

May 5, 2020

ISSUED FOR USE FILE: 704-ENW.WENW03039-04 Via Email: <u>cbeveridge@alvarezandmarsal.com</u>

North American Tungsten Corp. Ltd. c/o Alvarez & Marsal Canada Inc. Suite 1680, Commerce Place 400 Burrard Street Vancouver, BC V6C 3A6

Attention:Callum Beveridge (Alvarez & Marsal)Sam Kennedy (Crown-Indigenous Relations and Northern Affairs Canada)

Subject: Terrain and Borrow Source Assessment, Cantung Mine NWT

1.0 INTRODUCTION

Tetra Tech Canada Inc. (Tetra Tech) was retained by Alvarez & Marsal Canada Inc. (Alvarez & Marsal), as courtappointed monitor of North American Tungsten Corporation (NATC), to conduct various assessments of the Cantung Mine site to assist with closure planning. Mapping surficial geology and locating and investigating borrow sources for mine closure and reclamation materials is included as part of this assessment. This report summarizes the results of terrain and borrow source assessment activities completed in 2017, 2018, and 2019.

A review of existing information identified that mapping of surficial geology in the mine area was required to identify materials that could be of use for reclamation activities, such as the capping of mine waste (e.g., tailings, waste rock), and other site construction purposes. Tetra Tech has determined some preliminary estimates for borrow volumes that would be required for reclamation purposes. The total volume would range from 700,000 m³ to 1,000,000 m³ of screened (removal of cobbles and boulders) granular material that would be used for cover material. Some fine texture material may also be required to support possible revegetation activities.

The Cantung area is located in the Logan Mountains Ecoregion, within a zone of discontinuous widespread permafrost characterized by rugged terrain and perpetual snow fields at higher elevations (Ecosystem Classification Group 2010). The region has been largely glaciated by one or more glaciations (Smith et al. 2004), which deposited large volumes of glacial till and glaciofluvial material on the floor and lower slopes of the Flat River valley. The ecoregion is generally underlain by sedimentary rocks, mostly shale, slate, conglomerate, limestone, dolomite, siltstone and sandstone that are intruded by massive bodies of granodiorite and quartz diorite.

2.0 SOIL REQUIREMENTS FOR REHABILITATION/RECLAMATION

Soils with distinct textures (mostly granular in nature) are required for mine reclamation projects such as topsoil to support revegetation, rock and overburden piles, tailings impoundments, landfills and other contaminated waste sites. Granular material is required for free-draining cover and general fill; and fine-textured soils (silt) and organics can be required for cover to support revegetation; sand is used for liner protection and as bedding for infrastructure (e.g., pipelines).

3.0 SURFICIAL GEOLOGY AND BORROW SOURCE INVESTIGATIONS

3.1 **Purpose of Surficial Geology Field Investigations**

Following the review of existing information, it was identified that mapping of surficial materials in the mine area was required to help locate materials that would be useful for reclamation activities, such as the capping of mine wastes (tailings, waste rock), and other purposes. In 2014, Stantec Consulting completed a desk-top terrain mapping study, but field-checking to verify the mapping was not completed. In early September 2017, Tetra Tech completed a review of the previous terrain mapping conducted by Stantec (2014) and conducted stereographic air photograph interpretation to explore for soil units with potential fine-textured material.

A field program was completed in September 2017 by Jack Dennett, P.Geo. (BC) to field check the previous terrain mapping conducted by Stantec (2014) and to locate potential borrow sources. The objectives of the fieldwork were to delineate and describe distinct native soil deposits, to collect soil texture data to confirm or revise the desk-top terrain mapping, and to identify potential borrow and rock sources. In conjunction with the surficial geology mapping, air photograph interpretation aided the exploration for potential borrow sources of unconsolidated material needed for mine reclamation.

3.2 Surficial Sampling and Preliminary Assessment

The following summarizes the surficial sampling and preliminary assessment completed during the 2017 field investigation program:

- Completed an overall visual inspection of the terrain in the study area.
- Guided by the terrain mapping, field stations were established in select terrain polygons to record terrain data and map soils exposed on road cut slopes, borrow pit walls, natural escarpments, and excavated in hand dug soil pits. Representative samples were collected from terrain field stations and potential borrow or quarry sites for particle size and other analysis in Tetra Tech's Geotechnical lab. Samples from potential borrow sources were also submitted for geochemical testing.
- Over 100 GPS located digital photographs of terrain mapping field stations and potential borrow sites were recorded.
- Bedrock samples were collected in an area identified as a suitable rock quarry for production of rip rap. Rip rap
 may be required to stabilize tailings piles located close to the banks of the Flat River as well as for possible instream bank stabilization. Rock samples were submitted for geotechnical and geochemical testing for rip rap
 suitability.
- Subsequent to the fieldwork, air photos were reviewed to revise the desktop interpretation of terrain and soil
 genesis based on the results of terrain ground-truthing.

3.3 Terrain Field Checking

In 2017 previous terrain mapping (Stantec 2014) and air photo interpretation was reviewed to understand the soil genesis of the Cantung area and to locate ground-truthing targets for the fieldwork program as shown on Figures 1 a-d. During the terrain mapping field work, field stations were recorded in select terrain polygons to collect

terrain data and map soils exposed in hand pits or from existing exposures on road cut slopes, borrow pit walls, and natural escarpments. A total of 56 field stations were visited and representative soil samples were selected for geotechnical and geochemical analysis.

Terrain mapping (Stantec 2014) indicated that glaciofluvial material was a dominant native soil, followed closely by glacial till and colluvium. In mountainous areas, such as the Logan Mountain Ecoregion, glacial till and glaciofluvial material can be deposited relatively close to the source from which they were derived. Short transport distances of basal and lateral moraine result in reduced glacial contact time with less opportunity to develop fine-textured soil. Field observations and soil sampling confirmed the general absence of units with a significant fine-textured matrix. One source of soil with a significant fine-textured (silt) matrix (Station 9-16-JD-50, Figure 1d) was identified but may require screening of coarse granular particles prior to use as cover material. Further sub-surface testing was planned for the 2018 field season to delineate textural consistency and the spatial and vertical extent of this deposit.

In montane glaciation, where glacial tills are typically deposited relatively close to their source, soil texture can be coarse-grained and differentiation of till and glaciofluvial material is less distinct. Some areas mapped as glaciofluvial material (Stantec 2014) may arguably be till, and some areas mapped as till or glaciofluvial were observed to be colluvium, originating from eroded upslope bedrock. These distinctions are further delineated on the final terrain map, based on the Stantec mapping, revised with 2017 field-checking data.

Five native soil types are dominant: colluvium, glacial till, glaciofluvial, fluvial, and organic. A significant proportion of the surficial material on middle to upper valley slopes is bedrock. Terrain mapping (originally by Stantec 2014 and refined by Tetra Tech) indicates that glaciofluvial material is a dominant native soil, followed closely by glacial till and colluvium.

The texture of colluvium is strongly influenced by upslope sources. Much of the colluvium is ultimately developed from bedrock and is loose, granular material with angular boulder/cobble/gravel fragments in a sand matrix with trace silt. The new borrow pit developed across the Flat River from the town of Tungsten exploits a large colluvial fan (Figure 1c, polygon 115).

Glacial till, deposited under or proximal to glacial ice, is typically present on lower to mid-valley slopes. Much of the till observed is somewhat indistinct from glaciofluvial material and some may have been redeposited or redistributed by water during deglaciation. This is evident in the soil texture of many areas of till characterized by a low silt content.

Large deposits of glaciofluvial material are common and provide a good source of loose, granular material suitable for construction and fill. Quaternary (post-glacial) fluvial material, mostly along the Flat River, consists of rounded to sub-rounded washed gravel, cobbles, and boulders, and can be a local source of fill.

Organic soil deposits have developed on floodplains of the Flat River. Due to their proximity to the Flat River riparian area, no organic deposits have been identified as suitable borrow sources. It is expected that stockpiles of organicrich topsoil stripped during development of new borrow sources and other infrastructure will be used for cover, particularly where revegetation is prescribed (Figure 2a, Area 18C).

The composition of granular material in terms of the gravel, sand, and fines content was well documented for shallow surface deposits. Uniformity of texture with depth was less understood but was better defined by results of the 2018 and 2019 test-pitting programs.

