AREA 30A AND 30B

AREA 30A: New Incinerator

Area Description						
Location	Sou	th of sewage treatment plant.				
Topography		nerally flat with slight slope to				
Surface Drainage	Nor	theast.				
Background	Nev	v incinerator used to incinerat	e municipal waste.			
Historical Assessme	nt In	formation				
	Nu	mber of test pits		0		
Phase II Environmental	Nu	mber of surface soil samples		0		
Site Assessment	Nu	mber of soil samples analyze	d	0		
(EBA 2009)	Nu	mber of soil samples with pet	roleum hydrocarbon impacts	0		
	Nu	mber of soil samples with me	tal impacts	0		
Comments: Not previous	ly ass	sessed				
2017/2018 Environm	enta	al Site Assessment Deta	ils			
Environmental Site Ass	essn	nent Scope				
Utility Locate SOP follow	ed?			Yes		
EM 31 Geophysics Com	N/A					
Number of test pits adva	nced			2 (2017)		
Number of boreholes adv	/ance	d		0		
Number of hand auger lo	cation	ns advanced		0		
· · · · · · · · · · · · · · · · · · ·		tted for laboratory chemical a	<u> </u>	2 (2017)		
Number of boreholes cor	nplete	ed as groundwater monitoring	wells	0		
Number of historical grou				0		
Number of groundwater				0		
Number of sediment and	surfa	ce soil samples collected		0		
Geophysics Findings						
N/A						
Soil Investigation and (Condi	tions				
Maximum Depth of Investigation	1.1	mbgs (September 18, 2017)				
General Stratigraphy						
Description		Depth from (mbgs)	Depth to (mbgs)	Observations		
Sand		0	0.2	Fill soil		
Gravel or sand		0.2	1.1	Native soil		
Combustible Vapour C						
		le 17A30ATP2-1 to 6.8 ppm i	n sample 17A30ATP1-1.			
Groundwater Condition	ıs					
Depth to Groundwater	Infe	rred to be about 6 mbg based	d on groundwater elevation co	ntours		
Free Product Thickness (if present)	N/A					

AREA 30A: New Incinerator

2017/2018 Environmental Site Assessment Results Summary

- Figure A30A-1 shows the test pit locations.
- Table A30A-1 summarizes soil lab results relative to guidelines.

General Site Observations

- Sampled both up-valley and down-valley directions, as we understand that prevailing wind directions change seasonally.
- No surface stains or ash was observed on the surface soils surrounding the incinerator.
- No evidence of environmental impact was observed in the test pits advanced.
- No additional work done in this area in 2018.

Soil: Petroleum Hydrocarbons (PHC, PAHs)

Laboratory chemical results less than guidelines.

Soil: Metals

- The following metals exceeded CCME CEQGs: arsenic, barium, cadmium, copper, selenium, and zinc.
- Barium concentration in 17A30ATP2 at 0.25 mbgs also exceeded the preliminary background concentration.

Soil: Other PCOCs (PCBs, Dioxins and Furans)

Laboratory results less than guidelines.

Soil: Routine (pH)

Laboratory results within guidelines.

Groundwater: Petroleum Hydrocarbons

N/A

Groundwater: Metals/Routine Parameters

N/A

Groundwater: Other PCOCs

N/A

Sediment: Petroleum Hydrocarbon

N/A

Sediment: Metals

N/A

Sediment: Other PCOCs

N/A

Surface Water: Petroleum Hydrocarbons

N/A

Surface Water: Metals/Nutrients

N/A

Surface Water: Other PCOCs

N/A

Grainsize Analysis

N/A

Environmental Co	oncerns		
Location in AEC	Potential Source(s)	Identified Contaminated Media	Parameters Assessed and Contaminant(s) of Concern (COCs; bold & underline)
Downwind area(s) near incinerator	Incinerator exhaust	Soil	Soil: Metals, petroleum hydrocarbons (PHCs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), Dioxins and Furans.

AREA 30A: New Incinerator

Discussion (Significance of the Results)

Soils:

- No environmental impacts related to incinerator were identified.
- Elevated metals concentrations above CCME CEQGs and background concentrations are similar to other areas of the mine site and unlikely to be related to the incinerator.

Attachments

Figure A30A-1 - Soil and Sediment Results

Figure A30A-2 – Groundwater and Surface Water Results

Table A30A-1 – Soil Analytical Results

Test pit Logs

Photographs

				A74204TD4	
		Most Stringent of	Preliminary	17A30ATP1	17A30ATP2
Parameter	Unit	Referenced	Background	17A30ATP1-1	17A30ATP2-
Parameter	Unit	Guidelines ^{1,2,3}	Concentration ⁴	0.25 m	0.25 m
		Guidelines	Concentration	2017-09-18	2017-09-18
Routine / Salinity					
pH	pH Units	6-8	NG	7.31	7.28
Moisture	%	NG	NG	12	8.8
Metals					
Antimony	mg/kg	20	NG	1	1.9
Arsenic	mg/kg	12	64	23.7	23.1
Barium				-	
	mg/kg	500	946	389	1420
Beryllium	mg/kg	4	NG	0.7	1.1
Cadmium	mg/kg	1.4	2.8	1.32	2.13
Chromium	mg/kg	64	NG	14	28
Cobalt	mg/kg	40	NG	12.4	18.8
Copper	mg/kg	63	NG	286	199
∟ead	mg/kg	70	NG	19.4	24.6
Mercury	mg/kg	6.6	NG	0.68	0.1
Molybdenum	mg/kg	5	10	3.4	3.7
Nickel	mg/kg	45	72	22	43
Selenium	mg/kg	1	1.7	1.6	1.5
Silver	mg/kg	20	NG	<0.5	<0.5
Fhallium	mg/kg	1	NG	0.3	0.5
rnamum Fin		5	NG	3	2.5
	mg/kg	-			
Jranium (mg/kg	23	NG	1.9	2.6
/anadium	mg/kg	130	160	38	64
Zinc	mg/kg	200	462	129	260
Petroleum Hydrocarbons					
Benzene	mg/kg	0.03	NG	<0.005	<0.005
Toluene	mg/kg	0.1	NG	<0.05	<0.05
Ethylbenzene	mg/kg	0.082	NG	<0.01	<0.01
Kylenes (m & p)	mg/kg	NG	NG	-	-
(ylene (m)	mg/kg	NG	NG	<0.02	<0.02
(ylene (o)	mg/kg	NG	NG	<0.02	<0.02
Kylenes Total	mg/kg	0.1	NG	<0.05	<0.05
Volatile Hydrocarbons (VH6-10)					
, ,	mg/kg	NG	NG	-	- :10
=1 (C6-C10)	mg/kg	30	NG	<10	<10
/PH C6-C10	mg/kg	NG	NG	-	-
F1 (C6-C10 / BTEX CORRECTED)	mg/kg	30	NG	<10	<10
F2 (C10-C16)	mg/kg	150	NG	<20	<20
F3 (C16-C34)	mg/kg	300	NG	115	110
F4: (C34-C50)	mg/kg	2800	NG	58	39
/PHs	mg/kg	NG	NG	-	-
Glycols					
Diethylene glycol	mg/kg	NG	NG	-	-
Ethylene glycol	mg/kg	960	NG	-	-
Propylene glycol	mg/kg	NG	NG	_	
Fetraethylene Glycol	mg/kg	NG	NG	_	
Friethylene Glycol	mg/kg	NG	NG	_	
Polycyclic Aromatic Hydrocarbons (PAHs)	IIIg/kg	ING	NG	-	
<u> </u>		4	NO	10.0	
ACR (CCME)	mg/kg	1	NG	<0.6	<0.6
B(a)P Total Potency Equivalent	mg/kg	0.6	NG	<0.05	<0.05
2-methylnaphthalene	mg/kg	NG	NG	<0.005	<0.005
Acenaphthene	mg/kg	NG	NG	<0.005	<0.005
Acenaphthylene	mg/kg	NG	NG	<0.005	<0.005
Anthracene	mg/kg	2.5	NG	<0.004	<0.004
Benz(a)anthracene	mg/kg	0.1	NG	<0.03	<0.03
Benzo(a) pyrene	mg/kg	0.1	NG	<0.03	<0.03
Benzo(b)fluoranthene	mg/kg	0.1	NG	<0.05	<0.05
Benzo(b+j)fluoranthene	mg/kg	NG	NG	<0.05	<0.05
Benzo(e)pyrene	mg/kg	NG	NG	-	-
Benzo(g,h,i)perylene	mg/kg	NG	NG	<0.05	<0.05
	_	0.1			
Benzo(k)fluoranthene	mg/kg		NG NC	<0.05	<0.05
Chrysene	mg/kg	NG	NG	<0.05	<0.05
Dibenz(a,h)anthracene	mg/kg	0.1	NG	<0.005	<0.005
Fluoranthene	mg/kg	50	NG	<0.01	<0.01
Fluorene	mg/kg	NG	NG	<0.02	<0.02
ndeno(1,2,3-c,d)pyrene	mg/kg	0.1	NG	<0.02	<0.02
Naphthalene	mg/kg	0.013	NG	<0.005	<0.005
Phenanthrene	mg/kg	0.046	NG	<0.02	<0.02
Pyrene	mg/kg	0.1	NG	<0.01	<0.01
Benzo(j)fluoranthene	ug/g	NG	NG	<0.05	<0.05
Polychlorinated Biphenyls (PCBs)	<u>~⊎</u> , ~⊎			5.55	0.50
<u> </u>	malle	NC	NG	<0.05	<0.05
Aroclor 1242	mg/kg	NG			
Aroclor 1254	mg/kg	NG	NG	<0.05	<0.05
Aroclor 1260	mg/kg	NG	NG	<0.05	<0.05
Aroclor 1262	mg/kg	NG	NG	-	-
PCBs (Sum of total)	mg/kg	0.5	NG	<0.05	< 0.05

Table A30A-1: Soil Analytical Results

					30 474004TD0
		Most Stringent of	Preliminary	17A30ATP1	17A30ATP2
Parameter	Unit	Referenced	Background	17A30ATP1-1	17A30ATP2-1
. aramotor	J Chin	Guidelines ^{1,2,3}	Concentration ⁴	0.25 m	0.25 m
		Guideinies	Concontration	2017-09-18	2017-09-18
Volatile Organic Compounds (VOCs)					
Carbon	%	NG	NG	-	-
1-Methylnaphthalene	mg/kg	NG	NG	<0.005	<0.005
Acetone	mg/kg	NG	NG	-	-
Bromodichloromethane	mg/kg	NG	NG	-	-
Bromoform	mg/kg	NG	NG	-	-
Bromomethane	mg/kg	NG	NG	-	-
2-Butanone	mg/kg	NG	NG	-	-
Carbon tetrachloride	mg/kg	0.1	NG	-	-
Chlorobenzene	mg/kg	0.1	NG	-	-
Chloroethane	mg/kg	NG	NG	-	-
Chloroform	mg/kg	0.1	NG	-	-
Chloromethane	mg/kg	NG	NG	-	-
Dibromochloromethane	mg/kg	NG	NG	-	-
1,2-Dibromoethane	mg/kg	NG	NG	-	-
1,2-Dichlorobenzene	mg/kg	0.1	NG	-	-
1,3-Dichlorobenzene	mg/kg	0.1	NG	-	-
1,4-Dichlorobenzene	mg/kg	0.1	NG	-	_
1,1-Dichloroethane	mg/kg	0.1	NG	-	_
1,2-Dichloroethane	mg/kg	0.1	NG	_	_
1,1-Dichloroethene	mg/kg	0.1	NG	<u>-</u>	_
1,2-Dichloroethene (cis)	mg/kg	0.1	NG		_
1,2-Dichloroethene (trans)	mg/kg	0.1	NG	-	<u> </u>
1,2-Dichloropropane	mg/kg	0.1	NG	<u>-</u>	<u>-</u>
1,3-Dichloropropene [cis]	mg/kg	NG	NG	<u>-</u>	
1,3-Dichloropropene [trans]	mg/kg	NG	NG	-	-
Methyl t-Butyl Ether (MTBE)		NG	NG		-
, ,	mg/kg			-	
Methylene Chloride	mg/kg	0.1	NG	-	-
4-Methyl-2-pentanone	mg/kg	NG	NG	-	-
Styrene	mg/kg	0.1	NG	-	-
1,1,1,2-Tetrachloroethane	mg/kg	NG	NG	-	-
1,1,2,2-Tetrachloroethane	mg/kg	0.1	NG	-	-
Tetrachloroethene	mg/kg	0.1	NG	-	-
1,2,4-Trichlorobenzene	mg/kg	0.05	NG	-	-
1,1,1-Trichloroethane	mg/kg	0.1	NG	-	-
1,1,2-Trichloroethane	mg/kg	0.1	NG	-	-
Trichloroethene	mg/kg	0.1	NG	-	-
Trichlorofluoromethane	mg/kg	NG	NG	-	-
Vinyl chloride	mg/kg	NG	NG	-	-
Dioxins and Furans					
Total PCDDs	ng/kg	NG	NG	44	3
Total PCDFs	ng/kg	NG	NG	14.3	<2
2,3,7,8-Tetra CDD (TEF 1.0)	TEQ	NG	NG	0	0
1,2,3,7,8-Penta CDD (TEF 1.0)	TEQ	NG	NG	0	0
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	TEQ	NG	NG	0.0204	0
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	TEQ	NG	NG	0	0
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	TEQ	NG	NG	0	0
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	TEQ	NG	NG	0.053	0.0173
Octa CDD (TEF 0.0003)	TEQ	NG	NG	0.0104	0.000907
2,3,7,8-Tetra CDF (TEF 0.1)	TEQ	NG	NG	0	0
1,2,3,7,8-Penta CDF (TEF 0.03)	TEQ	NG	NG	0	0
2,3,4,7,8-Penta CDF (TEF 0.3)	TEQ	NG	NG	0	0
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	TEQ	NG	NG	0	0
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	TEQ	NG	NG	0	0
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	TEQ	NG	NG	0	0
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	TEQ	NG	NG	0	0
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	TEQ	NG	NG	0.0135	0.00511
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	TEQ	NG	NG	0.0135	0.00511
Octa CDF (TEF 0.0003)	TEQ	NG	NG	0.00204	0
Total PCDDs and PCDFs (TEQ)	TEQ	4	NG	0.00204	0.0233
, ,		4	ING		
Sample Code				8740316	8740319
Lab Report Number				17Y262746	17Y262746

Notes:

 $\underline{\textit{Italic}}$ - Laboratory detection limit is greater one or more referenced guidelines

NG - No guideline

Shaded - Exceeds most stringent CCME CEQG or CWS PHC land-use guideline value

Bold - Exceeds most stringent NWT CSR land-use guideline value

Bold and Shaded - Exceeds most stringent CCME CEQC or CWS PHC land-use guideline value, and exceeds most stringent NWT CSR land-use guideline value

Red - Exceeds Preliminary Background Concentration

N/A - Not applicable

Blank - Not analyzed

¹ - Canadian Council of Ministers of the Environment (CCME) Canada-Wide Standards (CWS) for Petroleum Hydrocarbons (PHC) in Soil (CCME 2008)

² - Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) - Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (CCME 1999)

³ - Northwest Territories Environmental Guideline for Contaminated Site Remediation (NWT CSR 2003)

⁴ - Preliminary Background Concentration

Testpit No: 17A30ATP1

Project: Phase III Environmental Site Assessment

Project No: ENW.WENW03039-02 Task 002.2.2.6

Location: Cantung Mine

Ground Elev: 1122.943 m

Tungsten, Northwest Territories

UTM: 540743.427 E; 6870602.901 N; Z 9

		T ungsten, Northwe	Tungsten, Northwest Territ	Vest Territories				UTM: 540743.427 E; 6870602.901 N; Z 9			
o Depth (m)	Method	Soil Description		Sample Type	Sample Number	■ Vapour readings (ppr 50 100 150 2	mv) ■	Notes and Comments	Backfill	Elevation (m)	
-		SAND (FILL) - silty, some gravel, damp, firm, brown, me - red orange	edium sand, (200 mm thick)							-	
- -		GRAVEL - sandy, some cobbles, some silt, trace boulde brown	ers, damp, dense, reddish		1-1					_	
-	ated									-	
-	Excavated									-	
-	٣	- some boulders								-	
- - 1					1-2		:			1122	
- -		END OF TESTPIT (1.1 metres) Note: Backfilled at completion					•			-	
- -										-	
- -											
- -										-	
- 2										1121	
-										-	
-										-	
_										-	
-										-	
-										1120-	
— 3 -										-	
- -										-	
-										-	
-]	
-										-	
- 4										1119—	
_										=	
										-	
-										-	
- -										-	
- 5										1118-	
		1	Contractor: NATC				Comp	letion Depth: 1.1 m			

Testpit No: 17A30ATP2

Project: Phase III Environmental Site Assessment

Project No: ENW.WENW03039-02 Task 002.2.2.6

Location: Cantung Mine

Ground Elev: 1122.979 m

Tungsten, Northwest Territories

UTM: 540755.632 E: 6870592.3 N: Z 9

Completion Date: 2017 September 18

Page 1 of 1

		Tungsten,	Northwest Territor	ies	5	UTM:	UTM: 540755.632 E; 6870592.3 N; Z 9			
o Depth (m)	Method	Soil Description	Sample Type	odilipio 13po	Sample Number	■ Vapour readings (ppmv) ■ 50 100 150 200	Notes and Comments	Backfill	Elevation (m)	
_		SAND (FILL) - gravelly, some silt, trace to some cobbles, trace boulde dense, reddish brown	ers, damp,						-	
- - - - - -	Excavated	- brown - silty, some gravel, no visible cobbles or boulders, damp, firm, brow	n, fine sand		2-1				-	
− 1 -					2-2	•			1122-	
- - - - -		END OF TESTPIT (1.1 metres) Note: Backfilled at completion							-	
- 2 - - - - -									1121—	
- - - 3 - -									- 1120— - -	
- - - -									-	
- 4 - - - - -									1119—	
_										
- 5		<u> </u>	NATO.			T-			1118-	
							letion Depth: 1.1 m			
	ŗ,	TETRATECH Drilling Rig		e D	ackno		ate: 2017 September 18			
	_	11 00000 BV	. INT			T COMO	ienou Dale ZOTZ Seblember	IO.		

