AEC 6

Area Description												
Location	Adjacent to 15 former re	esidences located in tow	n site.									
Topography	Generally flat with a slig	ht slope to northeast.										
Surface Drainage	Northeast.											
Background	Town site residences we storage tanks (ASTs) ad	ere heated with oil furna djacent to each residenc	ces. Fuel e.	l oil was	stored in above ground							
Historical Assessme	ent Information											
	Number of test pits				0							
Previous Phase II	Number of surface soil	samples		0								
Environmental Site	Number of soil samples	s analyzed			0							
(EBA, 2008)	Number of soil samples	with petroleum hydroca	arbon imp	acts	0							
	Number of soil samples	with metal impacts			0							
Comments: No prior as	sessment completed.											
2017/2018 Environmental Site Assessment Details												
Environmental Site Assessment Scope												
Utility Locate SOP followed? Yes – de-energized power to portion of Site during 2017 investigation.												
EM 31 Geophysics Comp	olete?			N/A								
Number of test pits advar	nced			16 (201	7), 4 (2018)							
Number of boreholes adv	anced			0								
Number of hand auger lo	cations advanced			0								
Number of soil samples s	ubmitted for laboratory cl	nemical analysis		17 (201	7), 8 (2018)							
Number of boreholes con	npleted as groundwater m	nonitoring wells		0								
Number of historical grou	ndwater monitoring wells			2 (down-gradient)								
Number of groundwater s	amples collected			2 (2017), 2 (2018)							
Number of sediment and	surface soil samples colle	ected		N/A								
Geophysics Findings												
N/A												
Soil Investigation and C	onditions											
Maximum Depth of Investigation	2.0 mbgs (September 1	8, 2017)										
General Stratigraphy												
Description	Depth from (mbgs)	Depth to (mbgs)		(Observations							
SAND, silty, trace gravel to gravelly (Fill)	0	2.0	Fill soil v planks s	with orga cometime	nics. Concrete slab or wood s observed at surface.							
Combustible Vapour Concentrations (CVC)												
Ranged from less than 10) parts per million by volu	me (ppmv) to 311 ppmv	in soil sa	mple 17	A6TP16-1.							
Groundwater Condition	s											
Depth to Groundwater	About 10-15 mbgs; infer	rred from groundwater c	ontours d	eveloped	for Site.							
Free Product None observed in two down-gradient monitoring wells.												

2017/2018 Environmental Site Assessment Results Summary

- Figure A6-1 shows test pit locations.
- · Figure A6-2 shows groundwater monitoring well locations and groundwater elevations.
- Table A6-1 summarizes soil lab results relative to guidelines and management limits.
- Table A6-2 summarizes groundwater lab results relative to guidelines.

General Site Observations

- Former AST locations based on concrete AST pads, brackets, and/or fuel lines.
- Soil excavated during test pitting did not exhibit obvious signs of environmental impact (e.g., staining or odour), with exception of test pit 17A6TP16 which had an elevated CVC reading.
- Wood planks observed at or near surface (presumably used in past as a foundation for ASTs).

Soil: Petroleum Hydrocarbons (PHCs, PAHs)

2017

- Laboratory results all greater than guidelines, with exception of following samples which all contained PHC and PAH less than the CCME/CSR guidelines:
- Sample 17A6TP1-1 at a depth of 1.5 mbgs
- Sample 17A6TP7-1 at a depth of 0.4 mbgs
- Sample 17A6TP11-1 at a depth of 0.35 mbgs
- Sample 17A6TP13-1 at a depth of 0.30 mbgs
- Sample 17A6TP15-1 at a depth of 0.4 mbgs
- Concentrations of PHCs were less than the management limits except for the PHC F2 concentration at sample 17A6TP16at a depth of 0.40 mbgs

2018

 Test pits 18A6TP17 to 18A6TP20 were excavated at 3 m to 10 m step-out distances from 17A6TP16 to delineate the PHC management limit exceedance found at 0.4 mbgs. Laboratory results from the two soil samples tested for PHCs F2-F4 at each of the four test pit locations were less than the management limits.

Soil: Metals

- One sample from 17A6TP16 at 2.0 mbgs submitted for metals analysis.
- The following metals exceeded guidelines: arsenic, barium, copper, molybdenum, and selenium.
- No exceedances of preliminary background concentrations.

Soil: Routine (pH)

Laboratory results less than guidelines.

Soil: Other PCOCs

N/A

Groundwater: Petroleum Hydrocarbons

2017

- Laboratory results for PHCs and PAHs were less than guidelines.
- Tetra Tech also reviewed results from NATC database for Well 4-27-19, which is located down-gradient of north side of town site. There were two results from 2015; PHCs tested were below detection limits and guidelines.

2018

- Laboratory results for PHCs and PAHs were less than detection limits and guidelines.
- No samples were collected from 4-27-19 as a part of the SNP program in 2018.

Groundwater: Metals/Routine Parameters

2017

- Laboratory chemical results less than guidelines with exception of:
- Dissolved fluoride concentration at 17Duplicate3 (GH12-I) was equal to guidelines; but below preliminary background concentration.
- Dissolved sulphate concentration at GH12-J (and duplicate) greater than guidelines; however below preliminary background concentration.
- Dissolved cadmium concentrations in both monitoring wells greater than guidelines, and also above preliminary background concentrations.

Dissolved selenium concentration at GH12-J greater than guidelines.

2018

- Laboratory chemical results less than guidelines with exception of:
 - Sulphate concentration at GH12-J exceeded guideline, but was below preliminary background concentrations.
 - Cadmium exceeded preliminary background concentrations at GH12-J.
 - Copper and iron exceeded guidelines at GH12-I, but were below preliminary background concentrations.
 - Selenium exceeded guidelines at GH12-J, but was below preliminary background concentrations.

Groundwater: Other PCOCs

N/A

Sediment: Petroleum Hydrocarbons

N/A

Sediment: Metals

N/A

Sediment: Other PCOCs

N/A

Surface Water: Petroleum Hydrocarbons

N/A

Surface Water: Metals/Nutrients

N/A

Surface Water: Other PCOCs

N/A

Grainsize Analysis

Soil sample 17A6TP16-3 at a depth of 4.0 mbgs classified as coarse-grained (75% >75 µm).

Environmental Concerns

Location in AEC	Potential	Identified	Parameters Assessed and Contaminant(s) of
	Source(s)	Contaminated Media	Concern (COCs; bold & underline)
Adjacent to each former residence	Fuel oil AST	Soil; groundwater	Soil: <u>Petroleum hydrocarbons (PHCs), polycyclic</u> <u>aromatic hydrocarbons (PAHs)</u> Groundwater: <u>Metals and Nutrients,</u> PHCs, PAHs

Discussion (Significance of Results)

Soils:

- Soils were assessed at the Phase II/III ESA level.
- PHC/PAH impacts were detected at concentrations greater than the CCME/CSR guidelines in 12 of 20 test pits advanced. Soil exceeding the CCME/CSR guidelines has not been vertically or horizontally delineated. Soil found to exceed the PHC management limits at 17A6TP16 has been horizontally delineated. Based on current assessment results, the estimated depth of PHC impacts greater than the management limits used to calculate the contaminated soil volume is 1.0 mbgs.
- Unclear whether impacts related to historical fuel storage or wood planks at site, as similar COPCs can be attributed to fuel and wood treatment.
- In most locations, it is unlikely that impacts have migrated significantly based on absence of obvious signs of environmental impact.

Groundwater:

- GH12-I and GH12-J monitoring wells are located down-gradient from AEC 6.
- Metals and routine parameters with exceedances of regulatory guidelines include: sulphate, cadmium, copper, and selenium.
- PHCs were detected at GH12-I in 2017 but not in 2018, however concentrations were all less than guidelines.
- PAHs were less than laboratory reportable detection limits and/or guidelines, and are no longer PCOCs in groundwater at this AEC.

Attachments

Figure A6-1 – Soil Results Figure A6-2 – Groundwater Results Table A6-1 – Soil Analytical Results Table A6-2 – Groundwater Analytical Results Test pit Logs Photographs

Table A6-1: Soil Analytical Results																														
				AEC													AE	EC 6												
				Location	TP1	TP2	TP3	TP4	TP5	TP6	TP7	TP8	TP9	TP10	TP11	TP12	TP13	TP14	TP15	TF	P16	TP17-2	TP17-3	TP18-2	TP18-3	TP19-2	TP19-3	TP20-2	BTP20-2	TP20-3
				Sample Depth	n 1.5 m	0.3 m	0.4 m	0.5 m	0.6 m	0.6 m	0.40 m	0.45 m	0.40 m	0.35 m	0.35 m	0.30 m	0.30 m	0.40 m	0.40 m	0.40 m	2.0 m	0.5 m	1 m	0.5 m	1 m	0.5 m	1 m	0.5 m	0.5 m	1 m
				Field ID	0 17A6TP1-1	17A6TP2-1	17A6TP3-1	17A6TP4-1	17A6TP5-1	17A6TP6-1	17A6TP7-1	17A6TP8-1	17A6TP9-1	17A6TP10-1	17A6TP11-1	17A6TP12-1	17A6TP13-1	17A6TP14-1	17A6TP15-1	17A6TP16-1	17A6TP16-3	18A6TP17-2	18A6TP17-3	18A6TP18-2	18A6TP18-3	18A6TP19-2	18A6TP19-3	18A6TP20-2	18A6BTP20-2	18A6TP20-3
			Labor	Sample Date	8 18-Sep-2017	18-Sep-2017	18-Sep-2017	18-Sep-2017	18-Sep-2017	18-Sep-2017	18-Sep-2017	18-Sep-2017	18-Sep-2017	18-Sep-2017	21-Sep-2017	26-Jun-2018	26-Jun-2018	27-Jun-2018												
			Labola	aboratory Sample ID	17Y262746	17Y262746	17Y262746	17Y262746	17Y262746	17Y262746	17Y262746	17Y262746	17Y262746	17Y262746	17Y262746	17Y262746	17Y262746	17Y262746	17Y262746	17Y262746	17Y264579	9372322	9372323	9372325	9372326	9372328	9372329	9372331	9372332	9372333
Parameter	Unit	CCME ^{1,2} and NWT CSR ³	Background	4 Management																										1
Physical Parameters	1	in our		1	1																									
pH	pH Units	6-8	-	-	-	-	-	-	-	-	-	-	-	-	· ·	-	-	-	-	-	7.59	-	-	-	-	-	-	-	-	-
Moisture	%	-	-	-	10.3	15.8	10.4	15	13.3	24.8	14.4	20.8	7.6	7.4	8.1	7.3	8.1	8.9	9	19.5	11.5	8.2	29.3	8.9	7.9	8.7	5.2	11.2	7.5	4.8
Metals																					1									
Antimony	mg/kg	20	- 64		-	-		-	-	-	-	-	-	-	-	-	-	-	-		1./	-		-		-	-	-	-	
Barium	mg/kg	500	946															-			739					-		-		-
Beryllium	mg/kg	4	-	-	-	· ·	-	-			-	-	-	-		-	-	-	-	-	1.3		-		-	-	-	-	-	
Cadmium	mg/kg	1.4	2.8	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	1.4	-	-	-	-	-	-	-	-	-
Chromium	mg/kg	64	-		•	-	•	-	-	-	-	-	-		-	-		-	-	-	38	-	-	-	-	-	-	-	-	-
Cobalt	mg/kg	40	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	15.5	-	-	-	-	-	-	-	-	-
Copper	mg/kg	63		· ·						-	-		-			-		-			126		-			-	-	•		-
Lead	mg/kg	70	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-		28	-		-		-	-	-	-	-
Molybdenum	mg/kg	5	10															-			5.6					-		-		
Nickel	mg/kg	45	72	· ·		· ·	· ·	· ·		-	-	-	-		· ·	-		· ·	· ·	-	42.5		-			-	-	-	· ·	-
Selenium	mg/kg	1	1.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.2	-	-	-	-	-	-	-	-	-
Silver	mg/kg	20	-		•	-	•	-	-	-	-	-	-		-	-		-	-	-	<0.5	-	-	-	-	-	-	-	-	-
Thallium	mg/kg	1	-	-	-		-				-	-	-	-		-	-	-	-	-	0.6	•	-		-	-	-	-	-	
Tin	mg/kg	5	-	· ·				-		-	-		-			-		-			2.1		-	-		-	-	•		
Vanadium	mg/kg	130	- 160			-		-	-	-	-	-	-	-	-	-	-	-	-		3.2	-	-	-		-	-	-	-	-
Zinc	mg/kg	200	462					-										-			149					-		-		-
Particle Size	1				1	1	1	1	1		1	1	1	1	1		1	1		1	1			1			1			
>75 µm	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	75	-	-	-	-	-	-	-	-	-
Grain Size	N/A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		Coarse	-	-	-	-	-	-	-	-	-
Petroleum Hydrocarbons																								1			1		1	
Benzene	mg/kg	0.03	-		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		-		-	-	-	-	-	
Ethylbenzene	mg/kg	0.082			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	<0.05	0.07	<0.05	<0.05	<0.05					-	-			
Xylene (m)	mg/kg	-		· .	<0.02	0.02	0.02	<0.02	0.03	0.07	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	0.08	<0.02	0.03	<0.02		-			-	-	-		
Xylene (o)	mg/kg	-	-	-	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	-	-	-	-	-	-	-	-
Xylenes Total	mg/kg	0.1	-	-	<0.05	<0.05	<0.05	< 0.05	<0.05	0.09	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.08	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-
F1 (C ₆ -C ₁₀)	mg/kg	30	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	-	-	-	-	-	-	-	-
F1 (C ₆ -C ₁₀) - BTEX	mg/kg	30		700	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	-	-	-	-	-	-	-	-
F2 (C ₁₀ -C ⁻⁺) F3 (C ₁₀ -C ⁻⁺)	mg/kg	300		2500	<20	421	342	277	104	4/	185	<u>188</u> 538	<20	930	<20	<20	46	152	<20	716	144	<20	395	<20	<20	<20	<20	<20	<20	<20
F4 (C ₃₄ -C ₅₀)	mg/kg	2800		10,000	<20	<20	<20	<20	<20	<20	<20	<20	22	32	<20	39	<20	<20	<20	75	44	70	94	60	-20	60	58	76	61	66
Polycyclic Aromatic Hydrocarbons (PAHs)				,		1								1						1	1									
B(a)P Total Potency Equivalent	mg/kg	0.6	-	-	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-
IACR (CCME)	mg/kg	1	-		<0.6	0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	-	· ·	-					-		· ·
Acenaphthene	mg/kg	-		· ·	<0.005	<0.05	<0.005	<0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	<0.005	<0.005		-	-		-	-	-	-		-
Acenaphinylene	mg/kg	- 25	-		<0.005	<0.05	<0.005	<0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	<0.005	<0.005	-		-	-	-	-	-	-	-	-
Benz(a)anthracene	ma/ka	0.1			<0.004	<0.04	<0.03	<0.04	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.03	<0.04	<0.004	<0.03			-					-		
Benzo(a) pyrene	mg/kg	0.1			<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	-	· · ·	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.1	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-
Benzo(b+j)fluoranthene	mg/kg	-	-		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-
Benzo(g,h,i)perylene	mg/kg				<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-
Benzo(J)fluoranthene	mg/kg	- 0.1	-	· ·	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		· ·	-		-	-	-	-		· ·
Chrysene	mg/kg	0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			-					-		
Dibenz(a,h)anthracene	mg/kg	0.1		· ·	<0.005	0.011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-	<u> </u>	-	· ·		-	· -	-	· ·	· ·
Fluoranthene	mg/kg	50	-		<0.01	0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	· ·		-	-	-	-	-	-	-	-
Fluorene	mg/kg	-	-	-	<0.02	<0.2	<0.02	<0.2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.2	<0.02	<0.02	-	-	-	-	-	-	-	-	-	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	-		<0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			-	-	-	-	-	-		
1-Methylnaphthalene	mg/kg	-	-	· ·	<0.005	<0.05	<0.005	0.12	0.045	0.026	<0.005	<0.005	0.014	<0.005	<0.005	<0.005	0.029	0.13	<0.005	<0.005	· ·	· ·	-	-	-	-	-	-		
2-weurymaphtnalene	mg/kg	- 0.013	-		<0.005	0.07	<0.005	0.22	0.14/	0.062	<0.005	<0.005	0.031	<0.005	<0.005	<0.005	0.075	0.36	0.013	<0.005	-		-	-	-	-	-	-		-
Phenanthrene	ma/ka	0.046		1	<0.003	<0.00	0.03	0.00	0.02	<0.024	<0.005	<0.000	<0.02	<0.000	<0.003	<0.00	<0.020	<0.03	<0.005	<0.003			-							
Pyrene	mg/kg	0.1		-	<0.01	0.02	0.02	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	-	- 1	-	-	-	-	-	-	-	-

Notes: ¹ Canadian Council of Ministers of the Environment (CCME) Canada-Wide Standards (CWS) for Petroleum Hydrocarbons (PHC) in Soil (CCME 2008), for coarse textured soils under Agricultural and Residential/Parkland soils ² Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) - Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (CCME 1999), for coarse textured soils under Agricultural and Residential/Parkland soils ³ Northwest Territories Environmental Guideline for Contaminated Site Remediation (NWT CSR 2003), for coarse textured soils under Agricultural and Residential/Parkland land use ⁴ Preliminary Background Concentration ⁵ Canadian Council of Ministers of the Environment (ICCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil Technical Supplement, for coarse textured soil under Agricultural land use, management limit pathway only **BOLD**: Exceeds Monstagriment CAME or NWT CSR standard/guideline **Red** - Exceeds Preliminary Background Concentration **Shaded** - Exceeds Preliminary Background Concentration **Shade** - Exceeds Management Limits **Shade** - Exceeds Shader Stripper CAME or NWT CSR Territores **Shade** - Exceeds Shader Stripper CAME or NWT CSR Territores **Shade** - Exceeds Shader Stripper CAME or NWT CSR Territores **Shade** - Exceeds Management Limits **Shade** - Exceeds Shader Stripper CAME or NWT CSR Territores **Shade** - Exceeds Shader Stripper CAME or NWT CSR Territores **Shade** - Exceeds Shader Stripper CAME or NWT CSR Territores **Shad** - Exceeds Shader Strippe

Table A6-2: Groundwater Analtyical Re	esults										
				AEC				AEC 6			
				Location		GH	12-I			GH12-J	
				Field ID	GH12-I	17DUPLICATE3	GH12-I	DUP3	GH12-J	17DUPLICATE2	
				Sample Date	4-Oct-2017	4-Oct-2017	30-Jun-2018	30-Jun-2018	3-Oct-2017	3-Oct-2017	30-
			Laborato	ory Report Number	17V270219	17V270219	18Y358442	18Y358442	17Y268688	17Y268688	18
			Lat	oratory Sample ID	8804763	8804787	9378822	9378840	8791184	8791170	g
Parameter	Unit	Federal Inter	im Guideline ¹	Preliminary Background Concentrations							
Field Peremeters		Agricultural	Res / Park	Concentrations							
Field Temperature	°C						2.6				1
Field nH	nH Units	6.5-9	6 5-9	-		-	7 37	-	-		<u> </u>
Field Conductivity	uS/cm	-	-	-	-	-	318.1	-	-	-	<u> </u>
Routine	μο/οπι	1	1				010.1	1	1		
H	pH Units	6.5-9	6.5-9	-	7.81	7.8	6.97	7.34	7.67	7.74	
Electrical Conductivity (EC)	µS/cm	-	-	-	394	391	346	387	501	499	<u> </u>
Total Dissolved Solids (TDS)	mg/L	3000	-	-	238	242	180	205	320	332	<u> </u>
Hardness as CaCO ₃	mg/L	-	-	-	197	198	172	178	257	264	<u> </u>
Alkalinity (total as CaCO ₃)	mg/L	-	-	-	122	119	120	122	166	165	
Bromide	mg/L	-	-	-	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	
Chloride	mg/L	100	120	-	0.91	0.89	0.83	0.78	1.42	1.42	
Fluoride	mg/L	0.12	0.12	0.39	0.11	0.12	0.11	0.12	0.04	0.04	
Sulphate	mg/L	100	100	182	89.7	89.8	64.1	61.1	102	102	
Nutrients											
Ammonia	mg/L	0.021-231 ²	0.021-231 ²	-	-	-	<0.01	<0.01	-	-	
Nitrate (as NO ₃ -N)	mg/L	13	13	-	0.16	0.156	0.1	0.108	0.405	0.417	
Nitrite (as NO ₂ -N)	mg/L	0.06	0.06	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Nitrogen (Total)	mg/L	-	-	-	-	-	0.1	0.12	-	-	
Dissolved Metals											
Aluminum	mg/L	0.005 / 0.1 3	0.005 / 0.1 3	-	<0.002	<0.002	<0.002	<0.002	0.003	0.005	
Antimony	mg/L	2	2	-	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
Arsenic	mg/L	0.005	0.005	-	0.0002	0.0002	0.0002	0.0002	0.0001	0.0001	<u> </u>
Barium	mg/L	0.5	0.5	-	0.0368	0.0381	0.034	0.0324	0.113	0.115	
Beryllium	mg/L	0.0053	0.0053	-	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<
Boron	mg/L	0.5	1.5	-	0.006	0.006	<0.002	0.005	0.008	0.007	
Cadmium	mg/L	0.00012	0.00012	0.000047	0.00004	0.00005	0.00004	0.00004	0.00032	0.0003	
	mg/L	-	-	-	60.6	61.1	52.9	54.7	76.2	/8	
Chromium	mg/L	0.0089	0.0089	-	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-
Cobalt	mg/L	0.05	-	-	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	- <
Copper	mg/L	0.002	0.002	-	0.0005	0.0005	0.003	0.0006	0.0005	0.0006	
	mg/L	0.3	0.3	-	<0.01	<0.00	0.00011	<0.00	0.02	0.012	<u> </u>
Lithium	mg/L	0.001-0.002	0.001-0.002	-	0.00003	0.01	0.00011	0.00003	0.00003	0.00003	\vdash
Magnesium	mg/L	-	-	-	11	11	0.0095	10.1	16.2	16.7	
Mangapese	mg/L	0.2	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Manganese	mg/L	0.000016	0.000016	-	0.0001	<0.001	<0.001	<0.001	<0.001	<0.001	
Molyhdenum	mg/L	0.073	0.073		0.00174	0.00188	0.00189	0.00183	0.00118	0.0012	
Nickel	mg/L	0.025-0.083 4	0.025-0.083 4	-	0.0003	0.0003	0.00100	0.0002	0.0006	0.0006	+ `
Potassium	mg/L	-	-	-	0.696	0.677	0.632	0.676	0.893	0.871	<u> </u>
Selenium	ma/L	0.001	0.001	-	<0.0005	0.0006	<0.0005	0.0005	0.0016	0.0016	
Silver	ma/L	0.00025	0.00025	-	<0.00002	<0.00002	<0.00002	<0.00002	< 0.00002	<0.00002	<
Sodium	mg/L	-	-	-	1.21	1.2	1.06	1.13	1.67	1.63	<u> </u>
Strontium	mg/L	-	-	- 1	-	-	0.0852	0.0792	-	-	<u> </u>
Thallium	mg/L	0.0008	0.0008	- 1	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.00002	<
Tin	mg/L	-	-	- 1	-	-	<0.00005	<0.00005	-	-	<
Titanium	mg/L	0.1	0.1	-	0.0005	0.0006	0.0009	0.0009	<0.0005	< 0.0005	
Tungsten	mg/L	-	-	- 1	-	-	0.00024	0.00029	-	-	(
Uranium	mg/L	0.01	0.015	- 1	0.00595	0.00592	0.00571	0.00624	0.00338	0.00346	(
Vanadium	mg/L	0.1		-	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
Zinc	mg/L	0.01	0.01	-	0.002	<0.002	0.004	<0.002	0.003	0.003	

Notes:
¹ Environment Canada (June 2016). Guidance Document on Federal Interim Groundwater Quality Guidelines (FIGQG) for Federal Contaminated Sites, for fine and coarse textured soil under Agricultural and Residential/Parkland land use ² Guideline varies with pH and temperature

Guideline varies with pH and temperature

⁴ Guideline varies with pH

⁴ Guideline varies hardness
"-" No applicable guideline or not analyzed

BOLD - Greater than Guideline

<u>RED</u> - Greater than Preliminary Background Concentration

APPENDIX A – AEC 6 SUMMARY FILE: 704-ENW.WENW03039-03 | OCTOBER 2020 | ISSUED FOR USE

GH12-J
0- lun-2018
187358442
0270022
93/0023
2.5
7.26
468.7
7.27
507
242
271
166
<0.05
~0.05
1.73
0.04
105
<0.01
0.331
<0.005
0.35
<0.002
<0.0002
0.0001
0.0001
<0.00001
<0.00001
0.004
0.00029
80.7
<0.0005
<0.00005
0.0002
0.115
< 0.00005
0.0066
16.8
< 0.001
<0.00001
0.00122
0.0006
0.0000
0.000
0.0021
<0.00002
1.4
0.0921
<0.00001
< 0.00005
0.001
0.00002
0.00348
<0.0005
0.004

