHWEST BAY NORTH_Mid-de pth	MID LAKE 1_Bottom	MID LAKE 1_Mid-depth	NEAR OUTFLOW INLAKE_Bottom				
			Client samp	ling date / time	24-Mar-2022 11:55	24-Mar-2022 11:45	24-Mar-2022 15:10	24-Mar-2022 15:00	25-Mar-2022 09:50
Analyte	CAS Number	Method	LOR	Unit	YL2200265-001	YL2200265-002	YL2200265-003	YL2200265-004	YL2200265-005
					Result	Result	Result	Result	Result
Physical Tests									
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	122	123	122	123	122
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	122	123	122	123	122
conductivity		E100	2.0	μS/cm	502	512	504	505	503
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	158	163	159	161	161
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	172	169	166	168	165
pH		E108	0.10	pH units	8.08	8.00	8.00	7.96	8.07
solids, total dissolved [TDS]		E162	10	mg/L	307	318	319	308	315
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	272	279	275	276	275
solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0
turbidity		E121	0.10	NTU	1.43	2.24	1.02	1.54	1.18
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0547	0.0546	0.0361	0.0510	0.0576
chloride	16887-00-6	E235.CI-L	0.10	mg/L	67.7	68.8	67.8	67.9	67.8
fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.101	0.100	0.098	0.102	0.100
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.137	0.131	0.132	0.133	0.137
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	0.141	0.134	0.134	0.136	0.142
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0044	0.0031	0.0019	0.0029	0.0049
nitrogen, total	7727-37-9	E366	0.030	mg/L	0.848	0.898	0.815	0.854	0.846
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0368	0.0268	0.0296	0.0316	0.0333
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0226	0.0228	0.0198	0.0221	0.0235
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	14.6	14.8	14.5	14.7	14.6
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	29.8	30.2	29.8	29.8	29.8
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	12.4	14.3	13.4	13.4	14.1
Total Metals aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0053	0.0040	0.0040	0.0047	0.0056

Page Work Order

: 5 of 13 : YL2200265 Amendment 1 Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water			Cli	ent sample ID	NORTHWEST	NORTHWEST	MID LAKE	MID LAKE	NEAR
(Matrix: Water)					BAY	BAY	1_Bottom	1_Mid-depth	OUTFLOW
					NORTH_Bottom	NORTH_Mid-de			INLAKE_Bottom
						pth			
			Client sampl	ling date / time	24-Mar-2022	24-Mar-2022	24-Mar-2022	24-Mar-2022	25-Mar-2022
			·	_	11:55	11:45	15:10	15:00	09:50
Analyte	CAS Number	Method	LOR	Unit	YL2200265-001	YL2200265-002	YL2200265-003	YL2200265-004	YL2200265-005
					Result	Result	Result	Result	Result
Total Metals									
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00138	0.00132	0.00124	0.00127	0.00127
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0745	0.0765	0.0751	0.0744	0.0746
barium, total	7440-39-3	E420	0.00010	mg/L	0.0368	0.0374	0.0371	0.0366	0.0368
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, total	7440-42-8	E420	0.010	mg/L	0.034	0.033	0.032	0.032	0.032
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.000050
calcium, total	7440-70-2	E420	0.050	mg/L	45.5	43.6	43.2	43.9	42.6
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
copper, total	7440-50-8	E420	0.00050	mg/L	0.00196	0.00194	0.00178	0.00190	0.00196
iron, total	7439-89-6	E420	0.010	mg/L	0.018	<0.010	<0.010	<0.010	0.010
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0074	0.0069	0.0067	0.0068	0.0067
magnesium, total	7439-95-4	E420	0.0050	mg/L	14.3	14.7	14.1	14.3	14.3
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0392	0.0279	0.0308	0.0410	0.0527
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.000050
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000232	0.000225	0.000197	0.000194	0.000191
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	< 0.050	<0.050	<0.050
potassium, total	7440-09-7	E420	0.050	mg/L	4.46	4.62	4.49	4.46	4.47
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00275	0.00287	0.00291	0.00286	0.00285
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000058	0.000050	0.000066	0.000075	<0.000050
silicon, total	7440-21-3	E420	0.10	mg/L	7.13	7.29	7.28	7.18	7.18
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, total	7440-23-5	E420	0.050	mg/L	37.0	37.4	36.5	36.3	36.8
strontium, total	7440-24-6	E420	0.00020	mg/L	0.105	0.103	0.100	0.0987	0.100
sulfur, total	7704-34-9	E420	0.50	mg/L	10.4	10.4	10.2	10.1	10.1
T.			1 1	J		ı		I	1

Page : 6 of 13

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water			Cl	ient sample ID	NORTHWEST	NORTHWEST	MID LAKE	MID LAKE	NEAR
(Matrix: Water)					BAY NORTH Bottom	BAY NORTH Mid-de	1_Bottom	1_Mid-depth	OUTFLOW
					NORTH_BORIOR	pth			INLAKE_Bottom
						pen			
			Client samp	ling date / time	24-Mar-2022	24-Mar-2022	24-Mar-2022	24-Mar-2022	25-Mar-2022
					11:55	11:45	15:10	15:00	09:50
Analyte	CAS Number	Method	LOR	Unit	YL2200265-001	YL2200265-002	YL2200265-003	YL2200265-004	YL2200265-005
					Result	Result	Result	Result	Result
Total Metals tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
thorium, total	7440-28-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00030	<0.00010
tungsten, total	7440-32-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000639	0.000610	0.000590	0.000603	0.000586
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0049	0.0048	0.0046	0.0048	0.0050
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0014	0.0014	0.0017	0.0018	0.0013
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00133	0.00136	0.00134	0.00135	0.00133
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0715	0.0743	0.0734	0.0721	0.0716
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0343	0.0355	0.0352	0.0341	0.0344
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.034	0.031	0.031	0.032	0.031
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
calcium, dissolved	7440-70-2	E421	0.050	mg/L	41.8	42.7	42.2	42.4	42.0
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00170	0.00169	0.00153	0.00166	0.00174
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0065	0.0070	0.0070	0.0072	0.0071
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	13.0	13.6	13.1	13.5	13.6
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00135	0.00086	0.00046	0.00135	0.00131
I control of the cont			1	'		'		1	1

Page Work Order

: 7 of 13 : YL2200265 Amendment 1 Client : Golder Associates Ltd.

Project : Jackfish NTPC

CAS Number Method LOR Unit 11:55 11:45 15:10 15:00 09:5 Panalyto Result Resu	Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	NORTHWEST BAY NORTH_Bottom	NORTHWEST BAY NORTH_Mid-de pth	MID LAKE 1_Bottom	MID LAKE 1_Mid-depth	NEAR OUTFLOW INLAKE_Bottom
CAS Number Method LOR				Client samp	ling date / time					25-Mar-2022 09:50
Dissolved Metals Page-196 E500 0.0000050 mg/L 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.000050 0.000050 0.000050 0.000050 0.00	Analyte	CAS Number	Method	LOR	Unit	YL2200265-001		YL2200265-003		YL2200265-005
mercury, dissolved						Result	Result	Result	Result	Result
molybdenum, dissolved 7439-98-7 E421 0.000050 mg/L 0.000210 0.000230 0.000204 0.000209 0.000 nickl, dissolved 7440,02-0 E421 0.0050 mg/L <0.00050		7420.07.6	E500	0.0000050	ma/l	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050
nickel, dissolved 7440-02-0 E421 0.00050 mg/L <0.00050					_					0.000199
Phosphorus, dissolved 7723-14-0	•				_					<0.000193
potassium, dissolved 7440-09-7 E421 0.050 mg/L 4.50 4.64 4.53 4.53 4.63 rubidium, dissolved 7440-17-7 E421 0.00020 mg/L 0.00280 0.00292 0.00290 0.00290 0.00 silcen, dissolved 7782-49-2 E421 0.000050 mg/L <0.00050	, i				ŭ					<0.050
rubidium, dissolved 7440-17.7 E421 0.00020 mg/L 0.00280 0.00292 0.00290 0.00290 0.002 selenium, dissolved 7782-49-2 E421 0.000050 mg/L 0.000050 <0.000050 <0.000050 0.000050 0.000	' '				_					4.59
Selenium, dissolved 7782-49-2	i i				-					0.00282
silicon, dissolved 7440-21-3 E421 0.050 mg/L 6.91 7.47 7.32 7.33 7.3 silver, dissolved 7440-22-4 E421 0.00010 mg/L <0.000010	· ·				-					0.000054
silver, dissolved 7440-22-4 E421 0.000010 mg/L <0.000010	·				_					7.26
sodium, dissolved 7440-23-5 E421 0.050 mg/L 33.1 34.9 34.5 33.7 33.7 strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.101 0.104 0.101 0.103 0. sulfur, dissolved 7704-34-9 E421 0.50 mg/L 10.2 10.3 10.7 10.2 1 tellurium, dissolved 13494-80-9 E421 0.00020 mg/L <0.00020					-					<0.000010
strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.101 0.104 0.101 0.103 0. sulfur, dissolved 7704-34-9 E421 0.50 mg/L 10.2 10.3 10.7 10.2 1 tellurium, dissolved 13494-80-9 E421 0.00020 mg/L <0.00020	•		E421	0.050	_	33.1	34.9	34.5	33.7	34.1
sulfur, dissolved 7704-34-9 E421 0.50 mg/L 10.2 10.3 10.7 10.2 1 tellurium, dissolved 13494-80-9 E421 0.00020 mg/L <0.00020	strontium, dissolved		E421	0.00020	ı .	0.101	0.104	0.101	0.103	0.103
tellurium, dissolved 13494-80-9 E421 0.00020 mg/L <0.00020	sulfur, dissolved		E421	0.50	ŭ	10.2	10.3	10.7	10.2	10.2
thorium, dissolved 7440-29-1 E421 0.00010 mg/L <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 tin, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 tungsten, dissolved 7440-33-7 E421 0.00010 mg/L <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 vanadium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000585 0.000585 0.000581 0.000598 0.000 vanadium, dissolved 7440-62-2 E421 0.00050 mg/L <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 vanadium, dissolved 7440-66-6 E421 0.0010 mg/L 0.0052 0.0047 0.0046 0.0054 0.00 zirconium, dissolved 7440-67-7 E421 0.00020 mg/L <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.0002	tellurium, dissolved		E421	0.00020	_	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
tin, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00030 <0.00058 <0.00058 <0.00058 <0.00058 <0.00058 <0.00059 <0.00059 <0.00059 <0.00059 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0	thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00010 <0.00030 <0.00030 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040	thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tungsten, dissolved 7440-33-7 E421 0.00010 mg/L <0.00010	tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000585 0.000595 0.000581 0.000598 0.00050 vanadium, dissolved 7440-62-2 E421 0.00050 mg/L <0.00050	titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
vanadium, dissolved 7440-62-2 E421 0.00050 mg/L <0.00050	tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
zinc, dissolved 7440-66-6 E421 0.0010 mg/L 0.0052 0.0047 0.0046 0.0054 0.0052 zirconium, dissolved 7440-67-7 E421 0.00020 mg/L <0.00020	uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000585	0.000595	0.000581	0.000598	0.000579
zirconium, dissolved 7440-67-7 E421 0.00020 mg/L <0.00020	vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
dissolved mercury filtration location	zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0052	0.0047	0.0046	0.0054	0.0051
dissolved metals filtration location EP421 Field F	zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Aggregate Organics oil & grease (gravimetric) E567 5.0 mg/L <5.0 <	dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	Field
oil & grease (gravimetric) E567 5.0 mg/L <5.0 < <	dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field
3	Aggregate Organics									
Volatile Organic Compounds [Fuels]	oil & grease (gravimetric)		E567	5.0	mg/L	<5.0				<5.0
	Volatile Organic Compounds [Fuels]									
	benzene	71-43-2	E611A		μg/L	<0.50				<0.50
ethylbenzene 100-41-4 E611A 0.50 μg/L <0.50	ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50				<0.50

Page : 8 of 13

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	lient sample ID	NORTHWEST BAY NORTH_Bottom	NORTHWEST BAY NORTH_Mid-de pth	MID LAKE 1_Bottom	MID LAKE 1_Mid-depth	NEAR OUTFLOW INLAKE_Bottom
			Client samp	oling date / time	24-Mar-2022 11:55	24-Mar-2022 11:45	24-Mar-2022 15:10	24-Mar-2022 15:00	25-Mar-2022 09:50
Analyte CA	AS Number	Method	LOR	Unit	YL2200265-001	YL2200265-002	YL2200265-003	YL2200265-004	YL2200265-005
					Result	Result	Result	Result	Result
Volatile Organic Compounds [Fuels]									
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50				<0.50
styrene	100-42-5	E611A	0.50	μg/L	<0.50				<0.50
toluene	108-88-3	E611A	0.50	μg/L	<0.50				<0.50
xylene, m+p-	9601-23-1	E611A	0.40	μg/L	<0.40				<0.40
xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30				<0.30
xylenes, total	1330-20-7	E611A	0.50	μg/L	<0.50				<0.50
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611A	1.0	%	97.3				90.9
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%	98.4				97.4
Hydrocarbons									
F1 (C6-C10)		E581.VH+F1	100	μg/L	<100				<100
F2 (C10-C16)		E601	300	μg/L	<300				<300
F3 (C16-C34)		E601	300	μg/L	<300				<300
F4 (C34-C50)		E601	300	μg/L	<300				<300
VHw (C6-C10)		E581.VH+F1	100	μg/L	<100				<100
F1-BTEX		EC580	100	μg/L	<100				<100
VPHw		EC580A	100	μg/L	<100				<100
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%	85.0				82.8
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%	96.8				90.5

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page Work Order

: 9 of 13 : YL2200265 Amendment 1 Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water (Matrix: Water)			Ci	lient sample ID	NEAR OUTFLOW INLAKE_Mid-de pth	NEAR OUTFLOW INLAKE_Bottom _4	JFLQC-3	
			Client samp	oling date / time	25-Mar-2022 09:45	25-Mar-2022 10:00	24-Mar-2022 12:15	
Analyte	CAS Number	Method	LOR	Unit	YL2200265-006	YL2200265-007	YL2200265-008	
					Result	Result	Result	
Physical Tests								
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	123	121	<1.0	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	123	121	<1.0	
conductivity		E100	2.0	μS/cm	504	501	<2.0	
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	161	163	<0.60	
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	164	174	<0.60	
рН		E108	0.10	pH units	8.02	7.98	5.35	
solids, total dissolved [TDS]		E162	10	mg/L	312	320	<10	
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	276	276	<1.0	
solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	<3.0	
turbidity		E121	0.10	NTU	1.48	1.31	<0.10	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0569	0.0562	<0.0050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	68.1	68.0	<0.10	
fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.103	0.102	<0.010	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.125	0.138	<0.0050	
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	0.128	0.143	<0.0051	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0028	0.0048	<0.0010	
nitrogen, total	7727-37-9	E366	0.030	mg/L	0.840	0.833	<0.030	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0309	0.0310	<0.0020	
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0224	0.0218	<0.0020	
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	14.9	14.8	<0.50	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	29.9	29.8	<0.30	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	13.1	13.0	<0.50	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0056	0.0048	<0.0030	

Page : 10 of 13 Work Order : YL22002

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water (Matrix: Water)			Clie	ent sample ID	NEAR OUTFLOW INLAKE_Mid-de pth	NEAR OUTFLOW INLAKE_Bottom _4	JFLQC-3	
			Client sampl	ing date / time	25-Mar-2022 09:45	25-Mar-2022 10:00	24-Mar-2022 12:15	
Analyte	CAS Number	Method	LOR	Unit	YL2200265-006	YL2200265-007	YL2200265-008	
					Result	Result	Result	
Total Metals								
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00126	0.00130	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0743	0.0721	<0.00010	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0372	0.0369	0.00010 RRV	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.032	0.033	<0.010	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.0000050	<0.000050	
calcium, total	7440-70-2	E420	0.050	mg/L	41.9	44.7	<0.050	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00193	0.00201	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	0.010	<0.010	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0066	0.0069	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	14.3	15.2	<0.0050	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0491	0.0520	<0.00010	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000216	0.000223	<0.000050	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	<0.050	
potassium, total	7440-09-7	E420	0.050	mg/L	4.44	4.61	<0.050	
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00289	0.00282	<0.00020	
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000060	<0.000050	<0.000050	
silicon, total	7440-21-3	E420	0.10	mg/L	7.04	7.38	<0.10	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5	E420	0.050	mg/L	36.5	37.6	<0.050	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0997	0.103	<0.00020	
sulfur, total	7704-34-9	E420	0.50	mg/L	10.1	10.5	<0.50	

Page : 11 of 13

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water			Cli	ient sample ID	NEAR	NEAR	JFLQC-3	
(Matrix: Water)					OUTFLOW	OUTFLOW		
					INLAKE_Mid-de	INLAKE_Bottom		
					pth	_4		
			Client samn	ling date / time	25-Mar-2022	25-Mar-2022	24-Mar-2022	
			Cheff Sump	mig date / time	09:45	10:00	12:15	
Analyte	CAS Number	Method	LOR	Unit	YL2200265-006	YL2200265-007	YL2200265-008	
					Result	Result	Result	
Total Metals								
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	0.00031	<0.00030	<0.00030	
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000589	0.000622	<0.000010	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0050	0.0046	0.0048 RRV	
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0017	0.0016	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00134	0.00121	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0712	0.0653	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0348	0.0332	0.00012 RRV	
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	<0.000100	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.031	0.030	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	<0.000050	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	41.9	42.6	<0.050	
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00171	0.00169	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0071	0.0065	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	13.7	13.7	<0.0050	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00137	0.00134	<0.00010	
I control of the cont	1		1	1		1		

Page : 12 of 13 Work Order : YL22002

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	NEAR OUTFLOW INLAKE_Mid-de pth	NEAR OUTFLOW INLAKE_Bottom _4	JFLQC-3	
			Client samp	ling date / time	25-Mar-2022 09:45	25-Mar-2022 10:00	24-Mar-2022 12:15	
Analyte	CAS Number	Method	LOR	Unit	YL2200265-006	YL2200265-007	YL2200265-008	
					Result	Result	Result	
Dissolved Metals	7420.07.0	E509	0.0000050	ma/l	<0.000050	<0.000050	<0.000050	
mercury, dissolved molybdenum, dissolved	7439-97-6	E421	0.000050	mg/L	0.000208	0.000197	<0.000050	
nickel, dissolved	7439-98-7	E421	0.00050	mg/L	<0.00050	<0.000197	<0.00050	
phosphorus, dissolved	7440-02-0	E421	0.050	mg/L	<0.050	<0.050	<0.050	
potassium, dissolved	7723-14-0	E421	0.050	mg/L	4.55	4.29	<0.050	
rubidium, dissolved	7440-09-7 7440-17-7	E421	0.00020	mg/L mg/L	0.00288	0.00264	<0.000	
selenium, dissolved	7440-17-7 7782-49-2	E421	0.00020	mg/L	<0.00288	<0.00264	<0.00050	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	7.33	6.88	<0.050	
silver, dissolved	7440-21-3	E421	0.000010	mg/L	<0.000010	<0.00010	<0.00010	
sodium, dissolved	7440-22-4	E421	0.050	mg/L	34.1	35.4	<0.050	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.102	0.101	<0.0000	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	10.8	10.2	<0.50	
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
thallium, dissolved	7440-28-0	E421	0.00020	mg/L	<0.00010	<0.00010	<0.00020	
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
tin, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-31-5	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
tungsten, dissolved	7440-32-0	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000584	0.000592	<0.00010	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0053	0.0049	0.0043 RRV	
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	
Aggregate Organics								
oil & grease (gravimetric)		E567	5.0	mg/L		<5.0		
Volatile Organic Compounds [Fuels]								
benzene	71-43-2	E611A	0.50	μg/L		<0.50		
ethylbenzene	100-41-4	E611A	0.50	μg/L		<0.50		

Page : 13 of 13

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analytical Results

Sub-Matrix: Water (Matrix: Water)		C	lient sample ID	NEAR OUTFLOW INLAKE_Mid-de pth	NEAR OUTFLOW INLAKE_Bottom _4	JFLQC-3	
		Client samp	oling date / time	25-Mar-2022 09:45	25-Mar-2022 10:00	24-Mar-2022 12:15	
Analyte CAS Number	r Method	LOR	Unit	YL2200265-006	YL2200265-007	YL2200265-008	
				Result	Result	Result	
Volatile Organic Compounds [Fuels]							
methyl-tert-butyl ether [MTBE] 1634-04-	£611A	0.50	μg/L		<0.50		
styrene 100-42-	E611A	0.50	μg/L		<0.50		
toluene 108-88-	E611A	0.50	μg/L		<0.50		
xylene, m+p- 179601-23-	E611A	0.40	μg/L		<0.40		
xylene, o- 95-47-	E611A	0.30	μg/L		<0.30		
xylenes, total 1330-20-	E611A	0.50	μg/L		<0.50		
Volatile Organic Compounds Surrogates							
bromofluorobenzene, 4- 460-00-	£611A	1.0	%		96.6		
difluorobenzene, 1,4- 540-36-	E611A	1.0	%		98.3		
Hydrocarbons							
F1 (C6-C10)	- E581.VH+F1	100	μg/L		<100		
F2 (C10-C16)	_ E601	300	μg/L		<300		
F3 (C16-C34)	_ E601	300	μg/L		<300		
F4 (C34-C50)	E601	300	μg/L		<300		
VHw (C6-C10)	E581.VH+F1	100	μg/L		<100		
F1-BTEX	EC580	100	μg/L		<100		
VPHw	EC580A	100	μg/L		<100		
Hydrocarbons Surrogates							
bromobenzotrifluoride, 2- (F2-F4 surr) 392-83-	E601	1.0	%		79.3		
dichlorotoluene, 3,4-	E581.VH+F1	1.0	%		96.1		

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : YL2200265 Page : 1 of 31

Amendment : 1

Client : Golder Associates Ltd. Laboratory : Yellowknife - Environmental

Contact : Sarah Beattie Account Manager : Oliver Gregg

Address : 9 - 4905 48th Street Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

 Telephone
 : 867 873 6319
 Telephone
 : 1 867 446 5593

 Project
 : Jackfish NTPC
 Date Samples Received
 : 25-Mar-2022 13:41

 PO
 : --- Issue Date
 : 19-Apr-2022 10:20

C-O-C number : ----

Sampler : Sarah Beattie
Site : Jackfish NTPC
Quote number : YL21-GOLD100-008

No. of samples received : 8
No. of samples analysed : 8

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

Yellowknife NT Canada X1A 3S3

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

No Quality Control Sample Frequency Outliers occur.

Page : 3 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Matrix: Water Analyte Group Sampling Date Extraction / Preparation Analysis Method Container / Client Sample ID(s) **Holding Times** Eval Analysis Date Holding Times Eval Preparation Actual Rec Actual Date Rec Aggregate Organics : Oil & Grease by Gravimetry Amber glass (hydrochloric acid) F567 25-Mar-2022 31-Mar-2022 1 1 NEAR OUTFLOW INLAKE Bottom 28 6 days 31-Mar-2022 40 days 0 days days Aggregate Organics : Oil & Grease by Gravimetry Amber glass (hydrochloric acid) NEAR OUTFLOW INLAKE_Bottom_4 E567 25-Mar-2022 31-Mar-2022 ✓ 31-Mar-2022 40 days 0 days ✓ 6 days 28 days Aggregate Organics : Oil & Grease by Gravimetry Amber glass (hydrochloric acid) NORTHWEST BAY NORTH Bottom E567 24-Mar-2022 31-Mar-2022 ✓ 31-Mar-2022 40 days 0 days 7 days 28 days Anions and Nutrients: Ammonia by Fluorescence Amber glass total (sulfuric acid) JFLQC-3 E298 24-Mar-2022 31-Mar-2022 03-Apr-2022 28 days 10 days Anions and Nutrients: Ammonia by Fluorescence Amber glass total (sulfuric acid) MID LAKE 1 Bottom E298 24-Mar-2022 31-Mar-2022 03-Apr-2022 28 days 10 days Anions and Nutrients: Ammonia by Fluorescence Amber glass total (sulfuric acid) F298 24-Mar-2022 31-Mar-2022 MID LAKE 1 Mid-depth 03-Apr-2022 28 days 10 days --------Anions and Nutrients: Ammonia by Fluorescence Amber glass total (sulfuric acid) E298 24-Mar-2022 31-Mar-2022 03-Apr-2022 28 days 10 days ✓ NORTHWEST BAY NORTH Bottom

Page : 4 of 31

Work Order YL2200265 Amendment 1
Client Golder Associates Ltd.
Project Jackfish NTPC

Matrix: Water

Evaluation:	 – Holding time 	exceedance ·	/ - Within	Holding Time

Matrix: Water					Εv	/aluation: ≭ =	Holding time exce	edance ; 🔻	= Within	Holding 1
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
NORTHWEST BAY NORTH_Mid-depth	E298	24-Mar-2022	31-Mar-2022				03-Apr-2022	28 days	10 days	✓
Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid)							ı			
NEAR OUTFLOW INLAKE Bottom	E298	25-Mar-2022	31-Mar-2022				03-Apr-2022	28 days	0 days	✓
NEAR OUT LOW INLARE_BOILDIN	2230	20-War-2022	31-Wai-2022				00-Apr-2022	20 days	3 days	·
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
NEAR OUTFLOW INLAKE_Bottom_4	E298	25-Mar-2022	31-Mar-2022				03-Apr-2022	28 days	9 days	✓
Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid)							I			
NEAR OUTFLOW INLAKE Mid-depth	E298	25-Mar-2022	31-Mar-2022				03-Apr-2022	28 days	9 days	1
NEW CONTEON INC. WILL AGE	2200	20 Mai 2022	OT War 2022				0071012022	20 dayo	o dayo	
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
NEAR OUTFLOW INLAKE_Bottom	E235.CI-L	25-Mar-2022					30-Mar-2022	28 days	5 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
NEAR OUTFLOW INLAKE Bottom 4	E235.CI-L	25-Mar-2022					30-Mar-2022	28 days	5 days	✓
									_	
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE	5005.011	05.14 0000								,
NEAR OUTFLOW INLAKE_Mid-depth	E235.CI-L	25-Mar-2022					30-Mar-2022	28 days	5 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
JFLQC-3	E235.CI-L	24-Mar-2022					30-Mar-2022	28 days	6 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE MID LAKE 1 Bottom	E235.CI-L	24-Mar-2022					30-Mar-2022	28 days	6 days	1
MID EVICE I POSSOIII	LZ00.OFL	24-IVIGI-2022					50-Wai-2022	20 days	Juays	•

Page : 5 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Matrix: Water

Evaluation: × = Holding time exceedance : ✓ = Within Holding Time

Matrix: Water					E	/aluation: 🗴 =	Holding time exce	edance ; 🖠	= Within	Holding T	
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	Analysis		
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Anions and Nutrients : Chloride in Water by IC (Low Level)											
HDPE										,	
MID LAKE 1_Mid-depth	E235.CI-L	24-Mar-2022					30-Mar-2022	28 days	6 days	✓	
Anions and Nutrients : Chloride in Water by IC (Low Level)											
HDPE											
NORTHWEST BAY NORTH_Bottom	E235.CI-L	24-Mar-2022					30-Mar-2022	28 days	6 days	✓	
nions and Nutrients : Chloride in Water by IC (Low Level)											
HDPE	5005.011	0444 0000						00.1			
NORTHWEST BAY NORTH_Mid-depth	E235.CI-L	24-Mar-2022					30-Mar-2022	28 days	6 days	✓	
Anions and Nutrients : Fluoride in Water by IC (Low Level)						I					
HDPE	E235.F-L	25-Mar-2022					30-Mar-2022	28 days	E dovo	1	
NEAR OUTFLOW INLAKE_Bottom	E235.F-L	25-Mar-2022					30-Mar-2022	28 days	5 days	•	
Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE											
NEAR OUTFLOW INLAKE_Bottom_4	E235.F-L	25-Mar-2022					30-Mar-2022	28 days	5 days	1	
NEAR OUT LOW INLARE_BOROII_4	2200.1 2	20 Mai 2022					00-Widi-2022	20 days	o days	,	
Anions and Nutrients : Fluoride in Water by IC (Low Level)											
HDPE											
NEAR OUTFLOW INLAKE Mid-depth	E235.F-L	25-Mar-2022					30-Mar-2022	28 days	5 days	1	
- '											
nions and Nutrients : Fluoride in Water by IC (Low Level)											
HDPE											
JFLQC-3	E235.F-L	24-Mar-2022					30-Mar-2022	28 days	6 days	✓	
Anions and Nutrients : Fluoride in Water by IC (Low Level)											
HDPE											
MID LAKE 1_Bottom	E235.F-L	24-Mar-2022					30-Mar-2022	28 days	6 days	✓	
nions and Nutrients : Fluoride in Water by IC (Low Level)											
HDPE											
MID LAKE 1_Mid-depth	E235.F-L	24-Mar-2022					30-Mar-2022	28 days	6 days	✓	
		_		_				_			

Page : 6 of 31

Work Order · YL2200265 Amendment 1 Client : Golder Associates Ltd.

Project · Jackfish NTPC

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Actual Rec Actual Date Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE NORTHWEST BAY NORTH_Bottom E235.F-L 24-Mar-2022 30-Mar-2022 28 days 6 days ✓ Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L ✓ NORTHWEST BAY NORTH_Mid-depth 24-Mar-2022 30-Mar-2022 28 days 6 days ----Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 25-Mar-2022 30-Mar-2022 3 days 5 days NEAR OUTFLOW INLAKE Bottom 30 EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L NEAR OUTFLOW INLAKE Bottom 4 25-Mar-2022 30-Mar-2022 3 days 5 days æ EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 25-Mar-2022 30-Mar-2022 æ NEAR OUTFLOW INLAKE Mid-depth 3 days 5 days EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE JFLQC-3 E235.NO3-L 24-Mar-2022 30-Mar-2022 3 davs 6 days æ EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE MID LAKE 1 Bottom E235.NO3-L 24-Mar-2022 30-Mar-2022 3 days 6 days * EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE MID LAKE 1 Mid-depth E235.NO3-L 24-Mar-2022 30-Mar-2022 3 days 6 days × EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L NORTHWEST BAY NORTH Bottom 24-Mar-2022 30-Mar-2022 3 days 6 days 30 ----EHT

Page : 7 of 31

YL2200265 Amendment 1 Work Order Client : Golder Associates Ltd. : Jackfish NTPC Project

Matrix: Water					Fv	aluation: × =	· Holding time exce	edance : v	✓ = Within	Holding Tin
Analyte Group	Method	Sampling Date	Ex	traction / Pr			I stanig anto oxoo	Analys		
Container / Client Sample ID(s)	Wiotriod	Camping Bate	Preparation		Times	Eval	Analysis Date		g Times	Eval
			Date	Rec	Actual	Lvai	Analysis Bate	Rec	Actual	Lvai
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE NORTHWEST BAY NORTH_Mid-depth	E235.NO3-L	24-Mar-2022					30-Mar-2022	3 days	6 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE NEAR OUTFLOW INLAKE_Bottom	E235.NO2-L	25-Mar-2022					30-Mar-2022	3 days	5 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE NEAR OUTFLOW INLAKE_Bottom_4	E235.NO2-L	25-Mar-2022					30-Mar-2022	3 days	5 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE NEAR OUTFLOW INLAKE_Mid-depth	E235.NO2-L	25-Mar-2022					30-Mar-2022	3 days	5 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE JFLQC-3	E235.NO2-L	24-Mar-2022					30-Mar-2022	3 days	6 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
MID LAKE 1_Bottom	E235.NO2-L	24-Mar-2022					30-Mar-2022	3 days	6 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE MID LAKE 1_Mid-depth	E235.NO2-L	24-Mar-2022					30-Mar-2022	3 days	6 days	x EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
NORTHWEST BAY NORTH_Bottom	E235.NO2-L	24-Mar-2022					30-Mar-2022	3 days	6 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE NORTHWEST BAY NORTH_Mid-depth	E235.NO2-L	24-Mar-2022					30-Mar-2022	3 days	6 days	* EHT

Page : 8 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Matrix: Water

Evaluation: x = Holding time exceedance : √ = Within Holding Time

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🕦	= Within	Holding 7
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
nions and Nutrients : Reactive Silica by Colourimetry										
HDPE										
NEAR OUTFLOW INLAKE_Bottom	E392	25-Mar-2022					31-Mar-2022	28 days	6 days	✓
nions and Nutrients : Reactive Silica by Colourimetry								I		
HDPE NEAR OUTFLOW INLAKE Bottom_4	E392	25-Mar-2022					31-Mar-2022	28 days	6 days	1
NEAR OUTFLOW INLAKE_BOILOIII_4	L032	25-Wai-2022					31-IVIAI-2022	20 days	0 days	•
nions and Nutrients : Reactive Silica by Colourimetry										
HDPE										
NEAR OUTFLOW INLAKE_Mid-depth	E392	25-Mar-2022					31-Mar-2022	28 days	6 days	✓
nions and Nutrients : Reactive Silica by Colourimetry										
HDPE JFLQC-3	E392	24-Mar-2022					31-Mar-2022	28 days	7 dovo	1
JFLQC-3	E392	24-IVIAI-2022					31-IVIAI-2022	20 uays	7 uays	•
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE										
MID LAKE 1_Bottom	E392	24-Mar-2022					31-Mar-2022	28 days	7 days	✓
nions and Nutrients : Reactive Silica by Colourimetry										
HDPE	F200	04 Mar 2000					24 M 2000	00 4	7 -1	1
MID LAKE 1_Mid-depth	E392	24-Mar-2022					31-Mar-2022	28 days	7 days	. ▼
nions and Nutrients : Reactive Silica by Colourimetry										
HDPE										
NORTHWEST BAY NORTH_Bottom	E392	24-Mar-2022					31-Mar-2022	28 days	7 days	✓
nions and Nutrients : Reactive Silica by Colourimetry										
HDPE	5000	04.14 0000					04.14 0000	00 :	7.1	,
NORTHWEST BAY NORTH_Mid-depth	E392	24-Mar-2022					31-Mar-2022	28 days	/ days	✓
niana and Nutrianta : Sulfata in Water by IC										
nions and Nutrients : Sulfate in Water by IC										
NEAR OUTFLOW INLAKE_Bottom	E235.SO4	25-Mar-2022					30-Mar-2022	28 days	5 days	✓

Page : 9 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Matrix: Water

Evaluation: x = Holding time exceedance · ✓ = Within Holding Time

6O4	Sampling Date 25-Mar-2022	Ext Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Analys Holding Rec		Eval
O4	25-Mar-2022	Date	Rec		Eval	Analysis Date			Eval
O4	25-Mar-2022			Actual			Rec	Actual	
O4	25-Mar-2022								
iO4	25-Mar-2022								
6O4	25-Mar-2022								
						30-Mar-2022	28 days	5 days	✓
604	25-Mar-2022					30-Mar-2022	28 days	5 days	✓
04	24-Mar-2022					30-Mar-2022	28 days	6 days	✓
04	24-Mar-2022					30-Mar-2022	28 days	6 days	✓
04	24-Mar-2022					30-Mar-2022	28 days	6 days	✓
04	24-Mar-2022					30-Mar-2022	28 days	6 days	✓
04	24-Mar-2022					30-Mar-2022	28 days	6 days	✓
·T	25-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	8 days	✓
·T	25-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	8 days	✓
	604 604 604 -T	24-Mar-2022 304 24-Mar-2022 304 24-Mar-2022 304 24-Mar-2022 304 24-Mar-2022	304 24-Mar-2022 304 24-Mar-2022 304 24-Mar-2022 304 24-Mar-2022 304 24-Mar-2022	304 24-Mar-2022	304 24-Mar-2022	304 24-Mar-2022	30-Mar-2022	30-Mar-2022 28 days	30-Mar-2022 28 days 6 days

Page : 10 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Matrix: Water

Evaluation: × = Holding time exceedance : ✓ = Within Holding Time

Preparation Preparation Date Rec Actual Analysis Date Holding Times Rec Actual Analysis Date Holding Times Rec Actual Analysis Date Holding Times Rec Actual Actual Analysis Date Holding Times Rec Actual Actual Analysis Date Holding Times Rec Actual Analysis Date Holding Times Rec Actual Actual Actual Actual Actual Rec Actual Analysis Date Holding Times Rec Actual	Matrix: Water					E	/aluation: 🗴 =	Holding time exce	edance ; •	= Within	Holding T
Anions and Nutrients Total Dissolved Phosphorus by Colourimetry (Trace Level) Annor glass dissolved (sulfuric acid) NERR OUTFLOW NLARE_Mid-depth E375-T 25-Mar-2022 31-Mar-2022 02-Apr-2022 28 days 8 days ✓ Anions and Nutrients Total Dissolved Phosphorus by Colourimetry (Trace Level) Annor glass dissolved (sulfuric acid) JFLOC-3 E375-T 24-Mar-2022 31-Mar-2022 02-Apr-2022 28 days 9 days ✓ Anions and Nutrients Total Dissolved Phosphorus by Colourimetry (Trace Level) Annor glass dissolved (sulfuric acid) MD LAKE 80toron E375-T 24-Mar-2022 31-Mar-2022 02-Apr-2022 28 days 9 days ✓ Anions and Nutrients Total Dissolved Phosphorus by Colourimetry (Trace Level) Annor glass dissolved (sulfuric acid) MD LAKE 80toron E375-T 24-Mar-2022 31-Mar-2022 02-Apr-2022 28 days 9 days ✓ Anions and Nutrients Total Dissolved Phosphorus by Colourimetry (Trace Level) Annor glass dissolved (sulfuric acid) MD LAKE Molton E375-T 24-Mar-2022 31-Mar-2022 02-Apr-2022 28 days 9 days ✓ Anions and Nutrients Total Dissolved Phosphorus by Colourimetry (Trace Level) Annor glass dissolved (sulfuric acid) NORTH-WEST BAY NORTH_Botton E375-T 24-Mar-2022 31-Mar-2022 02-Apr-2022 28 days 9 days ✓ Anions and Nutrients Total Nitrogen by Colourimetry Annor glass dissolved (sulfuric acid) NORTH-WEST BAY NORTH_Mid-depth E375-T 24-Mar-2022 31-Mar-2022 02-Apr-2022 28 days 9 days ✓ Anions and Nutrients Total Nitrogen by Colourimetry Annor glass total (sulfuric acid) NERR OUTFLOW INLAKE_Battom E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days ✓ Anions and Nutrients Total Nitrogen by Colourimetry Annor glass total (sulfuric acid) NERR OUTFLOW INLAKE_Battom E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days ✓	Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Date Rec Actual Rec Actual Rec Actual Rec Actual Rec Actual	Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
Amber glass dissolved (sulfuric acid) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Annos and Nutrients : Total Dissolved Phosphorus by Colourimetry Annos and Nutrients : Total Nutrogen by C				Date	Rec	Actual			Rec	Actual	
NEAR OUTFLOW INLAKE_Mid-depth E375-T 25-Mair-2022 31-Mair-2022 02-Apr-2022 28 days 8 days ✓	Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace L	evel)									
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) JFLQC-3 E375-T 24-Mar-2022 31-Mar-2022 31-Mar-2022 31-Mar-2022 31-Mar-2022 31-Mar-2022 28 days 9 days ✓ Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) MID LAKE 1_Mid-depth E375-T 24-Mar-2022 31-Mar-2022 31-Mar-202	Amber glass dissolved (sulfuric acid)										
Amber glass dissolved (sulfuric acid) MID LAKE 1_Bottom E375-T 24-Mar-2022 31-Mar-2022 31-M	NEAR OUTFLOW INLAKE_Mid-depth	E375-T	25-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	8 days	✓
Amber glass dissolved (sulfuric acid) NORTHWEST BAY NORTH_Bottom E375-T 24-Mar-2022 Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) MID LAKE 1_Bottom E375-T 24-Mar-2022 31-Mar-2022 31-M	Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace L	evel)									
### STATE ### ST											
Amber glass dissolved (sulfuric acid) MID LAKE 1_Bottom		E375-T	24-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	9 days	✓
MID LAKE 1_Bottom	Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace L	evel)									
Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) NORTHWEST BAY NORTH_Bottom E375-T 24-Mar-2022 31-Mar-2022 31-Mar	e e e e e e e e e e e e e e e e e e e										
Amber glass dissolved (sulfuric acid) MID LAKE 1_Mid-depth E375-T 24-Mar-2022 31-Mar-2022 31	MID LAKE 1_Bottom	E375-T	24-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	9 days	✓
MID LAKE 1_Mid-depth	Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace L	evel)									
Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) NORTHWEST BAY NORTH_Bottom E375-T 24-Mar-2022 31-Mar-2022 31-Mar-											
Amber glass dissolved (sulfuric acid) NORTHWEST BAY NORTH_Bottom E375-T 24-Mar-2022 31-Mar-2022 02-Apr-2022 28 days 9 days ✓ Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) NORTHWEST BAY NORTH_Mid-depth E375-T 24-Mar-2022 31-Mar-2022 31-Mar-2022 02-Apr-2022 28 days 9 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom_4 E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom_4 E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom_4 E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid)	MID LAKE 1_Mid-depth	E375-T	24-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	9 days	✓
NORTHWEST BAY NORTH_Bottom	Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace L	evel)									
Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (Trace Level) Amber glass dissolved (sulfuric acid) NORTH/WEST BAY NORTH_Mid-depth E375-T 24-Mar-2022 31-Mar-2022 02-Apr-2022 28 days 9 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom_4 E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom_4 E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid)	Amber glass dissolved (sulfuric acid)										
Amber glass dissolved (sulfuric acid) NORTHWEST BAY NORTH_Mid-depth E375-T 24-Mar-2022 31-Mar-2022 02-Apr-2022 28 days 9 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom_4 E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Anions and Nutrients: Total Nitrogen by Colourimetry Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid)	NORTHWEST BAY NORTH_Bottom	E375-T	24-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	9 days	✓
NORTHWEST BAY NORTH_Mid-depth E375-T 24-Mar-2022 31-Mar-2022 02-Apr-2022 28 days 9 days Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom_4 E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days Anions and Nutrients: Total Nitrogen by Colourimetry Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid)	Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (Trace L	evel)									
Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom_4 E366 25-Mar-2022 31-Mar-2022 Anions and Nutrients: Total Nitrogen by Colourimetry Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid)	Amber glass dissolved (sulfuric acid)										
Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom E366 25-Mar-2022 31-Mar-2022 Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom_4 E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days Anions and Nutrients: Total Nitrogen by Colourimetry Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) Amber glass total (sulfuric acid)	NORTHWEST BAY NORTH_Mid-depth	E375-T	24-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	9 days	✓
NEAR OUTFLOW INLAKE_Bottom E366 25-Mar-2022 31-Mar-2022 O1-Apr-2022 28 days 7 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom_4 E366 25-Mar-2022 31-Mar-2022 O1-Apr-2022 28 days 7 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid)	Anions and Nutrients : Total Nitrogen by Colourimetry										
Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom_4 E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid)	Amber glass total (sulfuric acid)										
Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom_4 E366 25-Mar-2022 31-Mar-2022 O1-Apr-2022 28 days 7 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid)	NEAR OUTFLOW INLAKE_Bottom	E366	25-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	7 days	✓
NEAR OUTFLOW INLAKE_Bottom_4 E366 25-Mar-2022 31-Mar-2022 O1-Apr-2022 28 days 7 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid)	Anions and Nutrients : Total Nitrogen by Colourimetry										
Anions and Nutrients : Total Nitrogen by Colourimetry Amber glass total (sulfuric acid)	Amber glass total (sulfuric acid)										
Amber glass total (sulfuric acid)	NEAR OUTFLOW INLAKE_Bottom_4	E366	25-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	7 days	✓
Amber glass total (sulfuric acid)	Anions and Nutrients : Total Nitrogen by Colourimetry										
NEAR OUTFLOW INLAKE_Mid-depth E366 25-Mar-2022 31-Mar-2022 01-Apr-2022 28 days 7 days ✓	Amber glass total (sulfuric acid)										
	NEAR OUTFLOW INLAKE_Mid-depth	E366	25-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	7 days	✓

Page : 11 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Matrix: Water

Evaluation:	· -	Holding	timo	evceedance ·	./ -	\\/ithin	Holding T	imo

Matrix: Water					E	/aluation: 🗴 =	Holding time exce	edance ; 🕦	/ = Within	Holding T
Analyte Group	Method	Sampling Date	Ex	traction / Pi	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										
JFLQC-3	E366	24-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	8 days	✓
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										
MID LAKE 1_Bottom	E366	24-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	8 days	✓
Anions and Nutrients : Total Nitrogen by Colourimetry						ı				
Amber glass total (sulfuric acid)	F000	04.140000	04 14 0000				04 4 0000	00.1	0.1	√
MID LAKE 1_Mid-depth	E366	24-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	8 days	•
Anions and Nutrients : Total Nitrogen by Colourimetry					l	<u> </u>	I			
Amber glass total (sulfuric acid) NORTHWEST BAY NORTH Bottom	E366	24-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	8 days	1
NONTIWEOT BAT NONTIL_BOROIT	2000	24-Wai-2022	01-10141-2022				0 1-7 tp1-2022	20 days	o days	
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										
NORTHWEST BAY NORTH Mid-depth	E366	24-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	8 days	1
									-	
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trac	e)									
Amber glass total (sulfuric acid)										
NEAR OUTFLOW INLAKE_Bottom	E372-U	25-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trac	e)									
Amber glass total (sulfuric acid)										
NEAR OUTFLOW INLAKE_Bottom_4	E372-U	25-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trac	e)					ı				
Amber glass total (sulfuric acid)	E070 / 1	05 M = 0000	24 Mar 2000				00.4 = 0000	00.4	0 4	
NEAR OUTFLOW INLAKE_Mid-depth	E372-U	25-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trac	e)						I			
Amber glass total (sulfuric acid) JFLQC-3	E372-U	24-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	9 daye	1
01 EQO-0	L372-0	2 1 -10101-2022	01-Wai-2022				02-Api-2022	20 days	Juays	•

Page : 12 of 31

Work Order YL2200265 Amendment 1
Client Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) MID LAKE 1_Bottom	E372-U	24-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	9 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) MID LAKE 1_Mid-depth	E372-U	24-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	9 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) NORTHWEST BAY NORTH_Bottom	E372-U	24-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	9 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid) NORTHWEST BAY NORTH_Mid-depth	E372-U	24-Mar-2022	31-Mar-2022				02-Apr-2022	28 days	9 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) NEAR OUTFLOW INLAKE_Bottom	E509	25-Mar-2022	31-Mar-2022				31-Mar-2022	28 days	6 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) NEAR OUTFLOW INLAKE_Bottom_4	E509	25-Mar-2022	31-Mar-2022				31-Mar-2022	28 days	6 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) NEAR OUTFLOW INLAKE_Mid-depth	E509	25-Mar-2022	31-Mar-2022				31-Mar-2022	28 days	6 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) JFLQC-3	E509	24-Mar-2022	31-Mar-2022				31-Mar-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) MID LAKE 1_Bottom	E509	24-Mar-2022	31-Mar-2022				31-Mar-2022	28 days	7 days	✓

Page : 13 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Matrix: Water

Evaluation: x = Holding time exceedance · ✓ = Within Holding Time

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; •	= Within	Holding 7
Analyte Group	Method	Sampling Date	Ex	traction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
MID LAKE 1_Mid-depth	E509	24-Mar-2022	31-Mar-2022				31-Mar-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
NORTHWEST BAY NORTH_Bottom	E509	24-Mar-2022	31-Mar-2022				31-Mar-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
NORTHWEST BAY NORTH_Mid-depth	E509	24-Mar-2022	31-Mar-2022				31-Mar-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										,
JFLQC-3	E421	24-Mar-2022	30-Mar-2022				31-Mar-2022	180 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)	E421	24-Mar-2022	20 M 2000				31-Mar-2022		7 -1	1
MID LAKE 1_Bottom	E421	24-IVIAI-2022	30-Mar-2022				31-Mar-2022	180 days	7 days	•
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										,
MID LAKE 1_Mid-depth	E421	24-Mar-2022	30-Mar-2022				31-Mar-2022	180 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)	E421	25-Mar-2022	30-Mar-2022				31-Mar-2022	400	7 dov.	√
NEAR OUTFLOW INLAKE_Bottom	E421	25-Mai-2022	30-Mar-2022				31-Mar-2022	180 days	7 days	•
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)	E421	25-Mar-2022	30-Mar-2022				31-Mar-2022	400	7 do:/o	1
NEAR OUTFLOW INLAKE_Bottom_4	E421	25-Mar-2022	30-Mar-2022				31-Mar-2022	180 days	7 days	•
issolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)	E421	25-Mar-2022	30-Mar-2022				31-Mar-2022	400	7 dovo	√
NEAR OUTFLOW INLAKE_Mid-depth	E421	20-IVIAI-2022	30-IVIAI-2022				31-War-2022	180	7 days	•
								days		

Page : 14 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Matrix: Water

Evaluation: × = Holding time exceedance · ✓ = Within Holding Time

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding 7
Analyte Group	Method	Sampling Date	Ex	traction / Pi	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eva
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) NORTHWEST BAY NORTH_Bottom	E421	24-Mar-2022	30-Mar-2022				31-Mar-2022	180 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) NORTHWEST BAY NORTH_Mid-depth	E421	24-Mar-2022	30-Mar-2022				31-Mar-2022	180 days	7 days	✓
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) NEAR OUTFLOW INLAKE_Bottom	E601	25-Mar-2022	01-Apr-2022	14 days	7 days	✓	04-Apr-2022	40 days	3 days	✓
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) NEAR OUTFLOW INLAKE_Bottom_4	E601	25-Mar-2022	01-Apr-2022	14 days	7 days	✓	04-Apr-2022	40 days	3 days	✓
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) NORTHWEST BAY NORTH_Bottom	E601	24-Mar-2022	01-Apr-2022	14 days	8 days	✓	04-Apr-2022	40 days	3 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) NEAR OUTFLOW INLAKE_Bottom	E581.VH+F1	25-Mar-2022	29-Mar-2022				30-Mar-2022	14 days	5 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) NEAR OUTFLOW INLAKE_Bottom_4	E581.VH+F1	25-Mar-2022	29-Mar-2022				30-Mar-2022	14 days	5 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) NORTHWEST BAY NORTH_Bottom	E581.VH+F1	24-Mar-2022	29-Mar-2022				30-Mar-2022	14 days	5 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion	(Low Level)									
Amber glass dissolved (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom	E358-L	25-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	6 days	✓

Page : 15 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Matrix: Water

Evaluation: x = Holding time exceedance · ✓ = Within Holding Time

latrix: Water					EV	aluation: 🗴 =	Holding time exce	edance ; 🕦	/ = vvitnin	. Holaing I
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom_4	E358-L	25-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	6 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid) NEAR OUTFLOW INLAKE_Mid-depth	E358-L	25-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	6 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid)										
JFLQC-3	E358-L	24-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	7 days	✓
Organic / Inorganic Carbon:Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid)										
MID LAKE 1_Bottom	E358-L	24-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid)	E050 I	04.14 0000	04.14					00.1		
MID LAKE 1_Mid-depth	E358-L	24-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid)										
NORTHWEST BAY NORTH_Bottom	E358-L	24-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	7 days	~
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)									
Amber glass dissolved (sulfuric acid)										
NORTHWEST BAY NORTH_Mid-depth	E358-L	24-Mar-2022	31-Mar-2022				01-Apr-2022	28 days	7 days	*
Physical Tests : Alkalinity Species by Titration										
HDPE	E290	25 Mar 2022					20 Mar 2022	14 do:-	E dove	✓
NEAR OUTFLOW INLAKE_Bottom	E290	25-Mar-2022					30-Mar-2022	14 days	o days	
Physical Tests : Alkalinity Species by Titration										
HDPE	E290	05.11 0000					30-Mar-2022		5 days	✓
NEAR OUTFLOW INLAKE Bottom 4		25-Mar-2022								

Page : 16 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Matrix: Water

Evaluation: **x** = Holding time exceedance : ✓ = Within Holding Time

latrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🕦	/ = Within	Holding 1
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
NEAR OUTFLOW INLAKE_Mid-depth	E290	25-Mar-2022					30-Mar-2022	14 days	5 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE	E290	24-Mar-2022					30-Mar-2022	14 days	C -1	1
JFLQC-3	E290	24-IVIAI-2022					30-Mai-2022	14 days	o days	•
Physical Tests : Alkalinity Species by Titration										
HDPE										
MID LAKE 1_Bottom	E290	24-Mar-2022					30-Mar-2022	14 days	6 days	✓
Physical Tests : Alkalinity Species by Titration				l l			1			
HDPE MID LAKE 1_Mid-depth	E290	24-Mar-2022					30-Mar-2022	14 days	6 days	1
WID LAKE I_WIG-Geptil	2230	24-Wai-2022					00-Widi-2022	14 days	o days	•
Physical Tests : Alkalinity Species by Titration										
HDPE										
NORTHWEST BAY NORTH_Bottom	E290	24-Mar-2022					30-Mar-2022	14 days	6 days	✓
Physical Tests : Alkalinity Species by Titration HDPE										
NORTHWEST BAY NORTH Mid-depth	E290	24-Mar-2022					30-Mar-2022	14 days	6 days	✓
THE THIRD CONTROL OF THE CONTROL OF		2 : 2022					00 mai 2022		o dayo	
hysical Tests : Conductivity in Water										
HDPE										
NEAR OUTFLOW INLAKE_Bottom	E100	25-Mar-2022					30-Mar-2022	28 days	5 days	✓
Physical Tests : Conductivity in Water HDPE										
NEAR OUTFLOW INLAKE Bottom 4	E100	25-Mar-2022					30-Mar-2022	28 days	5 davs	✓
=								,0	,-	
hysical Tests : Conductivity in Water										
HDPE										
NEAR OUTFLOW INLAKE_Mid-depth	E100	25-Mar-2022					30-Mar-2022	28 days	5 days	✓

Page : 17 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: Water					Ev	valuation: ≭ =	Holding time exce	edance ; •	✓ = Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	raction / Pre	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE JFLQC-3	E100	24-Mar-2022					30-Mar-2022	28 days	6 days	✓
Physical Tests : Conductivity in Water										
HDPE										
MID LAKE 1_Bottom	E100	24-Mar-2022					30-Mar-2022	28 days	6 days	✓
Physical Tests : Conductivity in Water										
HDPE MID LAKE 1_Mid-depth	E100	24-Mar-2022					30-Mar-2022	28 days	6 days	✓
Physical Tests : Conductivity in Water										
HDPE NORTHWEST BAY NORTH_Bottom	E100	24-Mar-2022					30-Mar-2022	28 days	6 days	✓
Physical Tests : Conductivity in Water										
HDPE NORTHWEST BAY NORTH_Mid-depth	E100	24-Mar-2022					30-Mar-2022	28 days	6 days	✓
Physical Tests : pH by Meter										
HDPE NEAR OUTFLOW INLAKE_Bottom	E108	25-Mar-2022					30-Mar-2022	0.25 hrs	130 hrs	# EHTR-FM
Physical Tests : pH by Meter										
HDPE NEAR OUTFLOW INLAKE_Bottom_4	E108	25-Mar-2022					30-Mar-2022	0.25 hrs	130 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE NEAR OUTFLOW INLAKE_Mid-depth	E108	25-Mar-2022					30-Mar-2022	0.25 hrs	130 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE MID LAKE 1_Bottom	E108	24-Mar-2022					30-Mar-2022	0.25 hrs	149 hrs	* EHTR-FM

Page : 18 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

wattix: water						alaation.	Holding time excee	suarioc ,	- VVICIIII	riolaling riii
Analyte Group	Method	Sampling Date	Ex	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE										
MID LAKE 1_Mid-depth	E108	24-Mar-2022					30-Mar-2022	0.25	149 hrs	×
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
JFLQC-3	E108	24-Mar-2022					30-Mar-2022	0.25	151 hrs	x
01 2 4 5							00 11161 2022	hrs		EHTR-FM
BL COLT OF THE MAN								1113		
Physical Tests : pH by Meter HDPE							1			
NORTHWEST BAY NORTH_Bottom	E108	24-Mar-2022					30-Mar-2022	0.25	152 hrs	×
NORTHWEST BAT NORTH_BOROIII	L100	24-IVIAI-2022					30-IVIAI-2022		132 1113	EHTR-FM
								hrs		LIIIX-IIV
Physical Tests : pH by Meter										
HDPE										
NORTHWEST BAY NORTH_Mid-depth	E108	24-Mar-2022					30-Mar-2022	0.25	152 hrs	30
								hrs		EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE										
NEAR OUTFLOW INLAKE_Bottom	E162	25-Mar-2022					30-Mar-2022	7 days	5 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
NEAR OUTFLOW INLAKE_Bottom_4	E162	25-Mar-2022					30-Mar-2022	7 days	5 days	✓
Physical Tests : TDS by Gravimetry										=
HDPE										
NEAR OUTFLOW INLAKE_Mid-depth	E162	25-Mar-2022					30-Mar-2022	7 days	5 days	1
								,-	, -	
Physical Tests (TD0 by Occidents)										
Physical Tests : TDS by Gravimetry							I			
HDPE JFLQC-3	E162	24-Mar-2022					30-Mar-2022	7 days	6 days	✓
JFLQU-3	E102	24-IVIAI-2U22					50-Wai-2022	/ uays	o uays	•
Physical Tests : TDS by Gravimetry										
HDPE										
MID LAKE 1_Bottom	E162	24-Mar-2022					30-Mar-2022	7 days	6 days	✓

Page : 19 of 31

Work Order YL2200265 Amendment 1
Client Golder Associates Ltd.

viatrix: water						aldation	noiding time exce	cuarioc ,	- VVICIIII	Tioluling Til	
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Physical Tests : TDS by Gravimetry											
HDPE											
MID LAKE 1_Mid-depth	E162	24-Mar-2022					30-Mar-2022	7 days	6 days	✓	
Physical Tests : TDS by Gravimetry											
HDPE											
NORTHWEST BAY NORTH Bottom	E162	24-Mar-2022					30-Mar-2022	7 days	6 days	1	
North Web Bit North Estion							00 111.01 2022	, aays	o days		
Physical Tasta - TDO by Occidents											
Physical Tests : TDS by Gravimetry HDPE							<u> </u>				
NORTHWEST BAY NORTH_Mid-depth	E162	24-Mar-2022					30-Mar-2022	7 days	6 days	√	
NORTHWEST BAT NORTH_Wild-deptil	E 102	24-IVIAI-2022					30-IVIAI-2022	/ uays	0 days	•	
Physical Tests : TSS by Gravimetry											
HDPE										,	
NEAR OUTFLOW INLAKE_Bottom	E160	25-Mar-2022					30-Mar-2022	7 days	5 days	✓	
Physical Tests : TSS by Gravimetry											
HDPE											
NEAR OUTFLOW INLAKE_Bottom_4	E160	25-Mar-2022					30-Mar-2022	7 days	5 days	✓	
Physical Tests : TSS by Gravimetry											
HDPE											
NEAR OUTFLOW INLAKE_Mid-depth	E160	25-Mar-2022					30-Mar-2022	7 days	5 days	✓	
Physical Tests : TSS by Gravimetry											
HDPE											
JFLQC-3	E160	24-Mar-2022					30-Mar-2022	7 days	6 days	✓	
0. 240 0								, -	,-		
Physical Tests - TSS by Cassimetry											
Physical Tests : TSS by Gravimetry									I		
HDPE MID LAKE 1 Bottom	E160	24-Mar-2022					30-Mar-2022	7 days	6 days	1	
MID LAKE I_DOLLOTT	L100	24-IVIAI-2022					50-IVIAI-2022	1 uays	0 days	•	
Physical Tests : TSS by Gravimetry											
HDPE		04.14					00.14				
MID LAKE 1_Mid-depth	E160	24-Mar-2022					30-Mar-2022	7 days	6 days	✓	

Page : 20 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Matrix: water						aldation. • -	Holding time excee	suarroc ,	- vvicinii	riolaling riii
Analyte Group	Method	Sampling Date	Ex	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry										
HDPE										
NORTHWEST BAY NORTH_Bottom	E160	24-Mar-2022					30-Mar-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
NORTHWEST BAY NORTH_Mid-depth	E160	24-Mar-2022					30-Mar-2022	7 days	6 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
NEAR OUTFLOW INLAKE_Bottom	E121	25-Mar-2022					31-Mar-2022	3 days	6 days	*
										EHT
Physical Tests : Turbidity by Nephelometry										
HDPE										
NEAR OUTFLOW INLAKE_Bottom_4	E121	25-Mar-2022					31-Mar-2022	3 days	6 days	æ
										EHT
Physical Tests : Turbidity by Nephelometry										
HDPE										
NEAR OUTFLOW INLAKE_Mid-depth	E121	25-Mar-2022					31-Mar-2022	3 days	6 days	*
										EHT
Physical Tests : Turbidity by Nephelometry										
HDPE										
JFLQC-3	E121	24-Mar-2022					31-Mar-2022	3 days	7 days	3 0
										EHT
Physical Tests : Turbidity by Nephelometry										
HDPE										
MID LAKE 1_Bottom	E121	24-Mar-2022					31-Mar-2022	3 days	7 days	3¢
										EHT
Physical Tests : Turbidity by Nephelometry										
HDPE										
MID LAKE 1_Mid-depth	E121	24-Mar-2022					31-Mar-2022	3 days	7 days	sc
										EHT
Physical Tests : Turbidity by Nephelometry										
HDPE										
NORTHWEST BAY NORTH_Bottom	E121	24-Mar-2022					31-Mar-2022	3 days	7 days	æ
										EHT

Page : 21 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Wallix: water						diddion.	Holding time exce	oudinoo ,	***************************************	Tiolding Till	
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Physical Tests : Turbidity by Nephelometry											
HDPE											
NORTHWEST BAY NORTH_Mid-depth	E121	24-Mar-2022					31-Mar-2022	3 days	7 days	35	
										EHT	
Total Metals : Total Mercury in Water by CVAAS											
Glass vial total (hydrochloric acid)											
NEAR OUTFLOW INLAKE Bottom	E508	25-Mar-2022					30-Mar-2022	28 days	5 days	✓	
_									-		
Total Metals : Total Mercury in Water by CVAAS											
Glass vial total (hydrochloric acid)											
NEAR OUTFLOW INLAKE_Bottom_4	E508	25-Mar-2022					30-Mar-2022	28 days	5 days	✓	
Total Metals : Total Mercury in Water by CVAAS							1				
Glass vial total (hydrochloric acid)											
NEAR OUTFLOW INLAKE_Mid-depth	E508	25-Mar-2022					30-Mar-2022	28 days	5 days	✓	
Total Metals : Total Mercury in Water by CVAAS											
Glass vial total (hydrochloric acid)											
JFLQC-3	E508	24-Mar-2022					30-Mar-2022	28 days	6 days	✓	
Total Metals : Total Mercury in Water by CVAAS											
Glass vial total (hydrochloric acid)											
MID LAKE 1_Bottom	E508	24-Mar-2022					30-Mar-2022	28 days	6 days	✓	
Total Metals : Total Mercury in Water by CVAAS											
Glass vial total (hydrochloric acid)											
MID LAKE 1_Mid-depth	E508	24-Mar-2022					30-Mar-2022	28 days	6 days	✓	
Total Metals : Total Mercury in Water by CVAAS											
Glass vial total (hydrochloric acid)											
NORTHWEST BAY NORTH_Bottom	E508	24-Mar-2022					30-Mar-2022	28 days	6 days	✓	
Total Metals : Total Mercury in Water by CVAAS											
Glass vial total (hydrochloric acid)											
NORTHWEST BAY NORTH_Mid-depth	E508	24-Mar-2022					30-Mar-2022	28 days	6 days	✓	

Page : 22 of 31

Work Order YL2200265 Amendment 1
Client Golder Associates Ltd.
Project Jackfish NTPC

Matrix. Water						aldation. • =	riolaring time exce	cuarioc , .	- *************************************	riolaling rii
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
NEAR OUTFLOW INLAKE_Bottom	E420	25-Mar-2022					01-Apr-2022	180	7 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
NEAR OUTFLOW INLAKE_Bottom_4	E420	25-Mar-2022					01-Apr-2022	180	7 days	✓
							· ·	days		
Total Metals : Total Metals in Water by CRC ICPMS								,-		
HDPE total (nitric acid)										
NEAR OUTFLOW INLAKE Mid-depth	E420	25-Mar-2022					01-Apr-2022	180	7 days	✓
								days	, -	
Total Matela : Total Matela in Water by CRC ICRMS								dayo		
Total Metals : Total Metals in Water by CRC ICPMS HDPE total (nitric acid)							I			
JFLQC-3	E420	24-Mar-2022					01-Apr-2022	180	8 days	✓
of EQU-0	L+20	24 Wai - 2022					01-71pi-2022	days	o days	•
								uays		
Total Metals : Total Metals in Water by CRC ICPMS				I						
HDPE total (nitric acid)	E400	04.140000								,
MID LAKE 1_Bottom	E420	24-Mar-2022					01-Apr-2022	180	8 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
MID LAKE 1_Mid-depth	E420	24-Mar-2022					01-Apr-2022	180	8 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
NORTHWEST BAY NORTH_Bottom	E420	24-Mar-2022					01-Apr-2022	180	8 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
NORTHWEST BAY NORTH Mid-depth	E420	24-Mar-2022					01-Apr-2022	180	8 days	✓
- '							·	days	_	
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS								,		
Glass vial (sodium bisulfate)							I			
NEAR OUTFLOW INLAKE Bottom	E611A	25-Mar-2022	29-Mar-2022				30-Mar-2022	14 days	5 davs	1
									,-	

Page : 23 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
NEAR OUTFLOW INLAKE_Bottom_4	E611A	25-Mar-2022	29-Mar-2022				30-Mar-2022	14 days	5 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
NORTHWEST BAY NORTH_Bottom	E611A	24-Mar-2022	29-Mar-2022				30-Mar-2022	14 days	5 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 24 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water Quality Control Sample Type			on: × = QC frequ	ount	Jonication, • -		
	Method	QC Lot #	QC	Regular	Actual	Frequency (%, Expected) Evaluation
Analytical Methods	ivietriod	QC LOI #	40	regular	Actual	Lxpecieu	Evaluation
Laboratory Duplicates (DUP)		446245	4	4.4	7.4	5.0	
Alkalinity Species by Titration	E290	1 1	1	14	7.1	5.0	√
Ammonia by Fluorescence	E298	447282	1	18	5.5	5.0	✓
BTEX by Headspace GC-MS	E611A	445666	1	4	25.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	446242	1	8	12.5	5.0	✓
Conductivity in Water	E100	446244	1	18	5.5	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	446751	2	24	8.3	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	446661	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	447283	1	12	8.3	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	446241	1	8	12.5	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	446234	1	12	8.3	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	446235	1	17	5.8	5.0	✓
pH by Meter	E108	446243	1	18	5.5	5.0	✓
Reactive Silica by Colourimetry	E392	447706	1	8	12.5	5.0	✓
Sulfate in Water by IC	E235.SO4	446236	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	446304	1	17	5.8	5.0	✓
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	447284	1	11	9.0	5.0	✓
Total Mercury in Water by CVAAS	E508	446091	2	24	8.3	5.0	✓
Total Metals in Water by CRC ICPMS	E420	447753	1	17	5.8	5.0	✓
Total Nitrogen by Colourimetry	E366	447280	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	447281	1	19	5.2	5.0	✓
TSS by Gravimetry	E160	446320	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	446885	2	21	9.5	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	445667	1	3	33.3	5.0	✓
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	446245	1	14	7.1	5.0	1
Ammonia by Fluorescence	E298	447282	1	18	5.5	5.0	1
BTEX by Headspace GC-MS	E611A	445666	1	4	25.0	5.0	1
CCME PHCs - F2-F4 by GC-FID	E601	447843	1	3	33.3	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	446242	1	8	12.5	5.0	1
Conductivity in Water	E100	446244	1	18	5.5	5.0	1
Dissolved Mercury in Water by CVAAS	E509	446751	2	24	8.3	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	446661	1	20	5.0	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	447283	1	12	8.3	5.0	1
Fluoride in Water by IC (Low Level)	E235.F-L	446241	1	8	12.5	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	446234	1	12	8.3	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	446235	1	17	5.8	5.0	√
Oil & Grease by Gravimetry	E567	447120	1	6	16.6	5.0	✓

Page : 25 of 31

Work Order YL2200265 Amendment 1
Client Golder Associates Ltd.
Project Jackfish NTPC

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

Quality Control Sample Type			Co	unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
pH by Meter	E108	446243	1	18	5.5	5.0	✓
Reactive Silica by Colourimetry	E392	447706	1	8	12.5	5.0	√
Sulfate in Water by IC	E235.SO4	446236	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	446304	1	17	5.8	5.0	1
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	447284	1	11	9.0	5.0	√
Total Mercury in Water by CVAAS	E508	446091	2	24	8.3	5.0	✓
Total Metals in Water by CRC ICPMS	E420	447753	1	17	5.8	5.0	✓
Total Nitrogen by Colourimetry	E366	447280	1	16	6.2	5.0	√
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	447281	1	19	5.2	5.0	1
TSS by Gravimetry	E160	446320	1	20	5.0	5.0	√
Turbidity by Nephelometry	E121	446885	2	21	9.5	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	445667	1	3	33.3	5.0	✓
Method Blanks (MB)							
Alkalinity Species by Titration	E290	446245	1	14	7.1	5.0	✓
Ammonia by Fluorescence	E298	447282	1	18	5.5	5.0	<u>√</u>
BTEX by Headspace GC-MS	E611A	445666	1	4	25.0	5.0	√
CCME PHCs - F2-F4 by GC-FID	E601	447843	1	3	33.3	5.0	<u> </u>
Chloride in Water by IC (Low Level)	E235.CI-L	446242	1	8	12.5	5.0	<u>√</u>
Conductivity in Water	E100	446244	1	18	5.5	5.0	√
Dissolved Mercury in Water by CVAAS	E509	446751	2	24	8.3	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	446661	1	20	5.0	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	447283	1	12	8.3	5.0	√
Fluoride in Water by IC (Low Level)	E235.F-L	446241	1	8	12.5	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	446234	1	12	8.3	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	446235	1	17	5.8	5.0	✓
Oil & Grease by Gravimetry	E567	447120	1	6	16.6	5.0	✓
Reactive Silica by Colourimetry	E392	447706	1	8	12.5	5.0	✓
Sulfate in Water by IC	E235.SO4	446236	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	446304	1	17	5.8	5.0	✓
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	447284	1	11	9.0	5.0	✓
Total Mercury in Water by CVAAS	E508	446091	2	24	8.3	5.0	✓
Total Metals in Water by CRC ICPMS	E420	447753	1	17	5.8	5.0	✓
Total Nitrogen by Colourimetry	E366	447280	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	447281	1	19	5.2	5.0	✓
TSS by Gravimetry	E160	446320	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	446885	2	21	9.5	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	445667	1	3	33.3	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	447282	1	18	5.5	5.0	✓
BTEX by Headspace GC-MS	E611A	445666	1	4	25.0	5.0	

Page : 26 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Matrix: Water

Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification.

Waltin. Water								
Quality Control Sample Type			Co	ount	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued								
Chloride in Water by IC (Low Level)	E235.CI-L	446242	1	8	12.5	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	446751	2	24	8.3	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	446661	1	20	5.0	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	447283	1	12	8.3	5.0	✓	
Fluoride in Water by IC (Low Level)	E235.F-L	446241	1	8	12.5	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	446234	1	12	8.3	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	446235	1	17	5.8	5.0	✓	
Reactive Silica by Colourimetry	E392	447706	1	8	12.5	5.0	✓	
Sulfate in Water by IC	E235.SO4	446236	1	16	6.2	5.0	✓	
Total Dissolved Phosphorus by Colourimetry (Trace Level)	E375-T	447284	1	11	9.0	5.0	✓	
Total Mercury in Water by CVAAS	E508	446091	2	24	8.3	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	447753	1	17	5.8	5.0	✓	
Total Nitrogen by Colourimetry	E366	447280	1	16	6.2	5.0	✓	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	447281	1	19	5.2	5.0	✓	
VH and F1 by Headspace GC-FID	E581.VH+F1	445667	1	3	33.3	5.0	✓	

Page : 27 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Vancouver -	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108 Vancouver -	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
	Environmental			i e
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Vancouver -			
TSS by Gravimetry	Environmental E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
	Vancouver -			filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters.)
	Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis
	Livionincita			methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Vancouver -			with gravimetric measurement of the residue.
	Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental			
Fluoride in Water by IC (Low Level)	E235.F-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Vancouver -			
	Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental		EDA 000 1 ("	
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental			

Page : 28 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Method / Lab Analytical Methods Matrix Alkalinity Species by Titration Water APHA 2320 B (mod) E290 Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total Vancouver alkalinity values. Environmental Ammonia by Fluorescence Water F298 J. Environ, Monit... Ammonia in water is analyzed by flow-injection analysis with fluorescence detection 2005, 7, 37-42 (mod) after reaction with orthophthaldialdehyde (OPA). Vancouver -Environmental Water APHA 5310 B (mod) E358-L Dissolved Organic Carbon by Combustion Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and (Low Level) Vancouver purged to remove inorganic carbon (IC). Analysis is by high temperature combustion Environmental with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC). Total Nitrogen by Colourimetry Water APHA 4500-P J (mod) Total Nitrogen is determined colourimetrically using a discrete analyzer after heated E366 persulfate digestion of the sample. Vancouver -Environmental APHA 4500-P E (mod). Total Phosphorus by Colourimetry (Ultra E372-U Water Total Phosphorus is determined colourimetrically using a discrete analyzer after heated Trace) persulfate digestion of the sample. Vancouver -Environmental Water APHA 4500-P E (mod). Total Dissolved Phosphorus by Colourimetry E375-T Total Dissolved Phosphorus is determined colourimetrically using a discrete analyzer (Trace Level) after filtration through a 0.45 micron filter followed by heated persulfate digestion of the Vancouver sample. Environmental Reactive Silica by Colourimetry E392 Water APHA 4500-SiO2 E Silicate (molybdate-reactive silica) is determined by the molybdosilicate-heteropoly blue colourimetric method using a discrete analyzer. Method Limitation: Arsenic (5+) above (mod) Vancouver -100 mg/L is a negative interference on this test Environmental Total Metals in Water by CRC ICPMS E420 Water EPA 200.2/6020B Water samples are digested with nitric and hydrochloric acids, and analyzed by (mod) Collision/Reaction Cell ICPMS. Vancouver -Environmental Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. Dissolved Metals in Water by CRC ICPMS Water E421 APHA 3030B/EPA Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by 6020B (mod) Collision/Reaction Cell ICPMS. Vancouver -Environmental Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered Total Mercury in Water by CVAAS Water EPA 1631E (mod) E508 Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS Vancouver -Environmental

Page : 29 of 31

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCI, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Oil & Grease by Gravimetry	E567 Vancouver - Environmental	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
VH and F1 by Headspace GC-FID	E581.VH+F1 Vancouver - Environmental	Water	BC MOE Lab Manual / CCME PHC in Soil - Tier 1 (mod)	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
CCME PHCs - F2-F4 by GC-FID	E601 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	Sample extracts are analyzed by GC-FID for CCME hydrocarbon fractions (F2-F4).
BTEX by Headspace GC-MS	E611A Vancouver - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	АРНА 2340В	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Hardness (Calculated) from Total Ca/Mg	EC100A Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
TDS in Water (Calculation) Using APHA Analyte List	EC103.APHA Vancouver - Environmental	Water	APHA 1030E	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis).
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Vancouver - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).
F1-BTEX	EC580 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).

Page : 30 of 31

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VPH: VH-BTEX-Styrene	EC580A Vancouver -	Water	BC MOE Lab Manual (VPH in Water and Solids) (mod)	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHw = Volatile Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and styrene.
	Environmental		Conds) (mod)	styrono.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Vancouver -			
	Environmental	10/-1	A DI I A 5040 D (I)	Described for Dischard Courts Code
Preparation for Dissolved Organic Carbon for Combustion	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Combustion	Vancouver -			
	Environmental			
Digestion for Total Nitrogen in water	EP366	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
Direction for Total Phaemberra in water	Environmental	Matar	ADUA 4500 D.E. (mod.)	Complex are boated with a paraulfate dispetion reagant
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			
Digestion for Dissolved Phosphorus in water	EP375	Water	APHA 4500-P E (mod).	Samples are filtered through a 0.45 micron membrane filter and then heated with a
	.,			persulfate digestion reagent.
	Vancouver - Environmental			
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	21 121			
	Vancouver -			
	Environmental			
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			
Oil & Grease Extraction for Gravimetry	EP567	Water	BC MOE Lab Manual	The entire water sample is extracted with hexane by liquid-liquid extraction.
			(Oil & Grease) (mod)	
	Vancouver -			
VOO. Burnetin full along Andrei	Environmental	10/	EDA 50044 (*** 1)	
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	Vancouver -			GC/MS-FID system.
	Environmental			,
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are
				extracted using a hexane liquid-liquid extraction.
	Vancouver -			
	Environmental			

Page : 31 of 31

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.