Logged By: NH

Reviewed By: JW

Photo 1: Facing south. New incinerator building and fuel ASTs. (September 7, 2017)

Photo 2: Facing west. New incinerator building. ASTs visible to the right of building. (September 7, 2017)

Photo 3: Arrow indicates location of new incinerator. Photo provided by NATC. (August 13, 2013)

AREA 30B: Old Incinerator

AREA 30B. Old life									
Area Description									
Location	Southwest of Heavy Du	•	Building.						
Topography	•	Generally flat with slight slope to northeast.							
Surface Drainage	Northeast.								
Background	Old incinerator used to	be located at this location	on for incineration	of municipal waste.					
Historical Assessmer	nt Information								
	Number of test pits			0					
Phase II Environmental	Number of surface soil	samples		0					
Site Assessment	Number of soil samples	s analyzed		0					
(EBA 2009)	Number of soil samples	s with petroleum hydrod	arbon impacts	0					
	Number of soil samples	s with metal impacts		0					
Comments: Not previous	sly assessed.								
2017 Environmental	Site Assessment De	etails							
Environmental Site Asses	ssment Scope								
Utility Locate SOP follows	ed?			Yes – mitigation was to de-energize power.					
EM 31 Geophysics Comp		N/A							
Number of test pits advar	nced			2 (2017)					
Number of boreholes adv	ranced			0					
Number of hand auger lo	cations advanced			0					
Number of soil samples s	submitted for laboratory c	hemical analysis		2 (2017)					
Number of boreholes con	npleted as groundwater n	nonitoring wells		0					
Number of historical grou	indwater monitoring wells			0					
Number of groundwater s	samples collected			0					
Number of sediment and	surface soil samples coll	ected		0					
Geophysics Findings				•					
N/A									
Soil Investigation and C	Conditions								
Maximum Depth of Investigation	1.0 mbgs (September 2	20, 2017)							
General Stratigraphy									
Description	Depth from (mbgs)	Depth to (mbgs)		Observations					
Silt and Sand	0	1.0	Fill soil. Wood observed in 17.	debris and slight PHC odou A30BTP1.					
Combustible Vapour Co	oncentrations (CVCs)								
	sample 17A30BTP2-2 to	34 ppm in sample 17A3	30BTP1-2.						
Groundwater Condition	s								
Depth to Groundwater	about 10 m; inferred fro	m local groundwater co	ntours (Figure 30	B-2).					
Free Product	N/A								
2017/2018 Environme	ental Site Assessmen	t Results Summary							
Figure A30B-1 shows	test pit locations.								
 Figure A30B-2 shows 	groundwater elevation co	ntours.							
Toble 1000 4 00000	sicaliawatel elevation to	anouro.							

• Table A30B-1 summarizes soil lab results relative to guidelines.

AREA 30B: Old Incinerator

General Site Observations

- The old incinerator is no longer present in area.
- No surface stains or ash was observed on surface soils surrounding incinerator.
- Evidence of environmental impact including debris and PHC odour was identified in test pit 17A30BTP1.
- No further work was done in this area in 2018 (Area 30b covered under AEC16).

Soil: Petroleum Hydrocarbons (PHC, PAHs)

- Laboratory chemical results less than guidelines with exception of:
 - Sample 17A30BTP1-2 collected from depth of 1.0 m contained PHC and PAHs greater than guidelines.

Soil: Metals

- Various metals exceeding CCME CEQGs including arsenic, barium, cadmium, copper, molybdenum, nickel, selenium, and zinc.
- The following metals also exceeded preliminary background concentrations:
 - Barium (17A30BTP2 at 0.25 and 1.0 mbgs)
 - Cadmium (17A30BTP2 at 0.25 mbgs)
 - Nickel (17A30BTP2 at 0.25 mbgs)

Soil: Other PCOCs (VOCs, glycols, Dioxins and Furans)

Laboratory results less than guidelines.

Soil: Routine (pH)

Laboratory results within guidelines.

Groundwater: Petroleum Hydrocarbons

N/A

Groundwater: Metals/Routine Parameters

N/A

Groundwater: Other PCOCs

N/A

Sediment: Petroleum Hydrocarbon

N/A

Sediment: Metals

N/A

Sediment: Other PCOCs

N/A

Surface Water: Petroleum Hydrocarbons

N/A

Surface Water: Metals/Nutrients

N/A

Surface Water: Other PCOCs

N/A

Grainsize Analysis

N/A

Environmental Co	oncerns		
Location in AEC	Potential Source(s)	Identified Contaminated Media	Parameters Assessed and Contaminant(s) of Concern (COCs; bold & underline)
Area surrounding incinerator	Incinerator exhaust	Soil	Soil: Metals, petroleum hydrocarbons (PHCs), polycyclic aromatic hydrocarbons (PAHs), volatile organic compound (VOCs), glycols, Dioxins and Furans

AREA 30B: Old Incinerator

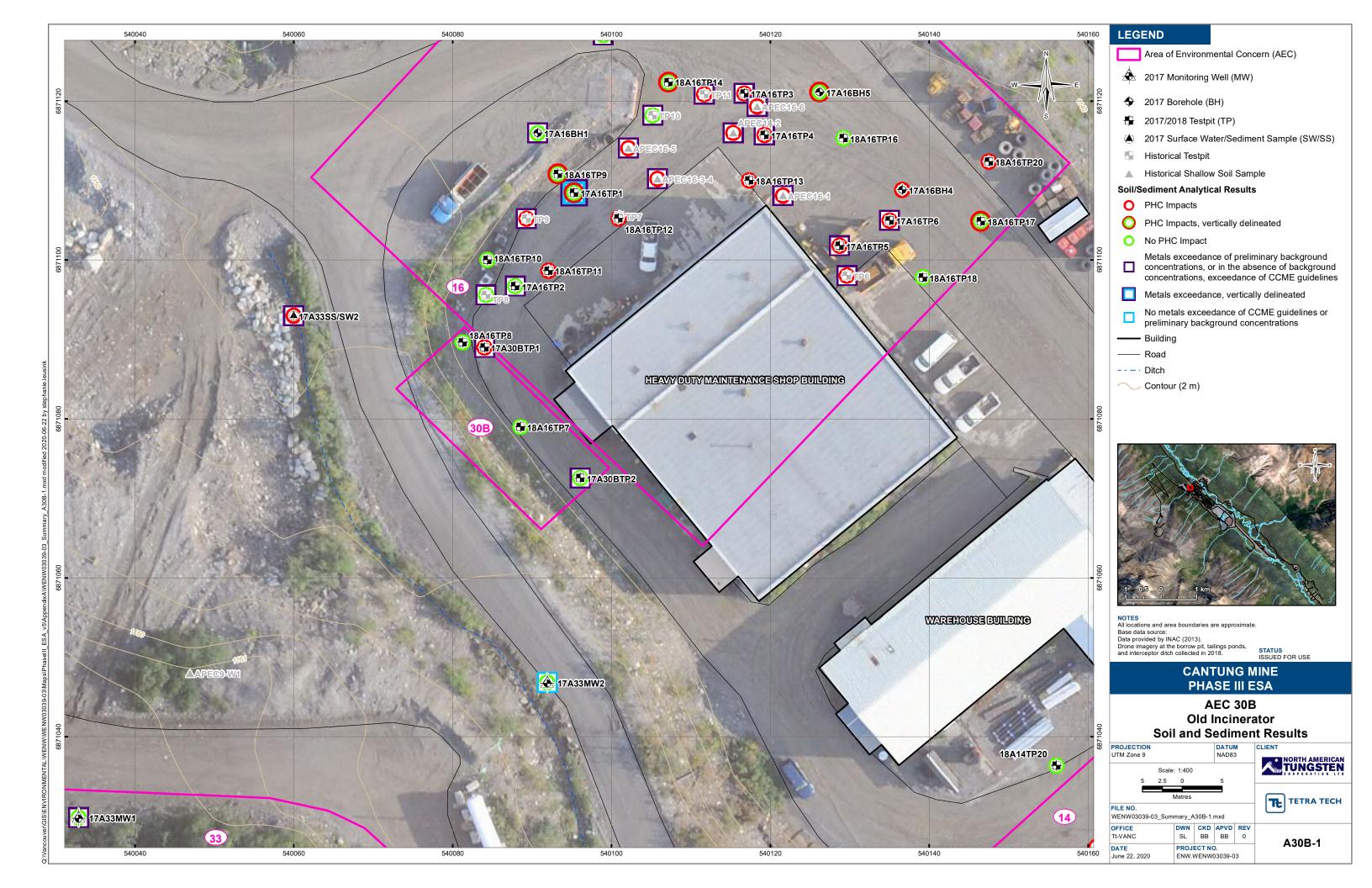
Discussion (Significance of Results)

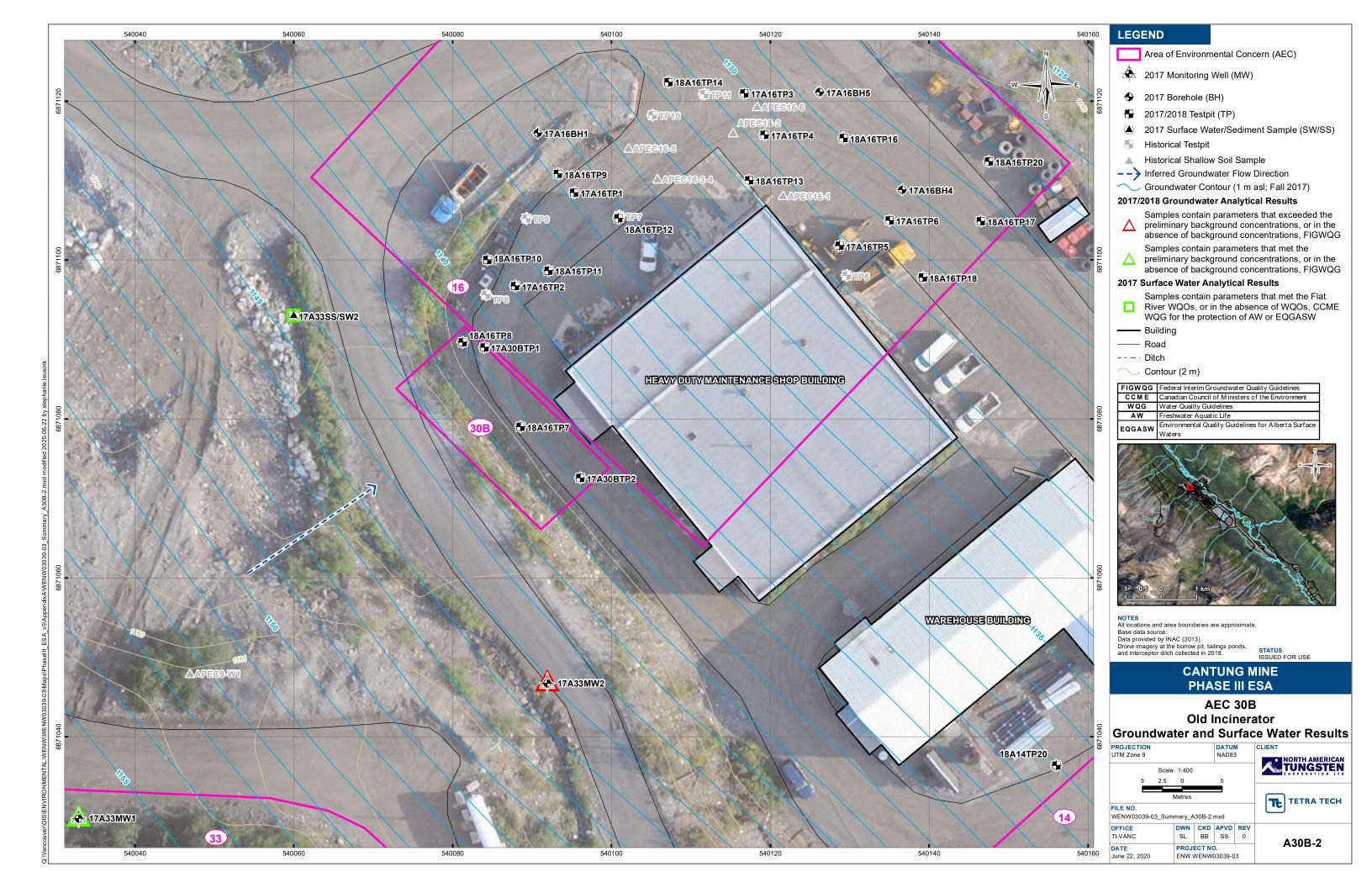
Soils:

- The environmental impacts identified were horizontally delineated to southeast.
- The AEC is bounded by berm to southwest and northwest, and Heavy Duty Maintenance Shop (AEC 16) to northeast.
- Based on depth and composition, environmental impacts identified at test pit 17A30BTP1 may be associated with buried debris and/or impacts identified at Heavy Duty Maintenance Shop (See AEC 16 Summary), and not with former incinerator operations.
- The environmental impacts measured in 17A30BTP1 were not vertically delineated, however vertically delineation achieved for PHC affected area identified at Heavy Duty Maintenance Shop (AEC 16) suggest impacts at 17A30BTP1 are limited to depth of 1.5 mbgs.
- Glycols, VOCs, dioxins and furans were not detected and are no longer considered PCOCs in soil at this AEC.
- Based on current assessment results, maximum estimated depth of PHC and PAH impacts used to calculate contaminated soil volumes in affected area is 1.5 mbgs.
- Various metals exceeding CCME CEQGs and preliminary background concentrations (barium, cadmium, copper, and nickel).
- Metals concentrations are similar to other areas of mine site and unlikely to be related to old incinerator.

Attachments

Figure A30B-1 - Soil and Sediment Results


Figure A30B-2 - Groundwater Elevation Contours


Table A30B-1 - Soil Analytical Results

Test pit Logs

Photographs

					A30	
		Most Stringent of	Preliminary	17A30BTP1		0BTP2
Parameter	Unit	Referenced	Background	17A30BTP1-2	17A30BTP2-1	17A30BTP2-2
. aramoto		Guidelines ^{1,2,3}	Concentration ⁴	1.0 m	0.25 m	1.0 m
				2017-09-20	2017-09-20	2017-09-20
Routine / Salinity						
рН	pH Units	6-8	NG	7.96	7.9	7.91
Moisture	%	NG	NG	9.92	7.7	5.41
Metals						
Antimony	mg/kg	20	NG	0.6	5.2	3.1
Arsenic	mg/kg	12	64	61.3	25.3	39.5
Barium	mg/kg	500	946	423	4900	7740
Beryllium	mg/kg	4	NG	3.3	0.5	0.7
Cadmium	mg/kg	1.4	2.8	0.91	3.07	1.55
Chromium	mg/kg	64	NG	23	20	24
Cobalt	mg/kg	40	NG	16.2	19.1	17.5
Copper	mg/kg	63	NG	192	64.5	110
Lead	mg/kg	70	NG	17.3	22.3	23.1
Mercury	mg/kg	6.6	NG	0.42	0.08	0.12
Molybdenum	mg/kg	5	10	2.5	7.8	5.3
Nickel	mg/kg	45	72	30.1	75.1	49.8
Selenium	mg/kg	1	1.7	0.9	1.5	1.2
Silver	mg/kg	20	NG	<0.5	<0.5	<0.5
Thallium	mg/kg	1	NG	0.4	0.4	0.4
Tin	mg/kg	5	NG	2.9	0.3	0.7
Uranium	mg/kg	23	NG	3.3	1.9	2.5
Vanadium	mg/kg	130	160	3.3	70	61
Zinc		200	462			
Petroleum Hydrocarbons	mg/kg	200	402	228	433	269
Benzene	mg/kg	0.03	NG	<0.005	<0.005	<0.005
Toluene		0.03	NG	<0.005	<0.005	<0.005
	mg/kg					
Ethylbenzene X(demonstrate)	mg/kg	0.082	NG	<0.01	<0.01	<0.01
Xylenes (m & p)	mg/kg	NG	NG	-	-	-
Xylene (m)	mg/kg	NG	NG	<0.02	<0.02	<0.02
Xylene (o)	mg/kg	NG	NG	<0.02	<0.02	<0.02
Xylenes Total	mg/kg	0.1	NG	<0.05	<0.05	<0.05
Volatile Hydrocarbons (VH6-10)	mg/kg	NG	NG	-	-	-
F1 (C6-C10)	mg/kg	30	NG	12	<10	<10
VPH C6-C10	mg/kg	NG	NG	-	-	-
F1 (C6-C10 / BTEX CORRECTED)	mg/kg	30	NG	12	<10	<10
F2 (C10-C16)	mg/kg	150	NG	2050	<20	<20
F3 (C16-C34)	mg/kg	300	NG	1360	<20	<20
F4: (C34-C50)	mg/kg	2800	NG	48	<20	<20
VPHs	mg/kg	NG	NG	-	-	-
Glycols						
Diethylene glycol	mg/kg	NG	NG	<10	<10	<10
Ethylene glycol	mg/kg	960	NG	<10	<10	<10
Propylene glycol	mg/kg	NG	NG	<10	<10	<10
Tetraethylene Glycol	mg/kg	NG	NG	<10	<10	<10
Triethylene Glycol	mg/kg	NG	NG	<10	<10	<10
Polycyclic Aromatic Hydrocarbons (PAHs)	33	-		_		<u>-</u>
IACR (CCME)	mg/kg	1	NG	<0.6	<0.6	<0.6
B(a)P Total Potency Equivalent	mg/kg	0.6	NG	<0.05	<0.05	<0.05
2-methylnaphthalene	mg/kg	NG	NG	<0.05	<0.005	<0.005
Acenaphthene	mg/kg	NG	NG	<0.05	<0.005	<0.005
Acenaphthylene	mg/kg	NG	NG	<0.05	<0.005	<0.005
Anthracene	mg/kg	2.5	NG	<0.04	<0.003	<0.003
Benz(a)anthracene	mg/kg	0.1	NG	<0.04	<0.004	<0.004
Benzo(a) pyrene	mg/kg	0.1	NG	<0.03	<0.03	<0.03
Benzo(a) pyrene Benzo(b)fluoranthene	mg/kg mg/kg	0.1	NG	<0.03	<0.03	<0.03
` '		NG				
Benzo(b+j)fluoranthene	mg/kg		NG	<0.05	<0.05	<0.05
Benzo(e)pyrene	mg/kg	NG NC	NG NC	-0.05		-0.05
Benzo(g,h,i)perylene	mg/kg	NG 0.1	NG NC	<0.05	<0.05	<0.05
Benzo(k)fluoranthene	mg/kg	0.1	NG	<0.05	<0.05	<0.05
Chrysene	mg/kg	NG	NG	<0.05	<0.05	<0.05
Dibenz(a,h)anthracene	mg/kg	0.1	NG	<0.005	<0.005	<0.005
Fluoranthene	mg/kg	50	NG	0.03	<0.01	<0.01
Fluorene	mg/kg	NG	NG	<0.2	<0.02	<0.02
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	NG	<0.02	<0.02	<0.02
Naphthalene	mg/kg	0.013	NG	<u><0.05</u>	<0.005	<0.005
Phenanthrene	mg/kg	0.046	NG	0.4	<0.02	<0.02
Pyrene	mg/kg	0.1	NG	0.19	<0.01	<0.01
Benzo(j)fluoranthene	ug/g	NG	NG	<0.05	<0.05	<0.05
Polychlorinated Biphenyls (PCBs)						
Aroclor 1242	mg/kg	NG	NG	-	-	-
Aroclor 1254	mg/kg	NG	NG	-	-	-
Aroclor 1260	mg/kg	NG	NG	-	-	-
Aroclor 1262	mg/kg	NG	NG	-	-	-
	mg/kg	0.5	NG	-	-	_