AEC 6											
	AEC 6										
Location GH12-I		GH12-J									
Field ID GH12-I 17DUPLICATE3 GH12-I DUP3	GH12-J	17DUPLICATE2									
Sample Date 4-Oct-2017 4-Oct-2017 30-Jun-2018 30-Jun-2018	3-Oct-2017	3-Oct-2017	30								
Laboratory Report Number 17V270219 17V270219 18Y358442 18Y358442	17Y268688	17Y268688	1								
Laboratory Sample ID 8804763 8804787 9378822 9378840	8791184	8791170									
Parameter Unit Federal Interim Guideline ¹ Preliminary Background											
Agricultural Res / Park Concentrations											
myurocarbons Banzana mal 0.088 0.14 - <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005	<0.0005									
Delizence ing/L 0.000 0.117 - 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	<0.0005	<0.0005									
Totalina ingri 0.000 0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	<0.0005	<0.0005									
Encytonization ingre c.e. in constant c	<0.0005	<0.0005									
Mydene (n) mg/L	<0.0005	<0.0005									
Avenes Tital mg/l 3.9 3.9 - \$0.001 <0.001 <0.001 <0.001 <0.001	<0.0000	<0.0000									
Nyrone 1 mg/l 0.072 0.072	-	-									
original	<0.1	<0.1									
T(Co-Co)-BTEX mg/ 0.81 0.81 - <0.1 <0.1 <0.1 <0.1	<0.1	<0.1									
$\mathbb{E}[2(\mathbb{C}_{10},\mathbb{C}_{10})]$	<0.1	<0.1									
$G(c_{12}, C_{22})$ mg/l 0.16 0.29 <0.1 <0.1	<0.1	<0.1									
F4 (C ₁₀ C ₅₀) mg/L	<0.1	<0.1									
Polycyclic Aromatic Hydrocarbons (PAHs)		1 1									
Acenaphthene mg/L 0.0058 0.0058 - <0.00002 <0.00002	< 0.00002	<0.00002									
Acenaphthylene mg/L 0.046 0.046 - <0.00002 <0.00002	<0.00002	< 0.00002									
Acridine mg/L 0.00005 0.00005 - <0.00005	<0.00005	< 0.00005									
Anthracene mg/L 0.000012 0.000012 - <0.00001	<0.00001	< 0.00001									
Benz(a)anthracene mg/L 0.000018 0.000018 - <0.00001	<0.00001	<0.00001									
Benzo(a) pyrene mg/L 0.00001 0.00001 - <0.00001	<0.00001	<0.00001									
Benzo(b)fluoranthene mg/L <0.00001 <0.00001	<0.00001	<0.00001									
Benzo(b+j)fluoranthene mg/L 0.00048 0.00048 - <0.0001	<0.00001	<0.00001									
Benzo(g,h,i)perylene mg/L 0.00017 0.00017 - <0.00001 <0.00001 - - -	<0.00001	<0.00001									
Benzo(j)fluoranthene mg/L <pre>- <0.00001</pre>	<0.00001	<0.00001									
Benzo(k)fluoranthene mg/L 0.00048 0.00048 - <0.00001 <0.00001 - - -	<0.00001	<0.00001									
Chrysene mg/L 0.0001 0.0001 - <0.00001 <0.00001 -	<0.00001	<0.00001									
Dibenz(a,h)anthracene mg/L 0.00026 0.00026 - <0.00001 <0.00001 - -	<0.00001	<0.00001									
Fluoranthene mg/L 0.00004 0.00004 - <0.00002 <0.00002 - -	<0.00002	<0.00002									
Fluorene mg/L 0.003 0.003 - <0.00002 <0.00002 - -	<0.00002	<0.00002									
Indeno(1,2,3-c,d)pyrene mg/L 0.00021 0.00021 - <0.00001	<0.00001	<0.00001									
Naphthalene mg/L 0.0011 0.0011 - <0.00005 <0.00005 - -	<0.00005	<0.00005									
Phenanthrene mg/L 0.0004 0.0004 - <0.00004 <- -	<0.00004	<0.00004									
Pyrene mg/L 0.000025 0.000025 - <0.00002 <0.00002 - -	<0.00002	<0.00002									
Quinoline mg/L 0.0034 - <0.0001 - -	<0.0001	<0.0001									

Notes: ¹ Environment Canada (June 2016). Guidance Document on Federal Interim Groundwater Quality Guidelines (FIGQG) for Federal Contaminated Sites, for fine and coarse textured soil under Agricultural and Residential/Parkland land use ² Guideline varies with pH and temperature

Guideline varies with pH and temperature
⁴ Guideline varies with pH
⁴
⁴ Guideline varies hardness
"-" No applicable guideline or not analyzed
BOLD - Greater than Guideline
<u>RED</u> - Greater than Preliminary Background Concentration

APPENDIX A – AEC 6 SUMMARY FILE: 704-ENW.WENW03039-03 | OCTOBER 2020 | ISSUED FOR USE

1	GH12-J
l	30-Jun-2018
l	18Y358442
1	9378823
	0010020
1	<0.0005
l	<0.0005
ł	<0.0005
	<0.0005
	<0.0005
$\left \right $	<0.0005
	NU.UU I
$\left \right $	-
ł	<0.1
ł	<0.1
ł	<0.1
	<0.1
	<0.1
1	
	-
	-
ļ	-
ļ	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
1	-
1	-
1	-
	-
1	-
	_
	-

	North American		Testpit No	0:	17	7A6TP1						
ר	โม	ngsten Corporation	Project: Phase III Environ	men	tal Site	Assessment	Project No: ENW.WENW03039-02 Task 002.2.2.6					
		l td	Location: Cantung Mine				Ground Elev: 1134.154 m					
		Ltu.	Tungsten, Northwest Terr	itorie	s		UTM: 540666.923 E: 6870639.484 N: Z 9					
					-		-		, -			
Depth (m)	Method	Soil Description		Sample Type	Sample Number			Notes and Comments	Backfill	Elevation (m)		
0						■ Vapour readings (pp 50 100 150 2	200					
-		CONCRETE SLAB - (150 mm thick)							\square	_		
-		SAND (FILL) - silty, trace organics, trace rootlets, damp, - no visible rootlets, no visible organics, grey, fine sand	loose, brown, coarse sand							1134— - -		
- - - - - - - - -	Backhoe				1-1 1					- - - 1133— - - - -		
- - - - - 2		END OF TESTPIT (1.5 metres) Note: Backfilled at completion										
- - - - -												
3 - - - -										- 1131— - - -		
- - 4 -										- - - 1130-		
-										-		
5			Γ							_		
			Contractor: NATC				Comp	letion Depth: 1.5 m				
		TETRA TECH	Drilling Rig Type: Rubber	Tire	backh	00	Start Date: 2017 September 18					
	U		Logged By: MH					Completion Date: 2017 September 18				
			Reviewed By: JW				Page 1 of 1					

	North American	Testpit N	0:	17	7A6TP2							
ר	Γu	ngsten Corporation	Project: Phase III Environ	men	tal Site	Assessment	Project No: ENW.WENW03039-02 Task 002.2.2.6					
-		Itd	Location: Cantung Mine				Ground Elev: 1134.49 m					
		Ltd.	Tungsten, Northwest Terr	itorie	es		UTM: 540669.484 E; 6870648.295 N; Z 9					
Depth (m)	Method	Soil Description		Sample Type	ample Number			Notes and Comments	Backfill	Elevation (m)		
				0,	Se	■ Vapour readings (pp	omv) 🔳					
-	khoe	SAND (FILL) - silty, trace gravel, trace organics, rootlets oxides, fine sand	, damp, loose, brown, trace				200			_		
- - - -	Bac	END OF TESTPIT (0.3 metres) Note: Elevation approximately 0.6 metres below origi Backfilled at completion	nal grade		2-1					- - 1134— - -		
- 1 - -												
- - - - - 2										1133— - - - -		
- - - -										- - - 1132- - -		
- 3 - - - -										- - - - 1131—		
- - - 												
- - - -										- 1130- - - -		
5		l	Contractor: NATC	1	<u> </u>	L	Comp	letion Depth: 0.3 m				
			Drilling Rig Type: Rubber	Tire	backh	00	Start Date: 2017 September 18					
			Logged By: NH					Completion Date: 2017 September 18				
			Reviewed By: JW				Page 1 of 1					

	North American	Testpit No):	1	7A6TP3							
۲	Γu	nasten Corporation	Project: Phase III Environm	ent	al Site	Assessment	Project No: ENW.WENW03039-02 Task 002.2.2.6					
		l td	Location: Cantung Mine				Ground Elev: 1134.739 m					
		Llu.	Tungsten, Northwest Territo	orie	s		UTM: 540668.281 E: 6870657.802 N: Z 9					
Depth (m)	Method	Soil Description	-	ample Type	mple Number			Notes and Comments	Backfill	Elevation (m)		
0			C	S	Sa	■ Vapour readings (pp 50 100 150 2	omv) ■ 200					
-	e	WOODEN PLANKS - (250 mm thick)							\square	-		
-	ckh								$\langle \rangle \rangle$	_		
	Ba	SAND - silty, trace gravel, damp, loose, brown, fine to m	edium sand		3-1 I				\square	-		
-		END OF TESTPIT (0.4 metres) Note: Backfilled at completion								-		
-										-		
F										1134—		
F .										-		
- 1										-		
-										_		
										_		
-										-		
L										-		
-										1133-		
F										-		
-2										-		
F										_		
Ĺ										-		
-										-		
F										_		
F										1132—		
-										_		
- 3										_		
-										_		
_										-		
-										-		
-										_		
F										1131-		
-										_		
4										-		
-										-		
Ł										-		
-										-		
F										-		
F										1130—		
										-		
5	1		Contractor: NATC			<u> </u>	Comp	letion Depth: 0.4 m				
			Drilling Rig Type: Rubber Ti	ïre	backh	00	Start Date: 2017 September 18					
	lt		Logged By: NH				Completion Date: 2017 September 18					
			Reviewed By: JW				Page 1 of 1					

	North American	Testpit No):	17	7A6TP4							
ר	Γu	ngsten Corporation	Project: Phase III Environn	nent	al Site	Assessment	Projec	zt No: ENW.WENW03039-02 T	ask 00)2.2.2.6		
'		I td	Location: Cantung Mine				Ground Elev: 1135.091 m					
		Ltu.	Tungsten, Northwest Territ	torie	s		UTM: 540653.767 E: 6870676.5 N: Z 9					
			0,									
Depth (m)	Method	Soil Description		Sample Type	Sample Number	■ Vapour readings (pp	omv)∎	Notes and Comments	Backfill	Elevation (m)		
0		WOODEN PLANKS - (250 mm thick)				50 100 150 2	200			1405		
Ē	Joe									1135-		
-	ackl	SAND - silty, some gravel, trace organics, trace rootlets,	, damp, loose, brown, fine							-		
-	Ш	sand		$\overline{\ }$	4-1					_		
-		END OF TESTPIT (0.5 metres)					1					
F		Note. Backlined at completion								-		
-										_		
– 1										-		
-										1134—		
È										-		
-										-		
-										-		
Ē												
-										-		
F										-		
-2										- 1133—		
-										-		
-										-		
Ē.										-		
-										-		
L										-		
-										-		
- 3										-		
										1132-		
-										-		
-										-		
F										_		
-										-		
-										-		
4										_		
-										1131—		
-										-		
F										-		
╞										-		
Ľ												
F										-		
-										-		
	1		Contractor: NATC				Comp	letion Depth: 0.5 m	1			
			Drilling Rig Type: Rubber	Tire	backh	oe	Start Date: 2017 September 18					
			Logged By: NH					Completion Date: 2017 September 18				
			Reviewed By: JW				Page 1 of 1					

	North American	Testpit No):	1	7A6TP5							
1	ิน	ngsten Corporation	Project: Phase III Environn	nent	tal Site	Assessment	Projec	ct No: ENW.WENW03039-02 T	ask 00	02.2.2.6		
		Ltd.	Location: Cantung Mine				Ground Elev: 1134.786 m					
			Tungsten, Northwest Territ	torie	es		UTM: 540637.933 E; 6870695.485 N; Z 9					
Depth (m)	Method	Soil Description		Sample Type	Sample Number	■ Vapour readings (pr 50 100 150 2	omv) ■ 200	Notes and Comments	Backfill	Elevation (m)		
_		SAND (FILL) - silty, trace gravel, damp, loose, brown, fir	ne sand, (300 mm thick)						\square	_		
-	Backhoe	WOODEN PLANKS - (250 mm thick)			5-1					-		
-		SAND (FILL) - silty, trace gravel, damp, loose, brown, fir END OF TESTPIT (0.65 metres)	ne sand							-		
-		Note: Backfilled at completion								1134—		
-										-		
- '										-		
-										-		
-										-		
-										-		
-										-		
_										1133—		
-										-		
- 2										-		
-										-		
-										-		
_										-		
-										-		
-										- 1132-		
_										-		
- 3										-		
E										-		
Ē										-		
-										-		
-										-		
-										-		
-										1131—		
- 4										-		
										-		
-										-		
_										-		
-										-		
Ĺ										-		
F										1130—		
- 5										-		
	·		Contractor: NATC			1	Comp	letion Depth: 0.65 m				
			Drilling Rig Type: Rubber Tire backhoe					Start Date: 2017 September 18				
	U		Logged By: NH					Completion Date: 2017 September 18				
			Reviewed By: JW				Page 1 of 1					

		North American	Testpit N	0:	1	7A6TP6						
-	Γυ	ngsten Corporation	Proiect: Phase III Environ	men	tal Site	e Assessment	Proied	ct No: ENW.WENW03039-02 T	ask 00)2.2.2.6		
		l td	Location: Cantung Mine				Grour	nd Elev: 1135.268 m				
		Llu.	Tungsten, Northwest Ter	ritorie	es		UTM:	540615.857 E; 6870708.558 N	l; Z 9			
			0,	Τ					,			
Depth (m)	Method	Soil Description		Sample Type	Sample Number	■ Vapour readings (p	pmv) 🗖	Notes and Comments	Backfill	Elevation (m)		
0		WOODEN PLANKS - (300 mm thick)		-		50 100 150	200					
-	Backhoe	SAND (FILL) - silty, trace to some gravel, trace organics dark brown to black, fine sand	, trace rootlets, damp, loose,		6-1					- 1135— - -		
-		END OF TESTPIT (0.6 metres) Note: Backfilled at completion								-		
_		···· ··· · · · · · · · · · · · · · · ·								-		
- 1										-		
-										-		
-										1134—		
-										-		
-										-		
-										_		
-										-		
- 2 -										-		
-										-		
-												
-										-		
-										-		
-										-		
- 3										-		
-										-		
-										- 1132		
-										-		
-										-		
Ē										-		
-										-		
- 4										-		
-										-		
_										1131—		
-										-		
F										-		
F										-		
Ę										-		
5	1		Contractor: NATC				Com	 Nation Denth: 0.6 m		-		
			Drilling Rig Type: Rubber	Tire	hackt	10e	Start I	Date: 2017 Sentember 18				
1		IEIKAIECH	Logged By: NH		2001		Comp	letion Date: 2017 September 1	8			
			Logged By: NH Reviewed Bv: JW					Completion Date: 2017 September 18 Page 1 of 1				

	North American Tungsten Corporation Ltd.		Testpit No	D:	17	7A6TP7				
ا	Γu	ngsten Corporation	Project: Phase III Environ	nent	al Site	Assessment	Projec	zt No: ENW.WENW03039-02 T	ask 00	02.2.2.6
-		l td	Location: Cantung Mine				Grour	nd Elev: 1136.165 m		
		Ltd.	Tungsten, Northwest Terri	torie	s		UTM:	540596.075 E; 6870719.594 N	l; Z 9	
Depth (m)	Method	Soil Description		Sample Type	Sample Number	■ Vapour readings (pp	omv)∎	Notes and Comments	Backfill	Elevation (m)
		SAND (FILL) - silty, some gravel, trace roots, organics, or	amp, loose, grey brown, fine				:		\square	-
-	Backhoe	sand		/	7-1					1136— - -
-		END OF TESTPIT (0.5 metres) Note: Backfilled at completion								-
-										-
_										-
- 1										-
_										1135—
-										-
Ļ										-
-										-
										-
-										-
- 2										-
-										1134—
-										-
-										-
-										-
-										-
-										-
- 3										-
-										1133-
-										-
_										-
-										-
È.										-
F										-
- 4										-
-										1132—
-										-
Ē										-
F										-
È										-
										-
5	1	l	Contractor: NATC				Comp	letion Depth: 0.5 m		
			Drilling Rig Type: Rubber	Tire	backh	oe	Start I	Date: 2017 September 18		
			Logged By: NH				Comp	letion Date: 2017 September 1	8	
			Reviewed By: JW				Page	1 of 1		

		North American	Testpit No	D:	1	7A6TP8	3					
ا ا	Γu	ngsten Corporation	Project: Phase III Environ	ment	tal Site	Assessment	Proje	ct No: ENW.WENW03039-02 T	ask 00)2.2.2.6		
-		l td	Location: Cantung Mine				Grou	nd Elev: 1136.557 m				
		Ltd.	Tungsten, Northwest Terr	itorie	es		UTM:	540578.051 E; 6870732.105 N	I; Z 9			
Depth (m)	Method	Soil Description		Sample Type	Sample Number			Notes and Comments	Backfill	Elevation (m)		
0						■ Vapour readings 50 100 150	(ppmv) 🗖 200					
-	e	SAND (FILL) - silty, trace to some gravel, damp to moist	, loose, brown, fine sand						$\langle \rangle$	_		
-	Backhc	- dark brown to black		$\overline{\ }$	8-1							
- - - -		END OF TESTPIT (0.5 metres) Note: Backfilled at completion								1136— - - -		
- - -										-		
- - - - 2										1135— - - -		
-										- - - 1134-		
- - - - 3 -												
-										- - 1133— - -		
- 4 - - - - -										- - - 1132- -		
F _										-		
5		l	Contractor: NATC	1	<u> </u>	1	Com	letion Depth: 0.5 m				
			Drilling Rig Type: Rubber	Tire	backh	100	Start	Date: 2017 September 18				
			Logged By: NH	-			Com	bletion Date: 2017 September 1	8			
			Reviewed By: JW				Page	Completion Date: 2017 September 18 Page 1 of 1				

		North American	Testpit No):	1	7A6TP9				
1	โน	ngsten Corporation	Project: Phase III Environr	nen	tal Site	Assessment	Projec	ct No: ENW.WENW03039-02 T	ask 00)2.2.2.6
		Ltd.	Location: Cantung Mine				Grour	nd Elev: 1135.522 m		
			Tungsten, Northwest Terri	torie	es		UTM:	540616.284 E; 6870679.194 N	l; Z 9	
Depth (m)	Method	Soil Description		Sample Type	Sample Number			Notes and Comments	Backfill	Elevation (m)
0						■ vapour readings (pr 50 100 150 2	200			
-	Backhoe	SAND (FILL) - silty, some gravel, damp, loose, brown, fi	ne sand		9-1	<u>.</u>				-
- - - - -		END OF TESTPIT (0.4 metres) Note: Backfilled at completion								1135— - - -
- - - -										- - - 1134 - - -
- 2 - - - - -										- - - 1133—
- - 3 - - -										- - - - -
- - - 										
- - - - - - -										- - 1131— - - -
			Contractor: NATC	-			Comp	letion Depth: 0.4 m		
		TETRA TECH	Drilling Rig Type: Rubber	Tire	backh	106	Start [Date: 2017 September 18		
	U		Logged By: NH				Comp	letion Date: 2017 September 1	8	
			Reviewed By: JW				Page	1 of 1		

	North American Tungsten Corporation Ltd.		Testpit No	D :	1	7A6TP1	0			
l 1	.	nasten Corporation	Project: Phase III Environ	men	tal Site	Assessment	Proied	zt No: ENW.WENW03039-02 T	ask 0)2.2.2.6
'	u		Location: Cantung Mine							
		Llu.	Tungsten, Northwest Terr	itorie	es		UTM:	540636 E: 6870669 N: Z 9		
f	po	Soil		Type	lumber		1	Notes and	=	ti I
Dep (m	Meth	Description		Sample	Sample N	■ Vapour readings (p	opmv) 🔳	Comments	Back	Dep (ff)
0	e	SAND (FILL) - gravelly, trace to some silt, trace organics	s, trace rootlets, damp, loose,	-		50 100 150"	200			0
-	Backhc	brown, fine to medium sand, trace oxides			10-1					1-1
-		END OF TESTPIT (0.35 metres)			10 1	<u> </u>	:			
F										2-
-										
È										2
- 1										
È										
-										4-
È										
-										5
È										
-										6
- 2										
F										7-
-										1
Ē										8-
-										-
Ē										9-
-										1
- 3										10-
-										
È										11-
-										1
E										12-
-										
F,										13-
- ⁴										1
F										14-
Ę										
╞										
Ę										15
\mathbf{F}										
5										16-
		۲	Contractor: NATC				Comp	letion Depth: 0.35 m		
	۲.	TETRA TECH	Drilling Rig Type: Rubber	Tire	backh	oe	Start I	Date: 2017 September 18		
			Logged By: NH				Comp	letion Date: 2017 September 1	8	
			Reviewed By: JW				Page	1 of 1		

	North American Tungsten Corporation Ltd.		Testpit No	D:	1	7A6TP1 ⁻	1			
ר	Γu	ngsten Corporation	Project: Phase III Environ	men	tal Site	e Assessment	Projec	ct No: ENW.WENW03039-02 T	ask 0	02.2.2.6
		l td	Location: Cantung Mine				Grour	nd Elev: 1136.253 m		
		Ltd.	Tungsten, Northwest Terr	itorie	es		UTM:	540598.755 E; 6870688.653 N	I; Z 9	
lepth (m)	ethod	Soil		ole Type	e Number			Notes and	ickfill	wation (m)
0	Σ	Description		Sam	Samp	■ Vapour readings (pj 50 100 150	pmv) ■ 200	Comments	B	Ë
-	Backhoe	SAND (FILL) - silty, some gravel, trace organics, trace re brown	potlets, damp to moist, loose,		11-1					- - 1136
- -		END OF TESTPIT (0.4 metres) Note: Backfilled at completion								-
- - 1										-
- -										- 1135 - -
-										-
2 - -										- - 1134—
- -										-
- - 3 -										-
- - -										1133— - - -
- - 4										
- - -										- 1132— -
- - - 5										- - - -
	1		Contractor: NATC	1	1		Comp	letion Depth: 0.4 m	I	1
			Drilling Rig Type: Rubber	Tire	backh	10e	Start Date: 2017 September 18			
			Logged By: NH				Comp	letion Date: 2017 September 1	8	
			Reviewed By: JW				Page	1 of 1		

		North American	Testpit No) :	17	7A6TP1	2				
1	Γu	ngsten Corporation	Project: Phase III Environr	men	tal Site	Assessment	Projec	zt No: ENW.WENW03039-02 T	ask 00	02.2.2.6	
-		l td	Location: Cantung Mine				Grour	nd Elev: 1138.405 m			
		Ltd.	Tungsten, Northwest Terri	torie	es		UTM:	540574.977 E; 6870706.256 N	l; Z 9		
Depth (m)	Method	Soil Description		Sample Type	Sample Number			Notes and Comments	Backfill	Elevation (m)	
						■ Vapour readings ()	opmv) 🔳				
0	e	GRAVEL (FILL) - some sand, trace silt, trace rootlets, da	amp, loose, grey, (100 mm			50 100 150	200		$\overline{}$		
-	Backho	thick) SAND (FILL) - gravelly, some silt, damp, loose, grey	/		12-1	•					
- - - -		END OF TESTPIT (0.35 metres) Note: Backfilled at completion								1138— - - - -	
1 - - - -										- - - 1137— -	
- - - - - - - -										- - - - - - 1136- - -	
- - - - - - - -										- - - - - - 11135- - - - - - - - - - - - -	
- - - - - - - - - - - - - - - - - - -											
	-		Contractor: NATC				Comp	letion Depth: 0.35 m			
			Drilling Rig Type: Rubber	Tire	backh	oe	Start Date: 2017 September 18				
			Logged By: NH				Completion Date: 2017 September 18				
			Reviewed By: JW				Completion Date: 2017 September 18 Page 1 of 1				