3.4 Borrow Source Preliminary Assessment

In 2017 for the preliminary assessment, nine potential borrow sources were identified (listed in Table 3-1 and shown on Figures 1b, 1c and 1d). Most of the borrow sources were thought to provide granular material; however, samples from one potential borrow source identified till with a fine-textured matrix that could be a source of fine textured material. The selected borrow sites provide numerous options for granular material located close to areas requiring reclamation.

A potential rock quarry for rip rap was located at the upper boundary of the town site (Figure 1c, Area E). Rip rap may be required to stabilize tailings piles located close to the banks of the Flat River and for possible in-stream bank stabilization. The potential quarry in benign granitic bedrock is situated at a large area of gently sloped terrain next to an existing road. Two samples of rock were collected for geotechnical and geochemical assessment.

Samples from potential borrow sources were collected for particle size and geochemical testing. Geochemical evaluation of the waste rock stockpiled near the main portal has also been undertaken to determine its suitability as a source of rip rap.

Table 3-1: Borrow Source Assessment

Borrow	Location	Sample	Pa	article Size	e (%)	Soil Texture	Prospective	Commonto	
Source	Location	Number	Silt	Sand	Gravel	Soli Texture	Volume (m ³)	Comments	
A	Beside highway, 3 km NW of town site.	9-16-JD18	-	-	-	GRAVEL, sandy, loose, shale matrix, some cobbles and boulders, some oversize.	150,000	Site may be expanded: large volume of granular material available. Suitable for general fill.	
В	Beside highway, 1.5 km NW of town	9-16-JD17	9	66	66 25 SAND, some gravel, some cobble, some boulder, trace silt.		180,000	Site may be expanded: large volume of granular material.	
B	site.	9-16-JD56	7	41	53	Sandy GRAVEL , some cobble, some boulder, trace silt.	180,000	Suitable for general fill with the removal of the boulders.	
C (Ski Hill Borrow)	Colluvial fan NE side of Flat River across from town site.	9-16-JD13	25	42	33	SAND, gravelly, silty, some cobbles, some boulders.	180,000	Expand existing borrow in colluvial fan. Suitable for general fill.	
D	Colluvial fan NE side of Flat River across from town site.	9-16-JD10	14	44	42	SAND and GRAVEL, cobbly, boulder, trace silt.		For and a sisting to serve in	
(Ski Hill Borrow)		across from town	9-16-JD11	-	-	-	SAND and GRAVEL, cobbly, boulder, trace silt.	180,000	Expand existing borrow in colluvial fan. Suitable for general fill.
Bonow)		9-16-JD51	-	-	-	SAND and GRAVEL, cobbly, boulder, trace silt.		gonorarini.	
	Beside upper	9-16-JD26 Beside upper		-	-	Barren Granodiorite Bedrock.		Cite may be expended into	
E	Tailings Pond access road at	9-16-JD52	-	-	-	Barren Granodiorite Bedrock.	525,000	Site may be expanded into hillside to increase volume of available rock for rip rap.	
	south edge of town.	9-16-JD53	6-JD53		Barren Granodiorite Bedrock.				
F (Landfill)	0.8 km SE of town at landfill on NE side of Flat River.	9-16-JD50	34	42	25	SAND, silty, gravelly, some cobble, trace boulder.	158,400	Potential source of fine- textured material: screening of coarse fraction may be required.	
G (Landfill)	0.8 km SE of town at landfill on NE side of Flat River.	9-16-JD04	12	45	43	SAND and GRAVEL, some cobble, some bolder, trace silt.	120,000	Suitable for general fill.	

3.5 Borrow Source Investigation - 2018 Testpitting

From the preliminary assessment, Tetra Tech determined that two areas of interest would benefit from further investigation through a testpitting program: the Ski Hill Borrow site (shown as Areas 18B to 18D on Figure 2a) and northwest of the Existing Landfill (shown as Area 18A on Figure 2b). While defining the areas to be investigated and what NATCL site equipment would be available to complete the testpitting program, NATCL site personnel informed Tetra Tech that they no longer had quarry development permits for the Existing Landfill and Ski Hill Borrow sites. As a result, the clearing of vegetation and excavation of testpits were not permitted beyond the limits of the disturbed areas. Based on these limitations Tetra Tech developed a testpitting program that would assess within and up to the boundary perimeters for the two areas of interest. Tetra Tech also came equipped with a small gas power hand auger to complete shallow (up to 1.5 m) testholes beyond the limits of the previous developed borrow sites.

During the testpitting program, NATC provided a CAT rubber-tired backhoe and Hitachi steel tracked excavator. Both pieces of equipment were used to complete a total of 33 testpits. Testpit locations are shown on Figures 2a and 2b; testpit logs are provided in Appendix B. Upon completion, each testpit excavation was backfilled with the excavated material and mounded to allow for some future settlement.

The backhoe was used to complete Testpits BS-18TP01 through BS-18TP14 that were associated with the Existing Landfill site and an old access trail that ran along the eastern side of the Flat River. The majority of the old access road was accessible from the Existing Landfill site to the Old Landfill site that was east of Tailings Pond (TP) 4. The backhoe was also used to complete Testpit BS-18TP15 in the south eastern portion of the Ski Hill Borrow, an area where construction material for TP5 was recently sourced from.

The excavator was used to complete Testpits BS-18TP16 through BS-18TP33 that were located along the northwestern perimeter of the Ski Hill Borrow site. The purpose of assessing this area was to confirm the placement of stockpiled stripping and reclamation material and to determine if the source material to the northeast along the hillside consisted of a glacial till deposit that might provide a soil with a fine-textured (silt/clay) matrix.

The gas power hand auger was used to drill 10 testholes in the undisturbed vegetated area northwest of the Ski Hill Borrow site along the hill side to assess the possibility of till soils containing fine textured materials. Testhole BS-18AH-01 through BS-18AH10 locations are shown on Figure 2a and the testhole logs are provided in Appendix B.

Soil samples were collected from each testpit at approximate 1.0 m intervals or when there was a noticeable change in stratigraphy. Soils samples were then selected for particle size analysis (sieve/hydrometer) which were completed at Tetra Tech's Whitehorse laboratory. The particle size results are attached to the corresponding testpit and testhole logs in Appendix B.

3.6 Borrow Source Investigation - 2019 Testpitting

From the results of the 2018 borrow source investigation Tetra Tech designed a program to conduct a more detailed investigation beyond the limitation of the existing disturbed areas and access trails. The two areas of interest remained the southeast edge of the Ski Hill Borrow (Area 18B on Figure 2a) and the northeast side of the Flat River northwest along an old access northwest of the Existing Landfill site (shown as Area 18A on Figure 2b).

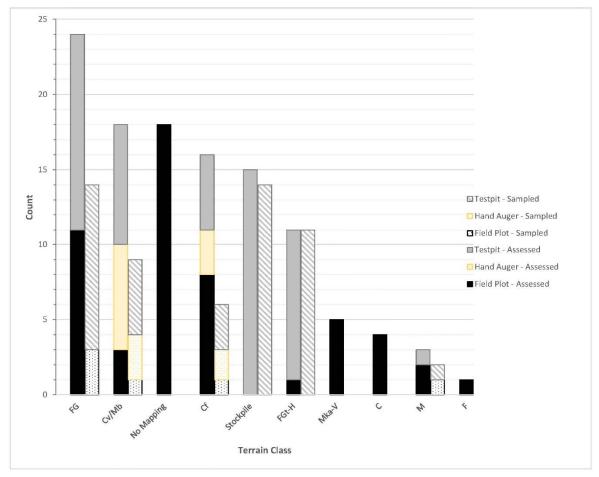
Work was completed in accordance with Type A Land Use Permit MV2019S0009. To complete the subsurface investigation and better define the subsurface soil condition, including updating estimated material quantities from the 2018 borrow source investigation, NATCL provided a Hitachi steel tracked excavator with operator to complete

the additional testpits. The excavator was used to complete a total of 19 testpits (BS-19TP01 through BS-19TP19). Testpit locations are shown on Figures 2a and 2b and the testpit logs with particle size results are presented in Appendix C. Upon completion, each testpit excavation was backfilled with the excavated material and mounded to allow for some future settlement.