Table A30B-1: Soil Analytical Results

				474000==:	A30	0DTD0
		Most Stringent of	Preliminary	17A30BTP1		0BTP2
Parameter	Unit	Referenced	Background	17A30BTP1-2	17A30BTP2-1	17A30BTP2-2
i didilictor	Oilit	Guidelines ^{1,2,3}	Concentration ⁴	1.0 m	0.25 m	1.0 m
		Guidelines	Concentration	2017-09-20	2017-09-20	2017-09-20
Valatila Omnania Cammanunda (VOCa)						
Volatile Organic Compounds (VOCs) Carbon	%	NG	NG			
1-Methylnaphthalene	mg/kg	NG	NG	0.75	<0.005	<0.005
		NG		<0.5		
Acetone Bromodichloromethane	mg/kg	NG	NG	<0.05	<0.5 <0.05	<0.5 <0.05
	mg/kg		NG			
Bromoform	mg/kg	NG	NG	<0.05	<0.05	<0.05
Bromomethane	mg/kg	NG	NG	<0.05	<0.05	<0.05
2-Butanone	mg/kg	NG	NG	<0.5	<0.5	<0.5
Carbon tetrachloride	mg/kg	0.1	NG	<0.02	<0.02	<0.02
Chlorobenzene	mg/kg	0.1	NG	<0.05	<0.05	<0.05
Chloroethane	mg/kg	NG	NG	<0.05	<0.05	<0.05
Chloroform	mg/kg	0.1	NG	<0.05	<0.05	<0.05
Chloromethane	mg/kg	NG	NG	<0.05	<0.05	<0.05
Dibromochloromethane	mg/kg	NG	NG	<0.05	<0.05	<0.05
1,2-Dibromoethane	mg/kg	NG	NG	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	mg/kg	0.1	NG	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	mg/kg	0.1	NG	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	mg/kg	0.1	NG	<0.05	<0.05	<0.05
1,1-Dichloroethane	mg/kg	0.1	NG	<0.05	<0.05	<0.05
1,2-Dichloroethane	mg/kg	0.1	NG	<0.05	<0.05	<0.05
1,1-Dichloroethene	mg/kg	0.1	NG	<0.05	<0.05	<0.05
1,2-Dichloroethene (cis)	mg/kg	0.1	NG	<0.05	<0.05	<0.05
1,2-Dichloroethene (trans)	mg/kg	0.1	NG	<0.05	<0.05	<0.05
1,2-Dichloropropane	mg/kg	0.1	NG	<0.05	<0.05	<0.05
1,3-Dichloropropene [cis]	mg/kg	NG	NG	<0.05	<0.05	<0.05
1,3-Dichloropropene [trans]	mg/kg	NG	NG	<0.05	<0.05	<0.05
Methyl t-Butyl Ether (MTBE)	mg/kg	NG	NG	<0.1	<0.1	<0.1
Methylene Chloride	mg/kg	0.1	NG	<0.05	<0.05	<0.05
4-Methyl-2-pentanone	mg/kg	NG	NG	<0.5	<0.5	<0.5
Styrene	mg/kg	0.1	NG	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	mg/kg	NG	NG	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	mg/kg	0.1	NG	<0.05	<0.05	<0.05
Tetrachloroethene	mg/kg	0.1	NG	<0.05	<0.05	<0.05
1,2,4-Trichlorobenzene	mg/kg	0.05	NG	<0.05	<0.05	<0.05
1,1,1-Trichloroethane	mg/kg	0.1	NG	<0.05	<0.05	<0.05
1,1,2-Trichloroethane	mg/kg	0.1	NG	<0.05	<0.05	<0.05
Trichloroethene	mg/kg	0.1	NG	<0.01	<0.01	<0.01
Trichlorofluoromethane	mg/kg	NG	NG	<0.05	<0.05	<0.05
Vinyl chloride	mg/kg	NG	NG	<0.05	<0.05	<0.05
Dioxins and Furans	ilig/kg	ING	NG	\0.03	\0.03	~0.03
		NG	NG	2.5		
Total PCDDs Total PCDFs	ng/kg	NG	NG	2.5	-	-
	ng/kg	NG NG		<0.5	-	-
2,3,7,8-Tetra CDD (TEF 1.0)	TEQ		NG	0	-	-
1,2,3,7,8-Penta CDD (TEF 1.0)	TEQ	NG	NG	0	-	-
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	TEQ	NG	NG	0	-	-
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	TEQ	NG	NG	0	-	-
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	TEQ	NG	NG	0	-	-
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	TEQ	NG	NG	0.00332	-	-
Octa CDD (TEF 0.0003)	TEQ	NG	NG	0.000575	-	-
2,3,7,8-Tetra CDF (TEF 0.1)	TEQ	NG	NG	0	-	-
1,2,3,7,8-Penta CDF (TEF 0.03)	TEQ	NG	NG	0	-	-
2,3,4,7,8-Penta CDF (TEF 0.3)	TEQ	NG	NG	0	-	-
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	TEQ	NG	NG	0	-	-
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	TEQ	NG	NG	0	-	-
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	TEQ	NG	NG	0	-	-
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	TEQ	NG	NG	0	-	-
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	TEQ	NG	NG	0	-	-
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	TEQ	NG	NG	0	-	-
Octa CDF (TEF 0.0003)	TEQ	NG	NG	0	-	-
Total PCDDs and PCDFs (TEQ)	TEQ	4	NG	0.00389	-	-
Sample Code				8751713	8751714	8751715
						-

Notes:

- ¹ Canadian Council of Ministers of the Environment (CCME) Canada-Wide Standards (CWS) for Petroleum Hydrocarbons (PHC) in Soil (CCME 2008)
- ² Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (CCME 1999)
- ³ Northwest Territories Environmental Guideline for Contaminated Site Remediation (NWT CSR 2003)

 $\underline{\textit{Italic}}$ - Laboratory detection limit is greater one or more referenced guidelines

NG - No guideline

Shaded - Exceeds most stringent CCME CEQG or CWS PHC land-use guideline value

Bold - Exceeds most stringent NWT CSR land-use guideline value

Bold and Shaded - Exceeds most stringent CCME CEQC or CWS PHC land-use guideline value, and exceeds most stringent NWT CSR land-use

quideline value
Red - Exceeds Preliminary Background Concentration

N/A - Not applicable

Blank - Not analyzed

⁴ - Preliminary Background Concentration

Testpit No: 17A30BTP1 Project: Phase III Environmental Site Assessment Project No: ENW.WENW03039-02 Task 002.2.2.6 Location: Cantung Mine

UTM: 540084 F: 6871089 N: 7 9

			Tungsten, Northwest Territ	orie	s		UTM: 540084 E; 6871089 N; Z 9			
o Depth (m)	Method	Soil Description		Sample Type	Sample Number	■ Vapour readings (pp. 50 100 150 2	omv) ■	Notes and Comments	Backfill	Depth O (ft)
- - - - - -	Excavated	SILT (FILL) - sandy, some gravel, some cobbles, trace be plastic and wood debris SAND (FILL) - gravelly, some silt, some cobbles, trace be grey, slight hydrocarbon odour			1-1					1
1 1 2 3 4 5		END OF TESTPIT (1.0 metre) Note: Backfilled at completion								10 11 11 11 11 11 11 11 11 11 11 11 11 1
			Contractor: NATC				Comp	letion Depth: 1 m		_

Testpit No: 17A30BTP2

Project: Phase III Environmental Site Assessment Project No: ENW.WENW03039-02 Task 002.2.2.6

Completion Date: 2017 September 20

Page 1 of 1

Location: Cantung Mine Ground Elev: 1145.606 m

Tungsten, Northwest Territories UTM: 540096.064 F: 6871072.576 N: 7.9

		Tun	Tungsten, Northwest Territ						UTM: 540096.064 E; 6871072.576 N; Z 9			
o Depth (m)				Sample Type	Sample Number	■ Vapour readings (pr	omv) ■	Notes and Comments	Backfill	Elevation (m)		
	Excavated	SILT (FILL) - sandy, some gravel, some cobbles, trace to (300 mm thick) SAND (FILL) - gravelly, some cobbles, trace silt, trace b			2-1					 1145—- 		
- 1 - 2		END OF TESTPIT (1.0 metre) Note: Stopped due to refusal Backfilled at completion			2-2							
- 4										1142-		
5		TETRATECH	Contractor: NATC Drilling Rig Type: Rubber	Гire	backh	noe		etion Depth: 1 m Date: 2017 September 20				

Logged By: NH Reviewed By: JW

Photo 1: Facing west. Location of old incinerator in centre of photograph. (September 20, 2017)

Photo 2: Arrow indicates location of former incinerator adjacent to Heavy Equipment Maintenance Shop. Photo provided by NATC. (May 29, 2014)

AREA 35

AREA 35: Former PCB Storage and Copper Concentrate Shed

Area Description								
Location	Northwest of Tailings Po	ond 1.						
Topography	Generally flat with a slig	Generally flat with a slight slope to northeast.						
Surface Drainage	Northeast.							
Background	Out of service Polychlor at former Copper Conce		-containing equip	ment was reportedly stored				
Historical Assessment Information								
	Number of test pits			0				
Phase II Environmental	Number of surface soil	Number of surface soil samples 0						
Site Assessment	Number of soil samples	s analyzed		0				
(EBA 2009)	Number of soil samples	s with petroleum hydroc	arbon impacts	0				
	Number of soil samples	•	•	0				
Comments: Not previous	·	·						
<u> </u>	ental Site Assessment	t Details						
Environmental Site Ass		Cotano						
Utility Locate SOP follow	•			Yes				
EM 31 Geophysics Comp				No				
Number of test pits advar				2 (2017)				
Number of boreholes adv				0				
Number of hand auger lo	cations advanced			0				
	submitted for laboratory ch	nemical analysis		2 (2017)				
· · · · · · · · · · · · · · · · · · ·	npleted as groundwater m	•		0				
	indwater monitoring wells	•		0				
Number of groundwater s				N/A				
*	surface soil samples colle	ected		N/A				
Geophysics Findings	<u> </u>							
N/A								
Soil Investigation and C	Conditions							
Maximum Depth of Investigation	1.2 mbgs (September 1	7, 2017)						
General Stratigraphy								
Description	Depth from (mbgs) Depth to (mbgs) Observations							
Various layers of sand and cobbles	Fill soil. Buried debris including metal and wood observed in 17A35TP1 and 17A35TP2.							
Combustible Vapour Co	oncentrations (CVC)							
Ranged from less than in	strument detection limit to	o 5 ppm in soil sample 1	7A35TP1-2.					
Groundwater Condition	S							
Depth to Groundwater	Depth to Groundwater about 8 m; inferred from groundwater elevation contour map (Figure A35-2).							
Free Product N/A								

AREA 35: Former PCB Storage and Copper Concentrate Shed

2017/2018 Environmental Site Assessment Results Summary

- Figure A35-1 shows test pit locations.
- Figure A35-2 shows groundwater elevation contours.
- Table A35-1 summarizes soil lab results relative to guidelines.

General Site Observations

- No PCB- containing equipment or other chemical storage was observed at AEC.
- No obvious signs of PCB impacts were observed.
- Debris containing fill soil was observed in test pits 17A35TP1 and 17A35TP2.
- No additional work was done in this area in 2018.

Soil: Petroleum Hydrocarbons (PHCs)

N/A

Soil: Metals

- Generally, very high metals concentrations, particularly in 17A35TP1 at 1.0 mbgs.
- Metals exceeding CCME CEQGs include: arsenic, barium, cadmium, copper, molybdenum, nickel, selenium, tin, and
- The sample at 17A35TP1 had the highest concentration observed for copper at the site and is almost certainly impacted from copper concentrate.
- Most metals also exceed preliminary background concentrations, except for:
 - Arsenic (17A35TP2 at 0.25 mbgs).
 - Molybdenum (17A35TP2 at 0.25 mbgs).
 - Zinc (17A35TP2 at 0.25 mbgs).

Soil: Other PCOCs (PCBs)

Laboratory results less than detection limits and guidelines for PCBs.

Soil: Routine (pH)

Laboratory results within guidelines.

Groundwater: Petroleum Hydrocarbons

N/A

Groundwater: Metals/Routine Parameters

N/A

Groundwater: Other PCOCs

N/A

Sediment: Petroleum Hydrocarbons

N/A

Sediment: Metals N/A

Sediment: Other PCOCs

N/A

Surface Water: Petroleum Hydrocarbons

N/A

Surface Water: Metals/Nutrients

N/A

Surface Water: Other PCOCs

N/A

Grainsize Analysis

N/A

AREA 35: Former PCB Storage and Copper Concentrate Shed

Potential Environmental Concerns						
Location in AEC	Potential Source(s)	Identified Contaminated Media	Parameters Assessed and Contaminant(s) of Concern (COCs; bold & underline)			
Area near entrance and downgradient of former Copper Concentrate Shed	Leaks or releases of PCBs from PCB-containing equipment	Soil	Soil: Metals, PCBs			

Discussion (Significance of Results)

Soils:

- Based on assessment results, there is no evidence of substantial environmental impacts associated with historical PCB storage.
- Soil samples contained high metals concentrations.
- Sample 17A35TP1 at 1.0 mbgs contained highest copper concentration observed at site (20,500 mg/kg), along with arsenic, cadmium, molybdenum, nickel, selenium, tin and zinc all exceeding CCME CEQGs and preliminary background concentrations.
- It is likely that soil 17A35TP1 is contaminated with copper concentrate spilled in vicinity of copper concentrate shed.