	North American Fungsten Corporation Ltd.		Testpit No):	1	7A6TP1	3			
l 1	Γu	ngsten Corporation	Project: Phase III Environn	nent	al Site	Assessment	Projec	zt No: ENW.WENW03039-02 T	ask 00)2.2.2.6
	-	Itd	Location: Cantung Mine				Grour	nd Elev: 1139.279 m		
			Tungsten, Northwest Terri	torie	es		UTM:	540564.764 E; 6870708.593 N	l; Z 9	
Depth (m)	Method	Soil Description		Sample Type	Sample Number	Vapour readings (p	omv)	Notes and Comments	Backfill	Elevation (m)
0						50 100 150	200			
- - - - -	Backho	END OF TESTPIT (0.35 metres) Note: Backfilled at completion	,, <u>, , , , , , , , , , , , , , , ,</u>		13-1					- 1139— - - - -
- - 1 - - -										- - - 1138— - -
- - - - 2 -										-
- - - - - -										1137— - - - - - -
- - - - -										- 1136 - - - - -
- 4 - - - - - -										- - 1135— - - - - -
5			1							
			Contractor: NATC				Completion Depth: 0.35 m			
	ι.	TETRA TECH	Drilling Rig Type: Rubber	Tire	backh	00	Start Date: 2017 September 18			
"		•]	Logged By: NH				Comp	letion Date: 2017 September 1	8	
			Reviewed By: JW				Page	1 of 1		

		North American	Testpit No) :	1	7A6TP14	4						
1	Γu	ngsten Corporation	Project: Phase III Environ	men	tal Site	Assessment	Projec	zt No: ENW.WENW03039-02 T	ask 00	02.2.2.6			
		Ltd.	Location: Cantung Mine				Grour	nd Elev: 1140.926 m					
			Tungsten, Northwest Terr	itorie	es		UTM:	540540.401 E; 6870725.421 N	l; Z 9				
Depth (m)	Method	Soil Description		Sample Type	Sample Number	■ Vapour readings (pr 50 100 150	omv) ■ 200	Notes and Comments	Backfill	Elevation (m)			
_	e	SAND (FILL) - some gravel, trace silt, trace rootlets, trac	e organics, damp to moist,						\square	-			
-	Backho	loose, grey			14-1					-			
_		END OF TESTPIT (0.4 metres)			171		:			-			
-		Note: Backfilled at completion								- - - 1140			
1 - -										-			
- - -													
- 2 -										1139			
- - -													
- - - 3 -										- 1138— - -			
- - -													
- 4 -										- 1137— - -			
-													
Ē										-			
5			Contractor: NATO	1			Come	lotion Donth: 0.4 m		1130-			
			Drilling Rig Type: Public	Tiro	hackh	00	Completion Depth: 0.4 m						
		I IEIKA TECH		1116	Jacki	06	Comp	Jate 2017 September 10	8				
			Logged By: NH Reviewed By: JW					1 of 1	Completion Date: 2017 September 18 Page 1 of 1				

		North American	Testpit No) :	1	7A6TP1	5			
	โน	ngsten Corporation	Project: Phase III Environ	men	tal Site	Assessment	Projec	zt No: ENW.WENW03039-02 T	ask 00)2.2.2.6
		l td	Location: Cantung Mine				Groun	nd Elev: 1141.347 m		
			Tungsten, Northwest Terr	itorie	es		UTM:	540523.12 E; 6870736.871 N;	Z 9	
, Depth (m)	Method	Soil Description		Sample Type	Sample Number	■ Vapour readings (pp	omv)∎	Notes and Comments	Backfill	Elevation (m)
0	e	SAND (FILL) - gravelly, trace to some silt, damp, loose,	grey, fine to medium sand				200		\square	-
-	Backho				15-1					- - 1141—
		Note: Backfilled at completion								- - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - -										- 1138- - - - - - - - - - - - - - - - - - -
- - - - 5							1 -			-
			Contractor: NATC				Completion Depth: 0.4 m			
		TETRA TECH	Drilling Rig Type: Rubber	Tire	backh	00	Start [Date: 2017 September 18		
			Logged By: NH				Completion Date: 2017 September 18			
			Reviewed By: JW				Page	1 of 1		

		North American	Testpit No):	17	7A6TP16	5			
1	Γu	ngsten Corporation	Project: Phase III Environme	ent	al Site	Assessment	Projec	t No: ENW.WENW03039-02 T	ask 00)2.2.2.6
	-	btd	Location: Cantung Mine				Groun	d Elev: 1141.178 m		
			Tungsten, Northwest Territo	orie	s		UTM:	540505.69 E; 6870747.629 N;	Z 9	
Depth (m)	Method	Soil Description	F	sample lype	Sample Number	Vapour readings (pp	omv) 🔳	Notes and Comments	Backfill	Elevation (m)
0		SAND (FILL) grouply trace to some silt down losse	grov fine cond			50 100 150 2	200′			
- - - - -		SAND (FILL) - gravelly, trace to some slit, damp, loose,	grey, line sand		16-1		312	•		- 1141 - - - -
- - 1 - - -	Backhoe	- pocket of sand around buried utility			16-2	-				- - - 1140 - -
- - - - - 2		- silty END OF TESTPIT (2.0 metres) Note: Backfilled at completion			16-3	•		25% particles <75 μm (ie. smaller than sand particle)		
- - - - -										1139— - - - - - -
- 3 - - - - - -										- - 1138— - - - - - - - -
4 										- - 1137— - - - - - -
5										
			Contractor: NATC				Comp	letion Depth: 2 m		
		TETRA TECH	Drilling Rig Type: Rubber Ti	re	backh	De	Start D	Date: 2017 September 18		
	U		Logged By: NH				Comp	letion Date: 2017 September 2	1	
			Reviewed By: JW				Page	1 of 1		

			Testpit No:	18	8A	6TP1	7		
		North American	Project: Phase III Environmenta	al Site	Asse	ssment	Project No: I	ENW.WENW03039-03	
		Tungsten Corp.	Location: Cantung Mine				Ground Elev	r: 1142.209 m	
			Cantung, Northwest Territories				UTM: 54049	5.163 E; 6870752.058 N; Z 9	
Depth (m)	Method	Soil Description	n	Sample Type	Sample Number			Notes and Comments	Elevation (m)
						Vapour readi	ngs (ppmv) 🔳		
0		GRAVEL (FILL) - some sand trace silt well graded mo	ist light brown medium angular			100 200	300 400		1142.2 -
- 0.2		gravel, (200 mm thick)			17-11				
-		SAND (FILL) - some gravel, well graded, moist, brown,	fine to medium sand						1142.0-
- 0.4	Excavated				17-21				1141.8 -
- 0.6									1141.6 -
- 0.8					17-31				1141.4 -
- 1.0		END OF TESTPIT (1.00 metre) Location: Southwest corner of house, opposite side o Note: Testpit location surveyed by Tetra Tech on Aug	f house to the tank rust 28, 2018				<u>. </u>		1 141.2 - -
- 1.2									1141.0-
- 1.4							1		1140.8 -
	_	ר ר	Contractor: NATC				Completion	Depth: 1 m	
		TETRA TECH	Drilling Rig Type: Backhoe				Start Date: 2	2018 June 26	
	U		Logged By: BB				Completion	Date: 2018 June 26	
			Reviewed By: SS				Page 1 of 1		

		North American	Testpit No: 18A6TP18							
		North American	Project: Phase III Environmenta	al Site	Asse	essment	Project No: I	Project No: ENW.WENW03039-03		
		lungsten Corp.	Location: Cantung Mine				Ground Elev	r: 1141.035 m		
			Cantung, Northwest Territories				UTM: 54050	8.652 E; 6870751.398 N; Z 9		
Depth (m)	Method	Soil Description		Sample Type	Sample Number	Vanour roadi		Notes and Comments	Elevation (m)	
0						100 200	300 400			
-		 GRAVEL (FILL) - some sand, trace silt, well graded, mc gravel, (100 mm thick) SAND (FILL) - some gravel, well graded, moist, brown, construction siding, fine to coarse sand 	ist, light brown, medium angular wood inclusions (lumber), pieces of		18-1				1141.0	
- 0.2									1140.8 -	
- 0.4					18-21				1140.6 -	
_ 0.6	Excavated								-	
-									1140.4	
- 0.8									1140.2 -	
- 1.0		END OF TESTPIT (1.00 metre) Location: Northeast corner of house, 5 m from 17TP1 Note: Testpit location surveyed by Tetra Tech on Aug	6 just 28, 2018		18-31				- 	
- 1.2									- 1139.8 -	
- 1.4									1139.6	
			Contractor: NATC		·	·	Completion	Depth: 1 m		
		TETRA TECH	Drilling Rig Type: Backhoe			Start Date: 2018 June 27				
	U		Logged By: BB				Completion Date: 2018 June 27			
			Reviewed By: SS		Page 1 of 1					

		North Amorican	Testpit No: 18A6TP19						
			Project: Phase III Environmenta	al Site	e Asse	essment	Project No: I	ENW.WENW03039-03	_
		l'ungsten Corp.	Location: Cantung Mine				Ground Elev	r: 1141.371 m	
			Cantung, Northwest Territories				UTM: 54051	2.495 E; 6870743.424 N; Z 9	
Depth (m)	Soil Description		٦	Sample Type	Sample Number	■ Vapour readi 100 200	ngs (ppmv) ■ 300 400	Notes and Comments	Elevation (m)
		GRAVEL (FILL) - some sand, well graded, moist, brown	, medium angular gravel, (300 mm						
- 0.2		thick)			19-1				- 1141.2 -
- 0.4	ted	SAND (FILL) - gravelly, trace silt, well graded, moist, bro	own, fine to coarse sand		19-21				- 1141.0—
- 0.6	Excavat								1140.8 -
- 0.8									1140.6 -
- 1.0		END OF TESTPIT (1.00 metre) Location: southeast of 17A6PT16, near garage Note: Testpit location surveyed by Tetra Tech on Auc	ust 28, 2018		19-31				- 1140.4 - -
-									- 1140.2 -
- 1.2									-
- 1.4									1140.0-
1.5			Contractor: NATC				Completion	 Denth: 1 m	
			Drilling Rig Type: Backhoo				Start Date: 2	018 June 27	
							Start Date: 2018 June 2/		
			Reviewed By: SS				Page 1 of 1		

			Testpit No: 18A6TP20						
	North American		Project: Phase III Environmental Site Assessment				Project No: ENW.WENW03039-03		
		lungsten Corp.	Location: Cantung Mine				Ground Elev	/: 1141.646 m	
			Cantung, Northwest Territories				UTM: 54050	3.024 E; 6870744.675 N; Z 9	
Depth (m)	Soil Descriptior		ו	Sample Type	Sample Number	■ Vapour readi	ngs (ppmv) 🗖	Notes and Comments	Elevation (m)
0		GRAVEL (FILL) - some sand, well graded, moist, brown	, medium angular gravel, (250 mm			100 200	300 400		
- 0.2		thick)	niculun angulai gravei, (200 min		20-1				1141.6 -
									1141.4 -
- 0.4		SAND (FILL) - gravelly, trace silt, well graded, moist, bro	wn, fine to coarse sand		20-2				-
	ğ								1141.2 -
- 0.6	Excavate								-
									1141.0-
-									-
- 0.8									
- 10					20-31				1140.8 -
1.0		END OF TESTPIT (1.00 metre) Location: 3 m southwest of 17A6TP16							1140 6
_		Note: Testpit location surveyed by Tetra Tech on Aug	ust 28, 2018						-
- 1.2									
_									1140.4 -
- 1.4									1140.2 -
1.0	1		Contractor: NATC			1	Completion	Depth: 1 m	1
		TETRA TECH	Drilling Rig Type: Backhoe			Start Date: 2018 June 27			
			Logged By: BB				Completion Date: 2018 June 27		
			Reviewed By: SS		Page 1 of 1				

Photo 1: Looking northwest across town site. (September 21, 2017)

Photo 2: Excavating at former AST location at town site House #66. (September 18, 2017)

AEC 7

	AEC 7:	Town	Site	Road	Materials
--	---------------	------	------	------	------------------

Area Description								
Location	.ocation Roads around the town site homes and road between mine site buildings (office, admin, rec center and firehall). Area of investigation does not cover other mine site roads.							
Topography	Flat, minor uphill grade	from town site to mine s	site.					
Surface Drainage	Northeast.							
Background Waste rock was used along with gravel fill materials to construct the roads which are paved with asphalt. The source of waste rock and fill and their quantities is unknown. It is not known if the material used for construction of the townsite roads were analyzed for ARD potential prior to be placed during construction.								
Historical Assessme	ent Information							
EBA (2008) did not investigate the town site roads. EBA (2008) reports that interviews with individuals with purported knowledge of the Property indicate that waste rock rather than ore was used as a base for many roads at the Property and that a salt derivative has been used for deicing roads at the Property. EBA did not investigate soil or groundwater quality beneath the Property roads because the quality of these media was inferred to be comparable to the background soil and groundwater quality near the Property. Gartner Lee (2002) reported that waste rock was being crushed in crushing plant during visit for use in road/yard								
2017 Environmental	Site Assessment De		iaizing sulphiaes (d	called "red-eye").				
2017 Environmental Site Assessment Details								
Litility Locate SOP followed?								
EM 31 Geophysics Complete? No								
Number of test pits advanced 0								
Number of boreholes advanced 0								
Number of hand auger locations advanced 0								
Number of soil/rock same	oles collected for acid rock	k drainage/metal leachii	ng	3				
Number of soil samples submitted for laboratory chemical analysis 0								
Number of soil/rock samples submitted for acid rock drainage analysis 1								
Number of boreholes completed as groundwater monitoring wells 0								
Number of historical groundwater monitoring wells 0								
Number of groundwater samples collected 0								
Number of sediment and surface soil samples collected 0								
Geophysics Findings								
N/A								
Soil Investigation and Conditions								
N/A Surface visual investigation only.								
General Stratigraphy								
Description	Depth from (mbg)	Depth to (mbg)		Observations				
N/A	N/A	N/A	Unknown depth. materials of varie road.	Observed fill and waste rock ous fraction sizes in paved				
Combustible Vapour Co	Combustible Vapour Concentrations (CVCs)							
N/A								

AEC 7: Town Site Road Materials

Groundwater Conditions									
Broundwater Conditions									
Free Product	N/A								
2017 Environmental Site Assessment Results Summary									
General Site Observations									
Roads are generally constructed from a mix of fill and waste rock which has been combined into a mixed road surface which was paved with asphalt. No tailings were observed but may be present in small quantities.									
 Sample TSR-01 is an example in front of fire hall where road surface has opened, due to heaving, exposing underlying materials. 									
• . The roads have a	 The roads have a 0-1 m wide shoulder of unpaved material. 								
 The proportion of fil 	I and waste rock ma	terials is unknown and di	fficult to estimate.						
 Oxidized fragments which has partially 	in the road surface, weathered and oxidi	and referred to as "red-e zed.	ye", are likely sulphide-bearing waste rock material						
 The "red-eye" fragment investigation area. 	ents vary in proport	ion from 10-50% by surfa	ce area of road depending on location within the						
Soil: Petroleum Hydr	ocarbons, Metals/F	Routine Parameters, Oth	her PCOCs						
N/A									
Soil: Metals									
N/A – not tested during	g this program; histo	rical data for waste rock a	and fill material are available.						
Soil: Other PCOCs									
N/A									
Soil: Acid Rock Drain	nage								
(see Geochemistry Re	port, Tetra Tech, 20	19g)							
Groundwater: Petrol	eum Hydrocarbons	, Metals/Routine Param	eters, Other PCOCs						
N/A									
Sediment: Petroleum N/A	Hydrocarbons, Me	stals/Routine Parameter	rs, Other PCOCs						
Surface Water: Petro	leum Hydrocarbon	s, Metals/Routine Parar	neters, Other PCOCs						
N/A	-								
Grainsize Analysis									
N/A									
Environmental Concerns									
Location in AEC	Potential Source(s)	Identified Contaminated Media	Parameters Assessed and Contaminant(s) of Concern (COCs; bold & underline)						
Roads and building pad foundationWaste rockRoad materialsLimited potential for acid generation and metal leaching from mine rock material contained in roads.									
Discussion (Significance of the Results)									
 See geochemistry r 	eport (Tetra Tech, 2	020e)							
Attachments									
Figure A7-1 – Acid Ro	ck Drainage Results								
Photographs									

Photo 1: Typical oxidizing sulphides ("red-eye") from waste rock material used in asphalt around townsite. Mixed waste rock and fill material. (September 28, 2017)

Photo 2: Location of sample TSR-01 (alternatively 17A7-01) outside of firehall building. Exposed soil/fill material where road surface has heaved and opened up. (September 28, 2017)

Photo 3: Road area between House 64 and 65 where oxidation of road materials is slightly more pervasive. (September 28, 2017)

AEC 8

Area Description							
Location	Below the Fire Hall	and Tailings Pond 2 o	n the Flat River floodplain.				
Topography	Generally flat on su	Generally flat on surface with a slight slope to the northeast beyond the pond.					
Surface Drainage	northeast into the F	lat River.					
Background	AEC 8 is a historica and is now fed by r	al sewage settling pone unoff from the mine an	d. In 1980s, pond ceased to be a s d overland surface flow.	sewage settling pond			
Historical Assess	ment Informatio	n					
	Number of surface	soil (sediment) sample	es	6			
Previous Phase II	Number of monitori	ng wells installed		1			
Environmental Site	Number of soil (sec	liment) samples analy:	zed	6			
Results	Number of soil (sec	liment) samples with p	etroleum hydrocarbons impacts	4			
(EBA, 2008)	Number of soil (sec	liment) samples with n	netal impacts	6			
	Number of groundv	vater samples with me	tal impacts	1			
Comments: Pond (la metal exceeding guid	goon) sediment conta elines (PHCs not ass	ained PHCs and metal essed then).	s exceeding guidelines. Groundv	vater also contained			
2017/2018 Enviro	nmental Site Ass	essment Details					
Environmental Site	Assessment Scope						
Utility Locate SOP fol	lowed?			No			
EM 31 Geophysics Co	omplete?			No			
Number of test pits advanced 0							
Number of boreholes	advanced			0			
Number of hand auge	Number of hand auger locations advanced 0						
Number of soil sample	es submitted for labo	ratory chemical analys	is	0			
Number of boreholes	completed as monito	oring wells		0			
Number of existing me	onitoring wells			3			
Number of groundwat	er samples collected			1 (2017), 1 (2018)			
Number of sediment a	and surface water sa	mples collected		3 (2017)			
Geophysics (EM 31	Apparent Terrain Co	onductivity) Findings					
 N/A 							
Sediment Investigat	ion and Conditions						
Maximum Depth of Investigation	0.18 mbgs (Octobe	r 3, 2017)					
Stratigraphy							
Description	Depth from (mbg)	Depth to (mbg)	Observatio	ns			
Silt	0	0.05 Light brown, saturated.					
Sand	0.050.18Mine Tailings. Dark grey. Oxidized @ 0.11 mbg at 17A8SS1. Strong PHC odour at 17A8SS3.						
Combustible Vapour Concentrations (CVC)							
Ranged from less than the instrument detection limit to 40 ppm in sediment sample 17A8SS3.							

AEC 8: Polishing Pond

Groundwater Condit	Groundwater Conditions								
Depth to	253 mbgs (October 4, 2017), 2,18 mbgs (June 27, 2018)								
Groundwater	2.55 mbgs (October 4, 2017). 2.16 mbgs (June 27, 2016)								
Free Product	PHC free product not observed.								
2017/2018 Environm	2017/2018 Environmental Site Assessment Summary								
 Figure A8-1 shows 	sediment sampling locations.								
 Figure A8-2 shows 	groundwater and surface water sampling locations.								
 Table A8-1 summa 	rizes sediment lab results relative to guidelines.								
 Table A8-2 summa 	rizes groundwater lab results relative to guidelines.								
 Table A8-3 summa 	rizes surface water lab results relative to guidelines.								
General Site Observ	ations								
 Surface water cove 	ered entire AEC at the time of the assessment (larger area than shown on Figures A8-1 and A8-2).								
 Very slight sheen o 	bserved on the water surface.								
 Strong PHC odour 	and sheen from sediments near the inlet channel (sample 17A8SS3).								
 Groundwater monit 	toring well adjacent to pond (RMW6) was destroyed. Pipe cut off at surface.								
Sediment: Petroleun	n Hydrocarbons (PHCs, PAHs)								
 Laboratory results I 	less than guidelines with exception of:								
 PHCs greater the 	an guidelines at 17A8SS1 and 17A8SS3.								
 PAHs greater that 	an guidelines at 17A8SS3.								
Sediment: Metals									
 Laboratory results I 	less than guidelines with exception of:								
 Arsenic exceede concentration. 	ed guidelines at 17A8SS1, 17A8SS2, and 17A8SS3 but all less than preliminary background								
 Cadmium excee concentration. 	ded guidelines at 17A8SS1, 17A8SS2, and 17A8SS3 and greater than preliminary background								
 Copper exceede concentration. 	ed guidelines at 17A8SS1, 17A8SS2, and 17A8SS3 and greater than preliminary background								
 Mercury exceeded 	ed guidelines at 17A8SS3.								
 Zinc exceeded g concentration. 	uidelines at 17A8SS1, 17A8SS2, and 17A8SS3 and greater than preliminary background								
Sediment: Other PC	OCs (Routine Parameters, Nutrients - Nitrogen, PCBs)								
 Concentrations less 	s than detection limits and/or guidelines.								
Groundwater: Petrol	eum Hydrocarbons (PHCs and PAHs)								
2017 and 2018									
 Concentrations less 	s than detection limits and guidelines.								
Groundwater: Metals	s/Routine Parameters								
2017									
 Laboratory results I 	less than guidelines with exception of:								
 pH, fluoride, sulp zinc greater thar 	phate and dissolved metals: aluminum, beryllium, cadmium, chromium, copper, iron, silver, and n guidelines at RMW1.								
 Sulphate, dissolv 	ved cadmium and dissolved iron greater than guidelines at S4-27-9.								
 Fluoride greater 	than guidelines at S4-27-9 but less than background quality.								

2018

- S4-27-9 was not sampled as a part of the 2018 SNP program.
- Laboratory results less than guidelines with exception of:
 - pH was significantly outside (less than) guidelines at RMW1.
 - TDS, fluoride, sulphate and dissolved metals: aluminum, beryllium, cadmium, chromium, cobalt, copper, iron, manganese, nickel, selenium, silver, uranium, and zinc greater than guidelines at RMW1.

AEC 8: Polishing Pond

- Fluoride, sulphate, and dissolved cadmium, greater than preliminary background concentrations at RMW1.

Groundwater: Other PCOCs (Cyanide, Phenols and VOCs)

- · Laboratory results less than detection limits and guidelines with exception of:
 - Detection limit for VOC 1,2-dibromoethane was greater than guidelines.

Surface Water: Petroleum Hydrocarbons

• All PHCs and PAHs concentrations less than detection limits and guidelines.

Surface Water: Metals/Routine Parameters

- Laboratory results less than guidelines with exception of:
 - Fluoride, total boron and total iron at 17A8SW1.
 - Fluoride, total suspended solids (TSS), total boron and total iron at 17A8SW2.
 - Fluoride, TSS, and total iron at 17A8SW2.

Surface Water: Other PCOCs (Cyanide, Nutrients, BOD, Bacteriological, and PCBs)

Laboratory chemical less than the guidelines.

Environmental Concerns

Location in AEC	Potential Source(s)	Identified Contaminated Media	Parameters Assessed and Contaminant(s) of Concern (COCs; bold & underline)
Surface of whole area	PHCs, glycols and VOCs from the mining operations, metals in tailings, nutrients in sediment from historic sewage	Sediment; Groundwater; Surface Water	Sediment: metals, petroleum hydrocarbons (PHCs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) Groundwater: dissolved metals, routine parameters, nutrients, cyanide, PHCs, glycols, PAHs, phenols, VOCs Surface Water: total metals, routine parameters, cyanide, nutrients, Biological Oxygen Demand (BOD), biological, PHCs, PAHs, PCBs

Discussion (Significance of the Results)

Sediment:

- Based on the current results there appears to be one PHC affected area:
- Sediments near the inlet channel from the mine discharge (source of PHCs not obvious; could be from upland sources).
- PHCs and PAHs impacts measured near the inlet channel have not been vertically or horizontally delineated.
- Cadmium and zinc concentrations similar at all three testing locations. The concentrations were similar to other tailings samples at other locations on the site.
- Arsenic, cadmium, and mercury concentrations were highly variable at the three locations. This was also commonly
 identified in other tailings samples at the site.
- PCBs not detected and no longer considered a PCOC in soil at AEC 8.

Groundwater:

<u>2017</u>

- Groundwater monitoring wells are located down-gradient and cross-gradient from the AEC.
- Monitoring well RMW6 is destroyed and there was no historical data available for SNC well S4-27-1.
- Monitoring well RMW1 contained very little water and was slow to recharge.
- Based on the logs, and groundwater elevations, we infer that the MWs all completed in the same hydrostratigraphic unit.
- Several metals parameters exceeded regulatory guidelines at RMW1. This may be in part due to poor quality of the sample from a poor recharging in the well or from its closer proximity to Tailings Pond 2. Well S4-27-9 which is located closer to the polishing pond, had fewer exceedances in 2017 (only sulphate, cadmium and iron).
- PCHs, PAHs, phenols and VOCs less than laboratory detection limits and/or guidelines; no longer COCs in groundwater at AEC8.

AEC 8: Polishing Pond

<u>2018</u>

- Monitoring well RMW1 contained very little water and was slow to recharge.
- Several metals parameters exceeded regulatory guidelines at RMW1. This may be in part due to poor quality of the sample from a poor recharging in the well or from its closer proximity to Tailings Pond 2.