Soil samples were collected from each testpit at approximate 1.0 m intervals or when there was a noticeable change in stratigraphy. Soils samples were then selected for particle size analysis (sieve/hydrometer) which were completed at Tetra Tech's Whitehorse laboratory. The particle size results are attached to the corresponding 2019 testpit logs in Appendix C.

3.7 Borrow Source Investigation – Results

3.7.1 Overview

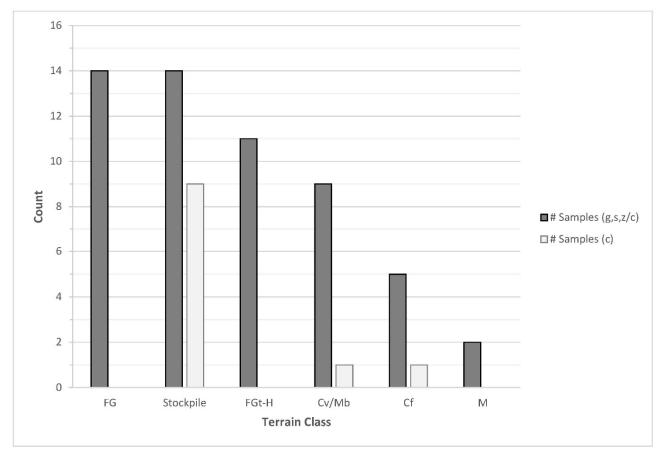

Between 2017 and 2019, a total of 120 sites were assessed using a combination of shovel-dug soil pits, hand augers, and excavator-supported testpitting. From these locations, a total of 55 samples were collected for analysis (Figure 3-1). The majority of assessment locations and samples were collected from glaciofluvial material (FG, FGt-H) as well as from reject material that was stockpiled adjacent the Ski Hill Borrow site ("Stockpile"). This stockpiled material was targeted for its potential to produce finer-textured material (e.g., silt and/or clay).

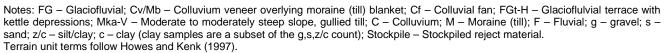
All 55 samples provided information on the distribution of gravel and sand within the sample, as well as a combination of silt and clay. Several samples (11 in total, Figure 3-2) from the stockpiled reject material (9 samples located in area 18C on Figure 2a) and two other samples located in areas adjacent (BS-18AH05 located just northwest of area 18C and BS-18TP15 located in area 18B, as shown on Figure 2a) contained a sufficient amount of clay that results could be obtained for the clay fraction specifically (instead of being combined with the silt fraction, as was the case for the majority of samples tested). The average amount of clay identified from the stockpiled reject material was approximately 11% (Figure 3-3). The yields from the other two samples were slightly higher; 12% from the colluvial fan class (Cf) located in area 18B and 15% from the colluvium veneer overlying moraine (till) blanket class (Cv/Mb) located to the northwest of area 18C. These results, however, are only based on a single sample from each of these terrain classes. Additional samples collected from testpits excavated in area 18B in 2019, which encompasses the same colluvial fan initially sampled in 2018 plus the Cv/Mb unit to the northeast (Figure 2a) contained silt/clay contents ranging from 11-15%.

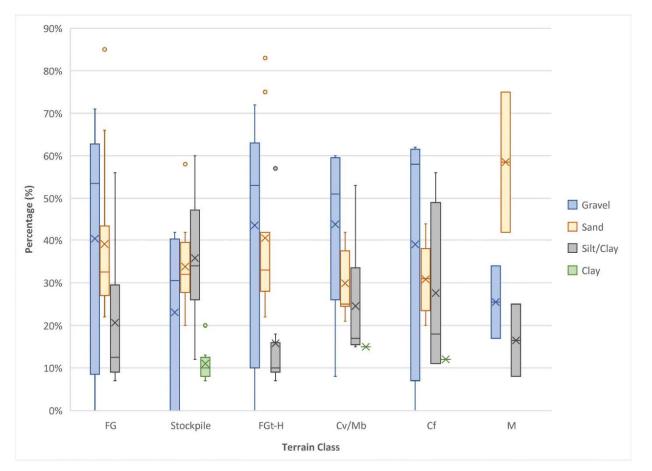
With the exception of the stockpiled reject material and till (M) classes, the average amount of gravel within the remaining terrain classes sampled was approximately 40%; the stockpiled reject material and till (M) classes averaged much lower amounts of gravel at 23% (Figure 3-3). Similarly, with the exception of the till (M) unit, all of the terrain classes sampled contained a similar amount of sand that averaged 35%. The till (M) unit averaged the highest amount of sand at 59%, however this result is only based on two samples. The average amount of silt/clay identified in each terrain class was quite variable, ranging from as low as 16% (glacioflulvial terrace with kettle depressions [FGt-H]) to as high as 36% (stockpiled reject material]). In undisturbed terrain units however, the highest average amount of silt/clay identified was 28% (Cf; Figure 3-3).

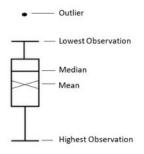

These results suggest the amount of fine-textured material (specifically clay) is not particularly abundant in the vicinity of the mine or necessarily tied to a particular terrain class. Only two samples were identified from undisturbed terrain units (Cv/Mb and Cf) that produced a discernable clay fraction. Silt mixed with clay was identified in all 55 samples, however the relative proportion was not particularly high (e.g., less than 30% on average). Coarsertextured materials (e.g., sands and gravels), however, are relatively abundant. Should the investigated borrow

source areas (as described in more detail below) run short in terms of the anticipated volumes needed for reclamation activities, other similar terrain classes (particularly glaciofluvial and colluvium) have been identified near the mine and should be able to provide additional, suitable material (Figures 1a-d).




Notes: FG - Glaciofluvial; Cv/Mb - Colluvium veneer overlying moraine (till) blanket; Cf - Colluvial fan; FGt-H - Glacioflulvial terrace with kettle depressions; Mka-V - Moderate to moderately steep slope, gullied till; C - Colluvium; M - Moraine (till); F - Fluvial; Stockpile - Stockpiled reject material. Terrain unit terms follow Howes and Kenk (1997).





Notes: FG - Glaciofluvial; Cv/Mb - Colluvium veneer overlying moraine (till) blanket; Cf - Colluvial fan; FGt-H - Glacioflulvial terrace with kettle depressions; Mka-V - Moderate to moderately steep slope, gullied till; C - Colluvium; M - Moraine (till); F - Fluvial; Stockpile - Stockpiled reject material. Terrain unit terms follow Howes and Kenk (1997).

Box and Whisker Plot Notation:

Figure 3-3. Distribution of Particle Sizes by Terrain Class.

3.7.2 Existing Landfill Site

In 2018, Testpits BS-18TP01 through BS-18TP04 were completed along the northeastern perimeter of the Existing Landfill site (Area 18A; Figure 2b). Except for BS-18TP01 where the subsurface soil consisted of sand with some gravel and trace amounts of silt/clay, the remaining Testpits BS-18TP02 through BS-18TP04 consisted mostly of sand and gravel, with trace to some silt/clay, indicating that this area is mostly associated with a glaciofluvial deposit. To produce a fine textured sand and silt/clay soil there could up to 65% reject of oversize material (gravel, cobble and boulders) that could possibly be used for other reclamation purposes that may require additional screening/processing. Most testpits had a completion depth of about 4.0 m. Groundwater, bedrock, and permafrost were not encountered in any of the testpits.

3.7.3 Old Access Road

In 2018 Testpits BS-18TP05 through BS-18TP14 were completed along the access road along the northeastern side of the Flat River between the Existing Landfill and Old Landfill sites (Area 18A; Figure 2b). Except for Testpit BS-18TP07 where the subsurface soil between 1.7 m and the testpit completion depth of 3.0 m consisted of sand with some gravel and silt/clay, the remaining Testpits BS-18TP05, BS-18TP06 and BS-18TP08 through BS-18TP14 consisted mostly of sand and gravel, with trace to some silt/clay indicating that this area is mostly associated with a glaciofluvial deposit. To produce a fine textured sand and silt/clay soil there could up to 65% reject of oversize material (gravel, cobble and boulders) that could possibly be used for other reclamation purposes that may require additional screening/processing. Most testpits had a completion depth of about 4.0 m. Groundwater, bedrock, and permafrost were not encountered in any of the testpits.