Attachments

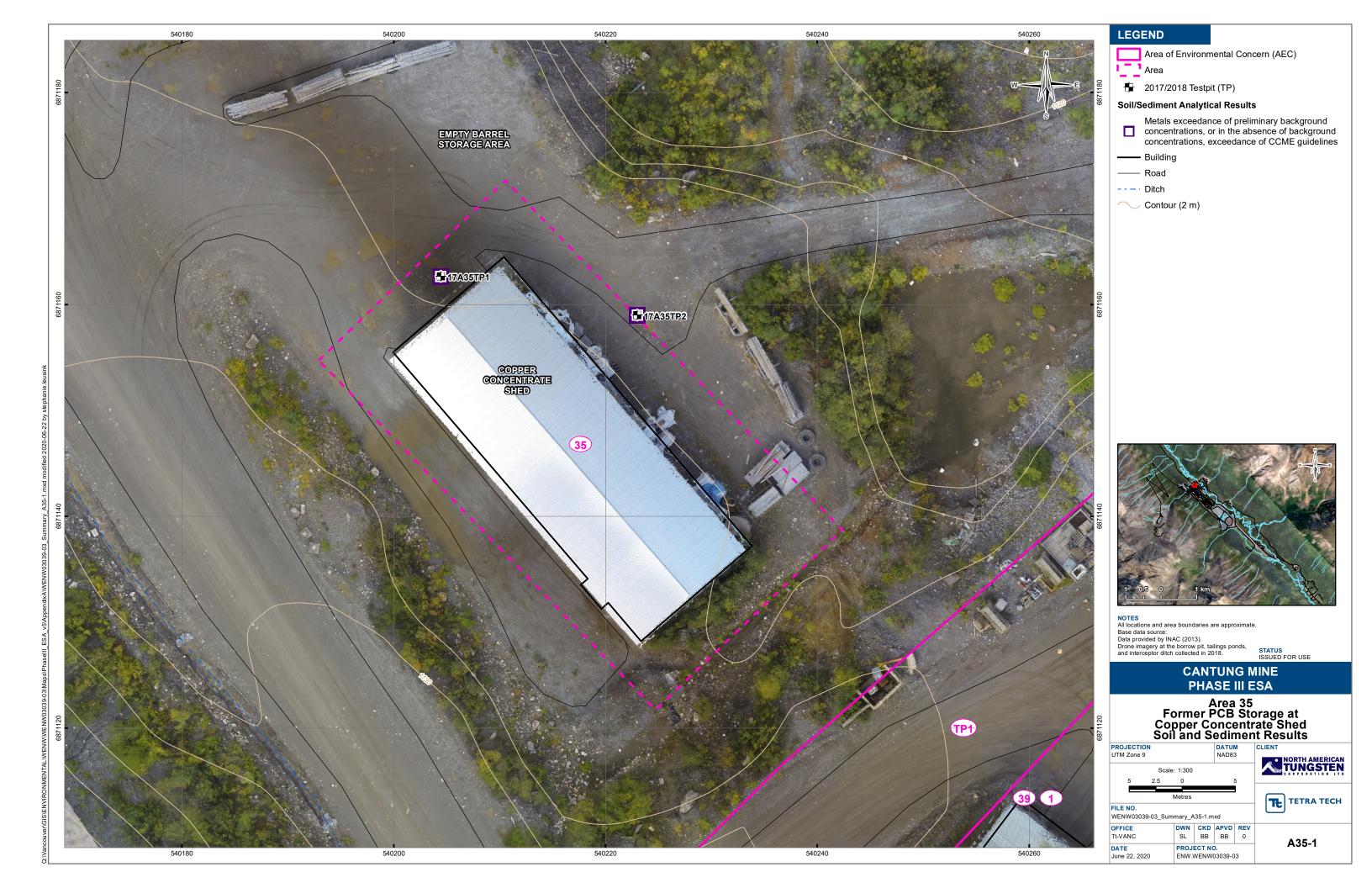

Figure A35-1 – Soil and Sediment Results

Figure A35-2 - Groundwater Elevation Contours

Table A35-1 - Soil Analytical Results

Test pit Logs

Photographs

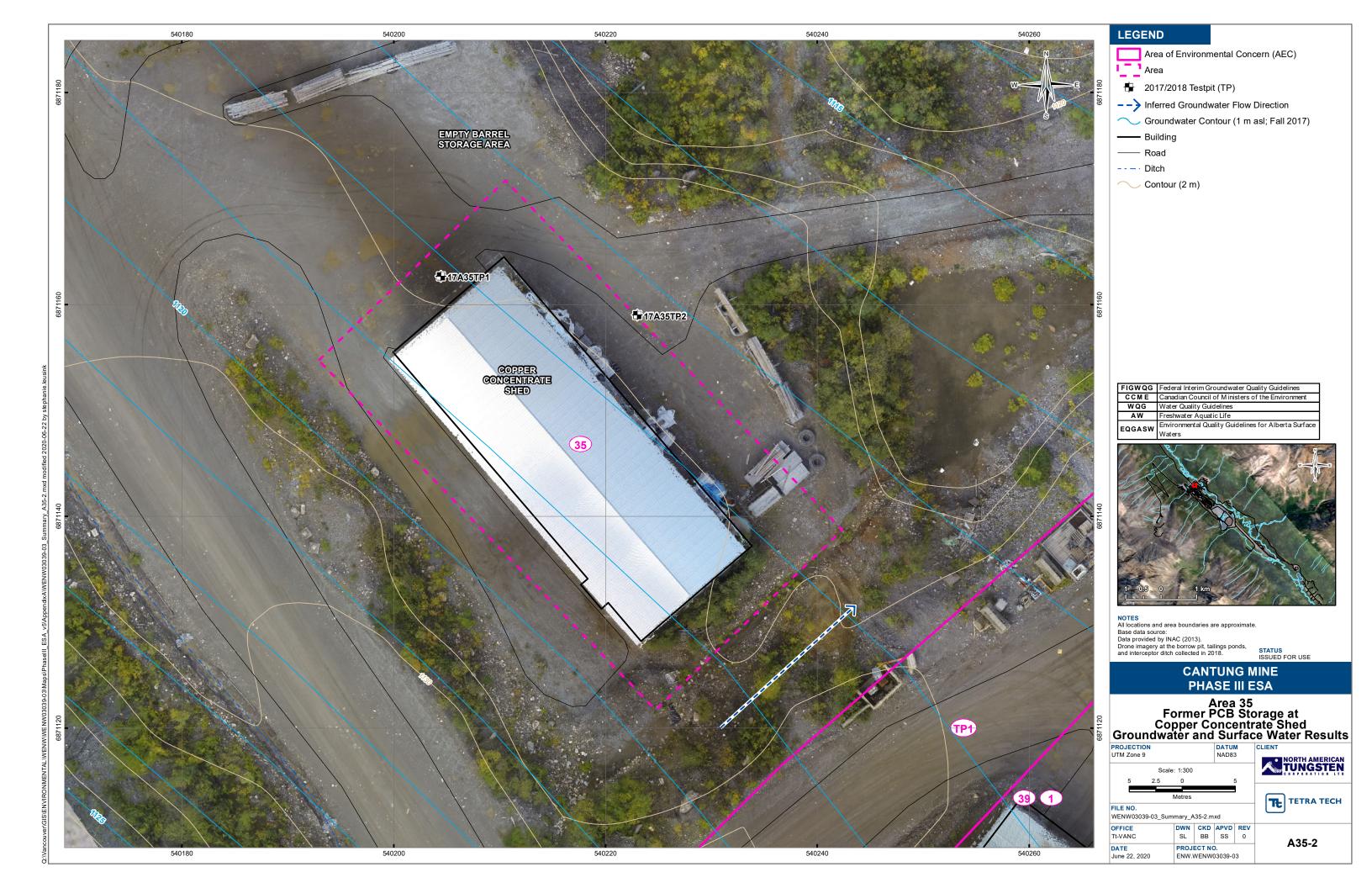


Table A35-1: Soil Analytical Results

				AREA 35		
		Most Stringent of	Preliminary	17A35TP1	17A35TP2	
Parameter	Unit	Referenced	Background	17A35TP1-2	17A35TP2-1	
Parameter	Unit	Guidelines ^{1,2,3}	Concentration ⁴	1.0 m	0.25 m	
		Guidelines	Concentration	2017-09-17	2017-09-17	
Routine / Salinity						
pH	pH Units	6-8	NG	7.24	7.7	
Moisture	%	NG	NG	-	-	
Metals						
Antimony	mg/kg	20	NG	6.9	5.8	
Arsenic	mg/kg	12	64	71.6	23.7	
Barium	mg/kg	500	946	281	4120	
Beryllium	mg/kg	4	NG	0.8	0.3	
Cadmium	mg/kg	1.4	2.8	13.2	3.39	
Chromium	mg/kg	64	NG	23	11	
Cobalt	mg/kg	40	NG	34.5	18.2	
Copper	mg/kg	63	NG	20500	59.3	
Lead	mg/kg	70	NG	40.6	16.1	
Mercury	mg/kg	6.6	NG	0.81	0.07	
Molybdenum	mg/kg	5	10	25.7	7.5	
Nickel	mg/kg	45	72	93.4	84.1	
Selenium	mg/kg	1	1.7	7.5	2.6	
Silver	mg/kg	20	NG	14.1	<0.5	
Thallium	mg/kg	1	NG	0.6	0.4	
Tin	mg/kg	5	NG	30.7	<0.2	
Uranium	mg/kg	23	NG	3.6	2.4	
Vanadium	mg/kg	130	160	104	86	
Zinc	mg/kg	200	462	1650	395	
Polychlorinated Biphenyls (PCBs)						
Aroclor 1242	mg/kg	NG	NG	<0.05	<0.05	
Aroclor 1254	mg/kg	NG	NG	<0.05	<0.05	
Aroclor 1260	mg/kg	NG	NG	<0.05	<0.05	
Aroclor 1262	mg/kg	NG	NG	-	-	
PCBs (Sum of total)	mg/kg	0.5	NG	<0.05	<0.05	
Sample Code				8742814	8742815	
Lab Report Number				17Y263066	17Y263066	

Notes:

Italic - Laboratory detection limit is greater one or more referenced guidelines

NG - No guideline

Shaded - Exceeds most stringent CCME CEQG or CWS PHC land-use guideline value

Bold - Exceeds most stringent NWT CSR land-use guideline value

Bold and Shaded - Exceeds most stringent CCME CEQC or CWS PHC land-use guideline value, and exceeds most stringent NWT CSR land-use guideline value

Red - Exceeds Preliminary Background Concentration

N/A - Not applicable

Blank - Not analyzed

¹ - Canadian Council of Ministers of the Environment (CCME) Canada-Wide Standards (CWS) for Petroleum Hydrocarbons (PHC) in Soil (CCME 2008)

² - Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) - Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (CCME 1999)

 $^{^{3}}$ - Northwest Territories Environmental Guideline for Contaminated Site Remediation (NWT CSR 2003)

⁴ - Preliminary Background Concentration

Testpit No: 17A35TP1

Project: Phase III Environmental Site Assessment Project No: ENW.WENW03039-02 Task 002.2.2.6

Location: Cantung Mine Ground Elev: 1126.327 m

Tungsten, Northwest Territories LITM: 540204 443 F: 6871162 648 N: 7.9

		Eta.	Tungsten, Northwest Territories			UTM:	UTM: 540204.443 E; 6871162.648 N; Z 9			
o Depth (m)	Method	Soil Description		Sample Type	Sample Number	■Vapour readings (pp 50 100 150 2	mv) ■	Notes and Comments	Backfill	Elevation (m)
-		SAND (FILL) - silty, some gravel, trace rootlets, damp, lo - reddish brown	oose, brown, wood debris		1-1					-
- - - - - - -	Excavated	- trace to some cobbles, buried metal bar			1-2					1126—
- - -		END OF TESTPIT (1.2 metres) Note: Backfilled at completion				<u> </u>	:			1125—
- - - - 2 - - - - -										1124—
- - 3 - - - - -										1123—
- - 4 - - - - - -										1122-
5			Contractor: NATC				Comp	letion Depth: 1.2 m		
		TETBATECH	Drilling Rig Type: Track Mou	unte	ed			Date: 2017 September 17		

Completion Date: 2017 September 17

Page 1 of 1

		Tungsten, Northwest Territories		UTM:	540223 E; 6871159 N; Z 9							
o Depth (m)	Method	Soil Description		Sample Type	Sample Number	■Vap	our rea 100	dings (r 150	opmv) ■ 200	Notes and Comments	Backfill	Depth (ft)
		SAND (FILL) - silty, some gravel, trace cobbles, damp, s	oft, greyish brown				:	:	:			1
 - -		- gravelly, some silt, trace to some cobbles, dense, lots	s of wood debris		2-1 I		:					1 1
- - - - - - -	Excavated	- unknown line - buried organics COBBLES (FILL) - sandy, some gravel, some boulders,	damp, loose, brown		2-2							2 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
-		END OF TESTPIT (1.2 metres)				:	- :	- :	:			4-
2 2 3 		Note: Backfilled at completion										5 6 7 7 8 9 10 11 12 13 14 15 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17
_ 5			Contractor: NATC						Comp	 etion Depth: 1.2 m		냭
		7	Drilling Rig Type: Track Mo	NIN4	od				_	Date: 2017 September 17		-
	7	TETRA TECH	יייים איז דיייווים רוא איז איז דיייים ווויים ו	JUI IL	.c u				Sidil L	vale. 2017 September 17		

Logged By: NH Reviewed By: JW

Photo 1: Arrow indicates location of former PCB storage at copper concentrate shed. Photo provided by NATC. (August 13, 2013)

Photo 2: Facing southeast at copper concentrate shed. (October 3, 2017)

AREA 36

N/A

AREA 36: Former Fueling Area

Area Description						
Location	Northeast of Sewage Treatment Plant and Incinerator, adjacent Tailings Pond 4.					
Topography	Generally flat with a slight slope to northeast.					
Surface Drainage	Northeast towards Flat River.					
Background	Historical gasoline fueling area for townsite residents.					
Historical Assessment Information						
	Number of test pits	0				
Phase II Environmental	Number of surface soil samples	0				
Site Assessment	Number of soil samples analyzed	0				
(EBA 2009)	Number of soil samples with petroleum hydrocarbon impacts	0				
	Number of soil samples with metal impacts	0				

Comments: Not previously assessed.

2017/2018 Environmental Site Assessment Details

Environmental Site Assessment Scope	
Utility Locate SOP followed?	Yes
EM 31 Geophysics Completed?	Yes
Number of test pits advanced	0
Number of boreholes advanced	1 (2017)
Number of hand auger locations advanced	0
Number of soil samples submitted for laboratory chemical analysis	2 (2017)
Number of boreholes completed as groundwater monitoring wells	0
Number of historical groundwater monitoring wells	0
Number of groundwater samples collected	N/A

Geophysics (EM 31 Apparent Terrain Conductivity) Findings

Number of sediment and surface soil samples collected

- As indicated on Figure A36-3 survey was completed at former fueling area.
- Background apparent terrain conductivity values for area are generally between 5 to 10 mS/m. These values are represented by cool colours shown on figure.
- Areas of higher than background apparent terrain conductivity values are not observed.
- Negative apparent terrain conductivity values are likely caused by a buried utility or buried metal. This area is labeled on figure with a thick black rectangle.
- No other areas of anomalous results are seen in data.

Soil Investigation and Conditions

Maximum Depth of Investigation

6.1 mbgs (September 21, 2017)

General Stratigraphy

Description	Depth from (mbgs)	Depth to (mbgs)	Observations
Silt	0	1.9	Fill soil
Sand	1.9	2.6	Fill soil
Cobbles	2.6	3.0	Native soil
Sand	3.0	6.1	Native soil

Combustible Vapour Concentrations (CVC)

Ranged from 0.6 ppm in 17A36BH1-3 to 1.3 ppm in soil sample 17A36BH1-1

AREA 36: Former Fueling Area

Groundwater Conditions					
Depth to Groundwater	N/A				
Free Product	N/A				

2017/2018 Environmental Site Assessment Results Summary

- Figure A36-1 shows borehole locations.
- Figure A36-2 shows groundwater elevation contours.
- Figure A36-3 shows geophysics results.
- Table A36-1 summarizes soil lab results relative to guidelines.

General Site Observations

- No residual fueling infrastructure was observed.
- No obvious signs of environmental impacts were observed.
- No additional work was done in this area in 2018.

Soil: Petroleum Hydrocarbons (PHCs, PAHs)

Laboratory chemical results less than guidelines.

Soil: Metals

- Various exceedances of CCME CEQGs including arsenic, barium, cadmium, copper, molybdenum, selenium, and zinc.
- The following metals also exceeded preliminary background concentrations:
 - Barium (17A36BH1 at 2.0 mbgs)
 - Selenium (17A36BH1 at 2.0 mbgs)

Soil: Other PCOCs (VOCs)

Laboratory results less than detection limits and guidelines

Soil: Routine (pH)

Laboratory results within guidelines.

Groundwater: Petroleum Hydrocarbons

N/A

Groundwater: Metals/Routine Parameters

N/A

Groundwater: Other PCOCs

N/A

Sediment: Petroleum Hydrocarbons

N/A

Sediment: Metals

N/A

Sediment: Other PCOCs

N/A

Surface Water: Petroleum Hydrocarbons

N/A

Surface Water: Metals/Nutrients

N/A

Surface Water: Other PCOCs

N/A

Grainsize Analysis

N/A

AREA 36: Former Fueling Area

Environmental Concerns						
Location in AEC	Potential Source(s)	Identified Contaminated Media	Parameters Assessed and Contaminant(s) of Concern (COCs; bold & underline)			
Beneath and down-gradient of former fueling area	Fuel releases	Soil	Soil: Metals, petroleum hydrocarbons (PHCs), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs)			

Discussion (Significance of Results)

Soils:

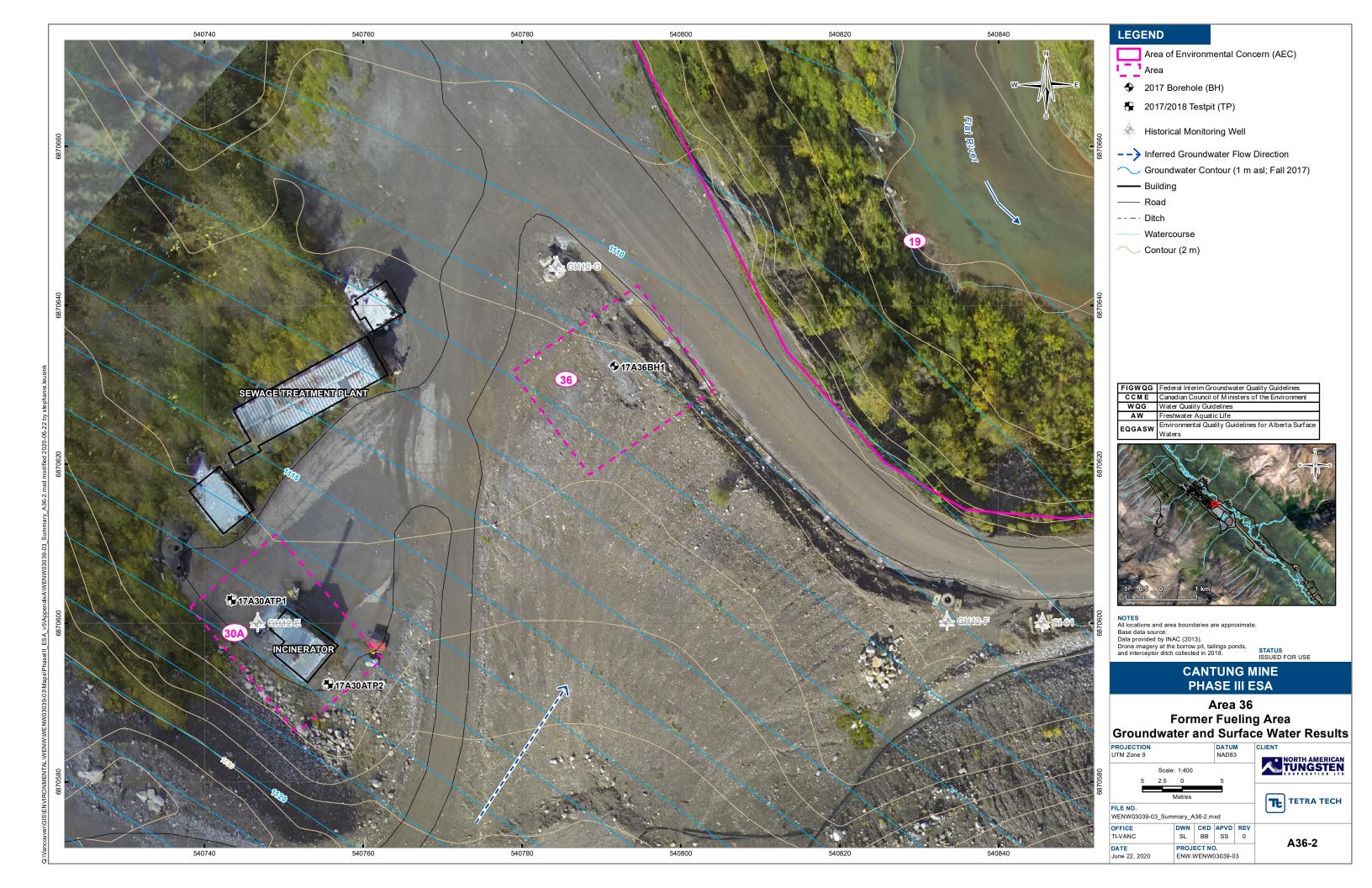
 Metals concentrations generally similar to other areas at Cantung Mine site, so not likely related to fueling area activities.