Project : Jackfish NTPC

QUALITY CONTROL REPORT

Work Order YL2200265 Page : 1 of 20

Amendment : 1

Address

Client · Golder Associates Ltd. Laboratory · Yellowknife - Environmental

Contact · Sarah Beattie **Account Manager** : Oliver Gregg

> Address :9 - 4905 48th Street :314 Old Airport Road, Unit 116 Yellowknife NT Canada X1A 3S3

Yellowknife, Northwest Territories Canada X1A 3T3

Telephone 867 873 6319 Telephone :1 867 446 5593 : Jackfish NTPC **Date Samples Received** Project : 25-Mar-2022 13:41

Date Analysis Commenced :29-Mar-2022 PO : ----

C-O-C number Issue Date : 19-Apr-2022 10:20 Sampler : Sarah Beattie

Site : Jackfish NTPC Quote number : YL21-GOLD100-008

No. of samples received : 8 No. of samples analysed : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Position

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

oignatorioo	r contorr	Editoratory Dopartmont
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Ann Ho	Laboratory Analyst	Metals, Burnaby, British Columbia
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia
Ophelia Chiu	Department Manager - Organics	Organics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruby Pham	Lab Assistant	Metals, Burnaby, British Columbia

Laboratory Department

Page : 2 of 20

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

ALS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 20

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	C Lot: 446243)										
VA22A6454-001	Anonymous	pH		E108	0.10	pH units	7.93	7.91	0.215%	4%	
Physical Tests (QC	C Lot: 446244)										
VA22A6454-001	Anonymous	conductivity		E100	2.0	μS/cm	296	294	0.678%	10%	
Physical Tests (QC	C Lot: 446245)										
VA22A6454-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	114	114	0.00%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	114	114	0.00%	20%	
Physical Tests (QC	C Lot: 446304)							ı			
VA22A6336-001	Anonymous	solids, total dissolved [TDS]		E162	13	mg/L	38	35	3	Diff <2x LOR	
Physical Tests (QC	C Lot: 446320)										
VA22A6337-001	Anonymous	solids, total suspended [TSS]		E160	3000	mg/L	<3000 µg/L	4.5	1.5	Diff <2x LOR	
Physical Tests (QC	C Lot: 446885)										
FJ2200769-001	Anonymous	turbidity		E121	0.10	NTU	25.4	25.4	0.236%	15%	
Physical Tests (QC	C Lot: 446886)										
YL2200265-008	JFLQC-3	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR	
Anions and Nutrien	nts (QC Lot: 446234)										
YL2200265-001	NORTHWEST BAY NORTH Bottom	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.137	0.137	0.130%	20%	
Anions and Nutrien	nts (QC Lot: 446235)							I			
YL2200265-001	NORTHWEST BAY NORTH_Bottom	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0044	0.0043	0.00006	Diff <2x LOR	
Anions and Nutrien	nts (QC Lot: 446236)										
VA22A6454-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	19.4	19.4	0.182%	20%	
Anions and Nutrien	nts (QC Lot: 446241)										
YL2200265-001	NORTHWEST BAY NORTH_Bottom	fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.101	0.107	5.76%	20%	
Anions and Nutrien	nts (QC Lot: 446242)										
YL2200265-001	NORTHWEST BAY NORTH_Bottom	chloride	16887-00-6	E235.CI-L	0.10	mg/L	67.7	67.7	0.0480%	20%	
Anions and Nutrien	nts (QC Lot: 447280)										
VA22A5618-001	Anonymous	nitrogen, total	7727-37-9	E366	0.030	mg/L	0.176	0.175	0.001	Diff <2x LOR	

Page : 4 of 20

Sub-Matrix: Water					Labora	tory Duplicate (D	UP) Report				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrien	ts (QC Lot: 447281)										
VA22A5618-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 447282)										
VA22A5618-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 447284)										
VA22A6089-001	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 447706)										
YL2200265-001	NORTHWEST BAY NORTH_Bottom	silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	14.6	14.9	2.04%	20%	
Organic / Inorganic	Carbon (QC Lot: 44728	33)									
VA22A5907-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	8.71	9.18	5.25%	20%	
Total Metals (QC Lo	ot: 446091)										
VA22A6441-006	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 446092)										
YL2200265-005	NEAR OUTFLOW INLAKE_Bottom	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 447753)										
CG2203473-005	Anonymous	aluminum, total	7429-90-5	E420	0.0150	mg/L	<0.0150	<0.0150	0	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00050	mg/L	0.00175	0.00172	0.00002	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00050	mg/L	0.0188	0.0191	1.89%	20%	
		beryllium, total	7440-41-7	E420	0.100	mg/L	<0.100 µg/L	<0.000100	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000250	mg/L	<0.000250	<0.000250	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.050	mg/L	0.108	0.110	0.002	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0250	mg/L	1.34 µg/L	0.00131	2.39%	20%	
		calcium, total	7440-70-2	E420	0.250	mg/L	639	656	2.71%	20%	
		cesium, total	7440-46-2	E420	0.000050	mg/L	0.000598	0.000608	1.58%	20%	
		chromium, total	7440-47-3	E420	0.00250	mg/L	<0.00250	<0.00250	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.50	mg/L	69.9 µg/L	0.0700	0.0753%	20%	
		copper, total	7440-50-8	E420	0.00250	mg/L	<0.00250	<0.00250	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000250	mg/L	<0.000250	<0.000250	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0050	mg/L	1.32	1.33	0.639%	20%	
		magnesium, total	7439-95-4	E420	0.0250	mg/L	300	303	1.17%	20%	
		manganese, total	7439-96-5	E420	0.00050	mg/L	0.698	0.700	0.199%	20%	
		molybdenum, total	7439-98-7	E420	0.000250	ma/l	0.00308	0.00295	4.26%	20%	
		molybuenum, total	1439-90-1	E420	0.000250	mg/L	0.00306	0.00293	4.2070	2076	

Page : 5 of 20

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Laboratory Duplicate (DUP) Report Sub-Matrix: Water LOR Laboratory sample ID Client sample ID Analyte CAS Number Method Unit Original **Duplicate** RPD(%) or **Duplicate** Qualifier Result Difference Limits Result Total Metals (QC Lot: 447753) - continued CG2203473-005 Anonymous phosphorus, total 7723-14-0 E420 0.250 mg/L < 0.250 < 0.250 0 Diff <2x LOR 7440-09-7 E420 0.250 mg/L 20.0 19.9 0.566% 20% potassium, total 7440-17-7 E420 0.00100 mg/L 0.0348 0.0350 0.595% 20% rubidium, total 7782-49-2 E420 0.250 mg/L 23.5 µg/L 0.0225 4.26% 20% selenium, total 7440-21-3 E420 0.50 mg/L 2.99 2.97 0.02 Diff <2x LOR silicon, total ---silver, total 7440-22-4 E420 0.000050 mg/L < 0.000050 < 0.000050 0 Diff <2x LOR 7440-23-5 E420 0.250 39.3 39.8 1.23% 20% sodium, total mg/L 7440-24-6 E420 0.00100 1.97 1.14% 20% strontium, total mg/L 1.99 E420 450 1.12% 20% 7704-34-9 2.50 445 sulfur, total mg/L Diff <2x LOR tellurium, total 13494-80-9 E420 0.00100 mg/L < 0.00100 < 0.00100 0 7440-28-0 E420 0.000050 0.000330 0.000335 0.000004 Diff <2x LOR thallium, total mg/L ----7440-29-1 E420 0.00050 <0.00050 < 0.00050 0 Diff <2x LOR thorium, total mg/L tin, total 7440-31-5 E420 0.00050 mg/L <0.00050 < 0.00050 0 Diff <2x LOR 7440-32-6 E420 0.00150 mg/L <0.00150 < 0.00150 0 Diff <2x LOR titanium, total 7440-33-7 E420 0.00050 mg/L <0.00050 < 0.00050 0 Diff <2x LOR tungsten, total 0.000050 0.0360 1.06% 20% uranium, total 7440-61-1 E420 mg/L 0.0364 7440-62-2 E420 0.00250 <0.00250 <0.00250 0 Diff <2x LOR vanadium, total mg/L E420 0.0150 0.0862 0.0905 0.0044 Diff <2x LOR 7440-66-6 zinc, total mg/L ____ E420 7440-67-7 0.00100 <0.00100 < 0.00100 0 Diff <2x LOR zirconium, total mg/L Dissolved Metals (QC Lot: 446661) VA22A6182-001 Diff <2x LOR Anonymous 7429-90-5 E421 0.0010 0.0036 0.0045 0.0009 aluminum, dissolved mg/L 7440-36-0 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR antimony, dissolved arsenic, dissolved 7440-38-2 E421 0.00010 mg/L 0.00023 0.00023 0.000002 Diff <2x LOR ----7440-39-3 E421 0.00010 0.0484 0.0478 1.31% 20% barium, dissolved mg/L bervllium, dissolved 7440-41-7 E421 0.000100 mg/L < 0.000100 < 0.000100 0 Diff <2x LOR 7440-69-9 E421 0.000050 < 0.000050 < 0.000050 Diff <2x LOR bismuth, dissolved mg/L 0 0.253 0.250 1.16% 20% boron, dissolved 7440-42-8 E421 0.010 mg/L 0 cadmium, dissolved 7440-43-9 E421 0.0000050 mg/L < 0.0000050 < 0.0000050 Diff <2x LOR 0.050 1.97% calcium, dissolved 7440-70-2 E421 mg/L 101 103 20% Diff <2x LOR cesium, dissolved 7440-46-2 E421 0.000010 mg/L 0.000034 0.000034 0.0000004 7440-47-3 E421 0.00050 mg/L <0.00050 < 0.00050 0 Diff <2x LOR chromium, dissolved cobalt, dissolved 7440-48-4 E421 0.00010 mg/L <0.00010 < 0.00010 0 Diff <2x LOR ----7440-50-8 E421 0.00020 mg/L <0.00020 < 0.00020 0 Diff <2x LOR copper, dissolved 17.9 iron, dissolved 7439-89-6 E421 0.010 mg/L 17.9 0.149% 20% 7439-92-1 0.000050 < 0.000050 < 0.000050 lead, dissolved E421 mg/L 0 Diff <2x LOR

Page : 6 of 20

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Laboratory Duplicate (DUP) Report Sub-Matrix: Water LOR Laboratory sample ID Client sample ID Analyte CAS Number Method Unit Original **Duplicate** RPD(%) or **Duplicate** Qualifier Result Result **Difference** Limits Dissolved Metals (QC Lot: 446661) - continued VA22A6182-001 Anonymous lithium, dissolved 7439-93-2 E421 0.0010 mg/L 0.0158 0.0155 2.16% 20% 7439-95-4 E421 0.0050 mg/L 14.0 14.2 1.70% 20% magnesium, dissolved 7439-96-5 E421 0.00010 mg/L 0.678 0.690 1.62% 20% manganese, dissolved 7439-98-7 E421 0.000050 mg/L < 0.000050 < 0.000050 0 Diff <2x LOR molybdenum, dissolved 7440-02-0 E421 0.00050 mg/L <0.00050 < 0.00050 0 Diff <2x LOR nickel, dissolved ----7723-14-0 E421 0.050 mg/L 0.329 0.323 0.006 Diff <2x LOR phosphorus, dissolved 7440-09-7 E421 0.050 mg/L 12.0 12.3 3.20% 20% potassium, dissolved 7440-17-7 E421 0.00020 0.00611 2.22% rubidium, dissolved mg/L 0.00597 20% E421 0.000050 0.000073 < 0.000050 0.000023 Diff <2x LOR 7782-49-2 selenium, dissolved mg/L silicon, dissolved 7440-21-3 E421 0.050 mg/L 15.3 15.0 2.46% 20% 7440-22-4 E421 0.000010 < 0.000010 < 0.000010 0 Diff <2x LOR silver, dissolved mg/L ---sodium, dissolved 7440-23-5 E421 0.050 38.5 38.5 0.0713% 20% mg/L strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.844 0.880 4.13% 20% 7704-34-9 E421 0.50 mg/L < 0.50 < 0.50 0 Diff <2x LOR sulfur, dissolved 13494-80-9 E421 0.00020 mg/L <0.00020 < 0.00020 0 Diff <2x LOR tellurium, dissolved E421 0.000010 <0.000010 <0.000010 0 Diff <2x LOR thallium, dissolved 7440-28-0 mg/L 7440-29-1 E421 0.00010 <0.00010 <0.00010 Diff <2x LOR thorium, dissolved mg/L 0 7440-31-5 E421 0.00010 <0.00010 <0.00010 0 Diff <2x LOR tin, dissolved mg/L 7440-32-6 E421 0.00030 0.00037 0.00040 0.00003 Diff <2x LOR titanium, dissolved mg/L 7440-33-7 E421 0.00010 <0.00010 < 0.00010 0 Diff <2x LOR tungsten, dissolved mg/L 7440-61-1 E421 0.000010 < 0.000010 < 0.000010 0 Diff <2x LOR uranium, dissolved mg/L ---vanadium, dissolved 7440-62-2 E421 0.00050 mg/L 0.00051 < 0.00050 0.00001 Diff <2x LOR zinc, dissolved 7440-66-6 E421 0.0010 mg/L < 0.0010 < 0.0010 0 Diff <2x LOR zirconium, dissolved 7440-67-7 E421 0.00020 mg/L < 0.00020 < 0.00020 0 Diff <2x LOR Dissolved Metals (QC Lot: 446751) CG2203477-017 Diff <2x LOR Anonymous mercury, dissolved 7439-97-6 E509 0.0000050 mg/L < 0.0000050 < 0.0000050 0 Dissolved Metals (QC Lot: 446752) YL2200265-005 NEAR OUTFLOW mercury, dissolved 7439-97-6 E509 0.0000050 mg/L < 0.0000050 < 0.0000050 0 Diff <2x LOR ----INLAKE Bottom Volatile Organic Compounds (QC Lot: 445666) VA22A6468-001 Anonymous benzene 71-43-2 E611A 0.50 µg/L < 0.50 < 0.50 0 Diff <2x LOR ethylbenzene 100-41-4 E611A 0.50 µg/L < 0.50 < 0.50 0 Diff <2x LOR methyl-tert-butyl ether [MTBE] 1634-04-4 E611A 0.50 μg/L < 0.50 < 0.50 0 Diff <2x LOR 100-42-5 E611A 0.50 μg/L < 0.50 < 0.50 0 Diff <2x LOR styrene 108-88-3 E611A 0.50 <0.50 < 0.50 0 Diff <2x LOR toluene µg/L 179601-23-1 E611A 0.40 <0.40 < 0.40 0 Diff <2x LOR µg/L xylene, m+pPage : 7 of 20

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Co	mpounds (QC Lot: 44560	66) - continued									
VA22A6468-001	Anonymous	xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 445667)										
YL2200265-001	NORTHWEST BAY NORTH_Bottom	F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	
	_	VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	

Page : 8 of 20

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 446244)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 446245)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, phenolphthalein (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 446304)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 446320)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 446885)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 446886)					
turbidity	E121	0.1	NTU	<0.10	
Anions and Nutrients (QCLot: 446234)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 446235)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 446236)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 446241)					
fluoride	16984-48-8 E235.F-L	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 446242)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 447280)					
nitrogen, total	7727-37-9 E366	0.03	mg/L	<0.030	
Anions and Nutrients (QCLot: 447281)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 447282)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 447284)					
phosphorus, total dissolved	7723-14-0 E375-T	0.002	mg/L	<0.0020	

Page : 9 of 20

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 447					
silicate (as SiO2)	7631-86-9 E392	0.5	mg/L	<0.50	
Organic / Inorganic Carbon(QCLo					
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 446091)					
mercury, total	7439-97-6 E508	0.000005	mg/L	<0.000050	
Total Metals (QCLot: 446092)					
mercury, total	7439-97-6 E508	0.000005	mg/L	<0.000050	
Total Metals (QCLot: 447753)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
ooron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2 E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3 E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0 E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7 E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	

Page : 10 of 20

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals(QCLot: 447753) - c			201		Nesun	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
ellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
hallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
horium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
in, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
ungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Dissolved Metals (QCLot: 44666	1)					
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
poron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cesium, dissolved	7440-46-2	E421	0.00001	mg/L	<0.000010	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	<0.00050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	<0.050	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	<0.00020	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	

Page : 11 of 20

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 446661)	- continued					
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
ellurium, dissolved	13494-80-9	E421	0.0002	mg/L	<0.00020	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
thorium, dissolved	7440-29-1	E421	0.0001	mg/L	<0.00010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	<0.00010	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	<0.00020	
Dissolved Metals (QCLot: 446751)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 446752)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050	
Aggregate Organics (QCLot: 4471	20)					
oil & grease (gravimetric)		E567	5	mg/L	<5.0	
Volatile Organic Compounds (QCL	_ot: 445666)					
penzene	71-43-2	E611A	0.5	μg/L	<0.50	
ethylbenzene	100-41-4	E611A	0.5	μg/L	<0.50	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.5	μg/L	<0.50	
styrene	100-42-5	E611A	0.5	μg/L	<0.50	
toluene	108-88-3	E611A	0.5	μg/L	<0.50	
xylene, m+p-	179601-23-1	E611A	0.4	μg/L	<0.40	
xylene, o-	95-47-6	E611A	0.3	μg/L	<0.30	
Hydrocarbons (QCLot: 445667)						
F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	
VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	
Hydrocarbons (QCLot: 447843)						
F2 (C10-C16)		E601	100	μg/L	<100	
F3 (C16-C34)		E601	250	μg/L	<250	
F4 (C34-C50)		E601	250	μg/L	<250	

Page : 12 of 20

Page : 13 of 20

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Cor	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 446243)									
pH		E108		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 446244)									
conductivity		E100	1	μS/cm	146.9 μS/cm	99.3	90.0	110	
Physical Tests (QCLot: 446245)									
alkalinity, phenolphthalein (as CaCO3)		E290	1	mg/L	229 mg/L	101	75.0	125	
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	100	85.0	115	
Physical Tests (QCLot: 446304)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	96.7	85.0	115	
Physical Tests (QCLot: 446320)									
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	92.8	85.0	115	
Physical Tests (QCLot: 446885)									
turbidity		E121	0.1	NTU	200 NTU	99.0	85.0	115	
Physical Tests (QCLot: 446886)									
turbidity		E121	0.1	NTU	200 NTU	99.0	85.0	115	
Anions and Nutrients (QCLot: 446234)								ı	ı
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 446235)								ı	ı
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 446236)								ı	ı
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	106	90.0	110	
Anions and Nutrients (QCLot: 446241)	10001 10 0	5005.5	2.24					ı	ı
fluoride	16984-48-8	E235.F-L	0.01	mg/L	1 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 446242)								ı	ı
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 447280)		5000						I	ı
nitrogen, total	7727-37-9	E366	0.03	mg/L	0.5 mg/L	114	75.0	125	
Anions and Nutrients (QCLot: 447281)		5050.11						I	ı
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	93.9	80.0	120	
Anions and Nutrients (QCLot: 447282)		5000						I	ı
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	106	85.0	115	
Anions and Nutrients (QCLot: 447284)								I	ı
phosphorus, total dissolved	7723-14-0	E3/5-1	0.002	mg/L	0.05 mg/L	92.9	80.0	120	

Page : 14 of 20

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 447706)									
silicate (as SiO2)	7631-86-9 I	E392	0.5	mg/L	10 mg/L	98.7	85.0	115	
Organic / Inorganic Carbon (QCLot: 44	7283)								
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	112	80.0	120	
Total Metals (QCLot: 446091)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	90.9	80.0	120	
Total Metals (QCLot: 446092)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	89.9	80.0	120	
Total Metals (QCLot: 447753)									
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	100	80.0	120	
antimony, total	7440-36-0 I	E420	0.0001	mg/L	1 mg/L	104	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	102	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	104	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	94.7	80.0	120	
bismuth, total	7440-69-9 I	E420	0.00005	mg/L	1 mg/L	99.7	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	94.2	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	102	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	98.2	80.0	120	
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	94.7	80.0	120	
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	97.9	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	98.6	80.0	120	
copper, total	7440-50-8 I	E420	0.0005	mg/L	0.25 mg/L	97.6	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	94.0	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	98.9	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	96.0	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	105	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	97.6	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	97.9	80.0	120	
nickel, total	7440-02-0 I	E420	0.0005	mg/L	0.5 mg/L	97.5	80.0	120	
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	97.6	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	98.4	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	100.0	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	97.7	80.0	120	
silicon, total	7440-21-3 I	E420	0.1	mg/L	10 mg/L	96.8	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	88.4	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	103	80.0	120	

Page : 15 of 20

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Laboratory Control Sample (LCS) Report Sub-Matrix: Water Spike Recovery (%) Recovery Limits (%) CAS Number Method LOR Unit Qualifier Analyte Concentration LCS Low High Total Metals (QCLot: 447753) - continued strontium, total 7440-24-6 E420 0.0002 mg/L 97.5 0.25 mg/L 80.0 120 7704-34-9 E420 sulfur. total 0.5 mg/L 50 mg/L 88.1 0.08 120 tellurium, total 13494-80-9 E420 0.0002 mg/L 96.9 80.0 120 0.1 mg/L 7440-28-0 E420 thallium, total 0.00001 mg/L 1 mg/L 104 80.0 120 thorium, total 7440-29-1 E420 0.0001 mg/L 0.1 mg/L 96.1 0.08 120 7440-31-5 E420 0.0001 tin, total mg/L 0.5 mg/L 93.3 0.08 120 7440-32-6 E420 0.0003 titanium, total mg/L 0.25 mg/L 95.0 80.0 120 7440-33-7 E420 tungsten, total 0.0001 mg/L 0.1 mg/L 94.7 0.08 120 7440-61-1 E420 0.00001 uranium, total mg/L 0.005 mg/L 98.5 0.08 120 vanadium, total 7440-62-2 E420 0.0005 mg/L 0.5 mg/L 99.6 80.0 120 7440-66-6 E420 0.003 mg/L zinc, total 0.5 mg/L 96.6 0.08 120 7440-67-7 E420 0.0002 zirconium, total mg/L 0.1 mg/L 95.1 80.0 120 Dissolved Metals (QCLot: 446661) aluminum, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 102 80.0 120 antimony, dissolved 7440-36-0 E421 0.0001 mg/L 109 80.0 120 1 mg/L 7440-38-2 E421 0.0001 arsenic, dissolved mg/L 1 mg/L 100 0.08 120 7440-39-3 E421 0.0001 mg/L barium, dissolved 0.25 mg/L 103 0.08 120 7440-41-7 E421 0.00002 beryllium, dissolved mg/L 0.1 mg/L 99.7 80.0 120 7440-69-9 E421 0.00005 mg/L bismuth, dissolved 1 mg/L 103 80.0 120 7440-42-8 E421 boron, dissolved 0.01 mg/L 1 mg/L 94.9 80.0 120 7440-43-9 E421 0.000005 cadmium, dissolved mg/L 0.1 mg/L 98.7 80.0 120 calcium, dissolved 7440-70-2 E421 0.05 mg/L 101 80.0 120 50 mg/L cesium, dissolved 7440-46-2 E421 0.00001 mg/L 0.05 mg/L 106 80.0 120 chromium, dissolved 7440-47-3 E421 0.0005 mg/L 96.6 120 0.25 mg/L 80.0 7440-48-4 E421 cobalt, dissolved 0.0001 mg/L 0.25 mg/L 97.2 0.08 120 7440-50-8 E421 0.0002 copper, dissolved mg/L 0.25 mg/L 97.4 0.08 120 7439-89-6 E421 0.01 iron, dissolved mg/L 1 mg/L 105 0.08 120 lead, dissolved 7439-92-1 E421 0.00005 mg/L 0.5 mg/L 103 0.08 120 7439-93-2 E421 0.001 lithium, dissolved mg/L 0.25 mg/L 97.3 0.08 120 7439-95-4 E421 0.005 mg/L magnesium, dissolved 50 mg/L 97.9 80.0 120 7439-96-5 E421 manganese, dissolved 0.0001 mg/L 97.7 0.25 mg/L 0.08 120 molybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 108 80.0 120 nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 99.6 80.0 120 7723-14-0 E421 0.05 mg/L 100 80.0 phosphorus, dissolved 10 mg/L 120 7440-09-7 E421 potassium, dissolved 0.05 mg/L 50 mg/L 102 80.0 120 rubidium, dissolved 7440-17-7 E421 0.0002 mg/L 80.0 0.1 mg/L 103 120 7782-49-2 E421 selenium, dissolved 0.00005 mg/L 1 mg/L 95.3 0.08 120

Page : 16 of 20

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Laboratory Control Sample (LCS) Report Sub-Matrix: Water Recovery (%) Recovery Limits (%) Spike CAS Number Method LOR Unit Qualifier Analyte Concentration LCS Low High Dissolved Metals (QCLot: 446661) - continued silicon, dissolved 7440-21-3 E421 0.05 mg/L 98.1 10 mg/L 80.0 120 7440-22-4 E421 0.00001 silver, dissolved mg/L 120 0.1 mg/L 99.6 80.0 sodium, dissolved 7440-23-5 E421 0.05 mg/L 99.7 80.0 120 50 mg/L 7440-24-6 E421 strontium, dissolved 0.0002 mg/L 0.25 mg/L 104 80.0 120 sulfur, dissolved 7704-34-9 E421 0.5 mg/L 50 mg/L 96.4 80.0 120 13494-80-9 E421 0.0002 tellurium, dissolved mg/L 0.1 mg/L 103 0.08 120 7440-28-0 E421 0.00001 mg/L thallium, dissolved 1 mg/L 101 80.0 120 7440-29-1 E421 thorium, dissolved 0.0001 mg/L 0.1 mg/L 98.6 0.08 120 7440-31-5 E421 0.0001 tin, dissolved mg/L 0.5 mg/L 100 0.08 120 titanium, dissolved 7440-32-6 E421 0.0003 mg/L 0.25 mg/L 80.0 91.9 120 7440-33-7 E421 0.0001 mg/L tungsten, dissolved 0.1 mg/L 100.0 80.0 120 uranium, dissolved 7440-61-1 E421 0.00001 mg/L 0.005 mg/L 102 80.0 120 7440-62-2 E421 0.0005 mg/L 98.7 120 vanadium, dissolved 0.5 mg/L 80.0 zinc. dissolved 7440-66-6 E421 0.001 mg/L 0.5 mg/L 98.8 80.0 120 zirconium, dissolved 7440-67-7 E421 0.0002 mg/L 0.1 mg/L 101 0.08 120 mercury, dissolved 7439-97-6 E509 0.000005 mg/L 99.6 0.0001 mg/L 80.0 120 7439-97-6 E509 0.000005 mercury, dissolved mg/L 0.0001 mg/L 98.8 0.08 120 Aggregate Organics (QCLot: 447120) oil & grease (gravimetric) ---- E567 5 mg/L 100 mg/L 102 130 70.0 Volatile Organic Compounds (QCLot: 445666) 71-43-2 E611A benzene 0.5 μg/L 100 µg/L 103 70.0 130 100-41-4 E611A ethylbenzene 0.5 μg/L 100 µg/L 88.8 70.0 130 methyl-tert-butyl ether [MTBE] 1634-04-4 E611A 0.5 μg/L 100 µg/L 102 70.0 130 100-42-5 E611A 0.5 μg/L styrene 100 µg/L 108 70.0 130 108-88-3 E611A 0.5 µg/L 100 µg/L 94.1 70.0 toluene 130 179601-23-1 E611A 0.4 μg/L xylene, m+p-200 µg/L 90.3 70.0 130 xylene, o-95-47-6 E611A 0.3 μg/L 100 µg/L 98.4 70.0 130 Hydrocarbons (QCLot: 445667) ---- E581.VH+F1 F1 (C6-C10) 100 μg/L 80.5 6310 µg/L 70.0 130 VHw (C6-C10) ---- E581.VH+F1 100 μg/L 6310 µg/L 73.3 70.0 130 Hydrocarbons (QCLot: 447843) ---- E601 F2 (C10-C16) 100 μg/L 3538 µg/L 117 70.0 130 ---- E601 250 F3 (C16-C34) μg/L 7053 µg/L 106 70.0 130 F4 (C34-C50) ---- E601 250 μg/L 106 70.0 130 5051 µg/L

Page : 17 of 20

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	Matrix: Water					Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	/ Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
	ients (QCLot: 446234)												
VA22A6495-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	12.8 mg/L	12.5 mg/L	102	75.0	125				
Anions and Nutr	ients (QCLot: 446235)												
VA22A6456-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.520 mg/L	0.5 mg/L	104	75.0	125				
Anions and Nutr	ients (QCLot: 446236)												
VA22A6456-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	106 mg/L	100 mg/L	106	75.0	125				
Anions and Nutr	ients (QCLot: 446241)												
YL2200265-002	NORTHWEST BAY NORTH_Mid-depth	fluoride	16984-48-8	E235.F-L	1.04 mg/L	1 mg/L	104	75.0	125				
Anions and Nutr	ients (QCLot: 446242)												
YL2200265-002	NORTHWEST BAY NORTH_Mid-depth	chloride	16887-00-6	E235.CI-L	103 mg/L	100 mg/L	103	75.0	125				
Anions and Nutr	ients (QCLot: 447280)												
VA22A5618-002	Anonymous	nitrogen, total	7727-37-9	E366	0.457 mg/L	0.4 mg/L	114	70.0	130				
Anions and Nutr	ients (QCLot: 447281)												
VA22A5618-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0496 mg/L	0.05 mg/L	99.1	70.0	130				
Anions and Nutr	ients (QCLot: 447282)												
VA22A5618-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.108 mg/L	0.1 mg/L	108	75.0	125				
Anions and Nutr	ients (QCLot: 447284)												
VA22A6089-002	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0467 mg/L	0.05 mg/L	93.3	70.0	130				
Anions and Nutr	ients (QCLot: 447706)												
YL2200265-002	NORTHWEST BAY NORTH_Mid-depth	silicate (as SiO2)	7631-86-9	E392	ND mg/L	10 mg/L	ND	75.0	125				
Organic / Inorga	nic Carbon (QCLot: 447	283)											
VA22A6089-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	ND mg/L	5 mg/L	ND	70.0	130				
Total Metals (Q0	CLot: 446091)												
VA22A6441-007	Anonymous	mercury, total	7439-97-6	E508	0.0000828 mg/L	0.0001 mg/L	82.8	70.0	130				
Total Metals (QC	CLot: 446092)												
YL2200265-006	NEAR OUTFLOW INLAKE_Mid-depth	mercury, total	7439-97-6	E508	0.0000813 mg/L	0.0001 mg/L	81.3	70.0	130				

Page : 18 of 20

Sub-Matrix: Water						Matrix Spil	re (MS) Report				
					Spil	ke	Recovery (%)	Recovery	Limits (%)	1	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Total Metals (QC	CLot: 447753)										
CG2203480-001	Anonymous	aluminum, total	7429-90-5	E420	0.189 mg/L	0.2 mg/L	94.4	70.0	130		
		antimony, total	7440-36-0	E420	0.0199 mg/L	0.02 mg/L	99.4	70.0	130		
		arsenic, total	7440-38-2	E420	0.0201 mg/L	0.02 mg/L	100	70.0	130		
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130		
		beryllium, total	7440-41-7	E420	0.0386 mg/L	0.04 mg/L	96.5	70.0	130		
		bismuth, total	7440-69-9	E420	0.00962 mg/L	0.01 mg/L	96.2	70.0	130		
		boron, total	7440-42-8	E420	0.095 mg/L	0.1 mg/L	95.0	70.0	130		
		cadmium, total	7440-43-9	E420	0.00403 mg/L	0.004 mg/L	101	70.0	130		
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130		
		cesium, total	7440-46-2	E420	0.00974 mg/L	0.01 mg/L	97.4	70.0	130		
		chromium, total	7440-47-3	E420	0.0394 mg/L	0.04 mg/L	98.6	70.0	130		
		cobalt, total	7440-48-4	E420	0.0190 mg/L	0.02 mg/L	95.3	70.0	130		
		copper, total	7440-50-8	E420	0.0189 mg/L	0.02 mg/L	94.7	70.0	130		
		iron, total	7439-89-6	E420	1.95 mg/L	2 mg/L	97.4	70.0	130		
		lead, total	7439-92-1	E420	0.0198 mg/L	0.02 mg/L	98.8	70.0	130		
		lithium, total	7439-93-2	E420	0.0980 mg/L	0.1 mg/L	98.0	70.0	130		
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130		
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130		
		molybdenum, total	7439-98-7	E420	0.0209 mg/L	0.02 mg/L	104	70.0	130		
		nickel, total	7440-02-0	E420	0.0379 mg/L	0.04 mg/L	94.8	70.0	130		
		phosphorus, total	7723-14-0	E420	10.4 mg/L	10 mg/L	104	70.0	130		
		potassium, total	7440-09-7	E420	4.10 mg/L	4 mg/L	102	70.0	130		
		rubidium, total	7440-17-7	E420	0.0199 mg/L	0.02 mg/L	99.6	70.0	130		
		selenium, total	7782-49-2	E420	0.0389 mg/L	0.04 mg/L	97.2	70.0	130		
		silicon, total	7440-21-3	E420	9.27 mg/L	10 mg/L	92.7	70.0	130		
		silver, total	7440-22-4	E420	0.00409 mg/L	0.004 mg/L	102	70.0	130		
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130		
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130		
		sulfur, total	7704-34-9	E420	18.4 mg/L	20 mg/L	92.0	70.0	130		
		tellurium, total	13494-80-9	E420	0.0396 mg/L	0.04 mg/L	99.1	70.0	130		
		thallium, total	7440-28-0	E420	0.00390 mg/L	0.004 mg/L	97.6	70.0	130		
		thorium, total	7440-29-1	E420	0.0208 mg/L	0.02 mg/L	104	70.0	130		
		tin, total	7440-31-5	E420	0.0203 mg/L	0.02 mg/L	102	70.0	130		
		titanium, total	7440-32-6	E420	0.0382 mg/L	0.04 mg/L	95.5	70.0	130		
		tungsten, total	7440-33-7	E420	0.0191 mg/L	0.02 mg/L	95.3	70.0	130		
		uranium, total	7440-61-1	E420	0.00400 mg/L	0.004 mg/L	100.0	70.0	130		
		vanadium, total	7440-62-2	E420	0.101 mg/L	0.1 mg/L	101	70.0	130		

Page : 19 of 20

Sub-Matrix: Water	Sub-Matrix: Water						Matrix Spil	ke (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	Lot: 447753) - conti	nued								
CG2203480-001	Anonymous	zinc, total	7440-66-6	E420	0.373 mg/L	0.4 mg/L	93.3	70.0	130	
		zirconium, total	7440-67-7	E420	0.0403 mg/L	0.04 mg/L	101	70.0	130	
Dissolved Metals	(QCLot: 446661)									
VA22A6182-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.203 mg/L	0.2 mg/L	101	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0213 mg/L	0.02 mg/L	107	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0210 mg/L	0.02 mg/L	105	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0417 mg/L	0.04 mg/L	104	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00925 mg/L	0.01 mg/L	92.5	70.0	130	
		boron, dissolved	7440-42-8	E421	0.094 mg/L	0.1 mg/L	93.9	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00404 mg/L	0.004 mg/L	101	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, dissolved	7440-46-2	E421	0.0106 mg/L	0.01 mg/L	106	70.0	130	
		chromium, dissolved	7440-47-3	E421	0.0386 mg/L	0.04 mg/L	96.5	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0193 mg/L	0.02 mg/L	96.7	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0187 mg/L	0.02 mg/L	93.6	70.0	130	
		iron, dissolved	7439-89-6	E421	ND mg/L	2 mg/L	ND	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0193 mg/L	0.02 mg/L	96.4	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0973 mg/L	0.1 mg/L	97.3	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0218 mg/L	0.02 mg/L	109	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0389 mg/L	0.04 mg/L	97.3	70.0	130	
		phosphorus, dissolved	7723-14-0	E421	10.2 mg/L	10 mg/L	102	70.0	130	
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130	
		rubidium, dissolved	7440-17-7	E421	0.0198 mg/L	0.02 mg/L	99.0	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0412 mg/L	0.04 mg/L	103	70.0	130	
		silicon, dissolved	7440-21-3	E421	ND mg/L	10 mg/L	ND	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00368 mg/L	0.004 mg/L	91.9	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	21.5 mg/L	20 mg/L	108	70.0	130	
		tellurium, dissolved	13494-80-9	E421	0.0420 mg/L	0.04 mg/L	105	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00384 mg/L	0.004 mg/L	96.0	70.0	130	
		thorium, dissolved	7440-29-1	E421	0.0209 mg/L	0.02 mg/L	104	70.0	130	
I	I	tin, dissolved	7440-31-5	E421	0.0201 mg/L	0.02 mg/L	100	70.0	130	

Page : 20 of 20

Work Order : YL2200265 Amendment 1
Client : Golder Associates Ltd.
Project : Jackfish NTPC

Matrix Spike (MS) Report Sub-Matrix: Water Spike Recovery (%) Recovery Limits (%) Client sample ID CAS Number Method Laboratory sample Analyte Concentration Target MS Low High Qualifier Dissolved Metals (QCLot: 446661) - continued VA22A6182-002 titanium, dissolved Anonymous 7440-32-6 E421 0.0377 mg/L 0.04 mg/L 94.2 70.0 130 tungsten, dissolved 7440-33-7 E421 70.0 130 0.0201 mg/L 0.02 mg/L 100 uranium, dissolved E421 7440-61-1 0.00397 mg/L 0.004 mg/L 99.3 70.0 130 vanadium, dissolved 7440-62-2 E421 0.100 mg/L 0.1 mg/L 100 70.0 130 zinc, dissolved 7440-66-6 E421 0.398 mg/L 0.4 mg/L 99.6 70.0 130 zirconium, dissolved 7440-67-7 E421 0.0421 mg/L 0.04 mg/L 105 70.0 130 Dissolved Metals (QCLot: 446751) CG2203477-018 Anonymous mercury, dissolved 7439-97-6 E509 0.0000946 mg/L 0.0001 mg/L 94.6 70.0 130 ----Dissolved Metals (QCLot: 446752) YL2200265-006 NEAR OUTFLOW mercury, dissolved 7439-97-6 E509 0.0000916 mg/L 0.0001 mg/L 91.6 70.0 130 INLAKE Mid-depth Volatile Organic Compounds (QCLot: 445666) VA22A6468-001 Anonymous benzene 71-43-2 E611A 130 112 µg/L 100 µg/L 112 70.0 ethylbenzene 100-41-4 E611A 104 µg/L 100 µg/L 104 70.0 130 methyl-tert-butyl ether [MTBE] 1634-04-4 E611A 111 µg/L 100 µg/L 111 70.0 130 styrene 100-42-5 E611A 107 µg/L 100 µg/L 107 70.0 130 toluene 108-88-3 E611A 109 µg/L 100 µg/L 109 70.0 130 xylene, m+p-179601-23-1 E611A 209 µg/L 200 µg/L 104 70.0 130 xylene, o-95-47-6 E611A 110 µg/L 100 µg/L 110 70.0 130 Hydrocarbons (QCLot: 445667) YL2200265-005 NEAR OUTFLOW F1 (C6-C10) E581.VH+F1 5600 µg/L 6310 µg/L 88.7 60.0 140 INLAKE_Bottom VHw (C6-C10) E581.VH+F1 140 5100 µg/L 6310 µg/L 80.8 60.0

CLIENT: Golder Associates Ltd. CHAIN OF CUSTODY TURNAROUND REQUIREMENTS SCIED BEATTH ☐ Standard TAT (List due date):

PROJECT:

PURCHASE ORDER NO .:

かんかかん Jackfish NTPC

Leka

(Standard TAT may be longer for some texts e.g., Ultra Trace Organics)

PROJECT MANAGER: Kathy Qin

SECT

SERGY 10

SAMPLER MOBILE: CONTACT PH

306 370 6141

RECEIVED BY: DATE/TIME X

□ Non Standard or urgent TAT (List due date):

DATE/TIME: FOR LABORATORY USE ONLY (Circle) MAR 25/ stody Seal Intact? 1

RELINQUISHED BY:

JEMP DATE/TIME RECEIVED BY:

2022

G N N N N

EMAIL INVOICE TO: Laurence bonnillocides com Ketty, On Brosides com

04 84 Project Number: 21482915

EQuiS facility code: 183527250 ALS QUOTE NC YL21-GOLD100-008

812 498

EMAIL REPORTS TO: Kathy_Qin@golder.com; allson_humphriss@golder.com

SPECIAL HANDLING/STORAGE OR DISPOSAL:

ALS USE ONLY

SAMPLE DETAILS

Solid(S) Water(W)

MATRIX

CONTAINER

ANALYSIS REQUIRED

omments on likely contaminant levels, dilutions, or empley requiring specific OC analysis etc.

Additional Information

SAMPLE

Sample identification
(This description will appear on the report)

(dd-mm-yyyy)

MATRIX

TOTAL CONTAINERS

4

Ó

MID LAKE 1_Mid-depth MID LAKE 1_ Bottom

24-03-22 15:30 34-03-22 15:00 34-03-23 III H 24-03-22 11 65

ŧ

×

+

×

Yellowknife
Work Order Reference
YL2200265

Environmental Division

\$

\$

4

× ×

W

×

ij

X

\$

Section 1

SOUTHWEST BAY_Bottom

END DISOHARGE WLAKE Mid-depth

THE BUTCHARGE INLAKE BOTH

.

NORTHWEST BAY NORTH_Mid-depth NORTHWEST BAY NORTH_Bottom DILLEGING

ree ce / frozen ice bricks present upon recept? indom Sample Temperature on Recept.

00

1:

7

JFLQC-3

24-03-22

2

×

12 : 10

NEAR OUTFLOW INLAKE_Mid-depth

85-03-22 9.45

9503-32 10 B

\$ Z 2

25-03-22 975

3 4

×

Telephone: +1 867 873 5593

× ×

NEAR OUTFLOW INLAKE_Bottom SOUTHWEST BAY Mid-depth

NEAR OUTFLOW INLAKE_Bottom_4

CERTIFICATE OF ANALYSIS

Work Order : YL2200516

Client : Golder Associates Ltd.

Contact : Sarah Beattie

Address : 9 - 4905 48th Street

Yellowknife NT Canada X1A 3S3

Telephone : 867 873 6319
Project : Jackfish NTPC

C-O-C number : ---Sampler : ----

Site : Jackfish NTPC
Quote number : YL21-GOLD100-008

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 7

Laboratory : Yellowknife - Environmental

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife NT Canada X1A 3T3

Telephone : 1 867 446 5593

Date Samples Received : 25-May-2022 10:38

Date Analysis Commenced : 27-May-2022

Issue Date : 08-Jun-2022 16:25

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia	
Anshim Anshim	Lab Assistant	Metals, Burnaby, British Columbia	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Dan Gebert	Laboratory Analyst	Metals, Burnaby, British Columbia	
David Stewart	Analyst - Chemistry	Inorganics, Burnaby, British Columbia	
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia	

Page : 2 of 7

Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

pH units	pH units
NTU	nephelometric turbidity units
mg/L	milligrams per litre
μS/cm	Microsiemens per centimetre
μg/L	micrograms per litre
-	No Unit
Unit	Description

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DTMF	Dissolved concentration exceeds total for field-filtered metals sample. Metallic
	contaminants may have been introduced to dissolved sample during field filtration.

>: greater than.

Page : 3 of 7
Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water			C	lient sample ID	OUTFLOW	EMD	EMD	JFLQC_1	
(Matrix: Water)						DISCHARGE INLAKE_Bottom	DISCHARGE INLAKE_Mid-de pth		
			Client samp	oling date / time	24-May-2022 13:15	24-May-2022 15:10	24-May-2022 15:10	24-May-2022 10:00	
Analyte	CAS Number	Method	LOR	Unit	YL2200516-001	YL2200516-002	YL2200516-003	YL2200516-004	
					Result	Result	Result	Result	
Physical Tests						100			
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	110	109	109	<1.0	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	110	109	109	<1.0	
conductivity		E100	2.0	μS/cm	464	462	464	<2.0	
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	149	144	149	<0.60	
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	147	147	143	<0.60	
pH		E108	0.10	pH units	8.16	8.16	8.16	5.74	
solids, total dissolved [TDS]		E162	10	mg/L	285	275	297	<10	
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	247	244	245	<1.0	
solids, total suspended [TSS]		E160	3.0	mg/L	6.0	4.8	3.4	<3.0	
turbidity		E121	0.10	NTU	7.70	6.46	6.88	<0.10	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0668	0.0701	0.0696	<0.0050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	60.2	61.0	59.5	<0.10	
fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.091	0.092	0.078	<0.010	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.125	0.141	0.135	<0.0050	
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	0.127	0.143	0.136	<0.0051	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0016	0.0016	0.0015	<0.0010	
nitrogen, total	7727-37-9	E366	0.030	mg/L	1.26	1.25	1.24	<0.030	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0982	0.0902	0.0851	<0.0020	
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0197	0.0195	0.0233	<0.0020	
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	12.8	13.1	13.2	<0.50	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	24.7	25.1	24.6	<0.30	
,	14000-79-0	2200.007	0.00	mg/L	21.7	20.1	21.0	-0.00	
Organic / Inorganic Carbon carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	12.5	13.4	12.8	<0.50	
			0.00	mg/L	12.0	10.7	12.0	-0.00	
Total Metals	7420.00.5	E420	0.0030	ma/l	0.0290	0.0105	0.0109	<0.0030	
aluminum, total	7429-90-5	E 4 20	0.0030	mg/L	0.0290	0.0103	0.0109	\0.0030	

Page Work Order

: 4 of 7 : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water (Matrix: Water)			Clie	ent sample ID	OUTFLOW	EMD DISCHARGE INLAKE_Bottom	EMD DISCHARGE INLAKE_Mid-de pth	JFLQC_1	
			Client sampl	ing date / time	24-May-2022 13:15	24-May-2022 15:10	24-May-2022 15:10	24-May-2022 10:00	
Analyte	CAS Number	Method	LOR	Unit	YL2200516-001	YL2200516-002	YL2200516-003	YL2200516-004	
					Result	Result	Result	Result	
Total Metals									
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00122	0.00123	0.00121	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0638	0.0613	0.0620	<0.00010	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0307	0.0304	0.0296	<0.00010	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.029	0.028	0.028	<0.010	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	<0.000050	<0.0000050	<0.0000050	
calcium, total	7440-70-2	E420	0.050	mg/L	38.6	38.6	37.0	<0.050	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00010	<0.00010	<0.00010	<0.00010	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00210	0.00203	0.00221	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	0.046	0.018	0.020	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000056	<0.000050	0.000066	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0070	0.0068	0.0066	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	12.3	12.2	12.3	<0.0050	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0614	0.0633	0.0642	<0.00010	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000210	0.000220	0.00132	<0.000050	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00076	0.00068	0.00073	<0.00050	
phosphorus, total	7723-14-0	E420	0.050	mg/L	0.094	0.076	0.068	<0.050	
potassium, total	7440-09-7	E420	0.050	mg/L	3.88	3.80	3.86	<0.050	
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00260	0.00250	0.00252	<0.00020	
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000056	<0.000050	<0.000050	<0.000050	
silicon, total	7440-21-3	E420	0.10	mg/L	6.33	6.28	6.18	<0.10	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5	E420	0.050	mg/L	31.5	29.8	30.5	<0.050	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0831	0.0843	0.0845	<0.00020	
sulfur, total	7704-34-9	E420	0.50	mg/L	8.78	8.62	8.73	<0.50	

Page Work Order

: 5 of 7 : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water (Matrix: Water)			Clid	ent sample ID	OUTFLOW	EMD DISCHARGE INLAKE_Bottom	EMD DISCHARGE INLAKE_Mid-de pth	JFLQC_1	
			Client sampl	ing date / time	24-May-2022 13:15	24-May-2022 15:10	24-May-2022 15:10	24-May-2022 10:00	
Analyte	CAS Number	Method	LOR	Unit	YL2200516-001	YL2200516-002	YL2200516-003	YL2200516-004	
					Result	Result	Result	Result	
Total Metals	40404.00.0	E420	0.00000		<0.00000	<0.00020	<0.00020	<0.00020	
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020				
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.00010	<0.000010	<0.000010	<0.000010	
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	0.00090	<0.00030	<0.00030	<0.00030	
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000566	0.000611	0.000582	<0.000010	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0.0032	<0.0030	
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0045	0.0036	0.0034	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00126	0.00122	0.00122	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0609	0.0583	0.0597	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0328	0.0314	0.0322	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.029	0.029	0.029	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.000050	<0.0000050	<0.000050	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	40.0	38.6	39.7	<0.050	
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00181	0.00179	0.00183	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	0.014	0.011	0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0062	0.0063	0.0062	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	12.0	11.5	12.1	<0.0050	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0475	0.0468	0.0477	<0.00010	

Page Work Order

: 6 of 7 : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water (Matrix: Water)		Cli	ent sample ID	OUTFLOW	EMD DISCHARGE INLAKE_Bottom	EMD DISCHARGE INLAKE_Mid-de pth	JFLQC_1		
			Client sampl	ing date / time	24-May-2022 13:15	24-May-2022 15:10	24-May-2022 15:10	24-May-2022 10:00	
Analyte	CAS Number	Method	LOR	Unit	YL2200516-001	YL2200516-002	YL2200516-003	YL2200516-004	
					Result	Result	Result	Result	
Dissolved Metals mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	0.0000060	<0.000050	<0.000050	
molybdenum, dissolved	7439-97-6	E421	0.000050	mg/L	0.000213	0.00149 DTMF	0.000204	<0.000050	
nickel, dissolved	7439-98-7	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	3.80	3.75	3.87	<0.050	
rubidium, dissolved	7440-09-7	E421	0.00020	mg/L	0.00250	0.00252	0.00251	<0.0000	
selenium, dissolved	7782-49-2	E421	0.00020	mg/L	0.00256	<0.00050	<0.00050	<0.00020	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.15	6.18	6.35	<0.050	
silver, dissolved	7440-21-3	E421	0.000010	mg/L	<0.000010	<0.000010	<0.00010	<0.000010	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	31.6	30.0	31.3	<0.050	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0891	0.0880	0.0888	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	9.60	9.23	9.49	<0.50	
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.00010	<0.00010	<0.000010	
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000572	0.000551	0.000572	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	
Aggregate Organics									
oil & grease (gravimetric)		E567	5.0	mg/L				<5.0	
Volatile Organic Compounds [Fuels]									
benzene	71-43-2	E611A	0.50	μg/L				<0.50	
ethylbenzene	100-41-4	E611A	0.50	μg/L				<0.50	

Page : 7 of 7

Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

ALS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			CI	lient sample ID	OUTFLOW	EMD DISCHARGE	EMD DISCHARGE	JFLQC_1	
						INLAKE_Bottom	INLAKE_Mid-de pth		
			Client samp	oling date / time	24-May-2022 13:15	24-May-2022 15:10	24-May-2022 15:10	24-May-2022 10:00	
Analyte C.	AS Number	Method	LOR	Unit	YL2200516-001	YL2200516-002	YL2200516-003	YL2200516-004	
					Result	Result	Result	Result	
Volatile Organic Compounds [Fuels]									
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L				<0.50	
styrene	100-42-5	E611A	0.50	μg/L				<0.50	
toluene	108-88-3	E611A	0.50	μg/L				<0.50	
xylene, m+p-	79601-23-1	E611A	0.40	μg/L				<0.40	
xylene, o-	95-47-6	E611A	0.30	μg/L				<0.30	
xylenes, total	1330-20-7	E611A	0.50	μg/L				<0.50	
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611A	1.0	%				102	
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%				101	
Hydrocarbons									
F1 (C6-C10)		E581.VH+F1	100	μg/L				<100	
F2 (C10-C16)		E601	300	μg/L				<300	
F3 (C16-C34)		E601	300	μg/L				<300	
F4 (C34-C50)		E601	300	μg/L				<300	
VHw (C6-C10)		E581.VH+F1	100	μg/L				<100	
F1-BTEX		EC580	100	μg/L				<100	
VPHw		EC580A	100	μg/L				<100	
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%				86.4	
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%				116	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **YL2200516** Page : 1 of 22

Client : Golder Associates Ltd. Laboratory : Yellowknife - Environmental

Contact : Sarah Beattie Account Manager : Oliver Gregg

Address : 9 - 4905 48th Street Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

 Telephone
 : 867 873 6319
 Telephone
 : 1 867 446 5593

 Project
 : Jackfish NTPC
 Date Samples Received
 : 25-May-2022 10:38

 PO
 : --- Issue Date
 : 08-Jun-2022 16:26

PO : ---C-O-C number : ----

Yellowknife NT Canada X1A 3S3

Sampler : ---Site : Jackfish NTPC

Quote number : YL21-GOLD100-008

No. of samples received : 4
No. of samples analysed : 4

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 22 : YL2200516 Work Order

Client : Golder Associates Ltd.

: Jackfish NTPC Project

Outliers: Quality Control Samples
Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Total Metals	QC-MRG2-5056640		lithium, total	7439-93-2	E420	0.0012 MB-LOR	0.001 mg/L	Blank result exceeds
	01					mg/L		permitted value

Result Qualifiers

Qualifier	Description
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.

Page : 4 of 22 Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Preparation	Preparation Holding Tim		īmes Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
JFLQC_1	E567	24-May-2022	02-Jun-2022	28	9 days	✓	02-Jun-2022	40 days	0 days	✓
				days						
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
EMD DISCHARGE INLAKE_Bottom	E298	24-May-2022	01-Jun-2022				02-Jun-2022	28 days	9 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
EMD DISCHARGE INLAKE_Mid-depth	E298	24-May-2022	01-Jun-2022				02-Jun-2022	28 days	9 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
JFLQC_1	E298	24-May-2022	01-Jun-2022				02-Jun-2022	28 days	9 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
OUTFLOW	E298	24-May-2022	01-Jun-2022				02-Jun-2022	28 days	9 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
EMD DISCHARGE INLAKE_Bottom	E235.CI-L	24-May-2022					27-May-2022	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE	5005.011						07.14			,
EMD DISCHARGE INLAKE_Mid-depth	E235.CI-L	24-May-2022					27-May-2022	28 days	3 days	✓

Page : 5 of 22 Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Preparation	watrix: water						aluation. • -	nolding time exce			Triolaing Tim
Anions and Nutrients - Chloride in Water by IC (Low Level) HOPE JFLQC_1	Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
Anions and Nutrients - Chloride in Water by IC (Low Level) HDPE OUTFLOW E235.CH. 24-May-2022	Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date	Holding	g Times	Eval
HOPE				Date	Rec	Actual			Rec	Actual	
## E235.CH. 24-May-2022	Anions and Nutrients : Chloride in Water by IC (Low Level)										
Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE OUTFLOW E235.CH. 24-May-2022	HDPE										
## HOPE OUTFLOW	JFLQC_1	E235.CI-L	24-May-2022					27-May-2022	28 days	3 days	✓
## HOPE OUTFLOW											
## HOPE OUTFLOW	Anions and Nutrients : Chloride in Water by IC (Low Level)										
Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE_Bottom E235.F-L 24-May-2022											
Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE_Bottom E235.F-L 24-May-2022	OUTFLOW	E235.CI-L	24-May-2022					27-May-2022	28 days	3 days	✓
## EMD DISCHARGE INLAKE_Bottom								-			
## EMD DISCHARGE INLAKE_Bottom	Anions and Nutrients : Fluoride in Water by IC (Low Level)										
E235.F-L 24-May-2022											
Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE_Mid-depth E235.F-L 24-May-2022		E235.F-L	24-May-2022					27-Mav-2022	28 davs	3 davs	✓
## HDPE END DISCHARGE INLAKE_Mid-depth E235.F-L 24-May-2022 27-May-2022 26 days 3 days \$\psi\$ Anions and Nutrients: Fluoride in Water by IC (Low Level) E235.F-L 24-May-2022 27-May-2022 28 days 3 days \$\psi\$ Anions and Nutrients: Fluoride in Water by IC (Low Level) E235.F-L 24-May-2022 27-May-2022 28 days 3 days \$\psi\$ Anions and Nutrients: Nitrate in Water by IC (Low Level) E235.NO3-L 24-May-2022 27-May-2022 28 days 3 days \$\psi\$ Anions and Nutrients: Nitrate in Water by IC (Low Level) E235.NO3-L 24-May-2022 27-May-2022 3 days \$\psi\$ 3 days \$\psi\$ Anions and Nutrients: Nitrate in Water by IC (Low Level) E235.NO3-L 24-May-2022 27-May-2022 3 days 3 days \$\psi\$ Anions and Nutrients: Nitrate in Water by IC (Low Level)			, ,					, ,		'	
## HDPE END DISCHARGE INLAKE_Mid-depth E235.F-L 24-May-2022 27-May-2022 26 days 3 days \$\psi\$ Anions and Nutrients: Fluoride in Water by IC (Low Level) E235.F-L 24-May-2022 27-May-2022 28 days 3 days \$\psi\$ Anions and Nutrients: Fluoride in Water by IC (Low Level) E235.F-L 24-May-2022 27-May-2022 28 days 3 days \$\psi\$ Anions and Nutrients: Nitrate in Water by IC (Low Level) E235.NO3-L 24-May-2022 27-May-2022 28 days 3 days \$\psi\$ Anions and Nutrients: Nitrate in Water by IC (Low Level) E235.NO3-L 24-May-2022 27-May-2022 3 days \$\psi\$ 3 days \$\psi\$ Anions and Nutrients: Nitrate in Water by IC (Low Level) E235.NO3-L 24-May-2022 27-May-2022 3 days 3 days \$\psi\$ Anions and Nutrients: Nitrate in Water by IC (Low Level)	A torono IN Charles Florida to War all 10 // a la all										
E235.F-L 24-May-2022 27-May-2022 28 days 3 days Anions and Nutrients: Fluoride in Water by IC (Low Level) HDPE JFLQC_1								l .			
Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE JFLQC_1 E235.F-L 24-May-2022 27-May-2022 28 days 3 days Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE OUTFLOW E235.F-L 24-May-2022 27-May-2022 28 days 3 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE_Bottom E235.NO3-L 24-May-2022 27-May-2022 3 days 3 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE_Mid-depth E235.NO3-L 24-May-2022 27-May-2022 3 days 3 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE HD		F235 F-I	24-May-2022					27-May-2022	28 days	3 days	1
## PE FLOC_1	EMD DISCHARGE INLAKE_Mid-deptil	L233.1 -L	24-Way-2022					21-Way-2022	20 uays	3 days	•
## PE FLOC_1											
## DEC Filter Fi											
Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE OUTFLOW E235.F-L 24-May-2022 27-May-2022 28 days 3 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE_Bottom E235.NO3-L 24-May-2022 27-May-2022 3 days 3 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE_Mid-depth E235.NO3-L 24-May-2022 27-May-2022 3 days 3 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE HDPE HDPE HDPE		F225 F I	24 May 2022					07 M 0000	00 4	0 4	
HDPE OUTFLOW	JFLQC_1	E235.F-L	24-May-2022					27-May-2022	28 days	3 days	Y
HDPE OUTFLOW											
OUTFLOW											
Anions and Nutrients: Nitrate in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE_Bottom E235.NO3-L 24-May-2022 Anions and Nutrients: Nitrate in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE_Mid-depth E235.NO3-L 24-May-2022 27-May-2022 3 days 3 days Anions and Nutrients: Nitrate in Water by IC (Low Level) HDPE Anions and Nutrients: Nitrate in Water by IC (Low Level) HDPE											
HDPE EMD DISCHARGE INLAKE_Bottom E235.NO3-L 24-May-2022 27-May-2022 3 days √ Anions and Nutrients : Nitrate in Water by IC (Low Level) E235.NO3-L 24-May-2022 27-May-2022 3 days √ Anions and Nutrients : Nitrate in Water by IC (Low Level) E235.NO3-L 24-May-2022 27-May-2022 3 days 3 days ✓ Anions and Nutrients : Nitrate in Water by IC (Low Level) 27-May-2022 3 days 3 days ✓	OUTFLOW	E235.F-L	24-May-2022					27-May-2022	28 days	3 days	✓
HDPE EMD DISCHARGE INLAKE_Bottom E235.NO3-L 24-May-2022 27-May-2022 3 days √ Anions and Nutrients : Nitrate in Water by IC (Low Level) E235.NO3-L 24-May-2022 27-May-2022 3 days √ Anions and Nutrients : Nitrate in Water by IC (Low Level) E235.NO3-L 24-May-2022 27-May-2022 3 days 3 days ✓ Anions and Nutrients : Nitrate in Water by IC (Low Level) 27-May-2022 3 days 3 days ✓											
EMD DISCHARGE INLAKE_Bottom	Anions and Nutrients : Nitrate in Water by IC (Low Level)										
Anions and Nutrients: Nitrate in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE_Mid-depth E235.NO3-L 24-May-2022 Anions and Nutrients: Nitrate in Water by IC (Low Level) HDPE HDPE	HDPE										
HDPE EMD DISCHARGE INLAKE_Mid-depth E235.NO3-L 24-May-2022 27-May-2022 3 days 3 days ✓ Anions and Nutrients : Nitrate in Water by IC (Low Level) <	EMD DISCHARGE INLAKE_Bottom	E235.NO3-L	24-May-2022					27-May-2022	3 days	3 days	✓
HDPE EMD DISCHARGE INLAKE_Mid-depth E235.NO3-L 24-May-2022 27-May-2022 3 days 3 days ✓ Anions and Nutrients : Nitrate in Water by IC (Low Level) <											
HDPE EMD DISCHARGE INLAKE_Mid-depth E235.NO3-L 24-May-2022 27-May-2022 3 days 3 days ✓ Anions and Nutrients : Nitrate in Water by IC (Low Level) <	Anions and Nutrients : Nitrate in Water by IC (Low Level)										
Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE											
Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE	EMD DISCHARGE INLAKE_Mid-depth	E235.NO3-L	24-May-2022					27-May-2022	3 days	3 days	✓
HDPE											
HDPE	Anions and Nutrients : Nitrate in Water by IC (Low Level)										
		E235.NO3-L	24-May-2022					27-May-2022	3 days	3 days	✓
	· -	1	, , -					,			

Page : 6 of 22 Work Order · YL2200516

Client : Golder Associates Ltd.

Project · Jackfish NTPC

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE OUTFLOW E235.NO3-L 24-May-2022 27-May-2022 3 days 3 days ✓ Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE E235.NO2-L ✓ EMD DISCHARGE INLAKE Bottom 24-May-2022 27-May-2022 3 days 3 days ----Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE Mid-depth E235.NO2-L 24-May-2022 27-May-2022 3 days 3 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE E235.NO2-L 24-May-2022 27-May-2022 3 days 3 days JFLQC 1 Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE OUTFLOW E235.NO2-L 24-May-2022 27-May-2022 3 days ✓ 3 days Anions and Nutrients: Reactive Silica by Colourimetry HDPE E392 24-May-2022 30-May-2022 28 days ✓ EMD DISCHARGE INLAKE_Bottom 6 days Anions and Nutrients : Reactive Silica by Colourimetry HDPE 24-May-2022 EMD DISCHARGE INLAKE Mid-depth E392 30-May-2022 28 days 6 days 1 Anions and Nutrients : Reactive Silica by Colourimetry HDPE 30-May-2022 28 days 6 days ✓ JFLQC 1 E392 24-May-2022 Anions and Nutrients : Reactive Silica by Colourimetry HDPE E392 24-May-2022 ✓ OUTFLOW 30-May-2022 28 days 6 days

Page : 7 of 22 Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients : Sulfate in Water by IC HDPE EMD DISCHARGE INLAKE_Bottom E235.SO4 24-May-2022 27-May-2022 28 days 3 days ✓ Anions and Nutrients : Sulfate in Water by IC HDPE ✓ EMD DISCHARGE INLAKE Mid-depth E235.SO4 24-May-2022 27-May-2022 28 days 3 days ----Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 24-May-2022 27-May-2022 28 days 3 days 1 JFLQC 1 Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 24-May-2022 27-May-2022 28 days 3 days OUTFLOW Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) 24-May-2022 EMD DISCHARGE INLAKE Bottom E375-T 02-Jun-2022 02-Jun-2022 28 days 9 days ✓ Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) EMD DISCHARGE INLAKE_Mid-depth E375-T 24-May-2022 02-Jun-2022 02-Jun-2022 28 days ✓ 9 davs Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) JFLQC 1 E375-T 24-May-2022 02-Jun-2022 02-Jun-2022 28 days 9 days 1 Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T 28 days 9 days ✓ OUTFLOW 24-May-2022 02-Jun-2022 02-Jun-2022 Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) 24-May-2022 ✓ JFLQC 1 E366 01-Jun-2022 02-Jun-2022 28 days 10 days --------

Page : 8 of 22 Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	thod Sampling Date Extraction / Preparation				Ū	Analys	is		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										
EMD DISCHARGE INLAKE_Bottom	E366	24-May-2022	01-Jun-2022				02-Jun-2022	28 days	9 days	✓
Anions and Nutrients: Total Nitrogen by Colourimetry							I			
Amber glass total (sulfuric acid) EMD DISCHARGE INLAKE_Mid-depth	E366	24-May-2022	01-Jun-2022				02-Jun-2022	28 days	9 davs	✓
		, ,							·, -	
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										
OUTFLOW	E366	24-May-2022	01-Jun-2022				02-Jun-2022	28 days	9 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) EMD DISCHARGE INLAKE Bottom	E372-U	24-May-2022	01-Jun-2022				03-Jun-2022	28 days	0 days	✓
EMD DISCHARGE INLAKE_BULUIII	L372-0	24-Way-2022	01-3u11-2022				03-3011-2022	20 days	9 uays	•
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
EMD DISCHARGE INLAKE_Mid-depth	E372-U	24-May-2022	01-Jun-2022				03-Jun-2022	28 days	9 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)	F270 II	04 May 2000	04 1 0000				02 1 2022	20 4	0 4	✓
JFLQC_1	E372-U	24-May-2022	01-Jun-2022				03-Jun-2022	28 days	9 days	•
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
OUTFLOW	E372-U	24-May-2022	01-Jun-2022				03-Jun-2022	28 days	9 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
EMD DISCHARGE INLAKE_Bottom	E509	24-May-2022	28-May-2022				28-May-2022	28 days	4 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS Glass vial dissolved (hydrochloric acid)							I			
EMD DISCHARGE INLAKE Mid-depth	E509	24-May-2022	28-May-2022				28-May-2022	28 days	4 davs	✓
		,	, ,- -						, -	
END DISSIPATOL INENTE_MIG-GEPHI	2000	27 May 2022	20-141dy-2022				20-May-2022	20 days	ruuys	

Page : 9 of 22 Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	Date Extraction / Preparation					Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) JFLQC_1	E509	24-May-2022	28-May-2022				28-May-2022	28 days	4 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) OUTFLOW	E509	24-May-2022	28-May-2022				28-May-2022	28 days	4 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS									'	
HDPE dissolved (nitric acid) EMD DISCHARGE INLAKE_Bottom	E421	24-May-2022	31-May-2022				02-Jun-2022	180 days	9 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) EMD DISCHARGE INLAKE_Mid-depth	E421	24-May-2022	31-May-2022				02-Jun-2022	180 days	9 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) JFLQC_1	E421	24-May-2022	31-May-2022				02-Jun-2022	180 days	9 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) OUTFLOW	E421	24-May-2022	31-May-2022				02-Jun-2022	180 days	9 days	✓
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) JFLQC_1	E601	24-May-2022	01-Jun-2022	14 days	8 days	✓	06-Jun-2022	40 days	5 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID									'	
Glass vial (sodium bisulfate) JFLQC_1	E581.VH+F1	24-May-2022	01-Jun-2022				01-Jun-2022	14 days	8 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) EMD DISCHARGE INLAKE_Bottom	E358-L	24-May-2022	02-Jun-2022				02-Jun-2022	28 days	8 days	✓

Page : 10 of 22 Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

viaurix: water						alaation.	nolding time exce	oddiioo ,	***************************************	
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)										
EMD DISCHARGE INLAKE_Mid-depth	E358-L	24-May-2022	02-Jun-2022				02-Jun-2022	28 days	8 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)										
OUTFLOW	E358-L	24-May-2022	02-Jun-2022				02-Jun-2022	28 days	8 days	✓
								_		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)										
JFLQC_1	E358-L	24-May-2022	02-Jun-2022				02-Jun-2022	28 days	9 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
EMD DISCHARGE INLAKE_Bottom	E290	24-May-2022					29-May-2022	14 days	5 days	✓
_							·			
Physical Tests : Alkalinity Species by Titration										
HDPE										
EMD DISCHARGE INLAKE_Mid-depth	E290	24-May-2022					29-May-2022	14 days	5 days	✓
							·			
Physical Tests : Alkalinity Species by Titration										
HDPE										
JFLQC_1	E290	24-May-2022					29-May-2022	14 days	5 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
OUTFLOW	E290	24-May-2022					29-May-2022	14 days	5 days	✓
Physical Tests : Conductivity in Water										
HDPE										
EMD DISCHARGE INLAKE_Bottom	E100	24-May-2022					29-May-2022	28 days	5 days	✓
-										
Physical Tests : Conductivity in Water									1	
HDPE										
EMD DISCHARGE INLAKE_Mid-depth	E100	24-May-2022					29-May-2022	28 days	5 days	1
	The second secon	1						1		

Page : 11 of 22 Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: Water Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Date Rec Actual Actual **Physical Tests: Conductivity in Water** HDPE JFLQC_1 E100 24-May-2022 29-May-2022 28 days 5 days ✓ **Physical Tests: Conductivity in Water** HDPE 1 OUTFLOW E100 24-May-2022 29-May-2022 28 days 5 days --------Physical Tests : pH by Meter HDPE EMD DISCHARGE INLAKE Bottom E108 24-May-2022 29-May-2022 114 hrs 0.25 hrs EHTR-FM Physical Tests : pH by Meter HDPE E108 24-May-2022 29-May-2022 114 hrs EMD DISCHARGE INLAKE Mid-depth 0.25 EHTR-FM hrs Physical Tests : pH by Meter HDPE OUTFLOW E108 24-May-2022 29-May-2022 116 hrs æ 0.25 EHTR-FM hrs Physical Tests : pH by Meter HDPE JFLQC_1 E108 24-May-2022 29-May-2022 119 hrs 0.25 hrs EHTR-FM **Physical Tests: TDS by Gravimetry** HDPE EMD DISCHARGE INLAKE_Bottom E162 24-May-2022 27-May-2022 7 days 3 days ✓ **Physical Tests: TDS by Gravimetry** HDPE 27-May-2022 24-May-2022 3 days ✓ EMD DISCHARGE INLAKE_Mid-depth E162 7 days **Physical Tests: TDS by Gravimetry** HDPE E162 24-May-2022 27-May-2022 ✓ JFLQC 1 7 days 3 days --------

Page : 12 of 22 Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	Date Extraction / Preparation					Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE OUTFLOW	E162	24-May-2022					27-May-2022	7 days	3 days	✓
Physical Tests : TSS by Gravimetry										
HDPE EMD DISCHARGE INLAKE_Bottom	E160	24-May-2022					27-May-2022	7 days	3 days	4
Physical Tests : TSS by Gravimetry										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E160	24-May-2022					27-May-2022	7 days	3 days	✓
Physical Tests : TSS by Gravimetry										
HDPE JFLQC_1	E160	24-May-2022					27-May-2022	7 days	3 days	✓
Physical Tests : TSS by Gravimetry										
HDPE OUTFLOW	E160	24-May-2022					27-May-2022	7 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE EMD DISCHARGE INLAKE_Bottom	E121	24-May-2022					27-May-2022	3 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E121	24-May-2022					27-May-2022	3 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE JFLQC_1	E121	24-May-2022					27-May-2022	3 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE OUTFLOW	E121	24-May-2022					27-May-2022	3 days	3 days	✓

Page : 13 of 22
Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time

iatrix: water						uluulloll.	nolding time exce	oddiioo ,	***************************************	riolaling i
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
EMD DISCHARGE INLAKE_Bottom	E508	24-May-2022					31-May-2022	28 days	7 days	✓
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
EMD DISCHARGE INLAKE_Mid-depth	E508	24-May-2022					31-May-2022	28 days	7 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
JFLQC_1	E508	24-May-2022					31-May-2022	28 days	7 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										_
OUTFLOW	E508	24-May-2022					31-May-2022	28 days	7 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)	E400	04 M 2000					04 1 0000		0.1	,
EMD DISCHARGE INLAKE_Bottom	E420	24-May-2022					01-Jun-2022	180	8 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS				I	I					
HDPE total (nitric acid)	E420	24-May-2022					01-Jun-2022	400	8 days	√
EMD DISCHARGE INLAKE_Mid-depth	L420	24-May-2022					01-3u11-2022	180 days	0 days	•
								uays		
Total Metals : Total Metals in Water by CRC ICPMS HDPE total (nitric acid)							I			
JFLQC 1	E420	24-May-2022					01-Jun-2022	180	8 days	1
01 240_1	2.20	2 :					01 0411 2022	days	o dayo	
Fotal Metals : Total Metals in Water by CRC ICPMS								,-		
HDPE total (nitric acid)										
OUTFLOW	E420	24-May-2022					01-Jun-2022	180	8 days	1
								days	,	
/olatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS								,		
Glass vial (sodium bisulfate)										
JFLQC_1	E611A	24-May-2022	01-Jun-2022				01-Jun-2022	14 days	8 days	✓
· · · · · · · · · · · · · · · · · · ·		,	· · · · ·				l	,-	,-	

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Page : 14 of 22 Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Rec. HT: ALS recommended hold time (see units).

Page : 15 of 22 Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		. Evaluati	Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specificati					
Quality Control Sample Type	Madhaad	001=1#	QC	ount Regular	Agtical	Frequency (%)) Evaluation	
Analytical Methods	Method	QC Lot #	QC	Regulai	Actual	Expected	⊏valuation	
Laboratory Duplicates (DUP)								
Alkalinity Species by Titration	E290	501763	1	20	5.0	5.0	✓	
Ammonia by Fluorescence	E298	507802	1	12	8.3	5.0	✓	
BTEX by Headspace GC-MS	E611A	506513	1	20	5.0	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	501770	1	5	20.0	5.0	✓	
Conductivity in Water	E100	501762	1	20	5.0	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	502935	1	16	6.2	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	505686	1	17	5.8	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	507798	1	15	6.6	5.0	✓	
Fluoride in Water by IC (Low Level)	E235.F-L	501771	1	5	20.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	501766	1	19	5.2	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	501767	1	20	5.0	5.0	✓	
pH by Meter	E108	501761	1	12	8.3	5.0	✓	
Reactive Silica by Colourimetry	E392	504758	1	11	9.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	501768	1	19	5.2	5.0	✓	
TDS by Gravimetry	E162	502465	1	20	5.0	5.0	✓	
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	507801	1	15	6.6	5.0	1	
Total Mercury in Water by CVAAS	E508	505550	1	19	5.2	5.0	1	
Total Metals in Water by CRC ICPMS	E420	505664	1	18	5.5	5.0	<u> </u>	
Total Nitrogen by Colourimetry	E366	507799	1	9	11.1	5.0	1	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	507800	1	15	6.6	5.0	1	
TSS by Gravimetry	E160	502466	1	20	5.0	5.0	1	
Turbidity by Nephelometry	E121	502276	1	18	5.5	5.0	1	
VH and F1 by Headspace GC-FID	E581.VH+F1	506512	1	20	5.0	5.0	✓	
Laboratory Control Samples (LCS)								
Alkalinity Species by Titration	E290	501763	1	20	5.0	5.0	1	
Ammonia by Fluorescence	E298	507802	1	12	8.3	5.0		
BTEX by Headspace GC-MS	E611A	506513	1	20	5.0	5.0		
CCME PHCs - F2-F4 by GC-FID	E601	506679	1	11	9.0	5.0	1	
Chloride in Water by IC (Low Level)	E235.CI-L	501770	1	5	20.0	5.0	√	
Conductivity in Water	E100	501762	1	20	5.0	5.0	√	
Dissolved Mercury in Water by CVAAS	E509	502935	1	16	6.2	5.0	√	
Dissolved Metals in Water by CRC ICPMS	E421	505686	1	17	5.8	5.0	√	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	507798	1	15	6.6	5.0	√	
Fluoride in Water by IC (Low Level)	E235.F-L	501771	1	5	20.0	5.0	√	
Nitrate in Water by IC (Low Level)	E235.NO3-L	501766	1	19	5.2	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO3-L E235.NO2-L	501767	1	20	5.0	5.0	✓	
Oil & Grease by Gravimetry	E235.NO2-L E567	508326	1	7	14.2	5.0	✓	

Page : 16 of 22 Work Order : YL2200516

Client : Golder Associates Ltd.

Quality Control Sample Type			C	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
pH by Meter	E108	501761	1	12	8.3	5.0	1
Reactive Silica by Colourimetry	E392	504758	1	11	9.0	5.0	<u> </u>
Sulfate in Water by IC	E235.SO4	501768	1	19	5.2	5.0	<u> </u>
TDS by Gravimetry	E162	502465	1	20	5.0	5.0	<u>√</u>
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	507801	1	15	6.6	5.0	
Total Mercury in Water by CVAAS	E508	505550	1	19	5.2	5.0	
Total Metals in Water by CRC ICPMS	E420	505664	1	18	5.5	5.0	
Total Nitrogen by Colourimetry	E366	507799	1	9	11.1	5.0	<u> </u>
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	507800	1	15	6.6	5.0	
TSS by Gravimetry	E160	502466	1	20	5.0	5.0	
Turbidity by Nephelometry	E121	502276	1	18	5.5	5.0	
VH and F1 by Headspace GC-FID	E581.VH+F1	506512	1	20	5.0	5.0	<u> </u>
Method Blanks (MB)							_
Alkalinity Species by Titration	E290	501763	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	507802	1	12	8.3	5.0	
BTEX by Headspace GC-MS	E611A	506513	1	20	5.0	5.0	<u> </u>
CCME PHCs - F2-F4 by GC-FID	E601	506679	1	11	9.0	5.0	<u> </u>
Chloride in Water by IC (Low Level)	E235.CI-L	501770	1	5	20.0	5.0	
Conductivity in Water	E100	501762	1	20	5.0	5.0	
Dissolved Mercury in Water by CVAAS	E509	502935	1	16	6.2	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	505686	1	17	5.8	5.0	<u> </u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	507798	1	15	6.6	5.0	<u> </u>
Fluoride in Water by IC (Low Level)	E235.F-L	501771	1	5	20.0	5.0	<u>√</u>
Nitrate in Water by IC (Low Level)	E235.NO3-L	501766	1	19	5.2	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	501767	1	20	5.0	5.0	
Oil & Grease by Gravimetry	E567	508326	1	7	14.2	5.0	<u> </u>
Reactive Silica by Colourimetry	E392	504758	1	11	9.0	5.0	
Sulfate in Water by IC	E235.SO4	501768	1	19	5.2	5.0	
TDS by Gravimetry	E162	502465	1	20	5.0	5.0	
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	507801	1	15	6.6	5.0	
Total Mercury in Water by CVAAS	E508	505550	1	19	5.2	5.0	<u> </u>
Total Metals in Water by CRC ICPMS	E420	505664	1	18	5.5	5.0	<u>√</u>
Total Nitrogen by Colourimetry	E366	507799	1	9	11.1	5.0	<u>√</u>
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	507800	1	15	6.6	5.0	
TSS by Gravimetry	E160	502466	1	20	5.0	5.0	<u> </u>
Turbidity by Nephelometry	E121	502276	1	18	5.5	5.0	<u>√</u>
VH and F1 by Headspace GC-FID	E581.VH+F1	506512	1	20	5.0	5.0	<u> </u>
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	507802	1	12	8.3	5.0	1
BTEX by Headspace GC-MS	E611A	506513	1	20	5.0	5.0	<u> </u>

Page : 17 of 22 Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

			4 5 4 7		,			
Quality Control Sample Type			Co	ount	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued								
Chloride in Water by IC (Low Level)	E235.CI-L	501770	1	5	20.0	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	502935	1	16	6.2	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	505686	1	17	5.8	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	507798	1	15	6.6	5.0	✓	
Fluoride in Water by IC (Low Level)	E235.F-L	501771	1	5	20.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	501766	1	19	5.2	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	501767	1	20	5.0	5.0	✓	
Reactive Silica by Colourimetry	E392	504758	1	11	9.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	501768	1	19	5.2	5.0	√	
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	507801	1	15	6.6	5.0	√	
Total Mercury in Water by CVAAS	E508	505550	1	19	5.2	5.0	√	
Total Metals in Water by CRC ICPMS	E420	505664	1	18	5.5	5.0	✓	
Total Nitrogen by Colourimetry	E366	507799	1	9	11.1	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	507800	1	15	6.6	5.0	✓	
VH and F1 by Headspace GC-FID	E581.VH+F1	506512	1	20	5.0	5.0	✓	

Page : 18 of 22 Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Vancouver -	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Vancouver - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Vancouver -			
	Environmental			
TSS by Gravimetry	. , , , , , , , , , , , , , , , , , , ,	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the		
	Vancouver -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Vancouver -			with gravimetric measurement of the residue.
	Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental			
Fluoride in Water by IC (Low Level)	E235.F-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Vancouver -			
	Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Vancouver -			
	Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Vancouver -			
	Environmental			

Page : 19 of 22 : YL2200516 Work Order

Client : Golder Associates Ltd. : Jackfish NTPC

Project

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Vancouver - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Vancouver - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Vancouver - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Nitrogen by Colourimetry	E366 Vancouver - Environmental	Water	APHA 4500-P J (mod)	Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Dissolved Phosphorus is determined colourimetrically using a discrete analyzer after filtration through a 0.45 micron filter followed by heated persulfate digestion of the sample.
Reactive Silica by Colourimetry	E392 Vancouver - Environmental	Water	APHA 4500-SiO2 E (mod)	Silicate (molybdate-reactive silica) is determined by the molybdosilicate-heteropoly blue colourimetric method using a discrete analyzer. Method Limitation: Arsenic (5+) above 100 mg/L is a negative interference on this test
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS

Page : 20 of 22 Work Order : YL2200516

Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Oil & Grease by Gravimetry	E567 Vancouver - Environmental	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
VH and F1 by Headspace GC-FID	E581.VH+F1 Vancouver - Environmental	Water	BC MOE Lab Manual / CCME PHC in Soil - Tier 1 (mod)	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
CCME PHCs - F2-F4 by GC-FID	E601 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	Sample extracts are analyzed by GC-FID for CCME hydrocarbon fractions (F2-F4).
BTEX by Headspace GC-MS	E611A Vancouver - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Hardness (Calculated) from Total Ca/Mg	EC100A Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
TDS in Water (Calculation) Using APHA Analyte List	EC103.APHA Vancouver - Environmental	Water	APHA 1030E	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis).
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Vancouver - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).
F1-BTEX	EC580 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).

Page 21 of 22 YL2200516 Work Order

Client : Golder Associates Ltd. : Jackfish NTPC

Project

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VPH: VH-BTEX-Styrene	EC580A	Water	BC MOE Lab Manual (VPH in Water and	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHw = Volatile Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and
	Vancouver -		Solids) (mod)	styrene.
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Vancouver -			
	Environmental			
Preparation for Dissolved Organic Carbon for Combustion	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
	Vancouver -			
	Environmental			
Digestion for Total Nitrogen in water	EP366	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
Discrete for Table Bloom box of the section	Environmental	NA /	ADUA 4500 D 5 (1)	O and a section of the Park Constant
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
Binaria (n. Binaria de Branches	Environmental	NA /	ADUA 4500 D 5 (1)	
Digestion for Dissolved Phosphorus in water	EP375	Water	APHA 4500-P E (mod).	Samples are filtered through a 0.45 micron membrane filter and then heated with a persulfate digestion reagent.
	Vancouver -			
Dissolved Metals Water Filtration	Environmental EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved ivietals water Filliation		vvater	AFIIA 3030B	water samples are intered (0.45 diff), and preserved with finO5.
	Vancouver - Environmental			
Dissolved Mercury Water Filtration	Environmental EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCI.
Dissolved Mercury Water Fill allon	EF309	vvater	AI TIA 3030B	water samples are intered (0.45 diff), and preserved with 1101.
	Vancouver -			
	Environmental			
Oil & Grease Extraction for Gravimetry	EP567	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane by liquid-liquid extraction.
	Vancouver -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	Vancouver -			GC/MS-FID system.
	Environmental			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
	Vancouver -			
	Environmental			

Page 22 of 22 YL2200516 Work Order

Client : Golder Associates Ltd. : Jackfish NTPC

Project

QUALITY CONTROL REPORT

Work Order :YL2200516

Client : Golder Associates Ltd.

Contact : Sarah Beattie

Address : 9 - 4905 48th Street

Yellowknife NT Canada X1A 3S3

Telephone : 867 873 6319
Project : Jackfish NTPC

PO :--C-O-C number :--Sampler :---

Site : Jackfish NTPC
Quote number : YL21-GOLD100-008

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 18

Laboratory : Yellowknife - Environmental

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

Telephone : 1 867 446 5593

Date Samples Received : 25-May-2022 10:38

Date Analysis Commenced : 27-May-2022

Issue Date : 08-Jun-2022 16:26

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia
Anshim Anshim	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Caleb Deroche	Lab Analyst	Vancouver Metals, Burnaby, British Columbia
Dan Gebert	Laboratory Analyst	Vancouver Metals, Burnaby, British Columbia
David Stewart	Analyst - Chemistry	Vancouver Inorganics, Burnaby, British Columbia
Janice Leung	Supervisor - Organics Instrumentation	Vancouver Organics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia

Page : 2 of 18
Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 18
Work Order : YL2200516

Client : Golder Associates Ltd.
Project : Jackfish NTPC

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Physical Tests (QC	C Lot: 501761)												
VA22B1544-004	Anonymous	рН		E108	0.10	pH units	8.00	8.02	0.250%	4%			
Physical Tests (QC	C Lot: 501762)												
VA22B1544-004	Anonymous	conductivity		E100	2.0	μS/cm	164	165	0.670%	10%			
Physical Tests (QC	C Lot: 501763)												
VA22B1544-004	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	74.8	74.4	0.536%	20%			
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR			
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR			
		alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR			
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	74.8	74.4	0.536%	20%			
Physical Tests (QC	C Lot: 502276)												
KS2201757-001	Anonymous	turbidity		E121	0.10	NTU	0.18	0.17	0.009	Diff <2x LOR			
Physical Tests (QC	C Lot: 502465)												
FJ2201318-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	1180	1160	1.67%	20%			
Physical Tests (QC	C Lot: 502466)												
FJ2201318-001	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR			
Anions and Nutrier	nts (QC Lot: 501766)												
VA22B1542-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0250	mg/L	5.56	5.58	0.206%	20%			
Anions and Nutrier	nts (QC Lot: 501767)												
VA22B1542-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0050	mg/L	0.0097	0.0104	0.0007	Diff <2x LOR			
Anions and Nutrion	nts (QC Lot: 501768)												
VA22B1542-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	559	562	0.567%	20%			
Anions and Nutrion	nts (QC Lot: 501770)												
YL2200514-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.50	mg/L	314	309	1.57%	20%			
Anione and Nutries	nts (QC Lot: 501771)												
YL2200514-001	Anonymous	fluoride	16984-48-8	E235.F-L	0.020	mg/L	0.421	0.419	0.566%	20%			
	,					<u> </u>	-						
YL2200510-003	Anonymous	silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	4.49	4.44	0.05	Diff <2x LOR			
	,	55410 (40 5102)			3.33	9, =			0.00	2/, 2011			
Anions and Nutrier KS2201675-001	Anonymous	nitrogen total	7727-37-9	E366	1.20	ma/l	50.5	51.2	1.40%	20%			
	•	nitrogen, total	1121-31-9	L300	1.20	mg/L	30.5	31.2	1.4070	2070			
	nts (QC Lot: 507800)				0.005		0.0450	0.0400	4.000/	9994			
VA22B0836-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0458	0.0439	4.20%	20%			

Page : 4 of 18 Work Order : YL2200516

Client : Golder Associates Ltd.

sub-Matrix: Water		Laboratory Duplicate (DUP) Report									
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
nions and Nutrien	ts (QC Lot: 507801)										
/A22B0836-001	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0460	0.0459	0.283%	20%	
nions and Nutrien	ts (QC Lot: 507802)										
/A22B0836-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 507	7798)									
/A22B0836-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	2.22	1.83	0.39	Diff <2x LOR	
otal Metals (QC Lo	ot: 505550)										
/A22B1610-002	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
otal Metals (QC Lo	ot: 505664)										
CG2206309-001	Anonymous	aluminum, total	7429-90-5	E420	0.0060	mg/L	<0.0060	0.0097	0.0037	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00020	mg/L	0.00084	0.00080	0.00004	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00020	mg/L	0.00028	0.00026	0.00001	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00020	mg/L	0.0583	0.0569	2.38%	20%	
		beryllium, total	7440-41-7	E420	0.000040	mg/L	<0.040 µg/L	<0.000040	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.020	mg/L	0.048	0.046	0.001	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000100	mg/L	<0.0100 µg/L	<0.0000100	0	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.100	mg/L	228	229	0.234%	20%	
		cesium, total	7440-46-2	E420	0.000020	mg/L	0.000059	0.000061	0.000002	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00020	mg/L	<0.20 µg/L	<0.00020	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0020	mg/L	0.122	0.116	4.88%	20%	
		magnesium, total	7439-95-4	E420	0.0100	mg/L	194	197	1.93%	20%	
		manganese, total	7439-96-5	E420	0.00020	mg/L	0.00168	0.00164	0.00003	Diff <2x LOR	
		molybdenum, total	7439-98-7	E420	0.000100	mg/L	0.0111	0.0108	2.73%	20%	
		nickel, total	7440-02-0	E420	0.00100	mg/L	0.0230	0.0229	0.664%	20%	
		phosphorus, total	7723-14-0	E420	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.100	mg/L	5.42	5.41	0.166%	20%	
rubid	rubidium, total	7440-17-7	E420	0.00040	mg/L	0.00577	0.00584	1.22%	20%		
		selenium, total	7782-49-2	E420	0.000100	mg/L	165 μg/L	0.166	0.503%	20%	
		silicon, total	7440-21-3	E420	0.20	mg/L	1.55	1.53	0.02	Diff <2x LOR	
		silver, total	7440-22-4	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.100	mg/L	7.75	7.98	2.93%	20%	

Page : 5 of 18 Work Order : YL2200516

Client : Golder Associates Ltd.

ub-Matrix: Water					Laboratory Duplicate (DUP) Report							
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
otal Metals (QC Lo	ot: 505664) - continued											
CG2206309-001	Anonymous	strontium, total	7440-24-6	E420	0.00040	mg/L	0.879	0.871	0.921%	20%		
		sulfur, total	7704-34-9	E420	1.00	mg/L	341	337	1.22%	20%		
		tellurium, total	13494-80-9	E420	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR		
		thallium, total	7440-28-0	E420	0.000020	mg/L	0.000030	0.000031	0.000001	Diff <2x LOR		
		thorium, total	7440-29-1	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
		tin, total	7440-31-5	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
		titanium, total	7440-32-6	E420	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR		
		tungsten, total	7440-33-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
		uranium, total	7440-61-1	E420	0.000020	mg/L	0.0116	0.0113	2.34%	20%		
		vanadium, total	7440-62-2	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR		
		zinc, total	7440-66-6	E420	0.0060	mg/L	<0.0060	<0.0060	0	Diff <2x LOR		
		zirconium, total	7440-67-7	E420	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR		
issolved Metals (C	QC Lot: 502935)											
/A22B1556-003	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
issolved Metals (C	QC Lot: 505686)											
G2206322-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0020	mg/L	0.0021	<0.0020	0.00006	Diff <2x LOR		
		antimony, dissolved	7440-36-0	E421	0.00020	mg/L	0.00259	0.00265	2.40%	20%		
		arsenic, dissolved	7440-38-2	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
		barium, dissolved	7440-39-3	E421	0.00020	mg/L	0.0187	0.0189	1.28%	20%		
		beryllium, dissolved	7440-41-7	E421	0.000040	mg/L	<0.040 µg/L	<0.000040	0	Diff <2x LOR		
		bismuth, dissolved	7440-69-9	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR		
		boron, dissolved	7440-42-8	E421	0.020	mg/L	0.112	0.106	0.006	Diff <2x LOR		
		cadmium, dissolved	7440-43-9	E421	0.0000100	mg/L	1.68 µg/L	0.00167	0.602%	20%		
		calcium, dissolved	7440-70-2	E421	0.100	mg/L	583	563	3.40%	20%		
		cesium, dissolved	7440-46-2	E421	0.000020	mg/L	0.000628	0.000631	0.358%	20%		
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		cobalt, dissolved	7440-48-4	E421	0.00020	mg/L	56.2 μg/L	0.0565	0.582%	20%		
		copper, dissolved	7440-50-8	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR		
		iron, dissolved	7439-89-6	E421	0.020	mg/L	0.026	0.025	0.0006	Diff <2x LOR		
		lead, dissolved	7439-92-1	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR		
		lithium, dissolved	7439-93-2	E421	0.0020	mg/L	1.14	1.05	8.37%	20%		
		magnesium, dissolved	7439-95-4	E421	0.0100	mg/L	253	261	3.10%	20%		
		manganese, dissolved	7439-96-5	E421	0.00020	mg/L	0.328	0.332	1.22%	20%		
		molybdenum, dissolved	7439-98-7	E421	0.000100	mg/L	0.00469	0.00479	2.24%	20%		
n	, 545114111, 415551704		I =:	1	···a/ =	2.23.00						

Page : 6 of 18 Work Order : YL2200516

Client : Golder Associates Ltd.

Sub-Matrix: Water							Labora	ntory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
	QC Lot: 505686) - co	ntinued									
CG2206322-001	Anonymous	phosphorus, dissolved	7723-14-0	E421	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.100	mg/L	16.4	16.8	2.15%	20%	
		rubidium, dissolved	7440-17-7	E421	0.00040	mg/L	0.0280	0.0286	2.02%	20%	
		selenium, dissolved	7782-49-2	E421	0.000100	mg/L	75.4 μg/L	0.0766	1.60%	20%	
		silicon, dissolved	7440-21-3	E421	0.100	mg/L	3.10	3.06	1.39%	20%	
		silver, dissolved	7440-22-4	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.100	mg/L	32.0	32.4	1.33%	20%	
		strontium, dissolved	7440-24-6	E421	0.00040	mg/L	1.53	1.56	2.31%	20%	
		sulfur, dissolved	7704-34-9	E421	1.00	mg/L	497	491	1.28%	20%	
		tellurium, dissolved	13494-80-9	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000020	mg/L	0.000149	0.000144	0.000005	Diff <2x LOR	
		thorium, dissolved	7440-29-1	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	
		tungsten, dissolved	7440-33-7	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000020	mg/L	0.0326	0.0313	4.04%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0020	mg/L	0.115	0.113	1.63%	20%	
		zirconium, dissolved	7440-67-7	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
olatile Organic Co	mpounds (QC Lot: 5	06513)									
A22B1080-001	Anonymous	benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		styrene	100-42-5	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
ydrocarbons (QC	Lot: 506512)										
/A22B1080-001	Anonymous	F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	
		VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	

Page : 7 of 18
Work Order : YL2200516

Client : Golder Associates Ltd.
Project : Jackfish NTPC

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 501762)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 501763)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, phenolphthalein (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 502276)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 502465)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 502466)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Anions and Nutrients (QCLot: 501766)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 501767)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 501768)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 501770)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 501771)					
fluoride	16984-48-8 E235.F-L	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 504758)					
silicate (as SiO2)	7631-86-9 E392	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 507799)					
nitrogen, total	7727-37-9 E366	0.03	mg/L	<0.030	
Anions and Nutrients (QCLot: 507800)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 507801)					
phosphorus, total dissolved	7723-14-0 E375-T	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 507802)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	

Page : 8 of 18
Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water

Page : 9 of 18
Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water

Page : 10 of 18 Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

250

μg/L

<250

Qualifiers

F4 (C34-C50)

Qualifier Description

MB-LOR Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.

---- E601

Page : 11 of 18 Work Order : YL2200516

Client : Golder Associates Ltd.
Project : Jackfish NTPC

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	b-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number Meth	od	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Physical Tests (QCLot: 501761)												
рН	E108			pH units	7 pH units	100	98.0	102				
Physical Tests (QCLot: 501762)												
conductivity	E100		1	μS/cm	146.9 μS/cm	102	90.0	110				
Physical Tests (QCLot: 501763)												
alkalinity, phenolphthalein (as CaCO3)	E290		1	mg/L	229 mg/L	97.9	75.0	125				
alkalinity, total (as CaCO3)	E290		1	mg/L	500 mg/L	101	85.0	115				
Physical Tests (QCLot: 502276)												
turbidity	E121		0.1	NTU	200 NTU	95.5	85.0	115				
Physical Tests (QCLot: 502465)												
solids, total dissolved [TDS]	E162		10	mg/L	1000 mg/L	102	85.0	115				
Physical Tests (QCLot: 502466)												
solids, total suspended [TSS]	E160		3	mg/L	150 mg/L	111	85.0	115				
Anions and Nutrients (QCLot: 501766)												
nitrate (as N)	14797-55-8 E235	.NO3-L	0.005	mg/L	2.5 mg/L	101	90.0	110				
Anions and Nutrients (QCLot: 501767)												
nitrite (as N)	14797-65-0 E235	.NO2-L	0.001	mg/L	0.5 mg/L	104	90.0	110				
Anions and Nutrients (QCLot: 501768)												
sulfate (as SO4)	14808-79-8 E235	.SO4	0.3	mg/L	100 mg/L	101	90.0	110				
Anions and Nutrients (QCLot: 501770)												
chloride	16887-00-6 E235	.CI-L	0.1	mg/L	100 mg/L	103	90.0	110				
Anions and Nutrients (QCLot: 501771)												
fluoride	16984-48-8 E235	.F-L	0.01	mg/L	1 mg/L	109	90.0	110				
Anions and Nutrients (QCLot: 504758)												
silicate (as SiO2)	7631-86-9 E392		0.5	mg/L	10 mg/L	101	85.0	115				
Anions and Nutrients (QCLot: 507799)												
nitrogen, total	7727-37-9 E366		0.03	mg/L	0.5 mg/L	89.1	75.0	125				
Anions and Nutrients (QCLot: 507800)												
phosphorus, total	7723-14-0 E372	-U	0.002	mg/L	0.05 mg/L	93.5	80.0	120				
Anions and Nutrients (QCLot: 507801)												
phosphorus, total dissolved	7723-14-0 E375	-T	0.002	mg/L	0.05 mg/L	94.4	80.0	120				
Anions and Nutrients (QCLot: 507802)												
ammonia, total (as N)	7664-41-7 E298		0.005	mg/L	0.2 mg/L	97.0	85.0	115				

Page : 12 of 18 Work Order : YL2200516

Client : Golder Associates Ltd.

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Organic / Inorganic Carbon (QCLot: 5	07798)								
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	106	80.0	120	
Total Metals (QCLot: 505550)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	104	80.0	120	
Total Metals (QCLot: 505664)									
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	104	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	107	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	103	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	100	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	109	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	104	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	102	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	90.2	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	102	80.0	120	
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	103	80.0	120	
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	100	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	101	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	104	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	97.3	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	106	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	109	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	106	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	102	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	104	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	101	80.0	120	
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	101	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	97.2	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	105	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	102	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	106	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	98.0	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	104	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	104	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	94.8	80.0	120	
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	107	80.0	120	
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	104	80.0	120	
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	99.8	80.0	120	

Page : 13 of 18 Work Order : YL2200516

Client : Golder Associates Ltd.