Surface Water:

<u>2017</u>

- Total coliforms were present in all surface water samples. *E. coli* present at 17A8SW2; however there are no
 applicable guidelines for these parameters at the site.
- TSS, total boron and total iron marginally exceed the guidelines. Fluoride is the only parameter that is exceeds the guidelines by more than one order of magnitude.
- PHCs, PAHs, BOD, and PCBs all less than laboratory detection limits and/or guidelines; no longer PCOCs in surface water at AEC8.

Attachments
Figure A8-1 – Soil and Sediment Results
Figure A8-2 – Groundwater and Surface Water Results
Table A8-1 – Sediment Analytical Results
Table A8-2 – Groundwater Analytical Results
Table A8-3 – Surface Water Analytical Results
Photographs

LEGEND

- Area of Environmental Concern (AEC)
- 2017 Hand Auger (HA)
- 2017 Surface Water/Sediment Sample (SW/SS)
- Historical Monitoring Well
- Historical Shallow Soil Sample
- Historical Surface Water Sample

Soil/Sediment Analytical Results

- O PHC Impacts
- No PHC Impact
- Metals exceedance of preliminary background concentrations, or in the absence of background concentrations, exceedance of CCME guidelines
- Building
- Road
- ---·Ditch
- Watercourse
- Contour (2 m)

ģ

DATE

June 22, 2020

NOTES All locations and area boundaries are approximate. Base data source: Data provided by INAC (2013). Drone imagery at the borrow pit, tailings ponds, and interceptor ditch collected in 2018.

PROJECT NO.

ENW.WENW03039-03

LEGEND

- Area of Environmental Concern (AEC)
- 2017 Hand Auger (HA)
- 2017 Surface Water/Sediment Sample (SW/SS)
- Historical Monitoring Well
- Historical Shallow Soil Sample
- Historical Surface Water Sample
- --> Inferred Groundwater Flow Direction
- Groundwater Contour (1 m asl; Fall 2017)

2017/2018 Groundwater Analytical Results

Samples contain parameters that exceeded the preliminary background concentrations, or in the absence of background concentrations, FIGWQG Δ

2018 Surface Water Analytical Results

Samples contain parameters that met the Flat River WQOs, or in the absence of WQOs, CCME WQG for the protection of AW or EQGASW

----- Building

----- Road

---· Ditch

- Watercourse
- Contour (2 m)

FIGWQG	Federal Interim Groundwater Quality Guidelines
CCME	Canadian Council of Ministers of the Environment
WQG	Water Quality Guidelines
AW	Freshwater Aquatic Life
FOGASW	Environmental Quality Guidelines for Alberta Surface
EQGASW	Waters

OFFICE Tt-VANC

June 22, 2020

DATE

ģ

NOTES All locations and area boundaries are approximate. Base data source: Data provided by INAC (2013). Drone imagery at the borrow pit, tailings ponds, and interceptor ditch collected in 2018.

DWNCKDAPVDREVSLBBSS0

ENW.WENW03039-03

PROJECT NO.

A8-2

540600

Table A8-1 - Sediment Analytical Results

		Canada Wide PHC - Res/Park	Canada Wide PHC - Agricultural	CCME Sediment - Fresh ISQG ²		AEC 8				
Boromotor	Unit				CCME Sediment - Fresh PEL ³	17A8SS1	17A8SS2	17A8SS3	17A8SSDUP1 (17A8SS3)	
Parameter		Coarse	Coarse ¹			2017-10-03	2017-10-03	2017-10-03	2017-10-03	
			Sediment Ty	/pe		Sand, fine, orange, (Tailings) Sand, fine, grey (Tailings) Sand, fine, grey (Tailings)				
Routine / Salinity	1									
pH Moisture	pH Units	NG	NG	NG	NG	7.45	7.1	7.54	7.33	
Nutrients	70		NO	110			55.4	24.0	20.2	
Nitrogen (Total)	%	NG	NG	NG	NG	0.15	0.22	0.03	0.03	
Metals										
Antimony	mg/kg	NG	NG	NG	NG	0.9	3.2	0.6	0.5	
Arsenic	mg/kg	NG	NG	5.9 NG	17 NG	18.4	32.7	<u>8.1</u>	<u>7.6</u> 103	
Bervllium	mg/kg	NG	NG	NG	NG	2.2	1	1.6	1.5	
Cadmium	mg/kg	NG	NG	0.6	3.5	<u>1.06</u>	<u>1.97</u>	2.21	<u>2.09</u>	
Chromium	mg/kg	NG	NG	37.3	90	12	21	21	19	
Cobalt	mg/kg	NG	NG	NG	NG	16.1	16.6	23.4	22.5	
Copper	mg/kg	NG	NG	35.7	197	423	<u>175</u>	1160	1130	
Lead Mercury	mg/kg	NG	NG	35	91.3	10.8	20.2	16.5	13.7 02	
Molvbdenum	ma/ka	NG	NG	NG	NG	2.6	6.1	5.6	5.1	
Nickel	mg/kg	NG	NG	NG	NG	22.7	53.3	16.1	15.4	
Phosphorus	mg/kg	NG	NG	NG	NG	309	656	512	603	
Selenium	mg/kg	NG	NG	NG	NG	1.8	1.5	3.3	3.2	
	mg/kg	NG	NG	NG	NG	<0.5	<0.5	0.6	0.6	
	mg/kg	NG	NG	NG	NG	0.2	0.3	0.5	0.5	
Uranium	mg/kg	NG	NG	NG	NG	2.7	3.8	2.4	2.4	
Vanadium	mg/kg	NG	NG	NG	NG	22	76	30	30	
Zinc	mg/kg	NG	NG	123	315	<u>225</u>	<u>307</u>	<u>296</u>	<u>274</u>	
Hydrocarbons				1						
Benzene	mg/kg	NG	NG	NG	NG	<0.005	<0.005	< 0.005	< 0.005	
I oluene Ethylbenzene	mg/kg	NG	NG	NG	NG	<0.05	<0.05	<0.05	<0.05	
Xvlene (m)	mg/kg	NG	NG	NG	NG	<0.01	<0.01	<0.02	<0.01	
Xylene (o)	mg/kg	NG	NG	NG	NG	< 0.02	<0.02	<0.02	<0.02	
Xylenes Total	mg/kg	NG	NG	NG	NG	<0.05	<0.05	<0.05	<0.05	
F1 (C6-C10)	mg/kg	NG	NG	NG	NG	<10	<10	<10	<10	
F1 (C6-C10 / BTEX CORRECTED)	mg/kg	30	130	NG	NG	<10	<10	<10	<10	
F2 (C10-C18) F3 (C16-C34)	mg/kg	300	1300	NG	NG	<40 466	< <u>20</u> 86	4680	104 5950	
F4: (C34-C50)	mg/kg	2800	5600	NG	NG	181	26	3640	6040	
Polycyclic Aromatic Hydrocarbons (P	AHs)	1				1	11		1	
IACR (CCME)	mg/kg	NG	NG	NG	NG	<0.6	<0.6	<3	<3	
B(a)P Total Potency Equivalent	mg/kg	NG	NG	NG	NG	< 0.05	<0.05	<0.2	<0.2	
1-Methylnaphthalene	mg/kg	NG	NG	NG	NG	<0.005	< 0.005	<0.02	<0.02	
Acenaphthene	mg/kg	NG	NG	0.0202	0.201	<0.005	<0.005	<0.02	<0.02	
Acenaphthylene	mg/kg	NG	NG	0.00587	0.128	< 0.005	< 0.005	<0.02	<0.02	
Anthracene	mg/kg	NG	NG	0.0469	0.245	< 0.004	< 0.004	<0.02	<0.02	
Benz(a)anthracene	mg/kg	NG	NG	0.0317	0.385	<0.03	<0.03	<0.2	<0.2	
Benzo(a) pyrene	mg/kg	NG	NG	0.0319	0.782	<0.03	<0.03	<u><0.2</u>	<u><0.2</u>	
Benzo(b)Iluoranthene	mg/kg	NG	NG	NG NG	NG	<0.05	<0.05	<0.2	<0.2	
Benzo(g h i)pervlene	mg/kg	NG	NG	NG	NG	<0.05	<0.05	<0.03	<0.05	
Benzo(k)fluoranthene	mg/kg	NG	NG	NG	NG	< 0.05	< 0.05	<0.2	<0.2	
Chrysene	mg/kg	NG	NG	0.0571	0.862	<0.05	<0.05	<u><0.2</u>	<u><0.2</u>	
Dibenz(a,h)anthracene	mg/kg	NG	NG	0.00622	0.135	<0.005	<0.005	<u><0.02</u>	<u><0.02</u>	
Fluoranthene	mg/kg	NG	NG	0.111	2.355	0.01	<0.01	<u>0.24</u>	<u>0.19</u>	
Fluorene	mg/kg	NG	NG	0.0212	0.144	<0.02	<0.02	<u><0.1</u>	<u><0.1</u>	
Naphthalene	ma/ka	NG	NG	0.0346	0.391	<0.02	<0.02	<0.02	<0.02	
Phenanthrene	mg/kg	NG	NG	0.0419	0.515	< 0.02	<0.02	<u><0.1</u>	<u><0.1</u>	
Pyrene	mg/kg	NG	NG	0.053	0.875	<0.01	<0.01	0.29	0.33	
Benzo(j)fluoranthene	ug/g	NG	NG	NG	NG	<0.05	<0.05	<0.2	<0.2	
Polychlorinated Biphenyls (PCBs)	<i>r</i>					0.05	0.05	0.05	0.05	
Aroclor 1242	mg/kg	NG	NG	NG 0.06	NG 0.34	<0.05	<0.05	<0.05	<0.05	
Aroclor 1260	ma/ka	NG	NG	NG	NG	<0.05	<0.05	<0.03	<0.05	
PCBs (Sum of total)	mg/kg	NG	NG	NG	NG	< 0.05	<0.05	<0.05	< 0.05	
			·	•	Sample Code	8800408	8800418	8800421	8800425	
				L	ab Report Number	17Y269763	17Y269763	17Y269763	17Y269763	

Notes:

¹ - Canadian Council of Ministers of the Environment (CCME) Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (CCME 2008)

² - Canadian Council of Ministers of the Environment (CCME) Sediment Quality Guidelines for the Protection of Aquatic Life - Interim Sediment Quality Guidelines (ISQG) for Freshwater (CCME 1999)
 ³ - Canadian Council of Ministers of the Environment (CCME) Sediment Quality Guidelines for the Protection of Aquatic Life - Probable Effect Level (PEL) for Freshwater (CCME 1999)

Italic and Underlined - Laboratory detection limit is greater than standard or guideline shown

NG - No guideline

Bold and Underline - Exceeds CCME ISQG

Bold and Shaded - Exceeds CCME PEL and ISQG

Bold in Italics - Exceeds CCME Canada-Wide Standards for Petroleum Hydrocarbon Guideline

N/A - Not applicable

"-" Not analyzed

Table A8-2: Groundwater Analtyical Results

	AEC 8					
	Location	RM	IW1			
	Field ID	RMW1	RMW1			
				Sample Date	5-Oct-2017	2-Jul-2018
			Laborato	ory Report Number	17V270219	18Y358442
			Lab	oratory Sample ID	8804715	9378777
Parameter	Unit	Federal Inter	im Guideline ¹			
		Agricultural	Res / Park	Concentrations		
Field Parameters		•				
Field Temperature	0 ⁰ C	-	-	-	6.6	6.7
Field pH	pH Units	6.5-9	6.5-9	-	3.3	2.55
Field Conductivity	μS/cm	-	-	-	-	6242
Routine						
pH	pH Units	6.5-9	6.5-9	-	3.03	2.58
Electrical Conductivity (EC)	μS/cm	-	-	-	7540	6330
Total Dissolved Solids (TDS)	mg/L	3000	-	-	11,800	8960
Hardness as CaCO ₃	mg/L	-	-	-	2020	2530
Alkalinity (total as CaCO ₃)	mg/L	-	-	-	<1	<1
Bromide	mg/L	-	-	-	<0.5	0.08
	mg/L	100	120	-	9.2	3.98
	mg/L	0.12	0.12	0.39	<u>4.6</u>	<u>16</u>
	mg/L	100	100	182	<u>8970</u>	<u>17,700</u>
Nutrients		0.004.004.2	0.004.004.2			0.44
	mg/L	0.021-231 -	0.021-231 -	-	-	0.41
Nitrite (as $NO_3 - N$)	mg/L	13	13	-	<0.05	<0.05
Nitragon (Total)	mg/L	0.06	0.06	-	<0.05	<0.005
	IIIg/L	-	-	-	-	1.15
Cyanide (SAD)	ma/l	_	_		<0.002	<0.002
Cvanide (WAD)	mg/L			-	<0.002	
Dissolved Metals	ling/L			-	40.002	
Aluminum	ma/l	0.005 / 0.1 3	0.005 / 0.1 3	-	46.4	259
Antimony	mg/L	2	2	-	<0.0002	<0.0002
Arsenic	ma/L	0.005	0.005	-	0.0029	0.0049
Barium	mg/L	0.5	0.5	-	0.0157	0.003
Beryllium	mg/L	0.0053	0.0053	-	0.0344	0.136
Boron	mg/L	0.5	1.5	-	0.2	0.274
Cadmium	mg/L	0.00012	0.00012	0.000047	<u>0.00309</u>	<u>0.022</u>
Calcium	mg/L	-	-	-	372	420
Chromium	mg/L	0.0089	0.0089	-	0.0092	0.0651
Cobalt	mg/L	0.05	-	-	0.0912	0.356
Copper	mg/L	0.002	0.002	-	3.69	21.8
Iron	mg/L	0.3	0.3	-	2780	1250
Lead	mg/L	0.001-0.002 4	0.001-0.002 4	-	0.0002	0.00024
Lithium	mg/L	-	-	-	0.481	0.802
Magnesium	mg/L	-	-	-	266	360
Manganese	mg/L	0.2	-	-	15.7	24.1
Mercury	mg/L	0.000016	0.000016	-	<0.00001	<0.00001
Molybdenum	mg/L	0.073	0.073	-	0.00041	0.00015
Nickel	mg/L	0.025-0.083 4	0.025-0.083 4	-	0.07	0.256
Potassium	mg/L	-	-	-	23.9	4.3
Selenium	mg/L	0.001	0.001	-	0.0008	0.0026
Silver	mg/L	0.00025	0.00025	-	0.00011	0.00044
Sodium	mg/L	-	-	-	11.4	27.9
Strontium	mg/L	-	-	-	-	0.556
	mg/L	0.0008	0.0008	-	0.00019	0.00048
	mg/L	-	-	-	-	0.00019
	mg/L	0.1	0.1	-	0.0043	0.0115
	mg/L	-	-	-	-	0.0119
	mg/L	0.01	0.015	-	0.00955	0.0389
	mg/L	0.1	0.01	-	0.0046	0.0128
ZING	∣ mg/∟	0.01	0.01	-	0.72	1.00

Notes:

¹ Environment Canada (June 2016). Guidance Document on Federal Interim Groundwater Quality Guidelines (FIGQG) for Federal Contaminated Sites, for fine and coarse textured soil under Agricultural and Residential/Parkland land use

² Guideline varies with pH and temperature

3 Octobella in the second seco

- [°] Guideline varies with pH
- ⁴ Guideline varies hardness
- "-" No applicable guideline or not analyzed
- **BOLD** Greater than Guideline
- <u>RED</u> Greater than Preliminary Background Concentration
- $\underline{\textit{Italic}}$ Detection limit greater than guideline

Table A8-2: Groundwater Analtyical Results

AEC						C 8
	RMW1					
	RMW1	RMW1				
				Sample Date	5-Oct-2017	2-Jul-2018
	ory Report Number	17V270219	18Y358442			
	boratory Sample ID	8804715	9378777			
Parameter	Unit	Federal Inter	im Guideline ¹	Preliminary Background		
		Agricultural	Res / Park	Concentrations		
Hydrocarbons						
Benzene	mg/L	0.088	0.14	-	<0.0005	<0.0005
Toluene	mg/L	0.083	0.083	-	<0.0005	<0.0005
Ethylbenzene	mg/L	3.2	11	-	<0.0005	<0.0005
Xylene (m)	mg/L	-	-	-	<0.0005	<0.0005
Xylene (o)	mg/L	-	-	-	<0.0005	<0.0005
Xylenes Total	mg/L	3.9	3.9	-	<0.001	<0.001
Styrene	mg/L	0.072	0.072	-	<0.0005	-
F1 (C ₆ -C ₁₀)	mg/L	-	-	-	<0.1	<0.1
F1 (C ₆ -C ₁₀) - BTEX	mg/L	0.81	0.81	-	<0.1	<0.1
F2 (C ₁₀ -C ₁₆)	mg/L	1.3	1.3	-	<0.1	<0.1
F3 (C ₁₆ -C ₃₄)	mg/L	-	-	-	<0.1	<0.1
F4 (C ₂₄ -C ₅₀)	ma/L	-	-	-	<0.1	<0.1
VH ₆₋₁₀	ma/L	-	-	-	<0.1	-
VPH	ma/L	-	-	-	<0.1	-
Givcols			1			
Diethylene glycol	ma/l	-	_	-	<5	-
Ethylene glycol	mg/L	190	190	· ·	<10	-
Propylene glycol	mg/L	500	500	· ·	<10	-
Tetraethylene Glycol	mg/L	-	-		<10	
	mg/L				<10	
Polycyclic Aromatic Hydrocarbons (PAHs)	mg/L				10	
Acenanhthene	ma/l	0.0058	0.0058		<0.00002	_
Acenaphthene	mg/L	0.0050	0.0000	-	<0.00002	
Acridine	mg/L	0.0005	0.040	-	<0.00002	
Anthracana	mg/L	0.00003	0.00003	-	<0.00003	-
Panz/a)anthrasana	mg/L	0.000012	0.000012	-	<0.00001	-
	mg/L	0.000018	0.000018		<0.00001	-
Benzo(a) pyrene	mg/L	0.00001	0.00001		<0.00001	-
	mg/L	-	-	-	<0.00001	-
	mg/L	0.00046	0.00046	-	<0.00001	-
Benzo(g,n,i)perylene	mg/L	0.00017	0.00017	-	<0.00001	-
	mg/L	-	-	-	<0.00001	-
Benzo(K)fluorantnene	mg/L	0.00048	0.00048	-	<0.00001	-
Chrysene	mg/L	0.0001	0.0001	-	<0.00001	-
Dibenz(a,h)anthracene	mg/L	0.00026	0.00026		<0.00001	-
	mg/L	0.00004	0.00004		<0.00002	-
Huorene	mg/L	0.003	0.003		< 0.00002	-
Indeno(1,2,3-c,d)pyrene	mg/L	0.00021	0.00021		<0.00001	-
Naphthalene	mg/L	0.0011	0.0011	-	<0.00005	-
Phenanthrene	mg/L	0.0004	0.0004		<0.00004	-
Pyrene	mg/L	0.000025	0.000025	-	<0.00002	-
Quinoline	mg/L	0.0034	0.0034	-	<0.0001	-
Phenols						
Phenols	mg/L	-	-	-	0.005	-

Notes:

¹ Environment Canada (June 2016). Guidance Document on Federal Interim Groundwater Quality Guidelines (FIGQG) for Federal Contaminated Sites, for fine and coarse textured soil under Agricultural and Residential/Parkland land use

² Guideline varies with pH and temperature

³ Guideline varies with pH

⁴ Guideline varies hardness

"-" No applicable guideline or not analyzed

BOLD - Greater than Guideline

RED - Greater than Preliminary Background Concentration

 $\underline{\textit{Italic}}$ - Detection limit greater than guideline

Table A8-2: Groundwater Analtyical Results

	AEC 8					
	RMW1					
	Field ID	RMW1	RMW1			
	Sample Date	5-Oct-2017	2-Jul-2018			
			Laborate	ory Report Number	17V270219	18Y358442
	oratory Sample ID	8804715	9378777			
Parameter	Parameter Unit Federal Interim Guideline ¹ Preliminar Backgroun					
Volatile Organic Compounds (VOCs)						
Acetone	mg/L	13	13	-	<0.01	-
Bromodichloromethane	mg/L	8.5	8.5	-	<0.001	-
Bromoform	mg/L	0.38	0.38	-	<0.001	-
Bromomethane	mg/L	0.0056	0.0056	-	<0.001	-
2-Butanone (MEK)	mg/L	150	150	-	<0.01	-
Carbon tetrachloride	mg/L	0.00056	0.00056	-	<0.0005	-
Chlorobenzene	mg/L	0.0013	0.0013	-	<0.001	-
Chloroethane	mg/L	-	-	-	<0.001	-
Chloroform	mg/L	0.0018	0.0018	-	<0.001	-
Chloromethane	mg/L	-	-	-	<0.001	-
Dibromochloromethane	mg/L	0.1	1.1	-	<0.001	-
1,2-Dibromoethane	mg/L	0.00025	0.00025	-	<u><0.0003</u>	-
1,2-Dichlorobenzene	mg/L	0.0007	0.0007	-	<0.0005	-
1,3-Dichlorobenzene	mg/L	0.042	0.042	-	<0.0005	-
1,4-Dichlorobenzene	mg/L	0.026	0.026	-	<0.0005	-
1,1-Dichloroethane	mg/L	0.32	0.32	-	<0.001	-
1,2-Dichloroethane	mg/L	0.005	0.01	-	<0.001	-
1,1-Dichloroethene	mg/L	0.039	0.039	-	<0.001	-
1,2-Dichloroethene (cis)	mg/L	0.0016	0.0016	-	<0.001	-
1,2-Dichloroethene (trans)	mg/L	0.0016	0.0016	-	<0.001	-
1,2-Dichloropropane	mg/L	0.016	0.016	-	<0.001	-
1,3-Dichloropropene [cis]	mg/L	-	-	-	<0.001	-
1,3-Dichloropropene [trans]	mg/L	-	-	-	<0.001	-
Methyl t-Butyl Ether (MTBE)	mg/L	-	-	-	<0.001	-
Methylene Chloride	mg/L	0.05	0.098	-	<0.001	-
4-Methyl-2-pentanone (MIBK)	mg/L	58	58	-	<0.01	-
1,1,1,2-Tetrachloroethane	mg/L	0.0033	0.0034	-	<0.001	-
1,1,2,2-Tetrachloroethane	mg/L	0.0032	0.0032	-	<0.0008	-
Tetrachloroethene	mg/L	0.012	0.012	-	<0.001	-
1,2,4-Trichlorobenzene	mg/L	0.0054	0.0054	-	<0.001	-
1,1,1-Trichloroethane	mg/L	0.64	0.64	-	<0.001	-
1,1,2-Trichloroethane	mg/L	0.0047	0.0047	-	<0.001	-
Trichloroethene	mg/L	0.02	0.02	-	<0.001	-
Trichlorofluoromethane	mg/L	-	-	-	<0.001	-
Trihalomethanes	mg/L	-	-	-	<0.002	-
Vinyl chloride	mg/L	0.0011	0.0011	-	<0.001	-

Notes:

¹ Environment Canada (June 2016). Guidance Document on Federal Interim Groundwater Quality Guidelines (FIGQG) for Federal Contaminated Sites, for fine and coarse textured soil under Agricultural and Residential/Parkland land use