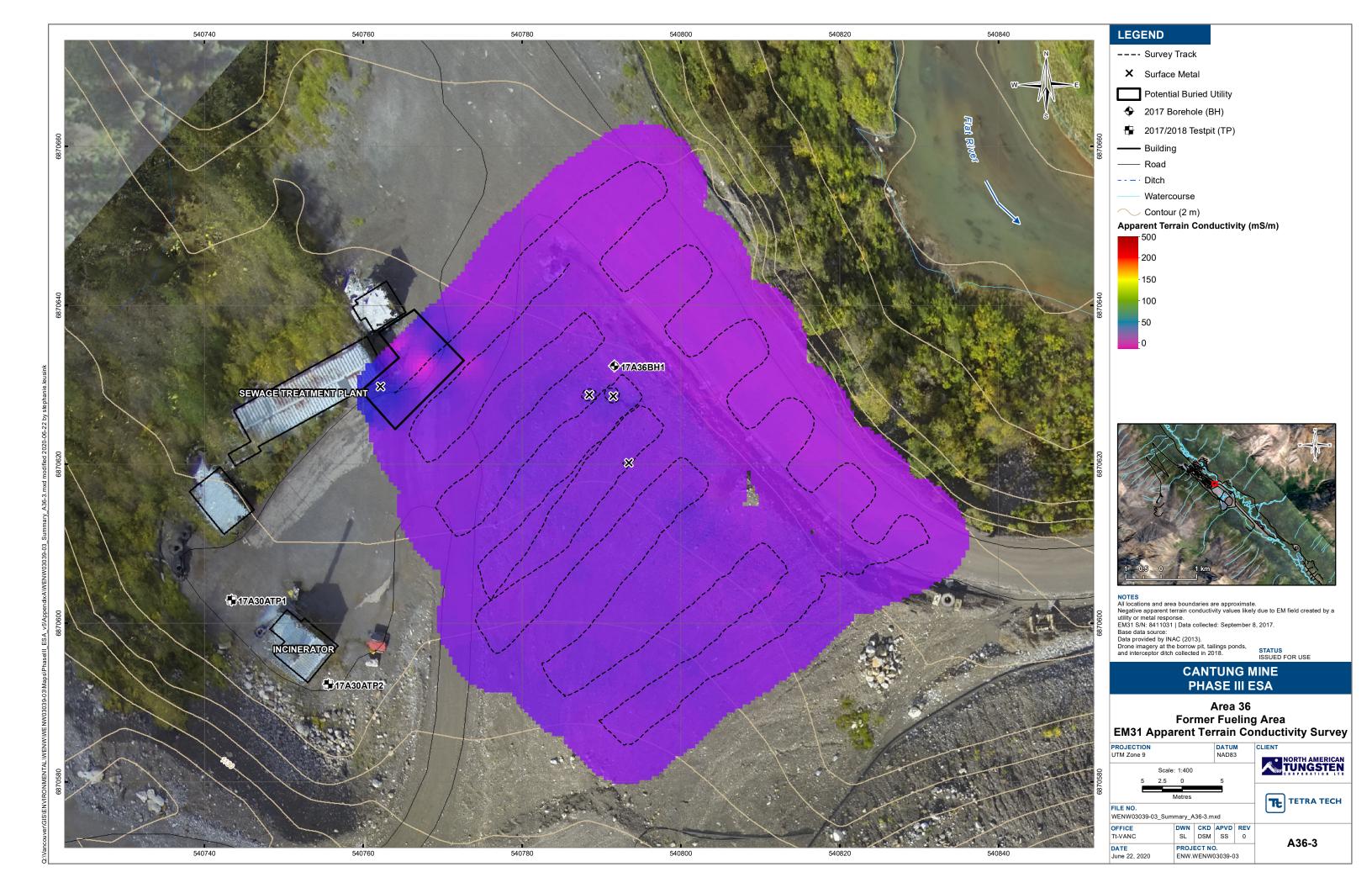
Attachments

Figure A36-1 - Soil and Sediment Results

Figure A36-2 – Groundwater elevation contours

Figure A36-3 – Geophysics Results


Table A36-1 - Soil Analytical Results


Borehole Logs

Photographs

			A36		
	Most Stringent of	Preliminary		6BH1	
Unit	· · · · · ·	•		17A36BH1-2	
Oilit		_		2.0 m	
	Guideinies	Concontiation	2017-09-21	2017-09-21	
pH Units	6-8	NG	7.25	7.83	
%	NG	NG	14	8.06	
				2.6	
				20.7	
				1700 0.6	
				2.04	
				23	
	40	NG	15.5	13	
	63	NG	192	130	
mg/kg	70	NG	20.2	18.8	
mg/kg	6.6	NG	0.51	0.6	
mg/kg	5	10	3.9	5.4	
mg/kg	45	72	31.7	41.3	
mg/kg	1	1.7	1.4	1.8	
mg/kg	20	NG	<0.5	<0.5	
				0.3	
				1.1	
				2	
				62	
mg/kg	200	402	207	228	
%	NG	NG	75	68	
				Coarse	
			00000	00000	
mg/kg	0.03	NG	<0.005	<0.005	
mg/kg	0.1	NG	<0.05	<0.05	
mg/kg	0.082	NG	<0.01	<0.01	
mg/kg	NG	NG	-	-	
mg/kg	NG	NG	<0.02	<0.02	
				<0.02	
			<0.05	<0.05	
-			-	-	
				<10	
				- <10	
				<20	
				<20	
			23	23	
mg/kg	NG	NG	-	-	
mg/kg	1	NG	<0.6	<0.6	
mg/kg	0.6	NG	<0.05	<0.05	
mg/kg	NG		<0.005	<0.005	
				<0.005	
				<0.005	
-				<0.004	
				<0.03	
				<0.03 <0.05	
				<0.05	
				-0.00	
			<0.05	<0.05	
	0.1	NG	<0.05	<0.05	
mg/kg	NG	NG	<0.05	<0.05	
mg/kg	0.1	NG	<0.005	<0.005	
mg/kg	50	NG	<0.01	<0.01	
mg/kg	NG	NG	<0.02	<0.02	
mg/kg	0.1	NG	<0.02	<0.02	
mg/kg	0.013	NG	<0.005	<0.005	
mg/kg	0.046	NG	<0.02	<0.02	
mg/kg	0.1	NG	<0.01	<0.01	
ug/g	NG	NG	<0.05	<0.05	
	mg/kg	Guidelines ^{1,2,3} pH Units 6-8 % NG mg/kg 20 mg/kg 12 mg/kg 500 mg/kg 4 mg/kg 64 mg/kg 64 mg/kg 63 mg/kg 6.6 mg/kg 5 mg/kg 1 mg/kg 20 mg/kg 1 mg/kg 23 mg/kg 130 mg/kg 23 mg/kg 130 mg/kg 200 % NG mg/kg 130 mg/kg 23 mg/kg 130 mg/kg 0.03 mg/kg 0.03 mg/kg 0.082 mg/kg NG mg/kg NG mg/kg NG mg/kg NG mg/kg NG mg/kg NG <td> Unit</td> <td> Unit Nost Stringent of Referenced Guidelines 1,2,3 17,436,68,11-1 0,45 m 2017-09-21 0,45 m 2017-09-21 1,4 m 2017-09-21 1,4 m 2017-09-21 1,4 m 2017-09-21 1,4 m 2,5 m 3,1 m </td>	Unit	Unit Nost Stringent of Referenced Guidelines 1,2,3 17,436,68,11-1 0,45 m 2017-09-21 0,45 m 2017-09-21 1,4 m 2017-09-21 1,4 m 2017-09-21 1,4 m 2017-09-21 1,4 m 2,5 m 3,1 m	

Table A36-1: Soil Analytical Results

					36 6BH1
		Most Stringent of	Preliminary	17A36BH1-1	обп і 17A36BH1-2
Parameter	Unit	Referenced	Background		
		Guidelines ^{1,2,3}	Concentration ⁴	0.45 m 2017-09-21	2.0 m 2017-09-21
				2017-09-21	2017-09-21
Volatile Organic Compounds (VOCs)					
Carbon	%	NG	NG	-	-
1-Methylnaphthalene	mg/kg	NG	NG	<0.005	<0.005
Acetone	mg/kg	NG	NG	<0.5	<0.5
Bromodichloromethane	mg/kg	NG	NG	<0.05	<0.05
Bromoform	mg/kg	NG	NG	<0.05	<0.05
Bromomethane	mg/kg	NG	NG	<0.05	<0.05
2-Butanone	mg/kg	NG	NG	<0.5	<0.5
Carbon tetrachloride	mg/kg	0.1	NG	<0.02	<0.02
Chlorobenzene	mg/kg	0.1	NG	<0.05	<0.05
Chloroethane	mg/kg	NG	NG	<0.05	<0.05
Chloroform	mg/kg	0.1	NG	<0.05	<0.05
Chloromethane	mg/kg	NG	NG	<0.05	<0.05
Dibromochloromethane	mg/kg	NG	NG	<0.05	<0.05
1,2-Dibromoethane	mg/kg	NG	NG	<0.05	<0.05
1,2-Dichlorobenzene	mg/kg	0.1	NG	<0.05	<0.05
1,3-Dichlorobenzene	mg/kg	0.1	NG	<0.05	<0.05
1,4-Dichlorobenzene	mg/kg	0.1	NG	<0.05	<0.05
1,1-Dichloroethane	mg/kg	0.1	NG	<0.05	<0.05
1,2-Dichloroethane	mg/kg	0.1	NG	<0.05	<0.05
1,1-Dichloroethene	mg/kg	0.1	NG	<0.05	<0.05
1,2-Dichloroethene (cis)	mg/kg	0.1	NG	<0.05	<0.05
1,2-Dichloroethene (trans)	mg/kg	0.1	NG	<0.05	<0.05
1,2-Dichloropropane	mg/kg	0.1	NG	<0.05	<0.05
1,3-Dichloropropene [cis]	mg/kg	NG	NG	<0.05	<0.05
1,3-Dichloropropene [trans]	mg/kg	NG	NG	<0.05	<0.05
Methyl t-Butyl Ether (MTBE)	mg/kg	NG	NG	<0.1	<0.1
Methylene Chloride	mg/kg	0.1	NG	<0.05	<0.05
4-Methyl-2-pentanone	mg/kg	NG	NG	<0.5	<0.5
Styrene	mg/kg	0.1	NG	<0.05	<0.05
1,1,1,2-Tetrachloroethane	mg/kg	NG	NG	<0.05	<0.05
1,1,2,2-Tetrachloroethane	mg/kg	0.1	NG	<0.05	<0.05
Tetrachloroethene	mg/kg	0.1	NG	<0.05	<0.05
1,2,4-Trichlorobenzene	mg/kg	0.05	NG	<0.05	<0.05
1,1,1-Trichloroethane	mg/kg	0.1	NG	<0.05	<0.05
1,1,2-Trichloroethane	mg/kg	0.1	NG	<0.05	<0.05
Trichloroethene	mg/kg	0.1	NG	<0.01	<0.01
Trichlorofluoromethane	mg/kg	NG	NG	<0.05	<0.05
Vinyl chloride	mg/kg	NG	NG	<0.05	<0.05
Sample C	Code			8757727	8757728
Lab Report Nur	nber			17Y264579	17Y264579

Notes:

<u>Italic</u> - Laboratory detection limit is greater one or more referenced guidelines

NG - No guideline

Shaded - Exceeds most stringent CCME CEQG or CWS PHC land-use guideline value

Bold - Exceeds most stringent NWT CSR land-use guideline value

Bold and Shaded - Exceeds most stringent CCME CEQC or CWS PHC land-use guideline value, and exceeds most stringent NWT CSR land-use guideline value

Red - Exceeds Preliminary Background Concentration

N/A - Not applicable

Blank - Not analyzed

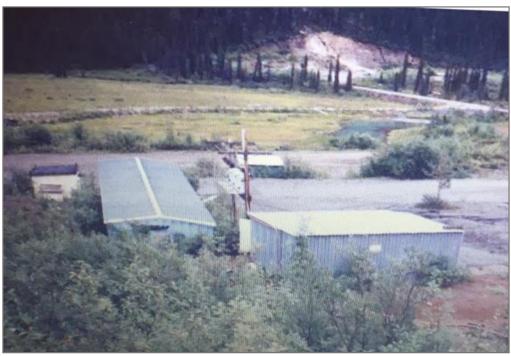
¹ - Canadian Council of Ministers of the Environment (CCME) Canada-Wide Standards (CWS) for Petroleum Hydrocarbons (PHC) in Soil (CCME 2008)

² - Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) - Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (CCME 1999)

³ - Northwest Territories Environmental Guideline for Contaminated Site Remediation (NWT CSR 2003)

⁴ - Preliminary Background Concentration

Borehole No: 17A36BH1


Project: Phase III Environmental Site Assessment

Project No: ENW.WENW03039-02 Task 002.2.2.6

Location: Cantung Mine

Ground Elev: 1118.656 m

			Tungsten, Northwest Territ	orie	s		UTM:	540791.63 E; 6870632.363 N;	Z 9	
o Depth (m)	Method	Soil Description		Sample Type	Sample Number	■Vapour readings (pp 50 100 150 2	mv) ■	Notes and Comments	Backfill	Elevation (m)
1		SAND - silty, trace to some gravel, fine to medium sand	and gravel		1-1	: : :		25% particles <75 μm (ie. smaller than sand particle)	· · · · · · · · · · · · · · · · · · ·	1118
3	Sonic	SILT - some sand, trace to some gravel, damp, brown, f COBBLES SAND - trace gravel, damp, fine to coarse sand, fine gravel			1-2 ▮			32% particles <75 µm (ie. smaller than sand particle)	• • • • • • • • • • • • • • • • • • •	1116
5		- gravelly END OF BOREHOLE (6.10 metres)			1-3 ■				0 0 0 0	1114
7		Note: Backfilled at completion								1112
- 9 - 10										1110-
11										1107
13 										1105
		<u> </u>	Contractor: Boart Longyea					letion Depth: 6.1 m		
	_	TETDA TECH	Drilling Rig Type: Track Mo	ount	ed		Start [Date: 2017 September 21		

Photo 1: Former fueling area to the right of image. Sewage treatment plant visible on left. Photo provided by NATC.

Photo 2: Location of former Town Site fueling area (circled). Photo provided by NATC. (August 13, 2013)

AREA 37

AREA 37: Airstrip

Area Description	
Location	Southeast of Tailings Pond 3 (TP3).
Topography	Relatively flat with a slight downward slope to northeast.
Surface Drainage	Northeast.
Background	A fuel cache made up of a geosynthetic-lined cell is present on northeast portion of Airstrip. The cache stores drums of fuel for aviation fueling. Airstrip material is understood to be composed of mixed waste rock and granular fill materials.

Environmental Concerns

Location in AEC	Potential Source(s)	Identified Contaminated Media	Parameters Assessed and Contaminant(s) of Concern (COCs; bold & underline)
Northeast portion of	Leak or		Soil: metals, petroleum hydrocarbons (PHCs),
AEC, area down-gradient	releases from	Soil	polycyclic aromatic hydrocarbons (PAHs), metals,
of fuel cash	fuel drums		glycols, volatile organic compounds (VOCs)

Historical Assessment Information

motorioui Assessini		
Previous Phase II Environmental Site Assessment Results (EBA 2008)	Not in scope for EBA 2008	
	Number of Rinse pH/EC analyses	25
Airstrip investigation program completed by	Number of ABA analyses	25
Phase Geochemistry	Number of multi-element ICP analyses	25
in 2011 (Phase 2014a).	Number of shake flask extraction analyses	6
	Number of field barrel analyses	-

Comments: The test pits were noted to consist predominantly of till, that was largely unoxidized except for an occasional layer that was slightly red-brown with trace oxidation. Mineralogy was dominated by quartz (~60%) with lesser muscovite (20 to 30%), clinochlore (3 to 4%) and minor to trace amounts of feldspars, carbonates and other accessory minerals. With the exception of 2 samples, both of which had sulphide contents less than 0.05%, all runway samples classify as non-acid generating (NAG).

Solids metal content were generally within the range of what is considered average for limestone hosted rocks types. Occasionally levels more than 10 times crustal abundances were seen for As, Ba, Cd, Mo, Ni, W and Zn, possibly indicating anomalous levels though not necessarily implying a potential for metal leaching. Soluble metals as determined by leach extraction tests were at low concentrations.

2017/2018 Environmental Site Assessment Details

Environmental Site Assessment Scope	·
Utility Locate SOP followed?	Yes
EM 31 Geophysics Complete?	No
Number of test pits advanced	2 (near fuel cache) (2017)
Number of boreholes advanced	0
Number of hand auger locations advanced	0
Number of soil samples collected for acid rock drainage/metal leaching	4 (2017)
Number of soil samples submitted for laboratory chemical analysis	3 (2017)
Number of soil samples submitted for acid rock drainage analysis	1 (2017)
Number of boreholes completed as groundwater monitoring wells	0
Number of historical groundwater monitoring wells	0
Number of groundwater samples collected	N/A
Number of sediment and surface soil samples collected	N/A

AREA 37: Airstrip

Geophysics Findings

N/A

Soil Investigation and Conditions

Maximum Depth of Investigation

3.0 mbgs (September 18, 2017)

General Stratigraphy

Description	Depth from (mbgs)	Depth to (mbgs)	Observations
Sand	0	0.2	Fill soil.
Layers of sand and gravel	0.2	3.0	Native soil.

Combustible Vapour Concentrations (CVCs)

Ranged from less than instrument detection limit to 4.8 ppm (in soil samples 17A37TP1-1 and 17A37TP2-4)

Groundwater Conditions

Depth to Groundwater	N/A
Free Product	N/A

2017/2018 Environmental Site Assessment Results Summary

- Figure A37-1 shows test pit locations and soil results.
- Table A37-1 summarizes soil lab results relative to guidelines.

General Site Observations

- Fuel cache liner appeared to be in good condition.
- No evidence of leak or releases from fuel cache.
- No obvious signs of environmental impacts.
- Airstrip appears to be primarily composed of fill material (reworked alluvium and till) with lesser amounts of waste rock. The exact proportions of material types is unknown.
- Minor and localized iron oxidation observed on select fragments of rock (possibly waste rock).
- There is a gravel pit adjacent to airstrip where building material for airstrip was likely sourced. A sample from this
 quarry (17A37-Quarry) was collected for reference.
- No additional work was done in this area in 2018.

Soil: Petroleum Hydrocarbons (PHC)

Laboratory results less than detection limits and guidelines.

Soil: Metals

- One soil sample analyzed for metals (17A37TP2 at 3.0 mbgs).
- Metals exceeding CCME CEQGs include arsenic, barium, cadmium, molybdenum, nickel, selenium, and zinc.
- All metals concentrations below preliminary background concentrations, except for barium and selenium.

Soil: Other PCOCs (PAHs, glycols, VOCs)

Laboratory results less than detection limits and guidelines.

Soil: Acid Rock Drainage

Sample 17A37-03: classified NAG (NPR=2.74), sulphide sulphur content 0.12 S%, sulphate sulphur <0.01 S%, inorganic carbon content 0.5 CO₂%, paste pH 7.8.

Soil: Routine (pH)

- Laboratory results within guidelines with exception of:
 - Sample 17A37TP2-4 at a depth of 3.0 mbgs pH value outside guideline range.

Groundwater: Petroleum Hydrocarbons,

N/A

Groundwater: Metals/Routine Parameters

N/A

AREA 37: Airstrip

Groundwater: Other PCOCs

N/A

Sediment: Petroleum Hydrocarbons

N/A

Sediment: Metals

N/A

Sediment: Other PCOCs

N/A

Surface Water: Petroleum Hydrocarbons

N/A

Surface Water: Metals/Nutrients

N/A

Surface Water: Other PCOCs

N/A

Grainsize Analysis

Sample 17A37TP2-4 collected from a depth of 3.0 mbgs indicated coarse grained soil type (92%>75um).