Sub-Matrix: Water	ub-Matrix: Water						Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier				
Total Metals (QCLot: 505664) - continued													
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	101	80.0	120					
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	97.9	80.0	120					
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	104	80.0	120					
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	109	80.0	120					
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	102	80.0	120					
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	103	80.0	120					
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	98.3	80.0	120					
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	113	80.0	120					
	1400 01 0	2000	0.000000	mg/L	0.0001 Hig/L	113	00.0	120					
Dissolved Metals (QCLot: 505686) aluminum, dissolved	7429-90-5	F421	0.001	mg/L	2 ma/l	101	80.0	120					
antimony, dissolved	7440-36-0		0.001	mg/L	2 mg/L 1 mg/L	101	80.0	120					
arsenic, dissolved	7440-38-2		0.0001	mg/L	1 mg/L	102	80.0	120					
barium, dissolved	7440-30-2		0.0001	mg/L	0.25 mg/L	106	80.0	120					
beryllium, dissolved	7440-41-7		0.00002	mg/L	_	97.6	80.0	120					
bismuth, dissolved	7440-69-9		0.00002	mg/L	0.1 mg/L	94.9	80.0	120					
boron, dissolved	7440-03-3		0.01	mg/L	1 mg/L	107	80.0	120					
cadmium, dissolved	7440-42-0		0.000005	mg/L	1 mg/L 0.1 mg/L	107	80.0	120					
calcium, dissolved	7440-70-2		0.05	mg/L	50 mg/L	98.3	80.0	120					
cesium, dissolved	7440-46-2		0.00001	mg/L	0.05 mg/L	99.5	80.0	120					
chromium, dissolved	7440-47-3		0.0005	mg/L	0.05 mg/L	98.5	80.0	120					
cobalt, dissolved	7440-48-4		0.0001	mg/L	0.25 mg/L	97.8	80.0	120					
copper, dissolved	7440-50-8		0.0001	mg/L	0.25 mg/L	100	80.0	120					
iron, dissolved	7439-89-6		0.002	mg/L	0.25 mg/L 1 mg/L	99.8	80.0	120					
lead, dissolved	7439-92-1		0.00005	mg/L	0.5 mg/L	99.3	80.0	120					
lithium, dissolved	7439-93-2		0.000	mg/L	0.5 mg/L 0.25 mg/L	102	80.0	120					
magnesium, dissolved	7439-95-2		0.001	mg/L	0.25 mg/L 50 mg/L	102	80.0	120					
manganese, dissolved	7439-95-4		0.0001	mg/L	0.25 mg/L	103	80.0	120					
molybdenum, dissolved	7439-98-7		0.00005	mg/L	0.25 mg/L	100	80.0	120					
nickel, dissolved	7440-02-0		0.0005	mg/L	0.25 mg/L	99.2	80.0	120					
phosphorus, dissolved	7723-14-0		0.05	mg/L	10 mg/L	101	80.0	120					
potassium, dissolved	7440-09-7		0.05	mg/L	50 mg/L	102	80.0	120					
rubidium, dissolved	7440-03-7		0.0002	mg/L	0.1 mg/L	105	80.0	120					
selenium, dissolved	7782-49-2		0.0002	mg/L	1 mg/L	98.1	80.0	120					
silicon, dissolved	7440-21-3		0.05	mg/L	10 mg/L	106	80.0	120					
silver, dissolved	7440-21-3		0.00001	mg/L	_	88.8	80.0	120					
sodium, dissolved	7440-22-4		0.000	mg/L	0.1 mg/L	99.2	80.0	120					
strontium, dissolved	7440-23-3		0.002	mg/L	50 mg/L	99.2	80.0	120					
Strontium, dissolved	1440-24-0	L421	0.0002	mg/L	0.25 mg/L	98.5	00.0	120					

Page : 14 of 18 Work Order : YL2200516

Client : Golder Associates Ltd.

Sub-Matrix: Water	Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number N	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Dissolved Metals (QCLot: 505686) - co	ntinued											
sulfur, dissolved	7704-34-9 E	E421	0.5	mg/L	50 mg/L	101	80.0	120				
tellurium, dissolved	13494-80-9 E	E421	0.0002	mg/L	0.1 mg/L	98.7	80.0	120				
thallium, dissolved	7440-28-0 E	421	0.00001	mg/L	1 mg/L	99.9	80.0	120				
thorium, dissolved	7440-29-1 E	421	0.0001	mg/L	0.1 mg/L	95.1	80.0	120				
tin, dissolved	7440-31-5 E	421	0.0001	mg/L	0.5 mg/L	101	80.0	120				
titanium, dissolved	7440-32-6 E	421	0.0003	mg/L	0.25 mg/L	99.5	80.0	120				
tungsten, dissolved	7440-33-7 E	E421	0.0001	mg/L	0.1 mg/L	93.8	80.0	120				
uranium, dissolved	7440-61-1 E	E421	0.00001	mg/L	0.005 mg/L	103	80.0	120				
vanadium, dissolved	7440-62-2 E	E421	0.0005	mg/L	0.5 mg/L	102	80.0	120				
zinc, dissolved	7440-66-6 E	E421	0.001	mg/L	0.5 mg/L	99.6	80.0	120				
zirconium, dissolved	7440-67-7 E	E421	0.0002	mg/L	0.1 mg/L	96.8	80.0	120				
Aggregate Organics (QCLot: 508326)												
oil & grease (gravimetric)	E	567	5	mg/L	100 mg/L	102	70.0	130				
Volatile Organic Compounds (QCLot: 8 benzene	5 06513) 71-43-2 E	-611A	0.5	ug/l	100//	97.8	70.0	130				
ethylbenzene	100-41-4 E		0.5	μg/L	100 μg/L		70.0	130				
, i	1634-04-4 E		0.5	μg/L	100 μg/L	99.7	70.0	130				
methyl-tert-butyl ether [MTBE]	100-42-5 E		0.5	μg/L	100 μg/L	97.9	70.0	130				
styrene				μg/L	100 μg/L	99.3	70.0	130				
toluene	108-88-3 E		0.5	μg/L	100 μg/L	94.1						
xylene, m+p-	179601-23-1 E		0.4	μg/L	200 μg/L	103	70.0	130				
xylene, o-	95-47-6 E	-611A	0.3	μg/L	100 μg/L	99.3	70.0	130				
Hydrocarbons (QCLot: 506512)												
F1 (C6-C10)	E	581.VH+F1	100	μg/L	6310 μg/L	85.0	70.0	130				
VHw (C6-C10)	E	E581.VH+F1	100	μg/L	6310 μg/L	78.6	70.0	130				
Hydrocarbons (QCLot: 506679)												
F2 (C10-C16)	E	E601	100	μg/L	3538 µg/L	119	70.0	130				
F3 (C16-C34)	E	E601	250	μg/L	7053 μg/L	106	70.0	130				
F4 (C34-C50)	E	E601	250	μg/L	5051 μg/L	118	70.0	130				

Page : 15 of 18 Work Order : YL2200516

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

		. , , , ,	•									
Sub-Matrix: Water					Matrix Spike (MS) Report							
	1				Spi		Recovery (%)	·	Limits (%)			
.aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie		
Anions and Nutri	ents (QCLot: 501766)											
VA22B1542-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	12.1 mg/L	12.5 mg/L	97.0	75.0	125			
Anions and Nutri	ents (QCLot: 501767)											
VA22B1542-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	2.40 mg/L	2.5 mg/L	96.1	75.0	125			
Anions and Nutri	ents (QCLot: 501768)											
VA22B1542-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	500 mg/L	ND	75.0	125			
Anions and Nutri	ents (QCLot: 501770)											
YL2200516-001	OUTFLOW	chloride	16887-00-6	E235.CI-L	99.9 mg/L	100 mg/L	99.9	75.0	125			
Anions and Nutri	ents (QCLot: 501771)											
YL2200516-001	OUTFLOW	fluoride	16984-48-8	E235.F-L	1.07 mg/L	1 mg/L	107	75.0	125			
Anions and Nutri	ents (QCLot: 504758)											
YL2200510-004	Anonymous	silicate (as SiO2)	7631-86-9	E392	10.1 mg/L	10 mg/L	101	75.0	125			
Anions and Nutri	ents (QCLot: 507799)											
VA22B0521-001	Anonymous	nitrogen, total	7727-37-9	E366	0.404 mg/L	0.4 mg/L	101	70.0	130			
Anions and Nutri	ents (QCLot: 507800)											
VA22B0836-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0469 mg/L	0.05 mg/L	93.7	70.0	130			
Anions and Nutri	ents (QCLot: 507801)											
VA22B0836-002	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0483 mg/L	0.05 mg/L	96.5	70.0	130			
Anions and Nutri	ents (QCLot: 507802)											
VA22B0836-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.110 mg/L	0.1 mg/L	110	75.0	125			
Organic / Inorgar	nic Carbon (QCLot: 507	7798)										
VA22B0836-002	Anonymous	carbon, dissolved organic [DOC]		E358-L	5.44 mg/L	5 mg/L	109	70.0	130			
Total Metals (QC	Lot: 505550)								1			
VA22B1610-003	Anonymous	mercury, total	7439-97-6	E508	0.000104 mg/L	0.0001 mg/L	104	70.0	130			
otal Metals (QC	Lot: 505664)								1	1		
CG2206309-002	Anonymous	aluminum, total	7429-90-5	E420	0.199 mg/L	0.2 mg/L	99.5	70.0	130			
		antimony, total	7440-36-0	E420	0.0211 mg/L	0.02 mg/L	106	70.0	130			
		arsenic, total	7440-38-2	E420	0.0212 mg/L	0.02 mg/L	106	70.0	130			
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		beryllium, total	7440-41-7	E420	0.0418 mg/L	0.04 mg/L	104	70.0	130			

Page : 16 of 18 Work Order : YL2200516

Client : Golder Associates Ltd.

Sub-Matrix: Water						Matrix Spike (MS) Report						
					Sp	Spike		Recovery Limits (%)				
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie		
otal Metals (QC	Lot: 505664) - conti	inued										
CG2206309-002	Anonymous	bismuth, total	7440-69-9	E420	0.00956 mg/L	0.01 mg/L	95.6	70.0	130			
		boron, total	7440-42-8	E420	0.096 mg/L	0.1 mg/L	96.1	70.0	130			
		cadmium, total	7440-43-9	E420	0.00364 mg/L	0.004 mg/L	91.0	70.0	130			
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130			
		cesium, total	7440-46-2	E420	0.0104 mg/L	0.01 mg/L	104	70.0	130			
		chromium, total	7440-47-3	E420	0.0409 mg/L	0.04 mg/L	102	70.0	130			
		cobalt, total	7440-48-4	E420	0.0196 mg/L	0.02 mg/L	98.2	70.0	130			
		copper, total	7440-50-8	E420	0.0193 mg/L	0.02 mg/L	96.3	70.0	130			
		iron, total	7439-89-6	E420	2.06 mg/L	2 mg/L	103	70.0	130			
		lead, total	7439-92-1	E420	0.0193 mg/L	0.02 mg/L	96.4	70.0	130			
		lithium, total	7439-93-2	E420	ND mg/L	0.1 mg/L	ND	70.0	130			
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, total	7439-96-5	E420	0.0205 mg/L	0.02 mg/L	102	70.0	130			
		molybdenum, total	7439-98-7	E420	0.0211 mg/L	0.02 mg/L	106	70.0	130			
		nickel, total	7440-02-0	E420	0.0381 mg/L	0.04 mg/L	95.3	70.0	130			
		phosphorus, total	7723-14-0	E420	11.0 mg/L	10 mg/L	110	70.0	130			
		potassium, total	7440-09-7	E420	ND mg/L	4 mg/L	ND	70.0	130			
		rubidium, total	7440-17-7	E420	0.0209 mg/L	0.02 mg/L	104	70.0	130			
		selenium, total	7782-49-2	E420	ND mg/L	0.04 mg/L	ND	70.0	130			
		silicon, total	7440-21-3	E420	9.92 mg/L	10 mg/L	99.2	70.0	130			
		silver, total	7440-22-4	E420	0.00425 mg/L	0.004 mg/L	106	70.0	130			
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130			
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130			
		tellurium, total	13494-80-9	E420	0.0421 mg/L	0.04 mg/L	105	70.0	130			
		thallium, total	7440-28-0	E420	0.00384 mg/L	0.004 mg/L	96.0	70.0	130			
		thorium, total	7440-29-1	E420	0.0191 mg/L	0.02 mg/L	95.6	70.0	130			
		tin, total	7440-31-5	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130			
		titanium, total	7440-32-6	E420	0.0408 mg/L	0.04 mg/L	102	70.0	130			
		tungsten, total	7440-33-7	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130			
		uranium, total	7440-61-1	E420	ND mg/L	0.004 mg/L	ND	70.0	130			
		vanadium, total	7440-62-2	E420	0.106 mg/L	0.1 mg/L	106	70.0	130			
		zinc, total	7440-66-6	E420	0.389 mg/L	0.4 mg/L	97.2	70.0	130			
		zirconium, total	7440-67-7	E420	0.0425 mg/L	0.04 mg/L	106	70.0	130			
issolved Metals	(QCLot: 502935)											
/A22B1556-004	Anonymous	mercury, dissolved	7439-97-6	E509	0.000111 mg/L	0.0001 mg/L	111	70.0	130			

Page : 17 of 18 Work Order : YL2200516

Client : Golder Associates Ltd.

ub-Matrix: Water	atrix: Water				Matrix Spike (MS) Report						
					Spi	Spike		Recovery Limits (%)			
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie	
	(QCLot: 505686)										
CG2206322-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.402 mg/L	0.4 mg/L	100	70.0	130		
		antimony, dissolved	7440-36-0	E421	0.0400 mg/L	0.04 mg/L	100.0	70.0	130		
		arsenic, dissolved	7440-38-2	E421	0.0411 mg/L	0.04 mg/L	103	70.0	130		
		barium, dissolved	7440-39-3	E421	0.0402 mg/L	0.04 mg/L	100	70.0	130		
		beryllium, dissolved	7440-41-7	E421	0.0784 mg/L	0.08 mg/L	97.9	70.0	130		
		bismuth, dissolved	7440-69-9	E421	0.0166 mg/L	0.02 mg/L	82.9	70.0	130		
		boron, dissolved	7440-42-8	E421	0.201 mg/L	0.2 mg/L	100	70.0	130		
		cadmium, dissolved	7440-43-9	E421	0.00780 mg/L	0.008 mg/L	97.5	70.0	130		
		calcium, dissolved	7440-70-2	E421	ND mg/L	8 mg/L	ND	70.0	130		
		cesium, dissolved	7440-46-2	E421	0.0203 mg/L	0.02 mg/L	101	70.0	130		
		chromium, dissolved	7440-47-3	E421	0.0778 mg/L	0.08 mg/L	97.2	70.0	130		
		cobalt, dissolved	7440-48-4	E421	ND mg/L	0.04 mg/L	ND	70.0	130		
		copper, dissolved	7440-50-8	E421	0.0371 mg/L	0.04 mg/L	92.7	70.0	130		
		iron, dissolved	7439-89-6	E421	3.81 mg/L	4 mg/L	95.2	70.0	130		
		lead, dissolved	7439-92-1	E421	0.0364 mg/L	0.04 mg/L	91.1	70.0	130		
		lithium, dissolved	7439-93-2	E421	ND mg/L	0.2 mg/L	ND	70.0	130		
		magnesium, dissolved	7439-95-4	E421	ND mg/L	2 mg/L	ND	70.0	130		
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.04 mg/L	ND	70.0	130		
		molybdenum, dissolved	7439-98-7	E421	0.0408 mg/L	0.04 mg/L	102	70.0	130		
		nickel, dissolved	7440-02-0	E421	ND mg/L	0.08 mg/L	ND	70.0	130		
		phosphorus, dissolved	7723-14-0	E421	20.6 mg/L	20 mg/L	103	70.0	130		
		potassium, dissolved	7440-09-7	E421	ND mg/L	8 mg/L	ND	70.0	130		
		rubidium, dissolved	7440-17-7	E421	0.0392 mg/L	0.04 mg/L	98.1	70.0	130		
		selenium, dissolved	7782-49-2	E421	ND mg/L	0.08 mg/L	ND	70.0	130		
		silicon, dissolved	7440-21-3	E421	19.8 mg/L	20 mg/L	98.8	70.0	130		
		silver, dissolved	7440-22-4	E421	0.00754 mg/L	0.008 mg/L	94.3	70.0	130		
		sodium, dissolved	7440-23-5	E421	ND mg/L	4 mg/L	ND	70.0	130		
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.04 mg/L	ND	70.0	130		
		sulfur, dissolved	7704-34-9	E421	ND mg/L	40 mg/L	ND	70.0	130		
		tellurium, dissolved	13494-80-9	E421	0.0772 mg/L	0.08 mg/L	96.5	70.0	130		
		thallium, dissolved	7440-28-0	E421	0.00736 mg/L	0.008 mg/L	92.0	70.0	130		
		thorium, dissolved	7440-29-1	E421	0.0413 mg/L	0.04 mg/L	103	70.0	130		
		tin, dissolved	7440-31-5	E421	0.0403 mg/L	0.04 mg/L	101	70.0	130		
		titanium, dissolved	7440-32-6	E421	0.0789 mg/L	0.08 mg/L	98.7	70.0	130		
		tungsten, dissolved	7440-33-7	E421	0.0375 mg/L	0.04 mg/L	93.7	70.0	130		
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.008 mg/L	ND	70.0	130		
		vanadium, dissolved	7440-62-2	E421	0.206 mg/L	0.2 mg/L	103	70.0	130		

Page : 18 of 18 Work Order : YL2200516

Client : Golder Associates Ltd.

Sub-Matrix: Water					Matrix Spike (MS) Report						
					Spike		Recovery (%)	Recovery Limits (%)			
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Dissolved Metals (QCLot: 505686) - continued											
CG2206322-002	Anonymous	zinc, dissolved	7440-66-6	E421	0.718 mg/L	0.8 mg/L	89.7	70.0	130		
		zirconium, dissolved	7440-67-7	E421	0.0833 mg/L	0.08 mg/L	104	70.0	130		
Volatile Organic Compounds (QCLot: 506513)											
VA22B1080-001	Anonymous	benzene	71-43-2	E611A	98.6 μg/L	100 μg/L	98.6	70.0	130		
		ethylbenzene	100-41-4	E611A	98.3 μg/L	100 μg/L	98.3	70.0	130		
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	99.6 μg/L	100 μg/L	99.6	70.0	130		
		styrene	100-42-5	E611A	107 μg/L	100 μg/L	107	70.0	130		
		toluene	108-88-3	E611A	91.6 μg/L	100 μg/L	91.6	70.0	130		
		xylene, m+p-	179601-23-1	E611A	198 μg/L	200 μg/L	99.3	70.0	130		
		xylene, o-	95-47-6	E611A	100 μg/L	100 μg/L	100	70.0	130		
Hydrocarbons (QCLot: 506512)											
VA22B1080-002	Anonymous	F1 (C6-C10)		E581.VH+F1	4830 μg/L	6310 µg/L	76.5	60.0	140		
		VHw (C6-C10)		E581.VH+F1	4450 μg/L	6310 μg/L	70.5	60.0	140		

>	CHAIN OF CUSTODY ALS Laboratory		RELINQUISHE JUMANA DATE/TIME	25 Mc	DATECTIME 25 WON JOSE DATECTIME 25 WON JOSE	RECEIVED BY:	MAY 25/22 8:57	ST RECEIVED BY:
CLIENT: C	Golder Associates Ltd. TURNA	TURNAROUND REQUIREMENTS:	☐ Standar	Standard TAT (List due date):	due date):	V	FOR LABORATORY USE ONLY (Circle)	
PROJECT:	Jackfish NTPC (Standard	(Standard TAT may be longer for some tests e.g. Ultra Trace Organics)	□ Non St	andard or urg	Non Standard or urgent TAT (List due date):	fue date):	Custody Seal Intact7	r r
SITE:	A STATE OF THE STA	a mate organical			100	and annual	Eree Ice / frozen ice bricks present upon receip?	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PURCHASE ORDER NO.:			ALS	QUOTE NC	YL21-GOLD	ALS QUOTE NC YL21-GOLD100-008 [updated in April 2022]		n g
PROJECT MANAGER: H	Kathy Qin CONTACT PH:	587 969 6141	EQuit	S facility co	EQuiS facility code: 183527250	6		0.00
SAMPLER: T	Tamara Derkowski SAMPLER MOBILE:	867-446-4757	Proje	Project Number: 21482915	21482915			-
EMAIL REPORTS TO:	Karry Oinggolder.com alson hymphnes@golder.com, GAL equis@golder.com		EMAI	EMAIL INVOICE TO:	TO: Lauren	Jurence boninggolder o	com Kathy Chaggoolder on	
SPECIAL HANDLING/STORAGE OR DISPOSAL:						- 11		
ALS USE ONLY	SAMPLE DETAILS Solid(S) Water(W)	MATRIX	CONTAINER	MINER			ANALYSIS REQUIRED	Additional Information
SAMPLE	Sample identification (This description will appear on the report)	DATE / TIME (dd-mm-yyyy)	MATRIX	TOTAL CONTAINERS	Standard Parameters Suite	Organics parameter suite	Environmental Division	Communities and its any constanting and singles, discount families and community students CC and you was
,	OUTFLOW		W	4	×		Work Order Reference	All Suma be fold
	NORTHWEST BAY NORTH_Bottom		¥		×	×	YL2200516	
3	NORTHWEST BAY NORTH_Mid-depth		W		×			9.
4	MID LAXE 1_ Bottom		×		×			
5	MID LAXE 1_Mid-depth		×		×			
0	EMD DISCHARGE INLAKE_Bottom		×	4	×		1000000000000000000000000000000000000	
7	EMD DISCHARGE INLAKE_Mid-depth		W	4	×		Telephone : +1 867 873 5593	
os S	SOUTHWEST BAY_Bottom		W		×			
6	SOUTHWEST BAY_Mid-depth		W		×			
10 N	NEAR OUTFLOW INLAKE_Bottom		×		×	×		
N Ct	NEAR OUTFLOW INLAKE_Mid-depth		W		×			
12 N	NORTHWEST BAY NORTH_Bottom_4		W		×	×		
13	JFLOC_1		W	تي	×	×		
14 4	JFLDC:2		W		×			
			TOTAL	124				

CERTIFICATE OF ANALYSIS

Work Order : YL2200527

Client : Golder Associates Ltd.

Contact : Sarah Beattie

Address : 9 - 4905 48th Street

Yellowknife NT Canada X1A 3S3

Telephone : 867 873 6319
Project : Jackfish NTPC

C-O-C number : ---Sampler : ----

Site : Jackfish NTPC
Quote number : YL21-GOLD100-008

No. of samples received : 9
No. of samples analysed : 9

Page : 1 of 12

Laboratory : Yellowknife - Environmental

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife NT Canada X1A 3T3

Telephone : 1 867 446 5593

Date Samples Received : 26-May-2022 09:05

Date Analysis Commenced : 30-May-2022

Issue Date : 07-Jun-2022 16:56

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Christopher Li	Lab Assistant	Metals, Burnaby, British Columbia
Dan Gebert	Laboratory Analyst	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia
Kenson Lo		Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia

Page : 2 of 12 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DTMF	Dissolved concentration exceeds total for field-filtered metals sample. Metallic
	contaminants may have been introduced to dissolved sample during field filtration.

>: greater than.

Page : 3 of 12 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water (Matrix: Water)			C	lient sample ID	NORTHWEST BAY NORTH_Bottom	NORTHWEST BAY NORTH_Mid-de pth	MID LAKE 1_Bottom	MID LAKE 1_Mid-depth	SOUTHWEST BAY_Bottom
			Client samp	oling date / time	25-May-2022 13:50	25-May-2022 13:50	25-May-2022 12:10	25-May-2022 12:10	25-May-2022 10:30
Analyte	CAS Number	Method	LOR	Unit	YL2200527-001	YL2200527-002	YL2200527-003	YL2200527-004	YL2200527-005
					Result	Result	Result	Result	Result
Physical Tests									
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	108	108	110	108	107
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	108	108	110	108	107
conductivity		E100	2.0	μS/cm	440	441	442	445	444
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	135	130	138	128	137
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	136	140	140	139	140
рН		E108	0.10	pH units	8.23	8.24	8.28	8.30	8.28
solids, total dissolved [TDS]		E162	10	mg/L	278	292	279	277	263
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	240	236	242	234	240
solids, total suspended [TSS]		E160	3.0	mg/L	7.7	5.9	5.3	6.3	7.5
turbidity		E121	0.10	NTU	7.24	6.45	6.96	6.74	6.91
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0585	0.0624	0.0696	0.0628	0.0672
chloride	16887-00-6	E235.CI-L	0.10	mg/L	59.3	59.1	58.9	58.9	58.9
fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.083	0.082	0.084	0.083	0.083
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0926	0.0759	0.0894	0.0894	0.0858
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	0.0998	0.0820	0.0957	0.0959	0.0921
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0072	0.0061	0.0063	0.0065	0.0063
nitrogen, total	7727-37-9	E366	0.030	mg/L	1.28	1.32	1.25	1.27	1.28
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0875	0.0866	0.0848	0.0900	0.0854
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0177	0.0196	0.0190	0.0217	0.0195
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	12.8	13.0	12.9	13.0	12.9
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	25.5	25.5	25.5	25.5	25.5
Organic / Inorganic Carbon								1	
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	12.1	14.1	13.4	14.0	14.0
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0108	0.0114	0.0085	0.0112	0.0088

Page : 4 of 12 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

ALS

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	NORTHWEST BAY	NORTHWEST BAY	MID LAKE 1_Bottom	MID LAKE 1_Mid-depth	SOUTHWEST BAY_Bottom
					NORTH_Bottom	NORTH_Mid-de pth			
			Client sampl	ling date / time	25-May-2022 13:50	25-May-2022 13:50	25-May-2022 12:10	25-May-2022 12:10	25-May-2022 10:30
Analyte	CAS Number	Method	LOR	Unit	YL2200527-001	YL2200527-002	YL2200527-003	YL2200527-004	YL2200527-005
					Result	Result	Result	Result	Result
Total Metals									
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00120	0.00119	0.00118	0.00120	0.00118
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0597	0.0618	0.0627	0.0614	0.0618
barium, total	7440-39-3	E420	0.00010	mg/L	0.0299	0.0316	0.0318	0.0320	0.0319
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, total	7440-42-8	E420	0.010	mg/L	0.027	0.028	0.028	0.028	0.028
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.0000050	<0.0000050
calcium, total	7440-70-2	E420	0.050	mg/L	36.1	36.7	37.0	36.7	36.9
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
copper, total	7440-50-8	E420	0.00050	mg/L	0.00181	0.00191	0.00193	0.00196	0.00185
iron, total	7439-89-6	E420	0.010	mg/L	0.018	0.018	0.015	0.019	0.014
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0059	0.0059	0.0060	0.0059	0.0059
magnesium, total	7439-95-4	E420	0.0050	mg/L	11.1	11.7	11.7	11.5	11.6
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0635	0.0650	0.0657	0.0641	0.0678
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000226	0.000207	0.00175	0.00193	0.000180
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00053	0.00057	0.00056	0.00059	<0.00050
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	0.075	0.054	0.099	<0.050
potassium, total	7440-09-7	E420	0.050	mg/L	4.09	4.24	4.28	4.27	4.28
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00241	0.00253	0.00254	0.00254	0.00250
selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	0.000061
silicon, total	7440-21-3	E420	0.10	mg/L	6.40	6.50	6.55	6.46	6.35
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, total	7440-23-5	E420	0.050	mg/L	29.8	31.2	31.2	31.0	30.8
strontium, total	7440-23-3	E420	0.00020	mg/L	0.0853	0.0848	0.0852	0.0867	0.0869
sulfur, total	7704-34-9	E420	0.50	mg/L	9.62	9.66	9.53	9.69	9.20
Journal, total	7704-34-9	LTZV	0.00	mg/L	0.02	3.00	0.00	0.00	0.20

Page : 5 of 12 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

ALS

Sub-Matrix: Water			Cli	ent sample ID	NORTHWEST	NORTHWEST	MID LAKE	MID LAKE	SOUTHWEST
(Matrix: Water)					BAY NORTH Bottom	BAY NORTH Mid-de	1_Bottom	1_Mid-depth	BAY_Bottom
					_	pth			
			0" 1						
			Client sampl	ling date / time	25-May-2022 13:50	25-May-2022	25-May-2022 12:10	25-May-2022 12:10	25-May-2022 10:30
Analyte	CAS Number	Method	LOR	Unit	YL2200527-001	13:50 YL2200527-002	YL2200527-003	YL2200527-004	YL2200527-005
Analyte	CAS Number	Wethou	LON	Onn	Result	Result	Result	Result	Result
Total Metals					rtodat	rtodak	rtosuit	recount	rooun
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000456	0.000500	0.000476	0.000551	0.000412
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0040	0.0040	0.0045	0.0029	0.0038
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00123	0.00119	0.00124	0.00120	0.00126
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0655	0.0599	0.0651	0.0601	0.0646
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0316	0.0288	0.0313	0.0292	0.0325
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.028	0.027	0.028	0.027	0.029
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.000050	<0.0000050	<0.000050	<0.0000050	<0.000050
calcium, dissolved	7440-70-2	E421	0.050	mg/L	37.1	36.4	37.8	35.6	37.9
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00185	0.00179	0.00192	0.00178	0.00192
iron, dissolved	7439-89-6	E421	0.010	mg/L	0.010	<0.010	0.011	<0.010	<0.010
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0056	0.0054	0.0058	0.0054	0.0059
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	10.3	9.50	10.7	9.40	10.4
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0559	0.0506	0.0523	0.0469	0.0551

Page : 6 of 12 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

ALS

Sub-Matrix: Water			Cli	ent sample ID	NORTHWEST	NORTHWEST	MID LAKE	MID LAKE	SOUTHWEST
(Matrix: Water)					BAY NORTH_Bottom	BAY NORTH_Mid-de pth	1_Bottom	1_Mid-depth	BAY_Bottom
			Client samp	ling date / time	25-May-2022 13:50	25-May-2022 13:50	25-May-2022 12:10	25-May-2022 12:10	25-May-2022 10:30
Analyte	CAS Number	Method	LOR	Unit	YL2200527-001	YL2200527-002	YL2200527-003	YL2200527-004	YL2200527-005
					Result	Result	Result	Result	Result
Dissolved Metals		E500	0.0000050		*0.0000000	10.0000000	40.0000000	40.0000050	*0.0000050
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050 0.00216 DTMF
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000191	0.000203	0.000236	0.000254	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	0.00051
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
potassium, dissolved	7440-09-7	E421	0.050	mg/L	4.32	3.98	4.34	4.01	4.34
rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00279	0.00257	0.00261	0.00253	0.00272
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000053	0.000056	<0.000050	<0.000050	<0.000050
silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.01	5.89	6.16	5.84	6.19
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, dissolved	7440-23-5	E421	0.050	mg/L	30.6	28.5	30.9	28.4	30.9
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0908	0.0879	0.0926	0.0906	0.0943
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	9.02	9.21	9.38	8.92	9.25
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000568	0.000552	0.000590	0.000557	0.000597 DTMF
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0.0014	<0.0010	<0.0010
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	Field
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field
Aggregate Organics									
oil & grease (gravimetric)		E567	5.0	mg/L	<5.0				
Volatile Organic Compounds [Fuels]									
benzene	71-43-2	E611A	0.50	μg/L	<0.50				
ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50				

Page : 7 of 12 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

ALS

Analytical Results

Sub-Matrix: Water			C	lient sample ID	NORTHWEST	NORTHWEST	MID LAKE	MID LAKE	SOUTHWEST
(Matrix: Water)					BAY	BAY	1_Bottom	1_Mid-depth	BAY_Bottom
					NORTH_Bottom	NORTH_Mid-de			
						pth			
			Client same	oling date / time	25-May-2022	25-May-2022	25-May-2022	25-May-2022	25-May-2022
			onone oump	mig date / mile	13:50	13:50	12:10	12:10	10:30
Analyte	CAS Number	Method	LOR	Unit	YL2200527-001	YL2200527-002	YL2200527-003	YL2200527-004	YL2200527-005
					Result	Result	Result	Result	Result
Volatile Organic Compounds [Fuels]									
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50				
styrene	100-42-5	E611A	0.50	μg/L	<0.50				
toluene	108-88-3	E611A	0.50	μg/L	<0.50				
xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40				
xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30				
xylenes, total	1330-20-7	E611A	0.50	μg/L	<0.50				
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611A	1.0	%	90.0				
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%	101				
Hydrocarbons									
F1 (C6-C10)		E581.VH+F1	100	μg/L	<100				
F2 (C10-C16)		E601	300	μg/L	<300				
F3 (C16-C34)		E601	300	μg/L	<300				
F4 (C34-C50)		E601	300	μg/L	<300				
VHw (C6-C10)		E581.VH+F1	100	μg/L	<100				
F1-BTEX		EC580	100	μg/L	<100				
VPHw		EC580A	100	μg/L	<100				
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%	81.6				
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%	100				

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 8 of 12 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

ALS

Sub-Matrix: Water (Matrix: Water)			Cl	lient sample ID	SOUTHWEST BAY_Mid-depth	NEAR OUTFLOW INLAKE_Bottom	NEAR OUTFLOW INLAKE_Mid-de pth	NORTHWEST BAY NORTH_Bottom _4	
			Client samp	ling date / time	25-May-2022 10:30	25-May-2022 09:10	25-May-2022 09:10	25-May-2022 13:55	
Analyte	CAS Number	Method	LOR	Unit	YL2200527-006	YL2200527-007	YL2200527-008	YL2200527-009	
					Result	Result	Result	Result	
Physical Tests									
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	108	108	107	108	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	1.2	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	108	108	108	108	
conductivity		E100	2.0	μS/cm	442	442	443	446	
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	125	133	133	131	
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	140	140	140	139	
рН		E108	0.10	pH units	8.27	8.30	8.30	8.29	
solids, total dissolved [TDS]		E162	10	mg/L	272	298	294	276	
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	233	237	236	236	
solids, total suspended [TSS]		E160	3.0	mg/L	6.9	6.9	8.1	6.7	
turbidity		E121	0.10	NTU	6.62	7.59	7.22	6.63	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0651	0.0706	0.0725	0.0599	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	58.9	58.9	58.8	59.0	
fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.083	0.083	0.083	0.083	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0911	0.0903	0.0915	0.0906	
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	0.0977	0.0970	0.0978	0.0982	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0066	0.0067	0.0063	0.0076	
nitrogen, total	7727-37-9	E366	0.030	mg/L	1.27	1.27	1.27	1.26	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0870	0.0873	0.0869	0.0890	
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0181	0.0179	0.0185	0.0185	
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	13.0	12.8	13.1	12.8	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	25.5	25.5	25.5	25.5	
	1 1300-7 3-0								
Organic / Inorganic Carbon carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	13.1	14.1	13.0	13.6	
				9, =			.5.5	.5.5	
Total Metals aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0100	0.0117	0.0102	0.0116	
	1425-50-5	2.20	0.0000	mg/L	0.0100	0.0111	0.0102	0.0110	

Page : 9 of 12 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

ALS

Sub-Matrix: Water			Cli	ent sample ID	SOUTHWEST	NEAR OUTFLOW	NEAR OUTFLOW	NORTHWEST BAY	
(Matrix: Water)					BAY_Mid-depth	INLAKE Bottom	INLAKE Mid-de	NORTH_Bottom	
						INTERICE_BORTOIN	pth	_4	
							P ····		
			Client sampl	ing date / time	25-May-2022	25-May-2022	25-May-2022	25-May-2022	
					10:30	09:10	09:10	13:55	
Analyte	CAS Number	Method	LOR	Unit	YL2200527-006	YL2200527-007	YL2200527-008	YL2200527-009	
					Result	Result	Result	Result	
Total Metals		E400	0.00040		0.00400	0.00400	0.00440	0.00440	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00120	0.00120	0.00119	0.00116	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0624	0.0623	0.0624	0.0607	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0318	0.0320	0.0324	0.0313	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.028	0.028	0.028	0.027	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.000050	<0.000050	<0.0000050	
calcium, total	7440-70-2	E420	0.050	mg/L	37.0	36.8	36.6	37.1	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00199	0.00194	0.00194	0.00186	
iron, total	7439-89-6	E420	0.010	mg/L	0.019	0.018	0.015	0.017	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0059	0.0058	0.0059	0.0058	
magnesium, total	7439-95-4	E420	0.0050	mg/L	11.6	11.8	11.8	11.3	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0691	0.0751	0.0662	0.0663	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00149	0.000190	0.000208	0.000204	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00064	0.00057	0.00052	0.00052	
phosphorus, total	7723-14-0	E420	0.050	mg/L	0.102	0.070	<0.050	<0.050	
potassium, total	7440-09-7	E420	0.050	mg/L	4.30	4.28	4.28	4.22	
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00245	0.00247	0.00255	0.00238	
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000062	<0.000050	<0.000050	<0.000050	
silicon, total	7440-21-3	E420	0.10	mg/L	6.46	6.46	6.47	6.40	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5	E420	0.050	mg/L	31.3	31.2	31.1	30.2	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0862	0.0867	0.0877	0.0859	
sulfur, total	7704-34-9	E420	0.50	mg/L	9.68	9.44	9.71	9.55	
			1 1	J.				ı	I

Page : 10 of 12 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

ALS

Sub-Matrix: Water			Cli	ent sample ID	SOUTHWEST	NEAR	NEAR	NORTHWEST	
(Matrix: Water)					BAY_Mid-depth	OUTFLOW	OUTFLOW	BAY	
						INLAKE_Bottom	INLAKE_Mid-de	NORTH_Bottom	
							pth	_4	
			Client samp	ing date / time	25-May-2022	25-May-2022	25-May-2022	25-May-2022	
					10:30	09:10	09:10	13:55	
Analyte	CAS Number	Method	LOR	Unit	YL2200527-006	YL2200527-007	YL2200527-008	YL2200527-009	
					Result	Result	Result	Result	
Total Metals									
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000614	0.000538	0.000430	0.000396	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0035	0.0036	0.0036	0.0039	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00120	0.00120	0.00120	0.00120	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0603	0.0600	0.0597	0.0617	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0289	0.0292	0.0285	0.0293	
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.027	0.028	0.028	0.028	
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	34.8	37.1	37.5	36.1	
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00168	0.00179	0.00177	0.00182	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0054	0.0055	0.0057	0.0055	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	9.31	9.90	9.56	9.83	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0505	0.0531	0.0491	0.0538	
1			1	J		I	l	ı l	

Page : 11 of 12 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

ALS

Sub-Matrix: Water			Cli	ent sample ID	SOUTHWEST	NEAR	NEAR	NORTHWEST	
(Matrix: Water)					BAY_Mid-depth	OUTFLOW	OUTFLOW	BAY	
						INLAKE_Bottom	INLAKE_Mid-de	NORTH_Bottom	
							pth	_4	
			Client sampl	ing date / time	25-May-2022	25-May-2022	25-May-2022	25-May-2022	
					10:30	09:10	09:10	13:55	
Analyte	CAS Number	Method	LOR	Unit	YL2200527-006	YL2200527-007	YL2200527-008	YL2200527-009	
					Result	Result	Result	Result	
Dissolved Metals									
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.000050	<0.0000050	<0.0000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000212	0.00165 DTMF	0.000207	0.000221	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	3.95	4.06	3.97	4.08	
rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00238	0.00242	0.00252	0.00255	
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	0.000051	<0.000050	<0.000050	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	5.74	5.71	5.85	5.96	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	28.4	28.8	28.1	29.2	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0882	0.0905	0.0896	0.0921	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	8.80	8.72	9.42	8.99	
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	0.00023	<0.00020	<0.00020	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000558	0.000555	0.000557	0.000572 DTMF	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	
Aggregate Organics									
oil & grease (gravimetric)		E567	5.0	mg/L		<5.0		<5.0	
Volatile Organic Compounds [Fuels]									
benzene	71-43-2	E611A	0.50	μg/L		<0.50		<0.50	
ethylbenzene	100-41-4	E611A	0.50	μg/L		<0.50		<0.50	
•	1			'				. '	1

Page : 12 of 12 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

ALS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	lient sample ID	SOUTHWEST BAY_Mid-depth	NEAR OUTFLOW INLAKE_Bottom	NEAR OUTFLOW INLAKE_Mid-de pth	NORTHWEST BAY NORTH_Bottom _4	
			Client samp	oling date / time	25-May-2022 10:30	25-May-2022 09:10	25-May-2022 09:10	25-May-2022 13:55	
Analyte CA	S Number	Method	LOR	Unit	YL2200527-006	YL2200527-007	YL2200527-008	YL2200527-009	
					Result	Result	Result	Result	
Volatile Organic Compounds [Fuels]									
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L		<0.50		<0.50	
styrene	100-42-5	E611A	0.50	μg/L		<0.50		<0.50	
toluene	108-88-3	E611A	0.50	μg/L		<0.50		<0.50	
xylene, m+p-	9601-23-1	E611A	0.40	μg/L		<0.40		<0.40	
xylene, o-	95-47-6	E611A	0.30	μg/L		<0.30		<0.30	
xylenes, total	1330-20-7	E611A	0.50	μg/L		<0.50		<0.50	
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611A	1.0	%		95.3		93.0	
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%		101		101	
Hydrocarbons									
F1 (C6-C10)		E581.VH+F1	100	μg/L		<100		<100	
F2 (C10-C16)		E601	300	μg/L		<300		<300	
F3 (C16-C34)		E601	300	μg/L		<300		<300	
F4 (C34-C50)		E601	300	μg/L		<300		<300	
VHw (C6-C10)		E581.VH+F1	100	μg/L		<100		<100	
F1-BTEX		EC580	100	μg/L		<100		<100	
VPHw		EC580A	100	μg/L		<100		<100	
Hydrocarbons Surrogates								·	
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%		90.9		90.0	
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%		107		102	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : YL2200527 Page : 1 of 34

Client : Golder Associates Ltd. Laboratory : Yellowknife - Environmental

Contact : Sarah Beattie Account Manager : Oliver Gregg

Address : 9 - 4905 48th Street Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

 Telephone
 : 867 873 6319
 Telephone
 : 1 867 446 5593

 Project
 : Jackfish NTPC
 Date Samples Received
 : 26-May-2022 09:05

 PO
 : --- Issue Date
 : 07-Jun-2022 16:57

PO : ----C-O-C number : ----

Yellowknife NT Canada X1A 3S3

Site : Jackfish NTPC

Quote number : YL21-GOLD100-008

No. of samples received : 9
No. of samples analysed : 9

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Sampler

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 34 : YL2200527 Work Order

Client : Golder Associates Ltd.

: Jackfish NTPC Project

Outliers: Quality Control Samples
Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Physical Tests	QC-MRG2-5050900		conductivity		E100	2.5 ^B	2 μS/cm	Blank result exceeds
	01					μS/cm		permitted value
Dissolved Metals	QC-507895-001		magnesium, dissolved	7439-95-4	E421	0.0051 B	0.005 mg/L	Blank result exceeds
						mg/L		permitted value

Result Qualifiers

Qualifier	Description
В	Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.

Page : 4 of 34 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
NEAR OUTFLOW INLAKE_Bottom	E567	25-May-2022	02-Jun-2022	28	8 days	✓	02-Jun-2022	40 days	0 days	✓
				days						
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
NORTHWEST BAY NORTH_Bottom	E567	25-May-2022	02-Jun-2022	28	8 days	✓	02-Jun-2022	40 days	0 days	✓
				days						
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
NORTHWEST BAY NORTH_Bottom_4	E567	25-May-2022	02-Jun-2022	28	8 days	✓	02-Jun-2022	40 days	0 days	✓
				days						
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
MID LAKE 1_Bottom	E298	25-May-2022	02-Jun-2022				05-Jun-2022	28 days	10 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
MID LAKE 1_Mid-depth	E298	25-May-2022	02-Jun-2022				05-Jun-2022	28 days	10 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
NORTHWEST BAY NORTH_Bottom	E298	25-May-2022	02-Jun-2022				05-Jun-2022	28 days	10 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
NORTHWEST BAY NORTH_Bottom_4	E298	25-May-2022	02-Jun-2022				05-Jun-2022	28 days	10 days	✓

 Page
 : 5 of 34

 Work Order
 : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	g Date Extraction / Preparation			ation			Analysis		
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Anions and Nutrients : Ammonia by Fluorescence											
Amber glass total (sulfuric acid) NORTHWEST BAY NORTH_Mid-depth	E298	25-May-2022	02-Jun-2022				05-Jun-2022	28 days	10 days	✓	
Anions and Nutrients : Ammonia by Fluorescence											
Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom	E298	25-May-2022	02-Jun-2022				05-Jun-2022	28 days	11 days	✓	
Anions and Nutrients : Ammonia by Fluorescence											
Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Mid-depth	E298	25-May-2022	02-Jun-2022				05-Jun-2022	28 days	11 days	✓	
Anions and Nutrients : Ammonia by Fluorescence											
Amber glass total (sulfuric acid) SOUTHWEST BAY_Bottom	E298	25-May-2022	02-Jun-2022				05-Jun-2022	28 days	11 days	✓	
Anions and Nutrients : Ammonia by Fluorescence											
Amber glass total (sulfuric acid) SOUTHWEST BAY_Mid-depth	E298	25-May-2022	02-Jun-2022				05-Jun-2022	28 days	11 days	✓	
Anions and Nutrients : Chloride in Water by IC (Low Level)											
HDPE MID LAKE 1_Bottom	E235.CI-L	25-May-2022					31-May-2022	28 days	6 days	✓	
Anions and Nutrients : Chloride in Water by IC (Low Level)											
HDPE MID LAKE 1_Mid-depth	E235.CI-L	25-May-2022					31-May-2022	28 days	6 days	✓	
Anions and Nutrients : Chloride in Water by IC (Low Level)											
HDPE NEAR OUTFLOW INLAKE_Bottom	E235.CI-L	25-May-2022					31-May-2022	28 days	6 days	✓	
Anions and Nutrients : Chloride in Water by IC (Low Level)											
HDPE NEAR OUTFLOW INLAKE_Mid-depth	E235.CI-L	25-May-2022					31-May-2022	28 days	6 days	✓	

 Page
 : 6 of 34

 Work Order
 : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	ing Date Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE NORTHWEST BAY NORTH_Bottom	E235.CI-L	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE NORTHWEST BAY NORTH_Bottom_4	E235.CI-L	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE NORTHWEST BAY NORTH_Mid-depth	E235.CI-L	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE SOUTHWEST BAY_Bottom	E235.CI-L	25-May-2022					31-May-2022	28 days	6 days	√
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE SOUTHWEST BAY_Mid-depth	E235.CI-L	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Fluoride in Water by IC (Low Level)										
HDPE MID LAKE 1_Bottom	E235.F-L	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Fluoride in Water by IC (Low Level)										
HDPE MID LAKE 1_Mid-depth	E235.F-L	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Fluoride in Water by IC (Low Level)										
HDPE NEAR OUTFLOW INLAKE_Bottom	E235.F-L	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Fluoride in Water by IC (Low Level)										
HDPE NEAR OUTFLOW INLAKE_Mid-depth	E235.F-L	25-May-2022					31-May-2022	28 days	6 days	✓

Page : 7 of 34 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

EHT

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) **Holding Times** Preparation **Holding Times** Eval Analysis Date Eval Rec Rec Actual Actual Date Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE NORTHWEST BAY NORTH_Bottom E235.F-L 25-May-2022 31-May-2022 28 days 6 days ✓ Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L ✓ NORTHWEST BAY NORTH Bottom 4 25-May-2022 31-May-2022 28 days 6 days ----Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 25-May-2022 31-May-2022 28 days 6 days 1 NORTHWEST BAY NORTH Mid-depth Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 25-May-2022 31-May-2022 28 days 6 days SOUTHWEST BAY Bottom Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 25-May-2022 31-May-2022 28 days 6 days SOUTHWEST BAY Mid-depth Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 25-May-2022 31-May-2022 MID LAKE 1_Bottom 3 days 6 days æ EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE MID LAKE 1 Mid-depth E235.NO3-L 25-May-2022 31-May-2022 3 days 6 days * EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE 31-May-2022 NEAR OUTFLOW INLAKE Bottom E235.NO3-L 25-May-2022 3 days 6 days × EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L NEAR OUTFLOW INLAKE Mid-depth 25-May-2022 31-May-2022 3 days 6 days 30 ----

Page : 8 of 34 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

NEAR OUTFLOW INLAKE Mid-depth

31-May-2022

3 days

6 days

30

EHT

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date **Holding Times** Eval Rec Actual Rec Actual Date Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE NORTHWEST BAY NORTH_Bottom E235.NO3-L 25-May-2022 31-May-2022 3 days 6 days * EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L NORTHWEST BAY NORTH Bottom 4 25-May-2022 31-May-2022 3 days 6 days æ --------EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 25-May-2022 31-May-2022 3 days 6 days NORTHWEST BAY NORTH Mid-depth 30 EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 25-May-2022 31-May-2022 3 days SOUTHWEST BAY Bottom 6 days × EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE 25-May-2022 E235.NO3-L 31-May-2022 6 days æ SOUTHWEST BAY Mid-depth 3 days EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE E235.NO2-L 25-May-2022 31-May-2022 MID LAKE 1_Bottom 3 days 6 days æ EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE MID LAKE 1 Mid-depth E235.NO2-L 25-May-2022 31-May-2022 3 days 6 days * EHT Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE 31-May-2022 NEAR OUTFLOW INLAKE Bottom E235.NO2-L 25-May-2022 3 days 6 days × EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE

25-May-2022

E235.NO2-L

Page : 9 of 34
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: water		Evaluation: A - Holding time exceedance, V - Within					Tioluling Tilli			
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
NORTHWEST BAY NORTH_Bottom	E235.NO2-L	25-May-2022					31-May-2022	3 days	6 days	*
_										EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
NORTHWEST BAY NORTH Bottom 4	E235.NO2-L	25-May-2022					31-May-2022	3 days	6 days	*
NOTOTIVE OF BAT NOTOTI _ BOTTOIT _ 4		20 1110, 2022					or may 2022	o dayo	o dayo	EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE	E005 NOO I	05.140000					04 M 0000	0.1	0.1	
NORTHWEST BAY NORTH_Mid-depth	E235.NO2-L	25-May-2022					31-May-2022	3 days	6 days	*
										EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SOUTHWEST BAY_Bottom	E235.NO2-L	25-May-2022					31-May-2022	3 days	6 days	36
										EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SOUTHWEST BAY Mid-depth	E235.NO2-L	25-May-2022					31-May-2022	3 days	6 days	*
<u>-</u> ·										EHT
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE										
MID LAKE 1_Bottom	E392	25-May-2022					31-May-2022	28 days	6 days	✓
MID DATE 1_DOCOM	2002	20 May 2022					01 May 2022	20 dayo	o dayo	
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE	F200	05 May 2000					24 May 2000	00 4	0 4	,
MID LAKE 1_Mid-depth	E392	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE										
NEAR OUTFLOW INLAKE_Bottom	E392	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE										
NEAR OUTFLOW INLAKE_Mid-depth	E392	25-May-2022					31-May-2022	28 days	6 days	✓
- '		,								

Page : 10 of 34
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	ng Date Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE NORTHWEST BAY NORTH_Bottom	E392	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE NORTHWEST BAY NORTH_Bottom_4	E392	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE NORTHWEST BAY NORTH_Mid-depth	E392	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE SOUTHWEST BAY_Bottom	E392	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE SOUTHWEST BAY_Mid-depth	E392	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Sulfate in Water by IC										
MID LAKE 1_Bottom	E235.SO4	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE MID LAKE 1_Mid-depth	E235.SO4	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE NEAR OUTFLOW INLAKE_Bottom	E235.SO4	25-May-2022					31-May-2022	28 days	6 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE NEAR OUTFLOW INLAKE_Mid-depth	E235.SO4	25-May-2022					31-May-2022	28 days	6 days	✓

Page : 11 of 34 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients : Sulfate in Water by IC HDPE NORTHWEST BAY NORTH_Bottom E235.SO4 25-May-2022 31-May-2022 28 days 6 days ✓ Anions and Nutrients : Sulfate in Water by IC HDPE ✓ NORTHWEST BAY NORTH Bottom 4 E235.SO4 25-May-2022 31-May-2022 28 days 6 days ----Anions and Nutrients : Sulfate in Water by IC **HDPE** E235.SO4 25-May-2022 31-May-2022 28 days 6 days 1 NORTHWEST BAY NORTH Mid-depth Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 25-May-2022 31-May-2022 28 days 6 days SOUTHWEST BAY Bottom Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 25-May-2022 31-May-2022 28 days 6 days SOUTHWEST BAY Mid-depth Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T 25-May-2022 02-Jun-2022 04-Jun-2022 28 days 10 days ✓ NEAR OUTFLOW INLAKE_Bottom Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) NEAR OUTFLOW INLAKE Mid-depth E375-T 25-May-2022 02-Jun-2022 04-Jun-2022 28 days 10 days 1 Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) 28 days 10 days E375-T ✓ SOUTHWEST BAY Bottom 25-May-2022 02-Jun-2022 04-Jun-2022 Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T ✓ SOUTHWEST BAY Mid-depth 25-May-2022 02-Jun-2022 04-Jun-2022 28 days 10 days ----

Page : 12 of 34 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) MID LAKE 1_Bottom E375-T 25-May-2022 02-Jun-2022 04-Jun-2022 28 days 9 days ✓ Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T ✓ MID LAKE 1 Mid-depth 25-May-2022 02-Jun-2022 04-Jun-2022 28 days 9 days ----Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T 25-May-2022 02-Jun-2022 04-Jun-2022 28 days 9 days 1 NORTHWEST BAY NORTH Bottom Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T 25-May-2022 04-Jun-2022 28 days 9 days ✓ NORTHWEST BAY NORTH Bottom 4 02-Jun-2022 Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) NORTHWEST BAY NORTH Mid-depth E375-T 25-May-2022 02-Jun-2022 04-Jun-2022 28 days 9 days ✓ **Anions and Nutrients : Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom 25-May-2022 02-Jun-2022 03-Jun-2022 28 days 10 days ✓ E366 Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE Mid-depth E366 25-May-2022 02-Jun-2022 03-Jun-2022 28 days 10 days 1 Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) 28 days 10 days ✓ SOUTHWEST BAY Bottom E366 25-May-2022 02-Jun-2022 03-Jun-2022 Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) ✓ SOUTHWEST BAY Mid-depth E366 25-May-2022 02-Jun-2022 03-Jun-2022 28 days 10 days --------

Page : 13 of 34 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

NORTHWEST BAY NORTH Bottom

NORTHWEST BAY NORTH Bottom 4

Amber glass total (sulfuric acid)

Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L)

28 days 10 days

28 days 10 days

04-Jun-2022

04-Jun-2022

✓

✓

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date **Anions and Nutrients : Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) 03-Jun-2022 MID LAKE 1_Bottom E366 25-May-2022 02-Jun-2022 28 days 9 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) ✓ MID LAKE 1 Mid-depth E366 25-May-2022 02-Jun-2022 03-Jun-2022 28 days 9 days ----Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) E366 25-May-2022 02-Jun-2022 03-Jun-2022 28 days 9 days 1 NORTHWEST BAY NORTH Bottom **Anions and Nutrients : Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) 25-May-2022 03-Jun-2022 28 days 9 days ✓ NORTHWEST BAY NORTH Bottom 4 E366 02-Jun-2022 Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) E366 25-May-2022 02-Jun-2022 03-Jun-2022 28 days 9 days ✓ NORTHWEST BAY NORTH Mid-depth Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) MID LAKE 1_Bottom E372-U 25-May-2022 02-Jun-2022 04-Jun-2022 28 days 10 days ✓ Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) MID LAKE 1 Mid-depth E372-U 25-May-2022 02-Jun-2022 04-Jun-2022 28 days 10 days 1 Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid)

25-May-2022

25-May-2022

02-Jun-2022

02-Jun-2022

E372-U

E372-U

Page : 14 of 34
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) NORTHWEST BAY NORTH_Mid-depth	E372-U	25-May-2022	02-Jun-2022				04-Jun-2022	28 days	10 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom	E372-U	25-May-2022	02-Jun-2022				04-Jun-2022	28 days	11 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Mid-depth	E372-U	25-May-2022	02-Jun-2022				04-Jun-2022	28 days	11 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) SOUTHWEST BAY_Bottom	E372-U	25-May-2022	02-Jun-2022				04-Jun-2022	28 days	11 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) SOUTHWEST BAY_Mid-depth	E372-U	25-May-2022	02-Jun-2022				04-Jun-2022	28 days	11 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) MID LAKE 1_Bottom	E509	25-May-2022	30-May-2022				30-May-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) MID LAKE 1_Mid-depth	E509	25-May-2022	30-May-2022				30-May-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) NEAR OUTFLOW INLAKE_Bottom	E509	25-May-2022	30-May-2022				30-May-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) NEAR OUTFLOW INLAKE_Mid-depth	E509	25-May-2022	30-May-2022				30-May-2022	28 days	5 days	✓

Page : 15 of 34
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	ng Date Extraction / Preparation				Α		is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) NORTHWEST BAY NORTH_Bottom	E509	25-May-2022	30-May-2022				30-May-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) NORTHWEST BAY NORTH_Bottom_4	E509	25-May-2022	30-May-2022				30-May-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) NORTHWEST BAY NORTH_Mid-depth	E509	25-May-2022	30-May-2022				30-May-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) SOUTHWEST BAY_Bottom	E509	25-May-2022	30-May-2022				30-May-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) SOUTHWEST BAY_Mid-depth	E509	25-May-2022	30-May-2022				30-May-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) MID LAKE 1_Bottom	E421	25-May-2022	02-Jun-2022				02-Jun-2022	180 days	8 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) MID LAKE 1_Mid-depth	E421	25-May-2022	02-Jun-2022				02-Jun-2022	180 days	8 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) NEAR OUTFLOW INLAKE_Bottom	E421	25-May-2022	02-Jun-2022				02-Jun-2022	180 days	8 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) NEAR OUTFLOW INLAKE_Mid-depth	E421	25-May-2022	02-Jun-2022				02-Jun-2022	180 days	8 days	✓

Page : 16 of 34
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

water						diddion.	noiding time exce	oudinoo ,	***************************************	riolaling i
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
NORTHWEST BAY NORTH_Bottom	E421	25-May-2022	02-Jun-2022				02-Jun-2022	180	8 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)								T		
NORTHWEST BAY NORTH Bottom 4	E421	25-May-2022	02-Jun-2022				02-Jun-2022	180	8 days	1
								days	,-	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
NORTHWEST BAY NORTH Mid-depth	E421	25-May-2022	02-Jun-2022				02-Jun-2022	180	8 days	✓
								days	,-	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS								dayo		
HDPE dissolved (nitric acid)							I			
SOUTHWEST BAY Bottom	E421	25-May-2022	02-Jun-2022				02-Jun-2022	180	8 days	1
GOOTHWEGT BALL BOLLOW		20 May 2022	02 0411 2022				OZ GGII ZGZZ	days	o dayo	
Picci I a I Maria Bi a da I Maria I a Maria I a GRO JORNO								dayo		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS					I		I			
HDPE dissolved (nitric acid) SOUTHWEST BAY Mid-depth	E421	25-May-2022	02-Jun-2022				02-Jun-2022	180	8 days	1
SOUTHWEST BAT_IMIU-ueptit	L421	25-Way-2022	02-Jun-2022				02-3011-2022		o uays	•
								days		
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID							I		1	
Amber glass/Teflon lined cap (sodium bisulfate)	E601	25 May 2022	02-Jun-2022		O dovo	✓	06-Jun-2022	10 days	4 days	√
NEAR OUTFLOW INLAKE_Bottom	E001	25-May-2022	02-Jun-2022	14	8 days	•	00-Jun-2022	40 days	4 days	•
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)						_				
NORTHWEST BAY NORTH_Bottom	E601	25-May-2022	02-Jun-2022	14	8 days	✓	06-Jun-2022	40 days	4 days	✓
				days						
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
NORTHWEST BAY NORTH_Bottom_4	E601	25-May-2022	02-Jun-2022	14	8 days	✓	06-Jun-2022	40 days	4 days	✓
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
NORTHWEST BAY NORTH_Bottom	E581.VH+F1	25-May-2022	02-Jun-2022				02-Jun-2022	14 days	7 days	✓

Page : 17 of 34 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	Ext			Analys	is			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) NORTHWEST BAY NORTH_Bottom_4	E581.VH+F1	25-May-2022	02-Jun-2022				02-Jun-2022	14 days	7 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) NEAR OUTFLOW INLAKE_Bottom	E581.VH+F1	25-May-2022	02-Jun-2022				02-Jun-2022	14 days	8 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) MID LAKE 1_Bottom	E358-L	25-May-2022	02-Jun-2022				03-Jun-2022	28 days	8 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) MID LAKE 1_Mid-depth	E358-L	25-May-2022	02-Jun-2022				03-Jun-2022	28 days	8 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) NORTHWEST BAY NORTH_Bottom	E358-L	25-May-2022	02-Jun-2022				03-Jun-2022	28 days	8 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) NORTHWEST BAY NORTH_Bottom_4	E358-L	25-May-2022	02-Jun-2022				03-Jun-2022	28 days	8 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) NORTHWEST BAY NORTH_Mid-depth	E358-L	25-May-2022	02-Jun-2022				03-Jun-2022	28 days	8 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom	E358-L	25-May-2022	02-Jun-2022				03-Jun-2022	28 days	9 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) NEAR OUTFLOW INLAKE_Mid-depth	E358-L	25-May-2022	02-Jun-2022				03-Jun-2022	28 days	9 days	✓

Page : 18 of 34
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	I)									
Amber glass dissolved (sulfuric acid) SOUTHWEST BAY_Bottom	E358-L	25-May-2022	02-Jun-2022				03-Jun-2022	28 days	9 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	I)									
Amber glass dissolved (sulfuric acid) SOUTHWEST BAY_Mid-depth	E358-L	25-May-2022	02-Jun-2022				03-Jun-2022	28 days	9 days	√
Physical Tests : Alkalinity Species by Titration										
HDPE MID LAKE 1_Bottom	E290	25-May-2022					02-Jun-2022	14 days	8 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE MID LAKE 1_Mid-depth	E290	25-May-2022					02-Jun-2022	14 days	8 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE NEAR OUTFLOW INLAKE_Bottom	E290	25-May-2022					02-Jun-2022	14 days	8 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE NEAR OUTFLOW INLAKE_Mid-depth	E290	25-May-2022					02-Jun-2022	14 days	8 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE NORTHWEST BAY NORTH_Bottom	E290	25-May-2022					02-Jun-2022	14 days	8 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE NORTHWEST BAY NORTH_Bottom_4	E290	25-May-2022					02-Jun-2022	14 days	8 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE NORTHWEST BAY NORTH_Mid-depth	E290	25-May-2022					02-Jun-2022	14 days	8 days	✓

Page : 19 of 34
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

	_						nolding time exce					
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval		
			Date	Rec	Actual			Rec	Actual			
Physical Tests : Alkalinity Species by Titration												
HDPE												
SOUTHWEST BAY_Bottom	E290	25-May-2022					02-Jun-2022	14 days	8 days	✓		
Physical Tests : Alkalinity Species by Titration												
HDPE												
SOUTHWEST BAY_Mid-depth	E290	25-May-2022					02-Jun-2022	14 days	8 days	✓		
Physical Tests : Conductivity in Water												
HDPE												
MID LAKE 1_Bottom	E100	25-May-2022					02-Jun-2022	28 days	8 days	✓		
Physical Tests : Conductivity in Water												
HDPE												
MID LAKE 1_Mid-depth	E100	25-May-2022					02-Jun-2022	28 days	8 days	✓		
Physical Tests : Conductivity in Water												
HDPE												
NEAR OUTFLOW INLAKE_Bottom	E100	25-May-2022					02-Jun-2022	28 days	8 days	✓		
Physical Tests : Conductivity in Water												
HDPE												
NEAR OUTFLOW INLAKE_Mid-depth	E100	25-May-2022					02-Jun-2022	28 days	8 days	✓		
Physical Tests : Conductivity in Water												
HDPE												
NORTHWEST BAY NORTH_Bottom	E100	25-May-2022					02-Jun-2022	28 days	8 days	✓		
Physical Tests : Conductivity in Water												
HDPE												
NORTHWEST BAY NORTH_Bottom_4	E100	25-May-2022					02-Jun-2022	28 days	8 days	✓		
Physical Tests : Conductivity in Water												
HDPE												
NORTHWEST BAY NORTH_Mid-depth	E100	25-May-2022					02-Jun-2022	28 days	8 days	✓		

Page : 20 of 34
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	Extraction / Preparation				_	Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE SOUTHWEST BAY_Bottom	E100	25-May-2022					02-Jun-2022	28 days	8 days	✓
Physical Tests : Conductivity in Water										
HDPE SOUTHWEST BAY_Mid-depth	E100	25-May-2022					02-Jun-2022	28 days	8 days	✓
Physical Tests : pH by Meter										
HDPE NORTHWEST BAY NORTH_Bottom	E108	25-May-2022					02-Jun-2022	0.25 hrs	192 hrs	# EHTR-FM
Physical Tests : pH by Meter										
HDPE NORTHWEST BAY NORTH_Bottom_4	E108	25-May-2022					02-Jun-2022	0.25 hrs	192 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE NORTHWEST BAY NORTH_Mid-depth	E108	25-May-2022					02-Jun-2022	0.25 hrs	192 hrs	* EHTR-FM
Physical Tests : pH by Meter										
MID LAKE 1_Bottom	E108	25-May-2022					02-Jun-2022	0.25 hrs	194 hrs	* EHTR-FM
Physical Tests : pH by Meter										
MID LAKE 1_Mid-depth	E108	25-May-2022					02-Jun-2022	0.25 hrs	194 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE SOUTHWEST BAY_Bottom	E108	25-May-2022					02-Jun-2022	0.25 hrs	196 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE SOUTHWEST BAY_Mid-depth	E108	25-May-2022					02-Jun-2022	0.25 hrs	196 hrs	# EHTR-FM

Page : 21 of 34
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Method	Sampling Date		raction / Pr				Analys	sis	
		Proporation	11-1-2-						
		Preparation	Holaing	g Times	Eval	Analysis Date	Holding Times		Eval
		Date	Rec	Actual		-	Rec	Actual	
E108	25-May-2022					02-Jun-2022	0.25	197 hrs	×
							hrs		EHTR-FM
E108	25-May-2022					02-Jun-2022	0.25	197 hrs	*
									EHTR-FM
F162	25-May-2022					31-May-2022	7 days	6 days	1
LIOZ	20-Way-2022					01-Way-2022	/ days	0 days	,
			I	1			I	I	
E400	05.140000					04.140000	7	0.1	
E162	25-May-2022					31-May-2022	/ days	6 days	1
E162	25-May-2022					31-May-2022	7 days	6 days	✓
E162	25-May-2022					31-May-2022	7 days	6 days	✓
E162	25-May-2022					31-May-2022	7 days	6 days	✓
F162	25-May-2022					31-May-2022	7 days	6 days	1
2.02	25 May 2022					or may zozz	. days	Jaays	
							I	I	I
E460	25 May 2022					24 May 2022	7 days	C days	1
E102	25-IVIAY-2022					31-May-2022	r days	o days	•
	E108 E162 E162 E162	E108 25-May-2022 E162 25-May-2022 E162 25-May-2022 E162 25-May-2022 E162 25-May-2022 E162 25-May-2022	E108 25-May-2022 E162 25-May-2022 E162 25-May-2022 E162 25-May-2022 E162 25-May-2022 E162 25-May-2022	E108 25-May-2022 E162 25-May-2022 E162 25-May-2022 E162 25-May-2022 E162 25-May-2022 E162 25-May-2022	E108 25-May-2022 E162 25-May-2022	E108 25-May-2022 E162 25-May-2022	E108 25-May-2022 31-May-2022 E162 25-May-2022 31-May-2022	E108	E108

Page : 22 of 34
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Physical Tests: TDS by Gravimetry HDPE SOUTHWEST BAY_Bottom E162 25-May-2022 31-May-2022 7 days 6 or Physical Tests: TDS by Gravimetry HDPE					
Date Rec Actual	Analysis				
Physical Tests : TDS by Gravimetry	nes Eval				
HDPE SOUTHWEST BAY_Bottom E162 25-May-2022 31-May-2022 7 days 6 d Physical Tests: TDS by Gravimetry HDPE Image: Color of the	tual				
HDPE SOUTHWEST BAY_Bottom E162 25-May-2022 31-May-2022 7 days 6 d Physical Tests: TDS by Gravimetry HDPE Image: Color of the					
Physical Tests : TDS by Gravimetry HDPE					
Physical Tests : TDS by Gravimetry HDPE	days ✓				
HDPE					
HDPE					
	days ✓				
20 may 2022 31-way-2022 / days 00	.ays •				
Physical Tests : TSS by Gravimetry					
HDPE					
MID LAKE 1_Bottom E160 25-May-2022 31-May-2022 7 days 6 d	days ✓				
Physical Tests : TSS by Gravimetry					
HDPE					
MID LAKE 1_Mid-depth E160 25-May-2022 31-May-2022 7 days 6 d	days ✓				
Physical Tests: TSS by Gravimetry					
HDPE					
	days ✓				
12 135 125 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Physical Tests: TSS by Gravimetry					
HDPE E160 25-May-2022 31-May-2022 7 days 6 days	days ✓				
NEAR OUTFLOW INLAKE_Mid-depth E160 25-May-2022 31-May-2022 7 days 6 o	lays •				
Physical Tests: TSS by Gravimetry					
HDPE					
NORTHWEST BAY NORTH_Bottom E160 25-May-2022 31-May-2022 7 days 6 d	days ✓				
Physical Tests : TSS by Gravimetry					
HDPE					
NORTHWEST BAY NORTH_Bottom_4 E160 25-May-2022 31-May-2022 7 days 6 0	days ✓				
Physical Tests : TSS by Gravimetry					
HDPE					
NORTHWEST BAY NORTH_Mid-depth E160 25-May-2022 31-May-2022 7 days 6 d	davs ✓				
Total Lorent Lor	-,0				

Page : 23 of 34
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: water						valuation. • =	noiding time exce	cuarioc ,	- VVICIIIII	riolaling riii		
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval		
			Date	Rec	Actual			Rec	Actual			
Physical Tests : TSS by Gravimetry												
HDPE												
SOUTHWEST BAY_Bottom	E160	25-May-2022					31-May-2022	7 days	6 days	✓		
Physical Tests : TSS by Gravimetry						I						
HDPE												
SOUTHWEST BAY_Mid-depth	E160	25-May-2022					31-May-2022	7 days	6 days	✓		
Physical Tests : Turbidity by Nephelometry												
HDPE												
MID LAKE 1_Bottom	E121	25-May-2022					30-May-2022	3 days	5 days	30		
										EHT		
Physical Tests : Turbidity by Nephelometry												
HDPE												
MID LAKE 1_Mid-depth	E121	25-May-2022					30-May-2022	3 days	5 days	sc		
										EHT		
Physical Tests : Turbidity by Nephelometry												
HDPE												
NEAR OUTFLOW INLAKE Bottom	E121	25-May-2022					30-May-2022	3 days	5 days	se		
_								-		EHT		
Physical Tests : Turbidity by Nephelometry												
HDPE												
NEAR OUTFLOW INLAKE_Mid-depth	E121	25-May-2022					30-May-2022	3 days	5 days	3¢		
<u>-</u> '		,								EHT		
Physical Tests : Turbidity by Nephelometry												
HDPE												
NORTHWEST BAY NORTH_Bottom	E121	25-May-2022					30-May-2022	3 days	5 days	3c		
		,					,			EHT		
Physical Tests : Turbidity by Nephelometry												
HDPE							I					
NORTHWEST BAY NORTH_Bottom_4	E121	25-May-2022					30-May-2022	3 days	5 days	3c		
		,						,-	, .	EHT		
Physical Tests : Turbidity by Nephelometry												
HDPE							I					
NORTHWEST BAY NORTH_Mid-depth	E121	25-May-2022					30-May-2022	3 days	5 days	3¢		
HORTHITEOT BAT HORTH_Mild doput		20 1110, 2022					Jo May Lozz	Jaayo	Jaays	EHT		
										L		

Page : 24 of 34 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date **Physical Tests: Turbidity by Nephelometry** HDPE 3 days SOUTHWEST BAY_Bottom E121 25-May-2022 30-May-2022 5 days æ EHT **Physical Tests: Turbidity by Nephelometry** HDPE SOUTHWEST BAY_Mid-depth E121 25-May-2022 30-May-2022 3 days 5 days æ --------EHT Total Metals: Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid) MID LAKE 1 Bottom E508 25-May-2022 31-May-2022 28 days 6 days 1 **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) 25-May-2022 31-May-2022 28 days 6 days MID LAKE 1 Mid-depth E508 **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) 25-May-2022 E508 31-May-2022 28 days 6 days NEAR OUTFLOW INLAKE_Bottom **Total Metals : Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) NEAR OUTFLOW INLAKE_Mid-depth E508 25-May-2022 31-May-2022 28 days 6 days ✓ Total Metals: Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid) NORTHWEST BAY NORTH Bottom E508 25-May-2022 31-May-2022 28 days 6 days 1 Total Metals : Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid) 31-May-2022 28 days 6 days ✓ NORTHWEST BAY NORTH Bottom 4 E508 25-May-2022 **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) E508 ✓ NORTHWEST BAY NORTH Mid-depth 25-May-2022 31-May-2022 28 days 6 days

Page : 25 of 34
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

natrix: water						aldation. • -	noiding time exce	cuarice,	- vvicinii	riolaling i
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
SOUTHWEST BAY_Bottom	E508	25-May-2022					31-May-2022	28 days	6 days	✓
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
SOUTHWEST BAY_Mid-depth	E508	25-May-2022					31-May-2022	28 days	6 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
NORTHWEST BAY NORTH_Bottom	E420	25-May-2022					03-Jun-2022	180	8 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
NORTHWEST BAY NORTH_Bottom_4	E420	25-May-2022					03-Jun-2022	180	8 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
NORTHWEST BAY NORTH_Mid-depth	E420	25-May-2022					03-Jun-2022	180	8 days	✓
								days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
MID LAKE 1_Bottom	E420	25-May-2022					03-Jun-2022	180	9 days	✓
								days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
MID LAKE 1_Mid-depth	E420	25-May-2022					03-Jun-2022	180	9 days	✓
								days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
NEAR OUTFLOW INLAKE_Bottom	E420	25-May-2022					03-Jun-2022	180	9 days	✓
								days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
NEAR OUTFLOW INLAKE_Mid-depth	E420	25-May-2022					03-Jun-2022	180	9 days	✓
								days		

Page : 26 of 34
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

THAT THAT OF						araaraar	Tiolaing time exces	- uu ,	**********	riolaning riii
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
SOUTHWEST BAY_Bottom	E420	25-May-2022					03-Jun-2022	180 days	9 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
SOUTHWEST BAY_Mid-depth	E420	25-May-2022					03-Jun-2022	180 days	9 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
NORTHWEST BAY NORTH_Bottom	E611A	25-May-2022	02-Jun-2022				02-Jun-2022	14 days	7 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
NORTHWEST BAY NORTH_Bottom_4	E611A	25-May-2022	02-Jun-2022				02-Jun-2022	14 days	7 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
NEAR OUTFLOW INLAKE_Bottom	E611A	25-May-2022	02-Jun-2022				02-Jun-2022	14 days	8 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 27 of 34 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluat	ion: × = QC frequ		eciīication; ✓ =		<u> </u>
Quality Control Sample Type		001.11		ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	505091	1	17	5.8	5.0	✓
Ammonia by Fluorescence	E298	509369	1	17	5.8	5.0	✓
BTEX by Headspace GC-MS	E611A	507923	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	505099	1	9	11.1	5.0	✓
Conductivity in Water	E100	505090	1	17	5.8	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	504857	1	19	5.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	507895	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	509370	1	9	11.1	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	505098	1	9	11.1	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	505095	1	17	5.8	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	505096	1	17	5.8	5.0	✓
pH by Meter	E108	505089	1	17	5.8	5.0	✓
Reactive Silica by Colourimetry	E392	506280	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	505097	1	17	5.8	5.0	✓
TDS by Gravimetry	E162	505533	1	15	6.6	5.0	✓
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	509368	1	17	5.8	5.0	✓
Total Mercury in Water by CVAAS	E508	506428	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	506032	1	18	5.5	5.0	✓
Total Nitrogen by Colourimetry	E366	509371	1	9	11.1	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	509367	1	17	5.8	5.0	✓
TSS by Gravimetry	E160	505528	1	15	6.6	5.0	✓
Turbidity by Nephelometry	E121	504226	1	20	5.0	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	507922	1	18	5.5	5.0	✓
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	505091	1	17	5.8	5.0	1
Ammonia by Fluorescence	E298	509369	1	17	5.8	5.0	1
BTEX by Headspace GC-MS	E611A	507923	1	20	5.0	5.0	✓
CCME PHCs - F2-F4 by GC-FID	E601	508157	1	4	25.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	505099	1	9	11.1	5.0	1
Conductivity in Water	E100	505090	1	17	5.8	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	504857	1	19	5.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	507895	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	509370	1	9	11.1	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	505098	1	9	11.1	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	505095	1	17	5.8	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	505096	1	17	5.8	5.0	✓
Oil & Grease by Gravimetry	E567	508807	1	10	10.0	5.0	1

Page 28 of 34 YL2200527 Work Order

Client : Golder Associates Ltd. : Jackfish NTPC

Project

BTEX by Headspace GC-MS

Matrix: Water Quality Control Sample Type			ion: × = QC frequ	ount		Frequency (%	
	Method	QC Lot #	QC	Regular	Actual	Expected) Evaluation
Analytical Methods	Wethou	QO LOT #	40	rtoguiai	Actual	Lxpected	Evaluation
Laboratory Control Samples (LCS) - Continued pH by Meter	E400	505089	1	17	5.8	5.0	
Reactive Silica by Colourimetry	E108	506280	1	20	5.0	5.0	√
Sulfate in Water by IC	E392	505280	1	17	5.8	5.0	√
TDS by Gravimetry	E235.SO4	505533	1	15	6.6	5.0	√
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E162	509368	1	17	5.8	5.0	√
Total Mercury in Water by CVAAS	E375-T	506428	1	20	5.0	5.0	_
Total Metals in Water by CRC ICPMS	E508	506426	1	18	5.5	5.0	√
Total Nitrogen by Colourimetry	E420	509371	1	9	11.1	5.0	√
Total Phosphorus by Colourimetry (0.002 mg/L)	E366	509367	1	17	5.8	5.0	√
	E372-U	505528	1	15	6.6	5.0	✓
TSS by Gravimetry	E160	504226	1	20	5.0	5.0	√
Turbidity by Nephelometry	E121		1	18			✓
VH and F1 by Headspace GC-FID	E581.VH+F1	507922	1	10	5.5	5.0	✓
Method Blanks (MB)				4-		5.0	
Alkalinity Species by Titration	E290	505091	1	17	5.8	5.0	√
Ammonia by Fluorescence	E298	509369	1	17	5.8	5.0	✓
BTEX by Headspace GC-MS	E611A	507923	1	20	5.0	5.0	✓
CCME PHCs - F2-F4 by GC-FID	E601	508157	1	4	25.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	505099	1	9	11.1	5.0	✓
Conductivity in Water	E100	505090	1	17	5.8	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	504857	1	19	5.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	507895	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	509370	1	9	11.1	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	505098	1	9	11.1	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	505095	1	17	5.8	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	505096	1	17	5.8	5.0	✓
Oil & Grease by Gravimetry	E567	508807	1	10	10.0	5.0	✓
Reactive Silica by Colourimetry	E392	506280	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	505097	1	17	5.8	5.0	✓
TDS by Gravimetry	E162	505533	1	15	6.6	5.0	✓
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	509368	1	17	5.8	5.0	✓
Total Mercury in Water by CVAAS	E508	506428	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	506032	2	18	11.1	5.0	✓
Total Nitrogen by Colourimetry	E366	509371	1	9	11.1	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	509367	1	17	5.8	5.0	✓
TSS by Gravimetry	E160	505528	1	15	6.6	5.0	✓
Turbidity by Nephelometry	E121	504226	1	20	5.0	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	507922	1	18	5.5	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	509369	1	17	5.8	5.0	1
DTEV Last Last CO MO	E0444	E07022	1	20	ΕO	F 0	,

E611A

507923

1

20

5.0

5.0

Page : 29 of 34
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

		Co	ount		Frequency (%)	
Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
E235.CI-L	505099	1	9	11.1	5.0	✓
E509	504857	1	19	5.2	5.0	✓
E421	507895	1	20	5.0	5.0	✓
E358-L	509370	1	9	11.1	5.0	✓
E235.F-L	505098	1	9	11.1	5.0	✓
E235.NO3-L	505095	1	17	5.8	5.0	✓
E235.NO2-L	505096	1	17	5.8	5.0	✓
E392	506280	1	20	5.0	5.0	✓
E235.SO4	505097	1	17	5.8	5.0	✓
E375-T	509368	1	17	5.8	5.0	✓
E508	506428	1	20	5.0	5.0	✓
E420	506032	1	18	5.5	5.0	✓
E366	509371	1	9	11.1	5.0	✓
E372-U	509367	1	17	5.8	5.0	✓
E581.VH+F1	507922	1	18	5.5	5.0	✓
	E235.CI-L E509 E421 E358-L E235.F-L E235.NO3-L E235.NO2-L E392 E235.SO4 E375-T E508 E420 E366 E372-U	E235.Cl-L 505099 E509 504857 E421 507895 E358-L 509370 E235.F-L 505098 E235.NO3-L 505095 E235.NO2-L 505096 E392 506280 E235.SO4 505097 E375-T 509368 E508 506428 E420 506032 E366 509371 E372-U 509367	Method QC Lot # QC E235.Cl-L 505099 1 E509 504857 1 E421 507895 1 E358-L 509370 1 E235.F-L 505098 1 E235.NO3-L 505095 1 E235.NO2-L 505096 1 E392 506280 1 E235.SO4 505097 1 E375-T 509368 1 E508 506428 1 E420 506032 1 E366 509371 1 E372-U 509367 1	E235.Cl-L 505099 1 9 E509 504857 1 19 E421 507895 1 20 E358-L 509370 1 9 E235.F-L 505098 1 9 E235.NO3-L 505095 1 17 E392 505096 1 17 E392 506280 1 20 E235.SO4 505097 1 17 E375-T 509368 1 17 E508 506428 1 20 E420 506032 1 18 E366 509371 1 9 E372-U 509367 1 17	Method QC Lot # QC Regular Actual E235.CI-L 505099 1 9 11.1 E509 504857 1 19 5.2 E421 507895 1 20 5.0 E358-L 509370 1 9 11.1 E235.F-L 505098 1 9 11.1 E235.NO3-L 505095 1 17 5.8 E392.NO2-L 505096 1 17 5.8 E392 506280 1 20 5.0 E235.SO4 505097 1 17 5.8 E375-T 509368 1 17 5.8 E508 506428 1 20 5.0 E420 506032 1 18 5.5 E366 509371 1 17 5.8 E372-U 509367 1 17 5.8	Method QC Lot # Regular Actual Expected E235.CI-L 505099 1 9 11.1 5.0 E509 504857 1 19 5.2 5.0 E421 507895 1 20 5.0 5.0 E358-L 509370 1 9 11.1 5.0 E235.F-L 505098 1 9 11.1 5.0 E235.NO3-L 505095 1 17 5.8 5.0 E395.NO2-L 505096 1 17 5.8 5.0 E392 506280 1 20 5.0 5.0 E375-T 509368 1 17 5.8 5.0 E508 506428 1 20 5.0 5.0 E420 506032 1 18 5.5 5.0 E366 509371 1 17 5.8 5.0 E372-U 509367 1 17 5.8

Page : 30 of 34 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Vancouver - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108 Vancouver - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121 Vancouver - Environmental	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
TSS by Gravimetry	E160 Vancouver - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Vancouver - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Chloride in Water by IC (Low Level)	E235.CI-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC (Low Level)	E235.F-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Sulfate in Water by IC	E235.SO4 Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.

Page 31 of 34 YL2200527 Work Order

Client : Golder Associates Ltd. : Jackfish NTPC

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Vancouver - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Vancouver - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Vancouver - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Nitrogen by Colourimetry	E366 Vancouver - Environmental	Water	APHA 4500-P J (mod)	Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Dissolved Phosphorus is determined colourimetrically using a discrete analyzer after filtration through a 0.45 micron filter followed by heated persulfate digestion of the sample.
Reactive Silica by Colourimetry	E392 Vancouver - Environmental	Water	APHA 4500-SiO2 E (mod)	Silicate (molybdate-reactive silica) is determined by the molybdosilicate-heteropoly blue colourimetric method using a discrete analyzer. Method Limitation: Arsenic (5+) above 100 mg/L is a negative interference on this test
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS

Page 32 of 34 YL2200527 Work Order

Client : Golder Associates Ltd. : Jackfish NTPC

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Oil & Grease by Gravimetry	E567 Vancouver - Environmental	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
VH and F1 by Headspace GC-FID	E581.VH+F1 Vancouver - Environmental	Water	BC MOE Lab Manual / CCME PHC in Soil - Tier 1 (mod)	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
CCME PHCs - F2-F4 by GC-FID	E601 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	Sample extracts are analyzed by GC-FID for CCME hydrocarbon fractions (F2-F4).
BTEX by Headspace GC-MS	E611A Vancouver - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	АРНА 2340В	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Hardness (Calculated) from Total Ca/Mg	EC100A Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
TDS in Water (Calculation) Using APHA Analyte List	EC103.APHA Vancouver - Environmental	Water	APHA 1030E	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis).
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Vancouver - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).
F1-BTEX	EC580 Vancouver - Environmental	Water	CCME PHC in Soil - Tier	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).

Page 33 of 34 YL2200527 Work Order

: Golder Associates Ltd. : Jackfish NTPC Client

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VPH: VH-BTEX-Styrene	EC580A Vancouver - Environmental	Water	BC MOE Lab Manual (VPH in Water and Solids) (mod)	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHw = Volatile Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and styrene.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Vancouver -	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Preparation for Dissolved Organic Carbon for Combustion	Environmental EP358 Vancouver -	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Nitrogen in water	Environmental EP366 Vancouver -	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.
Digestion for Total Phosphorus in water	Environmental EP372 Vancouver -	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Digestion for Dissolved Phosphorus in water	Environmental EP375 Vancouver -	Water	APHA 4500-P E (mod).	Samples are filtered through a 0.45 micron membrane filter and then heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	Environmental EP421 Vancouver - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Vancouver - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCI.
Oil & Grease Extraction for Gravimetry	EP567 Vancouver - Environmental	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane by liquid-liquid extraction.
VOCs Preparation for Headspace Analysis	EP581 Vancouver - Environmental	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the GC/MS-FID system.
PHCs and PAHs Hexane Extraction	EP601 Vancouver - Environmental	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.

Page 34 of 34 YL2200527 Work Order

Client : Golder Associates Ltd. : Jackfish NTPC

QUALITY CONTROL REPORT

Work Order :YL2200527

Client : Golder Associates Ltd.

Contact : Sarah Beattie

Address : 9 - 4905 48th Street

Yellowknife NT Canada X1A 3S3

Telephone : 867 873 6319
Project : Jackfish NTPC

PO :--C-O-C number :--Sampler :---

Site : Jackfish NTPC
Quote number : YL21-GOLD100-008

No. of samples received : 9
No. of samples analysed : 9

Page : 1 of 18

Laboratory : Yellowknife - Environmental

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

Telephone : 1 867 446 5593

Date Samples Received : 26-May-2022 09:05

Date Analysis Commenced : 30-May-2022

Issue Date : 07-Jun-2022 16:56

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Angela Ren	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia	
Christopher Li	Lab Assistant	Vancouver Metals, Burnaby, British Columbia	
Dan Gebert	Laboratory Analyst	Vancouver Metals, Burnaby, British Columbia	
Dee Lee	Analyst	Vancouver Metals, Burnaby, British Columbia	
Janice Leung	Supervisor - Organics Instrumentation	Vancouver Organics, Burnaby, British Columbia	
Kenson Lo		Vancouver Metals, Burnaby, British Columbia	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia	
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia	
Owen Cheng		Vancouver Metals, Burnaby, British Columbia	

Page : 2 of 18
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 18
Work Order : YL2200527

Client : Golder Associates Ltd.
Project : Jackfish NTPC

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (Q0	C Lot: 504226)										
FJ2201217-006	Anonymous	turbidity		E121	0.10	NTU	0.11	0.11	0.003	Diff <2x LOR	
Physical Tests (Q0	C Lot: 505089)										
VA22B1662-001	Anonymous	pH		E108	0.10	pH units	7.97	7.95	0.251%	4%	
Physical Tests (Q0	C Lot: 505090)										
VA22B1662-001	Anonymous	conductivity		E100	2.0	μS/cm	2580	2600	0.772%	10%	
Physical Tests (QC	C Lot: 505091)										
VA22B1662-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	302	314	3.64%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	302	314	3.64%	20%	
Physical Tests (QC	C Lot: 505528)							I			
YL2200527-001	NORTHWEST BAY NORTH_Bottom	solids, total suspended [TSS]		E160	3.0	mg/L	7.7	8.7	1.0	Diff <2x LOR	
Physical Tests (Q0	C Lot: 505533)										
YL2200527-001	NORTHWEST BAY NORTH_Bottom	solids, total dissolved [TDS]		E162	20	mg/L	278	278	0.00%	20%	
Anions and Nutrier	nts (QC Lot: 505095)										
VA22B1662-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.100	mg/L	19.8	19.8	0.221%	20%	
Anions and Nutrier	nts (QC Lot: 505096)										
VA22B1662-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0200	mg/L	0.131	0.130	0.0013	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 505097)										
VA22B1662-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	6.00	mg/L	1360	1360	0.491%	20%	
Anions and Nutrier	nts (QC Lot: 505098)										
YL2200527-001	NORTHWEST BAY NORTH_Bottom	fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.083	0.082	0.0006	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 505099)										
YL2200527-001	NORTHWEST BAY NORTH_Bottom	chloride	16887-00-6	E235.CI-L	0.10	mg/L	59.3	59.0	0.593%	20%	
Anions and Nutrier	nts (QC Lot: 506280)										
YL2200508-005	Anonymous	silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	2.92	2.83	0.09	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 509367)										
FJ2201271-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0901	0.0963	6.72%	20%	

Page : 4 of 18 Work Order : YL2200527

Client : Golder Associates Ltd.