² Guideline varies with pH and temperature

³ Guideline varies with pH

⁴ Guideline varies hardness

"-" No applicable guideline or not analyzed

BOLD - Greater than Guideline

RED - Greater than Preliminary Background Concentration

 $\underline{\textit{Italic}}$ - Detection limit greater than guideline

Table A8-3: Surface Water Anlaytical Results

				Environmental			AEC 8		C 8				
Parameter	Unit	RDI	CCME - AW	Quality Guidelines for	Discharge	17 A 8	SW1	1748	SW2	17A8	SW3	17A8SWDUP	1 (17A8SW3)
i ununcer	- Onit		(Freshwater) ¹	Alberta Surface	Quality Criteria ³								
				Waters ²		2017-10-03	2017-10-05	2017-10-03	2017-10-05	2017-10-03	2017-10-05	2017-10-03	2017-10-05
Field Parameters													
Field Temperature	°C		NG	NG	NG	5.2	-	5.2	-	5.3	-	-	
Field Conductivity	pH Units		6.5-9 NG	6.5-9 NG	6.5-9 NG	8.12	-	8.13	-	8.14	-	-	-
Cvanide	μο/οπ	1	110		NO	1437	-	1400	-	1400	_	-	
Cyanide (SAD)	mg/L	0.002	NG	NG	NG	-	<0.002	-	<0.002	-	<0.002	-	<0.002
Cyanide (WAD)	mg/L	0.002	NG	NG	NG	-	<0.002	-	<0.002	-	<0.002	-	<0.002
Routine / Salinity													
pH	pH Units	0.01	6.5-9	6.5-9	6.5-9	8.01	-	8.04	-	8.08	-	8.07	
Electrical Conductivity (EC)	µS/cm	1	NG	NG	NG	1420	-	1420	- 7	1450	-	1430	-
Total Dissolved Solids (TDS)	mg/L	5	NG	NG	/ NG	- 1090	-	- 1080	-	- 1090	-	- 1100	<u> </u>
Hardness as CaCO3	mg/L	0.1	NG	NG	NG	654	-	654	-	674	-	658	-
Hardness as CaCO3 (Filtered)	mg/L	0.1	NG	NG	NG	-	-	-	-	-	-	-	-
Alkalinity (total as CaCO3)	mg/L	1	NG	NG	NG	125	-	123	-	126	-	127	-
Bromide	mg/L	0.05	NG	NG	NG	<0.05	-	<0.05	-	<0.05	-	<0.05	-
Calcium Carbonate	mg/L	0.05	NG	NG	NG	200	-	200	-	206	-	201	
Chloride	mg/L	0.05	120	120 NG	366	12.2	-	12.2	-	12.3	-	12.3	-
Sulphate	mg/L mg/l	0.02	0.12 NG	NG 200 420 ^{7a}	2.98 NG	<u>3.03</u> 655	-	<u>3.04</u> 653	-	<u>3.07</u> 667	-	<u>3.04</u> 660	
Nutrients	IIIg/L	0.0		309 - 429	110	000	-	000	-	007	-	000	
Ammonia	mg/L	0.01	0.019 4	0.018 4	3.85	-	-	-	-	-	-	-	-
Nitrate (as NO3-N)	mg/L	0.005	13	3	8.9	0.52	-	0.538	-	0.539	-	0.533	-
Nitrite (as NO2-N)	mg/L	0.005	0.06	0.06 - 0.60 5	0.18	0.006	-	0.006	-	0.007	-	0.006	-
Nitrogen (Total)	mg/L	0.05	NG	NG	NG	0.78	-	0.71	-	0.75	-	0.72	-
Demand Parameters		4	NC	NC	NO						4		
Biological	mg/L	4	I NG	NG	NG	-	<4	-	<4	-	4	-	
Total Coliforms	MPN/100ml	1	NG	NG	NG	57.3	-	68.3	-	222	-	79.4	
E. Coli	MPN/100mL	1	NG	NG	NG	<1	-	2	-	<1	-	<1	-
Total Metals			·	·									
Aluminum	mg/L	0.005	0.1 6	0.1 6	0.6	0.039	-	0.053	-	0.071	-	0.034	-
Antimony	mg/L	0.0005	NG	NG	NG	<0.0005	-	<0.0005	-	<0.0005	-	<0.0005	
Arsenic	mg/L	0.0001	0.005	0.005	0.013	0.0005	-	0.0007	-	0.0007	-	0.0008	-
Barium	mg/L	0.0005	NG	NG	NG	0.0095	-	0.0095	-	0.009	-	0.0077	
Beryllum Boron - soluble	mg/L mg/l	0.00005	1.5	1.5	4.6	<0.005	-	< 0.005	-	<0.005	-	<0.005	
Cadmium	mg/L	0.00001	0.001	0.00026 - 0.0776	0.0005	0.00003	-	0.00004	-	0.00004	-	0.00004	-
Chromium	mg/L	0.0005	NG	0.001	0.002	< 0.0005	-	<0.0005	-	<0.0005	-	< 0.0005	-
Cobalt	mg/L	0.00005	NG	0.0025	NG	0.00046	-	0.0005	-	0.00054	-	0.0005	-
Copper	mg/L	0.0005	0.0028 - 0.004 7	0.020 - 0.062 7	0.006	0.0015	-	0.0014	-	0.0017	-	0.0013	-
Iron	mg/L	0.01	0.3	0.3	3.3	1.5	-	1.79	-	2.95	-	2.12	-
Lead	mg/L	0.00005	0.0042 - 0.007 '	0.0042 - 0.007 '	0.015	0.00007	-	0.00009	-	0.00011	-	0.00006	
Lithium	mg/L mg/l	0.0005	NG	NG	NG	37.5	-	1.32	-	1.02	-	0.818	-
Manganese	mg/L	0.001	NG	NG	NG	0.727	-	0.738	-	0.845	-	0 797	
Mercury	mg/L	0.00001	0.000026	0.000005	0.000069	<0.00001	-	<0.00001	-	<0.00001	-	<0.00001	-
Molybdenum	mg/L	0.0001	0.073	0.073	0.22	0.0027	-	0.0024	-	0.0025	-	0.0025	-
Nickel	mg/L	0.0005	0.1126 - 0.150 7	0.570 - 1.52 ⁷	0.371	0.0012	-	0.001	-	0.0009	-	0.0009	-
Phosphorus	mg/L	0.005	0.010 - 0.020 8	NG	NG	0.008	-	0.008	-	0.009	-	0.009	-
Potassium	mg/L	0.1	NG	NG	NG	3.55	-	3.61	-	3.67	-	3.66	
Silver	mg/L	0.0005	0.001	0.001	0.002	<0.0005	-	<0.0005	-	<0.0003	-	<0.0005	
Sodium	mg/L	0.1	NG	NG	NG	77.3	-	77.7	-	79.7	-	78.4	
Thallium	mg/L	0.00002	0.0008	0.0008	0.0024	<0.00002	-	<0.00002	-	<0.00002	-	<0.00002	-
Titanium	mg/L	0.001	NG	NG	NG	0.003	-	0.004	-	0.005	-	0.003	-
Uranium	mg/L	0.00001	0.015	0.015	0.041	0.0111	-	0.00939	-	0.00886	-	0.00861	-
Vanadium	mg/L	0.001	NG	NG	NG	<0.001	-	<0.001	-	<0.001	-	<0.001	
Zinc	mg/L	0.005	0.03	0.03	0.075	0.014	-	0.016	-	0.025	-	0.02	
Hydrocarbons Benzene	ma/l	0.0005	0.37	0.04	NG	<0.0005	_	<0.0005		<0.0005	_	<0.0005	
Volatile Hydrocarbons (VH6-10)	mg/L	0.0003	NG	0.04 NG	NG		-		-		-		
Toluene	mg/L	0.0005	0.002	0.0005	NG	<0.0005	-	<0.0005	-	<0.0005	-	<0.0005	-
Ethylbenzene	mg/L	0.0005	0.09	0.09	NG	<0.0005	-	< 0.0005	-	< 0.0005	-	<0.0005	-
Xylene (m)	mg/L	0.0005	NG	NG	NG	<0.0005	-	<0.0005	-	<0.0005	-	<0.0005	-
Xylene (o)	mg/L	0.0005	NG	NG	NG	<0.0005		<0.0005	-	<0.0005		<0.0005	
Xylenes Total	mg/L	0.001	NG	0.03	NG	<0.001	-	<0.001	-	<0.001	-	<0.001	
	mg/L	0.1	NG	0.15	NG	<0.1	-	<0.1	-	<0.1	-	<0.1	
F2 (C10-C16)	ma/L	0.1	NG	0.15	NG	<0.1	-	<0.1	-	<0.1	-	<0.1	-
F3 TEH: (C16-C34)	mg/L	0.1	NG	NG	NG	<0.1	-	<0.1	-	<0.1	-	<0.1	
F4: (C34-C50)	mg/L	0.1	NG	NG	NG	<0.1	-	<0.1	-	<0.1	-	<0.1	-
VPHs	mg/L	0.1	NG	NG	NG	-	-	-	-	-	-	-	-
Polycyclic Aromatic Hydrocarbons (P	AHs)												
Acenaphthene	mg/L	0.00002	0.0058	0.0058	NG	<0.00002	-	<0.00002	-	<0.00002	-	<0.00002	-
Acenaphthylene	mg/L	0.00002	NG	NG	NG	<0.00002	-	<0.00002	-	<0.00002	-	<0.00002	-
Anthracene	ma/L	0.00005	0.0044	0.0044	NG	<0.00005	-	<0.00005	-	<0.00005	-	<0.00005	
Benz(a)anthracene	mg/L	0.00001	0.000012	0.000012	NG	<0.00001	-	<0.00001	-	<0.00001	-	<0.00001	
Benzo(a) pyrene	mg/L	0.00001	0.000015	0.000015	NG	<0.00001	-	<0.00001	-	<0.00001	-	<0.00001	-
Benzo(b)fluoranthene	mg/L	0.00001	NG	NG	NG	<0.00001	-	<0.00001	-	<0.00001	-	<0.00001	-
Benzo(b+j)fluoranthene	mg/L	0.00001	NG	NG	NG	< 0.00001	-	< 0.00001	-	< 0.00001	-	< 0.00001	-
Benzo(g,h,i)perylene	mg/L	0.00001	NG	NG	NG	<0.00001	-	<0.00001	-	<0.00001	-	<0.00001]
Benzo(k)fluoranthene	mg/L	0.00001	NG	NG	NG	<0.00001	-	<0.00001	-	<0.00001	-	<0.00001	
Dibenz(a h)anthracene	mg/L	0.00001	NG	NG	NG	<0.00001	-	<0.00001	-	<0.00001	-	<0.00001	-
Fluoranthene	ma/L	0.00001	0.00004	0.00004	NG	<0.00001	-	<0.00001	-	<0.00001	-	<0.00001	-
Fluorene	mg/L	0.00002	0.003	0.003	NG	<0.00002	-	<0.00002	-	<0.00002	-	<0.00002	-
Indeno(1,2,3-c,d)pyrene	mg/L	0.00001	NG	NG	NG	< 0.00001	-	< 0.00001	-	< 0.00001	-	< 0.00001	
Naphthalene	mg/L	0.00005	0.0011	0.001	NG	<0.00005	-	<0.00005	-	<0.00005	-	<0.00005	-
Phenanthrene	mg/L	0.00004	0.0004	0.0004	NG	<0.00004	-	<0.00004	-	<0.00004	-	<0.00004	
Pyrene	mg/L	0.00002	0.000025	0.000025	NG	<0.00002	-	<0.00002	-	<0.00002	-	<0.00002	
Quinoline Benzo(i)fluoranthono	mg/L	0.0001	0.0034	0.0034	NG	<0.0001	-	<0.0001	-	<0.0001	-	<0.0001	
	l ug/L	0.01	I NG	NG	NG	<0.01	-	<0.01	-	<0.01	-	SU.U1	
Aroclor 1242	ma/L	0.000009	NG	NG	NG	-	<0.000009	-	<0.000009	-	<0.000009	-	<0.000009
Aroclor 1254	mg/L	0.000009	NG	NG	NG	-	<0.000009	-	<0.000009	-	<0.000009	-	<0.000009
Aroclor 1260	mg/L	0.00009	NG	NG	NG	-	<0.00009	-	<0.00009	-	<0.00009	-	<0.00009
PCBs (Sum of total)	mg/L	0.000009	NG	NG	NG	-	<0.000009	-	<0.000009	-	<0.000009	-	<0.000009
					Sample ID	8791074	8804716	8791097	8804727	8791098	8804728	8791099	8804729
				L	ab Report Number	17Y268658	17V270284	17Y268658	17V270284	17Y268658	17V270284	17Y268658	17V270284

Notes: ¹ Canadian Council of Ministers of the Environment (CCME) Environmental Quality Guidelines (EQG), for the protection of freshwater aquatic life.

² Environmental Quality Guidelines for Alberta Surface Waters, July 2014 for the protection of freshwater aquatic life - Guidelines only apply in the absence of CCME EQG.

³ Flat River Water Quality Objectives. Mackenzie Valley Land and Water Board, 2017.

⁴ Guideline is dependent upon the pH value and temperature. The most stringent concentration has been applied.

⁵ Guideline is dependant upon the chloride concentration.

 $^{\rm 6}$ Guideline is dependant upon the pH value.

⁷ Guideline is based on the Hardness value.

7a Guideline requires a site specific concentration based on Hardness concentration that exceeds the range provided in the guideline.

⁸ Guideline shown is based on the typical range of total phosphorous concentrations of a mesotrophic water body.

RDL - Reported Detection Limit

NG - No guideline

MG - No guideline mg/L - milligrams per litre. BOLD Black and Shaded - Concentration exceeds the CCME EWQ for the protection of freshwater aquatic life. BOLD Red and Shaded - Concentration exceeds the Environmental Quality Guidelines for Alberta Surface Waters for the protection of freshwater aquatic life in the absence of CCME EQG. BOLD Black, Underline, and Shaded - Concentration exceeds the Discharge Quality Criteria

<u>Italic</u> - Detection limit greater than minimum referenced guideline value Blank - Not analyzed

Photo 1: Facing southwest at Polishing Pond. (October 5, 2017)

Photo 2: Facing southeast at mine site. Polish Pond visible at the centre of the photo and adjacent to the Flat River. (October 1, 2017)

Photo 3: Facing northeast at mine site. Polishing Pond visible at the right side of image below the access road. (September 28, 2017)

Photo 4: Facing west at mine site. Polishing Pond is located in centre of photo (circled). Photo provided by NATC. (May 29, 2014)

AEC 9

AEC 9: Ditches

Area Description							
	 Pug Road ditch below the Main Portal area 						
Ditch Locations	 Lower Road near the Polishing Pond 						
Biton Ecoduorio	 Nahanni Range Road near Area 22 						
	Upper Mill Access Road down-gradient from AEC 33						
Topography	Follows site topography, generally northeast towa	ard the Flat River.					
Surface Drainage	Various: 17A9SS1 and 17A9SS2 flow south; 17A	9SS3, 17A33SS1 and 17A33SS2 flow	north.				
Background	Background AEC 9 consists of various road ditches around site. Ditches discharge to tributaries that eventually flow into Flat River or Polishing Pond. Potential for sediment and water in the ditches to be impacted by land use activities at the AECs or from spills of environmentally hazardous products and liquids.						
Historical Asses	sment Information						
Previous Phase II	Number of surface soil (sediment) samples		1				
Environmental	Number of surface water samples		2				
Results (EBA,	Number of soil (sediment) samples analyzed for n	netals and petroleum hydrocarbons	1				
2008)	Number of soil (sediment) samples with metal imp	pacts	1				
	Number of surface water samples with petroleum	hydrocarbons impacts	0				
stormwater drainag less than guidelines samples were analy	e ditch. Sediment sample had metal concentrations s. Surface water samples in ditches contained PHC rzed for dissolved metals (not appropriate to evalua	greater than guidelines, but PHCs an s and PCBs less than guidelines. Sur te potential risk; need total metals).	d glycols face water				
2017 Environme	ental Site Assessment Details						
Environmental Site	e Assessment Scope						
Utility Locate SOP f	ollowed?	N/A					
EM 31 Geophysics	Completed?	No					
Number of test pits		0					
Number of hand au	gers	0					
Number of borehole	es	0					
Number of soil sam	ples submitted for laboratory analysis	0					
Number of borehole	es completed as monitoring wells	N/A					
Number of existing	monitoring wells	N/A					
Number of groundw	vater samples collected	N/A					
Number of sedimen	t and surface water samples collected	5 Sediment, 2 Surface Water					
Geophysics (EM 3	1 Apparent Terrain Conductivity) Findings	•					
N/A							
Soil Investigation and Conditions							
Maximum Depth of Investigation	N/A						

AEC 9: Ditches

Stratigraphy												
Description	Depth from (mbgs)	Depth to (mbgs)	Observations									
SAND, some gravel	0	0.15	Poorly graded sand, some gravel and occasional small cobbles. Mostly fine to medium sand at 17A9SS2.									
Combustible Vapo	ur Concentrations (C	VC)										
0 ppm in all samples												
Groundwater Conditions												
Depth to Groundwater	N/A	N/A										
Free Product	N/A											
2017 Environmenta	al Site Assessment S	ummary										
 Figure A9-1 snows sediment testing locations. Figure A9-2 shows surface water sample locations. Table A9-1 summarizes sediment chemical results relative to guidelines. Table A9-2 summarizes surface water chemical results relative to guidelines. General Site Observations Most ditches did not contain water at time of 2017 ESA field program. Water in ditch at 17A9SS1 is mine discharge from the Main Portal – tested as part of AEC 46 and AEC UG. Soil: Petroleum Hydrocarbons (PHCs, PAHs) N/A Soil: Metals N/A Soil: Other PCOCs N/A Groundwater: Petroleum Hydrocarbons N/A 												
N/A Groundwater: Oth												
N/A												
Sediment: Petroleu Laboratory result: Sample 17A93 Sample 17A33 Sample 17A33	um Hydrocarbons (PH s less than guidelines (SS1 contained PHCs g SS1 contained PHCs SS2 contained PHCs	ICs and PAHs) with exception of: reater than guidelines. greater than guidelines greater than guidelines	5. 5.									
 Sediment: Metals Various exceedar Laboratory result 17A9SS1, 17A9S 	nces of guidelines for a s less than guidelines, S2, 17A9SS3)	arsenic, cadmium, cop except for cadmium, c	per, and zinc. copper, and zinc in all samples (17A33SS1, 17A33SS2,									
Sediment: Other P	COCs (PAHs and gly	cols)										
Laboratory results	s less than the laborate	bry detection limits and	d guidelines.									
Sealment: Other P	within guidelines											
- Laboratory result	main guidellites.	e (PHCe and DAUe)										
 Laboratory results 	s less than the laborate	orv detection limits and	quidelines									
i												

AEC 9: Ditches

Surface Water: Metals/Nutrients

- Laboratory results less than guidelines with exception of:
 - Fluoride at 17A33SW2 equal to the guideline

Surface Water: Other PCOCs (BOD, Routine Parameters)

Laboratory chemical results less than guidelines.

Grainsize Analysis

N/A

Environmental Concerns

Location in AEC	Potential Source(s)	ldentified Contaminated Media	Potential Contaminant(s) of Concern (PCOCs) and Contaminant(s) of Concern (COCs; bold & underline)
Ditches Around Mine	Environmentally hazardous substances seeping into the ditches, spills, and leaching metals.	Sediment and Surface Water	Sediment: <u>Metals, petroleum hydrocarbons (PHCs)</u> , glycols, polycyclic aromatic hydrocarbons (PAHs) Surface Water: <u>Metals, routine parameters,</u> nutrients, biological oxygen demand (BOD), <u>petroleum</u> <u>hydrocarbons (PHCs)</u> , glycols, polycyclic aromatic hydrocarbons (PAHs)

Discussion (Significance of the Results)

Sediment:

- There was no visual indication of PHCs during sample collection; but they were present at three locations.
- PHCs at AEC 33 are likely due to historic fuel spills at the up-gradient ASTs.
- PHCs at 17A9SS1 are likely caused from fuel spills and stained surface soil at AEC 17 located up-gradient from this testing location.
- Glycols and PAHs were not detected and are no longer considered PCOCs in soil at AEC 9.
- Various metals exceeded both CCME and proposed background concentrations. There is likely multiple site-wide sources of metals exceedances that have migrated to the ditch from overland flow at the AECs.

Surface Water:

- Metals and routine parameters met CCME guidelines and Flat River WQOs, with the exception of fluoride which was equal to the guideline value.
- PHCs and PAHs concentrations lower than the laboratory reportable detection limits and are no longer PCOCs in surface water for this AEC.

Further Assessment

Further assess the PHC impacts identified in sediment.

Attachments

Figure A9-1 - Soil and Sediment Results

Figure A9-2 – Groundwater and Surface Water Results

Table A9-1 - Sediment Analytical Results

Table A9-2 - Surface Water Analytical Results

Photographs

LEGEND

- Area of Environmental Concern (AEC)
- Area
- 2017 Monitoring Well (MW)
- 2017 Borehole (BH)
- 2017 Hand Auger (HA)
- 2017/2018 Testpit (TP)
- 2017 Surface Water/Sediment Sample (SW/SS)
- Historical Monitoring Well
- Historical Testpit
- Historical Shallow Soil Sample
- Historical Surface Water Sample

Soil/Sediment Analytical Results

- O PHC Impacts
- O PHC Impacts, vertically delineated
- No PHC Impact
- Metals exceedance of preliminary background concentrations, or in the absence of background concentrations, exceedance of CCME guidelines
- Metals exceedance, vertically delineated
- No metals exceedance of CCME guidelines or preliminary background concentrations
- Building
- Road
- Ditch _ _ _
- Watercourse
- Contour (2 m)

NOTES All locations and area boundaries are approximate. Base data source: Data provided by INAC (2013).

Drone imagery at the borrow pit, tailings ponds, and interceptor ditch collected in 2018.

STATUS ISSUED FOR USE CANTUNG MINE PHASE III ESA AEC 9 Ditches **Soil and Sediment Results** PROJECTION DATUM CLIEN UTM Zone 9 NAD83 NORTH AMERICAN TUNGSTEN Scale: 1:1,000 Metres TE TETRA TECH WENW03039-03_Summary_A9-1.mxd

A9-1

DWN CKD APVD REV

SL BB BB 0

ENW.WENW03039-03

PROJECT NO.

•	2017 Borehole (BH)
•	2017 Hand Auger (HA)
-	2017/2018 Testpit (TP)
۲	2017 Surface Water/Sediment Sample (SW/SS)
	Historical Monitoring Well
-	Historical Testpit
	Historical Shallow Soil Sample
	Historical Surface Water Sample
$ \sim$	Groundwater Contour (1 m asl; Fall 2017)
2017/2	2018 Groundwater Analytical Results
	Samples contain parameters that exceeded the preliminary background concentrations, or in the absence of background concentrations, FIGWQG
	Samples contain parameters that met the preliminary background concentrations, or in the absence of background concentrations, FIGWQG
2018 5	Surface Water Analytical Results
	Samples contain parameters that met the Flat River WQOs, or in the absence of WQOs, CCME WQG for the protection of AW or EQGASW
	Samples contain parameters that met the Flat River WQOs, or in the absence of WQOs, CCME WQG for the
	protection of AW or EQGASW
	Road
	Ditch
	Watercourse
NOTES All locati Base da Data pro Drone in	ions and area boundaries are approximate. ta source: vided by INAC (2013). nagery at the borrow pit, tailings ponds, reportor ditch collected in 2018. STATUS

ISSUED FOR USE **CANTUNG MINE PHASE III ESA** AEC 9 Ditches **Groundwater and Surface Water Results** DATUM NAD83 CLIENT Scale: 1:1,000 TETRA TECH WENW03039-03_Summary_A9-2.mxd DWN CKD APVD REV