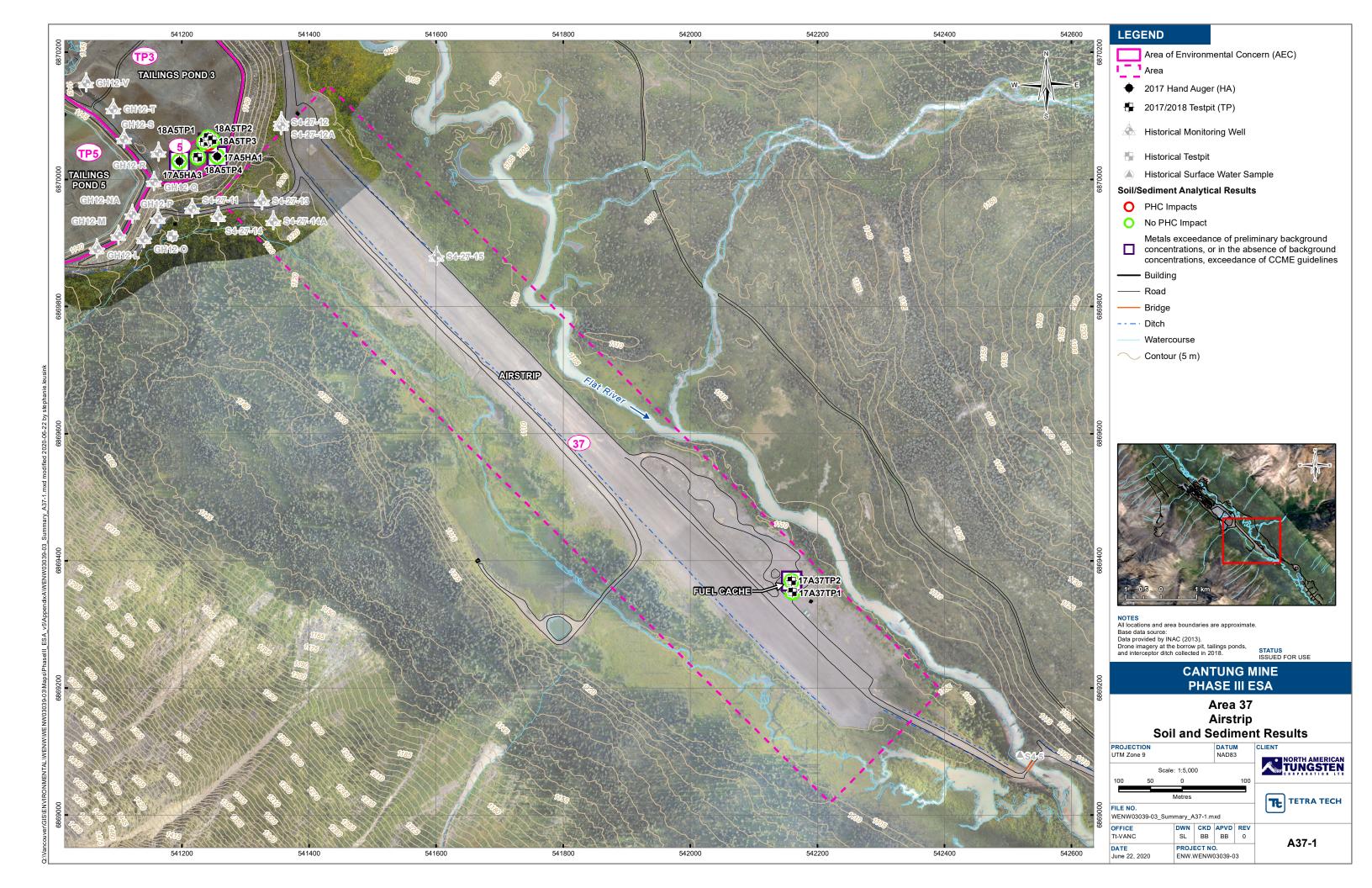
Discussion (Significance of the Results)

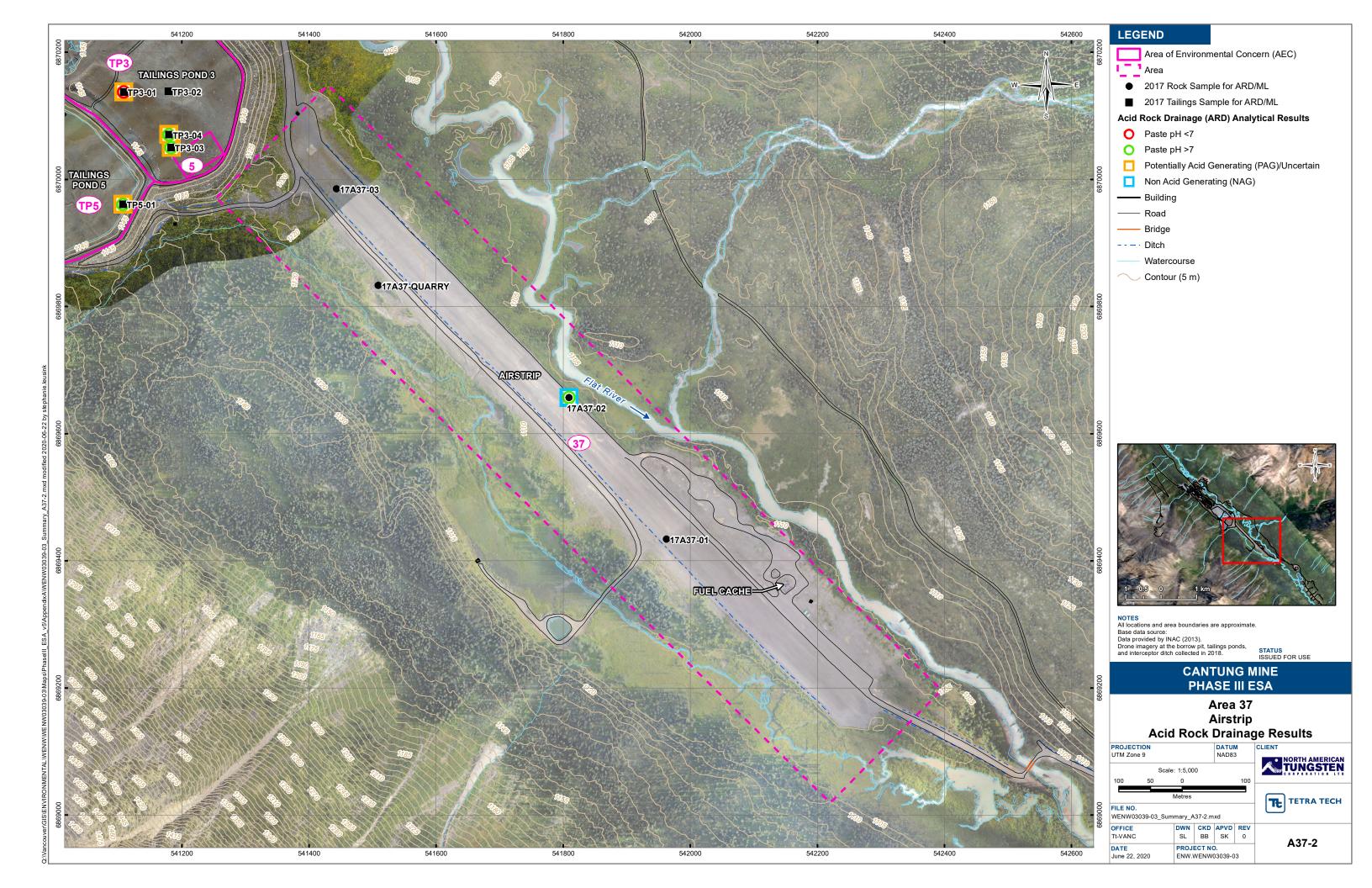
- Lab results for single sample collected for metals analysis is consistent with historical data. Historical data indicating occasional element concentrations greater than 10 times crustal abundances shown for arsenic, barium, cadmium, molybdenum, nickel, tungsten and zinc. These results possibly indicate anomalous levels though not necessarily implying a potential for metal-leaching. Soluble metals as determined by leach extraction tests were low.
- Observed metals concentrations similar to other areas of Cantung Mine site.
- Historical data reported concentrations of selenium of 1 mg/kg in 24 of 25 samples. This is equal to CCME CEQG value.

Conclusion:

- Current and historical results do not indicate risk of ARD/ML from airstrip materials. Airstrip materials expected to remain NAG with low potential for metal leaching.
- No evidence of environmental impacts from fuel drum cache.

Attachments


Figure A37-1 - Soil and Sediment Results


Table A37-1 - Soil Analytical Results

Test pit Logs

Photographs

Table	A37-1:	Soil	Analytical	Results

Parameter Para								
Parameter			Most Stringent of	Droliminany	17A3		17A37TP2	
Routine / Salminy	Parameter	Unit			17A37TP1-1	17A37TP1-2	17A37TP2-4	
More PH Units G-8	Farameter	Oiiii			0.25 m	1.0 m	3.0 m	
PH Units			Guidelines	Concentration	2017-09-18	2017-09-18	2017-09-19	
PH Units								
Modesture		nH I Inits	6-8	NG	_	_	8.18	
Metals	•				11.2	7.5	8.56	
Antimony mg/kg 20 NG								
Arsenic mg/kg 12 64 - 2 2 8 8 - 2 2 8 8 1 1 1 1 1 1 1 1		ma/ka	20	NG	_	_	3.8	
Barrum	•		12	64	-	-	25	
Beryllium	Barium		500	946	-	-	2890	
Cadmium	Beryllium		4	NG	-	-	0.5	
Caball	Cadmium		1.4	2.8	-	-	2.54	
Copper	Chromium	mg/kg	64	NG	-	-	18	
Lead mg/kg	Cobalt	mg/kg	40	NG	-	-	12.7	
Mercury	Copper	mg/kg	63	NG	-	-	37.8	
Melybdenum	Lead	mg/kg	70	NG	-	-	17.9	
Nickel	Mercury	mg/kg	6.6	NG	-	-	0.07	
Selenium	Molybdenum	mg/kg	5	10	-	-	5.4	
Silver	Nickel	mg/kg	45	72	-	-	65	
Thallium mg/kg 1 1 NG	Selenium		1	1.7	-	-	2	
Thallium mg/kg 1	Silver		20	NG	-	-	<0.5	
Uranium	Thallium		1	NG	-	-	0.3	
Vanadium	Tin		5	NG	-	-	<0.2	
Particle Size	Uranium	mg/kg	23	NG	-	-	1.9	
Particle Size	Vanadium	mg/kg	130	160	-	-	66	
>75 jm % NG NG - 9. Grain Size N/A NG NG Coa Petroleum Hydrocarbons Benzene mg/kg 0.03 NG <0.005 <0.005 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Zinc	mg/kg	200	462	-	-	363	
Grain Size N/A NG NG Coa Petroleum Hydrocarbons Benzene mg/kg 0.03 NG <0.005 <0.005 <0.005 <0.05 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	Particle Size							
Petroleum Hydrocarbons	>75 µm	%	NG	NG	-	-	92	
Benzene mg/kg 0.03 NG <0.005 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.00 <0.01 <0.01 <0.01 <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <th< td=""><td>Grain Size</td><td>N/A</td><td>NG</td><td>NG</td><td></td><td></td><td>Coarse</td></th<>	Grain Size	N/A	NG	NG			Coarse	
Toluene mg/kg 0.1 NG <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <	Petroleum Hydrocarbons							
Ethylbenzene	Benzene	mg/kg	0.03	NG	<0.005	<0.005	<0.005	
Xylene (m & p)	Toluene	mg/kg	0.1	NG	<0.05	<0.05	<0.05	
Xylene (m) mg/kg NG NG < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	Ethylbenzene	mg/kg	0.082	NG	<0.01	<0.01	<0.01	
Xylene (o) mg/kg NG NG < 0.02 < 0.02 < 0.02 Xylenes Total mg/kg NG NG < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	Xylenes (m & p)	mg/kg	NG	NG	-	-	-	
Xylenes Total mg/kg 0.1 NG < 0.05 < 0.05 < 0.05 Volatile Hydrocarbons (VH6-10) mg/kg NG NG - - - F1 (C6-C10) mg/kg 30 NG < 10	Xylene (m)	mg/kg	NG	NG	<0.02	<0.02	<0.02	
Volatile Hydrocarbons (VH6-10) mg/kg NG NG - - - - - - - - -	Xylene (o)	mg/kg	NG	NG	<0.02	<0.02	<0.02	
F1 (C6-C10)	Xylenes Total	mg/kg	0.1	NG	<0.05	<0.05	<0.05	
VPH C6-C10 mg/kg	Volatile Hydrocarbons (VH6-10)	mg/kg	NG	NG	-	-	-	
F1 (C8-C10 / BTEX CORRECTED)	F1 (C6-C10)	mg/kg	30	NG	<10	<10	<10	
F2 (C10-C16) mg/kg 150 NG <20 <20 <20 <2	VPH C6-C10	mg/kg	NG	NG	-	-	-	
F3 (C16-C34) mg/kg 300 NG <20 <20 <2 <2	F1 (C6-C10 / BTEX CORRECTED)	mg/kg	30	NG	<10	<10	<10	
F4: (C34-C50) mg/kg 2800 NG <20	F2 (C10-C16)	mg/kg	150	NG	<20	<20	<20	
VPHs	F3 (C16-C34)	mg/kg	300	NG	<20	<20	<20	
Diethylene glycol mg/kg NG NG - - - - - - - - -	F4: (C34-C50)	mg/kg	2800	NG	<20	<20	<20	
Diethylene glycol	VPHs	mg/kg	NG	NG	-	-	-	
Ethylene glycol mg/kg 960 NG - - <1 Propylene glycol mg/kg NG NG - - <1	Glycols							
Propylene glycol mg/kg NG NG - - <1	Diethylene glycol	mg/kg	NG	NG	-	-	<10	
Propylene glycol mg/kg NG NG - - <1 Tetraethylene Glycol mg/kg NG NG - - <1	Ethylene glycol	mg/kg	960	NG			<10	
Triethylene Glycol mg/kg NG NG - - <1 Polycyclic Aromatic Hydrocarbons (PAHs) IACR (CCME) mg/kg 1 NG -		mg/kg	NG		-	-	<10	
Polycyclic Aromatic Hydrocarbons (PAHs) IACR (CCME) mg/kg 1	Tetraethylene Glycol	mg/kg	NG	NG			<10	
ACR (CCME)	Triethylene Glycol	mg/kg	NG	NG	-	-	<10	
B(a)P Total Potency Equivalent mg/kg 0.6 NG - - <0. 2-methylnaphthalene mg/kg NG NG - - <0.	Polycyclic Aromatic Hydrocarbons (PAHs)							
2-methylnaphthalene mg/kg NG NG - - <0.0 Acenaphthene mg/kg NG NG - - <0.0		mg/kg			-	-	<0.6	
Acenaphthene mg/kg NG NG - - <0.0 Acenaphthylene mg/kg NG NG - - <0.0	B(a)P Total Potency Equivalent	mg/kg	0.6	NG	-	-	<0.05	
Acenaphthylene mg/kg NG NG - - <0.0 Anthracene mg/kg 2.5 NG - - <0.0	2-methylnaphthalene	mg/kg			-	-	<0.005	
Anthracene mg/kg 2.5 NG - - <0.0 Benz(a)anthracene mg/kg 0.1 NG - - <0.0	Acenaphthene		NG	NG	-	-	<0.005	
Benz(a)anthracene mg/kg 0.1 NG - - <0. Benzo(a) pyrene mg/kg 0.1 NG - - <0.	Acenaphthylene	mg/kg	NG	NG			<0.005	
Benzo(a) pyrene mg/kg 0.1 NG - - <0. Benzo(b)fluoranthene mg/kg 0.1 NG - - <0.	Anthracene	mg/kg	2.5	NG	-	-	<0.004	
Benzo(b)fluoranthene mg/kg 0.1 NG - - <0. Benzo(b+j)fluoranthene mg/kg NG NG - - <0.	Benz(a)anthracene	mg/kg	0.1	NG	-	-	<0.03	
Benzo(b+j)fluoranthene mg/kg NG NG - -	Benzo(a) pyrene	mg/kg	0.1	NG	-	-	<0.03	
Benzo(e)pyrene mg/kg NG NG - - - Benzo(g,h,i)perylene mg/kg NG NG - </td <td></td> <td>mg/kg</td> <td></td> <td></td> <td>-</td> <td>-</td> <td><0.05</td>		mg/kg			-	-	<0.05	
Benzo(g,h,i)perylene mg/kg NG - -	Benzo(b+j)fluoranthene	mg/kg	NG	NG	-	-	<0.05	
Benzo(k)fluoranthene mg/kg 0.1 NG - - <0. Chrysene mg/kg NG NG - - <0.		mg/kg	NG		-	-	-	
Chrysene mg/kg NG NG - -		mg/kg			-	-	<0.05	
Dibenz(a,h)anthracene mg/kg 0.1 NG - -	Benzo(k)fluoranthene		0.1	NG	-	-	<0.05	
Dibenz(a,h)anthracene mg/kg 0.1 NG - -	Chrysene		NG	NG	-	-	<0.05	
Fluoranthene mg/kg 50 NG - - <0. Fluorene mg/kg NG NG - - <0.	Dibenz(a,h)anthracene		0.1	NG	-	-	<0.005	
Fluorene mg/kg NG NG - -	Fluoranthene			NG	-	-	<0.01	
Indeno(1,2,3-c,d)pyrene mg/kg 0.1 NG - -	Fluorene				-	-	<0.02	
Naphthalene mg/kg 0.013 NG - - <0.0 Phenanthrene mg/kg 0.046 NG - - <0.					-	-	<0.02	
Phenanthrene mg/kg 0.046 NG - - <0. Pyrene mg/kg 0.1 NG - - <0.					-	-	<0.005	
Pyrene mg/kg 0.1 NG <0.	•						<0.02	
					-	-	<0.01	
Delizoraliuoraninene UU/U INC3 INC3 - - <[1]	Benzo(j)fluoranthene	ug/g	NG	NG	-	-	<0.05	

Table 1	A 07 4	0 - 11	A I41 I	D 14 -
i abie	A3/-1:	SOIL	Analytical	ı Kesuits

		Most Stringent of	Preliminary		17A37TP2		
Parameter	Unit	Referenced	Background	17A37TP1-1	17A37TP1-2	17A37TP2-4	
Farameter	Offic	Guidelines ^{1,2,3}	Concentration ⁴	0.25 m	25 m 1.0 m -09-18 2017-09-18 -	3.0 m	
		Guidelines	Concentiation	2017-09-18	2017-09-18	2017-09-19	
Volatile Organic Compounds (VOCs)							
Carbon	%	NG	NG	_	_	0.28	
1-Methylnaphthalene	mg/kg	NG	NG	_	-	<0.005	
Acetone	mg/kg	NG	NG	_	-	<0.5	
Bromodichloromethane	mg/kg	NG	NG	_	-	<0.05	
Bromoform	mg/kg	NG	NG	_	-	<0.05	
Bromomethane	mg/kg	NG	NG	_	-	<0.05	
2-Butanone	mg/kg	NG	NG	_	-	<0.5	
Carbon tetrachloride	mg/kg	0.1	NG	-	-	<0.02	
Chlorobenzene	mg/kg	0.1	NG	-	-	<0.05	
Chloroethane	mg/kg	NG	NG	_	-	<0.05	
Chloroform	mg/kg	0.1	NG	_	-	<0.05	
Chloromethane	mg/kg	NG	NG	_	-	<0.05	
Dibromochloromethane	mg/kg	NG	NG	-	-	<0.05	
1.2-Dibromoethane	mg/kg	NG	NG	-	-	<0.05	
1.2-Dichlorobenzene	mg/kg	0.1	NG	_	-	<0.05	
1.3-Dichlorobenzene	mg/kg	0.1	NG	-	-	<0.05	
1.4-Dichlorobenzene	mg/kg	0.1	NG	_	_	<0.05	
1,1-Dichloroethane	mg/kg	0.1	NG	_	_	<0.05	
1.2-Dichloroethane	mg/kg	0.1	NG	_	_	<0.05	
1,1-Dichloroethene	mg/kg	0.1	NG	_	_	<0.05	
1,2-Dichloroethene (cis)	mg/kg	0.1	NG	-	-	<0.05	
1,2-Dichloroethene (trans)	mg/kg	0.1	NG	_	_	<0.05	
1,2-Dichloropropane	mg/kg	0.1	NG	_		<0.05	
1,3-Dichloropropene [cis]	mg/kg	NG	NG	_	_	<0.05	
1,3-Dichloropropene [trans]	mg/kg	NG	NG	_		<0.05	
Methyl t-Butyl Ether (MTBE)	mg/kg	NG	NG	_	_	<0.1	
Methylene Chloride	mg/kg	0.1	NG	_	_	<0.05	
4-Methyl-2-pentanone	mg/kg	NG	NG	_		<0.5	
Styrene	mg/kg	0.1	NG			<0.05	
1,1,1,2-Tetrachloroethane	mg/kg	NG	NG	_	_	<0.05	
1.1.2.2-Tetrachloroethane	mg/kg	0.1	NG			<0.05	
Tetrachloroethene	mg/kg	0.1	NG			<0.05	
1.2.4-Trichlorobenzene	mg/kg	0.05	NG		-	<0.05	
1,1,1-Trichloroethane	mg/kg	0.03	NG			<0.05	
1,1,2-Trichloroethane	mg/kg	0.1	NG	-		<0.05	
Trichloroethene	mg/kg	0.1	NG	-	-	<0.03	
Trichlorofluoromethane		NG	NG NG	-	-	<0.01	
	mg/kg	NG NG	NG NG				
Vinyl chloride	mg/kg	NG	NG	9740305	- 9740242	<0.05	
Sample Co	<u>ae</u>			8740305	8740313	8751548	