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
	ts (QC Lot: 509368)										
FJ2201271-001	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0274	0.0271	0.992%	20%	
Anions and Nutrient	ts (QC Lot: 509369)										
FJ2201271-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0096	0.0103	0.0007	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 509371)										
YL2200527-001	NORTHWEST BAY NORTH_Bottom	nitrogen, total	7727-37-9	E366	0.030	mg/L	1.28	1.25	1.99%	20%	
Organic / Inorganic	Carbon (QC Lot: 50937	70)									
YL2200527-001	NORTHWEST BAY NORTH_Bottom	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	12.1	12.9	6.46%	20%	
otal Metals (QC Lo	ot: 506032)										
/L2200532-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.376	0.412	9.10%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00331	0.00335	1.06%	20%	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0681	0.0687	0.931%	20%	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0301	0.0305	1.19%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.010	0.010	0.00003	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0000053	0.0000064	0.0000010	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	30.6	29.8	2.45%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	0.000041	0.000047	0.000006	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	0.00064	0.00071	0.00006	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00045	0.00045	0.000002	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00135	0.00133	0.00002	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.567	0.597	5.23%	20%	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000224	0.000228	0.000004	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0060	0.0060	0.00007	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	10.2	10.3	1.39%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0363	0.0367	0.955%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000537	0.000547	1.73%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00109	0.00112	0.00004	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	2.35	2.36	0.310%	20%	
		rubidium, total	7440-03-7	E420	0.00020	mg/L	0.00232	0.00229	1.34%	20%	
		selenium, total	7782-49-2	E420	0.00020	mg/L	0.000063	0.000223	0.000001	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.29	2.34	2.09%	20%	
			7440-21-3	E420	0.000010	-	<0.000010	<0.000010	2.09%		
		silver, total	1440-22-4	E42U	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	

Page : 5 of 18 Work Order : YL2200527

Client : Golder Associates Ltd.

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Fotal Metals (QC I	_ot: 506032) - continued										
YL2200532-001	Anonymous	sodium, total	7440-23-5	E420	0.050	mg/L	8.06	8.09	0.322%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.120	0.121	0.337%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	7.70	7.59	1.49%	20%	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	0.00012	0.00013	0.00001	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.0132	0.0145	9.94%	20%	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000901	0.000926	2.74%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00108	0.00109	0.000008	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0135	0.0128	0.0007	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00030	mg/L	0.00043	0.00043	0.000006	Diff <2x LOR	
otal Metals (QC I	ot: 506428)										
/A22B1772-005	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals	·	3.									
VA22B1773-004	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Non-design delication	•	,									
Dissolved Metals FJ2201270-001	(QC Lot: 50/895) Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0014	0.0018	0.0003	Diff <2x LOR	
02201270-001	Anonymous	antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.0014	<0.0010	0.0003	Diff <2x LOR	
		•		E421		-	<0.00010	<0.00010	0		
		arsenic, dissolved	7440-38-2		0.00010	mg/L				Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0489	0.0498	1.80%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.104	0.108	4.55%	20%	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	18.0	18.9	5.19%	20%	
		cesium, dissolved	7440-46-2	E421	0.000010	mg/L	0.000021	0.000022	0.000001	Diff <2x LOR	
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.115	0.120	4.02%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	6.13	6.37	3.84%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0457	0.0458	0.280%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000265	0.000273	0.000008	Diff <2x LOR	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	

Page : 6 of 18 Work Order : YL2200527

Client : Golder Associates Ltd.

Sub-Matrix: Water							Labora	ntory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 507895) - co	ntinued									
FJ2201270-001	Anonymous	phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.24	1.26	1.97%	20%	
		rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00137	0.00147	0.00010	Diff <2x LOR	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.52	3.46	1.68%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	36.0	36.4	1.18%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.544	0.530	2.60%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	13.9	13.6	2.76%	20%	
		tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	0.00013	0.00012	0.000005	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0034	0.0035	0.0002	Diff <2x LOR	
		zirconium, dissolved	7440-67-7	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
/olatile Organic Co	ompounds (QC Lot: 5	07923)									
VA22B1218-001	Anonymous	benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		styrene	100-42-5	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
- Hydrocarbons (QC	Lot: 507922)										
VA22B1218-001	Anonymous	F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	
		VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%	

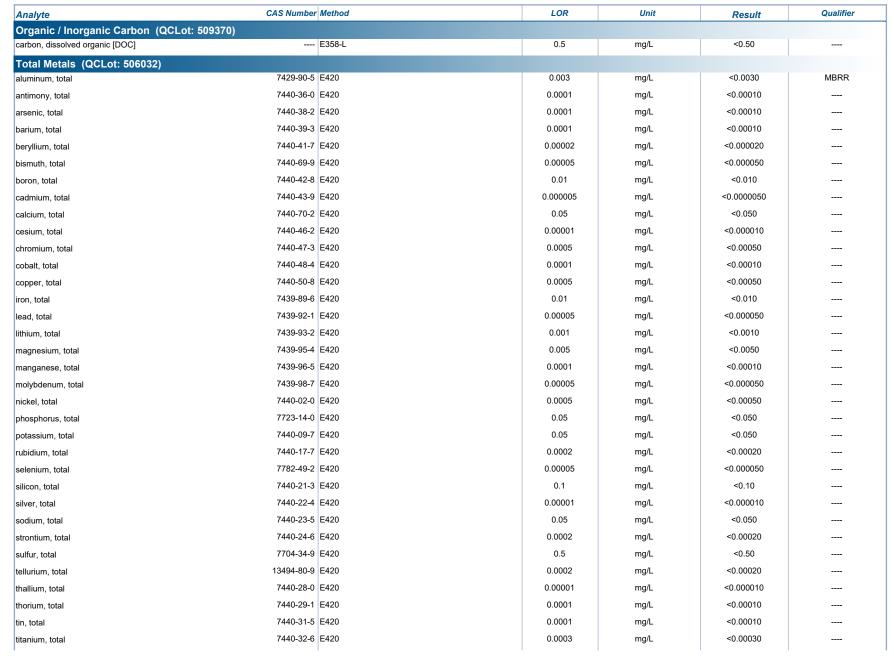
Page : 7 of 18
Work Order : YL2200527

Client : Golder Associates Ltd.
Project : Jackfish NTPC

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

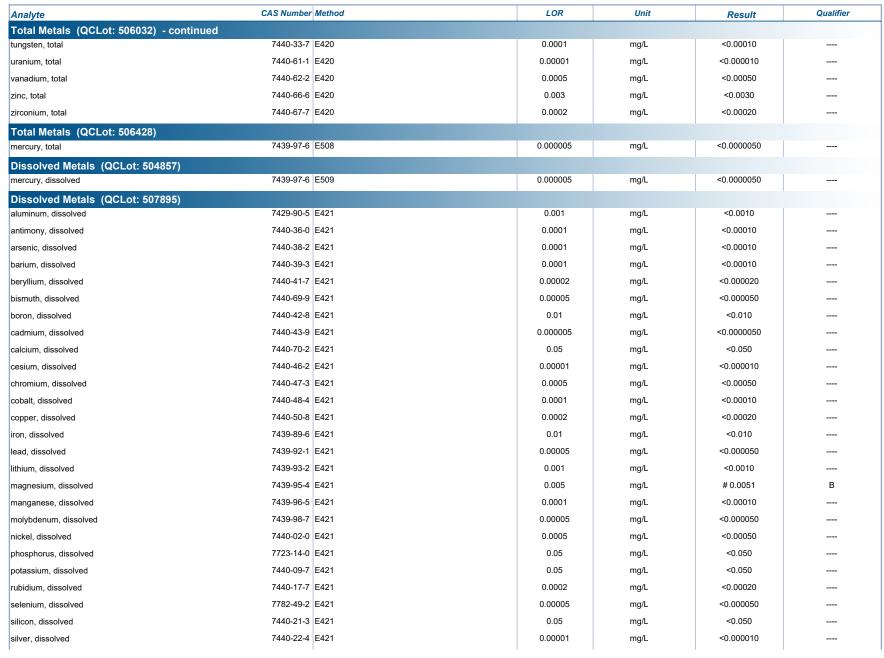

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 504226)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 505090)					
conductivity	E100	1	μS/cm	# 2.5	В
Physical Tests (QCLot: 505091)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, phenolphthalein (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 505528)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 505533)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 505095)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 505096)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 505097)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 505098)					
fluoride	16984-48-8 E235.F-L	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 505099)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 506280)					
silicate (as SiO2)	7631-86-9 E392	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 509367)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 509368)					
phosphorus, total dissolved	7723-14-0 E375-T	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 509369)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 509371)					
nitrogen, total	7727-37-9 E366	0.03	mg/L	<0.030	

Page : 8 of 18
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water



Page : 9 of 18
Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water

Page : 10 of 18 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Qualifiers

Qualifier Description

B MBRR Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.

Initial MB for this submission had positive results for flagged analyte (data not shown). Low level samples were repeated with new QC (2nd MB results shown). High level results (>5x initial MB level) and non-detect results were reported and are defensible

Page : 11 of 18 Work Order : YL2200527

Client : Golder Associates Ltd.
Project : Jackfish NTPC

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Municipal Muni	Sub-Matrix: Water						Laboratory Cor	ntrol Sample (LCS)	Report	
Physical Tosts (QCLot: 904226)						Spike	Recovery (%)	Recovery	Limits (%)	
Municipal Muni	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 505089)	Physical Tests (QCLot: 504226)									
Physical Tests (OCLot: 505091)	turbidity		E121	0.1	NTU	200 NTU	97.1	85.0	115	
Physical Tests (QCLot: 505090)	Physical Tests (QCLot: 505089)									
Conductivity	рН		E108		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 505091)	Physical Tests (QCLot: 505090)									
alialiarity, phenophthalein (ac CaCO3) — E290 1 mg/L 229 mg/L 97.3 75.0 125 — E280 1 mg/L 500 mg/L 99.4 85.0 115 — E280 1 mg/L 500 mg/L 99.4 85.0 115 — E280 1 mg/L 500 mg/L 99.4 85.0 115 — E280 E280 E280 E280 E280 E280 E280 E280	conductivity		E100	1	μS/cm	146.9 μS/cm	98.8	90.0	110	
### ### ##############################	Physical Tests (QCLot: 505091)									
Physical Tests (QCLot: 505528) solids, total auspended [TSS] E160 3 mg/L 150 mg/L 106 85.0 115 Physical Tests (QCLot: 505533) solids, total dissolved (TDS) E162 10 mg/L 1000 mg/L 103 85.0 115 Anions and Nutrients (QCLot: 505095) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 102 90.0 110 Anions and Nutrients (QCLot: 505096) nitrate (as N) 14797-65-0 [E235.NO2-L 0.001 mg/L 0.5 mg/L 99.2 90.0 110 Anions and Nutrients (QCLot: 505097) mulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 505098) fluoride 16887-00-6 [E235.F-L 0.01 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 505099) chloride 16887-00-6 [E235.C-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 505099) chloride 16887-00-6 [E235.C-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 505099) chloride 16887-00-6 [E235.C-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 505098) phosphorus, lotal dissolved 7723-14-0 [E372-U 0.002 mg/L 0.05 mg/L 92.5 60.0 120 Anions and Nutrients (QCLot: 509368) phosphorus, lotal dissolved 7723-14-0 [E375-T 0.002 mg/L 0.05 mg/L 91.2 60.0 120 Anions and Nutrients (QCLot: 509388) phosphorus, lotal dissolved 7723-14-0 [E375-T 0.002 mg/L 0.05 mg/L 91.2 60.0 120 Anions and Nutrients (QCLot: 509389) amonois, lotal dissolved 7723-14-0 [E375-T 0.002 mg/L 0.05 mg/L 91.2 60.0 120 Anions and Nutrients (QCLot: 509389) amonois, lotal dissolved 7723-14-0 [E375-T 0.002 mg/L 0.2 mg/L 0.5 mg/L 91.2 60.0 120 Anions and Nutrients (QCLot: 509389) amonois, lotal dissolved 7723-14-0 [E375-T 0.002 mg/L 0.2 mg/L 0.2 mg/L 105 85.0 115 Anions and Nutrients (QCLot: 5093871)	alkalinity, phenolphthalein (as CaCO3)		E290	1	mg/L	229 mg/L	97.3	75.0	125	
Solids, total suspended [TSS]	alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	99.4	85.0	115	
Physical Tests (QCLot: 505533) solids, total dissolved [TDS]	Physical Tests (QCLot: 505528)									
Solids, total dissolved [TDS]	solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	106	85.0	115	
Anions and Nutrients (QCLot: 505095) nitrate (as N) 14797-55-8 E235.NO3-L	Physical Tests (QCLot: 505533)									
nitrate (as N)	solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	103	85.0	115	
nitrate (as N)										
Anions and Nutrients (QCLot: 505096) nitrite (as N)	Anions and Nutrients (QCLot: 505095)									
nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 99.2 90.0 110	nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 505097) sulfae (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 505098) fluoride 16984-48-8 E235.F-L 0.01 mg/L 1 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 505099) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 506280) silicate (as SiO2) 7631-86-9 E392 0.5 mg/L 10 mg/L 99.8 85.0 115 Anions and Nutrients (QCLot: 509367) phosphorus, total Typical Typ	Anions and Nutrients (QCLot: 505096)									
Sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 103 90.0 110	nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	99.2	90.0	110	
Anions and Nutrients (QCLot: 505098) fluoride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 505099) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 506280) silicate (as SiO2) 7631-86-9 E392 0.5 mg/L 10 mg/L 99.8 85.0 115 Anions and Nutrients (QCLot: 509367) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 0.05 mg/L 92.5 80.0 120 Anions and Nutrients (QCLot: 509368) phosphorus, total dissolved 7723-14-0 E375-T 0.002 mg/L 0.05 mg/L 91.2 80.0 120 Anions and Nutrients (QCLot: 509369) ammonia, total (as N) 7664-41-7 E298 0.005 mg/L 0.2 mg/L 0.2 mg/L 105 85.0 115 Anions and Nutrients (QCLot: 509371)	Anions and Nutrients (QCLot: 505097)									
fluoride 16984-48-8 E235.F-L 0.01 mg/L 1 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 505099) Chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 506280) silicate (as SiO2) 7631-86-9 E392 0.5 mg/L 10 mg/L 99.8 85.0 115 Anions and Nutrients (QCLot: 509367) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 0.05 mg/L 92.5 80.0 120 Anions and Nutrients (QCLot: 509368) phosphorus, total dissolved 7723-14-0 E375-T 0.002 mg/L 0.05 mg/L 91.2 80.0 120 Anions and Nutrients (QCLot: 509369) ammonia, total (as N) 7664-41-7 E298 0.005 mg/L 0.2 mg/L 105 85.0 115 Anions and Nutrients (QCLot: 509371)	sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 505099) chloride 16887-00-6 E235.CI-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 506280) Silicate (as SiO2) 7631-86-9 E392 0.5 mg/L 10 mg/L 99.8 85.0 115 Anions and Nutrients (QCLot: 509367) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 0.05 mg/L 92.5 80.0 120 Anions and Nutrients (QCLot: 509368) phosphorus, total dissolved 7723-14-0 E375-T 0.002 mg/L 0.05 mg/L 91.2 80.0 120 Anions and Nutrients (QCLot: 509369) ammonia, total (as N) 7664-41-7 E298 0.005 mg/L 0.2 mg/L 105 85.0 115 Anions and Nutrients (QCLot: 509371)	Anions and Nutrients (QCLot: 505098)									
chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 506280) silicate (as SiO2) 7631-86-9 E392 0.5 mg/L 10 mg/L 99.8 85.0 115 Anions and Nutrients (QCLot: 509367) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 0.05 mg/L 92.5 80.0 120 Anions and Nutrients (QCLot: 509368) phosphorus, total dissolved 7723-14-0 E375-T 0.002 mg/L 0.05 mg/L 91.2 80.0 120 Anions and Nutrients (QCLot: 509369) ammonia, total (as N) 7664-41-7 E298 0.005 mg/L 0.2 mg/L 105 85.0 115 Anions and Nutrients (QCLot: 509371)	fluoride	16984-48-8	E235.F-L	0.01	mg/L	1 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 506280) silicate (as SiO2) 7631-86-9 E392 0.5 mg/L 10 mg/L 99.8 85.0 115 Anions and Nutrients (QCLot: 509367) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 0.05 mg/L 92.5 80.0 120 Anions and Nutrients (QCLot: 509368) phosphorus, total dissolved 7723-14-0 E375-T 0.002 mg/L 0.05 mg/L 91.2 80.0 120 Anions and Nutrients (QCLot: 509369) ammonia, total (as N) 7664-41-7 E298 0.005 mg/L 0.2 mg/L 105 85.0 115 Anions and Nutrients (QCLot: 509371)	Anions and Nutrients (QCLot: 505099)									
Silicate (as SiO2) 7631-86-9 E392 0.5 mg/L 10 mg/L 99.8 85.0 115 Anions and Nutrients (QCLot: 509367) phosphorus, total 57723-14-0 E372-U 0.002 mg/L 0.05 mg/L 92.5 80.0 120 Anions and Nutrients (QCLot: 509368) phosphorus, total dissolved 7723-14-0 E375-T 0.002 mg/L 0.05 mg/L 91.2 80.0 120 Anions and Nutrients (QCLot: 509369) ammonia, total (as N) 7664-41-7 E298 0.005 mg/L 0.2 mg/L 105 85.0 115 Anions and Nutrients (QCLot: 509371)	chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 509367) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 0.05 mg/L 92.5 80.0 120 Anions and Nutrients (QCLot: 509368) phosphorus, total dissolved 7723-14-0 E375-T 0.002 mg/L 0.05 mg/L 91.2 80.0 120 Anions and Nutrients (QCLot: 509369) ammonia, total (as N) 7664-41-7 E298 0.005 mg/L 0.2 mg/L 105 85.0 115 Anions and Nutrients (QCLot: 509371)										
phosphorus, total 7723-14-0 E372-U 0.002 mg/L 0.05 mg/L 92.5 80.0 120 Anions and Nutrients (QCLot: 509368) phosphorus, total dissolved 7723-14-0 E375-T 0.002 mg/L 0.05 mg/L 91.2 80.0 120 Anions and Nutrients (QCLot: 509369) ammonia, total (as N) 7664-41-7 E298 0.005 mg/L 0.2 mg/L 105 85.0 115 Anions and Nutrients (QCLot: 509371)	silicate (as SiO2)	7631-86-9	E392	0.5	mg/L	10 mg/L	99.8	85.0	115	
Anions and Nutrients (QCLot: 509368) phosphorus, total dissolved 7723-14-0 E375-T 0.002 mg/L 0.05 mg/L 91.2 80.0 120 Anions and Nutrients (QCLot: 509369) ammonia, total (as N) 7664-41-7 E298 0.005 mg/L 0.2 mg/L 105 85.0 115 Anions and Nutrients (QCLot: 509371)	Anions and Nutrients (QCLot: 509367)									
phosphorus, total dissolved 7723-14-0 E375-T 0.002 mg/L 0.05 mg/L 91.2 80.0 120 Anions and Nutrients (QCLot: 509369) ammonia, total (as N) 7664-41-7 E298 0.005 mg/L 0.2 mg/L 105 85.0 115 Anions and Nutrients (QCLot: 509371)	phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	92.5	80.0	120	
Anions and Nutrients (QCLot: 509369) ammonia, total (as N) 7664-41-7 E298 0.005 mg/L 0.2 mg/L 105 85.0 115 Anions and Nutrients (QCLot: 509371)	Anions and Nutrients (QCLot: 509368)									
ammonia, total (as N) 7664-41-7 E298 0.005 mg/L 0.2 mg/L 105 85.0 115 Anions and Nutrients (QCLot: 509371)	phosphorus, total dissolved	7723-14-0	E375-T	0.002	mg/L	0.05 mg/L	91.2	80.0	120	
Anions and Nutrients (QCLot: 509371)	Anions and Nutrients (QCLot: 509369)									
	ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	105	85.0	115	
nitrogen, total 7727-37-9 E366 0.03 mg/L 0.5 mg/L 100 75.0 125	Anions and Nutrients (QCLot: 509371)									
	nitrogen, total	7727-37-9	E366	0.03	mg/L	0.5 mg/L	100	75.0	125	

Page : 12 of 18 Work Order : YL2200527

Client : Golder Associates Ltd.

Analyte CAS Number Method LOR Unit Concentration LCS Low High		Report	ntrol Sample (LCS) F	Laboratory Cor						Sub-Matrix: Water
Organic / Inorganic Carbon (QCLot: 599370) ESSBL 0.5 mgl. 8.57 mgl. 105 80.0 120 Total Metals (QCLot: 598032) Incomp. (pc) — ESSBL 0.5 mgl. 2 mgl. 100 90.0 120 Incomp. (pc) — Page 1.0 — Page 2.0		Limits (%)	Recovery	Recovery (%)	Spike					
Section Sect	Qualifier	High	Low	LCS	Concentration	Unit	LOR	Method	CAS Number	Analyte
Part										
Total Metals (QCLot: 508032) Aminomum, total 7429-00-5 E420 0.0003 mg/L 2 mg/L 1100 80.0 120 Aminomum, total 7440-36-0 E420 0.0001 mg/L 1 mg/L 1103 80.0 120 Aminomum, total 7440-36-0 E420 0.0001 mg/L 1 mg/L 1103 80.0 120 Aminomum, total 7440-36-1 E420 0.0001 mg/L 0.25 mg/L 101 80.0 120 Aminomum, total 7440-36-0 E420 0.00002 mg/L 0.1 mg/L 101 80.0 120 Aminomum, total 7440-48-1 E420 0.00002 mg/L 0.1 mg/L 101 80.0 120 Aminomum, total 7440-48-1 E420 0.00005 mg/L 0.1 mg/L 101 80.0 120 Aminomum, total 7440-48-1 E420 0.00005 mg/L 0.1 mg/L 101 80.0 120 Aminomum, total 7440-48-1 E420 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 Aminomum, total 7440-48-1 E420 0.0005 mg/L 0.05 mg/L 0.05 mg/L 0.00000 Aminomum, total 7440-48-1 E420 0.00005 mg/L 0.05 mg/L 0.05 mg/L 0.00000 Aminomum, total 7440-48-1 E420 0.00005 mg/L 0.25 mg/L 0.05 mg/L 0.00000 Aminomum, total 7440-48-1 E420 0.00005 mg/L 0.25 mg/L 98.8 0.00 120 Aminomum, total 7440-48-1 E420 0.0005 mg/L 0.25 mg/L 98.8 0.00 120 Aminomum, total 7440-48-1 E420 0.0005 mg/L 0.25 mg/L 98.8 0.00 120 Aminomum, total 7440-48-1 E420 0.0005 mg/L 0.25 mg/L 98.8 0.00 120 Aminomum, total 7440-48-1 E420 0.0005 mg/L 0.5 mg/L 98.0 80.0 120 Aminomum, total 7480-88-1 E420 0.0005 mg/L 0.5 mg/L 98.0 80.0 120 Aminomum, total 7480-88-1 E420 0.0005 mg/L 0.5 mg/L 98.0 80.0 120 Aminomum, total 7480-88-1 E420 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 Aminomum, total 7480-88-1 E420 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 Aminomum, total 7480-88-1 E420 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 Aminomum, total 7480-88-1 E420 0.0005 mg/L 0.5 mg/L 100 80.0 120 Aminomum, total										Organic / Inorganic Carbon (QCLot: 509
alamimum, totali 7429-00-5 E420 0.003 mgl. 2 mgl. 1 mgl. 100 80.0 120 animimory, total 7440-38-2 E420 0.0001 mgl. 1 mgl. 103 80.0 120 barium, total 7440-38-2 E420 0.0001 mgl. 0.1 mgl. 101 80.0 120 bernalt, total 7440-48-3 E420 0.00005 mgl. 0.1 mgl. 101 80.0 120 boron, total 7440-48-9 E420 0.01 mgl. 0.1 mgl. 98.3 90.0 120 cacium, total 7440-48-9 E420 0.01 mgl. 0.1 mgl. 93.1 80.0 120 cacium, total 7440-48-9 E420 0.005 mgl. 0.5 mgl. 90.0 90.0 120 cacium, total 7440-48-9 E420 0.0001 mgl. 0.5 mgl. 90.0 90.0 120 cacium, total 7440-48-9 E420 0.0005 mgl.		120	80.0	105	8.57 mg/L	mg/L	0.5	E358-L		carbon, dissolved organic [DOC]
alamimum, totali 7429-00-5 E420 0.003 mgl. 2 mgl. 1 mgl. 100 80.0 120 animimory, total 7440-38-2 E420 0.0001 mgl. 1 mgl. 103 80.0 120 barium, total 7440-38-2 E420 0.0001 mgl. 0.1 mgl. 101 80.0 120 bernalt, total 7440-48-3 E420 0.00005 mgl. 0.1 mgl. 101 80.0 120 boron, total 7440-48-9 E420 0.01 mgl. 0.1 mgl. 98.3 90.0 120 cacium, total 7440-48-9 E420 0.01 mgl. 0.1 mgl. 93.1 80.0 120 cacium, total 7440-48-9 E420 0.005 mgl. 0.5 mgl. 90.0 90.0 120 cacium, total 7440-48-9 E420 0.0001 mgl. 0.5 mgl. 90.0 90.0 120 cacium, total 7440-48-9 E420 0.0005 mgl.										
andmicnory, Istall 7440-38-0 2420 0.0001 mgl. 1 mgl. 103 80.0 12										Total Metals (QCLot: 506032)
arsenic, total 7440-86-2 E420 0.0001 mg/L 1 mg/L 102 80.0 120 barrum, total 7440-87-3 E420 0.0001 mg/L 0.25 mg/L 101 80.0 120 bernum, total 7440-88-3 E420 0.00005 mg/L 0.1 mg/L 98.6 80.0 120 bismuth, total 7440-88-3 E420 0.0005 mg/L 1 mg/L 98.6 80.0 120 bismuth, total 7440-42-8 E420 0.01 mg/L 1 mg/L 98.6 80.0 120 bismuth, total 7440-42-8 E420 0.01 mg/L 0.1 mg/L 101 80.0 120 calcium, total 7440-42-8 E420 0.0005 mg/L 0.1 mg/L 99.8 80.0 120 calcium, total 7440-42-8 E420 0.0005 mg/L 0.05 mg/L 99.8 80.0 120 calcium, total 7440-42-8 E420 0.00001 mg/L 0.05 mg/L 100 80.0 120 calcium, total 7440-42-8 E420 0.00001 mg/L 0.25 mg/L 99.8 80.0 120 coball, total 7440-48-4 E420 0.0005 mg/L 0.25 mg/L 98.8 80.0 120 coball, total 7440-48-4 E420 0.0005 mg/L 0.25 mg/L 98.8 80.0 120 coball, total 7440-48-4 E420 0.0005 mg/L 0.25 mg/L 98.8 80.0 120 coball, total 7440-48-4 E420 0.0005 mg/L 0.25 mg/L 99.0 80.0 120 lead, total 7440-48-4 E420 0.0005 mg/L 0.25 mg/L 99.0 80.0 120 lead, total 7440-48-4 E420 0.0005 mg/L 0.5 mg/L 99.0 80.0 120 lead, total 7490-48-4 E420 0.0005 mg/L 0.5 mg/L 99.0 80.0 120 lead, total 7490-48-4 E420 0.0005 mg/L 0.5 mg/L 99.3 80.0 120 lead, total 7490-48-4 E420 0.0005 mg/L 0.5 mg/L 99.3 80.0 120 lead, total 7490-48-4 E420 0.0005 mg/L 0.25 mg/L 99.3 80.0 120 lead, total 7490-48-4 E420 0.0005 mg/L 0.55 mg/L 99.3 80.0 120 lead, total 7490-48-4 E420 0.0005 mg/L 0.55 mg/L 10 mg/L 0.25 mg/L 99.3 80.0 120 lead, total 7490-48-4 E420 0.0005 mg/L 0.55 mg/L 10 mg/L				100	2 mg/L	mg/L	0.003			aluminum, total
bernjum, total 7440-98-3 [420 0.0001 mgl. 0.25 mgl. 101 80.0 120 bernjum, total 7440-41-7 [420 0.00002 mgl. 0.1 mgl. 11 mgl. 98.6 80.0 120 bernjum, total 7440-89-3 [420 0.00005 mgl. 1 mgl. 131 80.0 120 boron, total 7440-42-8 [420 0.00005 mgl. 1 mgl. 1 mgl. 98.6 80.0 120 cadmium, total 7440-43-9 [420 0.00005 mgl. 0.00005 mgl. 1 mgl. 99.8 80.0 120 cadmium, total 7440-43-9 [420 0.005 mgl. 0.00005 mgl. 100 80.0 120 cadmium, total 7440-40-2 [420 0.000 mgl. 0.00005 mgl. 100 80.0 120 cadmium, total 7440-40-2 [420 0.0005 mgl. 0.0005 mgl. 100 80.0 120 consistent, total 7440-40-2 [420 0.0005 mgl. 0.0005 mgl. 100 80.0 120 consistent, total 7440-40-2 [420 0.0005 mgl. 0.0005 mgl. 100 80.0 120 consistent, total 7440-40-2 [420 0.0005 mgl. 0.25 mgl. 104 80.0 120 consistent 7440-40-8 [420 0.0005 mgl. 0.25 mgl. 104 80.0 120 consistent 7440-40-8 [420 0.0005 mgl. 0.25 mgl. 89.3 80.0 120 consistent 7440-40-8 [420 0.0005 mgl. 0.25 mgl. 89.3 80.0 120 consistent 7440-40-8 [420 0.0005 mgl. 0.25 mgl. 98.3 80.0 120 consistent 7440-40-8 [420 0.0005 mgl. 0.25 mgl. 98.3 80.0 120 consistent 7440-40-8 [420 0.0005 mgl. 0.25 mgl. 98.3 80.0 120 consistent 7480-80-2 [420 0.0005 mgl. 0.55 mgl. 98.4 80.0 120 consistent 7480-80-4 [420 0.0005 mgl. 0.55 mgl. 98.7 80.0 120 consistent 7480-80-4 [420 0.0005 mgl. 0.55 mgl. 98.7 80.0 120 consistent 7480-80-5 [420 0.0005 mgl. 0.25 mgl. 99.4 80.0 120 consistent 7480-80-5 [420 0.0005 mgl. 0.55 mgl. 99.7 80.0 120 consistent 7440-40-7 [420 0.0005 mgl. 0.55 mgl. 90.7 80.0 120 consistent 7440-40-7 [420 0.0005 mgl. 0.55 mgl. 90.7 80.0 120 consistent 7440-40-7 [420 0.0005 mgl. 0.55 mgl. 90.7 80.0 120 consistent 7440-40-7 [420 0.0005 mgl. 0.0005 mgl. 0.55 mgl. 90.7 80.0 120 consistent 7440-40-7 [420 0.0005 mgl. 0.0005 mgl. 0.55 mgl. 90.7 80.0 120 consistent 7440-40-7 [420 0.0005 mgl. 0.0005 mgl. 0.55 mgl. 90.7 80.0 120 consistent 7440-40-7 [420 0.0005 mgl. 0.0005 mgl. 0.55 mgl. 90.7 80.0 120 consistent 7440-40-7 [420 0.0005 mgl. 0.0005 mgl. 0.55 mgl. 90.7 80.0 120 consistent 7440-40-7 [420 0.0005 mgl. 0.0005 mgl. 0.				103	1 mg/L	mg/L				antimony, total
beryllium, total 7440-41-7 E420 0.00002 mg/L 0.1 mg/L 101 80.0 120 bismuts, total 7440-69-8 6420 0.00005 mg/L 1 mg/L 98.6 80.0 120 coorn, total 7440-42-8 E420 0.01 mg/L 0.1 mg/L 98.1 80.0 120 cadium, total 7440-47-8 E420 0.05 mg/L 0.1 mg/L 99.8 80.0 120 casium, total 7440-70-2 E420 0.05 mg/L 5.0 mg/L 99.8 80.0 120 chromium, total 7440-47-2 E420 0.0001 mg/L 0.25 mg/L 100 80.0 120 cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 98.6 80.0 120 total total 7430-89-5 E420 0.0005 mg/L 0.25 mg/L 98.3 80.0 120 total, total 7439-99-6 E420 0.000 mg/L 0.5 mg/L		120	80.0	102	1 mg/L	mg/L	0.0001	E420	7440-38-2	arsenic, total
bismuth, total 5440-68-9 bezon, total 7440-68-9 bezon, total 7440-68-9 bezon, total 540-68-9 bezon, total 540-		120	80.0	101	0.25 mg/L	mg/L	0.0001	E420	7440-39-3	barium, total
boron, total 7440-42-8 420 0.01 mg/L 1 mg/L 93.1 80.0 120 20 20 20 20 20 20		120	80.0	101	0.1 mg/L	mg/L	0.00002	E420	7440-41-7	beryllium, total
cadmium, total 7440-43-9 E420 0.000005 mg/L 0.1 mg/L 101 80.0 120 calcium, total 7440-76-2 E420 0.05 mg/L 50 mg/L 99.8 80.0 120 cesium, total 7440-46-2 E420 0.0005 mg/L 0.25 mg/L 100 80.0 120 cobalt, total 7440-48-4 E420 0.0005 mg/L 0.25 mg/L 98.6 80.0 120 copper, total 7440-58-8 E420 0.0005 mg/L 0.25 mg/L 98.3 80.0 120 copper, total 7439-88-6 E420 0.0005 mg/L 1 mg/L 1 mg/L 98.6 80.0 120 lead, total 7439-89-2 E420 0.0005 mg/L 0.5 mg/L 99.0 80.0 120 lithum, total 7439-89-2 E420 0.001 mg/L 0.25 mg/L 99.7 80.0 120 magnesum, total 7439-98-7 E420 0.005 mg/L <td></td> <td>120</td> <td>80.0</td> <td>98.6</td> <td>1 mg/L</td> <td>mg/L</td> <td>0.00005</td> <td>E420</td> <td>7440-69-9</td> <td>bismuth, total</td>		120	80.0	98.6	1 mg/L	mg/L	0.00005	E420	7440-69-9	bismuth, total
aclicium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 98.8 80.0 120 cesium, total 7440-82 E420 0.00001 mg/L 0.05 mg/L 100 80.0 120 chromlum, total 7440-82 E420 0.00001 mg/L 0.25 mg/L 104 80.0 120 chromlum, total 7440-84 E420 0.0001 mg/L 0.25 mg/L 98.8 80.0 1220 cooper, total 7440-84 E420 0.0001 mg/L 0.25 mg/L 98.8 80.0 1220 cooper, total 7440-84 E420 0.0005 mg/L 0.25 mg/L 98.3 80.0 1220 cooper, total 7439-89-6 E420 0.0005 mg/L 0.5 mg/L 106 80.0 1220 cooper, total 7439-89-6 E420 0.0005 mg/L 0.5 mg/L 99.0 80.0 1220 cooper, total 7439-89-6 E420 0.0005 mg/L 0.5 mg/L 99.0 80.0 1220 cooper, total 7439-89-6 E420 0.0005 mg/L 0.5 mg/L 99.0 80.0 1220 cooper, total 7439-89-6 E420 0.0005 mg/L 0.5 mg/L 99.0 80.0 1220 cooper, total 84.0 mg/L 99.0 mg/L 99.3 80.0 1220 cooper, total 84.0 mg/L 99.0 mg/L 99.3 80.0 1220 cooper, total 99.0 mg/L 99.0 mg/L 99.3 80.0 1220 cooper, total 94.0 mg/L 99.0 mg/L 90.0 mg/L 99.0 m		120	80.0	93.1	1 mg/L	mg/L	0.01	E420	7440-42-8	boron, total
cesium, total 7440-48-2 E420 0.00001 mg/L 0.05 mg/L 100 80.0 120 chromium, total 7440-47-3 E420 0.0005 mg/L 0.25 mg/L 104 80.0 120 cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 98.6 80.0 120 copper, total 7440-58 E420 0.0001 mg/L 0.25 mg/L 98.3 80.0 120 copper, total 7440-59-8 E420 0.0005 mg/L 0.55 mg/L 98.3 80.0 120 copper, total 7439-89-8 E420 0.0005 mg/L 0.55 mg/L 98.3 80.0 120 copper, total 7439-89-1 E420 0.0005 mg/L 0.5 mg/L 99.0 80.0 120 copper, total 7439-99-1 E420 0.0005 mg/L 0.5 mg/L 99.0 80.0 120 copper, total 7439-99-1 E420 0.0005 mg/L 0.5 mg/L 99.4 80.0 120 copper, total 7439-99-1 E420 0.0005 mg/L 0.25 mg/L 99.3 80.0 120 copper, total 7439-99-1 E420 0.0005 mg/L 0.25 mg/L 99.3 80.0 120 copper, total 7439-99-1 E420 0.0005 mg/L 0.25 mg/L 99.3 80.0 120 copper, total 7439-99-1 E420 0.0005 mg/L 0.25 mg/L 99.3 80.0 120 copper, total 7439-99-1 E420 0.0005 mg/L 0.5 mg/L 99.3 80.0 120 copper, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 copper, total 7440-02-1 E420 0.0005 mg/L 0.5 mg/L 107 80.0 120 copper, total 7440-02-7 E420 0.0005 mg/L 10 mg/L 10 mg/L 107 80.0 120 copper, total 7440-02-7 E420 0.0005 mg/L 10 mg/L 10 mg/L 107 80.0 120 copper, total 7440-17 E420 0.0005 mg/L 10 mg/L 10 mg/L 100 80.0 120 copper, total 7440-17 E420 0.0005 mg/L 10 mg/L 10 mg/L 100 80.0 120 copper, total 7440-24-2 E420 0.0005 mg/L 10 mg/L 10 mg/L 10 mg/L 100 80.0 120 copper, total 7440-24-2 E420 0.0005 mg/L 10		120	80.0	101	0.1 mg/L	mg/L	0.000005	E420	7440-43-9	cadmium, total
chromium, total		120	80.0	99.8	50 mg/L	mg/L	0.05	E420	7440-70-2	calcium, total
cobalt, total 7440-48-4 E420 0.0001 mg/L 0.25 mg/L 98.6 80.0 120 copper, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.3 80.0 120 copper, total 7439-89-6 E420 0.01 mg/L 1 mg/L 106 80.0 120 lead, total 7439-89-1 E420 0.0005 mg/L 0.5 mg/L 99.0 80.0 120 ithitum, total 7439-89-5 E420 0.001 mg/L 0.25 mg/L 99.4 80.0 120 magnesium, total 7439-89-5 E420 0.005 mg/L 50 mg/L 98.7 80.0 120 malgenesium, total 7439-89-5 E420 0.0001 mg/L 0.25 mg/L 99.3 80.0 120 molybdenum, total 7439-98-5 E420 0.00005 mg/L 0.25 mg/L 99.3 80.0 120 ploosphorus, total 7440-02-0 E420 0.0005 mg/L		120	80.0	100	0.05 mg/L	mg/L	0.00001	E420	7440-46-2	cesium, total
copper, total 7440-50-8 icon, total E420 0.0005 mg/L 0.25 mg/L 98.3 80.0 120 icon, total icon, total 7439-89-6 icon, total 6420 0.01 mg/L 1 mg/L 106 80.0 120 icon, total lead, total 7439-92-1 icon, total 6420 0.0005 mg/L 0.5 mg/L 99.0 80.0 120 icon, total mangnesium, total 7439-93-2 icon, total 6420 0.001 mg/L 0.25 mg/L 99.4 80.0 120 icon, total mangnesium, total 7439-96-5 icon, total 6420 0.005 mg/L 50 mg/L 99.3 80.0 120 icon, total molybdenum, total 7439-96-7 icon, total 6420 0.0005 mg/L 0.25 mg/L 99.3 80.0 120 icon, total molybdenum, total 7439-98-7 icon, total 6420 0.0005 mg/L 0.5 mg/L 102 icon, total 99.7 80.0 120 icon, total plosphorus, total 7440-02-0 icon, total 7440-02-0 icon, total 6420 icon, total 0.05 mg/L 10 mg/L 10 mg/L 107 icon, total 80.0 ico		120	80.0	104	0.25 mg/L	mg/L	0.0005	E420	7440-47-3	chromium, total
iron, total 7439-89-6 E420 0.01 mg/L 1 mg/L 106 80.0 120 lead, total 7439-92-1 E420 0.00005 mg/L 0.5 mg/L 99.0 80.0 120 lithium, total 7439-93-2 E420 0.001 mg/L 0.25 mg/L 99.4 80.0 120 magnesium, total 7439-96-5 E420 0.005 mg/L 50 mg/L 99.7 80.0 120 magnesium, total 7439-96-5 E420 0.0001 mg/L 0.25 mg/L 99.3 80.0 120 magnese, total 7439-96-5 E420 0.0001 mg/L 0.25 mg/L 99.3 80.0 120 magnese, total 7440-02-0 E420 0.00005 mg/L 0.25 mg/L 99.3 80.0 120 mickel, total 7440-02-0 E420 0.00005 mg/L 0.5 mg/L 99.7 80.0 120 mickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 mickel, total 7440-02-1 E420 0.005 mg/L 10 mg/L 10 mg/L 107 80.0 120 mickel, total 7440-02-1 E420 0.05 mg/L 10 mg/		120	80.0	98.6	0.25 mg/L	mg/L	0.0001	E420	7440-48-4	cobalt, total
lead, total 7439-92-1 E420 0.00005 mg/L 0.5 mg/L 99.0 80.0 120 ilthium, total 7439-93-2 E420 0.001 mg/L 0.25 mg/L 99.4 80.0 120 magnesium, total 7439-94-5 E420 0.005 mg/L 50 mg/L 99.3 80.0 120 manganese, total 7439-96-5 E420 0.0001 mg/L 0.25 mg/L 99.3 80.0 120 molybdenum, total 7439-98-7 E420 0.0001 mg/L 0.25 mg/L 99.3 80.0 120 molybdenum, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 molybdenum, total 7723-14-0 E420 0.005 mg/L 0.5 mg/L 99.7 80.0 120 molybdenum, total 7723-14-0 E420 0.005 mg/L 10 mg/L 10 mg/L 107 80.0 120 molybdenum, total 7440-02-7 E420 0.05 mg/L 10 mg/L 10 mg/L 107 80.0 120 molybdenum, total 7440-17-7 E420 0.005 mg/L 0.1 mg/L 10 mg/L 107 80.0 120 mg/L selenium, total 7440-17-7 E420 0.0002 mg/L 0.1 mg/L 10 mg/L 100 80.0 120 mg/L selenium, total 7440-24-5 E420 0.0005 mg/L 10 m		120	80.0	98.3	0.25 mg/L	mg/L	0.0005	E420	7440-50-8	copper, total
lithium, total 7439-93-2 E420 0.001 mg/L 0.25 mg/L 99.4 80.0 120 magnesium, total 7439-95-4 E420 0.005 mg/L 50 mg/L 99.3 80.0 120 mangnese, total 7439-96-5 E420 0.0001 mg/L 0.25 mg/L 99.3 80.0 120 molybdenum, total 7439-98-7 E420 0.0005 mg/L 0.25 mg/L 99.3 80.0 120 molybdenum, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 phosphorus, total 7723-14-0 E420 0.05 mg/L 10 mg/L 107 80.0 120 potassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 107 80.0 120 selenium, total 7782-49-2 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 silicon, total 7440-17-7 E420 0.0 mg/L <		120	80.0	106	1 mg/L	mg/L	0.01	E420	7439-89-6	iron, total
magnesium, total 7439-95-4 E420 0.005 mg/L 50 mg/L 98.7 80.0 120 manganese, total 7439-96-5 E420 0.0001 mg/L 0.25 mg/L 99.3 80.0 120 molybdenum, total 7439-98-7 E420 0.0005 mg/L 0.25 mg/L 102 80.0 120 mickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 phosphorus, total 7723-14-0 E420 0.05 mg/L 10 mg/L 107 80.0 120 potassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 107 80.0 120 selenium, total 7440-17-7 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 selenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 10 mg/L 40.0 80.0 120 silicon, total 7440-21-5 E420 0.00001		120	80.0	99.0	0.5 mg/L	mg/L	0.00005	E420	7439-92-1	lead, total
manganese, total 7439-96-5 E420 0.0001 mg/L 0.25 mg/L 99.3 80.0 120 molybdenum, total 7439-98-7 E420 0.0005 mg/L 0.55 mg/L 99.7 80.0 120 nickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 phosphorus, total 7723-14-0 E420 0.05 mg/L 10		120	80.0	99.4	0.25 mg/L	mg/L	0.001	E420	7439-93-2	lithium, total
molybdenum, total 7439-98-7 E420 0.00005 mg/L 0.25 mg/L 102 80.0 120 nickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 phosphorus, total 7723-14-0 E420 0.05 mg/L 10 mg/L 107 80.0 120 potassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 100 mg/L 80.0 120 rubidium, total 7440-17-7 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 selenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 103 80.0 120 silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 100 80.0 120 silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 94.8 80.0 120 strontium, total 7440-23-5 E420 0.05 mg/L 5		120	80.0	98.7	50 mg/L	mg/L	0.005	E420	7439-95-4	magnesium, total
nickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 phosphorus, total 7723-14-0 E420 0.05 mg/L 10 mg/L 107 80.0 120 potassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 107 80.0 120 rubidium, total 7440-17-7 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 selenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 103 80.0 120 silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 100 80.0 120 silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 94.8 80.0 120 sodium, total 7440-22-5 E420 0.05 mg/L 50 mg/L 99.1 80.0 120 strontium, total 7440-23-6 E420 0.002 mg/L 0.25 mg/L 99.1 80.0 120 sulfur, total 7704-34-9 E4		120	80.0	99.3	0.25 mg/L	mg/L	0.0001	E420	7439-96-5	manganese, total
phosphorus, total 7723-14-0 E420 0.05 mg/L 10 mg/L 107 80.0 120 potassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 107 80.0 120 rubidium, total 7440-17-7 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 selenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 103 80.0 120 silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 100 80.0 120 silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 94.8 80.0 120 sodium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 99.1 80.0 120 strontium, total 7440-24-6 E420 0.002 mg/L 0.25 mg/L 99.1 80.0 120 sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L		120	80.0	102	0.25 mg/L	mg/L	0.00005	E420	7439-98-7	molybdenum, total
potassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 107 80.0 120 rubidium, total 7440-17-7 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 selenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 103 80.0 120 silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 100 80.0 120 silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 94.8 80.0 120 sodium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 94.8 80.0 120 strontium, total 7440-24-6 E420 0.05 mg/L 50 mg/L 99.1 80.0 120 sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 93.4 80.0 120 tellurium, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L		120	80.0	99.7	0.5 mg/L	mg/L	0.0005	E420	7440-02-0	nickel, total
rubidium, total 7440-17-7 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 selenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 103 80.0 120 silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 10 mg/L 100 80.0 120 silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 94.8 80.0 120 sodium, total 7440-23-5 E420 0.00001 mg/L 0.1 mg/L 94.8 80.0 120 strontium, total 7440-24-6 E420 0.05 mg/L 50 mg/L 102 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 99.1 80.0 120 sulfur, total 13494-80-9 E420 0.5 mg/L 50 mg/L 99.1 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 93.4 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494		120	80.0	107	10 mg/L	mg/L	0.05	E420	7723-14-0	phosphorus, total
selenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 103 80.0 120 silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 10 mg/L 100 80.0 120 silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 94.8 80.0 120 sodium, total 7440-23-5 E420 0.005 mg/L 50 mg/L 102 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 99.1 80.0 120 sulfur, total 7704-34-9 E420 0.0002 mg/L 50 mg/L 99.1 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 50 mg/L 93.4 80.0 120 sulfur, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120 sulfur, total 13494-80-9		120	80.0	107	50 mg/L	mg/L	0.05	E420	7440-09-7	potassium, total
silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 10 mg/L 94.8 80.0 120 silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 94.8 80.0 120 sodium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 102 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 99.1 80.0 120 sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 93.4 80.0 120 tellurium, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120		120	80.0	100	0.1 mg/L	mg/L	0.0002	E420	7440-17-7	rubidium, total
silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 94.8 80.0 120 sodium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 102 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 99.1 80.0 120 sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 93.4 80.0 120 tellurium, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120		120	80.0	103	1 mg/L	mg/L	0.00005	E420	7782-49-2	selenium, total
sodium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 102 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 99.1 80.0 120 sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 93.4 80.0 120 tellurium, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120		120	80.0	100	10 mg/L	mg/L	0.1	E420	7440-21-3	silicon, total
sodium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 102 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 99.1 80.0 120 sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 93.4 80.0 120 tellurium, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120		120	80.0	94.8	0.1 mg/L	mg/L	0.00001	E420	7440-22-4	silver, total
strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 99.1 80.0 120 sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 93.4 80.0 120 tellurium, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120		120	80.0		_		0.05	E420	7440-23-5	sodium, total
sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 93.4 80.0 120 tellurium, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120		120	80.0		_		0.0002			
tellurium, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 100 80.0 120		120	80.0		_		0.5	E420	7704-34-9	,
					_	-	0.0002			
,g-					_	_				·
thorium, total 7440-29-1 E420 0.0001 mg/L 0.1 mg/L 95.7 80.0 120					_	-				
tin, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 98.3 80.0 120					_					
titanium, total 7440-32-6 E420 0.0003 mg/L 0.25 mg/L 99.5 80.0 120					_	_				

Page : 13 of 18 Work Order : YL2200527

Client : Golder Associates Ltd.

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 506032) - continu	ued								
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	97.7	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	102	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	102	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	96.4	80.0	120	
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	97.2	80.0	120	
Total Metals (QCLot: 506428)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	89.1	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	103	80.0	120	
Dissolved Metals (QCLot: 507895)									
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	103	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	100	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	100	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	98.0	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	96.8	80.0	120	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	99.4	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	96.7	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	98.5	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	97.7	80.0	120	
cesium, dissolved	7440-46-2	E421	0.00001	mg/L	0.05 mg/L	102	80.0	120	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	97.9	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	97.4	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	101	80.0	120	
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	114	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	104	80.0	120	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	93.4	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	80.4	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	98.2	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	102	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	97.3	80.0	120	
phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	91.7	80.0	120	
potassium, dissolved	7440-09-7		0.05	mg/L	50 mg/L	100	80.0	120	
rubidium, dissolved	7440-17-7		0.0002	mg/L	0.1 mg/L	107	80.0	120	
selenium, dissolved	7782-49-2		0.00005	mg/L	1 mg/L	96.3	80.0	120	
silicon, dissolved	7440-21-3		0.05	mg/L	10 mg/L	92.4	80.0	120	
silver, dissolved	7440-22-4		0.00001	mg/L	0.1 mg/L	95.1	80.0	120	
sodium, dissolved	7440-23-5		0.05	mg/L	50 mg/L	96.8	80.0	120	
	20 0		1	J. =	Joo mg/L	55.6			

Page : 14 of 18 Work Order : YL2200527

Client : Golder Associates Ltd.

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 507895) - conti	nued								
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	100	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	105	80.0	120	
tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	0.1 mg/L	100	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	104	80.0	120	
thorium, dissolved	7440-29-1	E421	0.0001	mg/L	0.1 mg/L	91.0	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	98.1	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	89.5	80.0	120	
tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	0.1 mg/L	101	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	107	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	102	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	95.7	80.0	120	
zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	95.1	80.0	120	
Aggregate Organics (QCLot: 508807)									
oil & grease (gravimetric)		E567	5	mg/L	100 mg/L	101	70.0	130	
Volatile Organic Compounds (QCLot: 507	923)								
benzene	71-43-2	E611A	0.5	μg/L	100 μg/L	96.8	70.0	130	
ethylbenzene	100-41-4	E611A	0.5	μg/L	100 μg/L	97.3	70.0	130	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.5	μg/L	100 μg/L	97.4	70.0	130	
styrene	100-42-5	E611A	0.5	μg/L	100 μg/L	102	70.0	130	
toluene	108-88-3	E611A	0.5	μg/L	100 μg/L	93.2	70.0	130	
xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	99.4	70.0	130	
xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	98.3	70.0	130	
H. d. a. a. b. a. a. (0.01 a.). F07000)									
Hydrocarbons (QCLot: 507922) F1 (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	85.4	70.0	130	
VHw (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	79.0	70.0	130	
Hydrocarbons (QCLot: 508157)									
F2 (C10-C16)		E601	100	μg/L	3538 μg/L	112	70.0	130	
F3 (C16-C34)		E601	250	μg/L	7053 μg/L	103	70.0	130	
F4 (C34-C50)		E601	250	μg/L	5051 μg/L	123	70.0	130	

Page : 15 of 18 Work Order : YL2200527

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	ents (QCLot: 505095)									
VA22B1662-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	51.3 mg/L	50 mg/L	102	75.0	125	
Anions and Nutri	ents (QCLot: 505096)									
VA22B1662-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	9.92 mg/L	10 mg/L	99.2	75.0	125	
Anions and Nutri	ents (QCLot: 505097)						<u>'</u>			
VA22B1662-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	2000 mg/L	2000 mg/L	100	75.0	125	
Anions and Nutri	ents (QCLot: 505098)									
YL2200527-002	NORTHWEST BAY NORTH Mid-depth	fluoride	16984-48-8	E235.F-L	1.02 mg/L	1 mg/L	102	75.0	125	
Anions and Nutri	ents (QCLot: 505099)									
YL2200527-002	NORTHWEST BAY NORTH Mid-depth	chloride	16887-00-6	E235.CI-L	99.4 mg/L	100 mg/L	99.4	75.0	125	
Anions and Nutri	ents (QCLot: 506280)									
YL2200508-006	Anonymous	silicate (as SiO2)	7631-86-9	E392	9.14 mg/L	10 mg/L	91.4	75.0	125	
Anions and Nutri	ents (QCLot: 509367)									
FJ2201271-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0474 mg/L	0.05 mg/L	94.8	70.0	130	
Anions and Nutri	ents (QCLot: 509368)									
FJ2201271-002	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0480 mg/L	0.05 mg/L	96.1	70.0	130	
Anions and Nutri	ents (QCLot: 509369)									
FJ2201271-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.106 mg/L	0.1 mg/L	106	75.0	125	
Anions and Nutri	ents (QCLot: 509371)									
YL2200527-002	NORTHWEST BAY NORTH Mid-depth	nitrogen, total	7727-37-9	E366	ND mg/L	0.4 mg/L	ND	70.0	130	
Organic / Inorgar	nic Carbon (QCLot: 50	9370)								
YL2200527-002	NORTHWEST BAY NORTH_Mid-depth	carbon, dissolved organic [DOC]		E358-L	ND mg/L	5 mg/L	ND	70.0	130	
otal Metals (QC	Lot: 506032)									
FJ2201300-001	Anonymous	aluminum, total	7429-90-5	E420	0.178 mg/L	0.2 mg/L	89.2	70.0	130	
		antimony, total	7440-36-0	E420	0.0200 mg/L	0.02 mg/L	100	70.0	130	
		arsenic, total	7440-38-2	E420	0.0196 mg/L	0.02 mg/L	98.2	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0381 mg/L	0.04 mg/L	95.3	70.0	130	

Page : 16 of 18 Work Order : YL2200527

Client : Golder Associates Ltd.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
∟aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	Lot: 506032) - cont	inued								
FJ2201300-001	Anonymous	bismuth, total	7440-69-9	E420	0.00921 mg/L	0.01 mg/L	92.1	70.0	130	
		boron, total	7440-42-8	E420	0.093 mg/L	0.1 mg/L	93.0	70.0	130	
		cadmium, total	7440-43-9	E420	0.00394 mg/L	0.004 mg/L	98.6	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, total	7440-46-2	E420	0.00983 mg/L	0.01 mg/L	98.3	70.0	130	
		chromium, total	7440-47-3	E420	0.0381 mg/L	0.04 mg/L	95.2	70.0	130	
		cobalt, total	7440-48-4	E420	0.0185 mg/L	0.02 mg/L	92.4	70.0	130	
		copper, total	7440-50-8	E420	0.0183 mg/L	0.02 mg/L	91.7	70.0	130	
		iron, total	7439-89-6	E420	1.83 mg/L	2 mg/L	91.6	70.0	130	
		lead, total	7439-92-1	E420	0.0183 mg/L	0.02 mg/L	91.4	70.0	130	
		lithium, total	7439-93-2	E420	0.0898 mg/L	0.1 mg/L	89.8	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0184 mg/L	0.02 mg/L	92.0	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0211 mg/L	0.02 mg/L	105	70.0	130	
		nickel, total	7440-02-0	E420	0.0366 mg/L	0.04 mg/L	91.6	70.0	130	
		phosphorus, total	7723-14-0	E420	10.2 mg/L	10 mg/L	102	70.0	130	
		potassium, total	7440-09-7	E420	3.58 mg/L	4 mg/L	89.5	70.0	130	
		rubidium, total	7440-17-7	E420	0.0193 mg/L	0.02 mg/L	96.7	70.0	130	
		selenium, total	7782-49-2	E420	0.0414 mg/L	0.04 mg/L	104	70.0	130	
		silicon, total	7440-21-3	E420	9.79 mg/L	10 mg/L	97.9	70.0	130	
		silver, total	7440-22-4	E420	0.00404 mg/L	0.004 mg/L	101	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		tellurium, total	13494-80-9	E420	0.0393 mg/L	0.04 mg/L	98.3	70.0	130	
		thallium, total	7440-28-0	E420	0.00369 mg/L	0.004 mg/L	92.2	70.0	130	
		thorium, total	7440-29-1	E420	0.0195 mg/L	0.02 mg/L	97.7	70.0	130	
		tin, total	7440-31-5	E420	0.0193 mg/L	0.02 mg/L	96.6	70.0	130	
		titanium, total	7440-32-6	E420	0.0403 mg/L	0.04 mg/L	101	70.0	130	
		tungsten, total	7440-33-7	E420	0.0193 mg/L	0.02 mg/L	96.4	70.0	130	
		uranium, total	7440-61-1	E420	0.00384 mg/L	0.004 mg/L	95.9	70.0	130	
		vanadium, total	7440-62-2	E420	0.0982 mg/L	0.1 mg/L	98.2	70.0	130	
		zinc, total	7440-66-6	E420	0.362 mg/L	0.4 mg/L	90.4	70.0	130	
		zirconium, total	7440-67-7	E420	0.0402 mg/L	0.04 mg/L	100	70.0	130	
otal Metals (QC	Lot: 506428)									
/A22B1773-001	Anonymous	mercury, total	7439-97-6	E508	0.0000986 mg/L	0.0001 mg/L	98.6	70.0	130	

Page : 17 of 18 Work Order : YL2200527

Client : Golder Associates Ltd.

Sub-Matrix: Water		Matrix Spike (MS) Report								
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	(QCLot: 504857)								I	
/A22B1773-005	Anonymous	mercury, dissolved	7439-97-6	E509	0.000103 mg/L	0.0001 mg/L	103	70.0	130	
issolved Metals	(QCLot: 507895)									
J2201270-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.214 mg/L	0.2 mg/L	107	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0214 mg/L	0.02 mg/L	107	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0226 mg/L	0.02 mg/L	113	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0411 mg/L	0.04 mg/L	103	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00868 mg/L	0.01 mg/L	86.8	70.0	130	
		boron, dissolved	7440-42-8	E421	0.097 mg/L	0.1 mg/L	97.4	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00438 mg/L	0.004 mg/L	109	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, dissolved	7440-46-2	E421	0.0106 mg/L	0.01 mg/L	106	70.0	130	
		chromium, dissolved	7440-47-3	E421	0.0433 mg/L	0.04 mg/L	108	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0205 mg/L	0.02 mg/L	102	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0209 mg/L	0.02 mg/L	104	70.0	130	
		iron, dissolved	7439-89-6	E421	1.92 mg/L	2 mg/L	96.2	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0200 mg/L	0.02 mg/L	99.9	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.102 mg/L	0.1 mg/L	102	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0211 mg/L	0.02 mg/L	105	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0402 mg/L	0.02 mg/L	100	70.0	130	
		phosphorus, dissolved	7723-14-0	E421	11.3 mg/L	10 mg/L	113	70.0	130	
		potassium, dissolved	7440-09-7	E421	4.16 mg/L	4 mg/L	104	70.0	130	
		rubidium, dissolved	7440-17-7	E421	0.0223 mg/L	0.02 mg/L	111	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0223 mg/L	0.02 mg/L 0.04 mg/L	93.4	70.0	130	
		silicon, dissolved	7440-21-3	E421	9.22 mg/L	0.04 mg/L	92.2	70.0	130	
		silver, dissolved								
		sodium, dissolved	7440-22-4	E421	0.00735 mg/L	0.008 mg/L	91.9	70.0	130	
			7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	19.5 mg/L	20 mg/L	97.7	70.0	130	
		tellurium, dissolved	13494-80-9	E421	0.0360 mg/L	0.04 mg/L	90.1	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00393 mg/L	0.004 mg/L	98.3	70.0	130	
		thorium, dissolved	7440-29-1	E421	0.0211 mg/L	0.02 mg/L	105	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0201 mg/L	0.02 mg/L	100	70.0	130	

Page : 18 of 18 Work Order : YL2200527

Client : Golder Associates Ltd.

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 507895) - co	ntinued								
FJ2201270-002	Anonymous	tungsten, dissolved	7440-33-7	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00409 mg/L	0.004 mg/L	102	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.111 mg/L	0.1 mg/L	111	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.426 mg/L	0.4 mg/L	106	70.0	130	
		zirconium, dissolved	7440-67-7	E421	0.0420 mg/L	0.04 mg/L	105	70.0	130	
Volatile Organic	Compounds (QCLot: §	507923)								
VA22B1218-001	Anonymous	benzene	71-43-2	E611A	93.8 μg/L	100 μg/L	93.8	70.0	130	
		ethylbenzene	100-41-4	E611A	94.2 μg/L	100 μg/L	94.2	70.0	130	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	97.1 μg/L	100 μg/L	97.1	70.0	130	
		styrene	100-42-5	E611A	96.6 µg/L	100 μg/L	96.6	70.0	130	
		toluene	108-88-3	E611A	85.9 μg/L	100 μg/L	85.9	70.0	130	
		xylene, m+p-	179601-23-1	E611A	196 µg/L	200 μg/L	98.0	70.0	130	
		xylene, o-	95-47-6	E611A	97.0 μg/L	100 μg/L	97.0	70.0	130	
Hydrocarbons (QCLot: 507922)									
VA22B1218-002	Anonymous	F1 (C6-C10)		E581.VH+F1	3790 μg/L	6310 µg/L	60.0	60.0	140	
		VHw (C6-C10)		E581.VH+F1	3790 μg/L	6310 µg/L	60.1	60.0	140	

ż	MORTHWEST BAY NORTH_Bottom	57
4	оптесом	
ЗЪМР∟Е	Sample identification (Thus description will appear on the report)	
ALS USE ONLY	SOlid(S) Water(W)	
PECIAL HANDLING/ST	LAZORED RO BORACO	
MAIL REPORTS TO:	Kethy Cinggiolder com; alikon humphnes@golder.com, GAL ec	mes applied com
AMPLER:	Tamata Detkowski SAMPLER I	SALES
ROJECT MANAGER:	Kathy Qin CONTACT R	6 782 H
описные окрев ио	13	
:318		O sout avil g a
:ToBLOR	Jackflah NTPC	em TAT biabrass)
CHENT	Golder Associates Ltd.	GNUORANRUT
\$79	CHAIN OF CUSTODY	

				18	JATOT			
			x		м		тьгос-х	91
		x	×		м		יונרסכ"ג	r.
		x	×	21	м	SS HI SS SS	NORTHWEST BAY NORTH_Bottom_4	21
	Telephone - 1 867 673 5693		×	Ł	м	Ship any Si	MEAR OUTFLOW INLAKE_MId-dopth	11
		x	×	51	M	2207 Mary 25	NEAR OUTFLOW INLAKE_Bortom	01
			×	Ł	W	ZEOF HOW SZ	SOUTHWEST BAY_MIG-depth	ė.
			x	E	W	TEOR how 52	motioB_YAB T23WHTUO2	9
			x		W		EMD DISCHARGE INLAKE_Mid-depth	1
			x		м		EMD DISCHARGE INLAKE_Bottom	9
	YL2200527 Work Order Beference		×	Ł	M	2500 how 25	MID LAKE 1_Mid-depth	9
	Yellowknite		x	Ł	W	2502 GOW 32	motto8 _t 3AAJ diM	
Metals preserved	Environmental Division		x	Ł	M	ce the how sz	MORTHWEST BAY NORTH_MIG-depth	ε.
1 parof1.4 pla.4		x	x	13	м	TEN how sz	metheB_HTRON YAB TESWHTRON	ż
Dissolved parameter			x		M		оптесоw	1
THE TENTES OF THE THE TOTAL EQUATION SHIPS THE TENTES OF T		Organics parameter suite	Standard Parameters Suite	TOTAL CONTAINERS	MATRIX	DATE / TIME (dd-mm-bb)	noticalitinable sigme? (hoges ent no seagge lilw notignaseb zidT))	SAMPLE
notisemolal lanotibbA	ANALYSIS REQUIRED				CONT	Solid(S) Water(W) MATRIX		

Project Number: 21482915

LO WO CO CONOTON

EdulS facility code: 183527250

1517-977-198

(Standard TAT may be longer for some tests O Non Standard or urgent TAT (List due date): g a Ultra Trace Organica)

TURNAROUND REQUIREMENTS:

| Standard Tal (List due date):

1418 686 782

EMAIL INVOICE TO: | aurence boning golder com, Kathy Oing golder co

DATE/TIME

RECEIVED BY:

Space in authing Temperature on Repetal City of first in the bisks present about those set

FOR LABORATORY USE ONLY (Circle)

MAY26/22 OATENIME 9:65

RECEIVED BY:

Pitatri lead ybatan

веглиопізнер вк:

ALS QUOTE NC YL21-GOLD100-008 (updated in April 2022)

CERTIFICATE OF ANALYSIS

Work Order : YL2200533

Client : Golder Associates Ltd.

Contact : Sarah Beattie

Address : 9 - 4905 48th Street

Yellowknife NT Canada X1A 3S3

Telephone : 867 873 6319
Project : Jackfish NTPC

C-O-C number : ---Sampler : ---

Site : Jackfish NTPC
Quote number : YL21-GOLD100-008

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 6

Laboratory : Yellowknife - Environmental

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife NT Canada X1A 3T3

Telephone : 1 867 446 5593

Date Samples Received : 27-May-2022 10:00

Date Analysis Commenced : 29-May-2022

Issue Date : 09-Jun-2022 15:54

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Dan Gebert	Laboratory Analyst	Metals, Burnaby, British Columbia
Delson Resende	Lab Assistant	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia

Page : 2 of 6

Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μS/cm	Microsiemens per centimetre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

DLB Detection Limit Raised. Analyte detected at comparable level in Method Blank.	Qualifier	Description
	DLB	Detection Limit Raised. Analyte detected at comparable level in Method Blank.

Page : 3 of 6 Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analytical Results

Sub-Matrix: Water			Ci	ient sample ID	INFLOW TO NW	JFLQC-2		
(Matrix: Water)					BAY 2			
			Client samp	ling date / time	26-May-2022 13:40	26-May-2022 09:00		
Analyte	CAS Number	Method	LOR	Unit	YL2200533-001	YL2200533-002		
				Î	Result	Result		
Physical Tests								
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	55.5	<1.0		
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0		
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0		
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0		
alkalinity, total (as CaCO3)		E290	1.0	mg/L	55.5	<1.0		
conductivity		E100	2.0	μS/cm	434	<2.0		
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	98.6	<0.60		
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	107	<0.60		
рН		E108	0.10	pH units	7.86	5.27		
solids, total dissolved [TDS]		E162	10	mg/L	272	<10		
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	222	<1.0		
solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0		
turbidity		E121	0.10	NTU	<0.10	0.23		
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0088	<0.0050		
chloride	16887-00-6	E235.CI-L	0.10	mg/L	78.6	<0.10		
fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.055	<0.010		
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0385	<0.0050		
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	0.0385	<0.0051		
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010		
nitrogen, total	7727-37-9	E366	0.030	mg/L	0.775	<0.030		
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0108	<0.0020		
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0092	<0.0020		
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	2.40	<0.50		
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	26.1	<0.30		
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	20.0	<0.50		
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0164	<0.0030		
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00208	<0.00010		
1			I .	, ,			I	

Page : 4 of 6 Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

ALS

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	INFLOW TO NW	JFLQC-2		
(Matrix: Water)					BAY 2			
			Client sampl	ling date / time	26-May-2022 13:40	26-May-2022 09:00		
Analyte	CAS Number	Method	LOR	Unit	YL2200533-001	YL2200533-002		
					Result	Result		
Total Metals								
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0252	<0.00010		
barium, total	7440-39-3	E420	0.00010	mg/L	0.0143	<0.00010		
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100		
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050		
boron, total	7440-42-8	E420	0.010	mg/L	0.034	<0.010		
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.0000050		
calcium, total	7440-70-2	E420	0.050	mg/L	28.1	<0.050		
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010		
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050		
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010		
copper, total	7440-50-8	E420	0.00050	mg/L	0.00143	<0.00050		
iron, total	7439-89-6	E420	0.010	mg/L	0.036	<0.010		
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050		
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0050 DLB	<0.0010		
magnesium, total	7439-95-4	E420	0.0050	mg/L	9.05	<0.0050		
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00875	<0.00010		
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050		
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000403	<0.000050		
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00129	<0.00050		
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050		
potassium, total	7440-09-7	E420	0.050	mg/L	3.23	<0.050		
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00315	<0.00020		
selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	<0.000050		
silicon, total	7440-21-3	E420	0.10	mg/L	1.17	<0.10		
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010		
sodium, total	7440-23-5	E420	0.050	mg/L	45.1	<0.050		
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0617	<0.00020		
sulfur, total	7704-34-9	E420	0.50	mg/L	10.2	<0.50		
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020		
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010		
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010		
1	7 1 10 20-1	-	1 / 1					l l

Page : 5 of 6 Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

ALS

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	INFLOW TO NW	JFLQC-2		
(Matrix: Water)					BAY 2			
			Client sampl	ling date / time	26-May-2022 13:40	26-May-2022 09:00		
Analyte	CAS Number	Method	LOR	Unit	YL2200533-001	YL2200533-002		
					Result	Result		
Total Metals								
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010		
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030		
tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010		
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000201	<0.000010		
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050		
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0033	<0.0030		
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020		
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0136	<0.0010		
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00219	<0.00010		
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0245	<0.00010		
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0129	<0.00010		
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100		
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050		
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.035	<0.010		
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050		
calcium, dissolved	7440-70-2	E421	0.050	mg/L	26.6	<0.050		
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010		
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050		
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010		
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00137	<0.00020		
iron, dissolved	7439-89-6	E421	0.010	mg/L	0.032	<0.010		
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050		
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0044	<0.0010		
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	7.81	<0.0050		
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00583	<0.00010		
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.000050		
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000214	<0.000050		
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00130	<0.00050		
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050		
potassium, dissolved	7440-09-7	E421	0.050	mg/L	3.32	<0.050		
	1440-00-1		1 2.000	9, ⊏	3.02	000	l l	I

Page : 6 of 6 Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	INFLOW TO NW	JFLQC-2	 	
(Matrix: Water)					BAY 2			
			Client samp	ling date / time	26-May-2022 13:40	26-May-2022 09:00	 	
Analyte	CAS Number	Method	LOR	Unit	YL2200533-001	YL2200533-002	 	
					Result	Result	 	
Dissolved Metals								
rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00305	<0.00020	 	
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.14	<0.050	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	44.4	<0.050	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0569	<0.00020	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	9.17	<0.50	 	
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	 	
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000185	<0.000010	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0029	<0.0010	 	
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	 	
dissolved mercury filtration location		EP509	-	_	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **YL2200533** Page : 1 of 15

Client : Golder Associates Ltd. Laboratory : Yellowknife - Environmental

Contact : Sarah Beattie Account Manager : Oliver Gregg

Address : 9 - 4905 48th Street Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

 Telephone
 : 867 873 6319
 Telephone
 : 1 867 446 5593

 Project
 : Jackfish NTPC
 Date Samples Received
 : 27-May-2022 10:00

 PO
 : --- Issue Date
 : 09-Jun-2022 15:54

PO : ----C-O-C number : ----

Yellowknife NT Canada X1A 3S3

Site : Jackfish NTPC

Quote number : YL21-GOLD100-008

No. of samples received : 2
No. of samples analysed : 2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Sampler

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 15 : YL2200533 Work Order

Client : Golder Associates Ltd.

: Jackfish NTPC Project

Outliers: Quality Control Samples
Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Total Metals	QC-MRG2-5063000		lithium, total	7439-93-2	E420	0.0011 MB-LOR	0.001 mg/L	Blank result exceeds
	01					mg/L		permitted value

Result Qualifiers

Qualifier	Description
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.

Page : 4 of 15 Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	✓ = Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)		F		Holding	g Times	Eval	Eval Analysis Date		Holding Times	
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
INFLOW TO NW BAY 2	E298	26-May-2022	06-Jun-2022				06-Jun-2022	28 days	11 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
JFLQC-2	E298	26-May-2022	06-Jun-2022				06-Jun-2022	28 days	11 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE	5005.011							20.1		,
INFLOW TO NW BAY 2	E235.CI-L	26-May-2022					29-May-2022	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE JFLQC-2	E235.CI-L	26-May-2022					29-May-2022	28 days	2 dovo	✓
JFLQC-2	L233.01-L	20-iviay-2022					29-iviay-2022	20 uays	3 uays	•
Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE							I			
INFLOW TO NW BAY 2	E235.F-L	26-May-2022					29-May-2022	28 days	3 days	√
111 2011 10 1111 B/11 2	2200 2	20 1114) 2022					20	20 44,0	o unjo	
Anions and Nutrients : Elucride in Water by IC / ow Level										
Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE										
JFLQC-2	E235.F-L	26-May-2022					29-May-2022	28 days	3 days	✓
		'					, ,	"	, ,	
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
INFLOW TO NW BAY 2	E235.NO3-L	26-May-2022					29-May-2022	3 days	3 days	✓
									-	

Page : 5 of 15 Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

							nolding time exce			
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation				Analysis		
Container / Client Sample ID(s)				Holding Times Eval		Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
JFLQC-2	E235.NO3-L	26-May-2022					29-May-2022	3 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
INFLOW TO NW BAY 2	E235.NO2-L	26-May-2022					29-May-2022	3 days	3 days	✓
IN LOW TO TWO BAT 2		20 1110, 2022					20 May 2022	o dayo	o dayo	
Anions and Nutrients : Nitrite in Water by IC (Low Level)				I				T		
HDPE	F005 NO0 I	00 M 0000					00 M 0000	0 -1	0 4	√
JFLQC-2	E235.NO2-L	26-May-2022					29-May-2022	3 days	3 days	•
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE										
INFLOW TO NW BAY 2	E392	26-May-2022					31-May-2022	28 days	5 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE										
JFLQC-2	E392	26-May-2022					31-May-2022	28 days	5 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
INFLOW TO NW BAY 2	E235.SO4	26-May-2022					29-May-2022	28 days	3 days	✓
		•					_			
Aniona and Nutrianta - Sulfata in Matar by IC										
Anions and Nutrients : Sulfate in Water by IC HDPE										
JFLQC-2	E235.SO4	26-May-2022					29-May-2022	28 days	3 days	✓
JI EQU-Z	L200.004	20-Way-2022					23-Way-2022	20 days	5 days	•
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid)	F275 T	00 M 0000	00 1 0000				07 1 0000	00 4	40 4	,
INFLOW TO NW BAY 2	E375-T	26-May-2022	06-Jun-2022				07-Jun-2022	∠8 days	12 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid)										
JFLQC-2	E375-T	26-May-2022	06-Jun-2022				07-Jun-2022	28 days	12 days	✓

 Page
 : 6 of 15

 Work Order
 : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method Sampling Date Extraction / Preparation						Analysis			
Container / Client Sample ID(s)				Holding	ng Times Eval		Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid) INFLOW TO NW BAY 2	E366	26-May-2022	06-Jun-2022				07-Jun-2022	28 days	12 days	✓
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid) JFLQC-2	E366	26-May-2022	06-Jun-2022				07-Jun-2022	28 days	12 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) INFLOW TO NW BAY 2	E372-U	26-May-2022	06-Jun-2022				07-Jun-2022	28 days	12 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) JFLQC-2	E372-U	26-May-2022	06-Jun-2022				07-Jun-2022	28 days	12 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) INFLOW TO NW BAY 2	E509	26-May-2022	30-May-2022				30-May-2022	28 days	4 days	4
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) JFLQC-2	E509	26-May-2022	30-May-2022				30-May-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) INFLOW TO NW BAY 2	E421	26-May-2022	03-Jun-2022				03-Jun-2022	180 days	9 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) JFLQC-2	E421	26-May-2022	03-Jun-2022				03-Jun-2022	180 days	9 days	√
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	el)									
Amber glass dissolved (sulfuric acid) INFLOW TO NW BAY 2	E358-L	26-May-2022	06-Jun-2022				06-Jun-2022	28 days	11 days	✓

Page : 7 of 15 Work Order : 7 vL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) **Holding Times** Preparation Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) 06-Jun-2022 JFLQC-2 E358-L 26-May-2022 06-Jun-2022 28 days 11 days ✓ Physical Tests : Alkalinity Species by Titration HDPE E290 1 INFLOW TO NW BAY 2 26-May-2022 30-May-2022 14 days 4 days --------Physical Tests: Alkalinity Species by Titration HDPE JFLQC-2 E290 26-May-2022 30-May-2022 14 days 4 days ✓ Physical Tests : Conductivity in Water HDPE E100 26-May-2022 30-May-2022 28 days 4 days INFLOW TO NW BAY 2 Physical Tests : Conductivity in Water HDPE JFLQC-2 E100 26-May-2022 30-May-2022 28 days 4 days Physical Tests : pH by Meter HDPE JFLQC-2 E108 26-May-2022 30-May-2022 101 hrs 0.25 hrs EHTR-FM Physical Tests : pH by Meter HDPE INFLOW TO NW BAY 2 E108 26-May-2022 30-May-2022 97 hrs 0.25 hrs EHTR-FM **Physical Tests: TDS by Gravimetry** HDPE ✓ INFLOW TO NW BAY 2 01-Jun-2022 6 days E162 26-May-2022 7 days **Physical Tests: TDS by Gravimetry** HDPE E162 26-May-2022 01-Jun-2022 ✓ JFLQC-2 7 days 6 days ----

Page : 8 of 15 Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

✓

8 days

180 days

02-Jun-2022

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date Physical Tests : TSS by Gravimetry HDPE 01-Jun-2022 **INFLOW TO NW BAY 2** E160 26-May-2022 7 days 6 days ✓ **Physical Tests: TSS by Gravimetry** HDPE 1 JFI QC-2 E160 26-May-2022 01-Jun-2022 7 days 6 days ----Physical Tests: Turbidity by Nephelometry HDPE INFLOW TO NW BAY 2 E121 26-May-2022 30-May-2022 3 days 4 days æ EHT **Physical Tests: Turbidity by Nephelometry** HDPE JFLQC-2 E121 26-May-2022 30-May-2022 3 days 4 days æ EHT **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) **INFLOW TO NW BAY 2** E508 26-May-2022 03-Jun-2022 28 days 8 days **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) JFLQC-2 E508 26-May-2022 03-Jun-2022 28 days 8 days ✓ Total Metals : Total Metals in Water by CRC ICPMS HDPE total (nitric acid) 26-May-2022 INFLOW TO NW BAY 2 E420 02-Jun-2022 7 days 1 180 days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid)

26-May-2022

E420

Legend & Qualifier Definitions

JFLQC-2

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 9 of 15 Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			ion: × = QC frequ	ount	<u> </u>	<u> </u>	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Frequency (%) Expected	Evaluation
Laboratory Duplicates (DUP)						,	
Alkalinity Species by Titration	E290	503761	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	512271	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	503759	1	2	50.0	5.0	
Conductivity in Water	E100	503762	1	20	5.0	5.0	
Dissolved Mercury in Water by CVAAS	E509	504913	1	20	5.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	509268	1	19	5.2	5.0	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	512264	1	15	6.6	5.0	1
Fluoride in Water by IC (Low Level)	E235.F-L	503758	1	2	50.0	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	503755	1	20	5.0	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	503756	1	20	5.0	5.0	1
pH by Meter	E108	503760	1	20	5.0	5.0	1
Reactive Silica by Colourimetry	E392	506280	1	20	5.0	5.0	1
Sulfate in Water by IC	E235.SO4	503757	1	20	5.0	5.0	1
TDS by Gravimetry	E162	506940	1	19	5.2	5.0	√
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	512270	1	2	50.0	5.0	1
Total Mercury in Water by CVAAS	E508	509477	1	20	5.0	5.0	√
Total Metals in Water by CRC ICPMS	E420	506300	2	20	10.0	5.0	1
Total Nitrogen by Colourimetry	E366	512265	1	6	16.6	5.0	√
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	512266	1	14	7.1	5.0	1
TSS by Gravimetry	E160	506936	1	19	5.2	5.0	✓
Turbidity by Nephelometry	E121	504481	1	16	6.2	5.0	✓
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	503761	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	512271	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	503759	1	2	50.0	5.0	1
Conductivity in Water	E100	503762	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	504913	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	509268	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	512264	1	15	6.6	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	503758	1	2	50.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	503755	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	503756	1	20	5.0	5.0	✓
pH by Meter	E108	503760	1	20	5.0	5.0	✓
Reactive Silica by Colourimetry	E392	506280	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	503757	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	506940	1	19	5.2	5.0	✓
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	512270	1	2	50.0	5.0	✓

Page : 10 of 15 Work Order : YL2200533

Client : Golder Associates Ltd.

Matrix: Water	Evaluation	n: × = QC frequency outside spe	ecification; ✓ = QC frequency within specification.
0 11 0 1 10 1 7		0 /	E (0/)

Quality Control Sample Type			Co	ount	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued								
Total Mercury in Water by CVAAS	E508	509477	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	506300	1	20	5.0	5.0	✓	
Total Nitrogen by Colourimetry	E366	512265	1	6	16.6	5.0	√	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	512266	1	14	7.1	5.0	√	
TSS by Gravimetry	E160	506936	1	19	5.2	5.0	√	
Turbidity by Nephelometry	E121	504481	1	16	6.2	5.0	√	
Method Blanks (MB)								
Alkalinity Species by Titration	E290	503761	1	20	5.0	5.0	1	
Ammonia by Fluorescence	E298	512271	1	20	5.0	5.0	<u>√</u>	
Chloride in Water by IC (Low Level)	E235.CI-L	503759	1	2	50.0	5.0		
Conductivity in Water	E100	503762	1	20	5.0	5.0		
Dissolved Mercury in Water by CVAAS	E509	504913	1	20	5.0	5.0		
Dissolved Metals in Water by CRC ICPMS	E421	509268	1	19	5.2	5.0		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	512264	1	15	6.6	5.0		
Fluoride in Water by IC (Low Level)	E235.F-L	503758	1	2	50.0	5.0	√	
Nitrate in Water by IC (Low Level)	E235.NO3-L	503755	1	20	5.0	5.0	√	
Nitrite in Water by IC (Low Level)	E235.NO2-L	503756	1	20	5.0	5.0		
Reactive Silica by Colourimetry	E392	506280	1	20	5.0	5.0		
Sulfate in Water by IC	E235.SO4	503757	1	20	5.0	5.0		
TDS by Gravimetry	E162	506940	1	19	5.2	5.0		
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	512270	1	2	50.0	5.0	√	
Total Mercury in Water by CVAAS	E508	509477	1	20	5.0	5.0	<u> </u>	
Total Metals in Water by CRC ICPMS	E420	506300	1	20	5.0	5.0	<u>√</u>	
Total Nitrogen by Colourimetry	E366	512265	1	6	16.6	5.0		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	512266	1	14	7.1	5.0	<u>√</u>	
TSS by Gravimetry	E160	506936	1	19	5.2	5.0	<u>√</u>	
Turbidity by Nephelometry	E121	504481	1	16	6.2	5.0	<u> </u>	
Matrix Spikes (MS)							-	
Ammonia by Fluorescence	E298	512271	1	20	5.0	5.0	1	
Chloride in Water by IC (Low Level)	E235.CI-L	503759	1	2	50.0	5.0	<u> </u>	
Dissolved Mercury in Water by CVAAS	E509	504913	1	20	5.0	5.0	√	
Dissolved Metals in Water by CRC ICPMS	E421	509268	1	19	5.2	5.0	<u> </u>	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	512264	1	15	6.6	5.0		
Fluoride in Water by IC (Low Level)	E235.F-L	503758	1	2	50.0	5.0	<u>√</u>	
Nitrate in Water by IC (Low Level)	E235.NO3-L	503755	1	20	5.0	5.0	<u> </u> ✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	503756	1	20	5.0	5.0		
Reactive Silica by Colourimetry	E392	506280	1	20	5.0	5.0		
Sulfate in Water by IC	E235.SO4	503757	1	20	5.0	5.0		
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	512270	1	2	50.0	5.0	<u> </u> ✓	
Total Mercury in Water by CVAAS	E508	509477	1	20	5.0	5.0		

Page : 11 of 15 : YL2200533 Work Order

Client : Golder Associates Ltd. : Jackfish NTPC

Project

Matrix: Water Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specification.
--

Quality Control Sample Type			Co	unt		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Total Metals in Water by CRC ICPMS	E420	506300	1	20	5.0	5.0	✓
Total Nitrogen by Colourimetry	E366	512265	1	6	16.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	512266	1	14	7.1	5.0	✓

Page : 12 of 15 Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Vancouver - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108 Vancouver - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121 Vancouver - Environmental	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
TSS by Gravimetry	E160 Vancouver - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Vancouver - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Chloride in Water by IC (Low Level)	E235.CI-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC (Low Level)	E235.F-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.

Page : 13 of 15 : YL2200533 Work Order

Client : Golder Associates Ltd. : Jackfish NTPC

Project

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Vancouver - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Vancouver - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Vancouver - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Nitrogen by Colourimetry	E366 Vancouver - Environmental	Water	APHA 4500-P J (mod)	Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Dissolved Phosphorus is determined colourimetrically using a discrete analyzer after filtration through a 0.45 micron filter followed by heated persulfate digestion of the sample.
Reactive Silica by Colourimetry	E392 Vancouver - Environmental	Water	APHA 4500-SiO2 E (mod)	Silicate (molybdate-reactive silica) is determined by the molybdosilicate-heteropoly blue colourimetric method using a discrete analyzer. Method Limitation: Arsenic (5+) above 100 mg/L is a negative interference on this test
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS

Page : 14 of 15 Work Order : YL2200533

Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Hardness (Calculated) from Total Ca/Mg	EC100A Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
TDS in Water (Calculation) Using APHA Analyte List	EC103.APHA Vancouver - Environmental	Water	APHA 1030E	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis).
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Vancouver - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Vancouver - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Preparation for Dissolved Organic Carbon for Combustion	EP358 Vancouver - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Nitrogen in water	EP366 Vancouver - Environmental	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.
Digestion for Total Phosphorus in water	EP372 Vancouver - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Digestion for Dissolved Phosphorus in water	EP375 Vancouver - Environmental	Water	APHA 4500-P E (mod).	Samples are filtered through a 0.45 micron membrane filter and then heated with a persulfate digestion reagent.

Page : 15 of 15 : YL2200533 Work Order

Client : Golder Associates Ltd. : Jackfish NTPC

Project

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Vancouver -			
	Environmental			
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order :YL2200533

Client : Golder Associates Ltd.