A9-2

Table A9-1: Sediment Analytical Results

Table A5-1. Sediment Analytica						Branaad	AE	C 33		AEC 9	
		Canada Wide	Canada Wide	CCMF Sediment -	CCME Sodimont	Preliminary	17433551	17433552	1749551	1749552	1749553
Parameter	Unit	PHC - Res/Park Coarse ¹	Agricultural Coarse ¹	Fresh ISQG ²	Fresh PEL ³	Background Concentration for	2017-10-05	2017-10-05	2017-10-05	2017-10-05	2017-10-05
						Flat River	Sand, gravelly,	Sand, gravelly,	Sand, some	Sand, medium,	Sand, trace gravel,
		<u> </u>				Sediment Type	grey	grey	gravel, grey	dark grey	brown
Routine / Salinity	nH Linita	NC	NC	NC	NC		7 70	7 77	0 12	7.09	0.26
Pri Moisture	рн 01шs %	NG	NG	NG	NG	-	37.7	25.6	16.13	17.90	9.78
Nutrients	70	110	NO	110	110	-	51.1	20.0	10.7	11.2	5.70
Nitrogen (Total)	%	NG	NG	NG	NG	-	-	-	-	-	-
Metals											
Antimony	mg/kg	NG	NG	NG	NG	-	3.2	0.9	1.2	3.3	3.0
Arsenic	mg/kg	NG	NG	5.9	17	56.7	25.7	<u>14.1</u>	<u>14.2</u>	21.9	26.5
Barium	mg/kg	NG	NG	NG	NG	-	288	643	686	2720	3270
Cadmium	mg/kg	NG	NG	NG 0.6	NG 3.5	- 1.04	3.7	1.3	1.3	0.8	0.7
Chromium	ma/ka	NG	NG	37.3	90	-	25	16	21	21	21
Cobalt	mg/kg	NG	NG	NG	NG	-	35.3	14.9	17.2	16.5	13.4
Copper	mg/kg	NG	NG	35.7	197	39.8	1700	693	526	218	<u>183</u>
Lead	mg/kg	NG	NG	35	91.3	-	29.4	12.2	13.8	19.9	16.5
Mercury	mg/kg	NG	NG	0.17	0.486	-	3.1	1.8	1.16	0.71	0.51
Molybdenum	mg/kg	NG	NG	NG	NG	-	9.1	4.4	5.4	6.5	5.7
Nickel Phosphorus	mg/kg	NG	NG	NG	NG	-	39.6	18.9	27.3	53.6	54.6
Selenium	ma/ka	NG	NG	NG	NG		- 53	22	22	19	16
Silver	mg/kg	NG	NG	NG	NG	-	1.5	<0.5	< 0.5	<0.5	<0.5
Thallium	mg/kg	NG	NG	NG	NG	-	0.9	0.4	0.4	0.4	0.3
Tin	mg/kg	NG	NG	NG	NG	-	9.4	3.5	2.8	1.3	0.9
Uranium	mg/kg	NG	NG	NG	NG	-	3.3	2.3	3.1	2.3	1.6
Vanadium	mg/kg	NG	NG	NG	NG	-	73	34	59	79	62
Zinc	mg/kg	NG	NG	123	315	202	738	<u>315</u>	<u>278</u>	343	<u>313</u>
Benzene	ma/ka	NG	NG	NG	NG	1	<0.005	<0.005	<0.005	<0.005	<0.005
Toluene	mg/kg	NG	NG	NG	NG	-	<0.005	<0.005	<0.005	<0.005	<0.005
Ethylbenzene	ma/ka	NG	NG	NG	NG	-	<0.01	<0.01	<0.01	<0.01	< 0.01
Xylene (m)	mg/kg	NG	NG	NG	NG	-	<0.02	<0.02	<0.02	<0.02	<0.02
Xylene (o)	mg/kg	NG	NG	NG	NG	-	<0.02	<0.02	<0.02	<0.02	<0.02
Xylenes Total	mg/kg	NG	NG	NG	NG	-	<0.05	<0.05	<0.05	<0.05	<0.05
F1 (C6-C10)	mg/kg	NG	NG	NG	NG	-	<10	<10	<10	<10	<10
F1 (C6-C10 / BTEX CORRECTED)	mg/kg	30	130	NG	NG	-	<10	<10	<10	<10	<10
F2 (C10-C18)	mg/kg	300	1300	NG	NG	-	20	< <u>20</u>	<20	<20 89	< <u>20</u> 122
F4: (C34-C50)	ma/ka	2800	5600	NG	NG	-	536	346	240	67	71
Glycols		2000				1 1		0.0	2.0	0.	
Diethylene glycol	mg/kg	NG	NG	NG	NG	-	<10	<10	<10	-	-
Ethylene glycol	mg/kg	NG	NG	NG	NG	-	<10	<10	<10	-	-
Propylene glycol	mg/kg	NG	NG	NG	NG	-	<10	<10	<10	-	-
Tetraethylene Glycol	mg/kg	NG	NG	NG	NG	-	<10	<10	<10	-	-
Triethylene Glycol	mg/kg	NG	NG	NG	NG	-	<10	<10	<10	-	-
		NG	NG	NG	NG		<0.6	<0.6	<0.6	<0.6	<0.6
B(a)P Total Potency Equivalent	ma/ka	NG	NG	NG	NG		<0.05	<0.05	<0.05	<0.05	<0.05
1-Methylnaphthalene	mg/kg	NG	NG	NG	NG	-	<0.005	< 0.005	<0.005	<0.005	< 0.005
2-methylnaphthalene	mg/kg	NG	NG	0.0202	0.201	<u> </u>	< 0.005	<0.005	< 0.005	<0.005	<0.005
Acenaphthene	mg/kg	NG	NG	0.00671	0.0889	-	< 0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	mg/kg	NG	NG	0.00587	0.128	-	<0.005	<0.005	<0.005	<0.005	<0.005
Anthracene	mg/kg	NG	NG	0.0469	0.245	-	<0.004	<0.004	< 0.004	< 0.004	<0.004
Benz(a)anthracene	mg/kg	NG	NG	0.0317	0.385	-	<0.03	<0.03	<0.03	< 0.03	<0.03
Benzo(b)fluoranthene	mg/kg	NG	NG	0.0319 NG	0.782 NG	-	<0.03	<0.03	<0.03	<0.03	<0.03
Benzo(b+i)fluoranthene	ma/ka	NG	NG	NG	NG	-	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(g,h,i)perylene	mg/kg	NG	NG	NG	NG	-	<0.05	< 0.05	< 0.05	<0.05	<0.05
Benzo(k)fluoranthene	mg/kg	NG	NG	NG	NG	- 1	<0.05	<0.05	<0.05	<0.05	<0.05
Chrysene	mg/kg	NG	NG	0.0571	0.862	-	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenz(a,h)anthracene	mg/kg	NG	NG	0.00622	0.135		<0.005	<0.005	<0.005	<0.005	<0.005
Fluoranthene	mg/kg	NG	NG	0.111	2.355	<u> </u>	<0.01	<0.01	<0.01	<0.01	<0.01
	mg/kg	NG	NG	0.0212	0.144	-	<0.02	<0.02	< 0.02	<0.02	<0.02
Indeno(1,2,3-c,d)pyrene	mg/kg	NG	NG	NG 0.0246	NG 0.201	-	<0.02	<0.02	<0.02	<0.02	<0.02
Phenanthrene	ma/ka	NG	NG	0.0340	0.391		<0.005	<0.005	<0.005	<0.005	<0.005
Pyrene	ma/ka	NG	NG	0.053	0.875	- 1	0.01	<0.02	<0.01	<0.02	<0.01
Benzo(j)fluoranthene	ug/g	NG	NG	NG	NG	- 1	<0.05	<0.05	< 0.05	<0.05	<0.05
		·	·	·	·	Sample Code	8806713	8806714	8806715	8806716	8806717
					L	ab Report Number	17V270515	17V270515	17V270515	17V270515	17V270515

Notes:

¹ - Canadian Council of Ministers of the Environment (CCME) Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (CCME 2008)

² - Canadian Council of Ministers of the Environment (CCME) Sediment Quality Guidelines for the Protection of Aquatic Life - Interim Sediment Quality Guidelines (ISQG) for Freshwater (CCME 1999)

³ - Canadian Council of Ministers of the Environment (CCME) Sediment Quality Guidelines for the Protection of Aquatic Life - Probable Effect Level (PEL) for Freshwater (CCME 1999)

Italic - Laboratory detection limit is greater than Tier 1 guideline

NG - No guideline

Bold and Underline - Exceeds CCME ISQG

Bold and Shaded - Exceeds CCME PEL and ISQG

 $\pmb{\textit{Bold}}$ - Exceeds CCME Canada-Wide Standards for Petroleum Hydrocarbon Guideline

Red - Exceeds proposed preliminary background concentration for Flat River sediment <u>Itallic and Underline</u> - pH value greater than Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) - Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health

N/A - Not applicable

"-" Not analyzed

Cyanide (SAD) - Strong Acid Dissociable Cyanide (WAD) - Weak Acid Dissociable

Table A9-2: Surface Water Anlaytical Results

				Environmental		A9 /	A33
Parameter	Unit	RDL	CCME - AW (Freshwater) ¹	Quality Guidelines for Alberta Surface	Quality	17A33SW1	17A33SW2
				Waters ²	Objectives .	2017-10-05	2017-10-05
Field Parameters	1		1		1 1		
Field Temperature	°C	-	NG	NG	NG	2.6	3.0
Field pH	pH Units	-	6.5-9	6.5-9	6.5-9	7.99	8.09
Field Conductivity	µS/cm	-	NG	NG	NG	456	462
Routine / Salinity	nH I Inite	0.01	650	65.0	650	7.97	7.02
Electrical Conductivity (EC)	uS/cm	1	NG	NG	0.3-9 NG	455	460
Total Suspended Solids (TSS)	mg/L	2	NG	NG	6	<2	<2
Total Dissolved Solids (TDS)	mg/L	5	NG	NG	NG	275	280
Hardness as CaCO3	mg/L	0.1	NG	NG	NG	243	244
Hardness as CaCO3 (Filtered)	mg/L	0.1	NG	NG	NG	-	-
Alkalinity (total as CaCO3)	mg/L	1	NG	NG	NG	122	114
Bromide	mg/L	0.05	NG	NG	NG	<0.05	<0.05
Elucrido	mg/L	0.05	120	120 NC	NG	0.26	0.28
Sulphate	mg/L	0.02	NG	309 - 429	NG	117	127
Nutrients		0.0		000 120			
Ammonia	mg/L	0.01	1.04	1.04	1.27	-	-
Nitrate (as NO3-N)	mg/L	0.005	13	3	3	0.268	0.26
Nitrite (as NO2-N)	mg/L	0.005	0.06	0.06 - 0.60 5	0.06	<0.005	<0.005
Nitrogen (Total)	mg/L	0.05	NG	NG	NG	-	-
Demand Parameters							
Biochemical Oxygen Demand (BOD)	mg/L	4	NG	NG	NG	<4	<4
Aluminum	ma/l	0.005	0 4 6	046	0.3	0.015	0.012
Antimony	ma/l	0.005	NG	U.1	NG		
Arsenic	ma/L	0.0001	0.005	0.005	0.005	0.0006	0.0005
Barium	mg/L	0.0005	NG	NG	NG	0.0067	0.0084
Beryllium	mg/L	0.00005	NG	NG	NG	<0.00005	<0.00005
Boron - soluble	mg/L	0.005	1.5	1.5	1.5	<0.005	<0.005
Cadmium	mg/L	0.00001	0.001	0.00026 - 0.077 ⁶	0.00035	<0.00001	0.00002
Chromium	mg/L	0.0005	NG	0.001	0.001	< 0.0005	< 0.0005
Cobalt	mg/L	0.00005	NG	0.0025	NG	<0.00005	< 0.00005
Copper	mg/L	0.0005	0.0028 - 0.004	0.020 - 0.062	0.0042	<0.0005	<0.0005
Lead	mg/L	0.00	0.0012 - 0.007 7	0.0077	0.005	<0.000	<0.0005
Lithium	ma/L	0.0005	NG	NG	NG	0.0056	0.005
Magnesium	mg/L	0.05	NG	NG	NG	14.9	14.9
Manganese	mg/L	0.001	NG	NG	NG	<0.001	<0.001
Mercury	mg/L	0.00001	0.000026	0.000005	0.000026	<0.00001	<0.00001
Molybdenum	mg/L	0.0001	0.073	0.073	0.073	0.0007	0.0006
Nickel	mg/L	0.0005	0.1126 - 0.150 7	0.570 - 1.52 7	0.125	<0.0005	<0.0005
Phosphorus	mg/L	0.005	0.004 - 0.010 °	NG	NG	-	-
Potassium	mg/L	0.1	NG 0.001	NG	NG 0.001	1.4	1.41
Silver	mg/L	0.0003	0.001	0.001	0.001 NG	<0.0003	<0.0003
Sodium	ma/L	0.1	NG	NG	NG	1.13	1.04
Thallium	mg/L	0.00002	0.0008	0.0008	0.0008	<0.00002	<0.00002
Titanium	mg/L	0.001	NG	NG	NG	0.001	0.001
Uranium	mg/L	0.00001	0.015	0.015	0.015	0.00162	0.00151
Vanadium	mg/L	0.001	NG	NG	NG	<0.001	<0.001
Zinc	mg/L	0.005	0.03	0.03	0.03	<0.005	< 0.005
Hydrocarbons	ma m/l	0.0005	0.07	0.04	NC	<0.000F	<0.0005
Volatile Hydrocarbons (VH6 10)	mg/L	0.0005	0.37	0.04	NG	<0.0005	<0.0005
Toluene	ma/L	0.0005	0.002	0.0005	NG	< 0.0005	<0.0005
Ethylbenzene	mg/L	0.0005	0.09	0.09	NG	< 0.0005	<0.0005
Xylene (m)	mg/L	0.0005	NG	NG	NG	< 0.0005	<0.0005
Xylene (o)	mg/L	0.0005	NG	NG	NG	<0.0005	<0.0005
Xylenes Total	mg/L	0.001	NG	0.03	NG	<0.001	<0.001
F1 (C6-C10)	mg/L	0.1	NG	0.15	NG	<0.1	<0.1
IVH: (C6-C10 / BTEX CORRECTED)	mg/L	0.1	NG	0.15	NG	<0.1	<0.1
TEH: (C16-C34)	mg/L mg/l	0.1	NG	U.11 NG	NG	<u.1 <0.1</u.1 	<0.1
F4: (C34-C50)	ma/l	0.1	NG	NG	NG	<0.1	<0.1
VPHs	mg/L	0.1	NG	NG	NG		
Polycyclic Aromatic Hydrocarbons (P.	AHs)				-		L
Acenaphthene	mg/L	0.00002	0.0058	0.0058	NG	<0.00002	<0.00002
Acenaphthylene	mg/L	0.00002	NG	NG	NG	<0.00002	<0.00002
Acridine	mg/L	0.00005	0.0044	0.0044	NG	<0.00005	<0.00005
Anthracene	mg/L	0.00001	0.000012	0.000012	NG	<0.00001	<0.00001
Benz(a)anthracene	mg/L	0.00001	0.000018	0.000018	NG	<0.00001	<0.00001
	mg/L	0.00001	0.000015	0.000015	NG		<0.00001
Benzo(b+i)fluoranthene	ma/l	0.00001	NG	NG	NG	<0.00001	
Benzo(g.h.i)pervlene	ma/l	0,00001	NG	NG	NG	<0.00001	<0.00001
Benzo(k)fluoranthene	mg/L	0.00001	NG	NG	NG	<0.00001	<0.00001
Chrysene	mg/L	0.00001	NG	NG	NG	<0.00001	<0.00001
Dibenz(a,h)anthracene	mg/L	0.00001	NG	NG	NG	<0.00001	<0.00001
Fluoranthene	mg/L	0.00002	0.00004	0.00004	NG	<0.00002	< 0.00002
Fluorene	mg/L	0.00002	0.003	0.003	NG	<0.00002	< 0.00002
Indeno(1,2,3-c,d)pyrene	mg/L	0.00001	NG	NG	NG	<0.00001	<0.00001
Naphthalene	mg/L	0.00005	0.0011	0.001	NG	< 0.00005	<0.00005
Prenanthrene	mg/L	0.00004	0.0004	0.0004	NG	<0.00004	<0.00004
	mg/L	0.00002	0.000025	0.000025	NG	<0.00002	<0.00002
Benzo(i)fluoranthene	ua/L	0.01	NG	NG	NG	<0.01	<0.01

Volatile Organic Compounds (VOCs)							
Calcium Carbonate	mg/L	0.05	NG	NG	NG	72.7	73.3
	8804735	8804741					
				L	ab Report Number	17V270284	17V270284

Notes:

¹ Canadian Council of Ministers of the Environment (CCME) Environmental Quality Guidelines (EQG), for the protection of freshwater aquatic life.

² Environmental Quality Guidelines for Alberta Surface Waters, July 2014 for the protection of freshwater aquatic life - Guidelines only apply in the absence of CCME EQG.

³ Flat River Water Quality Objectives. Mackenzie Valley Land and Water Board, 2017.
 ⁴ Guideline is dependent upon the pH value and temperature. The most stringent concentration has been applied.

 $^{\rm 5}$ Guideline is dependant upon the chloride concentration.

⁶ Guideline is dependant upon the pH value.

⁷ Guideline is based on the Hardness value.

⁸ Guideline shown is based on the typical range of total phosphorous concentrations of a oligatrophic water body.

RDL - Reported Detection Limit

NG - No guideline

mg/L - milligrams per litre.

BOLD Black and Shaded - Concentration exceeds the CCME EWQ for the protection of freshwater aquatic life.

BOLD Red and Shaded - Concentration exceeds the Environmental Quality Guidelines for Alberta Surface Waters for the protection of freshwater aquatic life in the

absence of CCME EQG.

BOLD Black, Underline, and Shaded - Concentration exceeds the Flat River Water Quality Objectives

Italic - Detection limit greater than minimum referenced guideline value

Blank - Not analyzed

Photo 1: Stream near Recreation Centre. (October 3, 2017)

Photo 2: Ditch outside of Main Portal. (October 3, 2017)

Photo 3: Facing southeast. Culvert 16 – see Figure 5-6. (October 5, 2017)

Photo 4: Facing northwest, upstream of ditch 13&14 – see Figure 5-6. (October 5, 2017)

AEC 10

Area Description											
Location	Northeast of the Mill Building and north and west of the Power Generate	or.									
Topography	Generally flat with a slight slope to the northeast.										
Surface Drainage	Northeast										
Background	penerators. The Powerhouse is also used to heat a loop of glycol lines that provide heat to come of the buildings located in the Mine. Stained surface soils have been historically beserved adjacent to the southeast of the Powerhouse Building. A sump is located in the Powerhouse, near the northeast wall of the building.										
Historical Assessment Information											
	Number of test pits	1									
Previous Phase II	Number of surface soil samples	5									
Environmental Site	Number of soil samples analyzed	6									
(EBA, 2008)	Number of soil samples with petroleum hydrocarbon impacts	6									
	Number of soil samples with metal impacts	5									
(APEC 11A) sampled by EBA (2008) are now captured within AEC 10 (APEC11A-E, APEC11A-N, APEC 11A-1B, APEC11A-W, and APEC11-7). All soil samples exceeded PHC guidelines, and all soil samples (except APEC11-7) exceeded metal guidelines. Groundwater was not assessed in these areas during the study.											
2017/2018 Environm	ental Site Assessment Details										
Environmental Site Ass	essment Scope										
Utility Locate SOP follow	ed?	Yes									
EM 31 geophysics compl	ete?	Yes									
Number of test pits advar	nced	3 (2017); 6 (2018)									
Number of boreholes adv	vanced	1									
Number of hand auger lo	cations advanced	0									
Number of soil samples s	submitted for laboratory chemical analysis	7 (2017), 13 (2018)									
Number of boreholes con	npleted as groundwater monitoring wells	0									
Number of historical grou	indwater monitoring wells	0									
Number of groundwater s	samples collected	N/A									
Number of sediment and	surface soil samples collected	0									
Geophysics (EM 31 App	parent Terrain Conductivity) Survey										
 Survey was completed from the Powerhouse to the Heavy Duty Maintenance Shop Building (see Figure A10-3). 											
 Background apparent 	terrain conductivity values generally between 5 to 20 mS/m (represented	by cool colours on									

Figure A10-3).
Areas of higher-than-background apparent terrain conductivity values indicated by the warm colours shown on Figure A10-3).

- Areas with data affected by buried cables and utilidors marked with a thick black rectangle.
- Areas with negative and higher than background apparent terrain conductivity values are consistent with data caused by surface metals and utilities.
- Negative (pink) apparent terrain conductivity values are possibly caused by concrete made with rebar on the surface.
- · Conductive (red) values are possibly caused by surface metal or conductive pore fluids due to leaching.

Soil Investigation and C	Conditions		•								
Maximum Depth of	12.2 mbgs (Sontombor	23 2017)									
Investigation	12.2 mbgs (September	23, 2017)									
General Stratigraphy											
Description	Depth from (mbgs)	Depth to (mbgs)	Observations								
Layered sand, silt, gravel, and cobbles	0	3.9	Fill soil. Petroleum hydrocarbon staining and odour observed in 17A10BH1, 17A10TP3 and 18A10TP6.								
Layered silt, sand, and gravel	3.9	12.2	Native soil. Petroleum hydrocarbon staining and odour observed in 17A10BH1 (9.5 – 11.0 mbgs).								
Combustible Vapour Concentrations (CVC)											
Ranged from less than 1	0 parts per million by volu	me (ppmv) to 291 ppmv	v (soil sample 17A10BH1-2)								
Groundwater Condition	IS										
Depth to Groundwater	N/A										
Free Product	N/A										
2017/2018 Environm	ental Site Assessme	ent Results Summa	ary								
 Figure A10-1 shows th Figure A10-2 shows g flow. 	ne borehole and test pit lo roundwater lab results fro	cations. m neighbouring AEC 32	2 and the inferred direction of groundwater								
 Table A10-1 summariz 	zes soil chemical results r	elative to guidelines and	d management limits.								
General Site Observation	ons										
 No obvious surface sta 	ains were observed at the	AEC.									
 PHC staining observed Slight building opserved 	d in 17A101P3 at a depth	OT 0.25 mbgs.	web are								
 Slight hydrocarbon od BHC staining observer 	our was observed at ToA	101P3 Irom 0.15 to 0.9	mbgs. A 10BH2 at a dopth of 13 55 mbgs								
 The stanting observed Sump partially filled with 	ith liquid at the time of the	assessment and the ir	a tegrity could not be assessed								
Soil: Petroleum Hydroc	arbons (PHCs)		neghty could not be assessed.								
2017											
 Laboratory results less 	s than guidelines with exc	eption of:									
 Sample 17A10BH1 	-2 at a depth of 10.5 mbg	s contained PHCs great	ter than the CCME/CSR guidelines.								
 Sample 17A10TP2- 	1 at a depth of 0.25 mbgs	s contained PHCs great	er than g the CCME/CSR guidelines.								
2018											
 Three test pits 18A101 sample APEC11-7 to o the two soil samples te limits. 	FP4 to 18A10TP6 were ex delineate the PHC manag ested for PHCs F2-F4 at e	cavated at approximate ement limit exceedance each of the three test pit	ely 6 to 7 m step-out distances from 2008 soil e found at 0.2 mbgs. Laboratory results from t locations were less than the management								
Soil: Metals											
2017											
 Various exceedances zinc. 	of CCME CEQGs for arse	enic, barium, cadmium,	copper, molybdenum, nickel, selenium, and								
 Copper exceeded CCI 	ME CEQG in 17A10TP2 a	at 1.0 mbgs, 17A10TP3	at 2.0 and 3.0 mbgs.								
 The following paramet 	ers exceeded preliminary	background concentrat	tions:								
 Arsenic (17A10TP3 	at 3.0 mbgs).										
- Barium (17A10TP1	at 1.0 mbgs, 17A10TP3 a	at 2.0 and 3.0 mbgs).									
- Cadmium (17A10Th	P3 at 2.0 and 3.0 mbgs).										
 – Nickel (17A10TP3 a 	at 2.0 mbgs).										

 Selenium (17A10TP2 at 0.25 mbgs and 17A10TP3 at 3.0 mbgs).
 Zinc (17A10TP3 at 2.0 mbgs).
2018
(see discussion of risk-based metals delineation by Risk Management Unit (RMU) in report Appendix H)
Soil: Other PCOCs (glycols, PAHs, PCBs, VOCs)
 Laboratory results less than detection limits and/or guidelines.
Soil: Routine (pH)
 Laboratory results within guidelines with exception of:
 Sample 17A10BH1-1 at a depth of 1.97 mbgs - pH value outside guideline range.
Groundwater: Petroleum Hydrocarbons
N/A
Groundwater: Metals/Routine Parameters
N/A
Groundwater: Other PCOCs
N/A
Sediment: Petroleum Hydrocarbons
N/A
Sediment: Metals
N/A
Sediment: Other PCOCs
N/A
Surface Water: Petroleum Hydrocarbons
N/A
Surface Water: Metals/Nutrients
N/A
Surface Water: Other PCOCs
N/A
Grain size Analysis
 Soil sample 17A10TP2-1 at a depth of 0.25 mbgs classified as coarse-grained (75% >75 μm).

- Soil sample 17A10TP3-3 at a depth of 2.0 mbgs classified as coarse-grained (87% >75 μm).
- Soil sample 18A10TP4-3 at a depth of 1.0 mbgs classified as coarse-grained (74% >75 μm).

Environmental Concerns

Location in AEC	Potential	Identified	Parameters Assessed and Contaminant(s) of
	Source(s)	Contaminated Media	Concern (COCs; bold & underline)
Area southeast and northeast of the Powerhouse	Releases from chemicals stored at Powerhouse and leaks from sum	Soil; groundwater (investigated as part of AEC 32 assessment)	Soil: <u>metals, petroleum hydrocarbons (PHCs)</u> , glycols, <u>polycyclic aromatic hydrocarbons</u> (PAHs), volatile organic compounds (VOCs).

Discussion (Significance of the Results)

Soils:

- There appear to be two separate intervals of PHC impacts:
 - A deeper PHC affected area near the Powerhouse (observed between depths of 9.5 and 11.0 mbgs); and
 - A shallow PHC affected area associated with fill soil.
- The deep impacts identified were also encountered at AEC 32 (Powerhouse Fuel Storage), located adjacent southeast of AEC 10. These results suggest that the depth impacts at AEC 10 and 32 are related.
- The deep PHC impacts measured in borehole 17A10BH1 were vertically delineated. Based on AEC 32 results, the
 estimated average thickness of deep PHC impacts at AEC 10 and AEC 32 is 2.5 m.

- The shallow PHC impact measured in test pit 17A10TP2 was not vertically delineated, however based on visual observations appears to be limited to a depth of 1.0 mbgs.
- Soil found to exceed the PHC management limits at APEC11-7 has been horizontally delineated. Given that the
 exceedance is associated with a surficial stain, the estimated depth of PHC impacts greater than the management
 limits used to calculate the contaminated soil volume is 0.5 mbgs.
- Glycols, PCB, PAH, and VOC values did not exceed guidelines and are no longer considered PCOCs in soil at this AEC.
- Multiple metals exceeded CCME CEQGs and preliminary background concentrations.
- Lowest metals concentrations in sample from borehole 17A10BH1.
- Highest metals concentrations and most exceedances in samples from 17A10TP2 and 17A10TP3.