Northwest removes Environmental aquenite for Contaminated Site Reine
 Preliminary Background Concentration
 Italic - Laboratory detection limit is greater one or more referenced guidelines

NG - No guideline

Shaded - Exceeds most stringent CCME CEQG or CWS PHC land-use guideline value

Bold - Exceeds most stringent NWT CSR land-use guideline value

Bold and Shaded - Exceeds most stringent CCME CEQC or CWS PHC land-use guideline value, and exceeds most stringent NWT CSR land-use

Red - Exceeds Preliminary Background Concentration

N/A - Not applicable

Blank - Not analyzed

^{1 -} Canadian Council of Ministers of the Environment (CCME) Canada-Wide Standards (CWS) for Petroleum Hydrocarbons (PHC) in Soil (CCME

² - Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) - Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (CCME 1999)

³ - Northwest Territories Environmental Guideline for Contaminated Site Remediation (NWT CSR 2003)

Testpit No: 17A37TP1

Project: Phase III Environmental Site Assessment Project No: ENW.WENW03039-02 Task 002.2.2.6

Location: Cantung Mine Ground Elev: 1107.642 m

Tungsten, Northwest Territories LITM: 542160 651 F: 6869351 044 N: 7.9

			Fungsten, Northwest Territor	ries			UTM:	542160.651 E; 6869351.044 N	; Z 9	
o Depth (m)	Method		Sample Type	Campie Type	Sample Number	■ Vapour readings (pp 50 100 150 2	mv) ■	Notes and Comments	Backfill	Elevation (m)
		SAND (FILL) - gravelly, some silt, trace cobbles, damp, de	ense, brown, trace oxides	1	-1					-
		- some cobbles, reddish brown		'	1-1					-
-		SAND - gravelly, trace silt, damp, dense, coarse sand								-
•		- trace cobbles, trace boulders								1107— -
1				1	-2	-				-
		GRAVEL - sandy, trace to some cobbles, damp, dense, br	own							-
	ted									-
-	Excavated									1106-
•	Ш									-
- 2				1	l-3 ■					-
										_
										-
-										- 1105—
										-
- 3		END OF TESTPIT (3.0 metres)		1	-4		<u>:</u>			-
		Note: Backfilled at completion								-
										-
-										- 1104—
										-
- 4										-
										-
										-
										- 1103—
										-
5			Contractor: NATC				Comp	letion Depth: 3 m		-
		_	Drilling Rig Type: Rubber Tire	e ba	ckh	oe		Date: 2017 September 18		

Testpit No: 17A37TP2

Project: Phase III Environmental Site Assessment

Project No: ENW.WENW03039-02 Task 002.2.2.6

Location: Cantung Mine

Ground Elev: 1107.458 m

Tungsten, Northwest Territories

UTM: 542159.661 E; 6869368.356 N; Z 9

	_	Tungsten, North	west remitor	nes		O TW.	542159.661 E; 6869368.356 N	, Z 9	
(m) Method	Meniod	Soil Description	Sample Type	Sample Type	Sample Number	■ Vapour readings (ppmv) ■ 50 100 150 200	Notes and Comments	Backfill	Elevation
		SILT (FILL) - sandy, some gravel, trace rootlets, damp, firm, brown, (100 mm SAND - gravelly, some silt, some cobbles, damp, dense, reddish brown, (300 thick) GRAVEL - some sand, some cobbles, damp to moist, loose, brown	n thick) 0 mm		2-1				1107
1 Excavated	Excavated	- cobbly			2-2				1106
2		SAND (GLACIOFLUVIAL) - some gravel, some cobbles, trace silt, damp to r loose, brown, coarse sand	moist,		2-3				110
3		END OF TESTPIT (3.0 metres) Note: Backfilled at completion			2-4		8% particles <75 μm (ie. smaller than sand particle)		110-
4									
									110
5	_	Contractor: NAT		_			letion Depth: 3 m		_

Photo 1: Airstrip. Looking northwest toward mine site. (October 1, 2017)

Photo 2: Typical mixed material in airstrip including crushed waste rock and fill. Minor oxidation alteration and weathering of select fragments is noted. (October 1, 2017)

Photo 3: Sample 17A37-01 on edge of airstrip. (October 1, 2017)

Photo 4: Airstrip fueling area visible on the right. Photo provided by NATC. (August 13, 2013)

AREA 45

AREA 45: Former PCB Storage Area - Tailings Pond 4

Area Description				
Location	Beneath Tailings Pond 4.			
Topography	Generally flat.			
Surface Drainage	Variable based on Tailings F	Pond surface grades.		
Background	It was reported that shed wit was located in this area prio drawings and photographs.			~
Historical Assessm	ent Information			
	Number of test pits			0
Phase II	Number of surface soil samp	oles		0
Environmental Site	Number of soil samples ana	lyzed		0
Assessment (EBA 2008)	mpacts	0		
,	·	0		
Comments: Not previo	ously assessed	·		
2017 Environmenta	I Site Assessment Details			
Environmental Site	Assessment Scope			
Utility Locate SOP follo	•			Yes
EM 31 Geophysics Cor	mpleted?			No
Number of test pits adv	vanced			0
Number of boreholes a	dvanced			1
Number of hand auger	locations advanced			0
Number of soil samples	s submitted for laboratory chem	ical analysis		1
Number of boreholes of	ompleted as groundwater moni	toring wells		0
Number of historical gr	oundwater monitoring wells			0
Number of groundwate	r samples collected			N/A
Number of sediment ar	nd surface soil samples collecte	ed		N/A
Geophysics Findings				
N/A				
Soil Investigation and	I Conditions			
Maximum Depth of Investigation	21.60 mbgs (September 29,	2017)		
General Stratigraphy				
Description	Depth from (mbgs)	Depth to (mbgs)	0	bservations
Sand	0	20.7	Tailings	
Sand	20.7	21.3	Native soil	
Bedrock	21.3	21.6	-	
Combustible Vapour	Concentrations (CVC)			
Less than instrument d	etection limit.			

AREA 45: Former PCB Storage Area – Tailings Pond 4

Groundwater Conditio	ns
Depth to Groundwater	N/A
Free Product	N/A

2017 Environmental Site Assessment Results Summary

- Figure A45-1 shows borehole locations.
- Table A45-1 summarizes soil chemical results relative to guidelines.

General Site Observations

- No PCB- containing equipment or other chemical storage was observed at AEC.
- No obvious signs of PCB impacts were observed.

Soil: Petroleum Hydrocarbons (PHCs)

N/A

Soil: Metals

- Sample from native material below Tailings Pond 4 exceeded CCME CEQGs for arsenic, barium, cadmium, molybdenum, selenium, and zinc.
- Barium concentrations also exceeded preliminary background concentration.
- Copper concentration below CCME CEQG.

Soil: Other PCOCs (PCBs)

Laboratory results less than detection limits and guidelines.

Soil: Routine (pH)

Laboratory results outside guidelines.
 Groundwater: Petroleum Hydrocarbons

N/A

Groundwater: Metals/Routine Parameters

N/A

Groundwater: Other PCOCs

N/A

Sediment: Petroleum Hydrocarbons

N/A

Sediment: Metals

N/A

Sediment: Other PCOCs

N/A

Surface Water: Petroleum Hydrocarbons

N/A

Surface Water: Metals/Nutrients

N/A

Surface Water: Other PCOCs

N/A

Grainsize Analysis

N/A

Potential Environmental Concerns										
Location in AEC	Potential Source(s)	ldentified Contaminated Media	Parameters Assessed and Contaminant(s) of Concern (COCs; bold & underline)							
Centre of Tailings Pond 4	Leaks or releases of PCBs from PCB-containing equipment	Soil	Soil: Metals, PCBs							

AREA 45: Former PCB Storage Area - Tailings Pond 4

Discussion (Significance of Results)

Soils:

- Based on assessment results, there is no evidence of environmental impacts associated with historical PCB storage.
- Elevated metals concentrations above CCME CEQGs and proposed background are similar to other areas of Cantung
 Mine site and unlikely to be related to Former PCB Storage Area.

Attachments

Figure A45-1 – Soil and Sediment Results

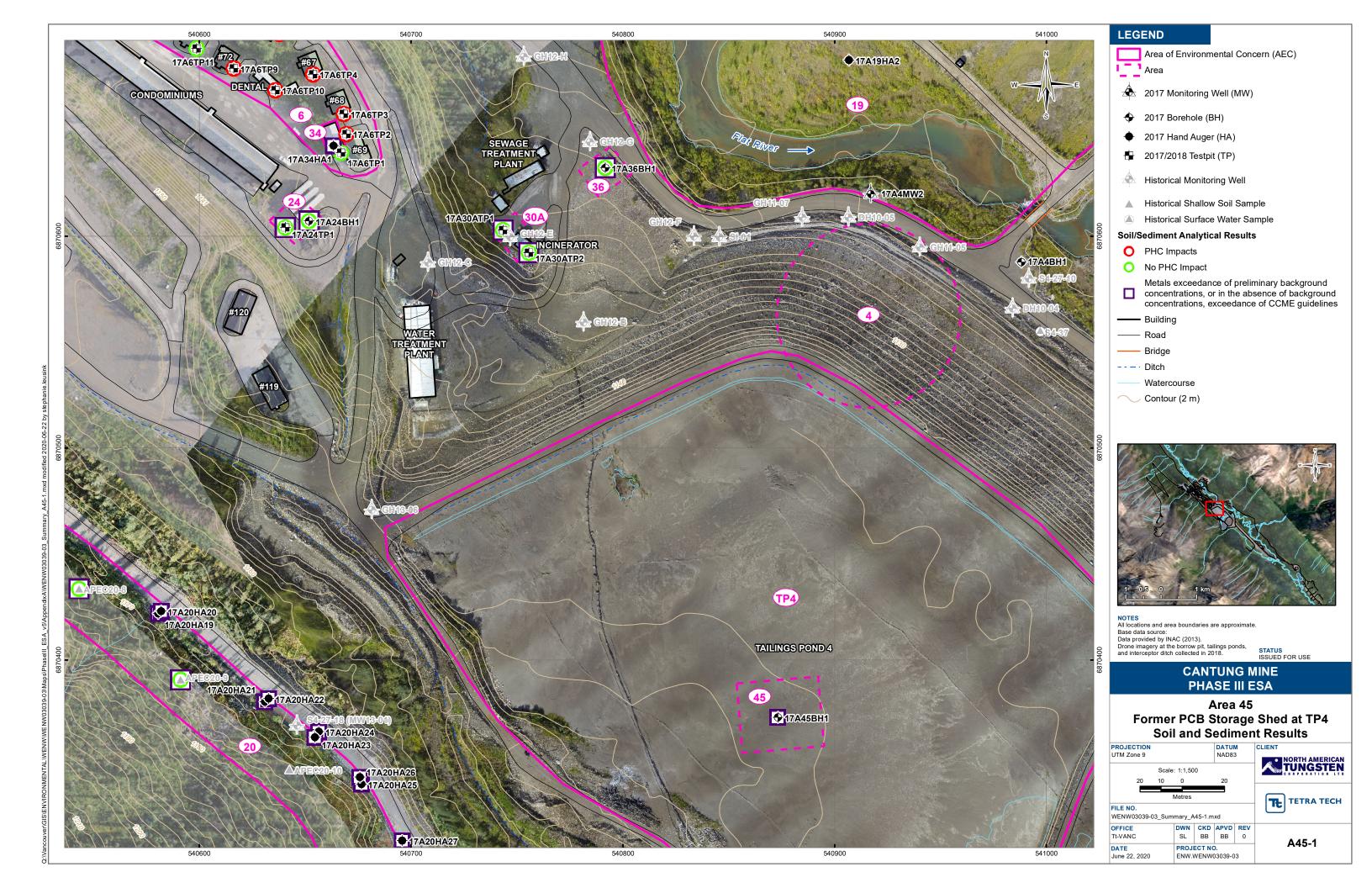

Figure A45-2 – Groundwater Contours

Table A45-1 - Soil Analytical Results

Borehole Logs

Photographs

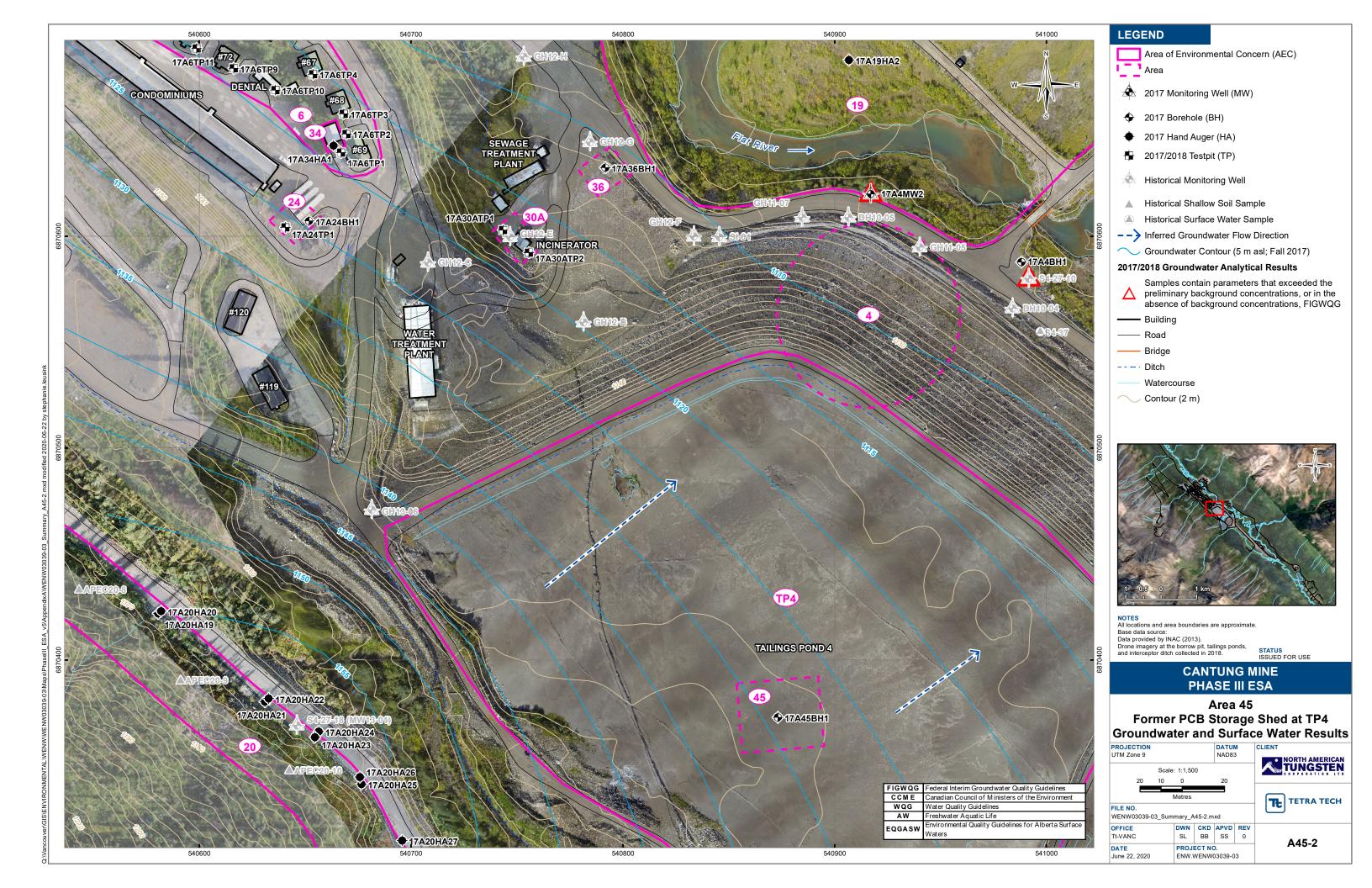


Table A45-1: Soil Analytical Results

rable A43-1. Soli Allalytical Results				AREA 45	
				17A45BH1	
-		Most Stringent of	Preliminary	17A45BH1-1	
Parameter	Unit		6-8 NG NG NG 12 64 NG 1.4 2.8 64 NG		
		Guidelines	Concentration	2017-09-29	
Routine / Salinity					
pH	pH Units	6-8	NG	8.32	
Moisture	%	NG	NG	-	
Metals					
Antimony	mg/kg	20	NG	3.2	
Arsenic	mg/kg	12	64	14.4	
Barium	mg/kg	500	946	1840	
Beryllium	mg/kg	4	NG	0.4	
Cadmium	mg/kg	1.4	2.8	2.03	
Chromium	mg/kg	64	NG	19	
Cobalt	mg/kg	40	NG	9.5	
Copper	mg/kg	63	NG	48.2	
Lead	mg/kg	70	NG	11.4	
Mercury	mg/kg	6.6	NG	0.21	
Molybdenum	mg/kg	5	10	6.9	
Nickel	mg/kg	45	72	42.2	
Selenium	mg/kg	1	1.7	1.2	
Silver	mg/kg	20	NG	<0.5	
Thallium	mg/kg	1	NG	0.6	
Tin	mg/kg	5	NG	0.3	
Uranium	mg/kg	23	NG	1.6	
Vanadium	mg/kg	130	160	64	
Zinc	mg/kg	200	462	215	
Polychlorinated Biphenyls (PCBs)					
Aroclor 1242	mg/kg	NG	NG	<0.05	
Aroclor 1254	mg/kg	NG	NG	<0.05	
Aroclor 1260	mg/kg	NG	NG	<0.05	
Aroclor 1262	mg/kg	NG	NG	-	
PCBs (Sum of total)	mg/kg	0.5	NG	<0.05	
Sample Coo	le			8799462	
Lab Report Number	er			17V269663	

Notes:

<u>Italic</u> - Laboratory detection limit is greater one or more referenced guidelines

NG - No guideline

Shaded - Exceeds most stringent CCME CEQG or CWS PHC land-use guideline value

Bold - Exceeds most stringent NWT CSR land-use guideline value

Bold and Shaded - Exceeds most stringent CCME CEQC or CWS PHC land-use guideline value, and exceeds most stringent NWT CSR land-use guideline value

Red - Exceeds Preliminary Background Concentration

N/A - Not applicable

Blank - Not analyzed

¹ - Canadian Council of Ministers of the Environment (CCME) Canada-Wide Standards (CWS) for Petroleum Hydrocarbons (PHC) in Soil (CCME 2008)

² - Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) - Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (CCME 1999)

 $^{^{3}}$ - Northwest Territories Environmental Guideline for Contaminated Site Remediation (NWT CSR 2003)

⁴ - Preliminary Background Concentration

Borehole No: 17A45BH1

Project: Phase III Environmental Site Assessment Project No: ENW.WENW03039-02 Task 002.2.2.6