In 2019 Testpits BS-19TP01 through BS-19TP16 were completed along the access road along the northeastern side of the Flat River between the Existing Landfill and Old Landfill sites (Area 18A; Figure 2b). Except for Testpits BS-19TP01, BS-19TP02, and BS-19TP12 where sand with some gravel and trace silt/clay was encountered at varying depths and had varying thicknesses, the remaining Testpits through Area 18A (Figure 2b) consisted mostly of sandy gravel, with trace to some silt/clay. This confirms the findings from 2018 that this area is mostly associated with a glaciofluvial deposit. As stated in 2018, to produce a fine textured sand and silt/clay soil there could up to 65% reject of oversize material (gravel, cobble and boulders) that could possibly be used for other reclamation purposes that may require additional screening/processing. Most testpits had a completion depth of about 4.0 m. Groundwater, bedrock, and permafrost were not encountered in any of the testpits.

3.7.4 Ski Hill Borrow Site

3.7.4.1 Southeastern Portion

The location of Testpit BS-18TP15 is on a mound of stripping that is situated in a previous developed area (Area 18B; Figure 2a). The subsurface soil consisted of a thin layer of gravel with sandy and silty material over lying silt, as well as sand that was underlain by sand and gravel. Trace to some silt was also observed to a completion depth of 4.0 m. Previous developments of this borrow source identified it as a colluvium deposit. Similar to the glaciofluvial deposits found in Area 18A, the production of a fine textured sand and silt/clay soil could require up to 70% reject of oversize material (gravel, cobble and boulders) that could possibly be used for other reclamation purposes. Groundwater, bedrock, and permafrost were not encountered in this testpit.

In 2019 Testpits BS-19TP17 through BS-19TP19 (shown on Figure 2a) were completed just beyond the southern and eastern perimeters of the existing Ski Hill Borrow boundary. The subsurface soil consisted of a thin organic layer overlying thin layer of silt with some sand underlain by sandy gravel with a trace to some silt to a completion

depth 4.0 m. The production of a fine textured sand and silt/clay soil again could require up to 70% reject of oversize material (gravel, cobble and boulders) that could possibly be used for other reclamation purposes. Groundwater, bedrock, and permafrost were not encountered in these testpits.

3.7.4.2 Northwestern Portion

During the 2018 testpitting program, both testpits and testholes were completed throughout Areas 18C and 18D (shown in the inset of Figure 2a). Area 18C encompasses an area of stockpiled reject material from previous stages of development for the Ski Hill Borrow site (Photo 1). Testpits BS-18TP19 through BS-18TP28 along with BS-18TP33, were excavated to completion depths ranging from 1.9 m to 6.0 m throughout this area. Grainsize results indicate that the material varied from gravel – sandy, with some silt/clay to a silt – sandy composition. For the most part, the reject material consisted of a fine textured material and could still require up to 30% reject of oversize material (gravel, cobble and boulders). Testpits BS-18TP29 through BS-18TP32 were completed in a low-lying area along the northwestern edge of the stockpiled reject material. Except for Testpit BS-18TP30, the subsurface soil conditions for the remaining three tespits consisted of silt, with some sand to sandy material, which is considered to be indicative of a fluvial deposit. Bedrock and permafrost were not encountered in these testpits but during the completion of Testpits BS-18TP29, BS-18TP31, and BS-18TP32, the groundwater table was noted at a depth ranging from 1.5 to 2.0 m.

Photo 1: Location of Areas 18C and 18D at the Ski Hill Borrow site, looking northeast.

Also shown in the inset of Figure 2a is Area 18D, located up the slope from Area 18C. Testpits BS-18TP16 through BS-18TP18 were excavated to completion depths ranging from 3.0 m to 4.0 m along the north edge of the clearing (Photo 1). The grainsize results indicate that the material varied from gravel – sandy, silty to sandy – gravelly, and sandy. Groundwater, bedrock, and permafrost were not encountered in the testpits.

In Area 18D, Tetra Tech also completed 8 testholes (BS-18AH01 through BS-18AH10) with a gas power hand auger that could reach a depth of about 1.2 m in most areas. Testholes BS-18AH04 and BS-18AH06 were completed in areas beyond the proposed Area 18D boundary and the subsurface soil conditions consisted of gravel – sandy, some cobble, with trace silt. With the exception of BS-18AH05, BS-18AH09, and BS-18AH10, the remaining testholes (BS-18AH01, BS-18AH02, BS-18AH03, BS-18AH07, and BS-18AH08) had grainsize results that consisted of gravel – sandy, with trace to some silt. Testhole BS-18AH05 had grainsize results indicating silt – sandy, with a trace of gravel. Testhole BS-18AH09 was all organics and Testhole BS-18AH10 consisted of

sand – silty. To produce a fine textured sand and silt/clay soil there could up to 65% reject of oversize material (gravel, cobble and boulders). Groundwater, bedrock, and permafrost were not encountered in the testpits and testholes.

There were no additional testpits and/or testholes completed in this area in 2019.

3.8 Borrow Source Investigation – Conclusions

Both 2018 and 2019 testpitting programs have identified available granular and fine-grained materials that can be used for reclamation purposes. These materials are dependent on the required end use and acceptable grainsize. For example, if the preferred soil type for a cover material is to be a fine textured soil (e.g., sand and silt) then processing of the potential borrow materials would be required. Processing such as mechanical screening would allow for the separation of granular material (coarse sand, gravels, cobbles and boulders) resulting in a fine textured soil. Table 3-2 below shows potential quantities of fine textured materials that could be separated at each of the Areas 18A, 18B, 18C and 18D after processing. There will be some volume loss during production, but it is expected to be minimal. The remaining granular material (coarse sand, gravels, cobbles and boulders) is also suitable for other reclamation purposes throughout the site that may require additional production (i.e., crushing and/or screening) of various material types.

Borrow Source	Location	Area (m2)	Average Thickness (m)	Volume (m3)	Granular Material (%)*	Coarse Soil Volume (m3)	Fine Soil Volume (m3)
F	18A	187,056	4.0	748,224	65	486,346	261,878
D	18B	66,022	4.0	264,088	70	184,862	79,226
С	18C	16,914	2.0	33,828	30	10,148	23,680
С	18D	19,523	3.0	58,569	65	38,070	20,499
					Total	719,426	385,283

Table 3-2P Potential Quantities of Fine Textured Soil

*The overview presented in Section 3.7.1 above along with the summary tables shown on Figures 2a and 2b present additional detail with respect to the % of granular material.

Note: These values are only estimates and there could be some loss during production (expected to be minimal).

4.0 ARD/ML RESULTS AND DISCUSSION

4.1 Geochemical Characterization

A sub-set of samples collected as part of the borrow source investigation was submitted for geochemical characterization and assessment of acid rock drainage (ARD) and metal leaching (ML) potential. Six samples of potential granular borrow source material were submitted for analysis. These six samples are representative of the observed variability of glaciofluvial, fluvial, till, and colluvium materials. Two bedrock samples from a potential rip-rap source were also submitted for analysis.

A list of the submitted samples for static test analyses including acid-base accounting, trace element, and shake flask extraction, is provided in Table 4.1. Samples were tested at ALS Laboratories in North Vancouver and Burnaby, BC. In addition, two samples underwent quantitative XRD analysis for mineral characterization.

			Analysis Completed							
Sample ID	General Location	Genesis	Acid-Base Accounting (ABA)	Analysis Trace Element Analysis by ICP-MS	Shake Flask Extraction (SFE)	Analysis Quantitative XRD Analysis				
ENW-03039- JD-04	Southwestern edge of Landfill	cgsFGt	x	х	x					
ENW-03039- JD-05	Southern edge of Landfill	cgsFGt	x	х						
ENW-03039- JD-17	1.5 km MW of Mine Site along access road	bgsFa	x	х						
ENW-03039- JD-10	Central location of Ski Hill Borrow	baCf-Rd	x	х	x					
ENW-03039- JD-13	Northern perimeter of Ski Hill Borrow	zgsCf	x	х		х				
ENW-03039- JD-50	Northeastern edge of Landfill	zgsMb	x	х	х	х				
ENW-03039- JD-52	Rock slope along western side TP4	bedrock	x	х	х					
ENW-03039- JD-53	Rock slope along western side TP4	bedrock	x	х						

Table 4.1: Samples submitted for ARD/ML Geochemical Characterization

Note: cgs - SAND with gravel and cobble, bgs - SAND with gravel and boulders, ba - gravelly talus with boulders, zgs - SAND with gravel and silt, FGt – Glaciofluvial terrace, F – Fluvial moderate slope, Cf-Rd – Colluvial fan landslide, Mb – Till blanket, Cf – Colluvial fan.