Contact : Sarah Beattie

Address : 9 - 4905 48th Street

Yellowknife NT Canada X1A 3S3

Telephone : 867 873 6319
Project : Jackfish NTPC

PO :--C-O-C number :--Sampler :---

Site : Jackfish NTPC

Quote number : YL21-GOLD100-008

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 18

Laboratory : Yellowknife - Environmental

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

Telephone : 1 867 446 5593

Date Samples Received : 27-May-2022 10:00

Date Analysis Commenced : 29-May-2022

Issue Date : 09-Jun-2022 15:54

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia
Dan Gebert	Laboratory Analyst	Vancouver Metals, Burnaby, British Columbia
Delson Resende	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia
Owen Cheng		Vancouver Metals, Burnaby, British Columbia

Page : 2 of 18
Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 18
Work Order : YL2200533

Client : Golder Associates Ltd.
Project : Jackfish NTPC

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	atory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 503760)										
FJ2201342-001	Anonymous	рН		E108	0.10	pH units	8.50	8.51	0.106%	4%	
Physical Tests (QC	Lot: 503761)										
FJ2201342-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	255	257	0.859%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	16.2	17.0	4.82%	20%	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	8.1	8.5	0.4	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	271	274	1.10%	20%	
Physical Tests (QC	Lot: 503762)										
FJ2201342-001	Anonymous	conductivity		E100	2.0	μS/cm	800	801	0.125%	10%	
Physical Tests (QC	Lot: 504481)							•			
FJ2201288-001	Anonymous	turbidity		E121	0.10	NTU	10.5	11.0	4.82%	15%	
Physical Tests (QC	Lot: 506936)										
FJ2201364-007	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Physical Tests (QC	: Lot: 506940)										
FJ2201364-007	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	1610	1680	4.26%	20%	
Anions and Nutrion	its (QC Lot: 503755)										
FJ2201342-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0250	mg/L	0.359	0.356	0.883%	20%	
	·	ate (ae 13)				3					
FJ2201342-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
	,	Titule (as IV)	14737-03-0	L200.INO2-L	0.0030	mg/L	40.0000	40.0000		DIII 12X LOIX	
Anions and Nutrien FJ2201342-001	ts (QC Lot: 503757)	W. L. (14808-79-8	E005 004	4.50		400	400	0.0770/	000/	I
	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	189	190	0.377%	20%	
	ts (QC Lot: 503758)										1
YL2200533-001	INFLOW TO NW BAY 2	fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.055	0.055	0.0006	Diff <2x LOR	
	ts (QC Lot: 503759)										
YL2200533-001	INFLOW TO NW BAY 2	chloride	16887-00-6	E235.CI-L	0.10	mg/L	78.6	77.5	1.39%	20%	
Anions and Nutrien	ts (QC Lot: 506280)										
YL2200508-005	Anonymous	silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	2.92	2.83	0.09	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 512265)										
VA22B1907-001	Anonymous	nitrogen, total	7727-37-9	E366	0.030	mg/L	0.063	0.065	0.002	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 512266)										1
VA22B1907-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0059	0.0054	0.0004	Diff <2x LOR	

Page : 4 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.

ub-Matrix: Water						Laboratory Duplicate (DUP) Report							
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie		
nions and Nutrien	ts (QC Lot: 512270)												
′L2200533-001	INFLOW TO NW BAY 2	phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0092	0.0086	0.0006	Diff <2x LOR			
nions and Nutrien	ts (QC Lot: 512271)												
/A22B1907-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR			
Organic / Inorganic	Carbon (QC Lot: 5122	264)											
/L2200483-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.31	1.36	0.06	Diff <2x LOR			
otal Metals (QC Lo	ot: 506300)												
CG2206448-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.446	0.462	3.59%	20%			
		iron, total	7439-89-6	E420	0.010	mg/L	0.581	0.605	4.03%	20%			
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00538	0.00603	11.4%	20%			
CG2206448-001	Anonymous	antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR			
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00028	0.00033	0.00005	Diff <2x LOR			
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0939	0.0943	0.487%	20%			
		beryllium, total	7440-41-7	E420	0.000020	mg/L	0.021 μg/L	0.000026	0.000006	Diff <2x LOR			
bi	bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR				
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR			
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0458 µg/L	0.0000506	0.0000048	Diff <2x LOR			
		calcium, total	7440-70-2	E420	0.050	mg/L	69.8	71.7	2.60%	20%			
		cesium, total	7440-46-2	E420	0.000010	mg/L	0.000041	0.000057	0.000015	Diff <2x LOR			
		chromium, total	7440-47-3	E420	0.00050	mg/L	0.00054	0.00062	0.00007	Diff <2x LOR			
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.39 µg/L	0.00043	0.00003	Diff <2x LOR			
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00074	0.00079	0.00004	Diff <2x LOR			
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000391	0.000422	0.000031	Diff <2x LOR			
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0061	0.0062	0.00009	Diff <2x LOR			
		magnesium, total	7439-95-4	E420	0.0050	mg/L	21.2	21.6	1.61%	20%			
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0306	0.0309	0.804%	20%			
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000863	0.000923	6.75%	20%			
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00091	0.00100	0.00009	Diff <2x LOR			
		phosphorus, total	7723-14-0	E420	0.050	mg/L	0.061	0.055	0.006	Diff <2x LOR			
		potassium, total	7440-09-7	E420	0.050	mg/L	0.597	0.633	5.74%	20%			
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00062	0.00078	0.00016	Diff <2x LOR			
		selenium, total	7782-49-2	E420	0.000050	mg/L	11.0 μg/L	0.0112	1.22%	20%			
		silicon, total	7440-21-3	E420	0.10	mg/L	2.47	2.63	6.45%	20%			
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	0.000010	0.0000002	Diff <2x LOR			
		sodium, total	7440-23-5	E420	0.050	mg/L	1.83	1.83	0.212%	20%			
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.156	0.160	3.08%	20%			

Page : 5 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.

Sub-Matrix: Water							Labora	tory Duplicate (D	DF) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 506300) - continue	ed									
CG2206448-001	Anonymous	sulfur, total	7704-34-9	E420	0.50	mg/L	29.5	29.7	0.504%	20%	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000013	0.000015	0.000002	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00110	0.00109	0.440%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00087	0.00103	0.00016	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 509477)										
CG2206687-006	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 504913)						ı			1	
VA22B1807-004	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 509268)										
YL2200483-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0324	0.0319	1.64%	20%	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00013	0.00013	0.000006	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00012	0.00014	0.00001	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.00790	0.00812	2.83%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.032	0.034	0.002	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	12.7	13.0	1.75%	20%	
		cesium, dissolved	7440-46-2	E421	0.000010	mg/L	0.000011	<0.000010	0.000001	Diff <2x LOR	
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00016	0.00015	0.000005	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00165	0.00164	0.00002	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	0.055	0.055	0.0002	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.000106	0.000103	0.000002	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0016	0.0016	0.000008	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	1.90	1.94	2.08%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00490	0.00489	0.180%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00171	0.00173	0.819%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00308	0.00308	0.000005	Diff <2x LOR	

Page : 6 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 509268) - contin	ued									
YL2200483-001	Anonymous	phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.50	1.50	0.0105%	20%	
		rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00228	0.00220	3.61%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	0.564	0.580	2.87%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	0.818	0.810	0.905%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0892	0.0895	0.355%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	5.12	5.60	8.99%	20%	
		tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	0.00152	0.00151	0.00001	Diff <2x LOR	
		tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	0.00033	0.00030	0.00003	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000563	0.000540	4.10%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0025	0.0026	0.00004	Diff <2x LOR	
		zirconium, dissolved	7440-67-7	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	

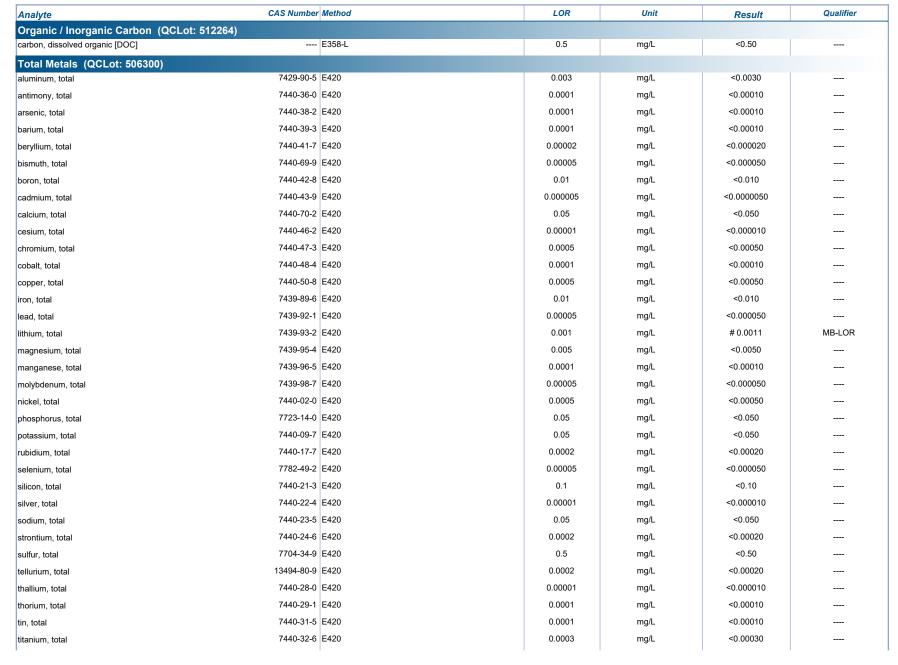
Page : 7 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.
Project : Jackfish NTPC

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

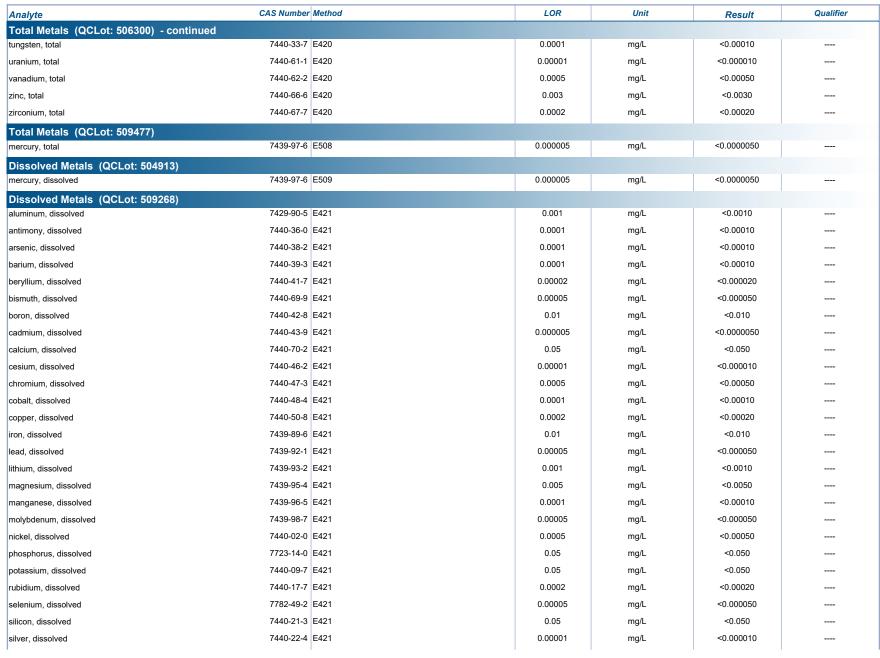

Analyte	CAS Number N	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 503761)						
alkalinity, bicarbonate (as CaCO3)	E	290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E	290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E	290	1	mg/L	<1.0	
alkalinity, phenolphthalein (as CaCO3)	E	290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 503762)						
conductivity	E	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 504481)						
turbidity	E	121	0.1	NTU	<0.10	
Physical Tests (QCLot: 506936)						
solids, total suspended [TSS]	E	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 506940)						
solids, total dissolved [TDS]	E	162	10	mg/L	<10	
Anions and Nutrients (QCLot: 503755)						
nitrate (as N)	14797-55-8 E	E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 503756)						
nitrite (as N)	14797-65-0 E	E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 503757)						
sulfate (as SO4)	14808-79-8 E	E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 503758)						
fluoride	16984-48-8 E	235.F-L	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 503759)						
chloride	16887-00-6 E	E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 506280)						
silicate (as SiO2)	7631-86-9 E	392	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 512265)						
nitrogen, total	7727-37-9 E	366	0.03	mg/L	<0.030	
Anions and Nutrients (QCLot: 512266)						
phosphorus, total	7723-14-0 E	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 512270)						
phosphorus, total dissolved	7723-14-0 E	E375-T	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 512271)						
ammonia, total (as N)	7664-41-7 E	298	0.005	mg/L	<0.0050	

Page : 8 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water

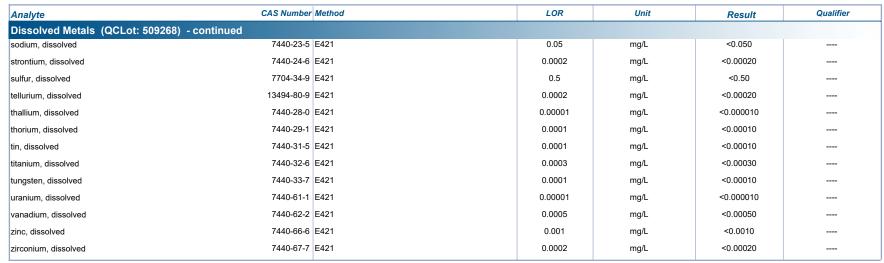


Page : 9 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water



Page : 10 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water

Qualifiers

Qualifier Description

MB-LOR Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.

Page : 11 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.
Project : Jackfish NTPC

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 503760)										
рН		E108		pH units	7 pH units	99.6	98.0	102		
Physical Tests (QCLot: 503761)										
alkalinity, phenolphthalein (as CaCO3)		E290	1	mg/L	229 mg/L	86.6	75.0	125		
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	100	85.0	115		
Physical Tests (QCLot: 503762)										
conductivity		E100	1	μS/cm	146.9 μS/cm	99.5	90.0	110		
Physical Tests (QCLot: 504481)										
turbidity		E121	0.1	NTU	200 NTU	92.2	85.0	115		
Physical Tests (QCLot: 506936)									1	
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	100	85.0	115		
Physical Tests (QCLot: 506940)									1	
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	109	85.0	115		
Anions and Nutrients (QCLot: 503755)									1	
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	100.0	90.0	110		
Anions and Nutrients (QCLot: 503756)									1	
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	97.6	90.0	110		
Anions and Nutrients (QCLot: 503757)									1	
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	101	90.0	110		
Anions and Nutrients (QCLot: 503758)									1	
fluoride	16984-48-8	E235.F-L	0.01	mg/L	1 mg/L	99.0	90.0	110		
Anions and Nutrients (QCLot: 503759)									1	
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	99.2	90.0	110		
Anions and Nutrients (QCLot: 506280)									1	
silicate (as SiO2)	7631-86-9	E392	0.5	mg/L	10 mg/L	99.8	85.0	115		
Anions and Nutrients (QCLot: 512265)									I	
nitrogen, total	7727-37-9	E366	0.03	mg/L	0.5 mg/L	102	75.0	125		
Anions and Nutrients (QCLot: 512266)									I	
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	94.3	80.0	120		
Anions and Nutrients (QCLot: 512270)									I	
phosphorus, total dissolved	7723-14-0	E375-T	0.002	mg/L	0.05 mg/L	92.1	80.0	120		
Anions and Nutrients (QCLot: 512271)										
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	92.5	85.0	115		
					J.2 mg/L	02.0		* * *		

Page : 12 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.

Analyte Organic / Inorganic Carbon (QCLot: 51226	CAS Number	Method	400		Spike	Recovery (%)	Recovery	Limits (%)	
	CAS Number	Method	vte CAS Number Method LOR Uni						
Organic / Inorganic Carbon (QCLot: 51226			LOR	Unit	Concentration	LCS	Low	High	Qualifier
Organic / Inorganic Carbon (QCLot: 51226									
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `									
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	104	80.0	120	
Total Metals (QCLot: 506300)									
aluminum, total	7429-90-5		0.003	mg/L	2 mg/L	102	80.0	120	
antimony, total	7440-36-0		0.0001	mg/L	1 mg/L	102	80.0	120	
arsenic, total	7440-38-2		0.0001	mg/L	1 mg/L	100	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	107	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	106	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	109	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	102	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	102	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	103	80.0	120	
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	95.6	80.0	120	
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	101	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	102	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	101	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	91.1	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	104	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	103	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	106	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	104	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	99.0	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	100	80.0	120	
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	110	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	101	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	99.7	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	104	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	104	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	95.5	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	96.2	80.0	120	
strontium, total	7440-24-6		0.0002	mg/L	0.25 mg/L	100	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	100	80.0	120	
tellurium, total	13494-80-9		0.0002	mg/L	0.1 mg/L	99.6	80.0	120	
thallium, total	7440-28-0		0.00001	mg/L	1 mg/L	102	80.0	120	
thorium, total	7440-29-1		0.0001	mg/L	0.1 mg/L	95.0	80.0	120	
tin, total	7440-31-5		0.0001	mg/L	0.5 mg/L	98.8	80.0	120	
titanium, total	7440-32-6		0.0003	mg/L	0.25 mg/L	99.0	80.0	120	

Page : 13 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.

Sub-Matrix: Water	Matrix: Water					Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Total Metals (QCLot: 506300) - continue	ed										
tungsten, total	7440-33-7 E420	0.0001	mg/L	0.1 mg/L	102	80.0	120				
uranium, total	7440-61-1 E420	0.00001	mg/L	0.005 mg/L	100	80.0	120				
vanadium, total	7440-62-2 E420	0.0005	mg/L	0.5 mg/L	105	80.0	120				
zinc, total	7440-66-6 E420	0.003	mg/L	0.5 mg/L	102	80.0	120				
zirconium, total	7440-67-7 E420	0.0002	mg/L	0.1 mg/L	91.0	80.0	120				
Total Metals (QCLot: 509477)											
mercury, total	7439-97-6 E508	0.000005	mg/L	0.0001 mg/L	93.1	80.0	120				
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	0.0001 mg/L	101	80.0	120				
Dissolved Metals (QCLot: 509268)											
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	2 mg/L	100	80.0	120				
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	1 mg/L	101	80.0	120				
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	1 mg/L	99.5	80.0	120				
barium, dissolved	7440-39-3 E421	0.0001	mg/L	0.25 mg/L	96.5	80.0	120				
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	0.1 mg/L	106	80.0	120				
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	1 mg/L	102	80.0	120				
boron, dissolved	7440-42-8 E421	0.01	mg/L	1 mg/L	105	80.0	120				
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	0.1 mg/L	97.6	80.0	120				
calcium, dissolved	7440-70-2 E421	0.05	mg/L	50 mg/L	104	80.0	120				
cesium, dissolved	7440-46-2 E421	0.00001	mg/L	0.05 mg/L	98.1	80.0	120				
chromium, dissolved	7440-47-3 E421	0.0005	mg/L	0.25 mg/L	96.9	80.0	120				
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	0.25 mg/L	95.3	80.0	120				
copper, dissolved	7440-50-8 E421	0.0002	mg/L	0.25 mg/L	96.5	80.0	120				
iron, dissolved	7439-89-6 E421	0.01	mg/L	1 mg/L	100	80.0	120				
lead, dissolved	7439-92-1 E421	0.00005	mg/L	0.5 mg/L	103	80.0	120				
lithium, dissolved	7439-93-2 E421	0.001	mg/L	0.25 mg/L	102	80.0	120				
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	50 mg/L	102	80.0	120				
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	0.25 mg/L	98.2	80.0	120				
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	0.25 mg/L	102	80.0	120				
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	0.5 mg/L	98.2	80.0	120				
phosphorus, dissolved	7723-14-0 E421	0.05	mg/L	10 mg/L	105	80.0	120				
potassium, dissolved	7440-09-7 E421	0.05	mg/L	50 mg/L	102	80.0	120				
rubidium, dissolved	7440-17-7 E421	0.0002	mg/L	0.1 mg/L	102	80.0	120				
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	1 mg/L	96.7	80.0	120				
silicon, dissolved	7440-21-3 E421	0.05	mg/L	10 mg/L	102	80.0	120				
silver, dissolved	7440-22-4 E421	0.00001	mg/L	0.1 mg/L	92.8	80.0	120				
sodium, dissolved	7440-23-5 E421	0.05	mg/L	50 mg/L	102	80.0	120				

Page : 14 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.

Sub-Matrix: Water						Laboratory Cor	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 509268) - co	ontinued								
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	98.2	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	94.8	80.0	120	
tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	0.1 mg/L	101	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	103	80.0	120	
thorium, dissolved	7440-29-1	E421	0.0001	mg/L	0.1 mg/L	98.3	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	99.4	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	97.5	80.0	120	
tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	0.1 mg/L	95.6	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	99.8	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	99.9	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	95.5	80.0	120	
zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	95.6	80.0	120	

Page : 15 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

					'							
Sub-Matrix: Water	b-Matrix: Water				Matrix Spike (MS) Report							
					Spi	Spike		Recovery Limits (%)				
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie		
Anions and Nutri	ents (QCLot: 503755)											
FJ2201342-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	12.8 mg/L	12.5 mg/L	102	75.0	125			
Anions and Nutri	ents (QCLot: 503756)											
FJ2201342-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	2.48 mg/L	2.5 mg/L	99.1	75.0	125			
Anions and Nutri	ents (QCLot: 503757)											
FJ2201342-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	493 mg/L	500 mg/L	98.7	75.0	125			
Anions and Nutri	ents (QCLot: 503758)											
YL2200533-002	JFLQC-2	fluoride	16984-48-8	E235.F-L	1.03 mg/L	1 mg/L	103	75.0	125			
Anions and Nutri	ents (QCLot: 503759)											
YL2200533-002	JFLQC-2	chloride	16887-00-6	E235.CI-L	102 mg/L	100 mg/L	102	75.0	125			
Anions and Nutri	ents (QCLot: 506280)											
YL2200508-006	Anonymous	silicate (as SiO2)	7631-86-9	E392	9.14 mg/L	10 mg/L	91.4	75.0	125			
Anions and Nutri	ents (QCLot: 512265)											
VA22B1907-002	Anonymous	nitrogen, total	7727-37-9	E366	ND mg/L	0.4 mg/L	ND	70.0	130			
Anions and Nutri	ents (QCLot: 512266)											
VA22B1907-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0499 mg/L	0.05 mg/L	99.7	70.0	130			
Anions and Nutri	ents (QCLot: 512270)											
YL2200533-002	JFLQC-2	phosphorus, total dissolved	7723-14-0	E375-T	0.0468 mg/L	0.05 mg/L	93.5	70.0	130			
Anions and Nutri	ents (QCLot: 512271)											
VA22B1907-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.100 mg/L	0.1 mg/L	100	75.0	125			
Organic / Inorgar	nic Carbon (QCLot: 51	2264)										
YL2200483-002	Anonymous	carbon, dissolved organic [DOC]		E358-L	ND mg/L	5 mg/L	ND	70.0	130			
Total Metals (QC	Lot: 506300)											
CG2206448-002	Anonymous	aluminum, total	7429-90-5	E420	ND mg/L	0.2 mg/L	ND	70.0	130			
		antimony, total	7440-36-0	E420	0.0192 mg/L	0.02 mg/L	96.0	70.0	130			
		arsenic, total	7440-38-2	E420	0.0192 mg/L	0.02 mg/L	96.0	70.0	130			
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		beryllium, total	7440-41-7	E420	0.0382 mg/L	0.04 mg/L	95.5	70.0	130			
		bismuth, total	7440-69-9	E420	0.00900 mg/L	0.01 mg/L	90.0	70.0	130			
	•	boron, total	7440-42-8	E420	0.098 mg/L	0.1 mg/L	98.3	70.0	130			

Page : 16 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.

b-Matrix: Water					Matrix Spike (MS) Report						
					Sp	ike	Recovery (%)	Recovery Limits (%)			
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
	Lot: 506300) - conti	inued									
CG2206448-002	Anonymous	cadmium, total	7440-43-9	E420	0.00385 mg/L	0.004 mg/L	96.2	70.0	130		
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130		
		cesium, total	7440-46-2	E420	0.00892 mg/L	0.01 mg/L	89.2	70.0	130		
		chromium, total	7440-47-3	E420	0.0377 mg/L	0.04 mg/L	94.3	70.0	130		
		cobalt, total	7440-48-4	E420	0.0182 mg/L	0.02 mg/L	91.3	70.0	130		
		copper, total	7440-50-8	E420	0.0176 mg/L	0.02 mg/L	88.1	70.0	130		
		iron, total	7439-89-6	E420	ND mg/L	2 mg/L	ND	70.0	130		
		lead, total	7439-92-1	E420	0.0186 mg/L	0.02 mg/L	93.3	70.0	130		
		lithium, total	7439-93-2	E420	0.0952 mg/L	0.1 mg/L	95.2	70.0	130		
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130		
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130		
		molybdenum, total	7439-98-7	E420	0.0193 mg/L	0.02 mg/L	96.6	70.0	130		
		nickel, total	7440-02-0	E420	0.0354 mg/L	0.04 mg/L	88.5	70.0	130		
		phosphorus, total	7723-14-0	E420	9.62 mg/L	10 mg/L	96.2	70.0	130		
		potassium, total	7440-09-7	E420	3.91 mg/L	4 mg/L	97.8	70.0	130		
		rubidium, total	7440-17-7	E420	0.0192 mg/L	0.02 mg/L	96.2	70.0	130		
		selenium, total	7782-49-2	E420	0.0402 mg/L	0.04 mg/L	101	70.0	130		
		silicon, total	7440-21-3	E420	9.07 mg/L	10 mg/L	90.7	70.0	130		
		silver, total	7440-22-4	E420	0.00379 mg/L	0.004 mg/L	94.8	70.0	130		
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130		
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130		
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130		
		tellurium, total	13494-80-9	E420	0.0384 mg/L	0.04 mg/L	96.1	70.0	130		
		thallium, total	7440-28-0	E420	0.00362 mg/L	0.004 mg/L	90.4	70.0	130		
		thorium, total	7440-29-1	E420	0.0186 mg/L	0.02 mg/L	93.2	70.0	130		
		tin, total	7440-31-5	E420	0.0187 mg/L	0.02 mg/L	93.7	70.0	130		
		titanium, total	7440-32-6	E420	0.0378 mg/L	0.04 mg/L	94.4	70.0	130		
		tungsten, total	7440-33-7	E420	0.0200 mg/L	0.02 mg/L	100	70.0	130		
		uranium, total	7440-61-1	E420	0.00374 mg/L	0.004 mg/L	93.6	70.0	130		
		vanadium, total	7440-62-2	E420	0.0970 mg/L	0.1 mg/L	97.0	70.0	130		
		zinc, total	7440-66-6	E420	0.372 mg/L	0.4 mg/L	93.0	70.0	130		
		zirconium, total	7440-67-7	E420	0.0394 mg/L	0.04 mg/L	98.4	70.0	130		
otal Metals (QC	Lot: 509477)									-	
G2206687-007	Anonymous	mercury, total	7439-97-6	E508	0.0000946 mg/L	0.0001 mg/L	94.6	70.0	130		
issolved Metals	(QCLot: 504913)										
/A22B1807-005	Anonymous	mercury, dissolved	7439-97-6	E509	0.000100 mg/L	0.0001 mg/L	100	70.0	130		

Page : 17 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.

ub-Matrix: Water	b-Matrix: Water				Matrix Spike (MS) Report						
					Spi	Spike		Recovery Limits (%)			
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie	
	(QCLot: 509268)										
/L2200483-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.191 mg/L	0.2 mg/L	95.6	70.0	130		
		antimony, dissolved	7440-36-0	E421	0.0207 mg/L	0.02 mg/L	103	70.0	130		
		arsenic, dissolved	7440-38-2	E421	0.0194 mg/L	0.02 mg/L	97.1	70.0	130		
		barium, dissolved	7440-39-3	E421	0.0187 mg/L	0.02 mg/L	93.7	70.0	130		
		beryllium, dissolved	7440-41-7	E421	0.0435 mg/L	0.04 mg/L	109	70.0	130		
		bismuth, dissolved	7440-69-9	E421	0.00916 mg/L	0.01 mg/L	91.6	70.0	130		
		boron, dissolved	7440-42-8	E421	0.111 mg/L	0.1 mg/L	111	70.0	130		
		cadmium, dissolved	7440-43-9	E421	0.00394 mg/L	0.004 mg/L	98.5	70.0	130		
		calcium, dissolved	7440-70-2	E421	4.18 mg/L	4 mg/L	104	70.0	130		
		cesium, dissolved	7440-46-2	E421	0.00997 mg/L	0.01 mg/L	99.7	70.0	130		
		chromium, dissolved	7440-47-3	E421	0.0384 mg/L	0.04 mg/L	96.1	70.0	130		
		cobalt, dissolved	7440-48-4	E421	0.0185 mg/L	0.02 mg/L	92.5	70.0	130		
		copper, dissolved	7440-50-8	E421	0.0189 mg/L	0.02 mg/L	94.6	70.0	130		
		iron, dissolved	7439-89-6	E421	1.93 mg/L	2 mg/L	96.3	70.0	130		
		lead, dissolved	7439-92-1	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130		
		lithium, dissolved	7439-93-2	E421	0.105 mg/L	0.1 mg/L	105	70.0	130		
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130		
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130		
		molybdenum, dissolved	7439-98-7	E421	0.0203 mg/L	0.02 mg/L	102	70.0	130		
		nickel, dissolved	7440-02-0	E421	0.0383 mg/L	0.04 mg/L	95.7	70.0	130		
		phosphorus, dissolved	7723-14-0	E421	9.71 mg/L	10 mg/L	97.1	70.0	130		
		potassium, dissolved	7440-09-7	E421	3.62 mg/L	4 mg/L	90.5	70.0	130		
		rubidium, dissolved	7440-17-7	E421	0.0199 mg/L	0.02 mg/L	99.6	70.0	130		
		selenium, dissolved	7782-49-2	E421	0.0403 mg/L	0.04 mg/L	101	70.0	130		
		silicon, dissolved	7440-21-3	E421	9.39 mg/L	10 mg/L	93.9	70.0	130		
		silver, dissolved	7440-22-4	E421	0.00415 mg/L	0.004 mg/L	104	70.0	130		
		sodium, dissolved	7440-23-5	E421	1.98 mg/L	2 mg/L	98.8	70.0	130		
		strontium, dissolved	7440-24-6	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130		
		sulfur, dissolved	7704-34-9	E421	19.0 mg/L	20 mg/L	95.0	70.0	130		
		tellurium, dissolved	13494-80-9	E421	0.0432 mg/L	0.04 mg/L	108	70.0	130		
		thallium, dissolved	7440-28-0	E421	0.00404 mg/L	0.004 mg/L	101	70.0	130		
		thorium, dissolved	7440-29-1	E421	0.0210 mg/L	0.02 mg/L	105	70.0	130		
		tin, dissolved	7440-31-5	E421	0.0196 mg/L	0.02 mg/L	98.0	70.0	130		
		titanium, dissolved	7440-32-6	E421	0.0391 mg/L	0.04 mg/L	97.7	70.0	130		
		tungsten, dissolved	7440-33-7	E421	0.0190 mg/L	0.02 mg/L	95.0	70.0	130		
		uranium, dissolved	7440-61-1	E421	0.00394 mg/L	0.004 mg/L	98.6	70.0	130		
	I	vanadium, dissolved	7440-62-2	E421	0.0970 mg/L	0.1 mg/L	97.0	70.0	130		

Page : 18 of 18 Work Order : YL2200533

Client : Golder Associates Ltd.

Sub-Matrix: Water					Matrix Spike (MS) Report						
					Spike		Recovery (%) Recovery Limits (%		Limits (%)		
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Dissolved Metals (QCLot: 509268) - continued											
YL2200483-002	Anonymous	zinc, dissolved	7440-66-6	E421	0.385 mg/L	0.4 mg/L	96.3	70.0	130		
		zirconium, dissolved	7440-67-7	E421	0.0397 mg/L	0.04 mg/L	99.2	70.0	130		

CERTIFICATE OF ANALYSIS

Work Order : YL2200829

Client : Golder Associates Ltd.

Contact : Sarah Beattie

Address : 9 - 4905 48th Street

Yellowknife NT Canada X1A 3S3

Telephone : 867 873 6319
Project : Jackfish NTPC

C-O-C number : --Sampler : ---

Site : Jackfish NTPC
Quote number : YL21-GOLD100-008

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 7

Laboratory : Yellowknife - Environmental

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife NT Canada X1A 3T3

Telephone : 1 867 446 5593

Date Samples Received : 06-Jul-2022 10:35

Date Analysis Commenced : 11-Jul-2022

Issue Date : 18-Jul-2022 09:37

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia	
Cindy Tang	Team Leader - Inorganics	Inorganics, Burnaby, British Columbia	
Delson Resende	Lab Assistant	Metals, Burnaby, British Columbia	
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia	
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia	
Kinny Wu	Lab Analyst	Metals, Burnaby, British Columbia	
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia	
Owen Cheng		Metals, Burnaby, British Columbia	
Robin Weeks	Team Leader - Metals	Inorganics, Burnaby, British Columbia	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Robin Weeks	Team Leader - Metals	Organics, Burnaby, British Columbia	
Sam Silveira	Lab Assistant	Metals, Burnaby, British Columbia	

Page : 2 of 7

Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
RRV	Reported result verified by repeat analysis.

>: greater than.

Page : 3 of 7 Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analytical Results

Sub-Matrix: Water (Matrix: Water)	EMD DISCHARGE INLAKE_Bottom	EMD DISCHARGE INLAKE_Mid-de pth	SOUTHWEST BAY_Bottom	SOUTHWEST BAY_Mid-depth	JFLQC_1				
			Client samp	ling date / time	05-Jul-2022 13:10	05-Jul-2022 13:00	05-Jul-2022 15:05	05-Jul-2022 15:00	05-Jul-2022 08:45
Analyte	CAS Number	Method	LOR	Unit	YL2200829-001	YL2200829-002	YL2200829-003	YL2200829-004	YL2200829-005
					Result	Result	Result	Result	Result
Physical Tests									
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	112	98.9	107	101	<1.0
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	12.6	6.8	12.4	<1.0
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	6.3	3.4	6.2	<1.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	112	112	113	114	<1.0
conductivity		E100	2.0	μS/cm	449	450	449	453	5.2
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	141	143	143	141	<0.60
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	144	144	144	145	<0.60
рН		E108	0.10	pH units	8.28	8.72	8.47	8.71	4.95
solids, total dissolved [TDS]		E162	10	mg/L	294	273	281	292	<10
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	245	249	248	248	<1.0
solids, total suspended [TSS]		E160	3.0	mg/L	7.6	12.8	13.2	18.0	<3.0
turbidity		E121	0.10	NTU	7.60	14.6	15.1	19.6	<0.10
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0208	0.0099	0.0157	0.0094	<0.0050
chloride	16887-00-6	E235.CI-L	0.10	mg/L	59.6	61.3	60.3	60.9	<0.10
fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.080	0.081	0.084	0.083	<0.010
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	0.206 RRV
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	<0.0051	<0.0051	<0.0051	<0.0051	0.206
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
nitrogen, total	7727-37-9	E366	0.030	mg/L	1.10	1.25	1.32	1.41	<0.030
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0827	0.0851	0.0876	0.0922	<0.0020
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0076	0.0174	0.0216	0.0180	<0.0020
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	12.8	12.4	12.6	12.4	<0.50
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	24.4	25.5	24.7	25.3	<0.30
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	13.0	13.2	12.7	13.0	<0.50
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0036	0.0048	0.0055	0.0046	<0.0030

Page Work Order

: 4 of 7 : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analytical Results

(Matrix: Water)			Cili	ent sample ID	EMD DISCHARGE INLAKE_Bottom	EMD DISCHARGE INLAKE_Mid-de pth	SOUTHWEST BAY_Bottom	SOUTHWEST BAY_Mid-depth	JFLQC_1
			Client sampl	ing date / time	05-Jul-2022 13:10	05-Jul-2022 13:00	05-Jul-2022 15:05	05-Jul-2022 15:00	05-Jul-2022 08:45
Analyte	CAS Number	Method	LOR	Unit	YL2200829-001	YL2200829-002	YL2200829-003	YL2200829-004	YL2200829-005
					Result	Result	Result	Result	Result
Total Metals antimony, total	7440-36-0	E420	0.00010	mg/L	0.00114	0.00122	0.00119	0.00123	<0.00010
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0705	0.0715	0.0709	0.0707	<0.00010
barium, total		E420	0.00010	ŭ	0.0703	0.0297	0.0314	0.0297	<0.00010
beryllium, total	7440-39-3	E420	0.00010	mg/L	<0.00100	<0.00100	<0.0014	<0.00100	<0.00010
•	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100
bismuth, total	7440-69-9	E420	0.000050	mg/L	0.00050	0.030	0.030	0.030	<0.000050
boron, total	7440-42-8			mg/L					
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.000050
calcium, total	7440-70-2	E420	0.050	mg/L	37.2	37.4	37.2	37.7	<0.050
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
copper, total	7440-50-8	E420	0.00050	mg/L	0.00174	0.00204	0.00180	0.00196	<0.00050
iron, total	7439-89-6	E420	0.010	mg/L	0.027	<0.010	0.019	0.010	<0.010
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0065	0.0067	0.0066	0.0067	<0.0010
magnesium, total	7439-95-4	E420	0.0050	mg/L	12.4	12.4	12.5	12.4	<0.0050
manganese, total	7439-96-5	E420	0.00010	mg/L	0.153	0.0185	0.0867	0.0192	<0.00010
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000199	0.000214	0.000215	0.000214	<0.000050
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00060	0.00058	0.00060	0.00066	<0.00050
phosphorus, total	7723-14-0	E420	0.050	mg/L	0.057	<0.050	0.079	0.058	<0.050
potassium, total	7440-09-7	E420	0.050	mg/L	4.29	4.31	4.33	4.30	<0.050
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00273	0.00269	0.00283	0.00259	<0.00020
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000062	0.000057	0.000094	0.000080	<0.000050
silicon, total	7440-21-3	E420	0.10	mg/L	6.58	6.47	6.46	6.45	<0.10
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, total	7440-23-5	E420	0.050	mg/L	33.1	33.5	33.6	33.0	<0.050
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0899	0.0908	0.0887	0.0907	<0.00020
sulfur, total	7704-34-9	E420	0.50	mg/L	8.73	9.28	9.11	9.36	<0.50
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020

Page Work Order

5 of 7 YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	EMD DISCHARGE INLAKE_Bottom	EMD DISCHARGE INLAKE_Mid-de pth	SOUTHWEST BAY_Bottom	SOUTHWEST BAY_Mid-depth	JFLQC_1
			Client sampl	ing date / time	05-Jul-2022 13:10	05-Jul-2022 13:00	05-Jul-2022 15:05	05-Jul-2022 15:00	05-Jul-2022 08:45
Analyte	CAS Number	Method	LOR	Unit	YL2200829-001	YL2200829-002	YL2200829-003	YL2200829-004	YL2200829-005
					Result	Result	Result	Result	Result
Total Metals thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.00010	<0.00010	<0.000010	<0.00010
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, total		E420	0.00010	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tungsten, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
uranium, total	7440-33-7	E420	0.00010	mg/L	0.00010	0.000586	0.00010	0.000569	<0.00010
vanadium, total	7440-61-1	E420	0.00050	mg/L	<0.000579	<0.00050	<0.000547	<0.00050	<0.00050
<i>'</i>	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.0030	<0.00030	<0.0030	<0.00050
zinc, total	7440-66-6			mg/L					
zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Dissolved Metals aluminum, dissolved	7400.00.5	E421	0.0010		0.0014	0.0020	0.0015	0.0017	<0.0010
·	7429-90-5	E421	0.0010	mg/L	0.0014	0.0020	0.0015	0.0017	<0.0010
antimony, dissolved	7440-36-0			mg/L	0.00121	0.00129	0.00126		
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L				0.0724	<0.00010
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0326	0.0300	0.0326	0.0307	<0.00010
beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.027	0.026	0.028	0.027	<0.010
cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	<0.000050	<0.000050	<0.0000050
calcium, dissolved	7440-70-2	E421	0.050	mg/L	35.6	35.8	36.5	35.5	<0.050
cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00144	0.00182	0.00142	0.00174	<0.00020
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0061	0.0061	0.0062	0.0061	<0.0010
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	12.7	13.0	12.6	12.7	<0.0050
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.102	0.00263	0.0777	0.00248	<0.00010
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.000050
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000188	0.000205	0.000184	0.000188	<0.000050

Page : 6 of 7

Work Order : YL2200829 Client

: Golder Associates Ltd.

Project Jackfish NTPC

Analytical Results

Client sample ID Sub-Matrix: Water JFLQC 1 **EMD EMD** SOUTHWEST SOUTHWEST **DISCHARGE** DISCHARGE **BAY Bottom** BAY Mid-depth (Matrix: Water) **INLAKE Bottom INLAKE Mid-de** pth Client sampling date / time 05-Jul-2022 13:10 05-Jul-2022 13:00 05-Jul-2022 15:05 05-Jul-2022 15:00 05-Jul-2022 08:45 LOR YL2200829-002 Method Unit YL2200829-001 YL2200829-003 YL2200829-004 YL2200829-005 Analyte CAS Number Result Result Result Result Result **Dissolved Metals** nickel, dissolved <0.00050 E421 0.00050 < 0.00050 <0.00050 <0.00050 < 0.00050 7440-02-0 mg/L E421 0.050 phosphorus, dissolved 7723-14-0 mg/L < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 potassium, dissolved 7440-09-7 E421 0.050 mg/L 4.15 4.25 4.21 4.22 < 0.050 0.00255 0.00281 rubidium, dissolved E421 0.00020 0.00268 0.00259 < 0.00020 7440-17-7 mg/L E421 0.000050 < 0.000050 0.000056 0.000051 0.000057 < 0.000050 selenium, dissolved 7782-49-2 mg/L silicon, dissolved 7440-21-3 E421 0.050 mg/L 6.39 6.27 6.44 6.07 < 0.050 < 0.000010 < 0.000010 < 0.000010 silver, dissolved E421 0.000010 < 0.000010 < 0.000010 7440-22-4 mg/L E421 0.050 33.4 34.0 34.1 33.0 < 0.050 sodium, dissolved 7440-23-5 mg/L 0.00020 strontium, dissolved 7440-24-6 E421 mq/L 0.0924 0.0909 0.0922 0.0909 < 0.00020 0.50 < 0.50 sulfur, dissolved E421 8.52 8.82 8.75 8.61 7704-34-9 mg/L E421 0.00020 < 0.00020 < 0.00020 < 0.00020 <0.00020 < 0.00020 tellurium, dissolved 13494-80-9 mg/L thallium, dissolved 7440-28-0 E421 0.000010 mg/L < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 thorium, dissolved 7440-29-1 E421 0.00010 mg/L < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 E421 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 tin. dissolved 7440-31-5 mg/L titanium, dissolved 7440-32-6 E421 0.00030 mg/L < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 E421 0.00010 < 0.00010 < 0.00010 <0.00010 <0.00010 < 0.00010 tungsten, dissolved 7440-33-7 mq/L E421 0.000010 0.000491 0.000546 0.000480 0.000525 <0.000010 uranium, dissolved 7440-61-1 mg/L vanadium, dissolved 7440-62-2 E421 0.00050 mq/L < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 zinc. dissolved E421 0.0010 mg/L < 0.0010 0.0012 0.0014 < 0.0010 <0.0010 7440-66-6 < 0.00020 < 0.00020 <0.00020 < 0.00020 zirconium, dissolved 7440-67-7 E421 0.00020 mg/L < 0.00020 dissolved mercury filtration location EP509 Field Field Field Field Field EP421 Field dissolved metals filtration location Field Field Field Field **Aggregate Organics** oil & grease (gravimetric) E567 5.0 mg/L < 5.0 **Volatile Organic Compounds [Fuels]** E611A 0.50 <0.50 benzene 71-43-2 µg/L E611A < 0.50 ethylbenzene 100-41-4 0.50 µg/L methyl-tert-butyl ether [MTBE] 1634-04-4 E611A 0.50 µg/L < 0.50 0.50 E611A < 0.50 styrene 100-42-5 µg/L E611A 0.50 < 0.50 toluene 108-88-3 µg/L ----

Page : 7 of 7

Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

ALS

Analytical Results

Sub-Matrix: Water			C	lient sample ID	EMD	EMD	SOUTHWEST	SOUTHWEST	JFLQC_1
(Matrix: Water)					DISCHARGE INLAKE Bottom	DISCHARGE INLAKE_Mid-de	BAY_Bottom	BAY_Mid-depth	
						pth			
			Client samp	oling date / time	05-Jul-2022 13:10	05-Jul-2022 13:00	05-Jul-2022 15:05	05-Jul-2022 15:00	05-Jul-2022 08:45
Analyte	CAS Number	Method	LOR	Unit	YL2200829-001	YL2200829-002	YL2200829-003	YL2200829-004	YL2200829-005
					Result	Result	Result	Result	Result
Volatile Organic Compounds [Fuels]									
xylene, m+p-	179601-23-1	E611A	0.40	μg/L					<0.40
xylene, o-	95-47-6	E611A	0.30	μg/L					<0.30
xylenes, total	1330-20-7	E611A	0.50	μg/L					<0.50
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611A	1.0	%					94.3
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%					102
Hydrocarbons									
F1 (C6-C10)		E581.VH+F1	100	μg/L					<100
F2 (C10-C16)		E601	300	μg/L					<300
F3 (C16-C34)		E601	300	μg/L					<300
F4 (C34-C50)		E601	300	μg/L					<300
VHw (C6-C10)		E581.VH+F1	100	μg/L					<100
F1-BTEX		EC580	100	μg/L					<100
VPHw		EC580A	100	μg/L					<100
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%					83.7
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%					107

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **YL2200829** Page : 1 of 23

Client : Golder Associates Ltd. Laboratory : Yellowknife - Environmental

Contact : Sarah Beattie Account Manager : Oliver Gregg

Address : 9 - 4905 48th Street Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

 Telephone
 : 867 873 6319
 Telephone
 : 1 867 446 5593

 Project
 : Jackfish NTPC
 Date Samples Received
 : 06-Jul-2022 10:35

 PO
 : --- Issue Date
 : 18-Jul-2022 09:37

PO : ---C-O-C number : ---Sampler : ----

Yellowknife NT Canada X1A 3S3

Site : Jackfish NTPC

Quote number : YL21-GOLD100-008

No. of samples received : 5
No. of samples analysed : 5

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 23 Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
JFLQC_1	E567	05-Jul-2022	13-Jul-2022	28	8 days	✓	13-Jul-2022	40 days	0 days	✓
				days						
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
EMD DISCHARGE INLAKE_Bottom	E298	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
EMD DISCHARGE INLAKE_Mid-depth	E298	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
JFLQC_1	E298	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
SOUTHWEST BAY_Bottom	E298	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
SOUTHWEST BAY_Mid-depth	E298	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
EMD DISCHARGE INLAKE_Bottom	E235.CI-L	05-Jul-2022					11-Jul-2022	28 days	6 days	✓

Page : 4 of 23
Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

water							Holding time exce	,		
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
EMD DISCHARGE INLAKE Mid-depth	E235.CI-L	05-Jul-2022					11-Jul-2022	28 days	6 days	✓
- '										
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
JFLQC 1	E235.CI-L	05-Jul-2022					11-Jul-2022	28 days	6 days	1
JFLQC_I	LZ33.OFL	00-001-2022					11-5ul-2022	20 days	0 days	•
Anions and Nutrients : Chloride in Water by IC (Low Level)									ı	
HDPE	5005.011	05.1.0000					44 1 1 0000	00.1		,
SOUTHWEST BAY_Bottom	E235.CI-L	05-Jul-2022					11-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
SOUTHWEST BAY_Mid-depth	E235.CI-L	05-Jul-2022					11-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Fluoride in Water by IC (Low Level)										
HDPE										
EMD DISCHARGE INLAKE_Bottom	E235.F-L	05-Jul-2022					11-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Fluoride in Water by IC (Low Level)										
HDPE										
EMD DISCHARGE INLAKE_Mid-depth	E235.F-L	05-Jul-2022					11-Jul-2022	28 days	6 davs	1
Anima and Nictiona a Floorida in Materials IO (1 and 1 and 1)										
Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE									I	
	E235.F-L	05-Jul-2022					11-Jul-2022	28 days	6 days	1
JFLQC_1	L233.1 -L	03-3ui-2022					11-Jui-2022	20 uays	0 days	•
Anions and Nutrients : Fluoride in Water by IC (Low Level)										
HDPE										
SOUTHWEST BAY_Bottom	E235.F-L	05-Jul-2022					11-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Fluoride in Water by IC (Low Level)										
HDPE										
SOUTHWEST BAY_Mid-depth	E235.F-L	05-Jul-2022					11-Jul-2022	28 days	6 days	✓
		1		1	1		I			

Page : 5 of 23 Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE_Bottom E235.NO3-L 05-Jul-2022 11-Jul-2022 3 days 6 days * EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 05-Jul-2022 EMD DISCHARGE INLAKE Mid-depth 11-Jul-2022 3 days 6 days × ----EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE JFLQC 1 E235.NO3-L 05-Jul-2022 11-Jul-2022 3 days 6 days 36 EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 05-Jul-2022 11-Jul-2022 3 days SOUTHWEST BAY Bottom 6 days æ EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 05-Jul-2022 11-Jul-2022 6 days æ SOUTHWEST BAY Mid-depth 3 days EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE E235.NO2-L 05-Jul-2022 11-Jul-2022 EMD DISCHARGE INLAKE_Bottom 3 days 6 days æ EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE Mid-depth E235.NO2-L 05-Jul-2022 11-Jul-2022 3 days 6 days * EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE JFLQC 1 E235.NO2-L 05-Jul-2022 11-Jul-2022 3 days 6 days × EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE E235.NO2-L 05-Jul-2022 11-Jul-2022 SOUTHWEST BAY Bottom 3 days 6 days 30 ----EHT

Page : 6 of 23 Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE SOUTHWEST BAY_Mid-depth	E235.NO2-L	05-Jul-2022					11-Jul-2022	3 days	6 days	* EHT
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE EMD DISCHARGE INLAKE_Bottom	E392	05-Jul-2022					12-Jul-2022	28 days	7 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E392	05-Jul-2022					12-Jul-2022	28 days	7 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE JFLQC_1	E392	05-Jul-2022					12-Jul-2022	28 days	7 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE SOUTHWEST BAY_Bottom	E392	05-Jul-2022					12-Jul-2022	28 days	7 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE SOUTHWEST BAY_Mid-depth	E392	05-Jul-2022					12-Jul-2022	28 days	7 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE EMD DISCHARGE INLAKE_Bottom	E235.SO4	05-Jul-2022					11-Jul-2022	28 days	6 days	*
Anions and Nutrients : Sulfate in Water by IC										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E235.SO4	05-Jul-2022					11-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE JFLQC_1	E235.SO4	05-Jul-2022					11-Jul-2022	28 days	6 days	✓

Page : 7 of 23
Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE SOUTHWEST BAY_Bottom	E235.SO4	05-Jul-2022					11-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE SOUTHWEST BAY_Mid-depth	E235.SO4	05-Jul-2022					11-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)									1	
Amber glass dissolved (sulfuric acid) EMD DISCHARGE INLAKE_Bottom	E375-T	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	8 days	✓
Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid) EMD DISCHARGE INLAKE_Mid-depth	E375-T	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)									1	
Amber glass dissolved (sulfuric acid) SOUTHWEST BAY_Bottom	E375-T	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid) SOUTHWEST BAY_Mid-depth	E375-T	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	8 days	✓
Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid) JFLQC_1	E375-T	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	9 days	✓
Anions and Nutrients : Total Nitrogen by Colourimetry									1	
Amber glass total (sulfuric acid) EMD DISCHARGE INLAKE_Bottom	E366	05-Jul-2022	12-Jul-2022				14-Jul-2022	28 days	9 days	✓
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid) EMD DISCHARGE INLAKE_Mid-depth	E366	05-Jul-2022	12-Jul-2022				14-Jul-2022	28 days	9 days	✓

Page : 8 of 23
Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										_
JFLQC_1	E366	05-Jul-2022	12-Jul-2022				14-Jul-2022	28 days	9 days	✓
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										
SOUTHWEST BAY_Bottom	E366	05-Jul-2022	12-Jul-2022				14-Jul-2022	28 days	9 days	✓
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										
SOUTHWEST BAY_Mid-depth	E366	05-Jul-2022	12-Jul-2022				14-Jul-2022	28 days	9 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
EMD DISCHARGE INLAKE_Bottom	E372-U	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)	F070 II	05.1.10000								
EMD DISCHARGE INLAKE_Mid-depth	E372-U	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)	F070 II	05 14 0000	40 1-1 0000				40 101 0000	00.1	0.1	
JFLQC_1	E372-U	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)	E372-U	05 1.1 2000	40 1-1 0000				40 1.1.0000	00.1	0.1	√
SOUTHWEST BAY_Bottom	E372-U	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	8 days	•
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)	F070 II	05 141 0000	40 1-1 0000				40 101 0000	00.1	0.1	
SOUTHWEST BAY_Mid-depth	E372-U	05-Jul-2022	12-Jul-2022				13-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)	F500	05 14 0000	40.1-1.0000				40 1-1 0000	00.1	7 1	
EMD DISCHARGE INLAKE_Bottom	E509	05-Jul-2022	12-Jul-2022				12-Jul-2022	28 days	/ days	✓

Page : 9 of 23 Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: Water					Lv	raiuation. • -	Holding time exce	euance , •	_ vviti iii	riolaling rill
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
EMD DISCHARGE INLAKE_Mid-depth	E509	05-Jul-2022	12-Jul-2022				12-Jul-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
JFLQC_1	E509	05-Jul-2022	12-Jul-2022				12-Jul-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
SOUTHWEST BAY_Bottom	E509	05-Jul-2022	12-Jul-2022				12-Jul-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
SOUTHWEST BAY_Mid-depth	E509	05-Jul-2022	12-Jul-2022				12-Jul-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
EMD DISCHARGE INLAKE_Bottom	E421	05-Jul-2022	12-Jul-2022				12-Jul-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
EMD DISCHARGE INLAKE_Mid-depth	E421	05-Jul-2022	12-Jul-2022				12-Jul-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
JFLQC_1	E421	05-Jul-2022	12-Jul-2022				12-Jul-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
SOUTHWEST BAY_Bottom	E421	05-Jul-2022	12-Jul-2022				12-Jul-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS				1					1	
HDPE dissolved (nitric acid)										
SOUTHWEST BAY_Mid-depth	E421	05-Jul-2022	12-Jul-2022				12-Jul-2022	180	7 days	✓
								days		

Page : 10 of 23
Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

iatrix: water						araation.	Holding time exce	oddiioo ,	* * * * * * * * * * * * * * * * * * * *	
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
JFLQC_1	E601	05-Jul-2022	12-Jul-2022	14	7 days	✓	13-Jul-2022	40 days	1 days	✓
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID				-						
Glass vial (sodium bisulfate)										
JFLQC 1	E581.VH+F1	05-Jul-2022	14-Jul-2022				15-Jul-2022	14 days	9 davs	✓
o. 240									, -	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	1)									
Amber glass dissolved (sulfuric acid)										
EMD DISCHARGE INLAKE Bottom	E358-L	05-Jul-2022	12-Jul-2022				14-Jul-2022	28 days	8 days	1
EMB BIOOT WHOLE IN LE WILL SOCIONI	2000 2	00 04.1 2022	040					20 00,0	o aayo	
	D									
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el) I						I	<u> </u>		
Amber glass dissolved (sulfuric acid) EMD DISCHARGE INLAKE Mid-depth	E358-L	05-Jul-2022	12-Jul-2022				14-Jul-2022	28 days	9 days	✓
EMD DISCHARGE INLAKE_MIG-deptil	E330-L	05-Jui-2022	12-Jul-2022				14-Jul-2022	20 uays	o uays	•
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)	E050 I	05 1.1 0000	10 1 1 0000				44 1 1 0000	00.1		
SOUTHWEST BAY_Bottom	E358-L	05-Jul-2022	12-Jul-2022				14-Jul-2022	28 days	8 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)										
SOUTHWEST BAY_Mid-depth	E358-L	05-Jul-2022	12-Jul-2022				14-Jul-2022	28 days	8 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)										
JFLQC_1	E358-L	05-Jul-2022	12-Jul-2022				14-Jul-2022	28 days	9 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
EMD DISCHARGE INLAKE_Bottom	E290	05-Jul-2022					12-Jul-2022	14 days	7 days	✓
Physical Tests : Alkalinity Species by Titration								1	1	
HDPE										
EMD DISCHARGE INLAKE_Mid-depth	E290	05-Jul-2022					12-Jul-2022	14 days	7 days	1
		1					I	, ,-	, , -	

Page : 11 of 23
Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: water							Holding time excee			
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
JFLQC_1	E290	05-Jul-2022					12-Jul-2022	14 days	7 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
SOUTHWEST BAY_Bottom	E290	05-Jul-2022					12-Jul-2022	14 days	7 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
SOUTHWEST BAY_Mid-depth	E290	05-Jul-2022					12-Jul-2022	14 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE										
EMD DISCHARGE INLAKE_Bottom	E100	05-Jul-2022					12-Jul-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE										
EMD DISCHARGE INLAKE_Mid-depth	E100	05-Jul-2022					12-Jul-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE										
JFLQC_1	E100	05-Jul-2022					12-Jul-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE										
SOUTHWEST BAY_Bottom	E100	05-Jul-2022					12-Jul-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE										
SOUTHWEST BAY Mid-depth	E100	05-Jul-2022					12-Jul-2022	28 days	7 days	✓
<u> </u>										
Physical Tests : pH by Meter										
HDPE										
SOUTHWEST BAY_Bottom	E108	05-Jul-2022					12-Jul-2022	0.25	170 hrs	sc
-		1						hrs		EHTR-FM

Page : 12 of 23
Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: Water					Lv	aluation. * -	Holding time exce	euance ,	- vviti iii	Holding Till
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE										
SOUTHWEST BAY_Mid-depth	E108	05-Jul-2022					12-Jul-2022	0.25	170 hrs	×
<u> </u>								hrs		EHTR-FM
District Table 111 - 111								10		
Physical Tests : pH by Meter										
HDPE	E108	05-Jul-2022					40 1 2000	0.05	470 5	Je .
EMD DISCHARGE INLAKE_Bottom	E108	05-Jul-2022					12-Jul-2022	0.25	172 hrs	
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
EMD DISCHARGE INLAKE_Mid-depth	E108	05-Jul-2022					12-Jul-2022	0.25	172 hrs	×
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE							I			
JFLQC_1	E108	05-Jul-2022					12-Jul-2022	0.25	177 hrs	×
JFLQC_I	L100	03-3ui-2022					12-Jui-2022		177 1115	EHTR-FM
								hrs		EU I K-LIN
Physical Tests : TDS by Gravimetry										
HDPE										
EMD DISCHARGE INLAKE_Bottom	E162	05-Jul-2022					12-Jul-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
EMD DISCHARGE INLAKE_Mid-depth	E162	05-Jul-2022					12-Jul-2022	7 days	7 days	✓
								,	,-	
Physical Tests : TDS by Gravimetry										
HDPE										
JFLQC_1	E162	05-Jul-2022					12-Jul-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
SOUTHWEST BAY Bottom	E162	05-Jul-2022					12-Jul-2022	7 days	7 days	✓
_										
Physical Table 2 and 1 and 1										
Physical Tests : TDS by Gravimetry									I	
HDPE	F100	05 101 0000					40 101 0000	7	7	,
SOUTHWEST BAY_Mid-depth	E162	05-Jul-2022					12-Jul-2022	/ days	7 days	✓

Page : 13 of 23
Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation		Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry						I				
HDPE EMD DISCHARGE INLAKE_Bottom	E160	05-Jul-2022					12-Jul-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E160	05-Jul-2022					12-Jul-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry										
HDPE JFLQC_1	E160	05-Jul-2022					12-Jul-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry										
HDPE SOUTHWEST BAY_Bottom	E160	05-Jul-2022					12-Jul-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry										
HDPE SOUTHWEST BAY_Mid-depth	E160	05-Jul-2022					12-Jul-2022	7 days	7 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE EMD DISCHARGE INLAKE_Bottom	E121	05-Jul-2022					11-Jul-2022	3 days	6 days	* EHT
Physical Tests : Turbidity by Nephelometry										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E121	05-Jul-2022					11-Jul-2022	3 days	6 days	* EHT
Physical Tests : Turbidity by Nephelometry										
HDPE JFLQC_1	E121	05-Jul-2022					11-Jul-2022	3 days	6 days	* EHT
Physical Tests : Turbidity by Nephelometry										
HDPE SOUTHWEST BAY_Bottom	E121	05-Jul-2022					11-Jul-2022	3 days	6 days	* EHT

Page : 14 of 23
Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Turbidity by Nephelometry										
HDPE	F404	05 141 0000					44 1/1 0000	0.1	0.1	×
SOUTHWEST BAY_Mid-depth	E121	05-Jul-2022					11-Jul-2022	3 days	6 days	EHT
Total Metals : Total Mercury in Water by CVAAS										<u> </u>
Glass vial total (hydrochloric acid)										
EMD DISCHARGE INLAKE_Bottom	E508	05-Jul-2022					13-Jul-2022	28 days	8 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) EMD DISCHARGE INLAKE Mid-depth	E508	05-Jul-2022					13-Jul-2022	28 days	8 days	✓
EINID DISCHARGE INLARE_INIU-uepiii	L300	03-Jui-2022					13-341-2022	20 days	0 days	•
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
JFLQC_1	E508	05-Jul-2022					13-Jul-2022	28 days	8 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) SOUTHWEST BAY_Bottom	E508	05-Jul-2022					13-Jul-2022	28 days	8 days	✓
SSSTTMEST BATT_BOXESTI							10 00. 2022	20 44,0		
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
SOUTHWEST BAY_Mid-depth	E508	05-Jul-2022					13-Jul-2022	28 days	8 days	✓
Total Metals : Total Metals in Water by CRC ICPMS HDPE total (nitric acid)										
EMD DISCHARGE INLAKE_Bottom	E420	05-Jul-2022					12-Jul-2022	180	7 days	✓
_								days	_	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
EMD DISCHARGE INLAKE_Mid-depth	E420	05-Jul-2022					12-Jul-2022	180	7 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS HDPE total (nitric acid)										
JFLQC_1	E420	05-Jul-2022					12-Jul-2022	180	7 days	✓
_								days		

Page : 15 of 23
Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pre	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) SOUTHWEST BAY_Bottom	E420	05-Jul-2022					12-Jul-2022	180 days	7 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) SOUTHWEST BAY_Mid-depth	E420	05-Jul-2022					12-Jul-2022	180 days	7 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) JFLQC_1	E611A	05-Jul-2022	14-Jul-2022				15-Jul-2022	14 days	9 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 16 of 23 Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Lvaluati		ency outside spe	I		
Quality Control Sample Type	1 f = 41 = = d	001-4#	QC	ount Regular	Agtical	Frequency (%)) Evaluation
Analytical Methods	Method	QC Lot #	QC	Regulai	Actual	Expected	⊏valuation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	557181	1	10	10.0	5.0	✓
Ammonia by Fluorescence	E298	559434	1	19	5.2	5.0	✓
BTEX by Headspace GC-MS	E611A	563359	1	18	5.5	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	557178	1	5	20.0	5.0	✓
Conductivity in Water	E100	557180	1	11	9.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	559625	1	11	9.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	558237	1	15	6.6	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	559435	1	13	7.6	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	557177	1	5	20.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	557173	1	8	12.5	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	557174	1	8	12.5	5.0	✓
pH by Meter	E108	557179	1	16	6.2	5.0	✓
Reactive Silica by Colourimetry	E392	559494	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	557171	1	11	9.0	5.0	✓
TDS by Gravimetry	E162	559164	1	9	11.1	5.0	✓
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	559433	1	19	5.2	5.0	1
Total Mercury in Water by CVAAS	E508	559907	1	18	5.5	5.0	1
Total Metals in Water by CRC ICPMS	E420	557112	1	6	16.6	5.0	<u> </u>
Total Nitrogen by Colourimetry	E366	559431	1	19	5.2	5.0	1
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	559432	1	19	5.2	5.0	1
TSS by Gravimetry	E160	559152	1	9	11.1	5.0	1
Turbidity by Nephelometry	E121	557274	1	19	5.2	5.0	1
VH and F1 by Headspace GC-FID	E581.VH+F1	563360	1	13	7.6	5.0	<u> </u>
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	557181	1	10	10.0	5.0	1
Ammonia by Fluorescence	E298	559434	1	19	5.2	5.0	
BTEX by Headspace GC-MS	E611A	563359	1	18	5.5	5.0	
CCME PHCs - F2-F4 by GC-FID	E601	558679	1	5	20.0	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	557178	1	5	20.0	5.0	√
Conductivity in Water	E100	557180	1	11	9.0	5.0	√
Dissolved Mercury in Water by CVAAS	E509	559625	1	11	9.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	558237	1	15	6.6	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	559435	1	13	7.6	5.0	√
Fluoride in Water by IC (Low Level)	E235.F-L	557177	1	5	20.0	5.0	√
Nitrate in Water by IC (Low Level)	E235.F-L E235.NO3-L	557173	1	8	12.5	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO3-L	557174	1	8	12.5	5.0	✓
Oil & Grease by Gravimetry	E235.NO2-L E567	560264	1	10	10.0	5.0	✓

Page : 17 of 23 : YL2200829 Work Order

Client : Golder Associates Ltd. : Jackfish NTPC

Matrix: Water		Evaluati	on: × = <i>QC frequ</i>	ency outside spe	ecification: ✓ = (QC frequency wit	hin specificatio
Quality Control Sample Type				ount		Frequency (%)	· · · · · · · · · · · · · · · · · · ·
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
pH by Meter	E108	557179	1	16	6.2	5.0	1
Reactive Silica by Colourimetry	E392	559494	1	20	5.0	5.0	<u> </u>
Sulfate in Water by IC	E235.SO4	557171	1	11	9.0	5.0	
TDS by Gravimetry	E162	559164	1	9	11.1	5.0	
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	559433	1	19	5.2	5.0	
Total Mercury in Water by CVAAS	E508	559907	1	18	5.5	5.0	
Total Metals in Water by CRC ICPMS	E420	557112	1	6	16.6	5.0	
Total Nitrogen by Colourimetry	E366	559431	1	19	5.2	5.0	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	559432	1	19	5.2	5.0	
TSS by Gravimetry	E160	559152	1	9	11.1	5.0	
Turbidity by Nephelometry	E121	557274	1	19	5.2	5.0	<u>√</u>
VH and F1 by Headspace GC-FID	E581.VH+F1	563360	1	13	7.6	5.0	
Method Blanks (MB)							
Alkalinity Species by Titration	E290	557181	1	10	10.0	5.0	1
Ammonia by Fluorescence	E298	559434	1	19	5.2	5.0	
BTEX by Headspace GC-MS	E611A	563359	1	18	5.5	5.0	
CCME PHCs - F2-F4 by GC-FID	E601	558679	1	5	20.0	5.0	
Chloride in Water by IC (Low Level)	E235.CI-L	557178	1	5	20.0	5.0	
Conductivity in Water	E100	557180	1	11	9.0	5.0	
Dissolved Mercury in Water by CVAAS	E509	559625	1	11	9.0	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	558237	1	15	6.6	5.0	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	559435	1	13	7.6	5.0	<u> </u>
Fluoride in Water by IC (Low Level)	E235.F-L	557177	1	5	20.0	5.0	
Nitrate in Water by IC (Low Level)	E235.NO3-L	557173	1	8	12.5	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	557174	1	8	12.5	5.0	<u> </u>
Oil & Grease by Gravimetry	E567	560264	1	10	10.0	5.0	
Reactive Silica by Colourimetry	E392	559494	1	20	5.0	5.0	
Sulfate in Water by IC	E235.SO4	557171	1	11	9.0	5.0	
TDS by Gravimetry	E162	559164	1	9	11.1	5.0	
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	559433	1	19	5.2	5.0	<u>√</u>
Total Mercury in Water by CVAAS	E508	559907	1	18	5.5	5.0	<u> </u>
Total Metals in Water by CRC ICPMS	E420	557112	1	6	16.6	5.0	
Total Nitrogen by Colourimetry	E366	559431	1	19	5.2	5.0	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	559432	1	19	5.2	5.0	
TSS by Gravimetry	E160	559152	1	9	11.1	5.0	
Turbidity by Nephelometry	E121	557274	1	19	5.2	5.0	
VH and F1 by Headspace GC-FID	E581.VH+F1	563360	1	13	7.6	5.0	
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	559434	1	19	5.2	5.0	1
BTEX by Headspace GC-MS	E611A	563359	1	18	5.5	5.0	

Page : 18 of 23
Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

						~ · · · · · · · · · · · · · · · · · · ·		
Quality Control Sample Type			Co	ount	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued								
Chloride in Water by IC (Low Level)	E235.CI-L	557178	1	5	20.0	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	559625	1	11	9.0	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	558237	1	15	6.6	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	559435	1	13	7.6	5.0	✓	
Fluoride in Water by IC (Low Level)	E235.F-L	557177	1	5	20.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	557173	1	8	12.5	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	557174	1	8	12.5	5.0	✓	
Reactive Silica by Colourimetry	E392	559494	1	20	5.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	557171	1	11	9.0	5.0	✓	
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	559433	1	19	5.2	5.0	✓	
Total Mercury in Water by CVAAS	E508	559907	1	18	5.5	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	557112	1	6	16.6	5.0	✓	
Total Nitrogen by Colourimetry	E366	559431	1	19	5.2	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	559432	1	19	5.2	5.0	√	
VH and F1 by Headspace GC-FID	E581.VH+F1	563360	1	13	7.6	5.0	✓	

Page : 19 of 23 Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Vancouver - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108 Vancouver - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121 Vancouver - Environmental	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
TSS by Gravimetry	E160 Vancouver - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Vancouver - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Chloride in Water by IC (Low Level)	E235.CI-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC (Low Level)	E235.F-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.

Page 20 of 23 YL2200829 Work Order

: Golder Associates Ltd. : Jackfish NTPC Client

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Vancouver - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Vancouver - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Vancouver - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Nitrogen by Colourimetry	E366 Vancouver - Environmental	Water	APHA 4500-P J (mod)	Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Dissolved Phosphorus is determined colourimetrically using a discrete analyzer after filtration through a 0.45 micron filter followed by heated persulfate digestion of the sample.
Reactive Silica by Colourimetry	E392 Vancouver - Environmental	Water	APHA 4500-SiO2 E (mod)	Silicate (molybdate-reactive silica) is determined by the molybdosilicate-heteropoly blue colourimetric method using a discrete analyzer. Method Limitation: Arsenic (5+) above 100 mg/L is a negative interference on this test
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS

Page 21 of 23 YL2200829 Work Order

Client : Golder Associates Ltd. : Jackfish NTPC

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCI, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Oil & Grease by Gravimetry	E567 Vancouver - Environmental	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
VH and F1 by Headspace GC-FID	E581.VH+F1 Vancouver - Environmental	Water	BC MOE Lab Manual / CCME PHC in Soil - Tier 1 (mod)	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
CCME PHCs - F2-F4 by GC-FID	E601 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	Sample extracts are analyzed by GC-FID for CCME hydrocarbon fractions (F2-F4).
BTEX by Headspace GC-MS	E611A Vancouver - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	АРНА 2340В	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Hardness (Calculated) from Total Ca/Mg	EC100A Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
TDS in Water (Calculation) Using APHA Analyte List	EC103.APHA Vancouver - Environmental	Water	APHA 1030E	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis).
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Vancouver - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).
F1-BTEX	EC580 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).

Page 22 of 23 YL2200829 Work Order

Client : Golder Associates Ltd. : Jackfish NTPC

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VPH: VH-BTEX-Styrene	EC580A	Water	BC MOE Lab Manual (VPH in Water and	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHw = Volatile Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and
	Vancouver -		Solids) (mod)	styrene.
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Vancouver -			
	Environmental			
Preparation for Dissolved Organic Carbon for Combustion	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
	Vancouver -			
	Environmental			
Digestion for Total Nitrogen in water	EP366	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
Discrete for Table Bloom borns in south	Environmental	NA /	ADUA 4500 D 5 (1)	O and a section of the Parist and th
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
Bin in the Bin of Bin o	Environmental	NA /	ADUA 4500 D 5 (1)	
Digestion for Dissolved Phosphorus in water	EP375	Water	APHA 4500-P E (mod).	Samples are filtered through a 0.45 micron membrane filter and then heated with a persulfate digestion reagent.
	Vancouver -			
Dissolved Metals Water Filtration	Environmental EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved ivietals water Filliation		vvater	AFIIA 3030B	water samples are intered (0.45 diff), and preserved with finO5.
	Vancouver - Environmental			
Dissolved Mercury Water Filtration	Environmental EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCI.
Dissolved Mercury Water Fill allon	EF309	vvater	AI TIA 3030B	water samples are intered (0.45 diff), and preserved with 1101.
	Vancouver -			
	Environmental			
Oil & Grease Extraction for Gravimetry	EP567	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane by liquid-liquid extraction.
	Vancouver -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	Vancouver -			GC/MS-FID system.
	Environmental			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
	Vancouver -			
	Environmental			

Page 23 of 23 YL2200829 Work Order

Client : Golder Associates Ltd. : Jackfish NTPC

QUALITY CONTROL REPORT

Work Order :YL2200829

Client : Golder Associates Ltd.

Contact : Sarah Beattie

Address : 9 - 4905 48th Street

Yellowknife NT Canada X1A 3S3

Telephone : 867 873 6319
Project : Jackfish NTPC

PO :--C-O-C number :--Sampler :---

Site : Jackfish NTPC
Quote number : YL21-GOLD100-008

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 19

Laboratory : Yellowknife - Environmental

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

Telephone : 1 867 446 5593

Date Samples Received : 06-Jul-2022 10:35

Date Analysis Commenced : 11-Jul-2022

Issue Date : 18-Jul-2022 09:37

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia
Cindy Tang	Team Leader - Inorganics	Vancouver Inorganics, Burnaby, British Columbia
Delson Resende	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Janice Leung	Supervisor - Organics Instrumentation	Vancouver Organics, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Vancouver Metals, Burnaby, British Columbia
Kinny Wu	Lab Analyst	Vancouver Metals, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Vancouver Inorganics, Burnaby, British Columbia
Owen Cheng		Vancouver Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Vancouver Inorganics, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Vancouver Organics, Burnaby, British Columbia
Sam Silveira	Lab Assistant	Vancouver Metals, Burnaby, British Columbia

Page : 2 of 19
Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 19
Work Order : YL2200829

Client : Golder Associates Ltd.
Project : Jackfish NTPC

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	atory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (Q	,										
WR2200665-022	Anonymous	pH		E108	0.10	pH units	7.42	7.44	0.269%	4%	
Physical Tests (Q0	C Lot: 557180)										
WR2200665-022	Anonymous	conductivity		E100	1.0	μS/cm	55.7	54.9	1.45%	10%	
Physical Tests (Q	C Lot: 557181)										
WR2200665-022	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	23.1	23.2	0.432%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	23.1	23.2	0.432%	20%	
Physical Tests (Qo	C Lot: 557274)										
FJ2201783-001	Anonymous	turbidity		E121	0.10	NTU	1.25	1.25	0	Diff <2x LOR	
Physical Tests (Q0	C Lot: 559152)										
VA22B5689-012	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Physical Tests (Qo	C Lot: 559164)										
VA22B5689-012	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	2240	2360	5.47%	20%	
Anions and Nutrie	nts (QC Lot: 557171)										
WR2200665-022	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	3.28	3.23	1.71%	20%	
Anions and Nutrie	nts (QC Lot: 557173)										
WR2200665-022	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 557174)										
WR2200665-022	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 557177)										
YL2200829-001	EMD DISCHARGE INLAKE Bottom	fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.080	0.078	0.001	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 557178)										
YL2200829-001	EMD DISCHARGE INLAKE_Bottom	chloride	16887-00-6	E235.CI-L	0.10	mg/L	59.6	59.6	0.0796%	20%	
Anions and Nutrier	nts (QC Lot: 559431)										
-J2201799-001	Anonymous	nitrogen, total	7727-37-9	E366	0.030	mg/L	0.132	0.130	0.002	Diff <2x LOR	
Anions and Nut <u>rie</u>	nts (QC Lot: 559432)										
FJ2201799-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0107	0.0108	0.0001	Diff <2x LOR	

Page : 4 of 19 Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
nions and Nutrient	ts (QC Lot: 559433)	- continued										
J2201799-001	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR		
nions and Nutrient	ts (QC Lot: 559434)											
J2201799-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR		
Anions and Nutrient	ts (QC Lot: 559494)											
/L2200819-003	Anonymous	silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR		
Organic / Inorganic	Carbon (QC Lot: 559	(435)										
/A22B5135-002	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	4.54	4.84	0.30	Diff <2x LOR		
otal Metals (QC Lo	ot: 557112)											
(S2202425-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0034	<0.0030	0.0004	Diff <2x LOR		
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00669	0.00670	0.137%	20%		
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0373	0.0371	0.531%	20%		
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR		
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		boron, total	7440-42-8	E420	0.010	mg/L	0.013	0.013	0.00005	Diff <2x LOR		
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0000213	0.0000151	0.0000062	Diff <2x LOR		
		calcium, total	7440-70-2	E420	0.050	mg/L	46.8	46.0	1.80%	20%		
		cesium, total	7440-46-2	E420	0.000010	mg/L	0.000014	0.000014	0.000000002	Diff <2x LOR		
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00101	0.00100	0.000009	Diff <2x LOR		
		iron, total	7439-89-6	E420	0.010	mg/L	0.060	0.062	0.001	Diff <2x LOR		
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0047	0.0047	0.00006	Diff <2x LOR		
		magnesium, total	7439-95-4	E420	0.0050	mg/L	23.1	23.6	2.21%	20%		
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0977	0.101	3.02%	20%		
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00325	0.00322	1.19%	20%		
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR		
		potassium, total	7440-09-7	E420	0.050	mg/L	3.34	3.40	1.67%	20%		
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00375	0.00398	6.02%	20%		
		selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		silicon, total	7440-21-3	E420	0.10	mg/L	15.9	16.1	1.29%	20%		
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		sodium. total	7440-23-5	E420	0.050	mg/L	14.4	14.7	1.84%	20%		

Page : 5 of 19 Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
otal Metals (QC Lo	ot: 557112) - continued											
KS2202425-001	Anonymous	strontium, total	7440-24-6	E420	0.00020	mg/L	0.437	0.437	0.0586%	20%		
		sulfur, total	7704-34-9	E420	0.50	mg/L	9.54	10.1	5.51%	20%		
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR		
		tungsten, total	7440-33-7	E420	0.00010	mg/L	0.00060	0.00059	0.00001	Diff <2x LOR		
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000202	0.000206	1.83%	20%		
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00158	0.00157	0.000008	Diff <2x LOR		
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR		
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
otal Metals (QC Lo	ot: 559907)											
L2200819-006	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR		
issolved Metals (C	OC L at: 559227)					-						
Dissolved Metals (Q /L2200829-001	EMD DISCHARGE	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0014	0.0015	0.00007	Diff <2x LOR		
	INLAKE_Bottom	a.aa, a.sss.rsa				9.=						
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00121	0.00119	1.63%	20%		
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0725	0.0713	1.68%	20%		
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0326	0.0327	0.316%	20%		
		beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR		
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.027	0.027	0.0004	Diff <2x LOR		
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	35.6	35.6	0.246%	20%		
		cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00144	0.00140	0.00004	Diff <2x LOR		
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR		
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0061	0.0060	0.00009	Diff <2x LOR		
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	12.7	12.5	1.50%	20%		
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.102	0.0973	4.54%	20%		
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000188	0.000188	0.000000005	Diff <2x LOR		
		nickel, dissolved	7440-02-0	E421		3			0	Diff <2x LOR		

Page : 6 of 19 Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Dissolved Metals (QC Lot: 558237) - cor	ntinued										
YL2200829-001	EMD DISCHARGE INLAKE_Bottom	phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR		
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	4.15	4.10	1.28%	20%		
		rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00255	0.00246	3.75%	20%		
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	0.000059	0.000009	Diff <2x LOR		
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.39	6.24	2.44%	20%		
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	33.4	32.6	2.40%	20%		
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0924	0.0886	4.12%	20%		
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	8.52	8.72	2.32%	20%		
		tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR		
		tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000491	0.000480	2.22%	20%		
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR		
		zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
Dissolved Metals (QC Lot: 559625)											
VA22B5583-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
Volatile Organic Co	mpounds (QC Lot: 56	63359)										
WR2200653-001	Anonymous	benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		styrene	100-42-5	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR		
		xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR		
Hydrocarbons (QC	Lot: 563360)											
YL2200819-001	Anonymous	F1 (C6-C10)		E581.VH+F1	100	μg/L	<0.10 mg/L	<100	0.0%	30%		
		VHw (C6-C10)		E581.VH+F1	100	μg/L	<0.10 mg/L	<100	0.0%	30%		

Page : 7 of 19
Work Order : YL2200829

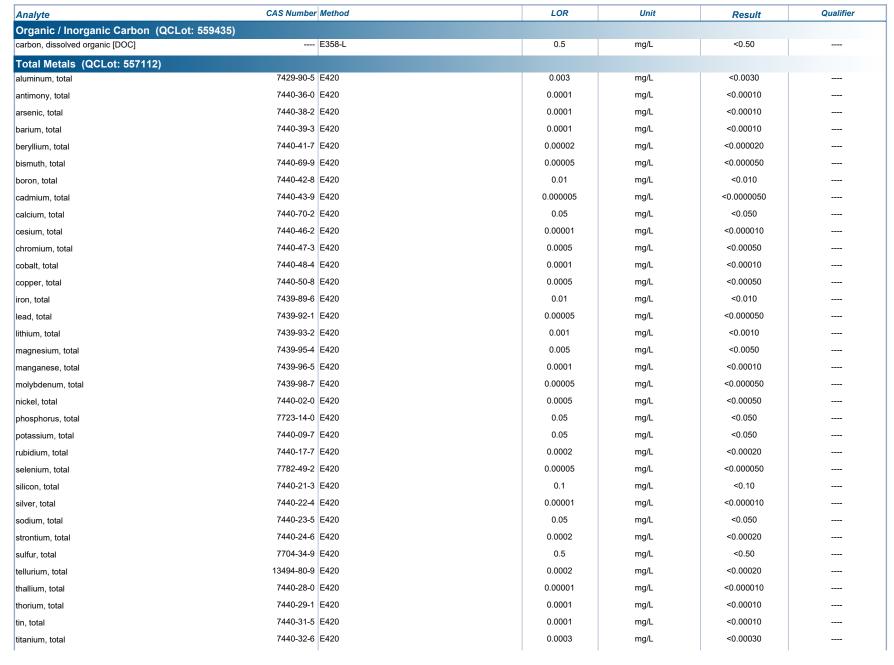
Client : Golder Associates Ltd.

Project : Jackfish NTPC

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water


Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 557180)					
conductivity	E100	1	μS/cm	1.4	
Physical Tests (QCLot: 557181)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	1.1	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, phenolphthalein (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	1.1	
Physical Tests (QCLot: 557274)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 559152)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 559164)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 557171)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 557173)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 557174)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 557177)					
fluoride	16984-48-8 E235.F-L	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 557178)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 559431)					
nitrogen, total	7727-37-9 E366	0.03	mg/L	<0.030	
Anions and Nutrients (QCLot: 559432)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 559433)					
phosphorus, total dissolved	7723-14-0 E375-T	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 559434)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 559494)					
silicate (as SiO2)	7631-86-9 E392	0.5	mg/L	<0.50	

Page : 8 of 19
Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water

Page : 9 of 19 Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water

Page : 10 of 19 Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 558237) -	continued				
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
tellurium, dissolved	13494-80-9 E421	0.0002	mg/L	<0.00020	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
thorium, dissolved	7440-29-1 E421	0.0001	mg/L	<0.00010	
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
tungsten, dissolved	7440-33-7 E421	0.0001	mg/L	<0.00010	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
zirconium, dissolved	7440-67-7 E421	0.0002	mg/L	<0.00020	
Dissolved Metals (QCLot: 559625)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	
Aggregate Organics (QCLot: 560264					
oil & grease (gravimetric)	E567	5	mg/L	<5.0	
Volatile Organic Compounds (QCLo	t: 563359)				
benzene	71-43-2 E611A	0.5	μg/L	<0.50	
ethylbenzene	100-41-4 E611A	0.5	μg/L	<0.50	
methyl-tert-butyl ether [MTBE]	1634-04-4 E611A	0.5	μg/L	<0.50	
styrene	100-42-5 E611A	0.5	μg/L	<0.50	
toluene	108-88-3 E611A	0.5	μg/L	<0.50	
xylene, m+p-	179601-23-1 E611A	0.4	μg/L	<0.40	
xylene, o-	95-47-6 E611A	0.3	μg/L	<0.30	
Hydrocarbons (QCLot: 558679)					
F2 (C10-C16)	E601	100	μg/L	<100	
F3 (C16-C34)	E601	250	μg/L	<250	
F4 (C34-C50)	E601	250	μg/L	<250	
Hydrocarbons (QCLot: 563360)					
F1 (C6-C10)	E581.VH+F1	100	μg/L	<100	
VHw (C6-C10)	E581.VH+F1	100	μg/L	<100	

Page : 11 of 19
Work Order : YL2200829

Client : Golder Associates Ltd.
Project : Jackfish NTPC

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	Matrix: Water						Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Physical Tests (QCLot: 557179)												
pH		E108		pH units	7 pH units	100	98.0	102				
Physical Tests (QCLot: 557180)												
conductivity		E100	1	μS/cm	146.9 μS/cm	99.2	90.0	110				
Physical Tests (QCLot: 557181)												
alkalinity, phenolphthalein (as CaCO3)		E290	1	mg/L	229 mg/L	91.8	75.0	125				
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	100	85.0	115				
Physical Tests (QCLot: 557274)												
turbidity		E121	0.1	NTU	200 NTU	96.5	85.0	115				
Physical Tests (QCLot: 559152)												
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	108	85.0	115				
Physical Tests (QCLot: 559164)												
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	104	85.0	115				
Anions and Nutrients (QCLot: 557171)												
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	104	90.0	110				
Anions and Nutrients (QCLot: 557173)												
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	102	90.0	110				
Anions and Nutrients (QCLot: 557174)												
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	99.8	90.0	110				
Anions and Nutrients (QCLot: 557177)												
fluoride	16984-48-8	E235.F-L	0.01	mg/L	1 mg/L	99.0	90.0	110				
Anions and Nutrients (QCLot: 557178)												
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	102	90.0	110				
Anions and Nutrients (QCLot: 559431)												
nitrogen, total	7727-37-9	E366	0.03	mg/L	0.5 mg/L	104	75.0	125				
Anions and Nutrients (QCLot: 559432)												
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	92.3	80.0	120				
Anions and Nutrients (QCLot: 559433)												
phosphorus, total dissolved	7723-14-0	E375-T	0.002	mg/L	0.05 mg/L	93.3	80.0	120				
Anions and Nutrients (QCLot: 559434)												
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	98.3	85.0	115				
Anions and Nutrients (QCLot: 559494)												
silicate (as SiO2)	7631-86-9	E392	0.5	mg/L	10 mg/L	102	85.0	115				

Page : 12 of 19 Work Order : YL2200829

Client : Golder Associates Ltd.

Sub-Matrix: Water	Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Organic / Inorganic Carbon (QCLot: 55	9435)										
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	98.8	80.0	120			
Total Metals (QCLot: 557112)											
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	102	80.0	120			
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	99.8	80.0	120			
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	100	80.0	120			
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	102	80.0	120			
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	96.7	80.0	120			
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	101	80.0	120			
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	97.0	80.0	120			
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	100	80.0	120			
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	99.3	80.0	120			
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	95.7	80.0	120			
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	98.6	80.0	120			
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	99.2	80.0	120			
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	98.9	80.0	120			
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	102	80.0	120			
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	100	80.0	120			
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	99.3	80.0	120			
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	99.0	80.0	120			
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	101	80.0	120			
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	96.8	80.0	120			
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	97.4	80.0	120			
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	109	80.0	120			
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	103	80.0	120			
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	102	80.0	120			
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	101	80.0	120			
silicon, total	7440-21-3		0.1	mg/L	10 mg/L	107	80.0	120			
silver, total	7440-22-4		0.00001	mg/L	0.1 mg/L	95.4	80.0	120			
sodium, total	7440-23-5		0.05	mg/L	50 mg/L	104	80.0	120			
strontium, total	7440-24-6		0.0002	mg/L	0.25 mg/L	98.2	80.0	120			
sulfur, total	7704-34-9		0.5	mg/L	50 mg/L	92.7	80.0	120			
tellurium, total	13494-80-9		0.0002	mg/L	0.1 mg/L	102	80.0	120			
thallium, total	7440-28-0		0.00001	mg/L	1 mg/L	100	80.0	120			
thorium, total	7440-29-1		0.0001	mg/L	0.1 mg/L	92.8	80.0	120			
tin, total	7440-31-5		0.0001	mg/L	0.5 mg/L	96.0	80.0	120			
titanium, total	7440-31-6		0.0003	mg/L	0.5 mg/L 0.25 mg/L	97.5	80.0	120			
utanium, total	1440-32-0	L-720	0.0003	mg/L	0.25 mg/L	6.18	00.0	120			

Page : 13 of 19 Work Order : YL2200829

Client : Golder Associates Ltd.