Attachments

Figure A10-1 – Soil Results

Figure A10-2 – Powerhouse Groundwater and Surface Water Results

Figure A10-3 – AEC 10 Powerhouse EM31 Apparent Terrain Conductivity Survey

Table A10-1 – Soil Analytical Results

Borehole and Test pit Logs

Photographs

Table A10-1: Soil Analytical Results																		
				AEC							AE	C 10						
				Location		BH1		TP1	TP2	Т	P3	TP6-1	TP6-3	TP4-1	TP4-1	TP4-3	TP5-1	TP5-3
				Sample Depth	1.97 m	10.5 m	11.6 m	1.0 m	0.25 m	2.0 m	3.0 m	0.2 m	1 m	0.2 m	0.2 m	1 m	0.2 m	1 m
				Field ID	17A10BH1-1	17A10BH1-2	17A10BH1-3	17A10TP1-2	17A10TP2-1	17A10TP3-3	17A10TP3-4	18A10TP6-1	18A10TP6-3	18A10TP4-1	18A10BTP4-1	18A10TP4-3	18A10TP5-1	18A10TP5-3
				Sample Date	23-Sep-2017	23-Sep-2017	23-Sep-2017	22-Sep-2017	22-Sep-2017	22-Sep-2017	22-Sep-2017	3-Jul-2018	3-Jul-2018	3-Jul-2018	3-Jul-2018	3-Jul-2018	3-Jul-2018	3-Jul-2018
			Laborato	ry Report Number	8774135	8774137	8774139	8756238	8756244	8756282	8756284	18Y358151	18Y358151	18Y358151	18Y358151	18Y358151	18Y358151	18Y358151
		10	Lab	oratory Sample ID	17Y266562	17Y266562	17Y266562	17Y264351	17Y264351	17Y264351	17Y264351	9376873	9376875	9376876	9376882	9376878	9376879	9376881
Parameter	Unit	CCME ^{1,2} and NWT CSR ³	Background Concentration ⁴	Management Limits ⁵														
Physical Parameters																		
рН	pH Units	6-8	-	-	<u>5.33</u>	-	-	7.72	7.37	7.55	7.18	-	-	-	-	-	-	-
Moisture	%	-	-	-	10.9	13.9	10.1	10.6	4.47	5.99	7.11	8.1	13.7	12.5	4.8	14.9	8.0	10.9
Carbon																		
Carbon	%	-	-	-	3.86	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyanide																		
Cyanide (SAD)	mg/kg	-	-	-	<100	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyanide (WAD)	mg/kg	0.9	-	-	<u><100</u>	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals																		
Antimony	mg/kg	20	-	-	3.6	-	-	3.5	1.4	3.9	4.3	-	-	-	-	-	-	-
Arsenic	mg/kg	12	64	-	22.3	-	-	<u>49.5</u>	10.9	38.4	<u>341</u>	-	-	-	-	-	-	-
Banum	mg/kg	500	946	-	315	-	-	2350	503	<u>3120</u>	<u>1250</u>	-	-	-	-	-	-	-
Beryllium	mg/kg	4	-	-	0.5	-	-	0.6	1	0.6	0.6	-	-	-	-	-	-	-
Cadmium	mg/kg	1.4	2.8	-	1.24	-	-	<u>1.8</u>	<u>1.87</u>	3.09	3.23	-	-	-	-	-	-	-
Chromium	mg/kg	64	-	-	23	-	-	26	27	27	23	-	-	-	-	-	•	-
Cobalt	mg/kg	40	-	-	15.8	-	-	19.3	21.2	23.4	24.7	-	-	-	-	-	-	-
Copper	mg/kg	63	-	-	22.6	-	-	55.8	973	<u>/9.4</u>	388	-	-	-	-	-	-	-
Lead	mg/kg	70	-	-	33.0	-	-	24.4	20.9	44.9	37.4		-	-	-	-	-	-
Mehrhdenum	mg/kg	0.0	- 10	-	0.03	-	-	0.11	2.92	0.3	0.46		-	-	-	-	-	-
Niekel	mg/kg	5	10	-	4.9	-	-	4.8	<u>7.1</u>	<u>5./</u>	<u>6.1</u>		-	-	-	-	-	-
Selenium	mg/kg	40	17		49.5	-	-	00.3	29.5	<u>05.7</u>	2.2	-	-			-		-
Silver	mg/kg	20	1.7	-	<0.5		-	<0.5	0.6	<u>1.5</u>	<0.5		-	-		-		
Thallium	mg/kg	1	-		-0.0		-	-0.0	0.0	0.4	0.4			-		-	-	-
Tin	mg/kg	5	-	-	<0.2		-	0.4	3.4	0.4	0.4		-			-		
Uranium	mg/kg	23	-	-	1.4			2.4	2.8	2	2.1	-	-	-		-		
Vanadium	ma/ka	130	160	-	76	-	-	87	38	73	75	-	-	-	-	-	-	-
Zinc	ma/ka	200	462	-	248	-	-	398	279	525	457	-	-	-	-	-	-	-
Particle Size											· <u> </u>							
>75 µm	%	-	-	-	-	-	-	-	75	87	-	-	-	-	-	74	-	-
Grain Size	N/A	-	-	-	-	-	-	-	Coarse	Coarse	-	-	-	-	-	Coarse	-	-
Petroleum Hydrocarbons																		
Benzene	mg/kg	0.03	-	-	<0.005	0.092	<0.005	< 0.005	< 0.005	<0.005	< 0.005	-	-	-	-	-	-	-
Toluene	mg/kg	0.1	-	-	< 0.05	0.11	<0.05	<0.05	<0.05	<0.05	0.07	-	-	-	-	-	-	-
Ethylbenzene	mg/kg	0.082	-	-	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	-	-
Xylenes (m & p)	mg/kg	-	-	-	-	-	-	<0.02	<0.02	<0.02	0.06	-	-	-	-	-	-	-
Xylene (m)	mg/kg	-	-	-	<0.02	0.05	<0.02	<0.02	<0.02	<0.02	0.06	-	-	-	-	-	-	-
Xylene (o)	mg/kg	-	-	-	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	0.03	-	-	-		-	-	-
Xylenes Total	mg/kg	0.1	-	-	<0.05	0.07	<0.05	<0.05	<0.05	<0.05	0.09	-	-	-	-	-	-	-
F1 (C ₆ -C ₁₀)	mg/kg	30	-	-	<10	<u>64</u>	<10	<10	<10	<10	<10	-	-	-	-	-	-	-
F1 (C ₆ -C ₁₀) - BTEX	mg/kg	30	-	700	<10	<u>63</u>	<10	<10	<10	<10	<10	-	-	-	-	-	-	-
F2 (C ₁₀ -C ¹⁰)	mg/kg	150	-	1000	<20	<u>521</u>	<20	<20	<20	<20	<20	<20	38	<20	<20	<20	<20	<20
F3 (C ₁₆ -C ₃₄)	mg/kg	300	-	2500	<20	115	<20	<20	558	51	<20	588	436	730	611	129	375	<20
F4 (U ₃₄ -U ₅₀)	mg/kg	2800		10,000	<20	<20	<20	<20	373	28	<20	427	169	483	359	67	130	<20
VH ₆₋₁₀	mg/kg		-		-	-	-	<10	<10	<10	<10	-	-	-	-	-		
VPH ₆₋₁₀	mg/kg	-	-	-	-	-	-	<10	<10	<10	<10	-	-	-	-		-	-
Giycols			1			-10	-10		140			1	1	1	1			1
Dietnylene glycol	mg/kg	-	-	-	-	<10	<10	<10	<10	<10	<10	-	-	-	-	-	-	-
Etnylene glycol	mg/kg	960	-	-	-	<10	10 <10	<10	<10	<10	<10	-	-	-	-	-	-	-
Propylene glycol	mg/kg				-	<10	<10	<10	<10	<10	<10	-	-	-		-	•	-
Triethylene Clycol	mg/kg	-	-	-	-	<10	<10	<10	<10	<10	<10	-	-		-	-	-	-
Themylene Glycol	ing/kg	-	-	-	-				1 10	1 10	1 10	-	-	-	-	-	-	-

Notes:

¹ Canadian Council of Ministers of the Environment (CCME) Canada-Wide Standards (CWS) for Petroleum Hydrocarbons (PHC) in Soil (CCME 2008), for coarse textured soils under Agricultural and Residential/Parkland soils
² Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) - Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (CCME 1999), for coarse textured soils under Agricultural and Residential/Parkland soils
³ Northwest Territories Environmental Guideline for Contaminated Site Remediation (NWT CSR 2003), for coarse textured soils under Agricultural and Human Health (CCME 1999), for coarse textured soils under Agricultural and Residential/Parkland soils
⁴ Preliminary Background Concentration
⁵ Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil Technical Supplement, for coarse textured soil under Agricultural land use, management limit pathway only
<u>6</u> Exceeds Preliminary Background Concentration
<u>8 Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil Technical Supplement, for coarse textured soil under Agricultural land use, management limit pathway only
<u>6</u> Exceeds Preliminary Background Concentration
<u>8 Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil Technical Supplement, for coarse textured soil under Agricultural land use, management limit pathway only
<u>8 Cup</u> - Exceeds Preliminary Background Concentration
<u>8 Staded - Exceeds Management Limits
<u>1 Laidc</u> - Laboratory detection limit is greater than one or more referenced guidelines
<u>*</u>. Not analyzed or no applicable standard/guideline</u></u></u>

Table A10-1: Soil Analytical Results																			
				AEC									C 10						
				Location		BH1		TP1	TP2	Т	P3	TP6-1	TP6-3	TP4-1	TP4-1	TP4-3	TP5-1	TP5-3	
				Sample Depth	1.97 m	10.5 m	11.6 m	1.0 m	0.25 m	2.0 m	3.0 m	0.2 m	1 m	0.2 m	0.2 m	1 m	0.2 m	1 m	
				Field ID	17A10BH1-1	17A10BH1-2	17A10BH1-3	17A10TP1-2	17A10TP2-1	17A10TP3-3	17A10TP3-4	18A10TP6-1	18A10TP6-3	18A10TP4-1	18A10BTP4-1	18A10TP4-3	18A10TP5-1	18A10TP5-3	
				Sample Date	23-Sep-2017	23-Sep-2017	23-Sep-2017	22-Sep-2017	22-Sep-2017	22-Sep-2017	22-Sep-2017	3-Jul-2018	3-Jul-2018	3-Jul-2018	3-Jul-2018	3-Jul-2018	3-Jul-2018	3-Jul-2018	
			Laborato	ry Report Number	8774135	8774137	8774139	8756238	8756244	8756282	8756284	181358151	181358151	18Y358151	181358151	18Y358151	18Y358151	181358151	
		CCME ^{1,2} and	Background	Management	171200302	1/1200302	171200302	171204331	171204331	171204331	171204331	9370673	93/06/3	93/06/0	93/0662	9370676	9370679	9370001	
Parameter	Unit	NWT CSR ³	Concentration ⁴	Limits ⁵															
Polycyclic Aromatic Hydrocarbons (PAHs)	1				1														
B(a)P Total Potency Equivalent	mg/kg	0.6	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	-	-	-	
IACR (CCME)	mg/kg	1	-	-	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	-	-	-	-	-	-	-	
Acenaphthene	mg/kg	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	
Acenaphthylene	mg/kg	-	-	-	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-	-	-	-	-	
Anthracene	mg/kg	2.5	-	-	<0.004	<0.004	<0.004	< 0.004	< 0.004	<0.004	< 0.004	-	-	-	-	-	-	-	
Benze(a) nursene	mg/kg	0.1	-	-	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	-	-	-	-	-	-	•	
Benzo(b)fluoranthene	mg/kg	0.1	-	-	<0.03	<0.05	<0.03	<0.05	<0.03	<0.03	<0.05	-	-	-	-	-	-	-	
Benzo(b+i)fluoranthene	mg/kg	-	-		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-		-		-	-	-	
Benzo(e)pyrene	mg/kg	-	-	-	-	-	-	<0.03	<0.03	<0.03	<0.03	· -	-	-	-	-	-	-	
Benzo(g,h,i)perylene	mg/kg	-	-	-	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	-	-	-	-	-	-	-	
Benzo(j)fluoranthene	mg/kg	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	
Benzo(k)fluoranthene	mg/kg	0.1	-	-	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	-	-	-	-	-	-	-	
Chrysene	mg/kg	-	-	-	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	-	-	-	
Dibenz(a,h)anthracene	mg/kg	0.1	-	-	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	-	-	-	-	-	-	-	
Fluoranthene	mg/kg	50		-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		-	-	-	-	-		
Indepo(1.2.3-c.d)pyrepe	mg/kg	- 0.1	-	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	-	-	-	-	-	-	
1-Methylnaphthalene	mg/kg	-		-	<0.002	<0.002	<0.02	<0.005	<0.005	<0.002	<0.005	-		-		-			
2-Methylnaphthalene	ma/ka	-	-	-	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	-	-	-	-	-	-	-	
Naphthalene	mg/kg	0.013	-	-	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-	-	-	-	-	
Phenanthrene	mg/kg	0.046	-	-	<0.02	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	-	-	-	-	-	-	-	
Pyrene	mg/kg	0.1	-	-	<0.01	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	-	-	
Polychlorinated Biphenyls (PCBs)		1				1	1	1	1	1	1	1	1	1	1				
Aroclor 1242	mg/kg	-		-	<0.05	-	-	-	-	<0.05	< 0.05	-	-	-	-	-	-	-	
Aroclor 1254	mg/kg	-	-	-	<0.05	-	-	-	-	<0.05	<0.05	-	-	-	-	-	-	-	
Aroclor 1260	mg/kg		-			-	-			<0.05	<0.05		-	-	-	-			
PCBs (Sum of total)	ma/ka	0.5	-	-	<0.05	-	-	-	-	<0.05	< 0.05	-	-	-	-	-	-	-	
Volatile Organic Compounds (VOCs)																			
Acetone	mg/kg	-	-	-	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	
Bromodichloromethane	mg/kg	-	-	-	<0.05	-	-	<0.05	< 0.05	<0.05	<0.05	-	-	-	-	-	-	-	
Bromoform	mg/kg	-	-	-	<0.05	-	-	< 0.05	<0.05	<0.05	< 0.05	-	-	-	-	-	-	-	
Bromomethane	mg/kg	-		-	<0.05	-	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	
2-Butanone	mg/kg	- 0.1			<0.0	-	-	<0.0	<0.5	<0.5	<0.02		-	-	-	-	-	-	
Chlorobenzene	mg/kg	0.1			<0.02			<0.02	<0.02	<0.02	<0.02			-		-			
Chloroethane	ma/ka	-	-	-	<0.05	-	-	< 0.05	< 0.05	<0.05	< 0.05	-	-	-	-	-	-	-	
Chloroform	mg/kg	0.1	-	-	< 0.05	-	-	< 0.05	< 0.05	<0.05	< 0.05	-	-	-	-	-	-	-	
Chloromethane	mg/kg	-	-	-	<0.05	-	-	<0.05	< 0.05	<0.05	< 0.05	-	-	-	-	-	-	-	
Dibromochloromethane	mg/kg	-	-	-	<0.05	-	-	<0.05	< 0.05	<0.05	<0.05	-	-	-	-	-	-	-	
1,2-Dibromoethane	mg/kg	-	-	-	<0.05	-	-	< 0.05	< 0.05	<0.05	< 0.05	-	-	-	-	-	-	-	
1,2-Dichlorobenzene	mg/kg	0.1		-	<0.05	-	-	<0.05	<0.05	<0.05	<0.05		-	-	-	-	-	-	
1.4-Dichlorobenzene	mg/kg	0.1		-	<0.05	-	-	<0.05	<0.05	<0.00	<0.05	+	-		-	-	-		
1.1-Dichloroethane	ma/ka	0.1		-	<0.05	-	-	<0.05	<0.05	<0.05	< 0.05		-	-	-	-	-	-	
1,2-Dichloroethane	mg/kg	0.1		-	<0.05	-	-	<0.05	<0.05	<0.05	< 0.05	- 1	-	-	-	-	-		
1,1-Dichloroethene	mg/kg	0.1	-	-	<0.05	-	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	
1,2-Dichloroethene (cis)	mg/kg	0.1	-	-	<0.05	-	-	<0.05	< 0.05	<0.05	< 0.05	-	-	-	-	-	-	-	
1,2-Dichloroethene (trans)	mg/kg	0.1	-	-	<0.05	-	-	<0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	-	-	-	
1,2-Dichloropropane	mg/kg	0.1	-	-	<0.05	-	-	< 0.05	< 0.05	<0.05	< 0.05	-	-	-	-	-	-	-	
1,3-Dichloropropene [cis]	mg/kg	-	-	-	<0.05	-	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	
Methyl t-Butyl Ether (MTRE)	mg/kg			-	<0.00	-	-	<0.05	<0.00	<0.00	<0.00	+	-		-	-	-		
Methylene Chloride	mg/kg	01			<0.05			<0.0	<0.0	<0.1	<0.05			-		-			
4-Methyl-2-pentanone	mg/kg	-	· ·	-	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	· ·	-	-	-	-	-	-	
Styrene	mg/kg	0.1		-	<0.05	-	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	- 1	
1,1,1,2-Tetrachloroethane	mg/kg	-	-	-	<0.05	-	-	< 0.05	<0.05	<0.05	< 0.05	-	-	-	-	-	-	-	
1,1,2,2-Tetrachloroethane	mg/kg	0.1	-	-	<0.05	-	-	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	
Tetrachloroethene	mg/kg	0.1		-	<0.05	-	-	< 0.05	< 0.05	<0.05	< 0.05	-	-	-	-	-	-	-	
1,2,4-Trichlorobenzene	mg/kg	0.05	-	-	<0.05	-	-	< 0.05	<0.05	<0.05	< 0.05		-	-	-	-	-	-	
1,1,1-I richloroethane	mg/kg	0.1		-	<0.05	-	-	<0.05	< 0.05	<0.05	< 0.05		-	-	-	-	-	-	
	mg/kg	0.1		-	<0.05	-		<0.05	<0.05	<0.05	<0.05			-		-	-		
Trichlorofluoromethane	ma/ka			-	<0.05	-	-	<0.05	<0.05	<0.05	<0.05						-		
Vinyl chloride	mg/kg	-	- 1	-	<0.05	-	-	<0.05	< 0.05	<0.05	< 0.05		-	-	-	-	-	-	
· · · · · · · · · · · · · · · · · · ·																			

Notes:
¹ Canadian Council of Ministers of the Environment (CCME) Canada-Wide Standards (CWS) for Petroleum Hydrocarbons (PHC) in Soil (CCME 2008), for coarse textured soils under Agricultural and Residential/Parkland soils
² Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CEQG) - Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (CCME 1999), for coarse textured soils under Agricultural and Residential/Parkland soils
³ Northwest Territories Environmental Guideline for Contaminated Site Remediation (NWT CSR 2003), for coarse textured soils under Agricultural and Residential/Parkland land use
⁴ Preliminary Background Concentration
⁵ Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil Technical Supplement, for coarse textured soil under Agricultural land use, management limit pathway only
<u>80LD</u> - Exceeds Management Limits
<u>Red</u> - Exceeds Management Limits
<u>Italic</u> - Laboratory detection limit is greater than one or more referenced guidelines
. Not analyzed or no applicable standard/guideline

North American Tungsten Corporation			Borehole No: 17A10BH1								
			Project: Phase III Environmental Site Assessment				Project No: ENW.WENW03039-02 Task 002.2.2.6				
			Location: Cantung Mine				Ground Elev: 1139.495 m				
			Tungsten, Northwest Territories				UTM: 540245.5 E; 6870989.5 N; Z 9				
					er						
Depth (m)	Method	Soil Description		Sample Type	Sample Numb			Notes and Comments	Backfill	Elevation (m)	
0		SAND (FILL), aroughly some sitt trace exhibits down, arough brown, medium cond				50 100 150 2	200				
- - - - - -		- hydrocarbon odour for 500 mm COBBLES AND SAND (FILL) - some gravel, damp, brown SILT (POSSIBLE TAILINGS) - trace gravel, damp			. 1-1 ∎					1139	
2						•				1138 	
3	Sonic									1136-	
4		 organics, black SAND - gravelly, trace silt, damp, grey, fine to coarse sand 								1135	
5 6		SAND AND GRAVEL - damp, light brown, fine to coarse sand and gravel GRAVEL - sandy, some silt, trace cobbles, damp, grey, mottled, medium gravel SAND - gravelly, trace silt, damp, grey, fine to coarse sand								1134	
- - - - - 7		SILT - some sand, some gravel, damp SAND - gravelly, some silt, trace cobbles, damp, brown, fine to coarse sand - 150 mm thick silt laver - some gravel								1133-	
8		- oxidized gravel and sand								1132	
9		SILT AND SAND - gravelly, trace cobbles, wet, brown								1131	
10		- blackish blue staining, hydrocarbon odour			1-2					1130-	
11					1-3					1128-	
- 12		SILT - gravelly, some sand, trace cobbles, damp, brown END OF BOREHOLE (12.19 metres) Note: Backfilled at completion	to grey							1127-	
13										1126-	
14										1125-	
- 15	15 Contractor: Roart Longve				IIII ar			Completion Depth: 12 19 m			
					ounted			Start Date: 2017 September 23			
		IEIKAIECH	Logged By: MH				Completion Date: 2017 September 23				
			Reviewed By: JW				Page 1 of 1				
	North American	Borehole	Ν	lo:	17A10T	'P1					
---	----------------	---	---	--------	----------	----------------------	---------------------------------------	-------------------------------	-----------	-------------	--
٦ ا	Γu	ngsten Corporation	Project: Phase III Environ	men	tal Site	Assessment	Projec	ct No: ENW.WENW03039-02 T	ask 00)2.2.2.6	
-		l td	Location: Cantung Mine				Grour	nd Elev: 1141.102 m			
		L (U .	Tungsten, Northwest Terr	itorie	es		UTM: 540235.789 E; 6870941.877 N; Z 9				
oth (r	pou	Soil		e Type	Number			Notes and	dill	ation 1)	
De	Met	Description		Sample	Sample	■ Vapour readings (p	pmv) ■	Comments	Bac	Elev: (n	
F		SAND (FILL) - silty, some gravel to gravelly, damp, dens	se, grey, coarse sand	/	1-1		200		\square	1141-	
- 1	hoe	GRAVEL (FILL) - sandy, some silt, trace to some cobble subangular gravel SAND (FILL) - some gravel to gravelly, trace cobbles, dr	es, damp, dense, grey, amp. firm. brown, coarse sand	ld	1-2	۹				1140	
2	Back		, , , , , , , , , , , , , , , , , , ,		1-3	1				1139-	
3		END OF TESTPIT (3.0 metres)		/	1-4					1138-	
4		Note: Backfilled at completion								1137	
5										1136	
6										1135-	
7										1134	
8										1133	
10										1132-	
L L L L L L L L L L L L L L L L L L L										1130	
12										1129	
13										1128-	
										1127-	
- 15			1 -				1.			-	
			Contractor: NATC					Completion Depth: 3 m			
	TETRA TECH		Drilling Rig Type: Rubber Tire backhoe					Start Date: 2017 September 22			
		<u>·</u>]	Logged By: NH				Comp	etion Date: 2017 September 2	2		
		-	Reviewed By: JW				Page	1 of 1			

	North American	Borehole	Ν	lo:	17A10	rp2	P2						
1	โน	ngsten Corporation	Project: Phase III Environ	men	tal Site	Assessment	Proje	ct No: ENW.WENW03039-02 1	Task 00)2.2.2.6			
-		l td	Location: Cantung Mine				Ground Elev: 1141.016 m						
		Ltd.	Tungsten, Northwest Teri	itorie	es		UTM: 540242.223 E: 6870937.323 N: Z 9						
Depth (m)	Method	Soil Description		Sample Type	Sample Number			Notes and Comments	Backfill	Elevation (m)			
0						■ Vapour readings (p 50 100 150	opmv) 📕 200						
		SAND (FILL) - gravelly, silty, damp, dense, reddish brow - some gravel, trace silt, trace cobbles, soft, brown, co	m, fine sand	/ /	2-1 2-2			25% particles <75 μm (ie. smaller than sand particle)		1140-			
	Backhoe	- trace to some boulders, medium to coarse sand			2-3					1139			
				/	2-4					1138			
- - - - - 4		Note: Backfilled at completion								1137			
5										1136			
- - - - - - - - 6										1135			
- 7										1134			
8										1133-			
9										1132			
										1131-			
- 										1130-			
12										1129			
13										1128			
14 										1127-			
- 15			I							-			
			Contractor: NATC				Comp	eletion Depth: 3 m					
		TETRA TECH	Drilling Rig Type: Rubber Tire backhoe					art Date: 2017 September 22					
			Logged By: NH					bletion Date: 2017 September 2	22				
			Reviewed By: JW				Page	1 of 1	Page 1 of 1				