Geochemical characterization methods, analysis, interpretation and material classification follow the best practice guidelines presented in Price (2009).

The risks associated with ARD/ML will depend on the final excavated and placed material volumes, construction uses, and location of placement. Larger volumes of disturbed rock materials may translate to increased metal loading. The risks to aquatic life associated with metal leaching and acid rock drainage are increased when the disturbed rock materials are placed proximal to surface water receptors. ARD/ML risks can be mitigated by placing construction materials sub-aqueously to limit the reactions and weathering which produce ARD/ML.

The geochemistry testing laboratory certificates are presented in Appendix D. Lab data summary tables, along with comparison criteria and data statistics, are presented in the attached Tables section.

4.1.1 Quantitative XRD Analysis Results

Sample JD-13 (colluvium) and JD-50 (till) were submitted for Quantitative X-Ray Diffraction (XRD) analysis to evaluate mineral composition of the material.

The major phases identified in the material are quartz and muscovite, and the moderate phases are orthoclase and dolomite. Minor phases identified are albite, clinochlore, phlogopite, and calcite. The colluvium sample is higher in dolomite, albite and orthoclase, while the till sample is higher in muscovite content. Table 4-2 provides the modal percentages of the identified phases.

Mineral	Sample	Sample
Mineral	ENW-03039-JD-13	ENW-03039-JD-50
Quartz	40.5	53.9
Albite	9.0	0.0
Orthoclase	14.7	0.0
Clinochlore	0.0	3.9
Muscovite	0.0	31.9
Phlogopite	4.0	0.0
Calcite	7.0	3.9
Dolomite	24.9	6.4

Table 4-2: Quantitative XRD Results, modal wt%

4.1.2 Acid-Base Accounting (ABA) Analysis Results

Acid-Base Accounting (ABA) analysis was conducted to assess the potential for ARD to be produced from the sampled rock. ABA analysis includes whole rock paste pH, total sulphur and inorganic carbon by LECO furnace analysis, sulphate sulphur by HCI leach, neutralization potential (NP) by Standard Sobek method, and fizz rating. Maximum potential acidity is determined based on the total sulphur content. The Sobek neutralization potential ratio (Sobek NPR) is the ratio of neutralization potential to the maximum potential acidity (Sobek NP:MPA). Sobek NP considers contribution of silicate and carbonate minerals. Carbonate NP was calculated from the measured inorganic carbon content to determine the neutralization potential provided by carbonate minerals alone. ABA results are presented in the attached Table 4-3 in the Tables Section of this report.

All six granular material samples analyzed are classified as Non-Potentially Acid-Generating (non-PAG) based on Sobek NPR values of greater than 2 (Price 2009). There is a compositional difference between the glaciofluvial and fluvial samples, as compared to the colluvium and till samples. NPR values for the glaciofluvial and fluvial samples range from 15.36 to 30.4. NPR values for the colluvium and till samples range from 146 to 478.

Total sulphur content is relatively homogenous amongst all granular sample types, ranging from 0.02 to 0.07 S%. Maximum potential acidity values, calculated from total sulphur, range from 0.6 to 2.2 tCaCO₃/1Kt. Sulphide sulphur ranges from <0.01 to 0.03 %. Sulphate sulphur content is less than detection limit (<0.01 S%) in all samples. The sulphur balance indicates that elemental or organic sulphur may also be present and accounted for in the total sulphur value.

The colluvium samples have the highest neutralization potential values due to the presence of carbonate minerals (dominantly dolomite), as represented by inorganic carbon values of 13.1 to 19.5 CO₂%. Sobek neutralization potential values for colluvium samples are 340 and 478 tCaCO₃/1Kt. The till sample has moderate carbonate content at 5.8 CO₂%. Sobek neutralization potential for the till sample is 146 tCaCO₃/Kt. Glaciofluvial and fluvial samples have lower inorganic carbon content (0.7 to 1.4 CO2%) and lower associated Sobek neutralization potential values (22 to 37 tCaCO₃/1Kt). A comparison of the carbonate neutralization potential, calculated from measured inorganic carbon content, to the Sobek neutralization potential, indicate that carbonate minerals are the dominant source of neutralization potential in the samples.

Both bedrock samples are classified as Non-PAG based on Sobek NPR values of 44.8 and 57.6, respectively.

Bedrock samples have low total sulphur and sulphide sulphur, at or below the detection limit of testing at 0.01 S%. Inorganic carbon content is low, also at or less than the detection limit of testing of 0.2 CO_2 %. This translates to low

values of maximum potential acidity (<0.3 tCaCO₃/1Kt) and Sobek neutralization potential values of 7 and 9 tCaCO₃/Kt. Carbonate NP values range from 2.3 to 4.5 tCaCO₃/Kt, based on a calculation using the inorganic carbon content of 0.1 to 0.2 CO₂%. When compared to the Sobek NP values, this indicates that the dominant form of neutralization potential in the bedrock samples is from silicate minerals.

4.1.3 Trace Element Analysis by ICP-MS Results

The results of the trace elemental analysis were compared against average crustal abundance values as a reference point for chemical composition of the materials. Elemental concentrations exceeding the average crustal abundance values by an order of magnitude or more are flagged for further consideration. Elevated metal concentrations do not in themselves indicate a potential for metal leaching, but in the event of metal leaching the elevated metal concentrations may increase the metal loadings in leachate generation.

There are multiple elements exceeding the average crustal abundance in all samples. Fluvial and glaciofluvial samples show the highest number of elevated metal concentrations.

A summary of concentrations exceeding the average crustal abundance value by an order of magnitude or more are presented in Table 4-4. A complete summary of elemental concentrations relative to average crustal abundance is provided in the attached Table 4-5 in the Tables Section of this report.

Sample ID	Genesis	Trace Element Concentrations Greater than Average Crustal Abundance by an Order of Magnitude
ENW-03039-JD-04	cgsFGt	Arsenic (As), Barium (Ba), Cadmium (Cd), Antimony (Sb), Selenium (Se)
ENW-03039-JD-05	cgsFGt	Arsenic (As), Barium (Ba), Cadmium (Cd), Antimony (Sb), Selenium (Se). Tellurium (Te)
ENW-03039-JD-17	bgsFa	Arsenic (As), Barium (Ba), Cadmium (Cd), Antimony (Sb), Selenium (Se), Tellurium (Te)
ENW-03039-JD-10	baCf-Rd	Selenium (Se)
ENW-03039-JD-13	zgsCf	None
ENW-03039-JD-50	zgsMb	Arsenic (As), Barium (Ba), Cadmium (Cd), Antimony (Sb), Selenium (Se), Tellurium (Te)
ENW-03039-JD-52	bedrock	None
ENW-03039-JD-53	bedrock	None
ENW-03039-JD-04	cgsFGt	Arsenic (As), Barium (Ba), Cadmium (Cd), Antimony (Sb), Selenium (Se)

 Table 4-4: Summary of Elevated Trace Element Concentrations

Note: cgs - SAND with gravel and cobble, bgs - SAND with gravel and boulders, ba - gravelly talus with boulders, zgs - SAND with gravel and silt, FGt – Glaciofluvial terrace, F – Fluvial moderate slope, Cf-Rd – Colluvial fan landslide, Mb – Till blanket, Cf – Colluvial fan.

4.1.4 Shake Flask Extraction (SFE) Leachable Metals Analysis Results

Metal leaching was evaluated based on the results of extractive leach testing, namely shake flask extraction (SFE) analysis. The SFE analysis is a short-term leachate analysis method used to determine the dissolved parameters of readily soluble components in the rock samples.