Sub-Matrix: Water	Matrix: Water						Laboratory Control Sample (LCS) Report				
				Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Total Metals (QCLot: 557112) - continued											
tungsten, total	7440-33-7 E420	0.0001	mg/L	0.1 mg/L	103	80.0	120				
uranium, total	7440-61-1 E420	0.00001	mg/L	0.005 mg/L	105	80.0	120				
vanadium, total	7440-62-2 E420	0.0005	mg/L	0.5 mg/L	99.9	80.0	120				
zinc, total	7440-66-6 E420	0.003	mg/L	0.5 mg/L	101	80.0	120				
zirconium, total	7440-67-7 E420	0.0002	mg/L	0.1 mg/L	92.7	80.0	120				
Total Metals (QCLot: 559907)											
mercury, total	7439-97-6 E508	0.000005	mg/L	0.0001 mg/L	91.4	80.0	120				
Dissolved Metals (QCLot: 558237)											
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	2 mg/L	106	80.0	120				
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	1 mg/L	101	80.0	120				
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	1 mg/L	102	80.0	120				
barium, dissolved	7440-39-3 E421	0.0001	mg/L	0.25 mg/L	103	80.0	120				
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	0.1 mg/L	90.2	80.0	120				
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	1 mg/L	92.8	80.0	120				
boron, dissolved	7440-42-8 E421	0.01	mg/L	1 mg/L	90.6	80.0	120				
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	0.1 mg/L	103	80.0	120				
calcium, dissolved	7440-70-2 E421	0.05	mg/L	50 mg/L	99.3	80.0	120				
cesium, dissolved	7440-46-2 E421	0.00001	mg/L	0.05 mg/L	97.7	80.0	120				
chromium, dissolved	7440-47-3 E421	0.0005	mg/L	0.25 mg/L	101	80.0	120				
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	0.25 mg/L	102	80.0	120				
copper, dissolved	7440-50-8 E421	0.0002	mg/L	0.25 mg/L	102	80.0	120				
iron, dissolved	7439-89-6 E421	0.01	mg/L	1 mg/L	116	80.0	120				
lead, dissolved	7439-92-1 E421	0.00005	mg/L	0.5 mg/L	97.5	80.0	120				
lithium, dissolved	7439-93-2 E421	0.001	mg/L	0.25 mg/L	98.9	80.0	120				
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	50 mg/L	106	80.0	120				
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	0.25 mg/L	105	80.0	120				
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	0.25 mg/L	99.0	80.0	120				
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	0.5 mg/L	103	80.0	120				
phosphorus, dissolved	7723-14-0 E421	0.05	mg/L	10 mg/L	101	80.0	120				
potassium, dissolved	7440-09-7 E421	0.05	mg/L	50 mg/L	103	80.0	120				
rubidium, dissolved	7440-17-7 E421	0.0002	mg/L	0.1 mg/L	104	80.0	120				
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	1 mg/L	97.4	80.0	120				
silicon, dissolved	7440-21-3 E421	0.05	mg/L	10 mg/L	108	80.0	120				
silver, dissolved	7440-22-4 E421	0.00001	mg/L	0.1 mg/L	95.9	80.0	120				
sodium, dissolved	7440-23-5 E421	0.05	mg/L	50 mg/L	107	80.0	120				
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	0.25 mg/L	105	80.0	120				

Page : 14 of 19 Work Order : YL2200829

Client : Golder Associates Ltd.

	Matrix: Water						Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Dissolved Metals (QCLot: 558237) - contin	nued											
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	96.0	80.0	120				
tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	0.1 mg/L	98.8	80.0	120				
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	96.8	80.0	120				
thorium, dissolved	7440-29-1	E421	0.0001	mg/L	0.1 mg/L	90.6	80.0	120				
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	102	80.0	120				
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	96.0	80.0	120				
tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	0.1 mg/L	92.3	80.0	120				
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	96.0	80.0	120				
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	105	80.0	120				
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	97.0	80.0	120				
zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	97.9	80.0	120				
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	96.5	80.0	120				
Aggregate Organics (QCLot: 560264)												
oil & grease (gravimetric)		E567	5	mg/L	100 mg/L	99.7	70.0	130				
Volatile Organic Compounds (QCLot: 563												
benzene	71-43-2	E611A	0.5	μg/L	100 μg/L	108	70.0	130				
ethylbenzene	100-41-4	E611A	0.5	μg/L	100 μg/L	113	70.0	130				
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.5	μg/L	100 μg/L	105	70.0	130				
styrene	100-42-5	E611A	0.5	μg/L	100 μg/L	106	70.0	130				
toluene	108-88-3	E611A	0.5	μg/L	100 μg/L	112	70.0	130				
xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	118	70.0	130				
xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	113	70.0	130				
Hydrocarbons (QCLot: 558679)												
F2 (C10-C16)		E601	100	μg/L	3538 µg/L	107	70.0	130				
F3 (C16-C34)		E601	250	μg/L	7053 μg/L	98.1	70.0	130				
F4 (C34-C50)		E601	250	μg/L	5051 μg/L	114	70.0	130				
Hydrocarbons (QCLot: 563360)		5504 \ 0.1.54	400				70.0	400				
F1 (C6-C10)		E581.VH+F1	100	μg/L 	6310 μg/L	83.6	70.0	130				
VHw (C6-C10)		E581.VH+F1	100	μg/L	6310 µg/L	83.4	70.0	130				

Page : 15 of 19 Work Order : YL2200829

Client : Golder Associates Ltd.

Page : 16 of 19
Work Order : YL2200829

Client : Golder Associates Ltd.

Project : Jackfish NTPC

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

			•	•						
Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifi
Anions and Nutr	ients (QCLot: 557171)									
WR2200665-024	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	1010 mg/L	1000 mg/L	101	75.0	125	
Anions and Nutr	ients (QCLot: 557173)									
WR2200665-024	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	25.5 mg/L	25 mg/L	102	75.0	125	
Anions and Nutr	ients (QCLot: 557174)									
WR2200665-024	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	5.02 mg/L	5 mg/L	100	75.0	125	
Anions and Nutr	ients (QCLot: 557177)									
YL2200829-002	EMD DISCHARGE INLAKE Mid-depth	fluoride	16984-48-8	E235.F-L	1.07 mg/L	1 mg/L	107	75.0	125	
Anions and Nutr	ients (QCLot: 557178)									
YL2200829-002	EMD DISCHARGE INLAKE Mid-depth	chloride	16887-00-6	E235.CI-L	108 mg/L	100 mg/L	108	75.0	125	
Anions and Nutr	ients (QCLot: 559431)									
FJ2201799-002	Anonymous	nitrogen, total	7727-37-9	E366	ND mg/L	0.4 mg/L	ND	70.0	130	
Anions and Nutr	ients (QCLot: 559432)									
FJ2201799-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0480 mg/L	0.05 mg/L	95.9	70.0	130	
Anions and Nutr	ients (QCLot: 559433)									
FJ2201799-002	Anonymous	phosphorus, total dissolved	7723-14-0	E375-T	0.0482 mg/L	0.05 mg/L	96.4	70.0	130	
Anions and Nutr	ients (QCLot: 559434)									
FJ2201799-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.103 mg/L	0.1 mg/L	103	75.0	125	
Anions and Nutr	ients (QCLot: 559494)									
YL2200821-001	Anonymous	silicate (as SiO2)	7631-86-9	E392	10.1 mg/L	10 mg/L	101	75.0	125	
Organic / Inorga	nic Carbon (QCLot: 5	59435)								
VA22B5135-006	Anonymous	carbon, dissolved organic [DOC]		E358-L	ND mg/L	5 mg/L	ND	70.0	130	
Fotal Metals (QC	CLot: 557112)									
YL2200829-001	EMD DISCHARGE	aluminum, total	7429-90-5	E420	0.199 mg/L	0.2 mg/L	99.6	70.0	130	
	INLAKE_Bottom	antimony, total	7440-36-0	E420	0.0192 mg/L	0.02 mg/L	96.2	70.0	130	
		arsenic, total	7440-38-2	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0393 mg/L	0.04 mg/L	98.3	70.0	130	
	1	bismuth, total	7440-69-9	E420	0.00938 mg/L	0.01 mg/L	93.8	70.0	130	

Page : 17 of 19 Work Order : YL2200829

Client : Golder Associates Ltd.

ıb-Matrix: Water					0		Matrix Spik		. 1 ::4- (0/)	
					Spi		Recovery (%)		Limits (%)	
boratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
tal Metals (QC	Lot: 557112) - conti	nued								
L2200829-001	EMD DISCHARGE	boron, total	7440-42-8	E420	0.098 mg/L	0.1 mg/L	97.8	70.0	130	
	INLAKE_Bottom	cadmium, total	7440-43-9	E420	0.00391 mg/L	0.004 mg/L	97.7	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, total	7440-46-2	E420	0.00961 mg/L	0.01 mg/L	96.1	70.0	130	
		chromium, total	7440-47-3	E420	0.0390 mg/L	0.04 mg/L	97.6	70.0	130	
		cobalt, total	7440-48-4	E420	0.0196 mg/L	0.02 mg/L	97.9	70.0	130	
		copper, total	7440-50-8	E420	0.0193 mg/L	0.02 mg/L	96.7	70.0	130	
		iron, total	7439-89-6	E420	1.94 mg/L	2 mg/L	96.9	70.0	130	
		lead, total	7439-92-1	E420	0.0192 mg/L	0.02 mg/L	95.9	70.0	130	
		lithium, total	7439-93-2	E420	0.0958 mg/L	0.1 mg/L	95.8	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0199 mg/L	0.02 mg/L	99.6	70.0	130	
		nickel, total	7440-02-0	E420	0.0383 mg/L	0.04 mg/L	95.8	70.0	130	
		phosphorus, total	7723-14-0	E420	11.2 mg/L	10 mg/L	112	70.0	130	
		potassium, total	7440-09-7	E420	ND mg/L	4 mg/L	ND	70.0	130	
		rubidium, total	7440-17-7	E420	0.0200 mg/L	0.02 mg/L	100	70.0	130	
		selenium, total	7782-49-2	E420	0.0416 mg/L	0.04 mg/L	104	70.0	130	
		silicon, total	7440-21-3	E420	9.92 mg/L	10 mg/L	99.2	70.0	130	
		silver, total	7440-22-4	E420	0.00387 mg/L	0.004 mg/L	96.7	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	20.5 mg/L	20 mg/L	102	70.0	130	
		tellurium, total	13494-80-9	E420	0.0400 mg/L	0.04 mg/L	100	70.0	130	
		thallium, total	7440-28-0	E420	0.00377 mg/L	0.004 mg/L	94.2	70.0	130	
		thorium, total	7440-29-1	E420	0.0183 mg/L	0.02 mg/L	91.6	70.0	130	
		tin, total	7440-31-5	E420	0.0193 mg/L	0.02 mg/L	96.6	70.0	130	
		titanium, total	7440-32-6	E420	0.0394 mg/L	0.04 mg/L	98.4	70.0	130	
		tungsten, total	7440-33-7	E420	0.0201 mg/L	0.02 mg/L	100	70.0	130	
		uranium, total	7440-61-1	E420	0.00397 mg/L	0.004 mg/L	99.3	70.0	130	
		vanadium, total	7440-62-2	E420	0.100 mg/L	0.1 mg/L	100	70.0	130	
		zinc, total	7440-66-6	E420	0.388 mg/L	0.4 mg/L	97.1	70.0	130	
		zirconium, total	7440-67-7	E420	0.0404 mg/L	0.04 mg/L	101	70.0	130	
al Metals (QC										
2200819-007	Anonymous	mercury, total	7439-97-6	E508	0.0000892 mg/L	0.0001 mg/L	89.2	70.0	130	

Page : 18 of 19 Work Order : YL2200829

Client : Golder Associates Ltd.

Sub-Matrix: Water		Matrix Spike (MS) Report								
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	(QCLot: 558237) - c	continued								
YL2200829-002	EMD DISCHARGE	aluminum, dissolved	7429-90-5	E421	0.205 mg/L	0.2 mg/L	103	70.0	130	
	INLAKE_Mid-depth	antimony, dissolved	7440-36-0	E421	0.0200 mg/L	0.02 mg/L	99.9	70.0	130	
		arsenic, dissolved	7440-38-2	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0376 mg/L	0.04 mg/L	93.9	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00865 mg/L	0.01 mg/L	86.5	70.0	130	
		boron, dissolved	7440-42-8	E421	0.087 mg/L	0.1 mg/L	87.0	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00412 mg/L	0.004 mg/L	103	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, dissolved	7440-46-2	E421	0.00961 mg/L	0.01 mg/L	96.1	70.0	130	
		chromium, dissolved	7440-47-3	E421	0.0394 mg/L	0.04 mg/L	98.6	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0197 mg/L	0.02 mg/L	98.5	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0192 mg/L	0.02 mg/L	95.9	70.0	130	
		iron, dissolved	7439-89-6	E421	2.00 mg/L	2 mg/L	100.0	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0187 mg/L	0.02 mg/L	93.5	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0983 mg/L	0.1 mg/L	98.3	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0205 mg/L	0.02 mg/L	103	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0197 mg/L	0.02 mg/L	98.4	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0390 mg/L	0.04 mg/L	97.6	70.0	130	
		phosphorus, dissolved	7723-14-0	E421	10.7 mg/L	10 mg/L	107	70.0	130	
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130	
		rubidium, dissolved	7440-17-7	E421	0.0194 mg/L	0.02 mg/L	97.2	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0410 mg/L	0.04 mg/L	103	70.0	130	
		silicon, dissolved	7440-21-3	E421	9.72 mg/L	10 mg/L	97.2	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00371 mg/L	0.004 mg/L	92.7	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	20.8 mg/L	20 mg/L	104	70.0	130	
		tellurium, dissolved	13494-80-9	E421	0.0392 mg/L	0.04 mg/L	98.0	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00352 mg/L	0.004 mg/L	88.0	70.0	130	
		thorium, dissolved	7440-29-1	E421	0.0167 mg/L	0.02 mg/L	83.5	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0197 mg/L	0.02 mg/L	98.4	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0397 mg/L	0.04 mg/L	99.3	70.0	130	
		tungsten, dissolved	7440-33-7	E421	0.0186 mg/L	0.02 mg/L	92.8	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00374 mg/L	0.004 mg/L	93.4	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.104 mg/L	0.1 mg/L	104	70.0	130	

Page : 19 of 19 Work Order : YL2200829

Client : Golder Associates Ltd.

Sub-Matrix: Water	Water						Matrix Spik	re (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 558237) - c	continued								
YL2200829-002	EMD DISCHARGE	zinc, dissolved	7440-66-6	E421	0.384 mg/L	0.4 mg/L	96.1	70.0	130	
	INLAKE_Mid-depth	zirconium, dissolved	7440-67-7	E421	0.0400 mg/L	0.04 mg/L	100	70.0	130	
Dissolved Metals	(QCLot: 559625)									
VA22B5583-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000973 mg/L	0.0001 mg/L	97.3	70.0	130	
Volatile Organic	Compounds (QCLot	: 563359)								
WR2200653-001	Anonymous	benzene	71-43-2	E611A	98.8 μg/L	100 μg/L	98.8	60.0	140	
		ethylbenzene	100-41-4	E611A	97.7 μg/L	100 μg/L	97.7	60.0	140	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	99.7 μg/L	100 μg/L	99.7	60.0	140	
		styrene	100-42-5	E611A	95.9 μg/L	100 μg/L	95.9	60.0	140	
		toluene	108-88-3	E611A	98.0 μg/L	100 μg/L	98.0	60.0	140	
		xylene, m+p-	179601-23-1	E611A	203 μg/L	200 μg/L	101	60.0	140	
		xylene, o-	95-47-6	E611A	99.1 μg/L	100 μg/L	99.1	60.0	140	
Hydrocarbons (QCLot: 563360)									
YL2200819-002	Anonymous	F1 (C6-C10)		E581.VH+F1	4560 μg/L	6310 µg/L	72.2	60.0	140	
		VHw (C6-C10)		E581.VH+F1	4560 μg/L	6310 µg/L	72.2	60.0	140	

PROJECT: SITE: PURCHASE ORDER NO.: PROJECT MANAGER: SAMPLER:	Jackfish NTPC	TURNAROUND REQUIREMENTS:		ME.	14202 8:00	DATE	et 6/22 ETIME 10:35	DATE/TIME:	DATE/TIME:
SITE: PURCHASE ORDER NO.: PROJECT MANAGER: SAMPLER: EMAIL REPORTS TO: SPECIAL HANDLING/STOR	Jackfish NTPC		☐ Stand	dard TAT (List	due date):	V		FOR LABORATORY USE ONLY (Circle)	
PURCHASE ORDER NO.: PROJECT MANAGER: SAMPLER: EMAIL REPORTS TO: SPECIAL HANDLING/STOR		Standard TAT may be longer for some tests e.g. Ultra Trace Organics)	☐ Non 3	Standard or un	gent TAT (Lis	t due date):		Custody Seal Intact?	ON NO NA
PROJECT MANAGER: P SAMPLER: 1 EMAIL REPORTS TO: E SPECIAL HANDLING/STOR								Free ice / trazen ice bricks present upon receipt?	No NA
SAMPLER: 1 EMAIL REPORTS TO: 2 SPECIAL HANDLING/STOR	Kathy Qin CONTACT Pr						updated in April 2022)	Random Sample Temperature on Receipt.	5.5 °
EMAIL REPORTS TO:	Kathy Qin CONTACT PI Tamara Derkowski SAMPLER M	2 3131233123		alS facility co		250		Other comments	
SPECIAL HANDLING/STOR	Kathy Qin@golder.com; alison humphries@golder.com; GAL equ	C4241.1		ect Number		nce Ponini	Egolder.com: Kathy Qingegolder		
ALS USE ONLY				32 111 0132	10.	24.04.013	age or comment or aggreen	1.00	
	SAMPLE DETAILS Solid(S) Water(W)	MATRIX		TAINER MATION			ANALYS	is required	Additional information
SAMPLE	Sample identification (This description will appear on the report)	DATE / TIME (dd-mm-yyyy)	MATRIX	TOTAL CONTAINERS	Standard Parameters Suite	Organics parameter suite			Comments on living contaminant leves, orknows, or samples requiring specific DC analysis etc.
	OLITELOW		- 77						All parameters held
,	COLUMN TO WARAY 1				*				
			-						filtered; metals
	INFLOW TO NW BAY 2		W		X	<u> </u>			preserved in held
	NORTHWEST BAY NORTH_Beatem		w			_ x		- Davids of the control of	
	NGRTHWEST BAY NORTH_MId-depth		W		×			Environmental Divisio	n
6	MID LAKE 1_ Bottom		w		x	-		Yellowknife	
	MID LAKE 1_Mid-depth		144		- 5			Work Order Reference YL2200829) +
	The state of the s	S Tuly 2022						1 LZZ000Z3	
8 E	EMD DISCHARGE INLAKE_Bottom	13:10	W	7	X			100 H 10 T 10 T 10 T 10 T	ii .
9 E	EMD DISCHARGE INLAKE_Mid-depth	5 july 2022	w	7	x				
10 8	SOUTHWEST BAY_Bottom	Stuly 2022	w	7	×				
11 5	SOUTHWEST BAY_Mid-depth	5 July 2022	w	7	x			0750 366 33	
_ 12 N	NEAR OUTFLOW INLAKE_Bottom		W		×	x		Telephone : +1 867 873 5593	
	NEAR OUTFLOW INLANE_Mid-depth		w		x			7 or opinate 2 + 1 boy or 5 5550	7
	BEAR OUTFLOWINCAKE_BOTTOM_4		W		×	×			
15 JI	JFLQC_1	5 ruly 2022	w	13	x	x			
	illuct	2172	w	-	x				
			TOTAL	41					

A COMPANY BUT CONTRACTOR OF A Company of the Comp 。 1994年,1997年,1997年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1 CACCOCCUSTO OF STREET AND STREET

The second control of the second control of

THE STATE OF THE WORLD CO. STATE OF THE STAT

CERTIFICATE OF ANALYSIS

Work Order : YL2200852

Client : Golder Associates Ltd.

Contact : Kathy Qin

Address : 9 - 4905 48th Street

Yellowknife NT Canada X1A 3S3

Telephone : ---

Project : 21482915

C-O-C number : --Sampler ---

Site : Jackfish NTPC

Quote number : YL21-GOLD100-008

No. of samples received : 10

No. of samples received : 10
No. of samples analysed : 10

Page : 1 of 12

Laboratory : Yellowknife - Environmental

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife NT Canada X1A 3T3

Telephone : 1 867 446 5593

Date Samples Received : 07-Jul-2022 10:05

Date Analysis Commenced : 12-Jul-2022

Issue Date : 20-Jul-2022 16:34

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Delson Resende	Lab Assistant	Metals, Burnaby, British Columbia
Hamideh Moradi	Analyst	Metals, Burnaby, British Columbia
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia

Page : 2 of 12 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
RRV	Reported result verified by repeat analysis.

>: greater than.

Page : 3 of 12 Work Order : YL2200852

Client : Golder Associates Ltd.

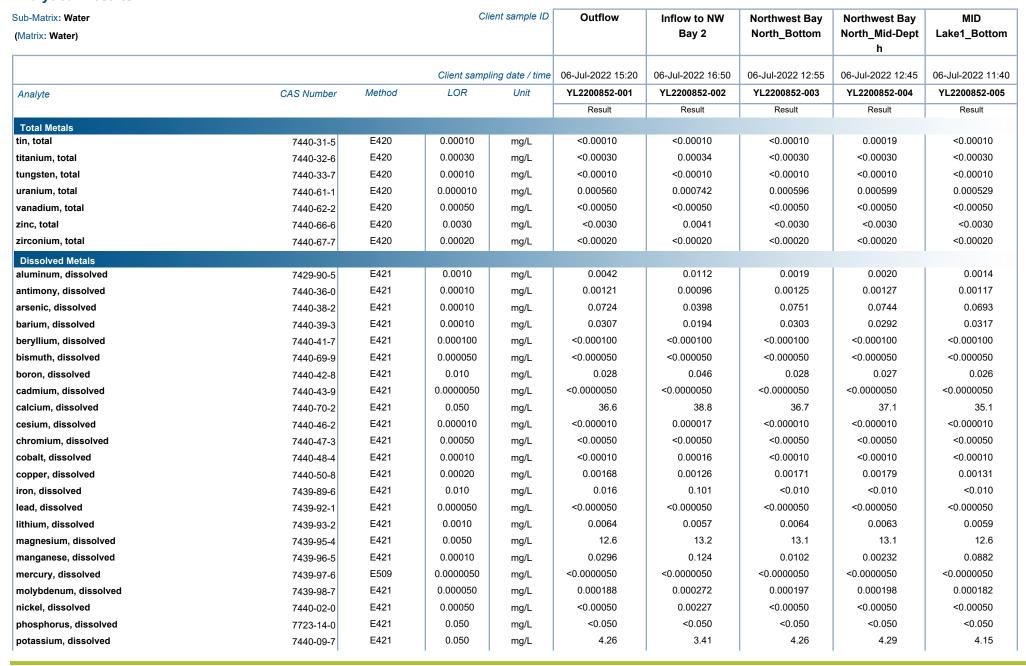
Project : 21482915

Sub-Matrix: Water			C	lient sample ID	Outflow	Inflow to NW	Northwest Bay	Northwest Bay	MID
(Matrix: Water)						Bay 2	North_Bottom	North_Mid-Dept h	Lake1_Bottom
			Client samp	oling date / time	06-Jul-2022 15:20	06-Jul-2022 16:50	06-Jul-2022 12:55	06-Jul-2022 12:45	06-Jul-2022 11:40
Analyte	CAS Number	Method	LOR	Unit	YL2200852-001	YL2200852-002	YL2200852-003	YL2200852-004	YL2200852-005
					Result	Result	Result	Result	Result
Physical Tests									
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	104	136	95.4	93.2	104
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	6.2	<1.0	18.0	20.0	8.0
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	3.1	<1.0	9.0	10.0	4.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	110	136	113	113	112
conductivity		E100	2.0	μS/cm	468	600	462	462	483
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	143	151	146	146	140
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	132	142	136	136	135
рН		E108	0.10	pH units	8.40	7.94	8.79	8.85	8.48
solids, total dissolved [TDS]		E162	10	mg/L	236	308	232	262	263
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	248	313	251	252	245
solids, total suspended [TSS]		E160	3.0	mg/L	11.4	<3.0	13.0	12.2	6.8
turbidity		E121	0.10	NTU	12.3	0.42	16.1	13.9	9.06
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0100 RRV	0.0154 RRV	0.0085 RRV	0.0092 RRV	0.0069
chloride	16887-00-6	E235.CI-L	0.10	mg/L	62.2	103	61.6	61.7	60.0
fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.088	0.061	0.077	0.075	0.070
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
nitrogen, total	7727-37-9	E366	0.030	mg/L	0.768	0.754	1.22	1.06	1.08
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0922	0.0097	0.0941	0.0776	0.0890
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0204	0.0086	0.0158	0.0161	0.0182
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	12.6	4.50	12.5	12.5	12.7
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	24.8	7.22	25.5	25.7	24.9
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	13.5	20.7	13.5	13.0	12.6
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0094	0.0166	0.0048	0.0036	<0.0030
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00129	0.00098	0.00129	0.00136	0.00129

Page : 4 of 12 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915


ALS

Sub-Matrix: Water			Cli	ent sample ID	Outflow	Inflow to NW	Northwest Bay	Northwest Bay	MID
(Matrix: Water)						Bay 2	North_Bottom	North_Mid-Dept	Lake1_Bottom
								h	
			Client sample	ing date / time	06-Jul-2022 15:20	06-Jul-2022 16:50	06-Jul-2022 12:55	06-Jul-2022 12:45	06-Jul-2022 11:40
Analyte	CAS Number	Method	LOR	Unit	YL2200852-001	YL2200852-002	YL2200852-003	YL2200852-004	YL2200852-005
					Result	Result	Result	Result	Result
Total Metals									
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0624	0.0364	0.0664	0.0640	0.0587
barium, total	7440-39-3	E420	0.00010	mg/L	0.0271	0.0182	0.0275	0.0267	0.0282
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	<0.000100	<0.000100
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, total	7440-42-8	E420	0.010	mg/L	0.028	0.045	0.027	0.028	0.026
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050
calcium, total	7440-70-2	E420	0.050	mg/L	34.8	37.7	35.4	36.3	36.1
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	0.000018	<0.000010	<0.000010	<0.000010
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	0.00018	<0.00010	<0.00010	<0.00010
copper, total	7440-50-8	E420	0.00050	mg/L	0.00166	0.00124	0.00180	0.00448	0.00145
iron, total	7439-89-6	E420	0.010	mg/L	0.021	0.117	0.015	<0.010	0.013
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	0.000266	<0.000050
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0052	0.0048	0.0053	0.0056	0.0051
magnesium, total	7439-95-4	E420	0.0050	mg/L	11.0	11.6	11.6	10.9	10.8
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0320	0.131	0.0283	0.0129	0.122
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000225	0.000315	0.000220	0.000204	0.000212
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00069	0.00222	0.00063	0.00059	<0.00050
phosphorus, total	7723-14-0	E420	0.050	mg/L	0.066	<0.050	0.099	0.058	0.054
potassium, total	7440-09-7	E420	0.050	mg/L	3.82	3.00	3.93	3.77	3.50
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00238	0.00294	0.00234	0.00240	0.00212
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000064	0.000055	<0.000050	0.000064	<0.000050
silicon, total	7440-21-3	E420	0.10	mg/L	5.75	2.15	5.93	5.90	5.70
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, total	7440-23-5	E420	0.050	mg/L	30.1	55.3	29.2	29.6	27.2
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0952	0.102	0.0902	0.0940	0.0942
sulfur, total	7704-34-9	E420	0.50	mg/L	8.52	3.04	8.68	8.74	8.28
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
I and the second	= 5 .		1	Ŭ		l	I	I	I

Page : 5 of 12 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Page : 6 of 12 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

ALS

Sub-Matrix: Water			Cli	ent sample ID	Outflow	Inflow to NW	Northwest Bay	Northwest Bay	MID
(Matrix: Water)						Bay 2	North_Bottom	North_Mid-Dept h	Lake1_Bottom
			Client samp	ling date / time	06-Jul-2022 15:20	06-Jul-2022 16:50	06-Jul-2022 12:55	06-Jul-2022 12:45	06-Jul-2022 11:40
Analyte	CAS Number	Method	LOR	Unit	YL2200852-001	YL2200852-002	YL2200852-003	YL2200852-004	YL2200852-005
					Result	Result	Result	Result	Result
Dissolved Metals		E 101	0.00000		0.00055	0.00040	0.0000	0.00054	0.00040
rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00255	0.00319	0.00266	0.00251	0.00249
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	0.000062	<0.000050	<0.000050	<0.000050
silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.32	2.35	6.26	6.22	6.30
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, dissolved	7440-23-5	E421	0.050	mg/L	33.4	62.4	34.2	34.1	33.3
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0889	0.100	0.0885	0.0897	0.0911
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	8.47	3.35	8.70	8.58	8.69
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	0.00012
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000489	0.000678	0.000516	0.000524	0.000486
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0013	0.0038	<0.0010	<0.0010	0.0024
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	Field
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field
Aggregate Organics									
oil & grease (gravimetric)		E567	5.0	mg/L			<5.0		
Volatile Organic Compounds [Fuels]									
benzene	71-43-2	E611A	0.50	μg/L			<0.50		
ethylbenzene	100-41-4	E611A	0.50	μg/L			<0.50		
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L			<0.50		
styrene	100-42-5	E611A	0.50	μg/L			<0.50		
toluene	108-88-3	E611A	0.50	μg/L			<0.50		
xylene, m+p-	179601-23-1	E611A	0.40	μg/L			<0.40		
xylene, o-	95-47-6	E611A	0.30	μg/L			<0.30		
xylenes, total	1330-20-7	E611A	0.50	μg/L			<0.50		
Volatile Organic Compounds Surrogates									

Page : 7 of 12 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

ALS

Analytical Results

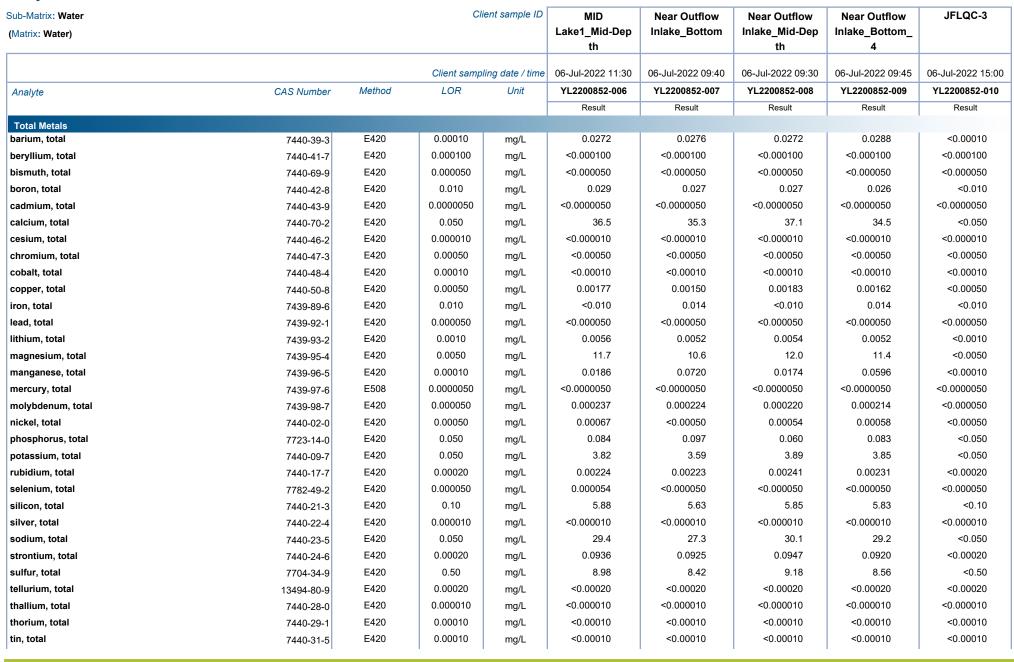
Sub-Matrix: Water			CI	ient sample ID	Outflow	Inflow to NW	Northwest Bay	Northwest Bay	MID
(Matrix: Water)						Bay 2	North_Bottom	North_Mid-Dept h	Lake1_Bottom
			Client samp	ling date / time	06-Jul-2022 15:20	06-Jul-2022 16:50	06-Jul-2022 12:55	06-Jul-2022 12:45	06-Jul-2022 11:40
Analyte	CAS Number	Method	LOR	Unit	YL2200852-001	YL2200852-002	YL2200852-003	YL2200852-004	YL2200852-005
					Result	Result	Result	Result	Result
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611A	1.0	%			91.9		
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%			99.9		
Hydrocarbons									
F1 (C6-C10)		E581.VH+F1	100	μg/L			<100		
F2 (C10-C16)		E601	300	μg/L			<300		
F3 (C16-C34)		E601	300	μg/L			<300		
F4 (C34-C50)		E601	300	μg/L			<300		
VHw (C6-C10)		E581.VH+F1	100	μg/L			<100		
F1-BTEX		EC580	100	μg/L			<100		
VPHw		EC580A	100	μg/L			<100		
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%			89.3		
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%			85.7		

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 8 of 12 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

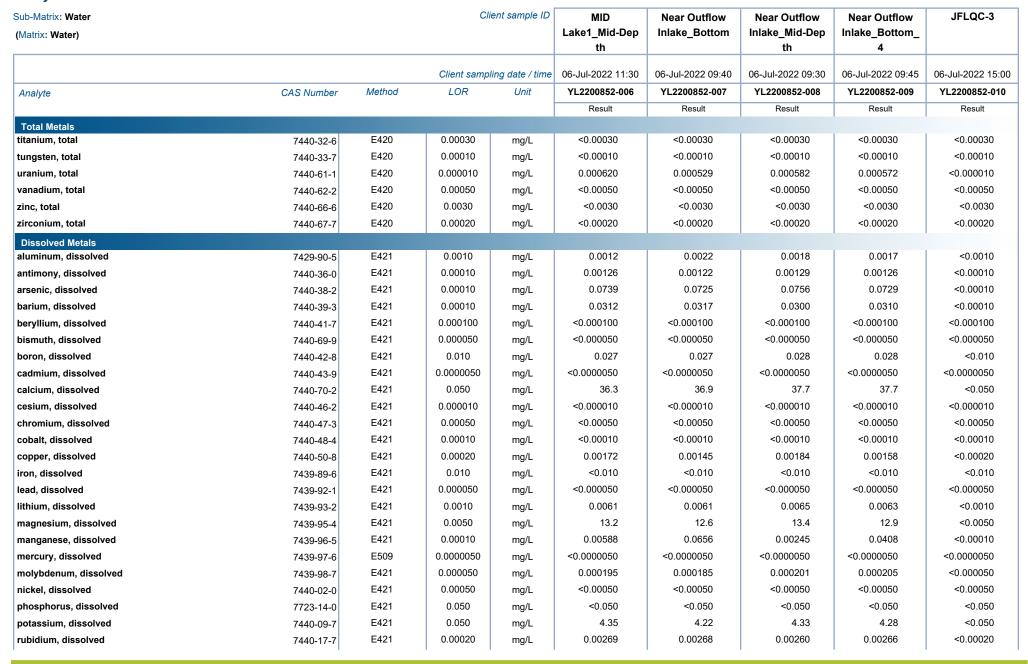

ALS

Sub-Matrix: Water			C	lient sample ID	MID	Near Outflow	Near Outflow	Near Outflow	JFLQC-3
(Matrix: Water)					Lake1_Mid-Dep	Inlake_Bottom	Inlake_Mid-Dep	Inlake_Bottom_	
					th		th	4	
			Client samp	ling date / time	06-Jul-2022 11:30	06-Jul-2022 09:40	06-Jul-2022 09:30	06-Jul-2022 09:45	06-Jul-2022 15:00
Analyte	CAS Number	Method	LOR	Unit	YL2200852-006	YL2200852-007	YL2200852-008	YL2200852-009	YL2200852-010
					Result	Result	Result	Result	Result
Physical Tests									
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	110	103	89.1	105	<1.0
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	7.2	21.8	5.6	<1.0
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	3.6	10.9	2.8	<1.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	110	110	111	110	<1.0
conductivity		E100	2.0	μS/cm	475	483	439	443	<2.0
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	145	144	149	147	<0.60
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	139	132	142	133	<0.60
pH		E108	0.10	pH units	8.29	8.47	8.81	8.36	5.51
solids, total dissolved [TDS]		E162	10	mg/L	264	262	259	274	<10
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	248	247	253	249	<1.0
solids, total suspended [TSS]		E160	3.0	mg/L	14.2	11.8	14.4	12.4	<3.0
turbidity		E121	0.10	NTU	16.2	15.2	16.5	15.7	<0.10
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0487	0.0114 RRV	0.0098 RRV	0.0140	<0.0050
chloride	16887-00-6	E235.CI-L	0.10	mg/L	61.2	60.8	61.9	61.3	<0.10
fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.077	0.077	0.082	0.079	<0.010
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
nitrogen, total	7727-37-9	E366	0.030	mg/L	1.72	1.21	1.21	1.39	<0.030
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.121	0.104	0.0853	0.0453	<0.0020
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0173	0.0177	0.0168	0.0170	<0.0020
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	12.4	12.6	12.4	12.6	<0.50
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	25.3	25.0	25.8	25.2	<0.30
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	12.8	12.5	13.0	12.8	<0.50
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0041	<0.0030	0.0040	0.0044	<0.0030
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00133	0.00127	0.00132	0.00126	<0.00010
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0639	0.0608	0.0649	0.0635	<0.00010
•	'		-	-	'				

Page : 9 of 12 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915



Page : 10 of 12 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Page : 11 of 12 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

ALS

Sub-Matrix: Water			Cli	ent sample ID	MID	Near Outflow	Near Outflow	Near Outflow	JFLQC-3
(Matrix: Water)					Lake1_Mid-Dep	Inlake_Bottom	Inlake_Mid-Dep	Inlake_Bottom_	
					th		th	4	
			Client samp	ling date / time	06-Jul-2022 11:30	06-Jul-2022 09:40	06-Jul-2022 09:30	06-Jul-2022 09:45	06-Jul-2022 15:00
Analyte	CAS Number	Method	LOR	Unit	YL2200852-006	YL2200852-007	YL2200852-008	YL2200852-009	YL2200852-010
					Result	Result	Result	Result	Result
Dissolved Metals									
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.000050
silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.29	6.30	6.32	6.35	<0.050
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, dissolved	7440-23-5	E421	0.050	mg/L	34.2	33.2	34.8	33.5	<0.050
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0901	0.0920	0.0883	0.0922	<0.00020
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	8.85	8.47	9.23	8.96	<0.50
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000512	0.000504	0.000530	0.000516	<0.000010
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	Field
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field
Aggregate Organics									
oil & grease (gravimetric)		E567	5.0	mg/L		<5.0		<5.0	
Volatile Organic Compounds [Fuels]									
benzene	71-43-2	E611A	0.50	μg/L		<0.50		<0.50	
ethylbenzene	100-41-4	E611A	0.50	μg/L		<0.50		<0.50	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L		<0.50		<0.50	
styrene	100-42-5	E611A	0.50	μg/L		<0.50		<0.50	
toluene	108-88-3	E611A	0.50	μg/L		<0.50		<0.50	
xylene, m+p-	179601-23-1	E611A	0.40	μg/L		<0.40		<0.40	
xylene, o-	95-47-6	E611A	0.30	μg/L		<0.30		<0.30	
xylenes, total	1330-20-7	E611A	0.50	μg/L		<0.50		<0.50	
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611A	1.0	%		93.9		95.6	

Page : 12 of 12 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

ALS

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	MID	Near Outflow	Near Outflow	Near Outflow	JFLQC-3
(Matrix: Water)					Lake1_Mid-Dep	Inlake_Bottom	Inlake_Mid-Dep	Inlake_Bottom_	
					th		th	4	
			Client samp	ling date / time	06-Jul-2022 11:30	06-Jul-2022 09:40	06-Jul-2022 09:30	06-Jul-2022 09:45	06-Jul-2022 15:00
Analyte	CAS Number	Method	LOR	Unit	YL2200852-006	YL2200852-007	YL2200852-008	YL2200852-009	YL2200852-010
					Result	Result	Result	Result	Result
Volatile Organic Compounds Surrogates									
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%		100		99.9	
Hydrocarbons									
F1 (C6-C10)		E581.VH+F1	100	μg/L		<100		<100	
F2 (C10-C16)		E601	300	μg/L		<300		<300	
F3 (C16-C34)		E601	300	μg/L		<300		<300	
F4 (C34-C50)		E601	300	μg/L		<300		<300	
VHw (C6-C10)		E581.VH+F1	100	μg/L		<100		<100	
F1-BTEX		EC580	100	μg/L		<100		<100	
VPHw		EC580A	100	μg/L		<100		<100	
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%		83.9		87.0	
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%		86.0		79.3	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **YL2200852** Page : 1 of 36

Client : Golder Associates Ltd. Laboratory : Yellowknife - Environmental

Contact : Kathy Qin Account Manager : Oliver Gregg

Address : 9 - 4905 48th Street Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

: 20-Jul-2022 16:34

Telephone : ---- Telephone : 1 867 446 5593

Project : 21482915 Date Samples Received : 07-Jul-2022 10:05

PO : ---C-O-C number : ---Sampler : ----

Yellowknife NT Canada X1A 3S3

Site : Jackfish NTPC
Quote number : YL21-GOLD100-008

No. of samples received : 10

No. of samples analysed : 10

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Issue Date

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 36
Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Anions and Nutrients	QC-560480-001		ammonia, total (as N)	7664-41-7	E298	0.0336 B	0.005 mg/L	Blank result exceeds
						mg/L		permitted value

Result Qualifiers

Qualifier Description

B Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.

Laboratory Control Sample	e (LCS) Recoveries					
Physical Tests	QC-559133-002	 alkalinity, phenolphthalein	 E290	130 % LCS-H	75.0-125%	Recovery greater than
		(as CaCO3)				upper control limit

Result Qualifiers

Qualifier	Description
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.

Page : 4 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext							
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
Near Outflow Inlake_Bottom	E567	06-Jul-2022	13-Jul-2022	28	7 days	✓	13-Jul-2022	40 days	0 days	✓
				days						
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
Near Outflow Inlake_Bottom_4	E567	06-Jul-2022	13-Jul-2022	28	7 days	✓	13-Jul-2022	40 days	0 days	✓
				days						
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
Northwest Bay North_Bottom	E567	06-Jul-2022	13-Jul-2022	28	7 days	✓	13-Jul-2022	40 days	0 days	✓
				days						
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
Inflow to NW Bay 2	E298	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
JFLQC-3	E298	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
MID Lake1_Bottom	E298	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
MID Lake1_Mid-Depth	E298	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓

Page : 5 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Anions and Nutrients : Chloride in Water by IC (Low Level)

HDPE

MID Lake1 Bottom

Project : 21482915

✓

28 days 6 days

12-Jul-2022

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) 13-Jul-2022 E298 06-Jul-2022 14-Jul-2022 28 days 8 days ✓ Near Outflow Inlake_Bottom Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) E298 06-Jul-2022 ✓ Near Outflow Inlake_Bottom_4 13-Jul-2022 14-Jul-2022 28 days 8 days ----Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) E298 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days 8 days 1 Near Outflow Inlake Mid-Depth Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) E298 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days 8 days Northwest Bay North Bottom Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) E298 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days 8 days Northwest Bay North_Mid-Depth Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) Outflow E298 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days 8 davs ✓ Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE Inflow to NW Bay 2 E235.CI-L 06-Jul-2022 12-Jul-2022 28 days 6 days 1 Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE ✓ E235.CI-L 28 days 6 days JFLQC-3 06-Jul-2022 12-Jul-2022

06-Jul-2022

E235.CI-L

Page : 6 of 36
Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	ate Holding Time		Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE MID Lake1_Mid-Depth	E235.CI-L	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE Near Outflow Inlake_Bottom	E235.CI-L	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE Near Outflow Inlake_Bottom_4	E235.CI-L	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE Near Outflow Inlake_Mid-Depth	E235.CI-L	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE Northwest Bay North_Bottom	E235.CI-L	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE Northwest Bay North_Mid-Depth	E235.CI-L	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE Outflow	E235.CI-L	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Fluoride in Water by IC (Low Level)										
HDPE Inflow to NW Bay 2	E235.F-L	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Fluoride in Water by IC (Low Level)										
HDPE JFLQC-3	E235.F-L	06-Jul-2022					12-Jul-2022	28 days	6 days	✓

Page : 7 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date **Holding Times** Eval Actual Rec Actual Date Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE MID Lake1_Bottom E235.F-L 06-Jul-2022 12-Jul-2022 28 days 6 days Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 06-Jul-2022 ✓ MID Lake1_Mid-Depth 12-Jul-2022 28 days 6 days ----Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 06-Jul-2022 12-Jul-2022 28 days 6 days 1 Near Outflow Inlake Bottom Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 12-Jul-2022 28 days 6 days Near Outflow Inlake Bottom 4 06-Jul-2022 Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 06-Jul-2022 12-Jul-2022 28 days 6 days Near Outflow Inlake Mid-Depth Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 06-Jul-2022 12-Jul-2022 28 days ✓ Northwest Bay North_Bottom 6 davs Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE Northwest Bay North Mid-Depth E235.F-L 06-Jul-2022 12-Jul-2022 28 days 6 days 1 Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L ✓ Outflow 06-Jul-2022 12-Jul-2022 28 days 6 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 06-Jul-2022 12-Jul-2022 Inflow to NW Bay 2 3 days 6 days 30 ----EHT

Page : 8 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE JFLQC-3 E235.NO3-L 06-Jul-2022 12-Jul-2022 3 days 6 days æ EHT Anions and Nutrients: Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 06-Jul-2022 MID Lake1 Bottom 12-Jul-2022 3 days 6 days × ----EHT Anions and Nutrients: Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 06-Jul-2022 12-Jul-2022 3 days 6 days 36 MID Lake1 Mid-Depth EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 06-Jul-2022 12-Jul-2022 3 days Near Outflow Inlake Bottom 6 days æ EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 06-Jul-2022 12-Jul-2022 6 days æ Near Outflow Inlake Bottom 4 3 days EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 06-Jul-2022 12-Jul-2022 Near Outflow Inlake_Mid-Depth 3 davs 6 days æ EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE Northwest Bay North Bottom E235.NO3-L 06-Jul-2022 12-Jul-2022 3 days 6 days * EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE Northwest Bay North Mid-Depth E235.NO3-L 06-Jul-2022 12-Jul-2022 3 days 6 days × EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 06-Jul-2022 12-Jul-2022 3 days 6 days Outflow 30 ----EHT

Page : 9 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE Inflow to NW Bay 2 E235.NO2-L 06-Jul-2022 12-Jul-2022 3 days 6 days * EHT Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE E235.NO2-L 06-Jul-2022 JFLQC-3 12-Jul-2022 3 days 6 days × ----EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE E235.NO2-L 06-Jul-2022 12-Jul-2022 3 days 6 days 36 MID Lake1 Bottom EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE 3 days E235.NO2-L 12-Jul-2022 MID Lake1 Mid-Depth 06-Jul-2022 6 days æ EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE E235.NO2-L 06-Jul-2022 12-Jul-2022 6 days æ Near Outflow Inlake Bottom 3 days EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE E235.NO2-L 06-Jul-2022 12-Jul-2022 Near Outflow Inlake_Bottom_4 3 davs 6 days æ EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE Near Outflow Inlake Mid-Depth E235.NO2-L 06-Jul-2022 12-Jul-2022 3 days 6 days * EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE Northwest Bay North Bottom E235.NO2-L 06-Jul-2022 12-Jul-2022 3 days 6 days × EHT Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE E235.NO2-L 06-Jul-2022 12-Jul-2022 3 days 6 days Northwest Bay North Mid-Depth 30 ----EHT

Page : 10 of 36
Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date						Analys		
Container / Client Sample ID(s)			Preparation	Holding Times Eval		Analysis Date			Eval	
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE Outflow	E235.NO2-L	06-Jul-2022					12-Jul-2022	3 days	6 days	* EHT
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE Inflow to NW Bay 2	E392	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE JFLQC-3	E392	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE MID Lake1_Bottom	E392	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE MID Lake1_Mid-Depth	E392	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE Near Outflow Inlake_Bottom	E392	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE Near Outflow Inlake_Bottom_4	E392	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE Near Outflow Inlake_Mid-Depth	E392	06-Jul-2022					12-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE Northwest Bay North_Bottom	E392	06-Jul-2022					12-Jul-2022	28 days	6 days	✓

Page : 11 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time Matrix: Water Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Actual Date Anions and Nutrients: Reactive Silica by Colourimetry HDPE E392 06-Jul-2022 12-Jul-2022 28 days 6 days ✓ Northwest Bay North_Mid-Depth Anions and Nutrients: Reactive Silica by Colourimetry HDPE E392 06-Jul-2022 1 Outflow 12-Jul-2022 28 days 6 days ----Anions and Nutrients : Sulfate in Water by IC HDPE Inflow to NW Bay 2 E235.SO4 06-Jul-2022 12-Jul-2022 28 days 6 days 1 Anions and Nutrients : Sulfate in Water by IC HDPE JFLQC-3 E235.SO4 06-Jul-2022 12-Jul-2022 28 days 6 days Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 06-Jul-2022 12-Jul-2022 28 days 6 days MID Lake1_Bottom Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 06-Jul-2022 12-Jul-2022 28 days 6 days ✓ MID Lake1_Mid-Depth Anions and Nutrients : Sulfate in Water by IC HDPE Near Outflow Inlake Bottom E235.SO4 06-Jul-2022 12-Jul-2022 28 days 6 days 1 Anions and Nutrients : Sulfate in Water by IC HDPE 28 days 6 days E235.SO4 ✓ Near Outflow Inlake_Bottom_4 06-Jul-2022 12-Jul-2022 Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 06-Jul-2022 12-Jul-2022 ✓ 28 days 6 days Near Outflow Inlake Mid-Depth ----

Page : 12 of 36
Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

water						uluulloll.	noiding time excee	Judinoo ,	***************************************	riolanig riii	
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation		Analysis				
Container / Client Sample ID(s)			Preparation Holding Times		Eval	Analysis Date	Holding Times		Eval		
			Date	Rec	Actual			Rec	Actual		
Anions and Nutrients : Sulfate in Water by IC											
HDPE											
Northwest Bay North_Bottom	E235.SO4	06-Jul-2022					12-Jul-2022	28 days	6 days	✓	
Anions and Nutrients : Sulfate in Water by IC											
HDPE											
Northwest Bay North_Mid-Depth	E235.SO4	06-Jul-2022					12-Jul-2022	28 days	6 days	✓	
Anions and Nutrients : Sulfate in Water by IC											
HDPE											
Outflow	E235.SO4	06-Jul-2022					12-Jul-2022	28 days	6 days	✓	
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass dissolved (sulfuric acid)											
Inflow to NW Bay 2	E375-T	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓	
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass dissolved (sulfuric acid)											
JFLQC-3	E375-T	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓	
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass dissolved (sulfuric acid)											
MID Lake1_Bottom	E375-T	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓	
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass dissolved (sulfuric acid)											
MID Lake1_Mid-Depth	E375-T	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓	
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass dissolved (sulfuric acid)											
Near Outflow Inlake_Bottom	E375-T	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓	
_											
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass dissolved (sulfuric acid)											
Near Outflow Inlake_Bottom_4	E375-T	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓	
	I .						I		-		

Page : 13 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Matrix: Water					Eva	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid)										
Near Outflow Inlake_Mid-Depth	E375-T	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid)										
Northwest Bay North_Bottom	E375-T	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass dissolved (sulfuric acid)	E375-T	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	√
Northwest Bay North_Mid-Depth	E373-1	00-Jui-2022	13-Jul-2022				14-Jui-2022	20 uays	o uays	•
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid)							I			
Outflow	E375-T	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓
Cullon		00 04: 2022	.0 04. 2022					o aayo	o dayo	
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										
Inflow to NW Bay 2	E366	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										
JFLQC-3	E366	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)										
MID Lake1_Bottom	E366	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)	E366	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	√
MID Lake1_Mid-Depth	E300	00-Jui-2022	13-Jul-2022				14-Jui-2022	20 uays	o uays	•
Asiana and National at Table Nilson and Inc. Colombia at the										
Anions and Nutrients : Total Nitrogen by Colourimetry Amber glass total (sulfuric acid)										
Near Outflow Inlake_Bottom	E366	06-Jul-2022	13-Jul-2022				14-Jul-2022	28 days	8 days	✓
··· ·			-					- ,-	, ,	

Page : 14 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date **Anions and Nutrients : Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) 06-Jul-2022 13-Jul-2022 14-Jul-2022 E366 28 days 8 days ✓ Near Outflow Inlake_Bottom_4 Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) 06-Jul-2022 ✓ Near Outflow Inlake Mid-Depth E366 13-Jul-2022 14-Jul-2022 28 days 8 days ----Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) E366 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days 8 days 1 Northwest Bay North Bottom Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) 14-Jul-2022 28 days 8 days ✓ Northwest Bay North Mid-Depth E366 06-Jul-2022 13-Jul-2022 Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) E366 06-Jul-2022 13-Jul-2022 14-Jul-2022 Outflow 28 days 8 days Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days ✓ Inflow to NW Bay 2 8 davs Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) JFLQC-3 E372-U 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days 8 days 1 Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) ✓ E372-U MID Lake1 Bottom 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days 8 days Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U 06-Jul-2022 13-Jul-2022 ✓ MID Lake1 Mid-Depth 14-Jul-2022 28 days 8 days --------

Page : 15 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) 06-Jul-2022 13-Jul-2022 14-Jul-2022 E372-U 28 days 8 days ✓ Near Outflow Inlake_Bottom Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U 06-Jul-2022 ✓ Near Outflow Inlake Bottom 4 13-Jul-2022 14-Jul-2022 28 days 8 days ----Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days 8 days 1 Near Outflow Inlake Mid-Depth Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U 14-Jul-2022 28 days 8 days Northwest Bay North Bottom 06-Jul-2022 13-Jul-2022 Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U 06-Jul-2022 13-Jul-2022 14-Jul-2022 Northwest Bay North Mid-Depth 28 days 8 days Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days ✓ Outflow 8 davs **Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) Inflow to NW Bay 2 E509 06-Jul-2022 14-Jul-2022 14-Jul-2022 28 days 8 days 1 **Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) ✓ JFLQC-3 E509 06-Jul-2022 14-Jul-2022 14-Jul-2022 28 days 8 days **Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) E509 06-Jul-2022 14-Jul-2022 ✓ MID Lake1 Bottom 14-Jul-2022 28 days 8 days ----

Page : 16 of 36
Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	te Extraction / Preparation					Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) MID Lake1_Mid-Depth	E509	06-Jul-2022	14-Jul-2022				14-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) Near Outflow Inlake_Bottom	E509	06-Jul-2022	14-Jul-2022				14-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) Near Outflow Inlake_Bottom_4	E509	06-Jul-2022	14-Jul-2022				14-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) Near Outflow Inlake_Mid-Depth	E509	06-Jul-2022	14-Jul-2022				14-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) Northwest Bay North_Bottom	E509	06-Jul-2022	14-Jul-2022				14-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) Northwest Bay North_Mid-Depth	E509	06-Jul-2022	14-Jul-2022				14-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) Outflow	E509	06-Jul-2022	14-Jul-2022				14-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) Inflow to NW Bay 2	E421	06-Jul-2022	12-Jul-2022				12-Jul-2022	180 days	5 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) JFLQC-3	E421	06-Jul-2022	12-Jul-2022				12-Jul-2022	180 days	6 days	✓

Page : 17 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ex	traction / P	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS				_						
HDPE dissolved (nitric acid) MID Lake1_Bottom	E421	06-Jul-2022	12-Jul-2022				12-Jul-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) MID Lake1_Mid-Depth	E421	06-Jul-2022	12-Jul-2022				12-Jul-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) Near Outflow Inlake_Bottom	E421	06-Jul-2022	12-Jul-2022				12-Jul-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) Near Outflow Inlake_Bottom_4	E421	06-Jul-2022	12-Jul-2022				12-Jul-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) Near Outflow Inlake_Mid-Depth	E421	06-Jul-2022	12-Jul-2022				12-Jul-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) Northwest Bay North_Bottom	E421	06-Jul-2022	12-Jul-2022				12-Jul-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) Northwest Bay North_Mid-Depth	E421	06-Jul-2022	12-Jul-2022				12-Jul-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) Outflow	E421	06-Jul-2022	12-Jul-2022				12-Jul-2022	180 days	6 days	✓
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) Near Outflow Inlake_Bottom	E601	06-Jul-2022	12-Jul-2022	14 days	6 days	✓	13-Jul-2022	40 days	1 days	✓

Page : 18 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Hydrocarbons: CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) 06-Jul-2022 12-Jul-2022 13-Jul-2022 E601 6 days ✓ 40 days 1 days ✓ Near Outflow Inlake_Bottom_4 14 days Hydrocarbons: CCME PHCs - F2-F4 by GC-FID Amber glass/Teflon lined cap (sodium bisulfate) 06-Jul-2022 1 ✓ Northwest Bay North Bottom E601 12-Jul-2022 14 6 days 13-Jul-2022 40 days 1 days days Hydrocarbons: VH and F1 by Headspace GC-FID Glass vial (sodium bisulfate) E581.VH+F1 06-Jul-2022 15-Jul-2022 16-Jul-2022 14 days 9 days 1 Near Outflow Inlake Bottom Hydrocarbons : VH and F1 by Headspace GC-FID Glass vial (sodium bisulfate) E581.VH+F1 06-Jul-2022 16-Jul-2022 14 days 9 days ✓ Near Outflow Inlake Bottom 4 15-Jul-2022 Hydrocarbons: VH and F1 by Headspace GC-FID Glass vial (sodium bisulfate) E581.VH+F1 06-Jul-2022 15-Jul-2022 16-Jul-2022 Northwest Bay North Bottom 14 days 9 days Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days ✓ Inflow to NW Bay 2 7 davs Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) JFLQC-3 E358-L 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days 7 days 1 Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) ✓ E358-L MID Lake1 Bottom 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days 7 days Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 06-Jul-2022 13-Jul-2022 ✓ MID Lake1_Mid-Depth 14-Jul-2022 28 days 7 days --------

Page : 19 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) 13-Jul-2022 14-Jul-2022 E358-L 06-Jul-2022 28 days 7 days ✓ Near Outflow Inlake_Bottom Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 06-Jul-2022 ✓ Near Outflow Inlake Bottom 4 13-Jul-2022 14-Jul-2022 28 days 7 days ----Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days 7 days 1 Near Outflow Inlake Mid-Depth Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 06-Jul-2022 14-Jul-2022 28 days 7 days Northwest Bay North Bottom 13-Jul-2022 Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days 7 days Northwest Bay North Mid-Depth Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 06-Jul-2022 13-Jul-2022 14-Jul-2022 28 days ✓ Outflow 7 davs Physical Tests : Alkalinity Species by Titration HDPE JFLQC-3 F290 06-Jul-2022 12-Jul-2022 14 days 6 days 1 Physical Tests: Alkalinity Species by Titration HDPE ✓ Inflow to NW Bay 2 E290 06-Jul-2022 13-Jul-2022 14 days 7 days Physical Tests : Alkalinity Species by Titration HDPE E290 06-Jul-2022 ✓ 13-Jul-2022 14 days 7 days MID Lake1 Bottom ----

Page 20 of 36 YL2200852 Work Order

Client : Golder Associates Ltd. : 21482915

Project

atrix: Water			_	1		aiuation: 🗴 =	Holding time exce			Holding
Analyte Group	Method	Sampling Date		traction / Pr				Analys		
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Physical Tests : Alkalinity Species by Titration			Buto							
HDPE										
MID Lake1_Mid-Depth	E290	06-Jul-2022					13-Jul-2022	14 days	7 days	✓
Physical Tests : Alkalinity Species by Titration										-
HDPE										
Near Outflow Inlake_Bottom	E290	06-Jul-2022					13-Jul-2022	14 days	7 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
Near Outflow Inlake_Bottom_4	E290	06-Jul-2022					12-Jul-2022	14 days	7 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
Near Outflow Inlake_Mid-Depth	E290	06-Jul-2022					12-Jul-2022	14 days	7 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE	E290	06 101 2022					42 1.1 2022	44 4	7 -1	1
Northwest Bay North_Bottom	E290	06-Jul-2022					13-Jul-2022	14 days	7 days	,
Physical Tests : Alkalinity Species by Titration										
HDPE Northwest Pay North Mid Donth	E290	06-Jul-2022					13-Jul-2022	14 days	7 days	✓
Northwest Bay North_Mid-Depth	E290	00-Jui-2022					13-Jul-2022	14 uays	r uays	,
Physical Tests : Alkalinity Species by Titration										
HDPE Outflow	E290	06-Jul-2022					13-Jul-2022	14 days	7 days	
Outnow	L290	00-Jui-2022					13-Jul-2022	14 uays	r uays	,
hysical Tests : Conductivity in Water										
HDPE JFLQC-3	E100	06-Jul-2022					12-Jul-2022	28 days	6 days	/
or Egg-o	2100	00-341-2022					12-041-2022	20 days	Juays	,
Physical Tests : Conductivity in Water										
HDPE Inflow to NW Bay 2	E100	06-Jul-2022					13-Jul-2022	28 days	7 days	
illion to IVV Day 2	2100	00-041-2022					10-041-2022	_o days	, auys	·

Page : 21 of 36
Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: **Water** Evaluation: **×** = Holding time exceedance ; **√** = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE MID Lake1_Bottom	E100	06-Jul-2022					13-Jul-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE MID Lake1_Mid-Depth	E100	06-Jul-2022					13-Jul-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE Near Outflow Inlake_Bottom	E100	06-Jul-2022					13-Jul-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE Near Outflow Inlake_Bottom_4	E100	06-Jul-2022					12-Jul-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE Near Outflow Inlake_Mid-Depth	E100	06-Jul-2022					12-Jul-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE Northwest Bay North_Bottom	E100	06-Jul-2022					13-Jul-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE Northwest Bay North_Mid-Depth	E100	06-Jul-2022					13-Jul-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE Outflow	E100	06-Jul-2022					13-Jul-2022	28 days	7 days	✓
Physical Tests : pH by Meter										
HDPE JFLQC-3	E108	06-Jul-2022					12-Jul-2022	0.25 hrs	152 hrs	* EHTR-FM

Page : 22 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Date Rec Actual Actual Physical Tests : pH by Meter HDPE Near Outflow Inlake_Bottom_4 E108 06-Jul-2022 12-Jul-2022 157 hrs æ 0.25 EHTR-FM hrs Physical Tests : pH by Meter HDPE 06-Jul-2022 Near Outflow Inlake_Mid-Depth E108 12-Jul-2022 0.25 158 hrs × --------EHTR-FM hrs Physical Tests : pH by Meter HDPE Inflow to NW Bay 2 E108 06-Jul-2022 13-Jul-2022 171 hrs 30 0.25 EHTR-FM hrs Physical Tests : pH by Meter HDPE E108 06-Jul-2022 13-Jul-2022 173 hrs Outflow 0.25 EHTR-FM hrs Physical Tests : pH by Meter HDPE 13-Jul-2022 E108 06-Jul-2022 175 hrs æ Northwest Bay North_Bottom 0.25 EHTR-FM hrs Physical Tests : pH by Meter HDPE E108 06-Jul-2022 13-Jul-2022 175 hrs Northwest Bay North_Mid-Depth 0.25 hrs EHTR-FM Physical Tests : pH by Meter HDPE MID Lake1 Bottom E108 06-Jul-2022 13-Jul-2022 176 hrs 0.25 hrs EHTR-FM Physical Tests : pH by Meter HDPE MID Lake1_Mid-Depth E108 13-Jul-2022 177 hrs 06-Jul-2022 0.25 EHTR-FM hrs Physical Tests : pH by Meter HDPE E108 06-Jul-2022 13-Jul-2022 178 hrs Near Outflow Inlake Bottom x ----0.25 ----EHTR-FM hrs

Page : 23 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Date Rec Actual Actual **Physical Tests: TDS by Gravimetry** HDPE Inflow to NW Bay 2 E162 06-Jul-2022 13-Jul-2022 7 days 7 days ✓ **Physical Tests: TDS by Gravimetry** HDPE 06-Jul-2022 1 JFLQC-3 E162 13-Jul-2022 7 days 7 days --------Physical Tests : TDS by Gravimetry HDPE MID Lake1 Bottom E162 06-Jul-2022 13-Jul-2022 7 days 7 days ✓ **Physical Tests: TDS by Gravimetry** HDPE E162 06-Jul-2022 13-Jul-2022 7 days 7 days ✓ MID Lake1_Mid-Depth **Physical Tests: TDS by Gravimetry** HDPE 7 days E162 06-Jul-2022 13-Jul-2022 7 days ✓ Near Outflow Inlake_Bottom **Physical Tests: TDS by Gravimetry** HDPE E162 06-Jul-2022 13-Jul-2022 7 days ✓ Near Outflow Inlake_Bottom_4 7 days **Physical Tests: TDS by Gravimetry** HDPE Near Outflow Inlake_Mid-Depth E162 06-Jul-2022 13-Jul-2022 7 days 7 days 1 **Physical Tests: TDS by Gravimetry** HDPE ✓ 13-Jul-2022 7 days Northwest Bay North_Bottom E162 06-Jul-2022 7 days **Physical Tests: TDS by Gravimetry** HDPE E162 06-Jul-2022 13-Jul-2022 ✓ Northwest Bay North Mid-Depth 7 days 7 days --------

Page : 24 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Date Rec Actual Actual **Physical Tests: TDS by Gravimetry** HDPE Outflow E162 06-Jul-2022 13-Jul-2022 7 days 7 days ✓ **Physical Tests: TSS by Gravimetry** HDPE 06-Jul-2022 1 Inflow to NW Bay 2 E160 13-Jul-2022 7 days 7 days --------Physical Tests : TSS by Gravimetry HDPE JFLQC-3 E160 06-Jul-2022 13-Jul-2022 7 days 7 days ✓ **Physical Tests: TSS by Gravimetry** HDPE E160 06-Jul-2022 13-Jul-2022 7 days 7 days ✓ MID Lake1 Bottom **Physical Tests: TSS by Gravimetry** HDPE 7 days E160 06-Jul-2022 13-Jul-2022 7 days ✓ MID Lake1_Mid-Depth Physical Tests: TSS by Gravimetry HDPE E160 06-Jul-2022 13-Jul-2022 7 days 7 days ✓ Near Outflow Inlake_Bottom **Physical Tests: TSS by Gravimetry** HDPE Near Outflow Inlake_Bottom_4 E160 06-Jul-2022 13-Jul-2022 7 days 7 days 1 **Physical Tests: TSS by Gravimetry** HDPE ✓ 13-Jul-2022 7 days Near Outflow Inlake_Mid-Depth E160 06-Jul-2022 7 days **Physical Tests: TSS by Gravimetry** HDPE E160 06-Jul-2022 13-Jul-2022 ✓ Northwest Bay North Bottom 7 days 7 days ----

Page : 25 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

EHT

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time Matrix: Water Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Date Rec Actual Actual Physical Tests: TSS by Gravimetry HDPE E160 06-Jul-2022 13-Jul-2022 7 days 7 days ✓ Northwest Bay North_Mid-Depth **Physical Tests: TSS by Gravimetry** HDPE 06-Jul-2022 1 Outflow E160 13-Jul-2022 7 days 7 days --------Physical Tests : Turbidity by Nephelometry HDPE Inflow to NW Bay 2 E121 06-Jul-2022 13-Jul-2022 3 days 7 days æ EHT **Physical Tests: Turbidity by Nephelometry** HDPE JFLQC-3 E121 06-Jul-2022 13-Jul-2022 3 days 7 days æ EHT **Physical Tests: Turbidity by Nephelometry** HDPE 3 days E121 06-Jul-2022 13-Jul-2022 7 days æ MID Lake1_Bottom EHT **Physical Tests: Turbidity by Nephelometry** HDPE E121 06-Jul-2022 13-Jul-2022 3 days MID Lake1_Mid-Depth 7 days æ EHT **Physical Tests: Turbidity by Nephelometry** HDPE Near Outflow Inlake Bottom E121 06-Jul-2022 13-Jul-2022 3 days 7 days * EHT Physical Tests : Turbidity by Nephelometry HDPE E121 13-Jul-2022 Near Outflow Inlake Bottom 4 06-Jul-2022 3 days 7 days 30 EHT **Physical Tests: Turbidity by Nephelometry** HDPE E121 06-Jul-2022 13-Jul-2022 3 days 7 days x Near Outflow Inlake Mid-Depth ----

Page : 26 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date **Physical Tests: Turbidity by Nephelometry** HDPE E121 06-Jul-2022 13-Jul-2022 3 days 7 days æ Northwest Bay North_Bottom EHT **Physical Tests: Turbidity by Nephelometry** HDPE 06-Jul-2022 Northwest Bay North_Mid-Depth E121 13-Jul-2022 3 days 7 days × ----EHT Physical Tests: Turbidity by Nephelometry HDPE Outflow E121 06-Jul-2022 13-Jul-2022 3 days 7 days 36 EHT **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) E508 14-Jul-2022 28 days 8 days Inflow to NW Bay 2 06-Jul-2022 **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) JFLQC-3 E508 06-Jul-2022 14-Jul-2022 28 days 8 days **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) E508 06-Jul-2022 14-Jul-2022 28 days 8 days ✓ MID Lake1_Bottom Total Metals: Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid) MID Lake1 Mid-Depth E508 06-Jul-2022 14-Jul-2022 28 days 8 days 1 **Total Metals : Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) ✓ 14-Jul-2022 28 days 8 days Near Outflow Inlake Bottom E508 06-Jul-2022 **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) E508 06-Jul-2022 14-Jul-2022 ✓ Near Outflow Inlake Bottom 4 28 days 8 days

Page : 27 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) 06-Jul-2022 Near Outflow Inlake_Mid-Depth E508 14-Jul-2022 28 days 8 days ✓ **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) 06-Jul-2022 ✓ Northwest Bay North Bottom E508 14-Jul-2022 28 days 8 days ----Total Metals: Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid) Northwest Bay North Mid-Depth E508 06-Jul-2022 14-Jul-2022 28 days 8 days 1 **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) E508 14-Jul-2022 28 days 8 days Outflow 06-Jul-2022 Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) E420 06-Jul-2022 13-Jul-2022 7 days ✓ Inflow to NW Bay 2 180 days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) JFLQC-3 E420 06-Jul-2022 13-Jul-2022 ✓ 180 7 days days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) MID Lake1 Bottom E420 06-Jul-2022 13-Jul-2022 7 days 1 180 days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) ✓ 13-Jul-2022 MID Lake1 Mid-Depth E420 06-Jul-2022 180 7 days days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) E420 06-Jul-2022 13-Jul-2022 ✓ Near Outflow Inlake Bottom 7 days 180 days

Page : 28 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method Sampling Date Extraction / Preparation							Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
Near Outflow Inlake_Bottom_4	E420	06-Jul-2022					13-Jul-2022	180	7 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
Near Outflow Inlake_Mid-Depth	E420	06-Jul-2022					13-Jul-2022	180	7 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
Northwest Bay North_Bottom	E420	06-Jul-2022					13-Jul-2022	180	7 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
Northwest Bay North_Mid-Depth	E420	06-Jul-2022					13-Jul-2022	180	7 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
Outflow	E420	06-Jul-2022					13-Jul-2022	180	7 days	✓
								days		
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										
Near Outflow Inlake_Bottom	E611A	06-Jul-2022	15-Jul-2022				16-Jul-2022	14 days	9 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)	E044:	00.1.1.0055								,
Near Outflow Inlake_Bottom_4	E611A	06-Jul-2022	15-Jul-2022				16-Jul-2022	14 days	9 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate)										,
Northwest Bay North_Bottom	E611A	06-Jul-2022	15-Jul-2022				16-Jul-2022	14 days	9 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 29 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	558646	2	34	5.8	5.0	1
Ammonia by Fluorescence	E298	560480	1	16	6.2	5.0	✓
BTEX by Headspace GC-MS	E611A	565013	1	12	8.3	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	558642	2	11	18.1	5.0	√
Conductivity in Water	E100	558643	2	34	5.8	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	561783	1	17	5.8	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	558237	1	15	6.6	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	560481	1	10	10.0	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	558641	2	10	20.0	5.0	<u>√</u>
Nitrate in Water by IC (Low Level)	E235.NO3-L	558635	2	33	6.0	5.0	
Nitrite in Water by IC (Low Level)	E235.NO2-L	558636	2	36	5.5	5.0	<u> </u>
pH by Meter	E108	558644	2	37	5.4	5.0	
Reactive Silica by Colourimetry	E392	559494	1	20	5.0	5.0	
Sulfate in Water by IC	E235.SO4	558634	2	36	5.5	5.0	<u> </u>
TDS by Gravimetry	E162	560676	1	14	7.1	5.0	
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	560482	1	10	10.0	5.0	<u> </u>
Total Mercury in Water by CVAAS	E508	561746	2	32	6.2	5.0	<u> </u>
Total Metals in Water by CRC ICPMS	E420	558589	1	18	5.5	5.0	
Total Nitrogen by Colourimetry	E366	560478	1	12	8.3	5.0	<u>√</u>
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	560479	1	13	7.6	5.0	
TSS by Gravimetry	E160	560670	1	13	7.6	5.0	<u> </u>
Turbidity by Nephelometry	E121	560164	1	20	5.0	5.0	<u>√</u>
VH and F1 by Headspace GC-FID	E581.VH+F1	565012	1	10	10.0	5.0	
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	558646	2	34	5.8	5.0	1
Ammonia by Fluorescence	E298	560480	1	16	6.2	5.0	<u> </u>
BTEX by Headspace GC-MS	E611A	565013	1	12	8.3	5.0	<u> </u>
CCME PHCs - F2-F4 by GC-FID	E601	558679	1	5	20.0	5.0	
Chloride in Water by IC (Low Level)	E235.CI-L	558642	2	11	18.1	5.0	<u> </u>
Conductivity in Water	E100	558643	2	34	5.8	5.0	
Dissolved Mercury in Water by CVAAS	E509	561783	1	17	5.8	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	558237	1	15	6.6	5.0	<u> </u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	560481	1	10	10.0	5.0	<u> </u>
Fluoride in Water by IC (Low Level)	E235.F-L	558641	2	10	20.0	5.0	<u> </u> ✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	558635	2	33	6.0	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	558636	2	36	5.5	5.0	<u> </u>
Oil & Grease by Gravimetry	E567	560940	1	9	11.1	5.0	<u> </u>

Page : 30 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Quality Control Sample Type			Co	ount)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
pH by Meter	E108	558644	2	37	5.4	5.0	1
Reactive Silica by Colourimetry	E392	559494	1	20	5.0	5.0	1
Sulfate in Water by IC	E235.SO4	558634	2	36	5.5	5.0	1
TDS by Gravimetry	E162	560676	1	14	7.1	5.0	1
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	560482	1	10	10.0	5.0	1
Total Mercury in Water by CVAAS	E508	561746	2	32	6.2	5.0	1
Total Metals in Water by CRC ICPMS	E420	558589	1	18	5.5	5.0	1
Total Nitrogen by Colourimetry	E366	560478	1	12	8.3	5.0	1
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	560479	1	13	7.6	5.0	_
TSS by Gravimetry	E160	560670	1	13	7.6	5.0	1
Turbidity by Nephelometry	E121	560164	1	20	5.0	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	565012	1	10	10.0	5.0	_
Method Blanks (MB)							-
Alkalinity Species by Titration	E290	558646	2	34	5.8	5.0	1
Ammonia by Fluorescence	E298	560480	1	16	6.2	5.0	<u> </u>
BTEX by Headspace GC-MS	E611A	565013	1	12	8.3	5.0	1
CCME PHCs - F2-F4 by GC-FID	E601	558679	1	5	20.0	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	558642	2	11	18.1	5.0	<i>'</i>
Conductivity in Water	E100	558643	2	34	5.8	5.0	1
Dissolved Mercury in Water by CVAAS	E509	561783	1	17	5.8	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	558237	1	15	6.6	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	560481	1	10	10.0	5.0	<u> </u>
Fluoride in Water by IC (Low Level)	E235.F-L	558641	2	10	20.0	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	558635	2	33	6.0	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	558636	2	36	5.5	5.0	<u> </u>
Oil & Grease by Gravimetry	E567	560940	1	9	11.1	5.0	1
Reactive Silica by Colourimetry	E392	559494	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	558634	2	36	5.5	5.0	1
TDS by Gravimetry	E162	560676	1	14	7.1	5.0	_
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	560482	1	10	10.0	5.0	1
Total Mercury in Water by CVAAS	E508	561746	2	32	6.2	5.0	1
Total Metals in Water by CRC ICPMS	E420	558589	1	18	5.5	5.0	1
Total Nitrogen by Colourimetry	E366	560478	1	12	8.3	5.0	1
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	560479	1	13	7.6	5.0	<u> </u>
TSS by Gravimetry	E160	560670	1	13	7.6	5.0	<u> </u>
Turbidity by Nephelometry	E121	560164	1	20	5.0	5.0	√
VH and F1 by Headspace GC-FID	E581.VH+F1	565012	1	10	10.0	5.0	<u> </u>
Matrix Spikes (MS)							-
Ammonia by Fluorescence	E298	560480	1	16	6.2	5.0	1
BTEX by Headspace GC-MS	E611A	565013	1	12	8.3	5.0	✓
, , , , , , , , , , , , , , , , , , , ,	LUTIA	- 300.0	<u> </u>	· -	3.0	3.0	

Page : 31 of 36
Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

Quality Control Sample Type		·	Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Chloride in Water by IC (Low Level)	E235.CI-L	558642	2	11	18.1	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	561783	1	17	5.8	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	558237	1	15	6.6	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	560481	1	10	10.0	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	558641	2	10	20.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	558635	2	33	6.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	558636	2	36	5.5	5.0	✓
Reactive Silica by Colourimetry	E392	559494	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	558634	2	36	5.5	5.0	✓
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	560482	1	10	10.0	5.0	✓
Total Mercury in Water by CVAAS	E508	561746	2	32	6.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	558589	1	18	5.5	5.0	✓
Total Nitrogen by Colourimetry	E366	560478	1	12	8.3	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	560479	1	13	7.6	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	565012	1	10	10.0	5.0	✓

Page : 32 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Vancouver - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108 Vancouver - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121 Vancouver - Environmental	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
TSS by Gravimetry	E160 Vancouver - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Vancouver - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Chloride in Water by IC (Low Level)	E235.CI-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC (Low Level)	E235.F-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Sulfate in Water by IC	E235.SO4 Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.

Page : 33 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Vancouver - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Vancouver - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Vancouver - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Nitrogen by Colourimetry	E366 Vancouver - Environmental	Water	APHA 4500-P J (mod)	Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Dissolved Phosphorus is determined colourimetrically using a discrete analyzer after filtration through a 0.45 micron filter followed by heated persulfate digestion of the sample.
Reactive Silica by Colourimetry	E392 Vancouver - Environmental	Water	APHA 4500-SiO2 E (mod)	Silicate (molybdate-reactive silica) is determined by the molybdosilicate-heteropoly blue colourimetric method using a discrete analyzer. Method Limitation: Arsenic (5+) above 100 mg/L is a negative interference on this test
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS

Page : 34 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Oil & Grease by Gravimetry	E567 Vancouver - Environmental	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
VH and F1 by Headspace GC-FID	E581.VH+F1 Vancouver - Environmental	Water	BC MOE Lab Manual / CCME PHC in Soil - Tier 1 (mod)	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
CCME PHCs - F2-F4 by GC-FID	E601 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	Sample extracts are analyzed by GC-FID for CCME hydrocarbon fractions (F2-F4).
BTEX by Headspace GC-MS	E611A Vancouver - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	АРНА 2340В	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Hardness (Calculated) from Total Ca/Mg	EC100A Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
TDS in Water (Calculation) Using APHA Analyte List	EC103.APHA Vancouver - Environmental	Water	APHA 1030E	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis).
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Vancouver - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).
F1-BTEX	EC580 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).

Page : 35 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VPH: VH-BTEX-Styrene	EC580A Vancouver - Environmental	Water	BC MOE Lab Manual (VPH in Water and Solids) (mod)	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHw = Volatile Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and styrene.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Vancouver - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Preparation for Dissolved Organic Carbon for Combustion	EP358 Vancouver - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Nitrogen in water	EP366 Vancouver - Environmental	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.
Digestion for Total Phosphorus in water	EP372 Vancouver - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Digestion for Dissolved Phosphorus in water	EP375 Vancouver - Environmental	Water	APHA 4500-P E (mod).	Samples are filtered through a 0.45 micron membrane filter and then heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Vancouver - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
Oil & Grease Extraction for Gravimetry	EP567 Vancouver - Environmental	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane by liquid-liquid extraction.
VOCs Preparation for Headspace Analysis	EP581 Vancouver - Environmental	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the GC/MS-FID system.
PHCs and PAHs Hexane Extraction	EP601 Vancouver - Environmental	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.

Page : 36 of 36 Work Order : YL2200852

Client : Golder Associates Ltd.

QUALITY CONTROL REPORT

Work Order :YL2200852

Client : Golder Associates Ltd.

Contact : Kathy Qin

Address : 9 - 4905 48th Street

Yellowknife NT Canada X1A 3S3

Telephone : ---

Project : 21482915

C-O-C number :--Sampler :---

Site : Jackfish NTPC

Quote number : YL21-GOLD100-008

No. of samples received : 10
No. of samples analysed : 10

Page : 1 of 22

Laboratory : Yellowknife - Environmental

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

Telephone : 1 867 446 5593

Date Samples Received : 07-Jul-2022 10:05

Date Analysis Commenced : 12-Jul-2022

Issue Date : 20-Jul-2022 16:34

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

PO

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Delson Resende	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Hamideh Moradi	Analyst	Vancouver Metals, Burnaby, British Columbia
Janice Leung	Supervisor - Organics Instrumentation	Vancouver Organics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia
Owen Cheng		Vancouver Metals, Burnaby, British Columbia

Page : 2 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
Physical Tests (QC	Lot: 558643)											
VA22B5800-001	Anonymous	conductivity		E100	2.0	μS/cm	103	102	0.585%	10%		
Physical Tests (QC	Lot: 558644)											
VA22B5800-001	Anonymous	рН		E108	0.10	pH units	7.85	7.85	0.00%	4%		
Physical Tests (QC	Lot: 558646)											
VA22B5800-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	40.6	39.6	2.49%	20%		
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
		alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	40.6	39.6	2.49%	20%		
Physical Tests (QC	Lot: 559132)											
VA22B5646-012	Anonymous	pH		E108	0.10	pH units	5.47	5.47	0.00%	4%		
Physical Tests (QC	Lot: 559133)											
/A22B5646-012	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
		alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
hysical Tests (QC	Lot: 559134)											
/A22B5646-012	Anonymous	conductivity		E100	2.0	μS/cm	<2.0	<2.0	0	Diff <2x LOR		
Physical Tests (QC	Lot: 560164)											
/L2200824-003	Anonymous	turbidity		E121	0.10	NTU	15.0	16.2	7.70%	15%		
Physical Tests (QC	Lot: 560670)											
/A22B5853-006	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR		
Physical Tests (QC	Lot: 560676)											
VA22B5853-005	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	202	233	14.0%	20%		
Anions and Nutrien	ts (QC Lot: 558634)											
VA22B5793-004	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	12.6	12.6	0.100%	20%		
Anions and Nutrient	ts (QC Lot: 558635)											
/A22B5793-004	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR		

Page : 4 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

ub-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Anions and Nutrien	its (QC Lot: 558636) - c	continued										
VA22B5793-004	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR		
Anions and Nutrien	its (QC Lot: 558641)											
YL2200852-001	Outflow	fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.088	0.088	0.0002	Diff <2x LOR		
Anions and Nutrien	its (QC Lot: 558642)											
YL2200852-001	Outflow	chloride	16887-00-6	E235.CI-L	0.10	mg/L	62.2	62.2	0.0319%	20%		
Anions and Nutrien	its (QC Lot: 559139)											
VA22B5382-005	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR		
Anions and Nutrien	its (QC Lot: 559140)											
VA22B5382-005	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR		
Anions and Nutrien	its (QC Lot: 559141)											
VA22B5382-005	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	<0.30	<0.30	0	Diff <2x LOR		
Anions and Nutrien	its (QC Lot: 559143)							<u> </u>				
YL2200852-008	Near Outflow Inlake_Mid-Depth	chloride	16887-00-6	E235.CI-L	0.10	mg/L	61.9	61.9	0.0827%	20%		
Anions and Nutrien	its (QC Lot: 559144)											
YL2200852-008	Near Outflow Inlake_Mid-Depth	fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.082	0.083	0.001	Diff <2x LOR		
Anions and Nutrien	its (QC Lot: 559494)											
YL2200819-003	Anonymous	silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR		
Anions and Nutrien	its (QC Lot: 560478)											
YL2200839-001	Anonymous	nitrogen, total	7727-37-9	E366	0.060	mg/L	2.32	2.33	0.507%	20%		
Anions and Nutrien	its (QC Lot: 560479)											
YL2200839-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0205	0.0204	0.0978%	20%		
Anions and Nutrien	its (QC Lot: 560480)											
YL2200839-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.437	0.452	3.44%	20%		
Anions and Nutrien	its (QC Lot: 560482)											
YL2200852-001	Outflow	phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0204	0.0201	1.04%	20%		
Organic / Inorganic	Carbon (QC Lot: 56048	B1)										
YL2200852-001	Outflow	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	13.5	13.8	1.82%	20%		
Total Metals (QC L	ot: 558589)											
YL2200854-002	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR		
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		barium, total	7440-39-3	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR		
							T. Control of the Con	I .	1			

 Page
 : 5 of 22

 Work Order
 : YL2200852

Client : Golder Associates Ltd.

ub-Matrix: Water	b-Matrix: Water						Laboratory Duplicate (DUP) Report					
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
	ot: 558589) - continued											
′L2200854-002	Anonymous	boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR		
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR		
		calcium, total	7440-70-2	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR		
		cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR		
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR		
		magnesium, total	7439-95-4	E420	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR		
		manganese, total	7439-96-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
	molybdenum, total	7439-98-7	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
	nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR			
	phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR			
	potassium, total	7440-09-7	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR			
	rubidium, total	7440-17-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR			
		selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		silicon, total	7440-21-3	E420	0.10	mg/L	<0.10	<0.10	0	Diff <2x LOR		
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		sodium, total	7440-23-5	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR		
		strontium, total	7440-24-6	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
		sulfur, total	7704-34-9	E420	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR		
			13494-80-9	E420	0.00020	•	<0.00020	<0.0020	0	Diff <2x LOR		
		tellurium, total				mg/L			0			
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010		Diff <2x LOR		
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR		
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR		
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
otal Metals (QC Lo	ot: 561746)											
G2208870-016	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR		

Page : 6 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

ub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
otal Metals (QC L	ot: 561747)										
L2200852-002	Inflow to NW Bay 2	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
issolved Metals (QC Lot: 558237)										
L2200829-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0014	0.0015	0.00007	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00121	0.00119	1.63%	20%	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0725	0.0713	1.68%	20%	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0326	0.0327	0.316%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.027	0.027	0.0004	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	35.6	35.6	0.246%	20%	
		cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
	chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
	copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00144	0.00140	0.00004	Diff <2x LOR		
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0061	0.0060	0.00009	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	12.7	12.5	1.50%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.102	0.0973	4.54%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000188	0.000188	0.000000005	Diff <2x LOR	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	4.15	4.10	1.28%	20%	
		rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00255	0.00246	3.75%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	0.000059	0.000009	Diff <2x LOR	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.39	6.24	2.44%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	33.4	32.6	2.40%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0924	0.0886	4.12%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	8.52	8.72	2.32%	20%	
		tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	

Page : 7 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Dissolved Metals (QC Lot: 558237) - cont	inued										
YL2200829-001	Anonymous	titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR		
		tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000491	0.000480	2.22%	20%		
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR		
		zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
Dissolved Metals (QC Lot: 561783)											
YL2200789-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR		
Volatile Organic Co	mpounds (QC Lot: 565	5013)										
KS2202474-001	Anonymous	benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		styrene	100-42-5	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR		
		xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR		
Hydrocarbons (QC	Lot: 565012)											
KS2202474-001	Anonymous	F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%		
		VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%		

Page : 8 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Method Blank (MB) Report

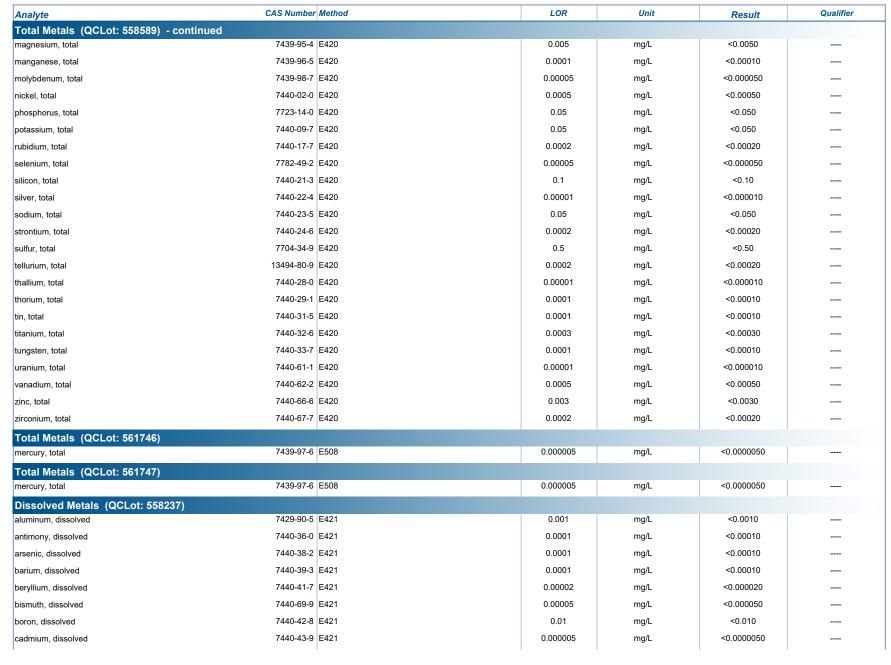
A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 558643)					
onductivity	E100	1	μS/cm	1.2	
Physical Tests (QCLot: 558646)					
lkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
lkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
lkalinity, phenolphthalein (as CaCO3)	E290	1	mg/L	<1.0	
ılkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 559133)					
lkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
lkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
ılkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
ılkalinity, phenolphthalein (as CaCO3)	E290	1	mg/L	<1.0	
ılkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 559134)					
onductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 560164)					
urbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 560670)					
olids, total suspended [TSS]	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 560676)					
olids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 558634)					
ulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 558635)					
itrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 558636)					
itrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 558641)					
uoride	16984-48-8 E235.F-L	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 558642)					
hloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 559139)					
itrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	

Page : 9 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

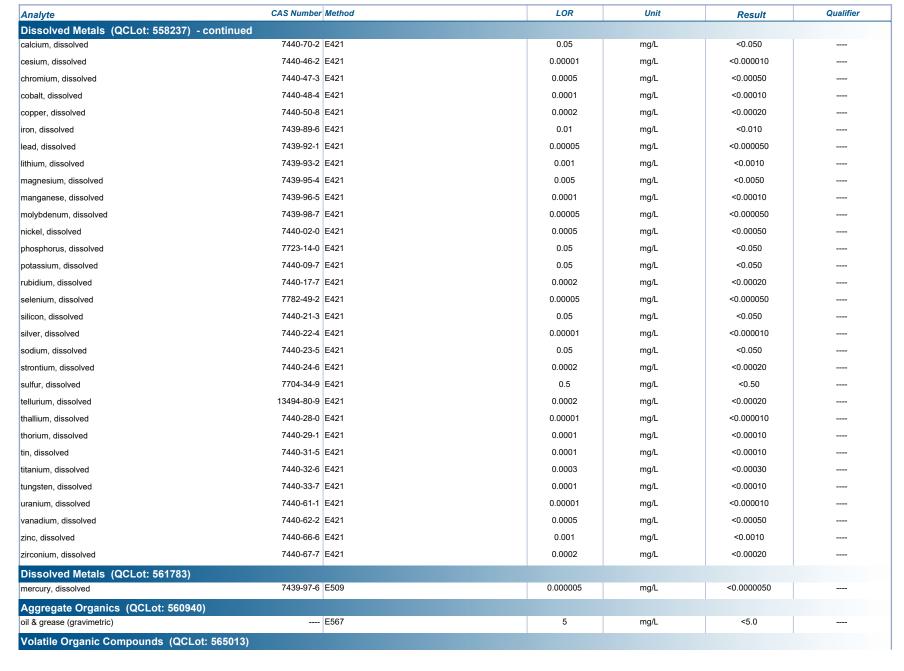
Project : 21482915


Analyte	CAS Number Method	od	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 559140)						
nitrite (as N)	14797-65-0 E235.N	NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 559141)						
sulfate (as SO4)	14808-79-8 E235.S	SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 559143)						
chloride	16887-00-6 E235.C	CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 559144)						
fluoride	16984-48-8 E235.F	F-L	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 559494)						
silicate (as SiO2)	7631-86-9 E392		0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 560478)						
nitrogen, total	7727-37-9 E366		0.03	mg/L	<0.030	
Anions and Nutrients (QCLot: 560479)						
phosphorus, total	7723-14-0 E372-U	U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 560480)						
ammonia, total (as N)	7664-41-7 E298		0.005	mg/L	# 0.0336	В
Anions and Nutrients (QCLot: 560482)						
phosphorus, total dissolved	7723-14-0 E375-T	Т	0.002	mg/L	<0.0020	
Organic / Inorganic Carbon (QCLot: 560481)						
carbon, dissolved organic [DOC]	E358-L	L	0.5	mg/L	<0.50	
Total Metals (QCLot: 558589)						
aluminum, total	7429-90-5 E420		0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420		0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420		0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E420		0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E420		0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E420		0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E420		0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420		0.000005	mg/L	<0.0000050	
calcium, total	7440-70-2 E420		0.05	mg/L	<0.050	
cesium, total	7440-46-2 E420		0.00001	mg/L	<0.000010	
chromium, total	7440-47-3 E420		0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4 E420		0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420		0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E420		0.01	mg/L	<0.010	
lead, total	7439-92-1 E420		0.00005	mg/L	<0.000050	
lithium, total	7439-93-2 E420		0.001	mg/L	<0.0010	
·	1					1

Page : 10 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

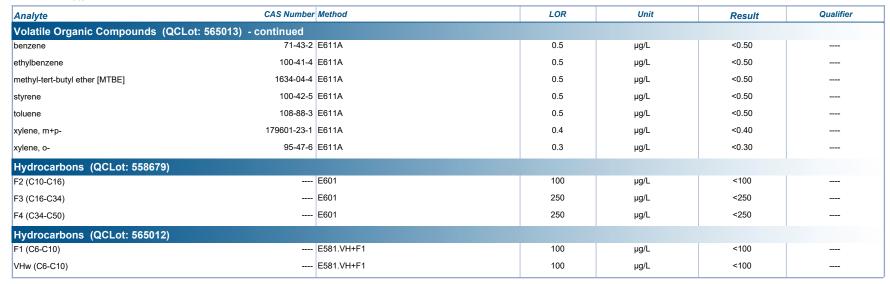
Project : 21482915



Page : 11 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915



Page : 12 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Sub-Matrix: Water

Qualifiers

В

Qualifier Description

Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.