Location: Cantung Mine Ground Elev: 1144.61 m

Tungsten, Northwest Territories UTM: 540873.253 E; 6870372.935 N; Z 9

			Tungsten, Northwest Territo	rie	S T		UIM:	5408/3.253 E; 68/03/2.935 N	; Z 9	
	Method	Soil Description	Connect T. Long	sample Type	Sample Number	■Vapour readings (pp 50 100 150 2	omv) ■	Notes and Comments	Backfill	Elevation (m)
0		SAND (TAILINGS) - trace silt, damp, loose, grey		+		50 TOU 150 2	: 00			
		, , , , , , , , , , , , , , , , , , , ,								1144-
. 1										1144
1							:			
- 1							:			1143-
2										
							:			1142 ⁻
3										
										1141
4										
										1140
5							. <u> </u>			
										1139
6										
										1138
7										
8	Sonic									440-
۵	Ñ									1137
										1136
9										
							:			113
10										1 100
							:			
										1134
11										
										1133
12										
12										
.										1132
13										
							:			1131
14										
							:			1400
15							:			1130
			Contractor: Boart Longyear				Comp	letion Depth: 21.6 m		
		1					<u>.</u>			

Borehole No: 17A45BH1

Project: Phase III Environmental Site Assessment

Project No: ENW.WENW03039-02 Task 002.2.2.6

Location: Cantung Mine

Ground Elev: 1144.61 m

Tungsten, Northwest Territories

UTM: 540873.253 E; 6870372.935 N; Z 9

Depth (m)	Method	Soil Description	Sample Type	Sample Number	■ Vapour readings (ppmv) 50 100 150 200	Notes and Comments	Backfill	Elevation (m)
15 	Sonic	SAND - gravelly, some silt, damp, brown, fine to medium sand BEDROCK - weathered, pulverized rock, granitic diorite END OF BOREHOLE (21.60 metres) Note: Backfilled at completion		1-1				1128 1127 1126 1127 1126 1127 11
30		Contractor: Board	t Longyear	1	Co	mpletion Depth: 21.6 m		

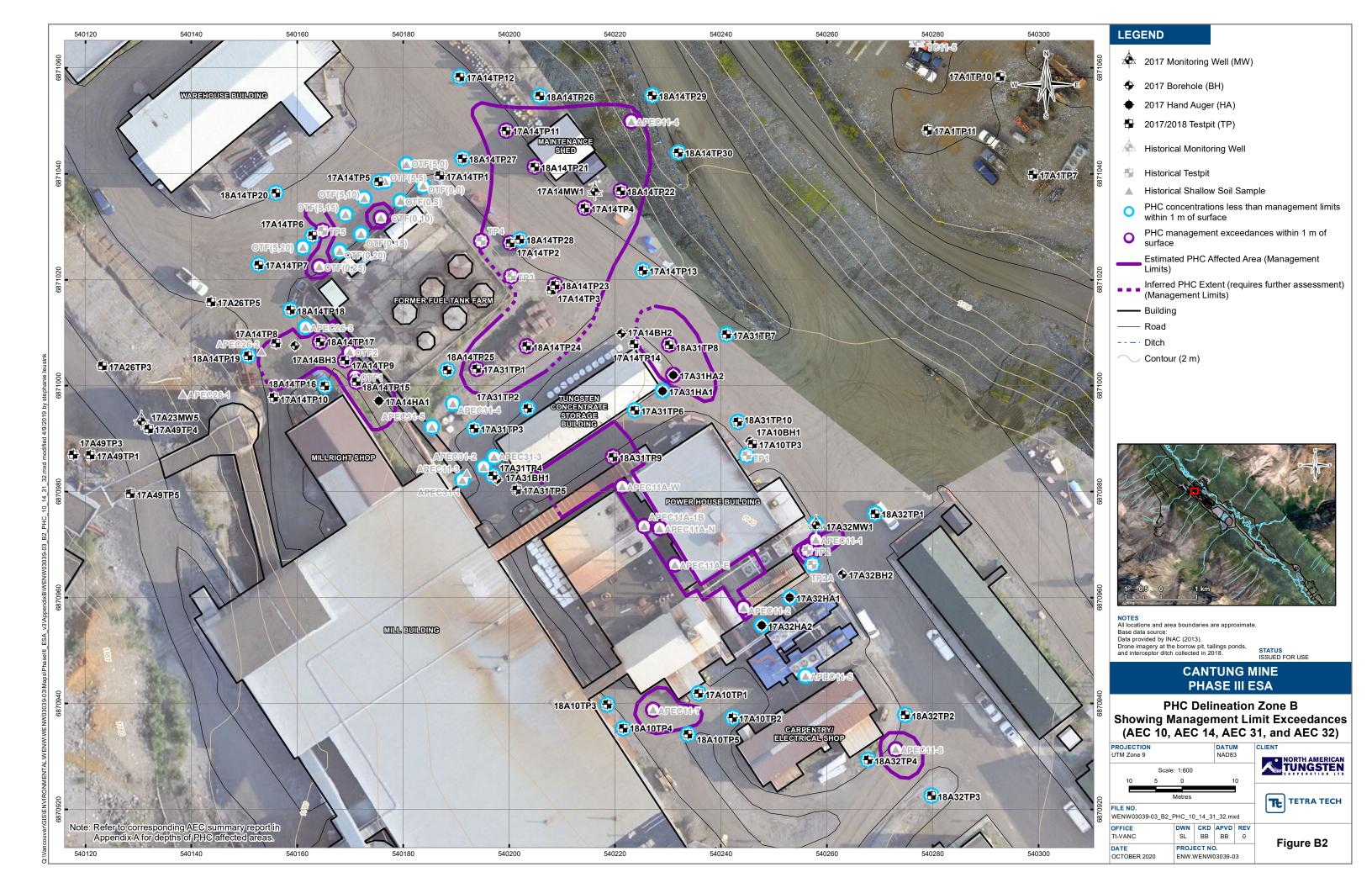
Photo 1: Panorama of TP4. Former PCB storage area. (September 9, 2017)

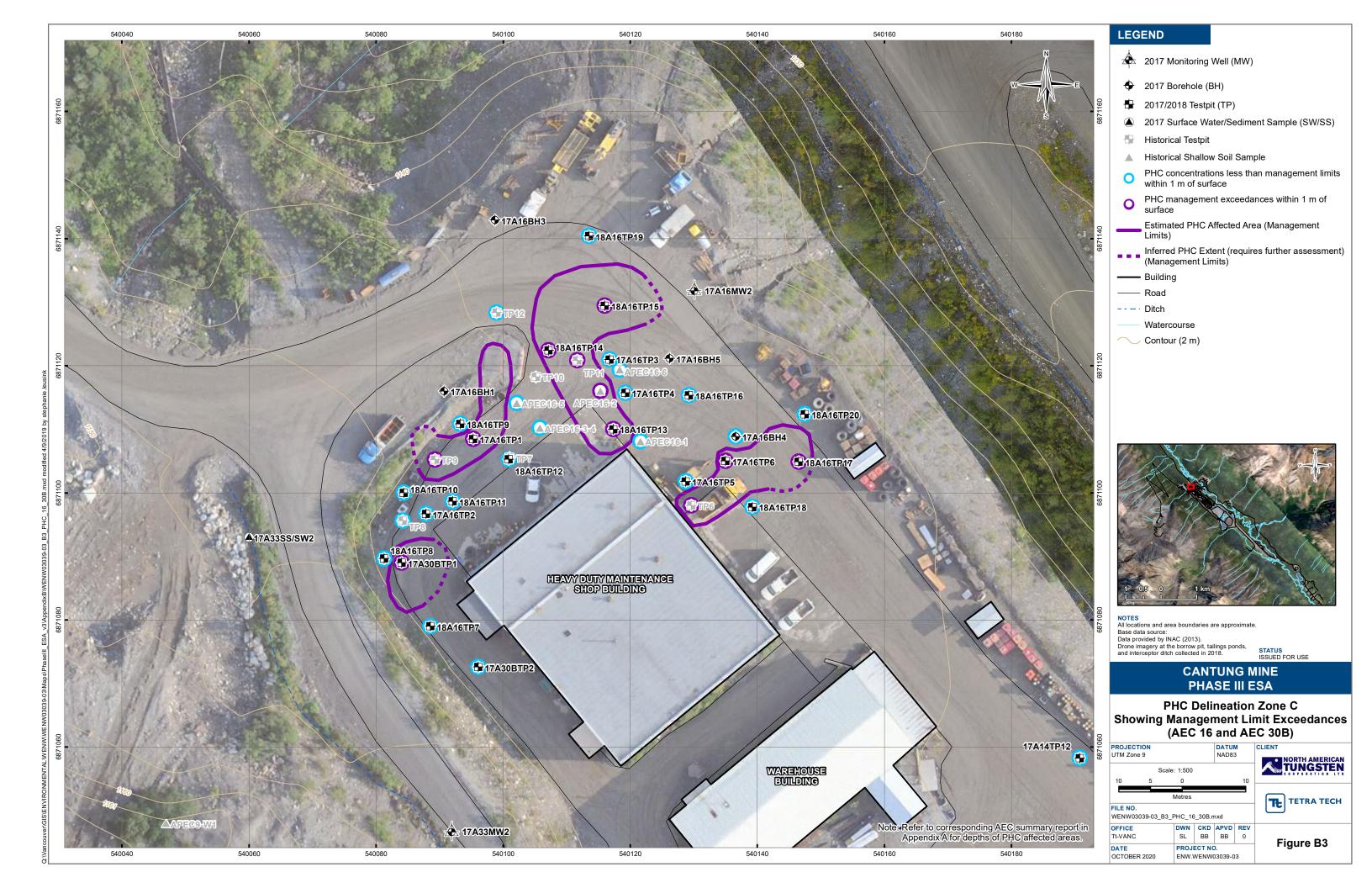
Photo 2: Facing west towards TP4. Circled area indicated approximate location of former PCB storage area. Photo provided by NATC (May 29, 2014).

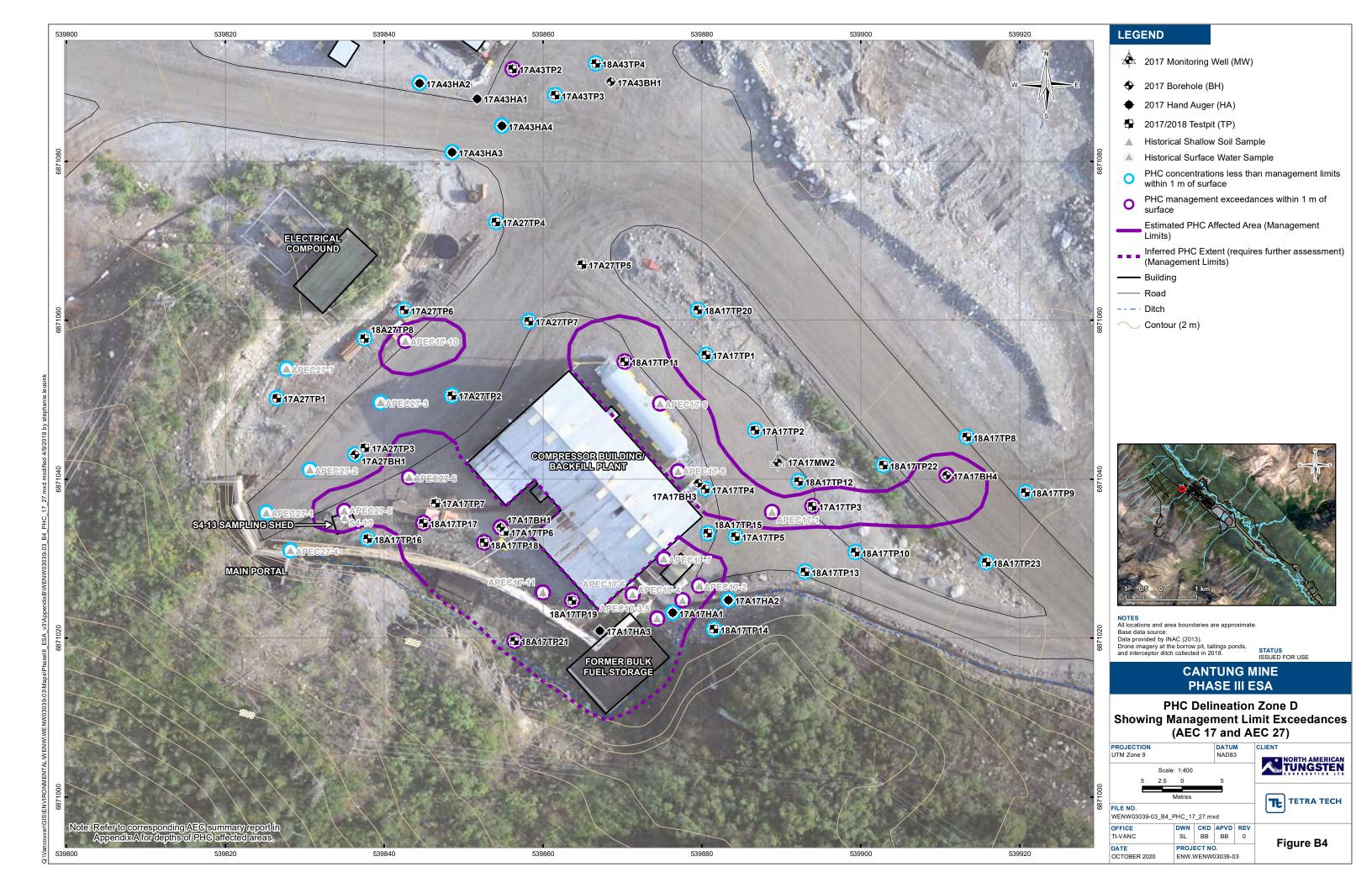
APPENDIX B

SUMMARY OF PETROLEUM HYDROCARBON CONTAMINATED AREAS

B1.0 PETROLEUM HYDROCARBON CONTAMINATED ZONES


Nine PHC-contaminated zones with F2 to F4 concentrations greater than the management limits were delineated (Areas A through I) and are shown on Figures B1 to B9. Methods and assumptions used in these delineations are presented below. Separate zone letters were used rather than AEC numbers, since many contaminated areas spanned AEC boundaries. A summary of delineated areas, calculated volumes, and estimated percent delineation completed is presented in Table B-1.


B1.1 Petroleum Hydrocarbon Contaminated Extents Methods


- PHC affected areas are comprised of locations where soil samples contain one or more of PHC fractions F2 to F4 concentrations greater than the management limits.
- The horizontal extents of PHC impacts were estimated by:
 - Extrapolating a limit between assessment locations with PHC concentrations greater than the management limits and assessment locations with PHC concentrations less than the management limits; or
 - Determining an inferred limit based on historical land use, typical behaviour of PHC impacts in coarse grained soils, and professional judgement.
- The vertical extents of impacts were estimated by:
 - Applying the maximum depth interval of impacts if delineation was achieved at depths less than 1 m in an affected area; or
 - Applied a depth of 1 m, if impacts were not delineated or management limit exceedances extended beyond 1 m, because PHC contamination in soil is only a potential concern if the contamination occurs near surface (to depth of 1 m) based on the results of the current risk assessment.
- Unless otherwise shown in Figures B1 to B9, we have assumed that PHC impacts do not extend beneath building footprints.
- The volume of PHC affected soil was calculated by multiplying the PHC affected area shown in Figures B1 to B9 by the vertical extents of impacts estimated at the coinciding affected area.
- Percent delineated was calculated by the ratio of vertical and horizontal extents confirmed out of five potential limits (i.e., four sides and the base).

				CCME Mana	gement Limits	
PHC Delineation Zone	Figure Reference Number	PHC Affected Area Location Description	Estimated Extent Delineated (%)	Estimated Depth of Impact (m)	Estimated Area of Impact (m²)	Estimated Volume of PI- Contaminated (m³)
Α	Figure B1	Affected area northeast of stockpile (17A5HA2)	80	0.5	121	
					Subtotal	
		Affected area southeast of the Power House (APEC11-1, TP2)	100	1.0	30	
		Affected area south of Power House (APEC11-7)	80	0.5	73	
		Affected area south of Carpenters Shop (APEC11-8)	80	0.5	54	
		Affected area east of Tungsten Concentrate Storage building (17A31HA2, 18A31TP8)	80	1.0	164	16
В	Figure B2	Affected area south of Tungsten Concentrate Storage building (18A31TP9, APEC11A-W, APEC11A-1B, APEC11A-N, APEC11A-E and APEC11-2)	80	1.0	342	34
		Affected area east and south of Old Fuel Tank Farm (TP3, TP4, 17A14TP1, 17A14TP2, 17A14TP4, 17A14TP11, APEC11-4, 18A14TP21 to 18A14TP24.)	80	1.0	1296	1,29
		Affected area west of Old Fuel Tank Farm (OTF1, OTF2, 17A14TP9, 18A14TP15, 18A14TP17)	80	1.0	237	23
		Affected area north of Old Fuel Tank Farm (OTF (0,25), TP5)	100	1.0	45	4
		Affected area north of Former Fuel Tank Farm (OTF (0,10))	100	1.0	17	1
	•			,	Subtotal	2,19
		Affected area northwest of Heavy Duty Maintenance Shop building (T17A30BTP1)	80	1.0	82	8
C	Figure B3	Affected area north of Heavy Duty Maintenance Shop building (TP9, 17A16TP1)	80	1.0	135	13
C	rigure b3	Affected area northeast of Heavy Duty Maintenance Shop building (TP11, APEC16-2, 18A16TP13, 18A16TP15)	80	1.0	335	33
		Affected area east of Heavy Duty Maintenance Shop building (TP6, 17A16TP6, 18A16TP17)	80	1.0	165	16
					Subtotal	71
		Affected area east of Compressor Building/Backfill Plant (APEC17-1, APEC17-8, APEC17-9, 17A17TP3, 17A17BH4, 18A17TP11)	100	1.0	438	43
D	Figure B4	Affected area southwest and west of Compressor Building/Backfill Plant (APEC17-2 to APEC17-7, APEC17-11, APEC 27-5, APEC27-6, 17A17BH1, 18A17TP17	80	1.0	740	74
		18A17TP19. 18A17TP21) Affected area north of Compressor Building/Backfill Plant (APEC17-10)	100	1.0	55	72
		Affected area north of Compressor Building/Backfill Plant (APEC17-10)	100	1.0	Subtotal	1,23
F	F1 DF	45.00	100	1.0	49	1,23
	Figure B5	Affected area Upper Scrap area (Former Boneyard)-(17A21TP4)	100	1.0	Subtotal	2
F	Figure B6	Affected area South and West of Diesel Transfer Station (APEC23-1,2,3,4,7,8,N,E,S, TP13A, 17A23TP1, 18A23TP6 to 18A23TP9)	80	1.0	307	30
· ·	rigare bo	Affected area south allowest of pieser frainser station (APEC25-1,2,5,4,7,6,N,E,5, 17A251P1, 16A251P0 to 16A251P9)	80	1.0	Subtotal	30
G	Figure P7	Affected area at Dertal Eucline Tank (17A/2TD2)	100	1.0	66	30
U	Figure B7	Affected area at Portal Fueling Tank (17A43TP2)	100	1.0	Subtotal	
Н	Figure D0	Afforded area at Drive Charges Area (17ACOLIA2)	80	0.5	37	
П	Figure B8	Affected area at Drum Storage Area (17A50HA2)	δU	U.5	37 Subtotal	
	Figure BO	Impacted soil at residence H70 (47ACTMC)	100	1.0	1	
ı	Figure B9	Impacted soil at residence #79 (17A6TP16)	100	1.0	41 Subtotal	4
				_	OTAL ESTIMATED VOLUME	4,68