Results of the extractive leach testing were compared to the most stringent of the following regulatory guidelines:

 Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CEQG), for the protection of freshwater aquatic life (PAL) (CCME 1999).

 Federal Contaminated Sites Action Plan (FCSAP) Guidance Document on Federal Interim Groundwater Quality Guidelines (FIGWQG) for Federal Contaminated Sites Tier 1 and 2 Guidelines for Residential / Parkland Land Use – Coarse-Grained Soils (FCSAP 2012).

The regulatory guidelines provide a reference point for dissolved concentrations in the leachate from the test samples. Elevated concentrations of dissolved metals in the SFE analysis do not necessarily translate to elevated constituents in a field setting. However, they can be used to identify which leachable constituents may be of future concern. Extractive leach testing analysis does not take into account the water chemistry, dilution volumes or long-term metal dissolution for evaluating the impact of metal leaching potential on surface water receptors.

A complete summary of shake flask extraction analyses results, with comparisons against the guideline values, is provided in the attached Table 4-6 in the Tables Section of this report.

Leachable metal, anion and nutrient concentrations in the SFE analysis are typically below guideline values for all samples. Multiple metals report below the detection limit of testing. Elevated concentrations of arsenic, cadmium, antimony, and selenium noted in the trace element analysis did not translate to elevated dissolved concentrations in the leachate analysis, and all remain below guideline values. Selenium and cadmium concentrations are less than the detection limit of testing in all four samples. Barium also noted in the trace element analysis was above the guideline in one sample. No concentrations were noted at levels greater than an order of magnitude above the guideline. Concentrations exceeding the guideline value are noted below.

Dissolved aluminum concentrations range from 0.084-0.657 mg/L and represent a slight exceedance above the guideline value of 0.1 mg/L in three samples. Dissolved chromium in sample JD-04 (0.00103 mg/L) and JD-50 (0.0017 mg/L) are slightly above the CCME guideline value of 0.001 mg/L and below the other two guideline values. Dissolved copper in JD-52 (bedrock) at 0.003mg/L is slightly above the 0.002 mg/L guideline. Dissolved copper in the three granular samples is reported at less than detection limit of testing. Dissolved barium in JD-04 at 0.570mg/L is slightly above the strictest guideline value of 0.5 mg/L. Fluoride is slightly elevated in JD-04 and JD-50.

4.1.5 Geochemical Analysis Conclusions and Recommendations

The measured neutralization potential is the primary driver in classifying the granular materials as non-PAG. There is sufficient neutralization potential to buffer against acid production from oxidation of the sulphides observed in the granular samples. Neutralization potential in the granular samples is dominantly in the form of carbonate minerals which are readily available and fast reacting. There is not a concern for ARD from the potential granular borrow source material based on the samples tested.

Bedrock samples have lower neutralization potential, but also have low sulphur content, and are both classified as non-PAG based on the analysis. Neutralization potential in the bedrock samples is dominantly provided by silicate minerals, which are less reactive and do not provide as readily available neutralization potential when compared to carbonate minerals. Acid buffering may be slower in the bedrock material, however limited acid production is anticipated in the bedrock material due to the very low sulphur content, and therefore ARD potential is anticipated to be limited in the potential quarry bedrock materials.

The concentrations of dissolved metals in the shake flask extraction leachate are generally low and below guideline values. Metal leaching is not a concern from the borrow and quarry source materials based on the samples tested.

5.0 LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Alvarez & Marsal Canada Inc., as court-appointed monitor of North American Tungsten Corporation and their agents. Tetra Tech Canada Inc. (operating as Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than Alvarez & Marsal Canada Inc., as court-appointed monitor of North American Tungsten Corporation, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in Appendix A or Contractual Terms and Conditions executed by both parties.