Page : 13 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Cor	trol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 558643)								
conductivity	E100	1	μS/cm	146.9 μS/cm	104	90.0	110	
Physical Tests (QCLot: 558644)								
	E108		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 558646)								
alkalinity, phenolphthalein (as CaCO3)	E290	1	mg/L	229 mg/L	96.2	75.0	125	
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	100	85.0	115	
Physical Tests (QCLot: 559132)								
	E108		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 559133)								
	E290	1	mg/L	229 mg/L	# 130	75.0	125	LCS-H
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	100	85.0	115	
Physical Tests (QCLot: 559134)								
	E100	1	μS/cm	146.9 µS/cm	97.2	90.0	110	
Physical Tests (QCLot: 560164)								
	E121	0.1	NTU	200 NTU	98.0	85.0	115	
Physical Tests (QCLot: 560670)								
	E160	3	mg/L	150 mg/L	91.0	85.0	115	
Physical Tests (QCLot: 560676)								
	E162	10	mg/L	1000 mg/L	101	85.0	115	
Anions and Nutrients (QCLot: 558634)								
	E235.SO4	0.3	mg/L	100 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 558635)								
	E235.NO3-L	0.005	mg/L	2.5 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 558636)								
	E235.NO2-L	0.001	mg/L	0.5 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 558641)								
fluoride 16984-48-8	E235.F-L	0.01	mg/L	1 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 558642)								
chloride 16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 559139)								
	E235.NO3-L	0.005	mg/L	2.5 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 559140)								
Amons and Muthems (QCLOL 559140)								

Page : 14 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

Sub-Matrix: Water						Laboratory Con	trol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 559140) - contin	ued								
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	99.5	90.0	110	
Anions and Nutrients (QCLot: 559141)									
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 559143)									
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 559144)									
fluoride	16984-48-8	E235.F-L	0.01	mg/L	1 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 559494)									
silicate (as SiO2)	7631-86-9	E392	0.5	mg/L	10 mg/L	102	85.0	115	
Anions and Nutrients (QCLot: 560478)									1
nitrogen, total	7727-37-9	E366	0.03	mg/L	0.5 mg/L	104	75.0	125	
Anions and Nutrients (QCLot: 560479)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	91.5	80.0	120	
Anions and Nutrients (QCLot: 560480)									
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	97.2	85.0	115	
Anions and Nutrients (QCLot: 560482)									
phosphorus, total dissolved	7723-14-0	E375-T	0.002	mg/L	0.05 mg/L	91.8	80.0	120	
Organic / Inorganic Carbon (QCLot: 560481)									
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	103	80.0	120	
Total Metals (QCLot: 558589)									
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	93.8	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	108	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	97.3	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	95.6	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	99.5	80.0	120	
bismuth, total	7440-69-9		0.00005	mg/L	1 mg/L	100	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	98.8	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	96.7	80.0	120	
calcium, total	7440-70-2		0.05	mg/L	50 mg/L	98.8	80.0	120	
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	107	80.0	120	
chromium, total	7440-47-3		0.0005	mg/L	0.25 mg/L	97.2	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	95.7	80.0	120	
copper, total	7440-50-8		0.0005	mg/L	0.25 mg/L	96.1	80.0	120	
iron, total	7439-89-6		0.01	mg/L	1 mg/L	98.7	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	101	80.0	120	

Page : 15 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

Total Metals (QCLot: 558589) - continued	Number	Method	LOR		Spike	Recovery (%)	Recovery	Limits (%)	
Total Metals (QCLot: 558589) - continued	Number	Method	LOR	11.34	Spike Recovery (%) Recovery Limits (%)				
, ,			Lon	Unit	Concentration	LCS	Low	High	Qualifier
lithium, total									
	439-93-2	E420	0.001	mg/L	0.25 mg/L	98.8	80.0	120	
magnesium, total	439-95-4	E420	0.005	mg/L	50 mg/L	94.0	80.0	120	
manganese, total	439-96-5	E420	0.0001	mg/L	0.25 mg/L	97.0	80.0	120	
molybdenum, total	439-98-7	E420	0.00005	mg/L	0.25 mg/L	105	80.0	120	
nickel, total	440-02-0	E420	0.0005	mg/L	0.5 mg/L	93.6	80.0	120	
phosphorus, total	723-14-0	E420	0.05	mg/L	10 mg/L	101	80.0	120	
potassium, total	440-09-7	E420	0.05	mg/L	50 mg/L	96.7	80.0	120	
rubidium, total	440-17-7	E420	0.0002	mg/L	0.1 mg/L	97.8	80.0	120	
selenium, total	782-49-2	E420	0.00005	mg/L	1 mg/L	99.2	80.0	120	
silicon, total	440-21-3	E420	0.1	mg/L	10 mg/L	102	80.0	120	
silver, total	440-22-4	E420	0.00001	mg/L	0.1 mg/L	104	80.0	120	
sodium, total	440-23-5	E420	0.05	mg/L	50 mg/L	97.4	80.0	120	
strontium, total	440-24-6	E420	0.0002	mg/L	0.25 mg/L	106	80.0	120	
sulfur, total	704-34-9	E420	0.5	mg/L	50 mg/L	91.6	80.0	120	
tellurium, total 1	494-80-9	E420	0.0002	mg/L	0.1 mg/L	101	80.0	120	
thallium, total	440-28-0	E420	0.00001	mg/L	1 mg/L	99.5	80.0	120	
thorium, total	440-29-1	E420	0.0001	mg/L	0.1 mg/L	95.2	80.0	120	
tin, total	440-31-5	E420	0.0001	mg/L	0.5 mg/L	97.1	80.0	120	
titanium, total	440-32-6	E420	0.0003	mg/L	0.25 mg/L	87.7	80.0	120	
tungsten, total	440-33-7	E420	0.0001	mg/L	0.1 mg/L	101	80.0	120	
uranium, total	440-61-1	E420	0.00001	mg/L	0.005 mg/L	106	80.0	120	
vanadium, total	440-62-2	E420	0.0005	mg/L	0.5 mg/L	97.6	80.0	120	
zinc, total	440-66-6	E420	0.003	mg/L	0.5 mg/L	93.5	80.0	120	
zirconium, total	440-67-7	E420	0.0002	mg/L	0.1 mg/L	107	80.0	120	
Total Metals (QCLot: 561746)									1
	439-97-6	E508	0.000005	mg/L	0.0001 mg/L	96.2	80.0	120	
Total Metals (QCLot: 561747)					-				
	439-97-6	E508	0.000005	mg/L	0.0001 mg/L	95.7	80.0	120	
Dissolved Metals (QCLot: 558237)									
, ,	429-90-5	E421	0.001	mg/L	2 mg/L	106	80.0	120	
antimony, dissolved	440-36-0	E421	0.0001	mg/L	1 mg/L	101	80.0	120	
arsenic, dissolved	440-38-2	E421	0.0001	mg/L	1 mg/L	102	80.0	120	
	440-39-3	E421	0.0001	mg/L	0.25 mg/L	103	80.0	120	
beryllium, dissolved	440-41-7	E421	0.00002	mg/L	0.1 mg/L	90.2	80.0	120	
	440-69-9	E421	0.00005	mg/L	1 mg/L	92.8	80.0	120	
l ·	440-42-8	E421	0.01	mg/L	1 mg/L	90.6	80.0	120	

Page : 16 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report							
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Dissolved Metals (QCLot: 558237) - cor	ntinued							
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	0.1 mg/L	103	80.0	120	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	50 mg/L	99.3	80.0	120	
cesium, dissolved	7440-46-2 E421	0.00001	mg/L	0.05 mg/L	97.7	80.0	120	
chromium, dissolved	7440-47-3 E421	0.0005	mg/L	0.25 mg/L	101	80.0	120	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	0.25 mg/L	102	80.0	120	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	0.25 mg/L	102	80.0	120	
ron, dissolved	7439-89-6 E421	0.01	mg/L	1 mg/L	116	80.0	120	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	0.5 mg/L	97.5	80.0	120	
ithium, dissolved	7439-93-2 E421	0.001	mg/L	0.25 mg/L	98.9	80.0	120	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	50 mg/L	106	80.0	120	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	0.25 mg/L	105	80.0	120	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	0.25 mg/L	99.0	80.0	120	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	0.5 mg/L	103	80.0	120	
phosphorus, dissolved	7723-14-0 E421	0.05	mg/L	10 mg/L	101	80.0	120	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	50 mg/L	103	80.0	120	
ubidium, dissolved	7440-17-7 E421	0.0002	mg/L	0.1 mg/L	104	80.0	120	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	1 mg/L	97.4	80.0	120	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	10 mg/L	108	80.0	120	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	0.1 mg/L	95.9	80.0	120	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	50 mg/L	107	80.0	120	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	0.25 mg/L	105	80.0	120	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	50 mg/L	96.0	80.0	120	
ellurium, dissolved	13494-80-9 E421	0.0002	mg/L	0.1 mg/L	98.8	80.0	120	
rhallium, dissolved	7440-28-0 E421	0.00001	mg/L	1 mg/L	96.8	80.0	120	
horium, dissolved	7440-29-1 E421	0.0001	mg/L	0.1 mg/L	90.6	80.0	120	
tin, dissolved	7440-31-5 E421	0.0001	mg/L	0.5 mg/L	102	80.0	120	
itanium, dissolved	7440-32-6 E421	0.0003	mg/L	0.25 mg/L	96.0	80.0	120	
ungsten, dissolved	7440-33-7 E421	0.0001	mg/L	0.1 mg/L	92.3	80.0	120	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	0.1 mg/L 0.005 mg/L	96.0	80.0	120	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	0.5 mg/L	105	80.0	120	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	0.5 mg/L	97.0	80.0	120	
ziric, dissolved	7440-67-7 E421	0.0002	mg/L	0.5 mg/L 0.1 mg/L	97.9	80.0	120	
mercury, dissolved	7439-97-6 E509	0.0002	mg/L	0.1 mg/L 0.0001 mg/L	93.5	80.0	120	
neroury, dissolved	7435-57-0 [2305	0.00000	mg/L	0.0001 mg/L	93.5	00.0	120	
Aggregate Organics (QCLot: 560940)								
oil & grease (gravimetric)	E567	5	mg/L	100 mg/L	94.4	70.0	130	
,			•					

Page : 17 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Volatile Organic Compounds (QCLot: 565	013) - continued									
benzene	71-43-2	E611A	0.5	μg/L	100 μg/L	113	70.0	130		
ethylbenzene	100-41-4	E611A	0.5	μg/L	100 μg/L	109	70.0	130		
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.5	μg/L	100 μg/L	106	70.0	130		
styrene	100-42-5	E611A	0.5	μg/L	100 μg/L	105	70.0	130		
toluene	108-88-3	E611A	0.5	μg/L	100 μg/L	112	70.0	130		
xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	117	70.0	130		
xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	112	70.0	130		
Hydrocarbons (QCLot: 558679)										
F2 (C10-C16)		E601	100	μg/L	3538 μg/L	107	70.0	130		
F3 (C16-C34)		E601	250	μg/L	7053 μg/L	98.1	70.0	130		
F4 (C34-C50)		E601	250	μg/L	5051 μg/L	114	70.0	130		
Hydrocarbons (QCLot: 565012)										
F1 (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	113	70.0	130		
VHw (C6-C10)		E581.VH+F1	100	μg/L	6310 µg/L	113	70.0	130		

Qualifiers

Qualifier Description

LCS-H Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.

Page : 18 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

			-	_						
Sub-Matrix: Water								e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutri	ents (QCLot: 558634)								
VA22B5793-005	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	103 mg/L	100 mg/L	103	75.0	125	
Anions and Nutri	ents (QCLot: 558635)								1
VA22B5793-005	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.60 mg/L	2.5 mg/L	104	75.0	125	
Anions and Nutri	ents (QCLot: 558636)								
VA22B5793-005	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.500 mg/L	0.5 mg/L	99.9	75.0	125	
nions and Nutri	ents (QCLot: 558641)								
YL2200852-002	Inflow to NW Bay 2	fluoride	16984-48-8	E235.F-L	1.00 mg/L	1 mg/L	100	75.0	125	
Anions and Nutri	ents (QCLot: 558642)								
YL2200852-002	Inflow to NW Bay 2	chloride	16887-00-6	E235.CI-L	ND mg/L	100 mg/L	ND	75.0	125	
Anions and Nutri	ents (QCLot: 559139)								
VA22B5640-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.63 mg/L	2.5 mg/L	105	75.0	125	
Anions and Nutri	ents (QCLot: 559140)								
VA22B5640-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.505 mg/L	0.5 mg/L	101	75.0	125	
Anions and Nutri	ents (QCLot: 559141)								
VA22B5640-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	106 mg/L	100 mg/L	106	75.0	125	
Anions and Nutri	ents (QCLot: 559143)								
YL2200852-009	Near Outflow Inlake_Bottom_4	chloride	16887-00-6	E235.CI-L	103 mg/L	100 mg/L	103	75.0	125	
Anions and Nutri	ents (QCLot: 559144)								
YL2200852-009	Near Outflow Inlake_Bottom_4	fluoride	16984-48-8	E235.F-L	1.02 mg/L	1 mg/L	102	75.0	125	
Anions and Nutri	ents (QCLot: 559494)								
YL2200821-001	Anonymous	silicate (as SiO2)	7631-86-9	E392	10.1 mg/L	10 mg/L	101	75.0	125	
Anions and Nutri	ents (QCLot: 560478)								
YL2200848-001	Anonymous	nitrogen, total	7727-37-9	E366	ND mg/L	4 mg/L	ND	70.0	130	
Inions and Nutri	ents (QCLot: 560479)								
YL2200844-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0426 mg/L	0.05 mg/L	85.1	70.0	130	
Anions and Nutri	ents (QCLot: 560480)								
YL2200844-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125	MS-B

Page : 19 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

ub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
nions and Nutri	ients (QCLot: 560482	2)								
L2200852-002	Inflow to NW Bay 2	phosphorus, total dissolved	7723-14-0	E375-T	0.0502 mg/L	0.05 mg/L	100	70.0	130	
rganic / Inorgar	nic Carbon (QCLot:	560481)								
/L2200852-002	Inflow to NW Bay 2	carbon, dissolved organic [DOC]		E358-L	ND mg/L	5 mg/L	ND	70.0	130	
otal Metals (QC	CLot: 558589)									
L2200854-001	Anonymous	aluminum, total	7429-90-5	E420	0.171 mg/L	0.2 mg/L	85.7	70.0	130	
		antimony, total	7440-36-0	E420	0.0208 mg/L	0.02 mg/L	104	70.0	130	
		arsenic, total	7440-38-2	E420	0.0183 mg/L	0.02 mg/L	91.7	70.0	130	
		barium, total	7440-39-3	E420	0.0184 mg/L	0.02 mg/L	92.1	70.0	130	
		beryllium, total	7440-41-7	E420	0.0401 mg/L	0.04 mg/L	100	70.0	130	
		bismuth, total	7440-69-9	E420	0.0106 mg/L	0.01 mg/L	106	70.0	130	
		boron, total	7440-42-8	E420	0.090 mg/L	0.1 mg/L	89.5	70.0	130	
		cadmium, total	7440-43-9	E420	0.00390 mg/L	0.004 mg/L	97.4	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, total	7440-46-2	E420	0.0104 mg/L	0.01 mg/L	104	70.0	130	
		chromium, total	7440-47-3	E420	0.0370 mg/L	0.04 mg/L	92.4	70.0	130	
		cobalt, total	7440-48-4	E420	0.0186 mg/L	0.02 mg/L	93.0	70.0	130	
		copper, total	7440-50-8	E420	0.0184 mg/L	0.02 mg/L	91.8	70.0	130	
		iron, total	7439-89-6	E420	1.87 mg/L	2 mg/L	93.6	70.0	130	
		lead, total	7439-92-1	E420	0.0201 mg/L	0.02 mg/L	101	70.0	130	
		lithium, total	7439-93-2	E420	0.0990 mg/L	0.1 mg/L	99.0	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0182 mg/L	0.02 mg/L	91.0	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0207 mg/L	0.02 mg/L	104	70.0	130	
		nickel, total	7440-02-0	E420	0.0367 mg/L	0.04 mg/L	91.8	70.0	130	
		phosphorus, total	7723-14-0	E420	9.66 mg/L	10 mg/L	96.6	70.0	130	
		potassium, total	7440-09-7	E420	3.67 mg/L	4 mg/L	91.8	70.0	130	
		rubidium, total	7440-17-7	E420	0.0180 mg/L	0.02 mg/L	90.2	70.0	130	
		selenium, total	7782-49-2	E420	0.0392 mg/L	0.02 mg/L 0.04 mg/L	97.9	70.0	130	
		silicon, total	7440-21-3	E420	9.22 mg/L	10 mg/L	92.2	70.0	130	
		silver, total	7440-21-3	E420	0.00417 mg/L	0.004 mg/L	104	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-23-5	E420	ND mg/L	0.02 mg/L	ND ND	70.0	130	
		sulfur, total	7704-34-9	E420	19.6 mg/L	0.02 mg/L	98.0	70.0	130	
		tellurium, total	13494-80-9	E420	0.0393 mg/L	0.04 mg/L	98.2	70.0	130	
		thallium, total	7440-28-0	E420	0.0393 mg/L 0.00388 mg/L			70.0	130	
		thorium, total	7440-28-0 7440-29-1	E420 E420	0.00388 mg/L 0.0188 mg/L	0.004 mg/L 0.02 mg/L	96.9 94.2	70.0	130	

Page : 20 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

Sub-Matrix: Water							Matrix Spil	re (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
otal Metals (QC	Lot: 558589) - cont	tinued								
YL2200854-001	Anonymous	tin, total	7440-31-5	E420	0.0193 mg/L	0.02 mg/L	96.5	70.0	130	
		titanium, total	7440-32-6	E420	0.0343 mg/L	0.04 mg/L	85.7	70.0	130	
		tungsten, total	7440-33-7	E420	0.0205 mg/L	0.02 mg/L	102	70.0	130	
		uranium, total	7440-61-1	E420	0.00412 mg/L	0.004 mg/L	103	70.0	130	
		vanadium, total	7440-62-2	E420	0.0922 mg/L	0.1 mg/L	92.2	70.0	130	
		zinc, total	7440-66-6	E420	0.368 mg/L	0.4 mg/L	92.0	70.0	130	
		zirconium, total	7440-67-7	E420	0.0447 mg/L	0.04 mg/L	112	70.0	130	
otal Metals (QC	Lot: 561746)									
CG2208870-017	Anonymous	mercury, total	7439-97-6	E508	0.0000918 mg/L	0.0001 mg/L	91.8	70.0	130	
otal Metals (QC	Lot: 561747)									
YL2200852-003	Northwest Bay North_Bottom	mercury, total	7439-97-6	E508	0.0000928 mg/L	0.0001 mg/L	92.8	70.0	130	
issolved Metals	(QCLot: 558237)									
/L2200829-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.205 mg/L	0.2 mg/L	103	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0200 mg/L	0.02 mg/L	99.9	70.0	130	
		arsenic, dissolved	7440-38-2	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0376 mg/L	0.04 mg/L	93.9	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00865 mg/L	0.01 mg/L	86.5	70.0	130	
		boron, dissolved	7440-42-8	E421	0.087 mg/L	0.1 mg/L	87.0	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00412 mg/L	0.004 mg/L	103	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, dissolved	7440-46-2	E421	0.00961 mg/L	0.01 mg/L	96.1	70.0	130	
		chromium, dissolved	7440-47-3	E421	0.0394 mg/L	0.04 mg/L	98.6	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0197 mg/L	0.02 mg/L	98.5	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0192 mg/L	0.02 mg/L	95.9	70.0	130	
		iron, dissolved	7439-89-6	E421	2.00 mg/L	2 mg/L	100.0	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0187 mg/L	0.02 mg/L	93.5	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0983 mg/L	0.1 mg/L	98.3	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0205 mg/L	0.02 mg/L	103	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0197 mg/L	0.02 mg/L	98.4	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0390 mg/L	0.04 mg/L	97.6	70.0	130	
		phosphorus, dissolved	7723-14-0	E421	10.7 mg/L	10 mg/L	107	70.0	130	
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130	
	T	rubidium, dissolved	7440-17-7	E421	0.0194 mg/L	0.02 mg/L	97.2	70.0	130	

Page : 21 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

Project : 21482915

Sub-Matrix: Water		Matrix Spike (MS) Report								
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 558237) - co	ontinued								
YL2200829-002	Anonymous	selenium, dissolved	7782-49-2	E421	0.0410 mg/L	0.04 mg/L	103	70.0	130	
		silicon, dissolved	7440-21-3	E421	9.72 mg/L	10 mg/L	97.2	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00371 mg/L	0.004 mg/L	92.7	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	20.8 mg/L	20 mg/L	104	70.0	130	
		tellurium, dissolved	13494-80-9	E421	0.0392 mg/L	0.04 mg/L	98.0	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00352 mg/L	0.004 mg/L	88.0	70.0	130	
		thorium, dissolved	7440-29-1	E421	0.0167 mg/L	0.02 mg/L	83.5	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0197 mg/L	0.02 mg/L	98.4	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0397 mg/L	0.04 mg/L	99.3	70.0	130	
		tungsten, dissolved	7440-33-7	E421	0.0186 mg/L	0.02 mg/L	92.8	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00374 mg/L	0.004 mg/L	93.4	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.104 mg/L	0.1 mg/L	104	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.384 mg/L	0.4 mg/L	96.1	70.0	130	
		zirconium, dissolved	7440-67-7	E421	0.0400 mg/L	0.04 mg/L	100	70.0	130	
Dissolved Metals	(QCLot: 561783)									
YL2200789-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000922 mg/L	0.0001 mg/L	92.2	70.0	130	
Volatile Organic (Compounds (QCLot:	565013)								
KS2202474-001	Anonymous	benzene	71-43-2	E611A	89.1 μg/L	100 μg/L	89.1	60.0	140	
		ethylbenzene	100-41-4	E611A	90.5 μg/L	100 μg/L	90.5	60.0	140	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	84.4 μg/L	100 μg/L	84.4	60.0	140	
		styrene	100-42-5	E611A	93.8 μg/L	100 μg/L	93.8	60.0	140	
		toluene	108-88-3	E611A	86.9 µg/L	100 µg/L	86.9	60.0	140	
		xylene, m+p-	179601-23-1	E611A	185 µg/L	200 μg/L	92.4	60.0	140	
		xylene, o-	95-47-6	E611A	92.6 μg/L	100 μg/L	92.6	60.0	140	
Hydrocarbons (C	QCLot: 565012)									
KS2202474-002	Anonymous	F1 (C6-C10)		E581.VH+F1	4520 μg/L	6310 µg/L	71.7	60.0	140	
		VHw (C6-C10)		E581.VH+F1	4470 µg/L	6310 µg/L	70.8	60.0	140	

Qualifiers

Qualifier Description

MS-B

Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Page : 22 of 22 Work Order : YL2200852

Client : Golder Associates Ltd.

CLIENT	et.a.t.acominy		DATE/TIME	DATETIME 7 54147022	ol2 DATETIME	PAR	175.6	9'541 DATESTIME
man inat.	Golder Associates Ltd.	TURNAROUND REQUIREMENTS:	1	Standard TAT (List due date):	(m): /	FOR LABORATORY USE ONLY (Circle)	ONLY (Circle)	
PROJECT:	Jackfish NTPC	(Standard TAT may be longer for some helds e.g. Ultra Trace Organics)		dard or urgent TA	st due	Custody Seal Intact?		Yes No NA
SITE:						Free ice / frazen ice bricks present upon recept?		0
n I			ALS Q	JOTE NC YL21-	30LD100-008 (upd	ALS QUOTE NC YL21-GOLD100-008 (updated in April 2022) Rendom Sample Temperature on Recent	P. 9	ū
PROJECT MANAGER:	Tames Determine	587-969-614	Equis	EQuis facility code: 183527250	1527250	Other commercial		
EMAIL REPORTS TO	ors altern humanose Bootse	SAMPLER MOBILE: 867-446-4757	Project		915			
SPECIAL HANDLING/ST	SPECIAL HANDLING/STORAGE OR DISPOSAL:		EMAIL	EMAIL INVOICE 10:	Aurence bonnage	Laurence boneraggoder com kany Ungggoder co		
				-				
ALS USE ONLY	SAMPLE DETAILS Solid(S) Water(W)	MATRIX	CONTAINER	TION		ANALYSIS REQUIRED		Additional Information
SAMPLE	Sample identification (This description will appear on the report)	DATE / TIME (dd-mm-yvyy)	хіятам	TOTAL CONTAINERS	Organics parameter auric			Comments on living continuous to the living districts on standard and seeks of the search of the seeks of the
	OUTFLOW	Trat First 9	W	×	-			All dissilved primet
	WELLENGTH MANAGEMENT	02.5		-	1			-1.7
3	INFLOW TO MW BAY 2	6 July 202 2	×	r+	H			prese
,	NORTHWEST BAY NORTH_Bottom	6 July 2022	W	× ×	×	Environment		6614
\$	NORTHWEST BAY NORTH_Mid-depth	6 34/2 2022	*	+		Yellowknife	u u	
ø	MID LAKE 1_ Bottom	6 Tuly 2027	3	* *	V	Work Order Reference		
	MID LAKE 1_Mid-depth	4 July 2022	, ,	۲+ *		1 LZZU0852		
	ELD DISCHARGE WLAKE_LONG			1				
	EUD CASHARGE MEAKE, CHACOLA			*		と は は の の の の の の の の の の の の の の の の の		
1	SOUTHWEST BAY, Bottom		1	*				
1	SOUTHWEST SAY MIC Cepth		-	1		一般のおからびは		
12	NEAR OUTFLOW INLAKE_Bottom	6. Tuly 2022	W	13 ×	×	Telephone : +1 867 873 5593		
13	NEAR OUTFLOW INLAKE_Mid-depth	6 July 2022	W	, 4				
14	NEAR OUTFLOW INLAKE_Bottom_4	6 July 2022	*	W	×			
2	oftoc. i		W	*	1			
15	JFLac.3	2207 4.75 9	W	4				
			TOTAL 88	8				

SAMPLE Sample identification (This description will appear on the report) DATE / TIME (dd-mm-yyyy) OUTFLOW		<u>-</u>										
ASSUME OF THE PROPERTY OF THE STATE OF THE S												
Collection	ALS			RELINQUISHED BY:	pearser 1			BA	DBY: JU		:.	
Month Mont	CLIENT:	Golder Associates Ltd.	TURNAROUND REQUIREMENTS:				<u>.</u>		TORY USE ONLY		7	Jan 2001 0 4100
### PRINCIPACE PROCESS TO CONTROL TO MAKE THE PROCESS TO CONTROL TO CONTROL TO MAKE THE PROCESS TO CONTROL		Jackfish NTPC	Standard TAT may be longer for some tests	· ·	•			1		(Yes No N/A .
PROMET Mark	SITE:		s.g., one made Organics	:: .	-:			Free ice / frozen i	ce bricks present u	pon receipt?		<i>a</i> > 1
AMPLE DE TAIL AND CONTROL OF THE CO	PURCHASE ORDER NO.		: : - : : - : : - : - : - : - : - :	ALS QUOTE NO	C YL21-GOLD100-0	8 (updated in Ap	ril 2022)	Random Semple	Temperature on Re	ceipt:	8.9	·c ~ ~
EMAL REPORTS TO Colfs. Globalishadinania alice sumbidishadinania construction (and construction) and c	PROJECT MANAGER:	Kathy Qin — CONTACT PH	1: 587-969-6141	EQuIS facility c	ode: 183527250	: '	:.	Other comments:			`	7 °U
AGENTIFICATION NUMBER DETAILS SOLITON WATER SOLITON WATER CONTAINER NAVY STREET SOLITON WATER SOLITO	SAMPLER:	Tamara Derkowski SAMPLER MC	OBILE: 867-446-4757	Project Number	r: 21482915	<u> </u>						
AASI USE ONLY SAMPLE DETAILS SOURCE ONLY SAMPLE DETAILS SA	EMAIL REPORTS TO:	Kathy Qin@golder.com; alison humphries@golder.com; GAL equ	is@golder.com	EMAIL INVOICE	ETO: Laurence bo	nin@golder.com;	Kathy Qin@golder.c	<u></u>				
SAMPLE Sample identification (The description of speece in the proper) Table 1 OUTFLOW Table 2021 W 7 x Anathres recorded to speece in the proper of the state of the speece in the proper of the state of the state of the speece in the proper of the state of th	SPECIAL HANDLING/ST	ORAGE-OR DISPOSAL:				• : •						
### SAMPLE Company interfluence on the report of the repor	ALS USE ONLY		MATRIX			· · · · · · · · · · · · · · · · · · ·	ANALYSIS	REQUIRED				Additional Information
OUTFLOW G. This 2012 W	SAMPLE			MATRIX TOTAL CONTAINERS	Parameters						C	omments on likely contaminant levels, dilutions, or amples requiring specific QC analysis etc.
Northwest Bay North Bottom G Taking 2022 W L3 X X	1	OUTFLOW	6 July 2022	w 7							7	All dissolved puremeter
Northwest Bay North_Bentom G Tally 2022 W L3 X X X X X X X X X	:	NAME OF THE PARTY	13.00					 	- 	+	6	lened in held:
Northwest Bay North_Bottom	3	INFLOW TO NW BAY 2	6 July 2022	w 7	×			1				netals preserved in
5 NORTHWEST BAY NORTH_Mid-depth 6 3 vily 2022 w 7 x 12 NEAR OUTFLOW INLAKE_Bottom 6 Tilly 2022 w 7 x 13 NEAR OUTFLOW INLAKE_Mid-depth 6 Tilly 2022 w 7 x 14 NEAR OUTFLOW INLAKE_Bottom 6 Tilly 2022 w 7 x 15 JFLOC3 6 SULY 2022 w 7 x 16 SULY 2022 w 7 x 17 A MID LAKE 1_Mid-depth 6 Tilly 2022 w 7 x 18 JFLOC3	4	NORTHWEST BAY NORTH Bottom	6 July 2022		x x	 '	Envi			1,		ciela
6 MID LAKE 1_Bottom 6 Tally 2022 W 7 X 12 NEAR OUTFLOW INLAKE_Bottom 12 NEAR OUTFLOW INLAKE_Mid-depth 13 NEAR OUTFLOW INLAKE_Mid-depth 14 NEAR OUTFLOW INLAKE_Mid-depth 15 JELOC-3 16 JELOC-3 17 MID LAKE 1_Bottom 18 Telephone : +1 867 873 5893 18 Telephone : +1 867 873 5893					 		Valle	nmental I	Division			
12 NEAR OUTFLOW INLAKE_Bottom 6 Tu(y 2022 W 13 X X Telephone : +1 867 873 5593 13 NEAR OUTFLOW INLAKE_Mid-depth 6 Tu(y 2022 W 7 X X X	5 -	NORTHWEST BAY NORTH_Mid-depth			×		Yellow	knife		į.		
12 NEAR OUTFLOW INLAKE_Bottom 6 Tu(y 2022 W 13 x x Telephone: +1 867 873 5593 13 NEAR OUTFLOW INLAKE_Mild-depth 6 Tu(y 2022 W 7 x x x x x x x x x x x x x x x x x x	6	MID LAKE 1_ Bottom	6 July 2022	w 7	×		Ϋ́Ḯ	Order Refe	rence	1-	1	· · · · · · · · · · · · · · · · · · ·
12 NEAR OUTFLOW INLAKE_Bottom 6 Tu(y 2022 W 13 X X Telephone: +1 867 873 5593 13 NEAR OUTFLOW INLAKE_Mid-depth 6 Tu(y 2022 W 7 X X X X X X X X X X X X X X X X X X	7	MID LAKE 1_Mid-depth			х		ı I L	2200	852	-		
13 NEAR OUTFLOW INLAKE_Mid-depth 6 Thisy 2022 W 7 X14 — NEAR OUTFLOW INLAKE_BOITOM: 4							-					· · · · · · · · · · · · · · · · ·
13 NEAR OUTFLOW INLAKE_Mid-depth 6 July 2022 W 7 X										-		
13 NEAR OUTFLOW INLAKE_Mid-depth 6 July 2022 W 7 X									201111	<u> </u>		
13 NEAR QUITLOW INLAKE_Mid-depth 6 Tuly 2022 W 7 X	-	SOUTHWEST			7		- 1 11 8		7 2 1 1 1 1		_	
13 NEAR QUITLOW INLAKE_Mid-depth 6 Tuly 2022 W 7 X		_ma-ocpan							9 2 1111			
13 NEAR OUTFLOW INLAKE_Mid-depth 6 July 2022 W 7 X	12	NEAR OUTFLOW INLAKE_Bottom	6 Tuly 2022	w 13	x x	1 1 1	Telephone: +	1 867 873 559	= == 1 1 3			
16 JFLQC-3 6 JULY 2022 W 7 X	13	NEAR OUTFLOW INLAKE_Mid-depth	6 July 2022	w 7	 			j	į			
16 JFLQC-3 6 JULY 2022 W 7 X	14	NEAR OUTFLOW INLAKE_Bottom_4	6 74142022	w 13	x x					<u> </u>		
16 JFLQC-3 6 SULY 2022 W 7 X	——————————————————————————————————————	17900	9,73					 		+ 1		
1 15:00 1" ' "	16	JFLQC-3	6 5414 2022		x			 - 			-	
TOTAL 88		<u> </u>	15:00	L	^ -	 		┼─┼-	 - -	 		
		•		TOTAL 88				↓ 				

Form Page 1 of

CERTIFICATE OF ANALYSIS

Work Order : YL2201326

Client : Golder Associates Ltd.

Contact : Kathy Qin

Address : 9 - 4905 48th Street

Yellowknife NT Canada X1A 3S3

Telephone : ---

Project : 21482915

PO : ---C-O-C number : ---

Sampler : Nathan Hoeve; Bernadette Weaver

Site : Jackfish NTPC
Quote number : YL21-GOLD100-008

No. of samples received : 13
No. of samples analysed : 13

Page : 1 of 18

Laboratory : Yellowknife - Environmental

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife NT Canada X1A 3T3

Telephone : 1 867 446 5593

Date Samples Received : 26-Aug-2022 10:02

Date Analysis Commenced : 30-Aug-2022

Issue Date : 09-Sep-2022 12:40

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Ann Joby	Lab Assistant	Metals, Burnaby, British Columbia
Anshim Anshim	Lab Assistant	Metals, Burnaby, British Columbia
Benjamin Oke	Lab Assistant	Metals, Burnaby, British Columbia
Cindy Tang	Team Leader - Inorganics	Inorganics, Burnaby, British Columbia
Dan Gebert	Laboratory Analyst	Metals, Burnaby, British Columbia
Delson Resende	Lab Assistant	Metals, Burnaby, British Columbia
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Qammar Almas	Lab Assistant	Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

Page : 3 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

ALS

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
DTC	Dissolved concentration exceeds total. Results were confirmed by re-analysis.
DTS	Dissolved Sulfur concentration exceeds total. Negative bias on Total Sulfur
	suspected due to presence of volatile sulfur species lost during digestion.
DTSE	Dissolved Se concentration exceeds total. Positive bias on D-Se suspected due to
	signal enhancement from volatile selenium species. Contact ALS if an alternative test
	to address this interference is needed.
RRV	Reported result verified by repeat analysis.

>: greater than.

Page : 4 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

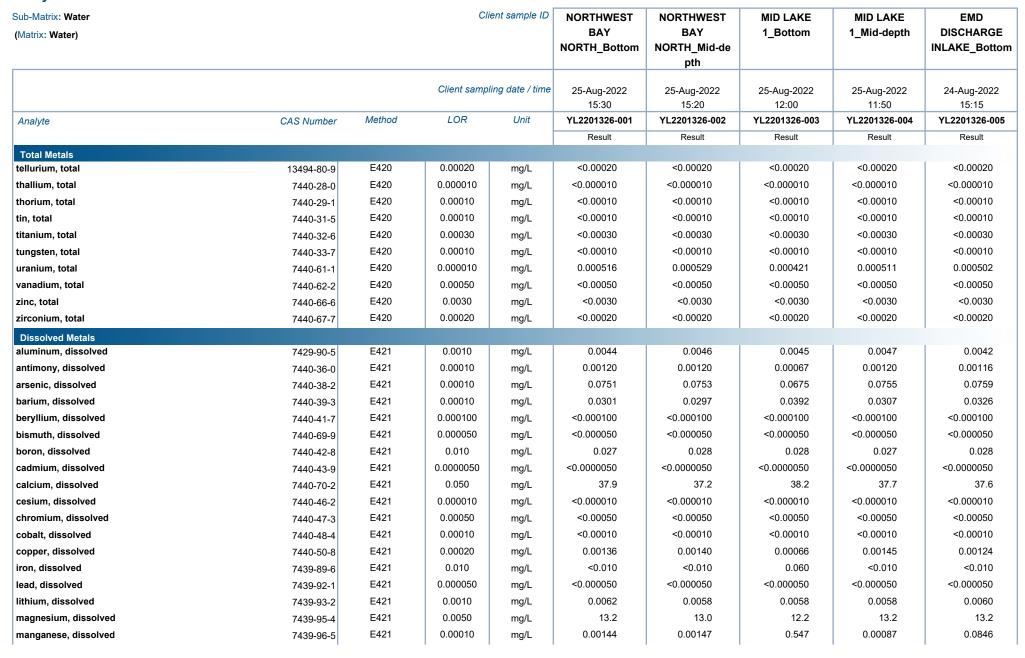
Sub-Matrix: Water (Matrix: Water)			ient sample ID	NORTHWEST BAY NORTH_Bottom	NORTHWEST BAY NORTH_Mid-de pth	MID LAKE 1_Bottom	MID LAKE 1_Mid-depth	EMD DISCHARGE INLAKE_Bottom	
			Client samp	ling date / time	25-Aug-2022 15:30	25-Aug-2022 15:20	25-Aug-2022 12:00	25-Aug-2022 11:50	24-Aug-2022 15:15
Analyte	CAS Number	Method	LOR	Unit	YL2201326-001	YL2201326-002	YL2201326-003	YL2201326-004	YL2201326-005
					Result	Result	Result	Result	Result
Physical Tests									
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	106	103	114	103	112
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	7.4	9.4	<1.0	9.8	<1.0
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	3.7	4.7	<1.0	4.9	<1.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	113	112	114	113	112
conductivity		E100	2.0	μS/cm	446	443	446	448	446
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	149	146	146	148	148
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	146	145	146	145	143
рН		E108	0.10	pH units	8.47	8.50	7.77	8.52	8.20
solids, total dissolved [TDS]		E162	10	mg/L	290	267	272	295	292
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	252	251	247	253	252
solids, total suspended [TSS]		E160	3.0	mg/L	9.7	9.1	7.1	8.1	6.0
turbidity		E121	0.10	NTU	9.13	8.96	5.99	8.78	8.00
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0087	0.0074	0.443	0.0084	0.0084
chloride	16887-00-6	E235.CI-L	0.10	mg/L	61.7	61.6	59.9	61.7	61.6
fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.086	0.088	0.086	0.084	0.084
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
nitrogen, total	7727-37-9	E366	0.030	mg/L	1.06	1.10	1.44	1.21	1.15
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0442	0.0296	0.0757	0.0410	0.0497
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0131	<0.0200	0.0663 RRV	0.0120	0.0126
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	13.3	13.3	13.2	13.2	13.2
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	25.6	25.6	23.9	25.6	25.3
Organic / Inorganic Carbon									1
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	11.3	11.2	12.7	11.8	11.9
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0125	0.0082	0.0068	0.0056	0.0084

Page : 5 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Analytical Results


Client sample ID Sub-Matrix: Water NORTHWEST NORTHWEST MID LAKE MID LAKE **EMD** BAY BAY 1 Bottom **DISCHARGE** (Matrix: Water) 1 Mid-depth **NORTH Bottom** NORTH Mid-de **INLAKE Bottom** pth Client sampling date / time 25-Aug-2022 25-Aug-2022 25-Aug-2022 25-Aug-2022 24-Aug-2022 15:30 15:20 12:00 15:15 11:50 LOR Unit Method YL2201326-002 YL2201326-005 Analyte CAS Number YL2201326-001 YL2201326-003 YL2201326-004 Result Result Result Result Result **Total Metals** E420 0.00125 0.00097 0.00123 0.00122 antimony, total 7440-36-0 0.00010 mg/L 0.00124 E420 0.0744 0.0760 0.0717 0.0745 0.0742 arsenic, total 0.00010 7440-38-2 mq/L 0.0317 0.0320 E420 0.00010 0.0314 0.0319 0.0398 barium, total 7440-39-3 ma/L E420 0.000100 < 0.000100 < 0.000100 <0.000100 beryllium, total 7440-41-7 mg/L < 0.000100 < 0.000100 < 0.000050 bismuth, total E420 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 7440-69-9 mg/L E420 0.010 0.031 0.029 0.028 0.028 0.028 boron, total 7440-42-8 mg/L < 0.0000050 < 0.0000050 < 0.0000050 < 0.0000050 cadmium, total 7440-43-9 E420 0.0000050 mg/L < 0.0000050 0.050 37.7 37.2 calcium, total E420 37.0 38.0 36.8 7440-70-2 mg/L < 0.000010 E420 0.000010 < 0.000010 < 0.000010 < 0.000010 <0.000010 cesium, total 7440-46-2 mg/L E420 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 chromium, total 7440-47-3 mq/L E420 0.00010 < 0.00010 < 0.00010 <0.00010 <0.00010 < 0.00010 cobalt, total 7440-48-4 mg/L E420 0.00050 0.00160 0.00161 0.00111 0.00160 0.00459 copper, total 7440-50-8 mg/L iron, total 7439-89-6 E420 0.010 mg/L 0.014 < 0.010 0.067 < 0.010 0.016 < 0.000050 < 0.000050 lead, total E420 0.000050 mg/L < 0.000050 < 0.000050 < 0.000050 7439-92-1 E420 0.0010 0.0089 0.0082 0.0077 0.0075 0.0073 lithium, total 7439-93-2 mg/L E420 0.0050 12.5 12.8 12.4 12.6 12.5 magnesium, total 7439-95-4 mg/L E420 0.00010 0.0451 0.0454 0.594 0.0450 0.122 manganese, total 7439-96-5 mq/L E508 < 0.0000050 < 0.0000050 < 0.0000050 0.0000050 < 0.0000050 < 0.0000050 7439-97-6 mercury, total mg/L E420 0.000050 0.000175 0.000193 0.000154 0.000187 0.000179 molybdenum, total 7439-98-7 mq/L E420 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 nickel, total 7440-02-0 mg/L phosphorus, total E420 0.050 < 0.050 0.055 0.100 < 0.050 < 0.050 7723-14-0 mg/L potassium, total 7440-09-7 E420 0.050 mg/L 4.05 4.14 4.14 4.05 4.05 E420 0.00020 0.00265 0.00287 0.00263 0.00284 0.00272 rubidium, total 7440-17-7 mg/L < 0.000050 < 0.000050 E420 0.000050 < 0.000050 < 0.000050 < 0.000050 selenium, total 7782-49-2 mg/L E420 0.10 6.73 6.74 6.64 6.70 6.55 silicon, total 7440-21-3 mg/L E420 0.000010 < 0.000010 0.000011 < 0.000010 < 0.000010 <0.000010 silver, total 7440-22-4 mg/L E420 0.050 34.4 35.2 33.9 34.3 34.2 sodium, total 7440-23-5 ma/L 0.0914 0.0900 0.0903 strontium, total 7440-24-6 E420 0.00020 mg/L 0.0911 0.0921 sulfur, total E420 0.50 8.79 9.10 7.54 9.20 8.70 7704-34-9 mg/L

Page : 6 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Page : 7 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

ALS

Sub-Matrix: Water			Cli	ent sample ID	NORTHWEST	NORTHWEST	MID LAKE	MID LAKE	EMD
(Matrix: Water)					BAY	BAY	1_Bottom	1_Mid-depth	DISCHARGE
					NORTH_Bottom	NORTH_Mid-de			INLAKE_Bottom
						pth			
			Client sampl	ling date / time	25-Aug-2022	25-Aug-2022	25-Aug-2022	25-Aug-2022	24-Aug-2022
				_	15:30	15:20	12:00	11:50	15:15
Analyte	CAS Number	Method	LOR	Unit	YL2201326-001	YL2201326-002	YL2201326-003	YL2201326-004	YL2201326-005
					Result	Result	Result	Result	Result
Dissolved Metals									
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.0000050
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000168	0.000174	0.000116	0.000171	0.000166
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	<0.050 RRV	<0.050	<0.050
potassium, dissolved	7440-09-7	E421	0.050	mg/L	4.13	4.17	4.24	4.22	4.38
rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00268	0.00254	0.00252	0.00270	0.00267
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	0.000480 DTSE	0.000058	0.000056
silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.48	6.52	6.63	6.74	6.45
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000050 DLM	<0.000010	<0.000010	<0.000010
sodium, dissolved	7440-23-5	E421	0.050	mg/L	33.5	33.8	32.1	34.5	34.2
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0910	0.0908	0.0850	0.0895	0.0898
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	9.68	9.43	16.4 DTS	9.80	9.34
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000558	0.000555	0.000469	0.000566	0.000560
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	Field
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field
Aggregate Organics									
oil & grease (gravimetric)		E567	5.0	mg/L	<5.0				
Volatile Organic Compounds [Fuels]									
benzene	71-43-2	E611A	0.50	μg/L	<0.50				
ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50				
•	1			'		'	'		'

Page : 8 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

ALS

Analytical Results

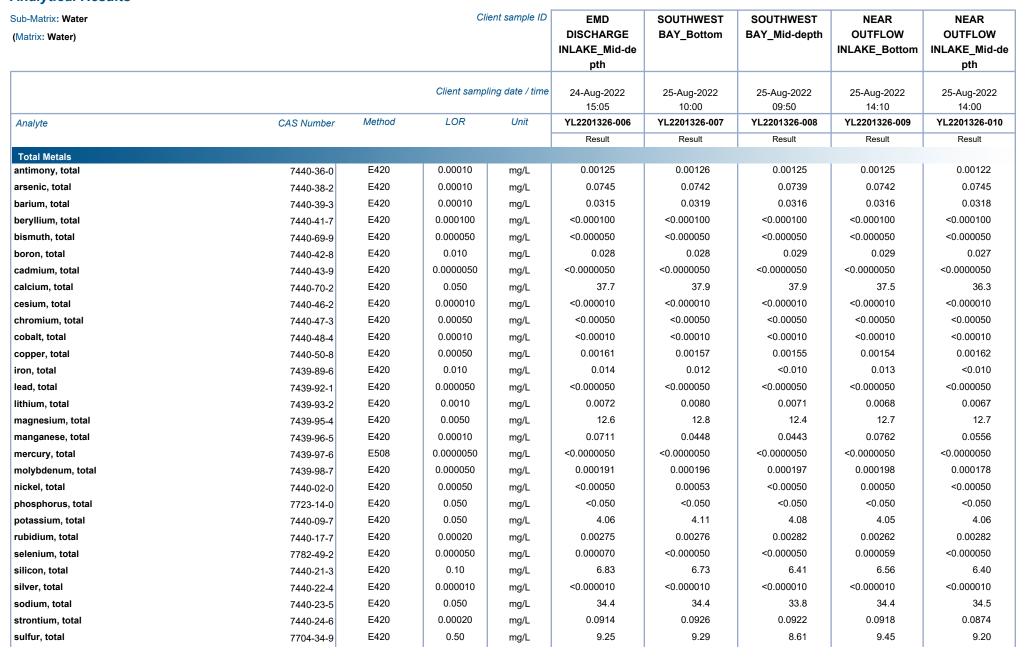
Sub-Matrix: Water (Matrix: Water)			C	lient sample ID	NORTHWEST BAY NORTH_Bottom	NORTHWEST BAY NORTH_Mid-de pth	MID LAKE 1_Bottom	MID LAKE 1_Mid-depth	EMD DISCHARGE INLAKE_Bottom
			Client samp	oling date / time	25-Aug-2022 15:30	25-Aug-2022 15:20	25-Aug-2022 12:00	25-Aug-2022 11:50	24-Aug-2022 15:15
Analyte CAS	Number	Method	LOR	Unit	YL2201326-001	YL2201326-002	YL2201326-003	YL2201326-004	YL2201326-005
					Result	Result	Result	Result	Result
Volatile Organic Compounds [Fuels]									
methyl-tert-butyl ether [MTBE]	34-04-4	E611A	0.50	μg/L	<0.50				
styrene	100-42-5	E611A	0.50	μg/L	<0.50				
toluene	108-88-3	E611A	0.50	μg/L	<0.50				
xylene, m+p- 1796	01-23-1	E611A	0.40	μg/L	<0.40				
xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30				
xylenes, total	30-20-7	E611A	0.50	μg/L	<0.50				
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	160-00-4	E611A	1.0	%	109				
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%	101				
Hydrocarbons									
F1 (C6-C10)		E581.VH+F1	100	μg/L	<100				
F2 (C10-C16)		E601	300	μg/L	<300				
F3 (C16-C34)		E601	300	μg/L	<300				
F4 (C34-C50)		E601	300	μg/L	<300				
VHw (C6-C10)		E581.VH+F1	100	μg/L	<100				
F1-BTEX		EC580	100	μg/L	<100				
VPHw		EC580A	100	μg/L	<100				
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%	95.4				
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%	107				

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 9 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

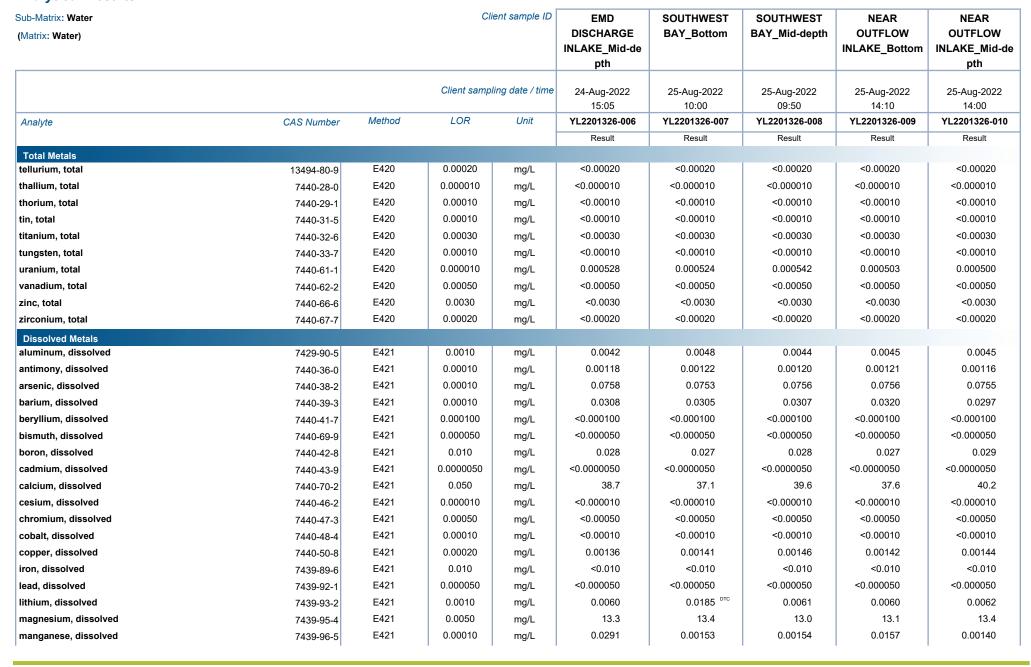

ALS

Sub-Matrix: Water (Matrix: Water)			ient sample ID	EMD DISCHARGE INLAKE_Mid-de pth	SOUTHWEST BAY_Bottom	SOUTHWEST BAY_Mid-depth	NEAR OUTFLOW INLAKE_Bottom	NEAR OUTFLOW INLAKE_Mid-de pth	
			Client samp	ling date / time	24-Aug-2022 15:05	25-Aug-2022 10:00	25-Aug-2022 09:50	25-Aug-2022 14:10	25-Aug-2022 14:00
Analyte	CAS Number	Method	LOR	Unit	YL2201326-006	YL2201326-007	YL2201326-008	YL2201326-009	YL2201326-010
					Result	Result	Result	Result	Result
Physical Tests									
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	104	104	103	104	103
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	9.2	9.0	9.8	9.0	9.6
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	4.6	4.5	4.9	4.5	4.8
alkalinity, total (as CaCO3)		E290	1.0	mg/L	113	112	113	112	112
conductivity		E100	2.0	μS/cm	447	442	444	446	446
hardness (as CaCO3), dissolved		EC100	0.60	mg/L	151	148	152	148	156
hardness (as CaCO3), from total Ca/Mg		EC100A	0.60	mg/L	146	147	146	146	143
pH		E108	0.10	pH units	8.46	8.49	8.53	8.49	8.51
solids, total dissolved [TDS]		E162	10	mg/L	296	300	280	274	297
solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	255	252	255	253	256
solids, total suspended [TSS]		E160	3.0	mg/L	8.4	7.4	7.8	9.3	9.9
turbidity		E121	0.10	NTU	8.18	8.81	8.50	8.85	8.51
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0072	0.0081	0.0089	0.0104	0.0097
chloride	16887-00-6	E235.CI-L	0.10	mg/L	61.9	62.1	61.8	62.0	62.0
fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.086	0.081	0.086	0.082	0.085
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
nitrate + nitrite (as N)		EC235.N+N	0.0050	mg/L	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
nitrogen, total	7727-37-9	E366	0.030	mg/L	1.15	1.08	1.14	1.18	1.17
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0467	0.0443	0.0470	0.0468	0.0474
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0133	0.0126	0.0126	0.0119	0.0122
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	13.2	13.3	13.2	13.3	13.3
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	25.6	25.8	25.7	25.6	25.6
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	11.7	11.9	12.9	11.8	11.7
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0096	0.0105	0.0091	0.0084	0.0083

Page : 10 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915



Page : 11 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Page : 12 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

ALS

Sub-Matrix: Water			Cli	ent sample ID	EMD	SOUTHWEST	SOUTHWEST	NEAR	NEAR
(Matrix: Water)					DISCHARGE INLAKE_Mid-de	BAY_Bottom	BAY_Mid-depth	OUTFLOW INLAKE_Bottom	OUTFLOW INLAKE_Mid-de
					pth				pth
			Client sampl	ling date / time	24-Aug-2022	25-Aug-2022	25-Aug-2022	25-Aug-2022	25-Aug-2022
					15:05	10:00	09:50	14:10	14:00
Analyte	CAS Number	Method	LOR	Unit	YL2201326-006	YL2201326-007	YL2201326-008	YL2201326-009	YL2201326-010
					Result	Result	Result	Result	Result
Dissolved Metals mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
molybdenum, dissolved	7439-97-0	E421	0.000050	mg/L	0.000178	0.000176	0.000174	0.000175	0.000167
nickel, dissolved	7439-98-7	E421	0.00050	mg/L	<0.00050	<0.000170	<0.000174	<0.000173	<0.00050
phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
potassium, dissolved	7440-09-7	E421	0.050	mg/L	4.28	4.28	4.31	4.38	4.25
rubidium, dissolved	7440-09-7	E421	0.00020	mg/L	0.00266	0.00268	0.00272	0.00274	0.00256
selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000051	0.000055	0.000050	0.000067	<0.000050
silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.59	6.52	6.59	6.63	6.53
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, dissolved	7440-23-5	E421	0.050	mg/L	34.6	34.3	34.6	34.8	34.7
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0920	0.0901	0.0899	0.0896	0.0863
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	9.41	9.29	9.37	9.38	9.84
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000562	0.000562	0.000582	0.000545	0.000561
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	Field
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field
Aggregate Organics									
oil & grease (gravimetric)		E567	5.0	mg/L				<5.0	
Volatile Organic Compounds [Fuels]									
benzene	71-43-2	E611A	0.50	μg/L				<0.50	
ethylbenzene	100-41-4	E611A	0.50	μg/L				<0.50	

Page : 13 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

ALS

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	EMD DISCHARGE	SOUTHWEST BAY_Bottom	SOUTHWEST BAY_Mid-depth	NEAR OUTFLOW	NEAR OUTFLOW
(Matrix: Water)					INLAKE_Mid-de pth	BAT_BOILOIII	BAT_Mid-deptil	INLAKE_Bottom	INLAKE_Mid-de pth
			Client samp	ling date / time	24-Aug-2022 15:05	25-Aug-2022 10:00	25-Aug-2022 09:50	25-Aug-2022 14:10	25-Aug-2022 14:00
Analyte C	AS Number	Method	LOR	Unit	YL2201326-006	YL2201326-007	YL2201326-008	YL2201326-009	YL2201326-010
					Result	Result	Result	Result	Result
Volatile Organic Compounds [Fuels]									
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L				<0.50	
styrene	100-42-5	E611A	0.50	μg/L				<0.50	
toluene	108-88-3	E611A	0.50	μg/L				<0.50	
xylene, m+p-	79601-23-1	E611A	0.40	μg/L				<0.40	
xylene, o-	95-47-6	E611A	0.30	μg/L				<0.30	
xylenes, total	1330-20-7	E611A	0.50	μg/L				<0.50	
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611A	1.0	%				108	
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%				99.9	
Hydrocarbons									
F1 (C6-C10)		E581.VH+F1	100	μg/L				<100	
F2 (C10-C16)		E601	300	μg/L				<300	
F3 (C16-C34)		E601	300	μg/L				<300	
F4 (C34-C50)		E601	300	μg/L				<300	
VHw (C6-C10)		E581.VH+F1	100	μg/L				<100	
F1-BTEX		EC580	100	μg/L				<100	
VPHw		EC580A	100	μg/L				<100	
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%				96.2	
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%				96.8	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 14 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

ALS

Sub-Matrix: Water (Matrix: Water)			C	lient sample ID	NORTHWEST BAY NORTH_Bottom _4	JFLQC_1	JFLQC_2	
			Client samp	oling date / time	25-Aug-2022 14:20	24-Aug-2022 08:45	25-Aug-2022 11:25	
Analyte	CAS Number	Method	LOR	Unit	YL2201326-011	YL2201326-012	YL2201326-013	
					Result	Result	Result	
Physical Tests		E290	1.0	ma/l	103	<1.0	<1.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	8.6	<1.0	<1.0	
alkalinity, carbonate (as CaCO3)		E290 E290		mg/L				
alkalinity, hydroxide (as CaCO3)		E290 E290	1.0 1.0	mg/L	<1.0 4.3	<1.0 <1.0	<1.0 <1.0	
alkalinity, phenolphthalein (as CaCO3)		E290 E290	1.0	mg/L	4.3	<1.0 <1.0	<1.0 <1.0	
alkalinity, total (as CaCO3)		E290 E100	2.0	mg/L	442	<1.0 <2.0	<1.0 <2.0	
conductivity hardness (as CaCO3), dissolved		EC100	0.60	μS/cm	148	<0.60	<2.0 <0.60	
, , ,		EC100A	0.60	mg/L	148	<0.60	<0.60	
hardness (as CaCO3), from total Ca/Mg		E108	0.00	mg/L	8.49	5.45	5.44	
pH		E162	10	pH units	274	5.45 <10	5.44 <10	
solids, total dissolved [TDS] solids, total dissolved [TDS], calculated (APHA)		EC103.APHA	1.0	mg/L	251	<1.0	<1.0	
· · · · · · · · · · · · · · · · · · ·		E160	3.0	mg/L	7.5	<3.0	<3.0	
solids, total suspended [TSS] turbidity		E121	0.10	mg/L NTU	7.5 8.51	<0.10	<0.10	
•		EIZI	0.10	NIO	0.51	<0.10	<0.10	
Anions and Nutrients	7004 44 7	E298	0.0050	ma/l	0.0090	<0.0050	<0.0050	
ammonia, total (as N) chloride	7664-41-7	E235.CI-L	0.0030	mg/L	62.0	<0.00	<0.10	
fluoride	16887-00-6	E235.G-L E235.F-L	0.10	mg/L	0.083	<0.010	<0.10	
	16984-48-8	E235.F-L E235.NO3-L		mg/L				
nitrate (as N)	14797-55-8	EC235.N+N	0.0050	mg/L	<0.0050 <0.0051	<0.0050 <0.0051	<0.0050 <0.0051	
nitrate + nitrite (as N)			0.0050	mg/L	<0.0051	<0.0051	<0.0031	
nitrite (as N)	14797-65-0	E235.NO2-L E366	0.0010	mg/L		<0.0010	<0.0010	
nitrogen, total	7727-37-9		0.030	mg/L	1.09 0.0448		<0.030 <0.0020	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L		<0.0020		
phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0148	<0.0020	<0.0020	
silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	13.3	<0.50	<0.50	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	25.7	<0.30	<0.30	
Organic / Inorganic Carbon		E250 I	0.50	m = /1	44.0	<0.F0	<0.E0	
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	11.8	<0.50	<0.50	
Total Metals	7/22 22 -	E400	0.0000	n	0.0420	0.0044 RRV	<0.0000	
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0138	0.0044 RRV	<0.0030	

Page : 15 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

ALS

(Matrix: Water)			Clie	ent sample ID	NORTHWEST BAY NORTH_Bottom _4	JFLQC_1	JFLQC_2	
			Client sampl	ing date / time	25-Aug-2022 14:20	24-Aug-2022 08:45	25-Aug-2022 11:25	
Analyte	CAS Number	Method	LOR	Unit	YL2201326-011	YL2201326-012	YL2201326-013	
					Result	Result	Result	
Total Metals								
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00127	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0751	<0.00010	<0.00010	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0313	0.00069 RRV	<0.00010	
beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	<0.000100	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.029	<0.010	<0.010	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.0000050	<0.000050	
calcium, total	7440-70-2	E420	0.050	mg/L	37.8	<0.050	<0.050	
cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
copper, total	7440-50-8	E420	0.00050	mg/L	0.00159	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	0.017	<0.010	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0069	<0.0010	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	12.9	<0.0050	<0.0050	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0467	<0.00010	<0.00010	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000192	<0.000050	<0.000050	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00051	<0.00050	<0.00050	
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	<0.050	
potassium, total	7440-09-7	E420	0.050	mg/L	4.10	<0.050	<0.050	
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00282	<0.00020	<0.00020	
selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
silicon, total	7440-21-3	E420	0.10	mg/L	6.59	<0.10	<0.10	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5	E420	0.050	mg/L	35.2	<0.050	<0.050	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0927	<0.00020	<0.00020	
sulfur, total	7704-34-9	E420	0.50	mg/L	8.63	<0.50	<0.50	

Page : 16 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

ALS

Analyte CAS Number Method LOR Unit 14:20 0.0845 11:25	Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	NORTHWEST BAY NORTH_Bottom _4	JFLQC_1	JFLQC_2	
Total Metals				Client sampl	ling date / time	-	•	ŭ	
Total Metals 13494-80-9 E420 0.00020 mg/L <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <	Analyte	CAS Number	Method	LOR	Unit	YL2201326-011	YL2201326-012	YL2201326-013	
tellurium, total 13494-80-9 E420 0.00020 mg/L <0.00020						Result	Result	Result	
thallium, total 7440-28-0 E420 0.000010 mg/L <0.000010 <0.000010 0.000010			E 400	0.00000		0.0000	0.0000	0.0000	
tin, total 7440-29-1 E420 0.00010 mg/L <0.00010 <0.00010 <0.00010					-				
tin, total 7440-31-5 E420 0.00010 mg/L <0.00010 <0.00010	· ·				-				
ttanium, total 7440-32-6 E420 0.00030 mg/L 0.00035 <0.00030 <0.00030					-				
tungsten, total 7440-33-7 E420 0.00010 mg/L <0.00010	·				-				
uranium, total 7440-61-1 E420 0.000010 mg/L 0.000524 <0.000010					mg/L				
vanadium, total 7440-62-2 E420 0.00050 mg/L <0.00050	_ ·	7440-33-7			mg/L				
zinc, total 7440-66-6 E420 0.0030 mg/L <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.00020 <0.0030 <0.00020 <0.00030 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0	uranium, total	7440-61-1			mg/L				
zirconium, total 7440-67-7 E420 0.00020 mg/L <0.00020	vanadium, total	7440-62-2			mg/L		<0.00050		
Dissolved Metals aluminum, dissolved 7429-90-5 E421 0.0010 mg/L 0.0042 0.0019 ™ <0.0010	zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	<0.0030	
aluminum, dissolved 7429-90-5 E421 0.0010 mg/L 0.0042 0.0019 IRV <0.0010	zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
antimony, dissolved 7440-36-0 E421 0.00010 mg/L 0.00114 <0.00010	Dissolved Metals								
arsenic, dissolved 7440-38-2 E421 0.00010 mg/L 0.0764 <0.00010	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0042	0.0019 RRV	<0.0010	
barium, dissolved 7440-39-3 E421 0.00010 mg/L 0.0312 0.00041 NNV <0.00010	antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00114	<0.00010	<0.00010	
beryllium, dissolved 7440-41-7 E421 0.000100 mg/L <0.000100	arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0764		<0.00010	
bismuth, dissolved 7440-69-9 E421 0.000050 mg/L <0.000050	barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0312	0.00041 RRV	<0.00010	
boron, dissolved 7440-42-8 E421 0.010 mg/L 0.028 <0.010	beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	<0.000100	
cadmium, dissolved 7440-43-9 E421 0.0000050 mg/L <0.000050	bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
calcium, dissolved 7440-70-2 E421 0.050 mg/L 38.4 <0.050	boron, dissolved	7440-42-8	E421	0.010	mg/L	0.028	<0.010	<0.010	
cesium, dissolved 7440-46-2 E421 0.000010 mg/L <0.000010	cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	
chromium, dissolved 7440-47-3 E421 0.00050 mg/L <0.00050	calcium, dissolved	7440-70-2	E421	0.050	mg/L	38.4	<0.050	<0.050	
cobalt, dissolved 7440-48-4 E421 0.00010 mg/L <0.00010	cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
copper, dissolved 7440-50-8 E421 0.00020 mg/L 0.00137 <0.00020	chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
	cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
iron, dissolved 7439-89-6 E421 0.010 mg/L <0.010 <0.010	copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00137	<0.00020	<0.00020	
	iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	
lead, dissolved 7439-92-1 E421 0.000050 mg/L <0.000050 <0.000050	lead, dissolved		E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, dissolved 7439-93-2 E421 0.0010 mg/L 0.0060 <0.0010	lithium, dissolved		E421	0.0010	mg/L	0.0060	<0.0010	<0.0010	
magnesium, dissolved 7439-95-4 E421 0.0050 mg/L 12.6 <0.0050	magnesium, dissolved		E421	0.0050	-	12.6	<0.0050	<0.0050	
manganese, dissolved 7439-96-5 E421 0.00010 mg/L 0.00197 <0.00010	manganese, dissolved		E421	0.00010		0.00197	<0.00010	<0.00010	

Page : 17 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

ALS

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	NORTHWEST BAY	JFLQC_1	JFLQC_2		
					NORTH_Bottom _4				
			Client samp	ling date / time	25-Aug-2022 14:20	24-Aug-2022 08:45	25-Aug-2022 11:25		
Analyte	CAS Number	Method	LOR	Unit	YL2201326-011	YL2201326-012	YL2201326-013		
					Result	Result	Result		
Dissolved Metals mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.000050	<0.000050		
molybdenum, dissolved		E421	0.000050	_	0.000173	<0.000050	<0.000050		
nickel, dissolved	7439-98-7 7440-02-0	E421	0.00050	mg/L mg/L	<0.00050	<0.00050	<0.00050		
phosphorus, dissolved		E421	0.050	ŭ	<0.050	<0.050	<0.050		
potassium, dissolved	7723-14-0	E421	0.050	mg/L	4.27	<0.050	<0.050		
rubidium, dissolved	7440-09-7 7440-17-7	E421	0.00020	mg/L mg/L	0.00271	<0.000	<0.00020		
selenium, dissolved	7782-49-2	E421	0.00020	mg/L	<0.00050	<0.00050	<0.00020		
silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.49	<0.050	<0.050		
silver, dissolved	7440-21-3	E421	0.000010	mg/L	<0.00010	<0.00010	<0.00010		
sodium, dissolved	7440-22-4	E421	0.050	mg/L	33.2	<0.050	<0.050		
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0843	<0.00020	<0.00020		
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	9.63	<0.50	<0.50		
tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020		
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.00010	<0.00010	<0.00010		
thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010		
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010		
titanium, dissolved	7440-31-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030		
tungsten, dissolved	7440-32-0	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010		
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000545	<0.00010	<0.00010		
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050		
zinc, dissolved	7440-62-2	E421	0.0010	mg/L	<0.0010	<0.0010	0.0049 RRV		
zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020		
dissolved mercury filtration location		EP509	-	-	Field	Field	Field		
dissolved metals filtration location		EP421	-	-	Field	Field	Field		
Aggregate Organics									
oil & grease (gravimetric)		E567	5.0	mg/L	<5.0	<5.0			
Volatile Organic Compounds [Fuels]									
benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50			
ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50			
	1			'			'	'	

Page : 18 of 18 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

ALS

Analytical Results

Sub-Matrix: Water Client sample ID				NORTHWEST	JFLQC_1	JFLQC_2	 	
(Matrix: Water)					BAY			
					NORTH_Bottom			
					_4			
			Client samp	oling date / time	25-Aug-2022	24-Aug-2022	25-Aug-2022	
					14:20	08:45	11:25	
Analyte	CAS Number	Method	LOR	Unit	YL2201326-011	YL2201326-012	YL2201326-013	
					Result	Result	Result	
Volatile Organic Compounds [Fuels]								
methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50	<0.50		
styrene	100-42-5	E611A	0.50	μg/L	<0.50	<0.50		
toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50		
xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40	<0.40		
xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30		
xylenes, total	1330-20-7	E611A	0.50	μg/L	<0.50	<0.50		
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	E611A	1.0	%	108	109		
difluorobenzene, 1,4-	540-36-3	E611A	1.0	%	100	101		
Hydrocarbons								
F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	<100		
F2 (C10-C16)		E601	300	μg/L	<300	<300		
F3 (C16-C34)		E601	300	μg/L	<300	<300		
F4 (C34-C50)		E601	300	μg/L	<300	<300		
VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	<100		
F1-BTEX		EC580	100	μg/L	<100	<100		
VPHw		EC580A	100	μg/L	<100	<100		
Hydrocarbons Surrogates								
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	1.0	%	96.4	93.6		
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%	108	100		

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : YL2201326 Page : 1 of 44

Client : Golder Associates Ltd. Laboratory : Yellowknife - Environmental

Contact : Kathy Qin Account Manager : Oliver Gregg

Address : 9 - 4905 48th Street Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

Telephone : ---- Telephone : 1 867 446 5593

Project : 21482915 Date Samples Received : 26-Aug-2022 10:02

 Project
 : 21482915
 Date Samples Received
 : 26-Aug-2022 10:02

 PO
 : --- Issue Date
 : 09-Sep-2022 12:40

Sampler : Nathan Hoeve: Bernadette Weaver

Yellowknife NT Canada X1A 3S3

Site : Jackfish NTPC
Quote number : YL21-GOLD100-008

No. of samples received : 13

No. of samples analysed : 13

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

C-O-C number

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Physical Tests	QC-MRG2-6242030		alkalinity, bicarbonate (as		E290	1.9 mg/L ^B	1.5 mg/L	Blank result exceeds
	01		CaCO3)					permitted value
Physical Tests	QC-MRG2-6242030		alkalinity, total (as CaCO3)		E290	1.9 mg/L ^B	1.5 mg/L	Blank result exceeds
	01							permitted value

Result Qualifiers

Qualifier Description

B Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times

blank level are considered reliable.