	North American	Testpit No	D:	1	7A10TP	3						
1	Гu	ngsten Corporation	Project: Phase III Environ	ment	al Site	Assessment	Projec	ct No: ENW.WENW03039-02 1	ask 00)2.2.2.6		
-		l td	Location: Cantung Mine				Ground Elev: 1139.495 m					
		Ltd.	Tungsten, Northwest Terr	itorie	s		UTM: 540246 E; 6870989 N; Z 9					
Depth (m)	Method	Soil Description		Sample Type	Sample Number	■ Vapour readings (p	pmv) 🔳	Notes and Comments	Backfill	Elevation (m)		
0		SAND (FILL) - silty some gravel damp brown				50 100 150	200					
-		- grey staining, hydrocarbon odour			1-1							
-		GRAVEL (FILL) - sandy, some cobbles, damp, dense, b	rown							-		
- - - - -		SAND (FILL) - silty, trace gravel, organics, damp, soft, c	ark brown		1-2					-		
_	ed	- some gravel, trace silt, no visible organics, brown, co	arse sand							_		
- - - - - -	Excavated	GRAVEL (FILL) - sandy, some silt, trace cobbles, damp	, soft, brown		1-3			13% particles <75 μm (ie. smaller than sand particle)		1138— - - - -		
- - - - - - - - -					1-4					- - - 1137— - - - - - -		
-		END OF TESTPTT (3.0 metres) Note: Backfilled at completion								- - - 1136- - - -		
- 4 												
5			Contractor: NATC			1	Comp	letion Depth: 3 m	I			
			Drilling Rig Type: Rubber Tire backhoe					Start Date: 2017 September 22				
	It		Logged By: NH				Completion Date: 2017 September 22					
	_		Reviewed By: JW				Page	1 of 1				

	North American		Testpit No:	18	8A	10TP4	4				
		North American	Project: Phase III Environmenta	al Site	Asse	ssment	Project No: E	ENW.WENW03039-03			
		Tungsten Corp.	Location: Cantung Mine				Ground Elev: 1140.757 m				
			Cantung, Northwest Territories				UTM: 540226.261 E; 6870928.285 N; Z 9				
Depth (m)	Method	Soil Descriptior	1	Sample Type	Sample Number			Notes and Comments	Elevation (m)		
					0,	Vapour reading	gs (ppmv) 🔳				
0		GRAVEL AND SAND (FILL) - well graded, ,damp, grey, subangular gravel, (80 mm thick)	fine to coarse sand, angular to			100 200 3	300 400				
-		SAND AND GRAVEL (FILL) - trace cobbles, well graded pieces, fine to coarse sand	I, damp, light brown, metal siding		4-1 ∎				1140.6		
- 0.2									-		
-									1140.4 -		
- 0.4	ated				4-2 ∎						
-	Excava								1140.2 -		
- 0.6											
-									1140.0-		
- 0.8											
-					4-3				1139.8 -		
- 1.0		END OF TESTPIT (1.00 metre) Location: 6 m south southwest of 2008 soil sample Al Note: Testpit location surveyed by Tetra Tech on Aug	PEC11-7 ust 28, 2018				<u>.:</u>		-		
-									1139.6 -		
- 1.2									-		
-									1139.4 -		
- 1.4 15									.		
1.0	1	_	Contractor: NATC	-	ı		Completion I	Depth: 1 m	1		
		TETRA TECH	Drilling Rig Type: Backhoe			Start Date: 2018 July 2					
	U		Logged By: BB				Completion Date: 2018 July 2				
	_		Reviewed By: SS			Page 1 of 1					

			Testpit No:	18	BA	10TP	5		
		North American	Project: Phase III Environmenta	al Site	Asse	essment	Project No: I	ENW.WENW03039-03	
		Tungsten Corp.	Location: Cantung Mine				Ground Elev	r: 1141.633 m	
			Cantung, Northwest Territories				UTM: 54023	4.694 E; 6870931.488 N; Z 9	
Depth (m)	Method	Soil Descriptior	1	Sample Type	Sample Number	■ Vapour readi	ngs (ppmv) ■	Notes and Comments	Elevation (m)
0		GRAVEL (FILL) - sandy, well graded, damp, light grey, f	ine to coarse angular to subangular	-		100 200	300 400		
- 0.2		gravel, (200 mm thick) SAND AND GRAVEL (FILL) - well graded, damp, light b coarse sand, angular cobbles to 250 mm diameter	rown, lumber inclusions, fine to		5-1				1141.6 - - 1141.4 -
- 0.4	avated				5-2				- 1141.2 -
- 0.6	Exc								- 1141.0–
- 0.8									
-					5-3				1140.8 -
- 1.0		END OF TESTPIT (1.00 metre) Location: 7 m west of 2008 sample location APEC11- Note: Testpit location surveyed by Tetra Tech on Aug	.7 ust 28, 2018						1140.6 -
- 1.2									1140.4 -
- 1.4									1140.2 -
			Contractor: NATC				Completion	Depth: 1 m	
		TETRA TECH	Drilling Rig Type: Backhoe				Start Date: 2	2018 July 3	
	U		Logged By: BB				Completion	Date: 2018 July 3	
			Reviewed By: SS				Page 1 of 1		

			Testpit No:	18	BA	10TP	6			
		North American	Project: Phase III Environmenta	al Site	Asse	essment	Project No: I	ENW.WENW03039-03		
		Tungsten Corp.	Location: Cantung Mine				Ground Elev: 1162.468 m			
			Cantung, Northwest Territories				UTM: 540221.969 E; 6870953.147 N; Z 9			
							0.000			
Depth (m)	Method	Soil Description	٦	Sample Type	Sample Number	■ Vapour readi	ngs (ppmv) ■	Notes and Comments	Elevation (m)	
0		GRAVEL AND SAND (FILL) - well graded, damp, grey,	fine to medium angular gravel, (150			100 200	300 400			
-		mm thick) SAND (FILL) - gravelly, trace cobbles, well graded, dam	p, light brown, fine to coarse sand,		3-1				1162.4 -	
- 0.2		subrounded cobbles to 200 mm diameter, slight hydr	ocarbon odour						1162.2 -	
- 0.4	Excavated				3-2				1162.0-	
- 0.6									-	
-									1161.8 -	
- 0.8 -					3-3	•			1161.6 -	
— 1.0		Location: 6 m northwest of 2008 sample location APE Note: Testpit location surveyed by Tetra Tech on Aug	EC11-7 lust 28, 2018						-	
-									1161.4 -	
- 1.2 -									1161.2 -	
- 1.4									- 1161.0—	
1.5			Contractor: NATC				Completion	 Denth: 0.9 m		
			Drilling Rig Type: Packhoo				Start Date: 2	Depui. 0.9 III 2018 July 3		
			Longed By: RR				Completion Date: 2018 July 3			
			Reviewed By: SS				Page 1 of 1	Dato. 2010 Uliy 0		

Photo 1: Looking south towards Power Building. (October 2, 2017)

Photo 2: Looking northwest towards Power Building. Gen Sets visible on the left. (October 2, 2017)

Photo 3: 17A10TP1 (September 22, 2017)

Photo 4: 17A10TP2 (September 22, 2017)

AEC 13

Area Description	Area Description											
Location		Northea	st of Main P	ortal (3950 L	evel).							
Topography		Steep sl northeas	ope to north st.	east betweer	n roads that bound the AEC to sout	nwest and						
Surface Drainage		Northea	st.									
Background		Waste re	ock from the	eunderground	d mine was stockpiled at this location	n.						
Environmental Co	ncerns											
Location in AEC	Potentia Source(s	 \$)	Identified Contamin	l ated Media	Parameters Assessed and Co Concern (COCs; bold &	ntaminant(s) of underline)						
Entire AEC	Waste R	ock	Rock; Gro	undwater	Groundwater: <u>Metals;</u> Rock: Po drainage - low pH leachate potent leaching potential (see Tetra Tech	tential Acid-rock ial; metal n, 2019g)						
Historical Assess	ment Info	rmation										
Previous Phase II Env Results (EBA, 2008)	/ironmenta	I Site Asse	essment	Not in scope	e for EBA, 2008							
Sampling and charact	erization p	rograms o	of waste	Number of I	Rinse pH/EC analyses	55						
rock piles were compl	eted in 199	97 (Aur Re	sources	Number of A	ABA analyses	63						
1997), 2006 (MESH 2 (Phase 2014a), As we	1997), 2006 (MESH 2006b and 2007) and 2012 (Phase 2014a), As well as NATCL routine sampling				multi-element ICP analyses	63						
since 2007. Note: this	ince 2007. Note: this is characterization on all				shake flask extraction analyses	22						
waste rock piles, not e	exclusively	AEC13.		Number of f	field barrel analyses	N/A						
_												

Comments:

Five field barrel tests completed on waste rock materials collected from underground and open pit.

Geochemical test work shows waste rock (from all areas of mine) for the most part typically classified as NAG (68% of samples tested) or Uncertain (18% of samples). Waste rock samples with total sulphur contents less than 0.5% were typically NAG. Rinse pH values were consistently neutral to slightly alkaline indicating existing buffering capacity and no signs of increased acidity within the waste rock. The high proportion of carbonates in the waste rock provide a long lag period to the onset of acidic conditions.

Waste rock was consistently elevated in solid Cu and W, and slightly elevated in Bi, As, Fe, Cr and Zn in some samples, as compared to average crustal abundances of similar rock types. No significant variations in metal content were observed between the different waste rock dump locations.

Waste rock leachate, as characterized by shake flask leach extraction testing, indicate that soluble trace metal concentrations at neutral pH are expected to be generally low but may contain somewhat elevated soluble sulphate concentrations (range of 300 to 1,300 mg/L in leach tests). Explosives residues from blasting are also expected to be at low soluble concentrations.

2017/2018 Environmental Site Assessment Details

Environmental Site Assessment Scope Utility Locate SOP followed? Yes EM 31 Geophysics Complete? N/A Number of test pits advanced 0 2 Number of boreholes advanced Number of hand auger locations advanced 0 Number of rock samples collected for acid rock drainage/metal leaching 9 4 Number of rock samples submitted for acid rock drainage analysis Number of rock samples submitted for metal leaching extraction tests 4 Number of boreholes completed as groundwater monitoring wells 2 Number of historical groundwater monitoring wells 0

AEC 13: Waste Rock Plie								
Number of groundwater samples	s collected			1 (2017), 1 (2018)				
Number of sediment and surface	e soil samples collected			N/A				
Geophysics Findings								
N/A								
Soil Investigation and Condition	ons							
Maximum Depth of Investigation	13.72 mbgs (Septembe	er 19, 2017)						
General Stratigraphy								
Description	Depth from (mbgs)	Depth to (mbgs)	Ob	servations				
Waste Rock	0	4.0	Ice/frost encou 7.62 mbgs in 1	untered from 2.5 m to 7BH01.				
Various Layers of Sand, Silt, and Boulders	4.0	5.0 - 7.0	Native Soil					
Bedrock (17BH02 only) 5.0 13.72 -								
Combustible Vapour Concent	rations (CVCs)							
Less than instrument detection li	mit.							
Groundwater Conditions								
Depth to Groundwater	8.12 mbgs (September	26, 2017), 7.92 mbgs	(June 30, 2018)	at 17A13MW2				
Free Product	Not Present							
2017/2018 Environmental S	ite Assessment Resu	Its Summary						
 Figure A13-1 shows borehole Figure A13-2 shows monitorir Figure A13-3 shows ARD/ML Table A13-1 summarizes grouter to the trade to the trad	locations. ng well locations. sample locations. undwater lab results relat acid-base accounting re metal leaching results re	ive to guidelines. sults (with sample des elative to guidelines.	criptions).					
General Site Observations	. f 11	······································						
 Waste rock piles contain a mi Material in waste rock piles in Waste rock material is current No surface leachate was observable 	x of all mine waste rock to various stages of oxidati tly exposed. erved or sampled.	ypes (volume of each r on and weathering.	ock type not dete	erminea).				
 Safe accessibility limited - sar representative of material throad 	nple collection only at ed oughout waste rock piles.	ges of waste rock piles	. Regardless, we	e consider samples				
 Water in ditch/creek adjacent captures water from above water 	to Sample 17A13-06 at p aste rock piles.	H 8.60. This creek pas	sses closes to wa	aste rock pile, but				
Soil: Petroleum Hydrocarbons	(PHC)							
Soil: Metals								
N/A								
Soil: Other PCOCs								
N/A								
Rock: Acid Rock Drainage								
	T							

Rock: Trace Element/Metals Analysis N/A – not tested during this program; historical data available. **Rock: Metal Leaching** See geochemistry report (Tetra Tech 2020e). Groundwater: Petroleum Hydrocarbons N/A Groundwater: Metals/Routine Parameters 2017 Laboratory results less than guidelines with exception of: Selenium at 17A13MW2 greater than guidelines. Fluoride and sulphate at 17A13MW2 greater than guidelines but less than preliminary background guality. 2018 Laboratory results less than guidelines with exception of: - Fluoride, sulphate, and manganese at 17A13MW2 greater than guidelines. Sulphate at 17A13MW2 greater than guidelines and preliminary background guality. Groundwater: Other PCOCs Laboratory results for nutrients (i.e., nitrate-N and nitrite-N) less than guidelines. Sediment: Petroleum Hydrocarbons N/A Sediment: Metals N/A Sediment: Other PCOCs N/A Surface Water: Petroleum Hydrocarbons N/A Surface Water: Metals/Nutrients N/A Surface Water: Other PCOCs N/A Grainsize Analysis N/A **Discussion (Significance of Results)** Rock: Historical data for waste rock materials are available and were considered and relied upon here.

- Variable waste rock mine material is present in AEC13 stockpiles. Some waste rock types have potential for ARDML (see Geochemistry report; Tetra Tech, 2019g).
 - The 2017 investigation program noted variable levels of weathering and alteration. The most significant alteration is in areas of skarnified swiss-cheese limestone.

Groundwater:

<u>2017</u>

- Groundwater flow direction in area of AEC13 is northeast towards Flat River.
- Monitoring well 17A13MW2 completed in bedrock and located downgradient of southern part of waste rock pile.
- Elevated selenium at 17A13MW2 may indicate that there is selenium leaching occurring.
- Monitoring well 17A13MW1 completed within waste rock pile and underlying overburden. It was dry when installed (September 2017). Permafrost observed at this location.
- Infiltrating groundwater within waste rock pile drains rapidly. Samples can only be obtained during or right after precipitation events, or during a time of year when water levels are higher. Sampling 17A13MW1 would provide better data to assess for potential metals impacts to subsurface from waste rock pile.

Presence of waste rock pile near monitoring well 17A13MW2 appears to have minimal impact on quality of groundwater within bedrock because metals concentrations met guidelines except for selenium.

<u>2018</u>

- Selenium below detection limit at monitoring well 17A13MW2.
- Monitoring well 17A13MW1 was found to be dry in June 2018.
- Infiltrating groundwater within waste rock pile drains rapidly. Samples can only be obtained during or right after
 precipitation events, or during a time of year when water levels are higher. Sampling 17A13MW1 would provide
 better data to assess for potential metals impacts to subsurface from waste rock pile.
- Presence of waste rock pile near monitoring well 17A13MW2 appears to have minimal impact on quality of groundwater within bedrock because metals concentrations met guidelines except for manganese.

Attachments

Figure A13-1 - Soil and Sediment Results

Figure A13-2 – Groundwater and Surface Water Results

Figure A13-3 - Waste Rock Acid Rock Drainage Results

Table A13-1 – Groundwater Analytical Results

Borehole Logs

Photographs

Table A13-1: Groundwater Analtyical Results

	AEC	EC AEC 13				
	Location	17A1:	3MW2			
				Field ID	17A13MW2	17A13MW2
				Sample Date	28-Sep-2017	30-Jun-2018
			Laborato	ory Report Number	17Y266476	18Y358442
			Lab	oratory Sample ID	8773164	9378830
		Endoral Inter	m Guideline ¹	Preliminary		
Parameter	Unit	receration		Background		
		Agricultural	Res / Park	Concentrations		
Field Parameters						
Field Temperature	<u>"C</u>	-	-	-	3.8	2.5
Field pH	pH Units	6.5-9	6.5-9	-	8.41	7.26
Field Conductivity	µS/cm	-	-	-	-	998
Routine	nH Llaita	650	650		7 59	7.41
Electrical Conductivity (EC)	uS/cm	0.3-9	0.3-9	-	1320	1050
Total Dissolved Solids (TDS)	mg/l	3000	-	-	1040	735
Hardness as CaCO ₂	mg/L	-	-		738	547
Alkalinity (total as CaCO ₃)	mg/L	-	-	-	285	270
Bromide	mg/L	-	-	-	0.05	<0.05
Chloride	mg/L	100	120	-	7.19	3.07
Fluoride	mg/L	0.12	0.12	0.39	0.13	0.17
Sulphate	mg/L	100	100	182	130	<u>332</u>
Nutrients						
Ammonia	mg/L	0.021-231 2	0.021-231 2		-	0.11
Nitrate (as NO ₃ -N)	mg/L	13	13		0.828	0.039
Nitrite (as NO ₂ -N)	mg/L	0.06	0.06	-	0.025	<0.005
Nitrogen (Total)	mg/L	-	-	-	-	0.26
Dissolved Metals		2	2			
Aluminum	mg/L	0.005 / 0.1 3	0.005 / 0.1 3	-	0.008	<0.002
Antimony	mg/L	2	2	-	0.0006	<0.0002
Barium	mg/L	0.005	0.005	-	0.0014	0.0000
Bendlium	mg/L	0.0053	0.0053	-	<0.0001	<0.0001
Boron	mg/L	0.5	1.5		0.047	0.057
Cadmium	mg/L	0.00012	0.00012	0.000047	<0.00001	0.00001
Calcium	mg/L	-	-	-	166	156
Chromium	mg/L	0.0089	0.0089	-	<0.0005	<0.0005
Cobalt	mg/L	0.05	-	-	0.00022	0.0004
Copper	mg/L	0.002	0.002	-	0.0013	0.0003
Iron	mg/L	0.3	0.3	-	0.019	0.015
Lead	mg/L	0.001-0.002 4	0.001-0.002 4	-	<0.00005	<0.00005
Lithium	mg/L	-	-	-	0.0347	0.0337
Magnesium	mg/L	-	-	-	/8.5	38.2
Marganese	mg/L	0.2	-		0.025	<0.00001
Molybdenum	mg/L	0.000010	0.000010	-	0.00158	0.00111
Nickel	mg/L	0.025-0.083 4	0.025-0.083 4	-	0.0016	0.0014
Potassium	mg/L	-	-	-	5.47	2.88
Selenium	mg/L	0.001	0.001	-	0.0021	<0.0005
Silver	mg/L	0.00025	0.00025	-	<0.00002	<0.00002
Sodium	mg/L	-	-	-	34.6	30.3
Strontium	mg/L	-	-	-	-	0.35
Thallium	mg/L	0.0008	0.0008	-	0.00004	0.00001
Tin	mg/L	-	-		-	<0.00005
Titanium	mg/L	0.1	0.1	-	0.0008	0.0016
Tungsten	mg/L	-	-		-	0.00049
Uranium	mg/L	0.01	0.015	-	0.00373	0.00653
Vanadium Zin -	mg/L	0.1	0.01	-	<0.0005	<0.0005
Linc	mg/L	0.01	0.01	-	<0.002	<0.002
Benzene	mg/l	0.088	0.14			<0.0005
Toluene	ma/L	0.083	0.083		-	<0.0005
Ethylbenzene	mg/L	3.2	11	-	-	<0.0005
Xylene (m)	mg/L	-	-	- 1	-	<0.0005
Xylene (o)	mg/L	-	-	-	-	<0.0005
Xylenes Total	mg/L	3.9	3.9	-	-	<0.001
F1 (C ₆ -C ₁₀)	mg/L	-	-	-	-	<0.1
F1 (C ₆ -C ₁₀) - BTEX	mg/L	0.81	0.81	-	-	<0.1
F2 (C ₁₀ -C ₁₆)	mg/L	1.3	1.3		-	0.15
F3 (U ₁₆ -U ₃₄)	mg/L	-	-		-	0.2
F4 (034-050)	mg/L	- 1	-	-	-	0.22

Notes: ¹ Environment Canada (June 2016). Guidance Document on Federal Interim Groundwater Quality Guidelines (FIGQG) for Federal Contaminated Sites, for fine and coarse textured soil under Agricultural and Residential/Parkland land use

 $^{\rm 2}$ Guideline varies with pH and temperature

Guideline varies with pH and temperature ³ Guideline varies with pH ⁴ Guideline varies hardness "-" No applicable guideline or not analyzed **BOLD** - Greater than Guideline <u>RED</u> - Greater than Preliminary Background Concentration

	North American	Borehole	Ν	lo:	17A13E	H1/MW1					
ا	Γu	ngsten Corporation	Project: Phase III Environ	men	tal Site	Assessment	Projec	xt No: ENW.WENW03039-02 T	ask 00)2.2.2.6	
•		I td	Location: Cantung Mine				Ground Elev: 1172.399 m				
		Ltu.	Tungsten. Northwest Terr	itorie	es		UTM: 539905 189 F: 6871111 39 N: 7 9				
	Γ			T							
Depth (m)	Method	Soil Description		Sample Type	Sample Number	■ Vapour readings (pp	omv) ■	Notes and Comments	MW1	Elevation (m)	
E		WASTE ROCK - cobbles, boulders, some sand and grav	vel, grey, fine to coarse rock								
2							· · · · · · · · · · · · · · · · · · ·			1172	
3		ICE WASTE ROCK - mixed with ice						0 0 0 0 0 0 0			
4	Sonic	- granite boulder SAND AND SILT - some gravel brown oxidized streaks	, fine sand, medium to coarse		1-1					1169	
5		gravel BOULDER - very hard SILT - sandy, streaked brown and black, reddish tinge, v	rery fine sand, permafrost	-						1168-	
				Λ	1-2					1167	
- 7		SAND - some silt, some gravel, brown, permafrost							` <u>.*.</u> *	1166-	
		END OF BOREHOLE (7.62 metres)								1165-	
8		Monitoring well installed to 6.10 metres Screen interval - 3.05 to 6.10 metres								1164-	
9										1163-	
10										1162	
11										1161	
12										1160	
13										1150	
- - - - 14											
 15										1158-	
			Contractor: Boart Longye	ar •			Completion Depth: 7.62 m				
		TETRA TECH	Drilling Rig Type: Track Mounted					Start Date: 2017 September 19			
			Logged By: MG				Completion Date: 2017 September 19				
			Reviewed By: JW				Page	1 of 1			

	North American	Borehole	Ν	l o:	1	7A	13	BH	H2/MW2					
1	Γu	nasten Corporation	Project: Phase III Environ	men	tal Site	e Asse	ssmen	t	Proje	ect No: ENW.WENW03039-02	Task 0	02.2.2.6		
•			Location: Cantung Mine	-				-	Grou	nd Elev: 1164.925 m				
		LIU.	Tungsten. Northwest Terr	ritorie	es				UTM	UTM: 539988.082 E; 6871100.374 N; Z 9				
											1			
o Depth (m)	Method	Soil Description		Sample Type	Sample Number	∎Va 5	pour re 0 10	adings	(ppmv) ■ 200	Notes and Comments	MW2	Elevation (m)		
E		SAND AND GRAVEL - trace silt, occasional cobbles, mo	pist, brown, fine to coarse						:					
- 1		- boulders										1164		
3		GRAVEL - some sand, grey and brown, fine to coarse g	ravel, medium to coarse sand									1162		
4	SILT - some sand, trace clay, moist, light brown SAND - some silt, some gravel, trace cobbles, moist,		own, fine to coarse sand			2-1 I							1161-	
6		BEDROCK - brown and white rock, mostly white rock		Ν	2-2							1159-		
7	Sonic											1158-		
				Ν	2-3							1157 ▲ 1157		
10												1155-		
- 11		- some streaking on rocks										1154-		
12		- softer, breaks into smaller pieces										1153-		
14		END OF BOREHOLE (13.72 metres) water - 8.72 metres on September 28, 2017 Monitoring well installed to 13.72 metres Screen interval - 10.67 to 13.72 metres										1151		
10			Contractor: Boart Longve	ar		1			Com	Completion Depth: 13.72 m				
			Drilling Rig Type: Track Mounted					Start	Start Date: 2017 September 19					
			Logged By: MG						Com	pletion Date: 2017 September	19			
			Reviewed By: JW							Page 1 of 1				

Photo 1: Location of Sample 17A13-02. Heavily oxidized, mixed calc-silicate and swiss cheese limestone, fine grained, highly weathered (to residual soil in areas), moderate to strong visible pyrrhotite. (September 29, 2017)

Photo 2: Location of Sample 17A13-04. Typical mixed lithology fragments observed throughout waste rock piles. Various fraction sizes and stages of alteration and weathering. (September 29, 2017)

Photo 3: Overview photo of waste rock piles. Looking up to mine portal from Sample 17A13-05. Note the variability of fraction sizes and rock types. (September 29, 2017)

Photo 4: Arrow indicates location of waste rock pile. Photo provided by NATC. (August 13, 2013)

Photo 5: Sample 17A13-06A/B location. Trench developed in oxidized and reworked soils and waste rock. Mixed lithology sands and gravels with waste rock cobbles and boulders. Adjacent to stream crossing underneath road. Potential water sampling location to capture leachate at toe of waste rock piles. (September 29, 2017)