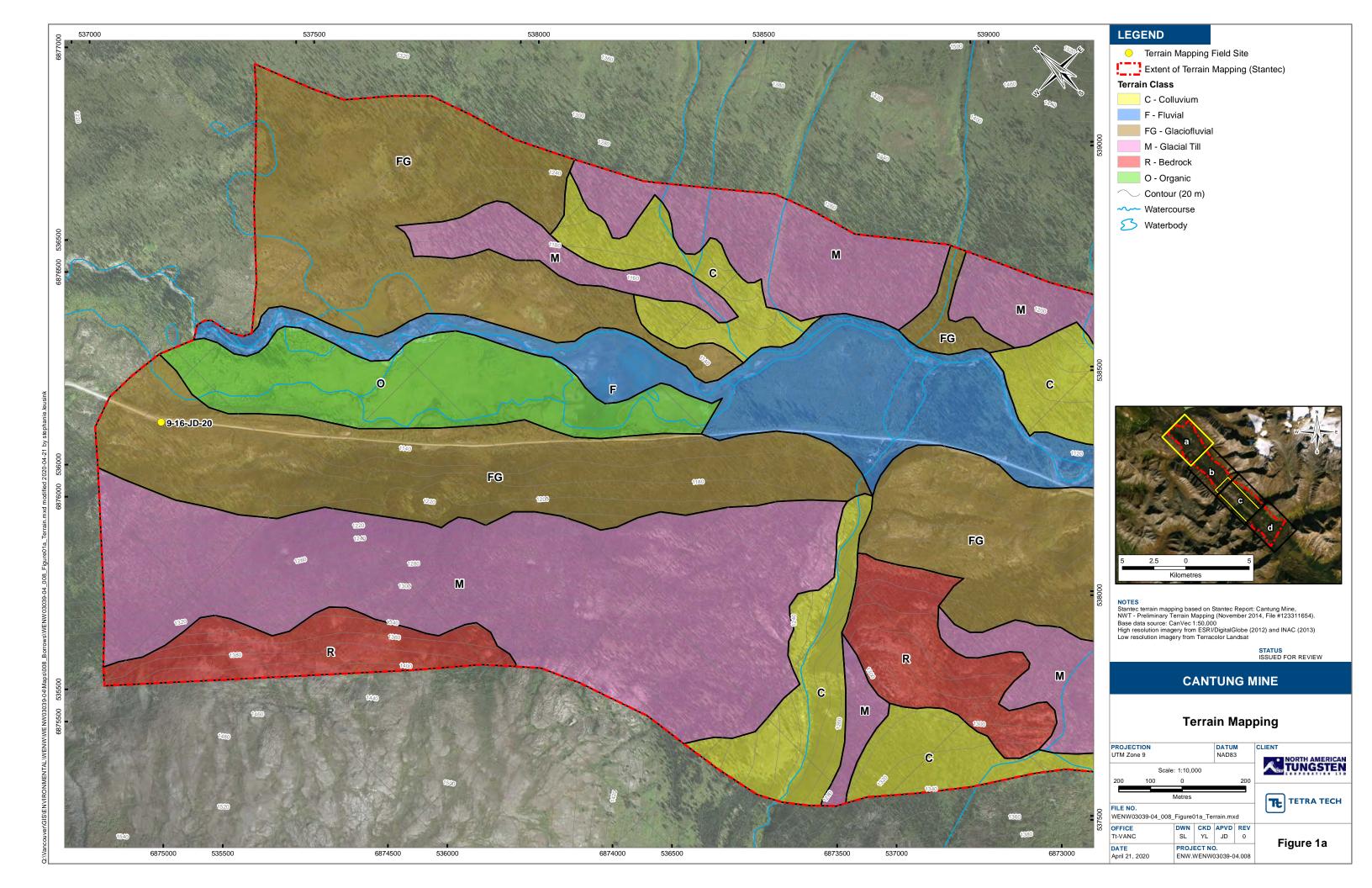
6.0 CLOSURE

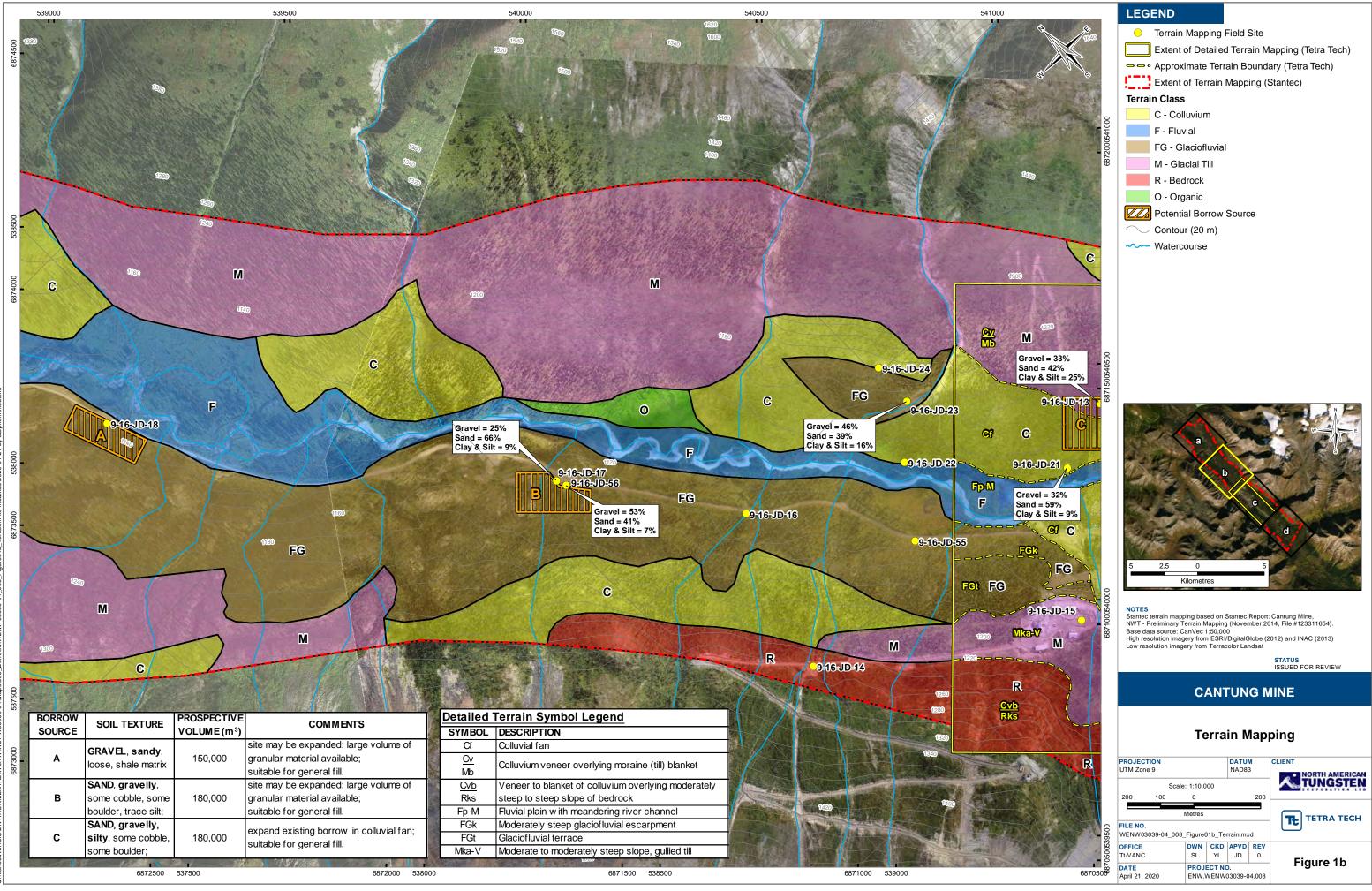

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

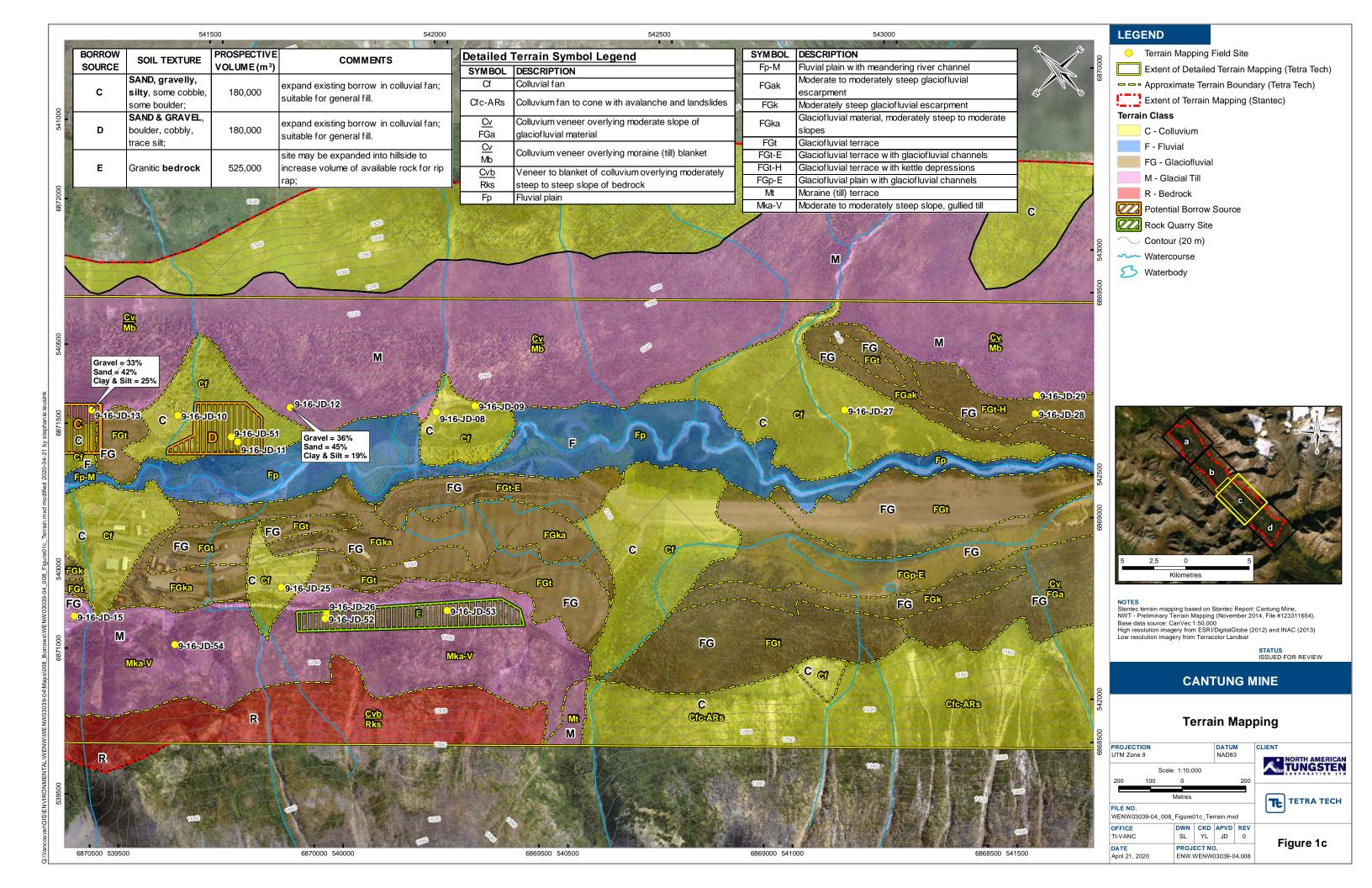
Prepared by: Chad Cowan, P.Eng. Geotechnical Manager – Yukon, Arctic Region Engineering Practice Direct Line: 867.668.9214 Chad.Cowan@tetratech.com