Laboratory Control Sample (LCS) Recoveries									
Dissolved Metals	QC-624073-002		silver, dissolved 7440-22-4 E43			76.7 % MES	Recovery less than lower		
								control limit	

Result Qualifiers

Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Page : 4 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: ≭ =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holding	Holding Times Eval		Analysis Date Holdi		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
JFLQC_1	E567	24-Aug-2022	03-Sep-2022	28	10	✓	03-Sep-2022	40 days	0 days	✓
				days	days					
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
NEAR OUTFLOW INLAKE_Bottom	E567	25-Aug-2022	03-Sep-2022	28	9 days	✓	03-Sep-2022	40 days	0 days	✓
				days						
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
NORTHWEST BAY NORTH_Bottom	E567	25-Aug-2022	03-Sep-2022	28	9 days	✓	03-Sep-2022	40 days	0 days	✓
				days						
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
NORTHWEST BAY NORTH_Bottom_4	E567	25-Aug-2022	03-Sep-2022	28	9 days	✓	03-Sep-2022	40 days	0 days	✓
				days						
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
JFLQC_2	E298	25-Aug-2022	01-Sep-2022				02-Sep-2022	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
MID LAKE 1_Bottom	E298	25-Aug-2022	01-Sep-2022				02-Sep-2022	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
MID LAKE 1 Mid-depth	E298	25-Aug-2022	01-Sep-2022				02-Sep-2022	28 days	8 days	✓
- '			•				· ·			

Page : 5 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom E298 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days ✓ Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) ✓ NEAR OUTFLOW INLAKE Mid-depth E298 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days --------Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) E298 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days 1 NORTHWEST BAY NORTH Bottom Anions and Nutrients: Ammonia by Fluorescence Amber glass total (sulfuric acid) E298 01-Sep-2022 02-Sep-2022 28 days 8 days ✓ NORTHWEST BAY NORTH Bottom 4 25-Aug-2022 Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) NORTHWEST BAY NORTH Mid-depth E298 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days ✓ Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) SOUTHWEST BAY_Bottom E298 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days ✓ 8 davs Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) SOUTHWEST BAY Mid-depth E298 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days 1 Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) ✓ 28 days 9 days EMD DISCHARGE INLAKE Bottom E298 24-Aug-2022 01-Sep-2022 02-Sep-2022 Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) E298 ✓ EMD DISCHARGE INLAKE Mid-depth 24-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 9 days --------

Page : 6 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) JFLQC_1 E298 24-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 9 days ✓ Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L ✓ JFLQC 2 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days ----Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE MID LAKE 1 Bottom E235.CI-L 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days 1 Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L MID LAKE 1 Mid-depth 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L 25-Aug-2022 30-Aug-2022 30-Aug-2022 NEAR OUTFLOW INLAKE Bottom 28 days 5 days Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L 25-Aug-2022 30-Aug-2022 30-Aug-2022 ✓ NEAR OUTFLOW INLAKE_Mid-depth 28 days 5 davs Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE NORTHWEST BAY NORTH Bottom E235.CI-L 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days 1 Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L ✓ NORTHWEST BAY NORTH Bottom 4 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L ✓ 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days NORTHWEST BAY NORTH Mid-depth --------

Page : 7 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Actual Rec Actual Date Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE SOUTHWEST BAY_Bottom E235.CI-L 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days ✓ Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L 30-Aug-2022 ✓ SOUTHWEST BAY_Mid-depth 25-Aug-2022 30-Aug-2022 28 days 5 days --------Anions and Nutrients : Chloride in Water by IC (Low Level) **HDPE** E235.CI-L 24-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 6 days ✓ EMD DISCHARGE INLAKE Bottom Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L 24-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 6 days EMD DISCHARGE INLAKE Mid-depth Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L 24-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 6 days JFLQC 1 Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days ✓ JFLQC_2 5 days Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE MID LAKE 1 Bottom E235.F-L 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days 1 Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L ✓ MID LAKE 1 Mid-depth 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L ✓ NEAR OUTFLOW INLAKE Bottom 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days --------

Page : 8 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Actual Rec Actual Date Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days ✓ NEAR OUTFLOW INLAKE_Mid-depth Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L ✓ NORTHWEST BAY NORTH Bottom 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days ----Anions and Nutrients : Fluoride in Water by IC (Low Level) **HDPE** E235.F-L 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days ✓ NORTHWEST BAY NORTH Bottom 4 Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 30-Aug-2022 30-Aug-2022 NORTHWEST BAY NORTH Mid-depth 25-Aug-2022 28 days 5 days Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days SOUTHWEST BAY Bottom Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L 25-Aug-2022 30-Aug-2022 30-Aug-2022 ✓ SOUTHWEST BAY_Mid-depth 28 days 5 davs Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE EMD DISCHARGE INLAKE Bottom E235.F-L 24-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 6 days ✓ Anions and Nutrients : Fluoride in Water by IC (Low Level) **HDPE** E235.F-L ✓ EMD DISCHARGE INLAKE Mid-depth 24-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 6 days Anions and Nutrients : Fluoride in Water by IC (Low Level) HDPE E235.F-L ✓ JFLQC 1 24-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 6 days --------

Page : 9 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE JFLQC_2 E235.NO3-L 25-Aug-2022 30-Aug-2022 3 days 5 days sc 30-Aug-2022 3 days 0 days ✓ EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L ✓ MID LAKE 1 Bottom 25-Aug-2022 30-Aug-2022 3 days 5 days × 30-Aug-2022 3 days 0 days EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) **HDPE** E235.NO3-L 25-Aug-2022 30-Aug-2022 æ 30-Aug-2022 3 days 0 days ✓ MID LAKE 1 Mid-depth 3 days 5 days EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 30-Aug-2022 30-Aug-2022 ✓ NEAR OUTFLOW INLAKE Bottom 25-Aug-2022 3 days 5 days × 3 days 0 days EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 25-Aug-2022 30-Aug-2022 3 days 5 days × 30-Aug-2022 3 days 0 days ✓ NEAR OUTFLOW INLAKE Mid-depth EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 25-Aug-2022 30-Aug-2022 sc ✓ NORTHWEST BAY NORTH_Bottom 3 days 5 days 30-Aug-2022 3 days 0 davs EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE NORTHWEST BAY NORTH Bottom 4 E235.NO3-L 25-Aug-2022 30-Aug-2022 3 days 5 days × 30-Aug-2022 3 days 0 days ✓ EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) **HDPE** ✓ NORTHWEST BAY NORTH Mid-depth E235.NO3-L 25-Aug-2022 30-Aug-2022 3 days 5 days æ 30-Aug-2022 3 days 0 days EHT Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE E235.NO3-L 25-Aug-2022 30-Aug-2022 3 days 5 days × 30-Aug-2022 3 days 0 days ✓ SOUTHWEST BAY Bottom EHT

Page : 10 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; •	/ = Within	Holding Tim
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding Rec	g Times	Eval	Analysis Date		Times	Eval
A Constant of the Constant of			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrate in Water by IC (Low Level)							I			
HDPE SOUTHWEST BAY_Mid-depth	E235.NO3-L	25-Aug-2022	30-Aug-2022	3 days	5 days	± EHT	30-Aug-2022	3 days	0 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE EMD DISCHARGE INLAKE_Bottom	E235.NO3-L	24-Aug-2022	30-Aug-2022	3 days	6 days	* EHT	30-Aug-2022	3 days	0 days	√
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E235.NO3-L	24-Aug-2022	30-Aug-2022	3 days	6 days	* EHT	30-Aug-2022	3 days	0 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE JFLQC_1	E235.NO3-L	24-Aug-2022	30-Aug-2022	3 days	6 days	* EHT	30-Aug-2022	3 days	0 days	4
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE JFLQC_2	E235.NO2-L	25-Aug-2022	30-Aug-2022				30-Aug-2022	3 days	5 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE MID LAKE 1_Bottom	E235.NO2-L	25-Aug-2022	30-Aug-2022				30-Aug-2022	3 days	5 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE MID LAKE 1_Mid-depth	E235.NO2-L	25-Aug-2022	30-Aug-2022				30-Aug-2022	3 days	5 days	* EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE NEAR OUTFLOW INLAKE_Bottom	E235.NO2-L	25-Aug-2022	30-Aug-2022				30-Aug-2022	3 days	5 days	# EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE NEAR OUTFLOW INLAKE_Mid-depth	E235.NO2-L	25-Aug-2022	30-Aug-2022				30-Aug-2022	3 days	5 days	* EHT

Page : 11 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🛚	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation		Times	Eval	Analysis Date	Holding		Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE NORTHWEST BAY NORTH_Bottom	E235.NO2-L	25-Aug-2022	30-Aug-2022				30-Aug-2022	3 days	5 days	×
										EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
NORTHWEST BAY NORTH_Bottom_4	E235.NO2-L	25-Aug-2022	30-Aug-2022				30-Aug-2022	3 days	5 days	# EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
NORTHWEST BAY NORTH_Mid-depth	E235.NO2-L	25-Aug-2022	30-Aug-2022				30-Aug-2022	3 days	5 days	# EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SOUTHWEST BAY_Bottom	E235.NO2-L	25-Aug-2022	30-Aug-2022				30-Aug-2022	3 days	5 days	×
										EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SOUTHWEST BAY_Mid-depth	E235.NO2-L	25-Aug-2022	30-Aug-2022				30-Aug-2022	3 days	5 days	*
										EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
EMD DISCHARGE INLAKE_Bottom	E235.NO2-L	24-Aug-2022	30-Aug-2022				30-Aug-2022	3 days	6 days	*
										EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E235.NO2-L	24-Aug-2022	30-Aug-2022				30-Aug-2022	3 days	6 days	×
EMD DISCHARGE INLARE_MID-DEPTH	L233.NO2-L	24-Aug-2022	30-Aug-2022				30-Aug-2022	3 days	0 days	EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
JFLQC_1	E235.NO2-L	24-Aug-2022	30-Aug-2022				30-Aug-2022	3 days	6 days	3c
										EHT
Anions and Nutrients : Reactive Silica by Colourimetry										
HDPE										
JFLQC_2	E392	25-Aug-2022					31-Aug-2022	28 days	6 days	✓

Page : 12 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date **Anions and Nutrients: Reactive Silica by Colourimetry** HDPE MID LAKE 1_Bottom E392 25-Aug-2022 31-Aug-2022 28 days 6 days ✓ Anions and Nutrients: Reactive Silica by Colourimetry HDPE ✓ MID LAKE 1_Mid-depth E392 25-Aug-2022 31-Aug-2022 28 days 6 days ----Anions and Nutrients : Reactive Silica by Colourimetry HDPE E392 25-Aug-2022 31-Aug-2022 28 days 6 days 1 NEAR OUTFLOW INLAKE Bottom Anions and Nutrients: Reactive Silica by Colourimetry HDPE E392 31-Aug-2022 28 days 6 days NEAR OUTFLOW INLAKE Mid-depth 25-Aug-2022 Anions and Nutrients : Reactive Silica by Colourimetry HDPE E392 25-Aug-2022 31-Aug-2022 28 days 6 days NORTHWEST BAY NORTH Bottom **Anions and Nutrients: Reactive Silica by Colourimetry** HDPE E392 25-Aug-2022 31-Aug-2022 28 days ✓ NORTHWEST BAY NORTH_Bottom_4 6 days Anions and Nutrients : Reactive Silica by Colourimetry HDPE NORTHWEST BAY NORTH Mid-depth E392 25-Aug-2022 31-Aug-2022 28 days 6 days 1 Anions and Nutrients : Reactive Silica by Colourimetry HDPE 28 days 6 days ✓ SOUTHWEST BAY Bottom E392 25-Aug-2022 31-Aug-2022 Anions and Nutrients : Reactive Silica by Colourimetry HDPE E392 ✓ 25-Aug-2022 31-Aug-2022 28 days 6 days SOUTHWEST BAY Mid-depth ----

Page : 13 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Anions and Nutrients : Sulfate in Water by IC

NEAR OUTFLOW INLAKE_Mid-depth

Anions and Nutrients : Sulfate in Water by IC

NORTHWEST BAY NORTH Bottom

HDPE

HDPE

Project : 21482915

✓

✓

28 days 5 days

28 days 5 days

30-Aug-2022

30-Aug-2022

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date **Anions and Nutrients: Reactive Silica by Colourimetry** HDPE EMD DISCHARGE INLAKE_Bottom E392 24-Aug-2022 31-Aug-2022 28 days 7 days ✓ Anions and Nutrients: Reactive Silica by Colourimetry HDPE ✓ EMD DISCHARGE INLAKE Mid-depth E392 24-Aug-2022 31-Aug-2022 28 days 7 days --------Anions and Nutrients : Reactive Silica by Colourimetry HDPE JFLQC 1 E392 24-Aug-2022 31-Aug-2022 28 days 7 days ✓ Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 30-Aug-2022 30-Aug-2022 28 days 5 days JFLQC 2 25-Aug-2022 Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days MID LAKE 1_Bottom Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days ✓ MID LAKE 1_Mid-depth 5 days Anions and Nutrients : Sulfate in Water by IC HDPE NEAR OUTFLOW INLAKE Bottom E235.SO4 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days 1

25-Aug-2022

25-Aug-2022

30-Aug-2022

30-Aug-2022

E235.SO4

E235.SO4

Page : 14 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients : Sulfate in Water by IC HDPE NORTHWEST BAY NORTH_Bottom_4 E235.SO4 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days ✓ Anions and Nutrients : Sulfate in Water by IC HDPE ✓ NORTHWEST BAY NORTH_Mid-depth E235.SO4 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days --------Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 25-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 5 days 1 SOUTHWEST BAY Bottom Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 30-Aug-2022 30-Aug-2022 SOUTHWEST BAY Mid-depth 25-Aug-2022 28 days 5 days Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 24-Aug-2022 30-Aug-2022 30-Aug-2022 ✓ EMD DISCHARGE INLAKE Bottom 28 days 6 days Anions and Nutrients : Sulfate in Water by IC HDPE E235.SO4 24-Aug-2022 30-Aug-2022 30-Aug-2022 ✓ EMD DISCHARGE INLAKE_Mid-depth 28 days 6 days Anions and Nutrients : Sulfate in Water by IC HDPE JFLQC 1 E235.SO4 24-Aug-2022 30-Aug-2022 30-Aug-2022 28 days 6 days ✓ Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T ✓ JFLQC 2 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T ✓ MID LAKE 1 Bottom 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days --------

Page : 15 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days ✓ MID LAKE 1_Mid-depth Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T ✓ NEAR OUTFLOW INLAKE Bottom 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days ----Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days ✓ NEAR OUTFLOW INLAKE Mid-depth Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T ✓ NORTHWEST BAY NORTH Bottom 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) NORTHWEST BAY NORTH Bottom 4 E375-T 25-Aug-2022 01-Sep-2022 02-Sep-2022 ✓ 28 days 8 days Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T 25-Aug-2022 02-Sep-2022 ✓ NORTHWEST BAY NORTH_Mid-depth 01-Sep-2022 28 days 8 davs Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) SOUTHWEST BAY Bottom E375-T 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days ✓ Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T ✓ SOUTHWEST BAY Mid-depth 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T EMD DISCHARGE INLAKE Bottom 24-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 9 days ✓ --------

Page : 16 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) EMD DISCHARGE INLAKE_Mid-depth E375-T 24-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 9 days ✓ Anions and Nutrients: Total Dissolved Phosphorus by Colourimetry (0.002 mg/L) Amber glass dissolved (sulfuric acid) E375-T ✓ JFLQC 1 24-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 9 days --------Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) JFLQC 2 E366 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days 1 Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) 01-Sep-2022 02-Sep-2022 28 days 8 days ✓ MID LAKE 1 Bottom E366 25-Aug-2022 **Anions and Nutrients: Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) E366 25-Aug-2022 01-Sep-2022 02-Sep-2022 ✓ MID LAKE 1_Mid-depth 28 days 8 days **Anions and Nutrients : Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom 25-Aug-2022 02-Sep-2022 28 days ✓ E366 01-Sep-2022 8 davs **Anions and Nutrients: Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE Mid-depth E366 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) ✓ NORTHWEST BAY NORTH Bottom E366 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) NORTHWEST BAY NORTH Bottom 4 E366 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days ✓ --------

Page : 17 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date **Anions and Nutrients : Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) NORTHWEST BAY NORTH_Mid-depth E366 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days ✓ Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) ✓ SOUTHWEST BAY_Bottom E366 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days --------Anions and Nutrients: Total Nitrogen by Colourimetry Amber glass total (sulfuric acid) E366 25-Aug-2022 01-Sep-2022 02-Sep-2022 28 days 8 days 1 SOUTHWEST BAY Mid-depth **Anions and Nutrients : Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) EMD DISCHARGE INLAKE Bottom 01-Sep-2022 02-Sep-2022 28 days 9 days ✓ E366 24-Aug-2022 **Anions and Nutrients: Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) E366 24-Aug-2022 01-Sep-2022 02-Sep-2022 ✓ EMD DISCHARGE INLAKE Mid-depth 28 days 9 days **Anions and Nutrients : Total Nitrogen by Colourimetry** Amber glass total (sulfuric acid) JFLQC_1 24-Aug-2022 02-Sep-2022 28 days ✓ E366 01-Sep-2022 9 davs Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) JFLQC 2 E372-U 25-Aug-2022 01-Sep-2022 07-Sep-2022 28 days 13 days 1 Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U 28 days 13 days ✓ MID LAKE 1 Bottom 25-Aug-2022 01-Sep-2022 07-Sep-2022 Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U ✓ MID LAKE 1 Mid-depth 25-Aug-2022 01-Sep-2022 07-Sep-2022 28 days 13 days --------

Page : 18 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) NEAR OUTFLOW INLAKE_Bottom E372-U 25-Aug-2022 01-Sep-2022 07-Sep-2022 28 days 13 days ✓ Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U ✓ NEAR OUTFLOW INLAKE Mid-depth 25-Aug-2022 01-Sep-2022 07-Sep-2022 28 days 13 days ----Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U 25-Aug-2022 01-Sep-2022 07-Sep-2022 28 days 13 days 1 NORTHWEST BAY NORTH Bottom Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U 28 days 13 days ✓ NORTHWEST BAY NORTH Bottom 4 25-Aug-2022 01-Sep-2022 07-Sep-2022 Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U 25-Aug-2022 01-Sep-2022 07-Sep-2022 28 days 13 days ✓ NORTHWEST BAY NORTH Mid-depth Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U 25-Aug-2022 07-Sep-2022 28 days 13 days ✓ SOUTHWEST BAY_Bottom 01-Sep-2022 Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) SOUTHWEST BAY Mid-depth E372-U 25-Aug-2022 01-Sep-2022 07-Sep-2022 28 days 13 days ✓ Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U ✓ EMD DISCHARGE INLAKE Bottom 24-Aug-2022 01-Sep-2022 07-Sep-2022 28 days 14 days Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) E372-U 24-Aug-2022 01-Sep-2022 07-Sep-2022 28 days 14 days ✓ EMD DISCHARGE INLAKE Mid-depth --------

Page : 19 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid) JFLQC_1 E372-U 24-Aug-2022 01-Sep-2022 07-Sep-2022 28 days 14 days ✓ **Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) ✓ JFLQC 2 E509 25-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 7 days ----**Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) MID LAKE 1 Bottom E509 25-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 7 days ✓ Dissolved Metals: Dissolved Mercury in Water by CVAAS Glass vial dissolved (hydrochloric acid) 01-Sep-2022 01-Sep-2022 28 days 7 days MID LAKE 1 Mid-depth E509 25-Aug-2022 **Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) E509 25-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 7 days NEAR OUTFLOW INLAKE Bottom **Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) E509 25-Aug-2022 01-Sep-2022 01-Sep-2022 28 days ✓ NEAR OUTFLOW INLAKE_Mid-depth 7 davs **Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) NORTHWEST BAY NORTH Bottom E509 25-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 7 days ✓ Dissolved Metals: Dissolved Mercury in Water by CVAAS Glass vial dissolved (hydrochloric acid) ✓ NORTHWEST BAY NORTH Bottom 4 E509 25-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 7 days **Dissolved Metals: Dissolved Mercury in Water by CVAAS** Glass vial dissolved (hydrochloric acid) E509 25-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 7 days ✓ NORTHWEST BAY NORTH Mid-depth ----

Page : 20 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	traction / Pre	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) SOUTHWEST BAY Bottom	E509	25-Aug-2022	01-Sep-2022				01-Sep-2022	28 days	7 days	✓
-		Ů	·				·		,	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)	F500	05 4 0000	0.4.0				0.4.0	00.1		,
SOUTHWEST BAY_Mid-depth	E509	25-Aug-2022	01-Sep-2022				01-Sep-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)	E509	24-Aug-2022	01-Sep-2022				01-Sep-2022	28 days	O daya	✓
EMD DISCHARGE INLAKE_Bottom	E309	24-Aug-2022	01-Sep-2022				01-Sep-2022	20 days	o uays	•
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)	E509	24 4 2022	01-Sep-2022				01-Sep-2022	28 days	O daya	✓
EMD DISCHARGE INLAKE_Mid-depth	E309	24-Aug-2022	01-Sep-2022				01-Sep-2022	20 days	o uays	•
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)	E509	24-Aug-2022	01 Can 2022				04 Con 2022	20 days	O daya	✓
JFLQC_1	E309	24-Aug-2022	01-Sep-2022				01-Sep-2022	28 days	o uays	•
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)	E421	25 Aug 2022	20 Aug 2022				04 Con 2022	100	O daya	✓
JFLQC_2	E421	25-Aug-2022	30-Aug-2022				01-Sep-2022	180 days	8 days	•
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)	E421	25-Aug-2022	20 Aug 2022				04 Con 2022	400	O daya	✓
MID LAKE 1_Bottom	E421	25-Aug-2022	30-Aug-2022				01-Sep-2022	180 days	8 days	•
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)	F404	05 4 0000	20 4 2000				04 0 0000		0 4	√
MID LAKE 1_Mid-depth	E421	25-Aug-2022	30-Aug-2022				01-Sep-2022	180 days	8 days	•
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)	E404	25 Aug 2022	30 Aug 2022				01 80= 2022	400	0 days	✓
NEAR OUTFLOW INLAKE_Bottom	E421	25-Aug-2022	30-Aug-2022				01-Sep-2022	180 days	8 days	∀

Page : 21 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

hatrix: water						aluation. • –	Holding time excee	dance,		rioluling i
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
NEAR OUTFLOW INLAKE_Mid-depth	E421	25-Aug-2022	30-Aug-2022				01-Sep-2022	180	8 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
NORTHWEST BAY NORTH Bottom	E421	25-Aug-2022	30-Aug-2022				01-Sep-2022	180	8 days	✓
								days	,-	
Discolved Matela , Discolved Matela in Water by CDC ICDMS								aayo		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid)							I			
NORTHWEST BAY NORTH Bottom 4	E421	25-Aug-2022	30-Aug-2022				01-Sep-2022	180	8 days	1
NORTHWEST BAT NORTH_BOROIN_4	2121	20 / kg 2022	00 / tag 2022				0 1 GGP 2022	days	o dayo	
								uays		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS								I	1 1	
HDPE dissolved (nitric acid)	E424	25 Aug 2022	20 4 2022				04 Con 2022	400	O days	✓
NORTHWEST BAY NORTH_Mid-depth	E421	25-Aug-2022	30-Aug-2022				01-Sep-2022	180	8 days	•
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
SOUTHWEST BAY_Bottom	E421	25-Aug-2022	30-Aug-2022				01-Sep-2022	180	8 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
SOUTHWEST BAY_Mid-depth	E421	25-Aug-2022	30-Aug-2022				01-Sep-2022	180	8 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
EMD DISCHARGE INLAKE Bottom	E421	24-Aug-2022	30-Aug-2022				01-Sep-2022	180	9 days	✓
_			J				·	days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
EMD DISCHARGE INLAKE Mid-depth	E421	24-Aug-2022	30-Aug-2022				01-Sep-2022	180	9 days	1
EMD BIOOLETTOE INEVICE IMING-depth	F-72 I	2-7 (ug-2022	00-7 lug-2022				01-00p-2022	days	Judys	•
								uays		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS								I		
HDPE dissolved (nitric acid)	E404	04 4 0000	20 4 2000				04.0 0000		0 4	,
JFLQC_1	E421	24-Aug-2022	30-Aug-2022				01-Sep-2022	180	9 days	✓
								days		

Page : 22 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Matrix: Water					Εν	valuation: ≭ =	Holding time exce	edance ; •	✓ = Within	Holding Tir
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) NEAR OUTFLOW INLAKE_Bottom	E601	25-Aug-2022	01-Sep-2022	14 days	7 days	✓	02-Sep-2022	40 days	1 days	✓
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) NORTHWEST BAY NORTH_Bottom	E601	25-Aug-2022	01-Sep-2022	14 days	7 days	✓	02-Sep-2022	40 days	1 days	✓
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) NORTHWEST BAY NORTH_Bottom_4	E601	25-Aug-2022	01-Sep-2022	14 days	7 days	✓	02-Sep-2022	40 days	1 days	✓
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) JFLQC_1	E601	24-Aug-2022	01-Sep-2022	14 days	8 days	✓	02-Sep-2022	40 days	1 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) NEAR OUTFLOW INLAKE_Bottom	E581.VH+F1	25-Aug-2022	02-Sep-2022				03-Sep-2022	14 days	8 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) NORTHWEST BAY NORTH_Bottom	E581.VH+F1	25-Aug-2022	02-Sep-2022				03-Sep-2022	14 days	8 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) NORTHWEST BAY NORTH_Bottom_4	E581.VH+F1	25-Aug-2022	02-Sep-2022				03-Sep-2022	14 days	8 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID									1	
Glass vial (sodium bisulfate) JFLQC_1	E581.VH+F1	24-Aug-2022	02-Sep-2022				03-Sep-2022	14 days	9 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	el)									
Amber glass dissolved (sulfuric acid) JFLQC_2	E358-L	25-Aug-2022	01-Sep-2022				01-Sep-2022	28 days	7 days	✓

Page : 23 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Sampling Date Extraction / Preparation Analyte Group Method Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 25-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 7 days ✓ MID LAKE 1_Bottom Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L ✓ MID LAKE 1 Mid-depth 25-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 7 days Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 25-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 7 days 1 NEAR OUTFLOW INLAKE Bottom Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 01-Sep-2022 NEAR OUTFLOW INLAKE Mid-depth 25-Aug-2022 01-Sep-2022 28 days 7 days Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 25-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 7 days NORTHWEST BAY NORTH Bottom Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 25-Aug-2022 01-Sep-2022 ✓ NORTHWEST BAY NORTH_Bottom_4 01-Sep-2022 28 days 7 davs Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) NORTHWEST BAY NORTH Mid-depth E358-L 25-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 7 days ✓ Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L ✓ SOUTHWEST BAY Bottom 25-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 7 days Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L 25-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 7 days ✓ SOUTHWEST BAY Mid-depth --------

Page : 24 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Actual Rec Actual Date Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) EMD DISCHARGE INLAKE_Bottom E358-L 24-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 8 days ✓ Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) E358-L ✓ EMD DISCHARGE INLAKE Mid-depth 24-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 8 days --------Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) JFLQC 1 E358-L 24-Aug-2022 01-Sep-2022 01-Sep-2022 28 days 8 days ✓ Physical Tests : Alkalinity Species by Titration HDPE E290 ✓ JFLQC 2 25-Aug-2022 30-Aug-2022 30-Aug-2022 14 days 5 days Physical Tests : Alkalinity Species by Titration HDPE MID LAKE 1_Bottom E290 25-Aug-2022 30-Aug-2022 ✓ 30-Aug-2022 14 days 5 days Physical Tests: Alkalinity Species by Titration HDPE E290 25-Aug-2022 30-Aug-2022 30-Aug-2022 ✓ MID LAKE 1_Mid-depth 14 days 5 days Physical Tests : Alkalinity Species by Titration **HDPE** E290 25-Aug-2022 30-Aug-2022 30-Aug-2022 1 NEAR OUTFLOW INLAKE Bottom 14 days 5 days Physical Tests: Alkalinity Species by Titration HDPE ✓ NEAR OUTFLOW INLAKE Mid-depth E290 25-Aug-2022 30-Aug-2022 30-Aug-2022 14 days 5 days Physical Tests : Alkalinity Species by Titration HDPE E290 ✓ 25-Aug-2022 30-Aug-2022 30-Aug-2022 14 days 5 days NORTHWEST BAY NORTH Bottom --------

Page : 25 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Analyte Group	Method	Sampling Date	Ext	traction / Pre	eparation			Analys	is	
Container / Client Sample ID(s)		Gampining 2 atto	Preparation		Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual	270	7 maryolo Bato	Rec	Actual	
hysical Tests : Alkalinity Species by Titration										
HDPE NORTHWEST BAY NORTH_Bottom_4	E290	25-Aug-2022	30-Aug-2022				30-Aug-2022	14 days	5 days	✓
hysical Tests : Alkalinity Species by Titration										
HDPE NORTHWEST BAY NORTH_Mid-depth	E290	25-Aug-2022	30-Aug-2022				30-Aug-2022	14 days	5 days	✓
hysical Tests : Alkalinity Species by Titration										
HDPE SOUTHWEST BAY_Bottom	E290	25-Aug-2022	30-Aug-2022				30-Aug-2022	14 days	5 days	✓
hysical Tests : Alkalinity Species by Titration										
HDPE SOUTHWEST BAY_Mid-depth	E290	25-Aug-2022	30-Aug-2022				30-Aug-2022	14 days	5 days	*
hysical Tests : Alkalinity Species by Titration										
HDPE EMD DISCHARGE INLAKE_Bottom	E290	24-Aug-2022	30-Aug-2022				30-Aug-2022	14 days	6 days	✓
hysical Tests : Alkalinity Species by Titration										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E290	24-Aug-2022	30-Aug-2022				30-Aug-2022	14 days	6 days	✓
hysical Tests : Alkalinity Species by Titration										
HDPE JFLQC_1	E290	24-Aug-2022	30-Aug-2022				30-Aug-2022	14 days	6 days	✓
hysical Tests : Conductivity in Water										
HDPE JFLQC_2	E100	25-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	5 days	✓
hysical Tests : Conductivity in Water										
HDPE										

Page : 26 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Analyte Group	Method	Sampling Date	Ext	raction / Pre	eparation			Analys	is	
Container / Client Sample ID(s)	Wicthod	Camping Date	Preparation	Holding		Eval	Analysis Date		Times	Eval
			Date	Rec	Actual	Lvar	Analysis Date	Rec	Actual	Lvar
hysical Tests : Conductivity in Water										
HDPE MID LAKE 1_Mid-depth	E100	25-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	5 days	1
hysical Tests : Conductivity in Water										
HDPE NEAR OUTFLOW INLAKE_Bottom	E100	25-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	5 days	✓
hysical Tests : Conductivity in Water										
HDPE NEAR OUTFLOW INLAKE_Mid-depth	E100	25-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	5 days	✓
Physical Tests : Conductivity in Water										
HDPE NORTHWEST BAY NORTH_Bottom	E100	25-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	5 days	1
hysical Tests : Conductivity in Water										
HDPE NORTHWEST BAY NORTH_Bottom_4	E100	25-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	5 days	1
Physical Tests : Conductivity in Water										
HDPE NORTHWEST BAY NORTH_Mid-depth	E100	25-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	5 days	*
hysical Tests : Conductivity in Water										
HDPE SOUTHWEST BAY_Bottom	E100	25-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	5 days	✓
hysical Tests : Conductivity in Water										
HDPE SOUTHWEST BAY_Mid-depth	E100	25-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	5 days	✓
hysical Tests : Conductivity in Water										
HDPE EMD DISCHARGE INLAKE_Bottom	E100	24-Aug-2022	30-Aug-2022				30-Aug-2022		6 days	

Page : 27 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Analyte Group	Method	Sampling Date	Fy	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)	ivietriou	Camping Date			g Times	Eval	Analysis Date		g Times	Eval
Solitation / Strong Gampie 15(6)			Preparation Date	Rec	Actual	Lvai	Allalysis Date	Rec	Actual	Lvai
Physical Tests : Conductivity in Water										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E100	24-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	6 days	✓
Physical Tests : Conductivity in Water										
HDPE										
JFLQC_1	E100	24-Aug-2022	30-Aug-2022				30-Aug-2022	28 days	6 days	*
Physical Tests : pH by Meter										
HDPE EMD DISCHARGE INLAKE_Bottom	E108	24-Aug-2022	30-Aug-2022				30-Aug-2022	0.25	2.25	æ
								hrs	hrs	EHTR-
Physical Tests : pH by Meter										
HDPE EMD DISCHARGE INLAKE_Mid-depth	E108	24-Aug-2022	30-Aug-2022				30-Aug-2022	0.25	2.25	×
								hrs	hrs	EHTR-I
Physical Tests : pH by Meter HDPE										
JFLQC_1	E108	24-Aug-2022	30-Aug-2022				30-Aug-2022	0.25	2.25	se
								hrs	hrs	EHTR-I
Physical Tests : pH by Meter							1			
HDPE JFLQC_2	E108	25-Aug-2022	30-Aug-2022				30-Aug-2022	0.25	2.25	32
-								hrs	hrs	EHTR-
Physical Tests : pH by Meter										
HDPE MID LAKE 1_Bottom	E108	25-Aug-2022	30-Aug-2022				30-Aug-2022	0.25	2.25	se
5 2 4.2 1_56464		3	g					hrs	hrs	EHTR-
Physical Tests : pH by Meter										
HDPE MID LAKE 1_Mid-depth	E108	25-Aug-2022	30-Aug-2022				30-Aug-2022	0.25	2.25	*
WID Date I_wid-deput	2.00	20 / lag 2022	00 / tag 2022				00 / tag 2022	hrs	hrs	EHTR-
hysical Tests : pH by Meter										
HDPE	E108	25 Aug 2022	30 Viid 3033				30 Aug 2022	0.05	0.05	<u>se</u>
NEAR OUTFLOW INLAKE_Bottom	E108	25-Aug-2022	30-Aug-2022				30-Aug-2022	0.25	2.25	

Page : 28 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date Physical Tests : pH by Meter HDPE E108 25-Aug-2022 30-Aug-2022 30-Aug-2022 NEAR OUTFLOW INLAKE_Mid-depth æ 0.25 2.25 EHTR-FM hrs hrs Physical Tests : pH by Meter HDPE NORTHWEST BAY NORTH Bottom E108 25-Aug-2022 30-Aug-2022 30-Aug-2022 0.25 2.25 × -------hrs hrs EHTR-FM Physical Tests : pH by Meter HDPE E108 25-Aug-2022 30-Aug-2022 30-Aug-2022 NORTHWEST BAY NORTH Bottom 4 0.25 2.25 hrs hrs EHTR-FM Physical Tests : pH by Meter HDPE E108 30-Aug-2022 30-Aug-2022 NORTHWEST BAY NORTH Mid-depth 25-Aug-2022 0.25 2.25 hrs EHTR-FM hrs Physical Tests : pH by Meter HDPE E108 25-Aug-2022 30-Aug-2022 30-Aug-2022 æ SOUTHWEST BAY_Bottom 0.25 2.25 EHTR-FM hrs hrs Physical Tests : pH by Meter HDPE 25-Aug-2022 30-Aug-2022 30-Aug-2022 SOUTHWEST BAY_Mid-depth E108 0.25 2.25 hrs EHTR-FM hrs **Physical Tests: TDS by Gravimetry HDPE** EMD DISCHARGE INLAKE_Bottom E162 24-Aug-2022 01-Sep-2022 7 days 7 days æ **Physical Tests: TDS by Gravimetry** HDPE 01-Sep-2022 EMD DISCHARGE INLAKE_Mid-depth E162 24-Aug-2022 7 days 7 days × **Physical Tests: TDS by Gravimetry** HDPE E162 ✓ JFLQC 1 24-Aug-2022 31-Aug-2022 7 days 7 days --------

Page : 29 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

wattix: water				nording time exces	Analysis					
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE										
JFLQC_2	E162	25-Aug-2022					01-Sep-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
MID LAKE 1_Bottom	E162	25-Aug-2022					01-Sep-2022	7 days	7 days	✓
_							'			
Physical Tests : TDS by Gravimetry										
HDPE										
MID LAKE 1_Mid-depth	E162	25-Aug-2022					01-Sep-2022	7 days	7 days	✓
2 a.2 copa.								,	,-	
Physical Table 2 and 1 and 1										
Physical Tests : TDS by Gravimetry HDPE					1 1		l .			
NEAR OUTFLOW INLAKE_Bottom	E162	25-Aug-2022					01-Sep-2022	7 days	7 days	√
NEAR OUTFLOW INLAKE_BUILDIN	L102	25-Aug-2022					01-3 c p-2022	1 days	/ uays	•
Physical Tests : TDS by Gravimetry					1 1			I		
HDPE	F460	05 4 2000					04.0 0000	7	7 1	,
NEAR OUTFLOW INLAKE_Mid-depth	E162	25-Aug-2022					01-Sep-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
NORTHWEST BAY NORTH_Bottom	E162	25-Aug-2022					01-Sep-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
NORTHWEST BAY NORTH_Bottom_4	E162	25-Aug-2022					01-Sep-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
NORTHWEST BAY NORTH_Mid-depth	E162	25-Aug-2022					01-Sep-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry				'						
HDPE										
SOUTHWEST BAY_Bottom	E162	25-Aug-2022					01-Sep-2022	7 days	7 days	✓
-										

Page : 30 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date **Physical Tests: TDS by Gravimetry** HDPE E162 25-Aug-2022 01-Sep-2022 7 days 7 days ✓ SOUTHWEST BAY_Mid-depth **Physical Tests: TSS by Gravimetry** HDPE EMD DISCHARGE INLAKE_Bottom E160 24-Aug-2022 01-Sep-2022 7 days 7 days æ --------**Physical Tests: TSS by Gravimetry** HDPE EMD DISCHARGE INLAKE Mid-depth E160 24-Aug-2022 01-Sep-2022 7 days 7 days 30 **Physical Tests: TSS by Gravimetry** HDPE E160 24-Aug-2022 31-Aug-2022 7 days 7 days ✓ JFLQC 1 **Physical Tests: TSS by Gravimetry** HDPE 25-Aug-2022 7 days E160 01-Sep-2022 7 days ✓ JFLQC 2 Physical Tests: TSS by Gravimetry HDPE 25-Aug-2022 01-Sep-2022 ✓ MID LAKE 1_Bottom E160 7 days 7 days **Physical Tests: TSS by Gravimetry** HDPE MID LAKE 1_Mid-depth E160 25-Aug-2022 01-Sep-2022 7 days 7 days 1 **Physical Tests: TSS by Gravimetry** HDPE 01-Sep-2022 7 days ✓ NEAR OUTFLOW INLAKE_Bottom E160 25-Aug-2022 7 days **Physical Tests: TSS by Gravimetry** HDPE E160 01-Sep-2022 ✓ NEAR OUTFLOW INLAKE Mid-depth 25-Aug-2022 7 days 7 days --------

Page : 31 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

nalyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
hysical Tests : TSS by Gravimetry										
HDPE										
NORTHWEST BAY NORTH_Bottom	E160	25-Aug-2022					01-Sep-2022	7 days	7 days	✓
hysical Tests : TSS by Gravimetry										
HDPE	5400	05.4 0000								,
NORTHWEST BAY NORTH_Bottom_4	E160	25-Aug-2022					01-Sep-2022	7 days	7 days	✓
hysical Tests : TSS by Gravimetry										
HDPE	E160	25-Aug-2022					01-Sep-2022	7 days	7 days	✓
NORTHWEST BAY NORTH_Mid-depth	E100	25-Aug-2022					01-Sep-2022	7 days	r days	•
hysical Tests : TSS by Gravimetry										
HDPE SOUTHWEST BAY_Bottom	E160	25-Aug-2022					01-Sep-2022	7 days	7 days	/
								,		
hysical Tests : TSS by Gravimetry HDPE										
SOUTHWEST BAY_Mid-depth	E160	25-Aug-2022					01-Sep-2022	7 days	7 days	✓
hysical Tests : Turbidity by Nephelometry				I						
HDPE JFLQC_2	E121	25-Aug-2022					30-Aug-2022	3 days	5 days	×
0.140_1		20 / 149 2022					007149 2022		o uayo	EH.
hysical Tests : Turbidity by Nephelometry										
HDPE MID LAKE 1_Bottom	E121	25-Aug-2022					30-Aug-2022	3 days	5 days	se
2								,		EH.
hysical Tests : Turbidity by Nephelometry										
HDPE MID LAKE 1_Mid-depth	E121	25-Aug-2022					30-Aug-2022	3 days	5 days	×
2 1 40ptil							33 / Mg 2022	2 24,5	2 24,0	EH
nysical Tests : Turbidity by Nephelometry										
NEAD OUTELOW INLAKE Bettom	E121	25 Aug 2022					20 Aug 2022	2 days	5 days	×
NEAR OUTFLOW INLAKE_Bottom	E121	25-Aug-2022					30-Aug-2022	3 days	5 days	. *

Page : 32 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date **Physical Tests: Turbidity by Nephelometry** HDPE NEAR OUTFLOW INLAKE_Mid-depth E121 25-Aug-2022 30-Aug-2022 3 days 5 days × EHT **Physical Tests: Turbidity by Nephelometry** HDPE NORTHWEST BAY NORTH Bottom E121 25-Aug-2022 30-Aug-2022 3 days 5 days x --------EHT **Physical Tests: Turbidity by Nephelometry** HDPE E121 25-Aug-2022 30-Aug-2022 3 days 5 days NORTHWEST BAY NORTH Bottom 4 30 EHT **Physical Tests: Turbidity by Nephelometry** HDPE E121 30-Aug-2022 3 days NORTHWEST BAY NORTH Mid-depth 25-Aug-2022 5 days × EHT **Physical Tests: Turbidity by Nephelometry** HDPE E121 25-Aug-2022 30-Aug-2022 3 days 5 days æ SOUTHWEST BAY Bottom EHT **Physical Tests: Turbidity by Nephelometry** HDPE E121 25-Aug-2022 30-Aug-2022 SOUTHWEST BAY_Mid-depth 3 days 5 days æ EHT **Physical Tests: Turbidity by Nephelometry HDPE** EMD DISCHARGE INLAKE_Bottom E121 24-Aug-2022 30-Aug-2022 3 days 6 days * EHT **Physical Tests: Turbidity by Nephelometry** HDPE EMD DISCHARGE INLAKE_Mid-depth E121 24-Aug-2022 30-Aug-2022 3 days 6 days × EHT **Physical Tests: Turbidity by Nephelometry** HDPE E121 JFLQC 1 24-Aug-2022 30-Aug-2022 3 days 6 days 30 ----EHT

Page : 33 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) JFLQC_2 E508 25-Aug-2022 31-Aug-2022 31-Aug-2022 28 days 6 days ✓ **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) ✓ MID LAKE 1_Bottom E508 25-Aug-2022 31-Aug-2022 31-Aug-2022 28 days 6 days --------Total Metals: Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid) MID LAKE 1 Mid-depth E508 25-Aug-2022 31-Aug-2022 31-Aug-2022 28 days 6 days 1 **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) 31-Aug-2022 31-Aug-2022 28 days 6 days NEAR OUTFLOW INLAKE Bottom E508 25-Aug-2022 **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) E508 25-Aug-2022 31-Aug-2022 31-Aug-2022 28 days 6 days NEAR OUTFLOW INLAKE_Mid-depth **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) NORTHWEST BAY NORTH_Bottom E508 25-Aug-2022 31-Aug-2022 31-Aug-2022 28 days ✓ 6 davs Total Metals : Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid) NORTHWEST BAY NORTH Bottom 4 E508 25-Aug-2022 31-Aug-2022 31-Aug-2022 28 days 6 days 1 Total Metals: Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid) ✓ NORTHWEST BAY NORTH Mid-depth E508 25-Aug-2022 31-Aug-2022 31-Aug-2022 28 days 6 days **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) E508 ✓ SOUTHWEST BAY Bottom 25-Aug-2022 31-Aug-2022 31-Aug-2022 28 days 6 days --------

Page : 34 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) SOUTHWEST BAY_Mid-depth E508 25-Aug-2022 31-Aug-2022 31-Aug-2022 28 days 6 days ✓ **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) ✓ EMD DISCHARGE INLAKE Bottom E508 24-Aug-2022 31-Aug-2022 31-Aug-2022 28 days 7 days --------Total Metals: Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid) EMD DISCHARGE INLAKE Mid-depth E508 24-Aug-2022 31-Aug-2022 31-Aug-2022 28 days 7 days ✓ **Total Metals: Total Mercury in Water by CVAAS** Glass vial total (hydrochloric acid) E508 31-Aug-2022 31-Aug-2022 28 days 7 days ✓ JFLQC 1 24-Aug-2022 **Total Metals: Total Metals in Water by CRC ICPMS** HDPE total (nitric acid) 8 days JFLQC 2 E420 25-Aug-2022 30-Aug-2022 02-Sep-2022 ✓ 180 days **Total Metals: Total Metals in Water by CRC ICPMS** HDPE total (nitric acid) MID LAKE 1_Bottom E420 25-Aug-2022 30-Aug-2022 02-Sep-2022 ✓ 180 8 days days Total Metals : Total Metals in Water by CRC ICPMS HDPE total (nitric acid) MID LAKE 1 Mid-depth E420 25-Aug-2022 30-Aug-2022 02-Sep-2022 8 days 1 180 days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) 02-Sep-2022 ✓ NEAR OUTFLOW INLAKE Bottom E420 25-Aug-2022 30-Aug-2022 180 8 days days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) E420 ✓ NEAR OUTFLOW INLAKE Mid-depth 25-Aug-2022 30-Aug-2022 02-Sep-2022 8 days 180 -------days

Page : 35 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

HDPE total (nitric acid)

HDPE total (nitric acid)

Glass vial (sodium bisulfate)

NEAR OUTFLOW INLAKE Bottom

JFLQC 1

EMD DISCHARGE INLAKE Mid-depth

Total Metals: Total Metals in Water by CRC ICPMS

Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) NORTHWEST BAY NORTH_Bottom E420 25-Aug-2022 30-Aug-2022 02-Sep-2022 8 days ✓ 180 days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) 30-Aug-2022 ✓ NORTHWEST BAY NORTH_Bottom_4 E420 25-Aug-2022 02-Sep-2022 180 8 days -------days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) E420 25-Aug-2022 30-Aug-2022 02-Sep-2022 8 days ✓ NORTHWEST BAY NORTH Mid-depth 180 days Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) E420 30-Aug-2022 02-Sep-2022 ✓ SOUTHWEST BAY Bottom 25-Aug-2022 180 8 days days **Total Metals: Total Metals in Water by CRC ICPMS** HDPE total (nitric acid) E420 25-Aug-2022 30-Aug-2022 02-Sep-2022 8 days ✓ SOUTHWEST BAY_Mid-depth 180 days **Total Metals: Total Metals in Water by CRC ICPMS** HDPE total (nitric acid) EMD DISCHARGE INLAKE_Bottom E420 24-Aug-2022 30-Aug-2022 02-Sep-2022 ✓ 180 9 days days Total Metals: Total Metals in Water by CRC ICPMS

24-Aug-2022

24-Aug-2022

25-Aug-2022

30-Aug-2022

30-Aug-2022

02-Sep-2022

02-Sep-2022

02-Sep-2022

03-Sep-2022

9 days

9 days

180 days

180

days

14 days 8 days

1

✓

✓

E420

E420

E611A

Page : 36 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: **Water** Evaluation: **x** = Holding time exceedance ; **√** = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pre	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) NORTHWEST BAY NORTH_Bottom	E611A	25-Aug-2022	02-Sep-2022				03-Sep-2022	14 days	8 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) NORTHWEST BAY NORTH_Bottom_4	E611A	25-Aug-2022	02-Sep-2022				03-Sep-2022	14 days	8 days	✓
Volatile Organic Compounds [Fuels] : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) JFLQC_1	E611A	24-Aug-2022	02-Sep-2022				03-Sep-2022	14 days	9 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 37 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	624203	1	19	5.2	5.0	1
Ammonia by Fluorescence	E298	629099	1	13	7.6	5.0	<u>√</u>
BTEX by Headspace GC-MS	E611A	631682	1	11	9.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	624210	1	13	7.6	5.0	√
Conductivity in Water	E100	624205	1	13	7.6	5.0	1
Dissolved Mercury in Water by CVAAS	E509	628665	2	40	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	624073	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	629095	1	14	7.1	5.0	1
Fluoride in Water by IC (Low Level)	E235.F-L	624208	1	13	7.6	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	624207	1	14	7.1	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	624209	1	13	7.6	5.0	✓
pH by Meter	E108	624204	1	13	7.6	5.0	✓
Reactive Silica by Colourimetry	E392	627594	2	40	5.0	5.0	1
Sulfate in Water by IC	E235.SO4	624206	1	19	5.2	5.0	✓
TDS by Gravimetry	E162	626134	3	58	5.1	5.0	1
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	629098	1	13	7.6	5.0	✓
Total Mercury in Water by CVAAS	E508	627571	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	624103	2	36	5.5	5.0	1
Total Nitrogen by Colourimetry	E366	629096	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	629097	1	13	7.6	5.0	1
TSS by Gravimetry	E160	626138	3	52	5.7	5.0	✓
Turbidity by Nephelometry	E121	624562	1	15	6.6	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	631681	1	11	9.0	5.0	✓
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	624203	1	19	5.2	5.0	1
Ammonia by Fluorescence	E298	629099	1	13	7.6	5.0	1
BTEX by Headspace GC-MS	E611A	631682	1	11	9.0	5.0	✓
CCME PHCs - F2-F4 by GC-FID	E601	629550	1	9	11.1	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	624210	1	13	7.6	5.0	✓
Conductivity in Water	E100	624205	1	13	7.6	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	628665	2	40	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	624073	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	629095	1	14	7.1	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	624208	1	13	7.6	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	624207	1	14	7.1	5.0	<u>√</u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	624209	1	13	7.6	5.0	✓
Oil & Grease by Gravimetry	E567	632104	1	10	10.0	5.0	1

Page : 38 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Matrix: Water		Evaluat	ion: 🗴 = QC freque	ency outside sp	ecification; ✓ =	QC frequency wit	thin specification.
Quality Control Sample Type		Frequency (%)					
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
pH by Meter	E108	624204	1	13	7.6	5.0	✓
Reactive Silica by Colourimetry	E392	627594	2	40	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	624206	1	19	5.2	5.0	✓
TDS by Gravimetry	E162	626134	3	58	5.1	5.0	✓
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	629098	1	13	7.6	5.0	✓
Total Mercury in Water by CVAAS	E508	627571	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	624103	2	36	5.5	5.0	✓
Total Nitrogen by Colourimetry	E366	629096	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	629097	1	13	7.6	5.0	✓
TSS by Gravimetry	E160	626138	3	52	5.7	5.0	✓
Turbidity by Nephelometry	E121	624562	1	15	6.6	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	631681	1	11	9.0	5.0	✓
Method Blanks (MB)							
Alkalinity Species by Titration	E290	624203	1	19	5.2	5.0	✓
Ammonia by Fluorescence	E298	629099	1	13	7.6	5.0	✓
BTEX by Headspace GC-MS	E611A	631682	1	11	9.0	5.0	√
CCME PHCs - F2-F4 by GC-FID	E601	629550	1	9	11.1	5.0	<u>√</u>
Chloride in Water by IC (Low Level)	E235.CI-L	624210	1	13	7.6	5.0	✓
Conductivity in Water	E100	624205	1	13	7.6	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	628665	2	40	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	624073	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	629095	1	14	7.1	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	624208	1	13	7.6	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	624207	1	14	7.1	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	624209	1	13	7.6	5.0	✓
Oil & Grease by Gravimetry	E567	632104	1	10	10.0	5.0	✓
Reactive Silica by Colourimetry	E392	627594	2	40	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	624206	1	19	5.2	5.0	✓
TDS by Gravimetry	E162	626134	3	58	5.1	5.0	✓
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	629098	1	13	7.6	5.0	✓
Total Mercury in Water by CVAAS	E508	627571	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	624103	2	36	5.5	5.0	✓
Total Nitrogen by Colourimetry	E366	629096	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	629097	1	13	7.6	5.0	✓
TSS by Gravimetry	E160	626138	3	52	5.7	5.0	✓
Turbidity by Nephelometry	E121	624562	1	15	6.6	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	631681	1	11	9.0	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	629099	1	13	7.6	5.0	✓
BTEX by Headspace GC-MS	E611A	631682	1	11	9.0	5.0	✓
L			_	1			

Page : 39 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

Quality Control Sample Type		Co	ount	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Chloride in Water by IC (Low Level)	E235.CI-L	624210	1	13	7.6	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	628665	2	40	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	624073	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	629095	1	14	7.1	5.0	✓
Fluoride in Water by IC (Low Level)	E235.F-L	624208	1	13	7.6	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	624207	1	14	7.1	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	624209	1	13	7.6	5.0	✓
Reactive Silica by Colourimetry	E392	627594	2	40	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	624206	1	19	5.2	5.0	✓
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T	629098	1	13	7.6	5.0	✓
Total Mercury in Water by CVAAS	E508	627571	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	624103	2	36	5.5	5.0	✓
Total Nitrogen by Colourimetry	E366	629096	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	629097	1	13	7.6	5.0	✓
VH and F1 by Headspace GC-FID	E581.VH+F1	631681	1	11	9.0	5.0	✓

Page : 40 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions		
Conductivity in Water	E100 Vancouver - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, i measured by immersion of a conductivity cell with platinum electrodes into a wate sample. Conductivity measurements are temperature-compensated to 25°C.		
pH by Meter	E108 Vancouver - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.		
Turbidity by Nephelometry	E121 Vancouver - Environmental	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.		
TSS by Gravimetry	E160 Vancouver - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.		
TDS by Gravimetry	E162 Vancouver - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.		
Chloride in Water by IC (Low Level)	E235.CI-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.		
Fluoride in Water by IC (Low Level)	E235.F-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.		
Nitrite in Water by IC (Low Level)	E235.NO2-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.		
Nitrate in Water by IC (Low Level)	E235.NO3-L Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.		
Sulfate in Water by IC	E235.SO4 Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.		

Page : 41 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Vancouver - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Vancouver - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Vancouver - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Nitrogen by Colourimetry	E366 Vancouver - Environmental	Water	APHA 4500-P J (mod)	Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Dissolved Phosphorus by Colourimetry (0.002 mg/L)	E375-T Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Dissolved Phosphorus is determined colourimetrically using a discrete analyzer after filtration through a 0.45 micron filter followed by heated persulfate digestion of the sample.
Reactive Silica by Colourimetry	E392 Vancouver - Environmental	Water	APHA 4500-SiO2 E (mod)	Silicate (molybdate-reactive silica) is determined by the molybdosilicate-heteropoly blue colourimetric method using a discrete analyzer. Method Limitation: Arsenic (5+) above 100 mg/L is a negative interference on this test
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS

Page : 42 of 44
Work Order : YL2201326

Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Oil & Grease by Gravimetry	E567 Vancouver - Environmental	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
VH and F1 by Headspace GC-FID	E581.VH+F1 Vancouver - Environmental	Water	BC MOE Lab Manual / CCME PHC in Soil - Tier 1 (mod)	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
CCME PHCs - F2-F4 by GC-FID	E601 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	Sample extracts are analyzed by GC-FID for CCME hydrocarbon fractions (F2-F4).
BTEX by Headspace GC-MS	E611A Vancouver - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	АРНА 2340В	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Hardness (Calculated) from Total Ca/Mg	EC100A Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
TDS in Water (Calculation) Using APHA Analyte List	EC103.APHA Vancouver - Environmental	Water	APHA 1030E	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis).
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N Vancouver - Environmental	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as N) + Nitrate (as N).
F1-BTEX	EC580 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).

Page : 43 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VPH: VH-BTEX-Styrene	EC580A Vancouver -	Water	BC MOE Lab Manual (VPH in Water and Solids) (mod)	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHw = Volatile Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and styrene.
	Environmental		Jonas, (moa)	3,13,13
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
·				
	Vancouver -			
	Environmental			
Preparation for Dissolved Organic Carbon for Combustion	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
	Vancouver -			
	Environmental			
Digestion for Total Nitrogen in water	EP366	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental		ABUA 4500 D.E.(I)	
Digestion for Dissolved Phosphorus in water	EP375	Water	APHA 4500-P E (mod).	Samples are filtered through a 0.45 micron membrane filter and then heated with a persulfate digestion reagent.
	Vancouver -			
Discolused Makele Waken Filhredian	Environmental	14/-4	ADUA 2020D	Water country or Elevel (0.45 cm) and recovered with UNIO2
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Vancouver -			
Dissolved Mercury Water Filtration	Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
Dissolved Mercury Water Filtration	EP509	vvalei	AFIIA 3030B	water samples are intered (0.45 diff), and preserved with not.
	Vancouver -			
	Environmental			
Oil & Grease Extraction for Gravimetry	EP567	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane by liquid-liquid extraction.
	Vancouver -		, , ,	
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	Vancouver -			GC/MS-FID system.
	Environmental			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
	Vancouver -			
	Environmental			

Page : 44 of 44 Work Order : YL2201326

Client : Golder Associates Ltd.

QUALITY CONTROL REPORT

Work Order :YL2201326

Client : Golder Associates Ltd.

Contact : Kathy Qin

Address : 9 - 4905 48th Street

Yellowknife NT Canada X1A 3S3

Telephone : ---

Project : 21482915

PO :----C-O-C number :----

Sampler : Nathan Hoeve; Bernadette Weaver

Site : Jackfish NTPC

Quote number : YL21-GOLD100-008

No. of samples received : 13 No. of samples analysed : 13 Page : 1 of 25

Laboratory : Yellowknife - Environmental

Account Manager : Oliver Gregg

Address : 314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

Telephone : 1 867 446 5593

Date Samples Received : 26-Aug-2022 10:02

Date Analysis Commenced : 30-Aug-2022

Issue Date : 09-Sep-2022 12:40

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Ann Joby	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Anshim Anshim	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Benjamin Oke	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Cindy Tang	Team Leader - Inorganics	Vancouver Inorganics, Burnaby, British Columbia
Dan Gebert	Laboratory Analyst	Vancouver Metals, Burnaby, British Columbia
Delson Resende	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Janice Leung	Supervisor - Organics Instrumentation	Vancouver Organics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Vancouver Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Vancouver Inorganics, Burnaby, British Columbia
Owen Cheng		Vancouver Metals, Burnaby, British Columbia
Qammar Almas	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Vancouver Inorganics, Burnaby, British Columbia

Page : 2 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
Physical Tests (Q0	C Lot: 624203)											
YL2201326-001	NORTHWEST BAY NORTH Bottom	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	106	103	2.48%	20%		
	_	alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	7.4	8.4	1.0	Diff <2x LOR		
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
		alkalinity, phenolphthalein (as CaCO3)		E290	1.0	mg/L	3.7	4.2	0.5	Diff <2x LOR		
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	113	112	1.42%	20%		
Physical Tests (Q0	C Lot: 624204)							•				
YL2201326-001	NORTHWEST BAY NORTH_Bottom	pH		E108	0.10	pH units	8.47	8.46	0.118%	4%		
Physical Tests (Q0	C Lot: 624205)											
YL2201326-001	NORTHWEST BAY NORTH_Bottom	conductivity		E100	2.0	μS/cm	446	447	0.224%	10%		
Physical Tests (Q0	C Lot: 624562)											
YL2201300-021	Anonymous	turbidity		E121	0.10	NTU	0.49	0.45	0.04	Diff <2x LOR		
Physical Tests (Q0	C Lot: 626134)											
VA22C0091-009	Anonymous	solids, total dissolved [TDS]		E162	13	mg/L	68	66	2	Diff <2x LOR		
Physical Tests (Q0	C Lot: 626138)											
VA22C0245-006	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	11.2	10.8	0.4	Diff <2x LOR		
Physical Tests (Q0	C Lot: 628023)											
VA22C0240-005	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	2160	2220	2.83%	20%		
Physical Tests (Q0	C Lot: 628026)											
VA22C0240-005	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	9.0	7.8	1.2	Diff <2x LOR		
Physical Tests (Q0	C Lot: 629622)											
WR2200953-001	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR		
Physical Tests (Q0	C Lot: 629623)											
WR2200953-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	266	253	5.00%	20%		
Anions and Nutrier	nts (QC Lot: 624206)											
/L2201326-001	NORTHWEST BAY NORTH_Bottom	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	25.6	25.6	0.140%	20%		
Anions and Nutrier	nts (QC Lot: 624207)											
YL2201326-001	NORTHWEST BAY NORTH Bottom	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR		

Page : 4 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrien	ts (QC Lot: 624208) - co	ontinued									
YL2201326-001	NORTHWEST BAY NORTH_Bottom	fluoride	16984-48-8	E235.F-L	0.010	mg/L	0.086	0.088	0.001	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 624209)										
YL2201326-001	NORTHWEST BAY NORTH_Bottom	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 624210)										
YL2201326-001	NORTHWEST BAY NORTH_Bottom	chloride	16887-00-6	E235.CI-L	0.10	mg/L	61.7	61.7	0.140%	20%	
Anions and Nutrien	ts (QC Lot: 627594)										
VA22C0510-001	Anonymous	silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	16.1	16.1	0.0271%	20%	
Anions and Nutrien	ts (QC Lot: 627595)										
YL2201326-005	EMD DISCHARGE INLAKE Bottom	silicate (as SiO2)	7631-86-9	E392	0.50	mg/L	13.2	13.2	0.186%	20%	
Anions and Nutrien	ts (QC Lot: 629096)										
YL2201326-001	NORTHWEST BAY NORTH_Bottom	nitrogen, total	7727-37-9	E366	0.030	mg/L	1.06	1.08	1.63%	20%	
Anions and Nutrien	ts (QC Lot: 629097)										
YL2201326-001	NORTHWEST BAY NORTH Bottom	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0442	0.0421	4.70%	20%	
Anions and Nutrien	ts (QC Lot: 629098)										
YL2201326-001	NORTHWEST BAY NORTH_Bottom	phosphorus, total dissolved	7723-14-0	E375-T	0.0020	mg/L	0.0131	0.0121	0.0010	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 629099)										
YL2201326-001	NORTHWEST BAY NORTH_Bottom	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0087	0.0093	0.0006	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 62909	5)									
FJ2202325-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	21.2	22.5	5.85%	20%	
Total Metals (QC Lo	ot: 624103)										
YL2201326-001	NORTHWEST BAY NORTH Bottom	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0125	0.0146	0.0020	Diff <2x LOR	
	_	antimony, total	7440-36-0	E420	0.00010	mg/L	0.00125	0.00127	1.04%	20%	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0744	0.0745	0.173%	20%	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0314	0.0320	2.04%	20%	
		beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.031	0.030	0.001	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	37.7	37.6	0.125%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	

Page : 5 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

ub-Matrix: Water							Labora	tory Duplicate (D	ог) кероп		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifi
•	ot: 624103) - continued										
′L2201326-001	NORTHWEST BAY NORTH Bottom	cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
	_	copper, total	7440-50-8	E420	0.00050	mg/L	0.00160	0.00156	0.00004	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.014	0.016	0.001	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0089	0.0078	0.0011	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	12.5	12.6	0.618%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0451	0.0454	0.664%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000175	0.000205	0.000030	Diff <2x LOR	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	4.05	4.05	0.0344%	20%	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00265	0.00276	4.14%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	0.000061	0.000011	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	6.73	6.83	1.56%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	0.000014	0.000004	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	34.4	34.5	0.340%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.0914	0.0919	0.582%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	8.79	9.89	11.8%	20%	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000516	0.000533	3.21%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
otal Metals (QC Lo	ot: 624325)										
A22C0154-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0650	0.0656	0.890%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00011	<0.00010	0.000010	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.00330	0.00322	2.66%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	

Page : 6 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 624325) - continued										
/A22C0154-001	Anonymous	boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	0.919	0.906	1.49%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.047	0.048	0.001	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	0.120	0.121	0.722%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00482	0.00472	2.04%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000121	0.000137	0.000016	Diff <2x LOR	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	0.149	0.145	0.004	Diff <2x LOR	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	1.18	1.17	0.926%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	0.513	0.505	1.49%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.00406	0.00410	1.03%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
		· ·	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		tellurium, total				•					
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00058	0.00068	0.00010	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000046	0.000044	0.000001	Diff <2x LOR	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
otal Metals (QC Lo	ot: 627571)										
YL2201315-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Page : 7 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

ub-Matrix: Water						Laboratory Duplicate (DUP) Report						
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
issolved Metals (C												
L2201326-001	NORTHWEST BAY NORTH_Bottom	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0044	0.0044	0.00006	Diff <2x LOR		
	_	antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00120	0.00117	2.35%	20%		
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.0751	0.0760	1.10%	20%		
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0301	0.0304	0.967%	20%		
		beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR		
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.027	0.028	0.0001	Diff <2x LOR		
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	37.9	40.1	5.63%	20%		
		cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00136	0.00145	0.00008	Diff <2x LOR		
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR		
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0062	0.0061	0.00009	Diff <2x LOR		
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	13.2	13.2	0.280%	20%		
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00144	0.00154	6.38%	20%		
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000168	0.000158	0.000011	Diff <2x LOR		
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR		
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	4.13	4.45	7.51%	20%		
		rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00268	0.00287	6.91%	20%		
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	6.48	6.61	1.92%	20%		
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	33.5	34.4	2.71%	20%		
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0910	0.0919	1.00%	20%		
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	9.68	8.85	8.86%	20%		
		tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR		
		tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		

Page : 8 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Dissolved Metals (QC Lot: 624073) - cont	inued										
YL2201326-001	NORTHWEST BAY NORTH_Bottom	uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000558	0.000585	4.84%	20%		
	_	vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR		
		zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
Dissolved Metals (QC Lot: 628665)											
VA22C0272-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
Dissolved Metals (QC Lot: 628666)											
YL2201326-002	NORTHWEST BAY NORTH_Mid-depth	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
Volatile Organic Co	ompounds (QC Lot: 63	1682)										
VA22C0135-003	Anonymous	benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		styrene	100-42-5	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR		
		xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR		
Hydrocarbons (QC	Lot: 631681)											
VA22C0135-003	Anonymous	F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%		
		VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	0.0%	30%		

Page : 9 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Method Blank (MB) Report

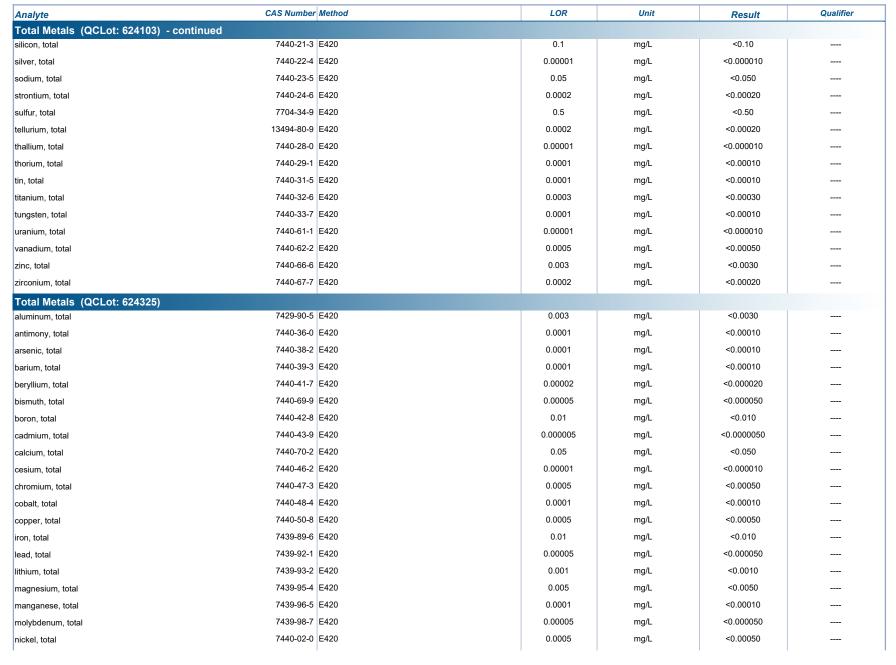
A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 624203)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	# 1.9	В
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, phenolphthalein (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	# 1.9	В
Physical Tests (QCLot: 624205)					
conductivity	E100	1	μS/cm	1.1	
Physical Tests (QCLot: 624562)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 626134)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 626138)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 628023)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 628026)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 629622)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 629623)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 624206)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 624207)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 624208)					
fluoride	16984-48-8 E235.F-L	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 624209)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 624210)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 627594)					
silicate (as SiO2)	7631-86-9 E392	0.5	mg/L	<0.50	

Page : 10 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915


Sup-iviatrix. Water	CAS Number Method	LOR	Unit	5	Qualifier
Aniana and Nutriants (OCL at: 627505	CAS Number Method	LOR	Unit	Result	Quaimer
Anions and Nutrients (QCLot: 627595 silicate (as SiO2)	7631-86-9 E392	0.5	mg/L	<0.50	
		0.0	mg/L	~0.50	
Anions and Nutrients (QCLot: 629096	7727-37-9 E366	0.03	mg/L	<0.030	
nitrogen, total		0.03	IIIg/L	<0.030	
Anions and Nutrients (QCLot: 629097	7723-14-0 E372-U	0.002	m a /l	<0.0020	
phosphorus, total		0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 629098 phosphorus, total dissolved	7723-14-0 E375-T	0.002	mg/L	<0.0020	
		0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 629099		0.005	ma/l	<0.0050	
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCLot: 6		0.5		10.50	
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 624103)	7400 00 5 5400	0.000		10 0000	
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
poron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2 E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3 E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0 E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7 E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	

Page : 11 of 25 Work Order : YL2201326

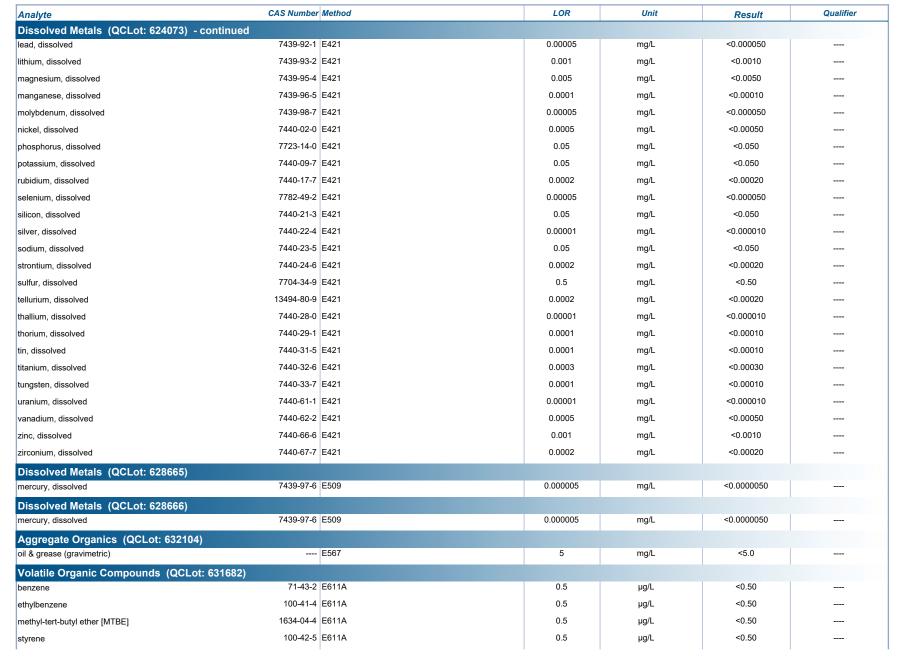
Client : Golder Associates Ltd.

Project : 21482915

Page : 12 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

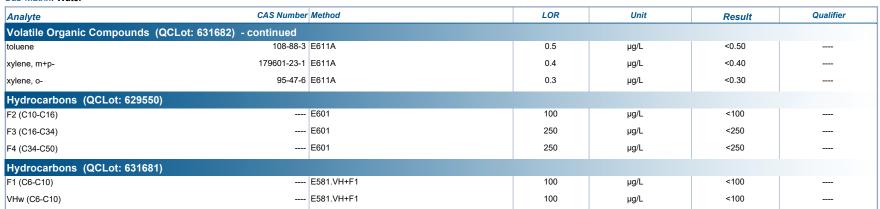
Project : 21482915


Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 624325) - cont	inued					
phosphorus, total	7723-14-0	E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7	E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Total Metals (QCLot: 627571)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 624073)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cesium, dissolved	7440-46-2	E421	0.00001	mg/L	<0.000010	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	<0.00050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
I .	I		I		1	

Page : 13 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915



Page : 14 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Sub-Matrix: Water

Qualifiers

В

Qualifier Description

Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.

Page : 15 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 624203)											
alkalinity, phenolphthalein (as CaCO3)		E290	1	mg/L	229 mg/L	97.8	75.0	125			
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	108	85.0	115			
Physical Tests (QCLot: 624204)											
рН		E108		pH units	7 pH units	100	98.0	102			
Physical Tests (QCLot: 624205)											
conductivity		E100	1	μS/cm	146.9 μS/cm	95.5	90.0	110			
Physical Tests (QCLot: 624562)											
turbidity		E121	0.1	NTU	200 NTU	103	85.0	115			
Physical Tests (QCLot: 626134)											
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	109	85.0	115			
Physical Tests (QCLot: 626138)											
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	96.3	85.0	115			
Physical Tests (QCLot: 628023)									•		
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	104	85.0	115			
Physical Tests (QCLot: 628026)									•		
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	88.7	85.0	115			
Physical Tests (QCLot: 629622)									•		
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	98.2	85.0	115			
Physical Tests (QCLot: 629623)									•		
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	108	85.0	115			
Anions and Nutrients (QCLot: 624206)											
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	101	90.0	110			
Anions and Nutrients (QCLot: 624207)											
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	100.0	90.0	110			
Anions and Nutrients (QCLot: 624208)											
fluoride	16984-48-8	E235.F-L	0.01	mg/L	1 mg/L	97.7	90.0	110			
Anions and Nutrients (QCLot: 624209)											
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	97.3	90.0	110			
Anions and Nutrients (QCLot: 624210)									•		
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	98.6	90.0	110			
Anions and Nutrients (QCLot: 627594)									•		
silicate (as SiO2)	7631-86-9	E392	0.5	mg/L	10 mg/L	99.8	85.0	115			
The second secon		t and the second	I .		I .	1		I .	1		

Page : 16 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Sub-Matrix: Water						Laboratory Con	trol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 627595)									
silicate (as SiO2)	7631-86-9	E392	0.5	mg/L	10 mg/L	99.6	85.0	115	
Anions and Nutrients (QCLot: 629096)									
nitrogen, total	7727-37-9	E366	0.03	mg/L	0.5 mg/L	97.2	75.0	125	
Anions and Nutrients (QCLot: 629097)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	103	80.0	120	
Anions and Nutrients (QCLot: 629098)									
phosphorus, total dissolved	7723-14-0	E375-T	0.002	mg/L	0.05 mg/L	87.1	80.0	120	
Anions and Nutrients (QCLot: 629099)									
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	94.7	85.0	115	
Organic / Inorganic Carbon (QCLot: 629095)									
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	95.4	80.0	120	
Total Metals (QCLot: 624103)									
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	104	80.0	120	
antimony, total	7440-36-0		0.0001	mg/L	1 mg/L	105	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	101	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	103	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	102	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	95.9	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	98.4	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	98.9	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	98.2	80.0	120	
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	98.8	80.0	120	
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	105	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	102	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	101	80.0	120	
iron, total	7439-89-6		0.01	mg/L	1 mg/L	98.1	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	95.0	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	105	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	104	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	103	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	99.7	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	98.7	80.0	120	
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	99.6	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	101	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	105	80.0	120	

Page : 17 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Sub-Matrix: Water						Laboratory Con	trol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 624103) - continued									
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	99.1	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	102	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	96.0	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	106	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	99.1	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	95.5	80.0	120	
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	104	80.0	120	
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	96.2	80.0	120	
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	92.8	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	100	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	95.6	80.0	120	
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	95.1	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	97.5	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	103	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	104	80.0	120	
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	96.0	80.0	120	
Total Metals (QCLot: 624325)									
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	97.6	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	112	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	99.2	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	97.2	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	93.5	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	105	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	91.9	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	92.1	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	96.6	80.0	120	
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	101	80.0	120	
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	98.0	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	95.6	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	97.2	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	97.4	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	103	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	90.2	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	105	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	98.6	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	100	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	97.8	80.0	120	

Page : 18 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Sub-Matrix: Water						Laboratory Cor	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 624325) - continue	ed								
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	103	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	103	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	103	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	100	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	102	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	97.5	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	99.7	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	111	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	89.8	80.0	120	
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	101	80.0	120	
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	107	80.0	120	
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	95.9	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	94.6	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	92.3	80.0	120	
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	98.5	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	97.8	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	99.8	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	98.7	80.0	120	
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	100	80.0	120	
Total Metals (QCLot: 627571)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	102	80.0	120	
Dissolved Metals (QCLot: 624073)									
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	106	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	99.2	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	105	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	104	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	103	80.0	120	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	97.8	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	99.4	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	99.7	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	100	80.0	120	
cesium, dissolved	7440-46-2	E421	0.00001	mg/L	0.05 mg/L	94.9	80.0	120	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	103	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	102	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	102	80.0	120	
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	110	80.0	120	

Page : 19 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 624073) - continu	ıed								
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	104	80.0	120	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	104	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	102	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	104	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	97.0	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	102	80.0	120	
phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	112	80.0	120	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	105	80.0	120	
rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	0.1 mg/L	105	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	99.3	80.0	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	104	80.0	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	# 76.7	80.0	120	MES
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	105	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	102	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	112	80.0	120	
tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	0.1 mg/L	94.5	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	98.2	80.0	120	
thorium, dissolved	7440-29-1	E421	0.0001	mg/L	0.1 mg/L	94.3	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	98.3	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	105	80.0	120	
tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	0.1 mg/L	97.4	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	104	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	105	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	99.7	80.0	120	
zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	95.7	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	106	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	98.1	80.0	120	
Aggregate Organics (QCLot: 632104)									
oil & grease (gravimetric)		E567	5	mg/L	100 mg/L	92.6	70.0	130	
Volatile Organic Compounds (QCLot: 63168		E611A	0.5	a.ll	400 "	40.1	70.0	420	
benzene	71-43-2		0.5	μg/L	100 μg/L	104	70.0	130	
ethylbenzene	100-41-4		0.5	μg/L	100 μg/L	107	70.0	130	
methyl-tert-butyl ether [MTBE]	1634-04-4		0.5	μg/L	100 μg/L	102	70.0	130	
styrene	100-42-5		0.5	μg/L 	100 μg/L	105	70.0	130	
toluene	108-88-3		0.5	μg/L 	100 μg/L	102	70.0	130	
xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	107	70.0	130	

Page : 20 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot: 6310	682) - continued								
xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	106	70.0	130	
Hydrocarbons (QCLot: 629550)									
F2 (C10-C16)		E601	100	μg/L	3538 μg/L	120	70.0	130	
F3 (C16-C34)		E601	250	μg/L	7053 μg/L	109	70.0	130	
F4 (C34-C50)		E601	250	μg/L	5051 μg/L	109	70.0	130	
Hydrocarbons (QCLot: 631681)									
F1 (C6-C10)		E581.VH+F1	100	μg/L	6310 μg/L	71.0	70.0	130	
VHw (C6-C10)		E581.VH+F1	100	μg/L	6310 µg/L	74.0	70.0	130	

Qualifiers

Qualifier Description

MES

Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Page : 21 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Project : 21482915

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Anions and Nutrient	client sample ID	Analyte			Spi	ke	Recovery (%)	Recovery	Limits (%)	
Anions and Nutrient	·	Analyte					110001017 (7.0)		= to (70)	
nions and Nutrient	ts. (OCL of: 624206)		CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	13 (40101.014200)									
	IORTHWEST BAY IORTH_Mid-depth	sulfate (as SO4)	14808-79-8	E235.SO4	102 mg/L	100 mg/L	102	75.0	125	
nions and Nutrien	ts (QCLot: 624207)									
N	IORTHWEST BAY IORTH_Mid-depth	nitrate (as N)	14797-55-8	E235.NO3-L	2.53 mg/L	2.5 mg/L	101	75.0	125	
nions and Nutrient	ts (QCLot: 624208)									
	IORTHWEST BAY IORTH_Mid-depth	fluoride	16984-48-8	E235.F-L	1.01 mg/L	1 mg/L	101	75.0	125	
nions and Nutrien	ts (QCLot: 624209)									
	IORTHWEST BAY IORTH_Mid-depth	nitrite (as N)	14797-65-0	E235.NO2-L	0.485 mg/L	0.5 mg/L	97.1	75.0	125	
nions and Nutrien	ts (QCLot: 624210)									
	IORTHWEST BAY IORTH_Mid-depth	chloride	16887-00-6	E235.CI-L	100 mg/L	100 mg/L	100	75.0	125	
nions and Nutrien	ts (QCLot: 627594)									
/A22C0510-002 A	nonymous	silicate (as SiO2)	7631-86-9	E392	10.0 mg/L	10 mg/L	100	75.0	125	
nions and Nutrien	ts (QCLot: 627595)									
	MD DISCHARGE NLAKE_Mid-depth	silicate (as SiO2)	7631-86-9	E392	ND mg/L	10 mg/L	ND	75.0	125	
nions and Nutrien	ts (QCLot: 629096)									
	IORTHWEST BAY IORTH_Mid-depth	nitrogen, total	7727-37-9	E366	ND mg/L	0.4 mg/L	ND	70.0	130	
nions and Nutrient	ts (QCLot: 629097)									
	IORTHWEST BAY IORTH_Mid-depth	phosphorus, total	7723-14-0	E372-U	0.0495 mg/L	0.05 mg/L	99.0	70.0	130	
nions and Nutrient	ts (QCLot: 629098)									
	IORTHWEST BAY IORTH_Mid-depth	phosphorus, total dissolved	7723-14-0	E375-T	0.0443 mg/L	0.05 mg/L	88.6	70.0	130	
nions and Nutrien	ts (QCLot: 629099)									
	IORTHWEST BAY IORTH_Mid-depth	ammonia, total (as N)	7664-41-7	E298	0.103 mg/L	0.1 mg/L	103	75.0	125	
rganic / Inorganic	Carbon (QCLot: 629	095)								
	IORTHWEST BAY IORTH_Bottom	carbon, dissolved organic [DOC]		E358-L	ND mg/L	5 mg/L	ND	70.0	130	

Page : 22 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

ub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	CLot: 624103) - conti	nued								
YL2201326-002	NORTHWEST BAY	aluminum, total	7429-90-5	E420	0.193 mg/L	0.2 mg/L	96.7	70.0	130	
	NORTH_Mid-depth	antimony, total	7440-36-0	E420	0.0199 mg/L	0.02 mg/L	99.7	70.0	130	
		arsenic, total	7440-38-2	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0391 mg/L	0.04 mg/L	97.6	70.0	130	
		bismuth, total	7440-69-9	E420	0.00904 mg/L	0.01 mg/L	90.4	70.0	130	
		boron, total	7440-42-8	E420	0.090 mg/L	0.1 mg/L	90.3	70.0	130	
		cadmium, total	7440-43-9	E420	0.00389 mg/L	0.004 mg/L	97.3	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, total	7440-46-2	E420	0.00976 mg/L	0.01 mg/L	97.6	70.0	130	
		chromium, total	7440-47-3	E420	0.0398 mg/L	0.04 mg/L	99.6	70.0	130	
		cobalt, total	7440-48-4	E420	0.0198 mg/L	0.02 mg/L	98.9	70.0	130	
		copper, total	7440-50-8	E420	0.0196 mg/L	0.02 mg/L	97.8	70.0	130	
		iron, total	7439-89-6	E420	1.94 mg/L	2 mg/L	96.9	70.0	130	
		lead, total	7439-92-1	E420	0.0184 mg/L	0.02 mg/L	91.8	70.0	130	
		lithium, total	7439-93-2	E420	0.0923 mg/L	0.1 mg/L	92.3	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0199 mg/L	0.02 mg/L	99.4	70.0	130	
		nickel, total	7440-02-0	E420	0.0382 mg/L	0.04 mg/L	95.5	70.0	130	
		phosphorus, total	7723-14-0	E420	10.2 mg/L	10 mg/L	102	70.0	130	
		potassium, total	7440-09-7	E420	ND mg/L	4 mg/L	ND	70.0	130	
		rubidium, total	7440-17-7	E420	0.0205 mg/L	0.02 mg/L	103	70.0	130	
		selenium, total	7782-49-2	E420	0.0407 mg/L	0.04 mg/L	102	70.0	130	
		silicon, total	7440-21-3	E420	9.37 mg/L	10 mg/L	93.7	70.0	130	
		silver, total	7440-22-4	E420	0.00390 mg/L	0.004 mg/L	97.5	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	19.8 mg/L	20 mg/L	98.8	70.0	130	
		tellurium, total	13494-80-9	E420	0.0385 mg/L	0.04 mg/L	96.4	70.0	130	
		thallium, total	7440-28-0	E420	0.00352 mg/L	0.004 mg/L	88.0	70.0	130	
		thorium, total	7440-29-1	E420	0.0201 mg/L	0.02 mg/L	101	70.0	130	
		tin, total	7440-31-5	E420	0.0201 mg/L	0.02 mg/L	100	70.0	130	
		titanium, total	7440-32-6	E420	0.0388 mg/L	0.04 mg/L	97.0	70.0	130	
		tungsten, total	7440-33-7	E420	0.0190 mg/L	0.02 mg/L	94.8	70.0	130	
		uranium, total	7440-61-1	E420	0.00375 mg/L	0.004 mg/L	93.7	70.0	130	
		vanadium, total	7440-62-2	E420	0.101 mg/L	0.1 mg/L	101	70.0	130	

Page : 23 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Sub-Matrix: Water								e (MS) Report		
					Spi		Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
otal Metals (QC	Lot: 624103) - contir	nued								
YL2201326-002	NORTHWEST BAY	zinc, total	7440-66-6	E420	0.390 mg/L	0.4 mg/L	97.6	70.0	130	
	NORTH_Mid-depth	zirconium, total	7440-67-7	E420	0.0402 mg/L	0.04 mg/L	100	70.0	130	
otal Metals (QC	Lot: 624325)									
VA22C0154-003	Anonymous	aluminum, total	7429-90-5	E420	0.190 mg/L	0.2 mg/L	95.0	70.0	130	
		antimony, total	7440-36-0	E420	0.0201 mg/L	0.02 mg/L	100	70.0	130	
		arsenic, total	7440-38-2	E420	0.0197 mg/L	0.02 mg/L	98.5	70.0	130	
		barium, total	7440-39-3	E420	0.0192 mg/L	0.02 mg/L	96.2	70.0	130	
		beryllium, total	7440-41-7	E420	0.0367 mg/L	0.04 mg/L	91.7	70.0	130	
		bismuth, total	7440-69-9	E420	0.0104 mg/L	0.01 mg/L	104	70.0	130	
		boron, total	7440-42-8	E420	0.089 mg/L	0.1 mg/L	89.1	70.0	130	
		cadmium, total	7440-43-9	E420	0.00381 mg/L	0.004 mg/L	95.3	70.0	130	
		calcium, total	7440-70-2	E420	3.79 mg/L	4 mg/L	94.8	70.0	130	
		cesium, total	7440-46-2	E420	0.0106 mg/L	0.01 mg/L	106	70.0	130	
		chromium, total	7440-47-3	E420	0.0390 mg/L	0.04 mg/L	97.4	70.0	130	
		cobalt, total	7440-48-4	E420	0.0199 mg/L	0.02 mg/L	99.6	70.0	130	
		copper, total	7440-50-8	E420	0.0201 mg/L	0.02 mg/L	100	70.0	130	
		iron, total	7439-89-6	E420	1.92 mg/L	2 mg/L	96.0	70.0	130	
		lead, total	7439-92-1	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130	
		lithium, total	7439-93-2	E420	0.0882 mg/L	0.1 mg/L	88.2	70.0	130	
		magnesium, total	7439-95-4	E420	0.970 mg/L	1 mg/L	97.0	70.0	130	
		manganese, total	7439-96-5	E420	0.0203 mg/L	0.02 mg/L	101	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0198 mg/L	0.02 mg/L	98.9	70.0	130	
		nickel, total	7440-02-0	E420	0.0401 mg/L	0.04 mg/L	100	70.0	130	
		phosphorus, total	7723-14-0	E420	9.68 mg/L	10 mg/L	96.8	70.0	130	
		potassium, total	7440-09-7	E420	4.16 mg/L	4 mg/L	104	70.0	130	
		rubidium, total	7440-17-7	E420	0.0206 mg/L	0.02 mg/L	103	70.0	130	
		selenium, total	7782-49-2	E420	0.0399 mg/L	0.04 mg/L	99.8	70.0	130	
		silicon, total	7440-21-3	E420	9.22 mg/L	10 mg/L	92.2	70.0	130	
		silver, total	7440-22-4	E420	0.00410 mg/L	0.004 mg/L	102	70.0	130	
		sodium, total	7440-23-5	E420	2.04 mg/L	2 mg/L	102	70.0	130	
		strontium, total	7440-24-6	E420	0.0223 mg/L	0.02 mg/L	112	70.0	130	
		sulfur, total	7704-34-9	E420	19.1 mg/L	20 mg/L	95.7	70.0	130	
		tellurium, total	13494-80-9	E420	0.0409 mg/L	0.04 mg/L	102	70.0	130	
		thallium, total	7440-28-0	E420	0.00388 mg/L	0.004 mg/L	97.0	70.0	130	
		thorium, total	7440-29-1	E420	0.0208 mg/L	0.02 mg/L	104	70.0	130	
		tin, total	7440-31-5	E420	0.0189 mg/L	0.02 mg/L 0.02 mg/L	94.5	70.0	130	

Page : 24 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	Lot: 624325) - conti	nued								
VA22C0154-003	Anonymous	titanium, total	7440-32-6	E420	0.0385 mg/L	0.04 mg/L	96.3	70.0	130	
		tungsten, total	7440-33-7	E420	0.0191 mg/L	0.02 mg/L	95.3	70.0	130	
		uranium, total	7440-61-1	E420	0.00384 mg/L	0.004 mg/L	96.0	70.0	130	
		vanadium, total	7440-62-2	E420	0.0991 mg/L	0.1 mg/L	99.1	70.0	130	
		zinc, total	7440-66-6	E420	0.404 mg/L	0.4 mg/L	101	70.0	130	
		zirconium, total	7440-67-7	E420	0.0419 mg/L	0.04 mg/L	105	70.0	130	
otal Metals (QC	Lot: 627571)									
YL2201326-001	NORTHWEST BAY NORTH_Bottom	mercury, total	7439-97-6	E508	0.0000980 mg/L	0.0001 mg/L	98.0	70.0	130	
Dissolved Metals	(QCLot: 624073)									
YL2201326-002	NORTHWEST BAY	aluminum, dissolved	7429-90-5	E421	0.199 mg/L	0.2 mg/L	99.4	70.0	130	
	NORTH_Mid-depth	antimony, dissolved	7440-36-0	E421	0.0199 mg/L	0.02 mg/L	99.3	70.0	130	
		arsenic, dissolved	7440-38-2	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0403 mg/L	0.04 mg/L	101	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00952 mg/L	0.01 mg/L	95.2	70.0	130	
		boron, dissolved	7440-42-8	E421	0.092 mg/L	0.1 mg/L	92.1	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00396 mg/L	0.004 mg/L	99.0	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, dissolved	7440-46-2	E421	0.00975 mg/L	0.01 mg/L	97.5	70.0	130	
		chromium, dissolved	7440-47-3	E421	0.0388 mg/L	0.04 mg/L	96.9	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0194 mg/L	0.02 mg/L	96.9	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0194 mg/L	0.02 mg/L	97.0	70.0	130	
		iron, dissolved	7439-89-6	E421	1.93 mg/L	2 mg/L	96.5	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0201 mg/L	0.02 mg/L	100	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0949 mg/L	0.1 mg/L	94.9	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0201 mg/L	0.02 mg/L	100	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0383 mg/L	0.04 mg/L	95.7	70.0	130	
		phosphorus, dissolved	7723-14-0	E421	9.81 mg/L	10 mg/L	98.1	70.0	130	
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130	
		rubidium, dissolved	7440-17-7	E421	0.0194 mg/L	0.02 mg/L	96.8	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0410 mg/L	0.04 mg/L	103	70.0	130	
		silicon, dissolved	7440-21-3	E421	9.44 mg/L	10 mg/L	94.4	70.0	130	
	T .	silver, dissolved	7440-22-4	E421	0.0193 mg/L	0.02 mg/L	96.4	70.0	130	

Page : 25 of 25 Work Order : YL2201326

Client : Golder Associates Ltd.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 624073) - co	ontinued								
YL2201326-002	NORTHWEST BAY	sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	
	NORTH_Mid-depth	strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	21.7 mg/L	20 mg/L	108	70.0	130	
		tellurium, dissolved	13494-80-9	E421	0.0389 mg/L	0.04 mg/L	97.2	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00399 mg/L	0.004 mg/L	99.7	70.0	130	
		thorium, dissolved	7440-29-1	E421	0.0215 mg/L	0.02 mg/L	107	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0198 mg/L	0.02 mg/L	99.0	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0392 mg/L	0.04 mg/L	97.9	70.0	130	
		tungsten, dissolved	7440-33-7	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00418 mg/L	0.004 mg/L	104	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.101 mg/L	0.1 mg/L	101	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.397 mg/L	0.4 mg/L	99.3	70.0	130	
		zirconium, dissolved	7440-67-7	E421	0.0401 mg/L	0.04 mg/L	100	70.0	130	
Dissolved Metals	(QCLot: 628665)									
VA22C0272-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000944 mg/L	0.0001 mg/L	94.4	70.0	130	
Dissolved Metals	(QCLot: 628666)									
YL2201326-003	MID LAKE 1_Bottom	mercury, dissolved	7439-97-6	E509	0.0000869 mg/L	0.0001 mg/L	86.9	70.0	130	
Volatile Organic	Compounds (QCLot:	631682)								
VA22C0135-003	Anonymous	benzene	71-43-2	E611A	95.1 μg/L	100 µg/L	95.1	60.0	140	
		ethylbenzene	100-41-4	E611A	95.8 μg/L	100 μg/L	95.8	60.0	140	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611A	94.4 μg/L	100 µg/L	94.4	60.0	140	
		styrene	100-42-5	E611A	96.0 µg/L	100 μg/L	96.0	60.0	140	
		toluene	108-88-3	E611A	91.2 μg/L	100 μg/L	91.2	60.0	140	
		xylene, m+p-	179601-23-1	E611A	192 µg/L	200 μg/L	96.2	60.0	140	
		xylene, o-	95-47-6	E611A	96.3 μg/L	100 μg/L	96.3	60.0	140	
Hydrocarbons (C	QCLot: 631681)									
VA22C0135-004	Anonymous	F1 (C6-C10)		E581.VH+F1	4620 μg/L	6310 µg/L	73.2	60.0	140	
		VHw (C6-C10)		E581.VH+F1	4740 μg/L	6310 μg/L	75.0	60.0	140	

ALS Laboratory		7/h	£26-09-2	01.3/22	SH AUG	DATE/TIME	DATETIME
	RNAROUND REQUIREMENTS:	O Stands	ard TAT (List	due datel:	V M	FOR LABORATORY USE ONLY (Circle)	
	ided TAT may be longer for some lasts		tandard or urg	ert TAT (List d	ue date):	Custody Saul Intact?	THE TO (NA
	The same of the same of					Free or if busin ice bricks present upon recept?	Contract of the second
		ALS	QUOTE NO	YL21-GOLD1	00-008 (updated in April 2022)	Random Sample Temperature on Recept	(C.5)
CONTACT PH	587-969-6141	EQui	IS facility co	de: 18352725		Other porniments:	
		Proje	ect Number:	21482915			
om, alson bumphresi@wsp.com, GAL_equis@golder	900	EMA	IL INVOICE		boningwsp.com, kathy.gingwsp.com,		
OSAL:							
	Water	2					
AILS Solid(S) Water(W)	MATRIX	INFORI	MATION		ANALYSIS	REQUIRED	Additional information
Sample Identification (This description will appear on the report)	DATE / TIME (dd-mm-yyyy)	MATRIX	OTAL CONTAINERS	ard Parameters Suite	ics parameter suite		Commetts on them, contaminant levels, sill semples requiring specific QC analysis etc.
		-		Sta	Or		1000
	A STATE OF THE PERSON NAMED IN COLUMN TO STATE OF THE PER	W	(×		1	Not relided
BAYT		W		×			1 Mat included
BAY 2	and the second s	W	1	X	The same of the sa	-	- Not include
AY NORTH_Bottom	25.08-2022/15.36	W	2	×	×		
AY NORTH_Mid-depth	25-08-2022/15:20	×	V	×			
ottom	25-08-2022/17 00	×	V	×			
d-depth	25-08-2022/11:50	W	7	×	Environm	ental Division	
SE INLAKE_Bottom	24-08-2022/15:15	W	V	×	Yellowkni	er Reference	
SE INLAKE_Mid-depth	24-08-0024/15.05	*	V	×	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	201326	
AY_Bottom	25-08-2022/10:00	×	V	×			
AY_Mid-depth	25-08-1027/9:50	*	V	×			
WINLAKE_Bottom	01:41/2202-80-52	*	-3	×	×		
WINLAKE_Mid-depth	25-08-2022/14:00	×	V	×			
AY NORTH_Bottom_4	07:41/2201-80-52	×	-	×	×	Wilder St. Leanning	
	24-88-2022/03-45	W	3	×	x Telephone: +	1 867 873 5593	
	25-08-2022/11:15	W	7	×			
	CLEMT: Golder Associates Ltd PROJECT: Jachtish NIPC PROJECT MANAGER NO.: RAPHO Din SAMPLE ROBIT STO. SAMPLE DETAILS SOUGS) Water(W) 1 OUTFLOW ALS USE ONLY ALS USE ONLY ALS USE ONLY ALS USE ONLY SAMPLE DETAILS SAMPLE DETAILS SOUGS) Water(W) 1 OUTFLOW AND LAKE 1, Bottom 5 NORTHWEST BAY NORTH, Mid-depth 10 SOUTHWEST BAY BOTTOM 10 SOUTHWEST BAY BOTTOM 11 SOUTHWEST BAY BOTTOM 12 NEAR OUTFLOW INLAKE Bottom 13 NEAR OUTFLOW INLAKE Bottom 14 NORTHWEST BAY NORTH, Bottom 15 NORTHWEST BAY NORTH, Bottom 16 SOUTHWEST BAY NORTH, Bottom 17 MID LAKE 1, Bottom 18 EMD DISCHARGE INLAKE Bottom 19 NEAR OUTFLOW INLAKE Bottom 10 SOUTHWEST BAY NORTH, Bottom 11 SOUTHWEST BAY NORTH, Bottom 12 NEAR OUTFLOW INLAKE, Bottom 13 NEAR OUTFLOW INLAKE, Bottom 14 NORTHWEST BAY NORTH, Bottom 15 NORTHWEST BAY NORTH, Bottom 16 SOUTHWEST BAY NORTH, Bottom 17 NORTHWEST BAY NORTH, Bottom 18 SOUTHWEST BAY NORTH, Bottom 19 SOUTHWEST BAY NORTH, Bottom 19 SOUTHWEST BAY NORTH, Bottom 10 SOUTHWEST BAY NORTH, Bottom 11 SOUTHWEST BAY NORTH, Bottom 12 NORTHWEST BAY NORTH, Bottom 13 NORTHWEST BAY NORTH, Bottom 14 NORTHWEST BAY NORTH, Bottom 15 NORTHWEST BAY NORTH, Bottom 16 SOUTHWEST BAY NORTH, Bottom 17 NORTHWEST BAY NORTH, Bottom 18 NORTHWEST BAY NORTH, Bottom 19 SOUTHWEST BAY NORTH, Bottom 19 SOUTHWEST BAY NORTH, Bottom 10 SOUTHWEST BAY NORTH, Bottom 10 SOUTHWEST BAY NORTH, Bottom 11 NORTHWEST BAY NORTH, Bottom 12 NORTHWEST BAY NORTH, Bottom 13 NORTHWEST BAY NORTH, Bottom 14 NORTHWEST BAY NORTH, Bottom 15 NORTHWEST BAY NORTH, Bottom 16 NORTHWEST BAY NORTH, Bottom 17 NORTHWEST BAY NORTH, Bottom 18 NORTHWEST BAY NORTH, Bottom 19 SOUTHWEST BAY NORTH, Bottom 10 SOUTHWEST BAY NORTH, Bottom 11 NORTHWEST BAY NORTH, Bottom 12 NORTHWEST BAY NORTH, Bottom 13 NORTHWEST BAY NORTH, Bottom 14 NORTHWEST BAY NORTH, Bottom 15 NORTHWEST BAY NORTH, BOTTO	TURNAROUND REQUIREMENTS	TURNAROUND REQUIREMENTS :	TURNAROUND REQUIREMENTS :	TURNAROUND REQUIREMENTS :	DATETIME 25-05-2022/1-1-06 W 3 x x X Strandard on the report of the report o	CONTACT PH

28 February 2023 21482915

APPENDIX F

Fish and Fish Habitat (Excel)

This appendix is submitted electronically