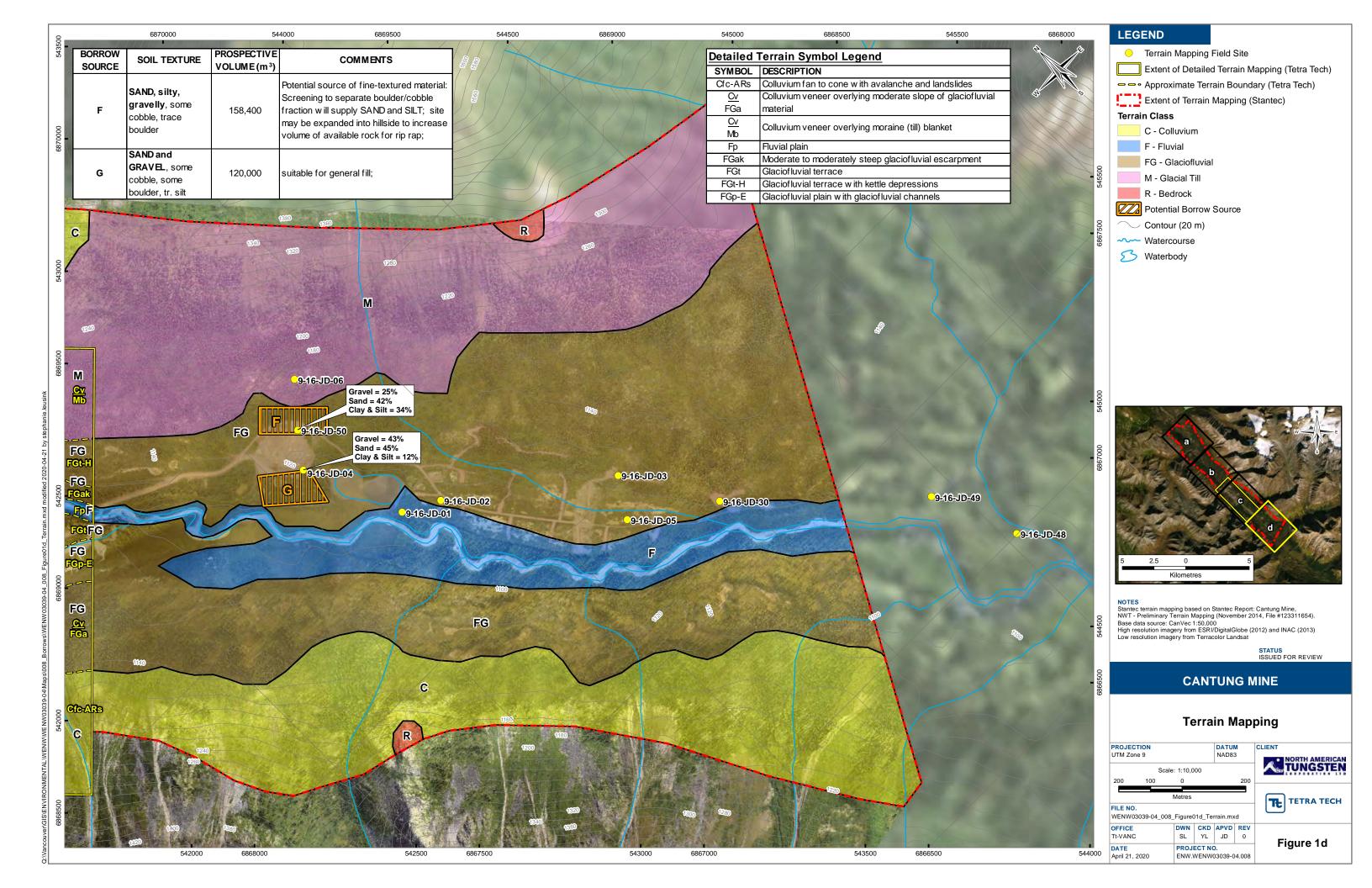
Reviewed by: Tania Perzoff, M.Sc., R.P.Bio. Senior Regulatory Specialist & Project Manager Mining Group Direct Line: 778.945.5717 Tania.Perzoff@tetratech.com

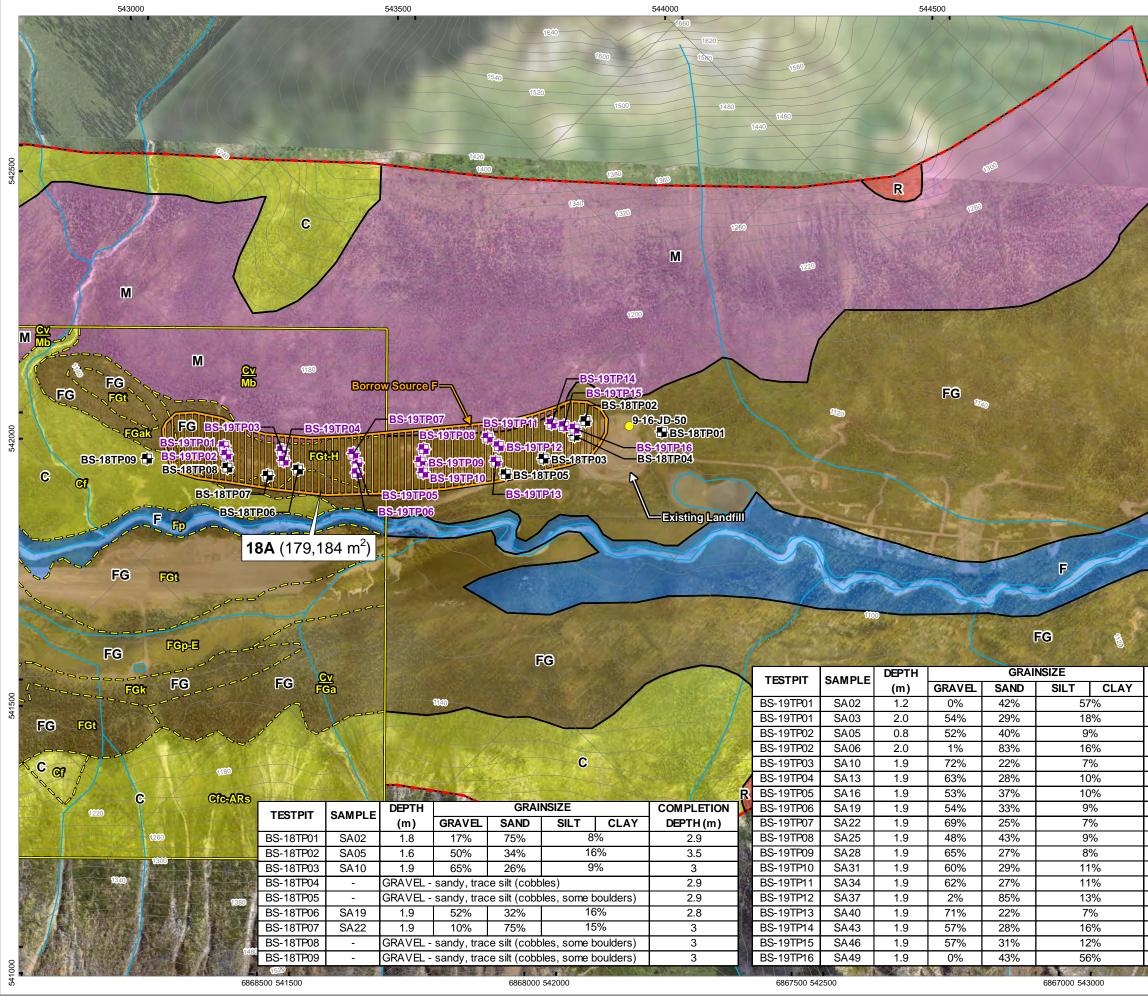

REFERENCES


- Canadian Council of Ministers of the Environment (CCME). 1999. Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life. Canadian Council of Ministers of the Environment, 1999.
- Ecosystem Classification Group. 2010. Ecological Regions of the Northwest Territories Cordillera. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. x + 245 pp. + insert map.
- Federal Contaminated Sites Action Plan (FCSAP). 2012. Guidance Document on Federal Interim Groundwater Quality Guidelines for Federal Contaminated Sites. Federal Contaminated Sites Action Plan, 2012.
- Howes, D.E., and E. Kenk. 1997. Terrain classification system for British Columbia. Version 2. Victoria, B.C. Available online at: https://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/nrlaws-policy/risc/terclass_system_1997.pdf
- Price, W.A. 2009. Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials, MEND Report 1.20.1 December 2009. Available online at: <u>http://mend-nedem.org/wp-</u> <u>content/uploads/1.20.1_PredictionManual.pdf</u>
- Stantec. 2014. Cantung Mine, Northwest Territories Preliminary Terrain Mapping. Report prepared by Stantec Consulting Ltd. for North American Tungsten Corporation Ltd. 19 pp. + appendices.
- Smith, C.A.S., Meikle, J.C., and Roots, C.F. (editors), 2004. Ecoregions of the Yukon Territory: Biophysical properties of Yukon landscapes. Agriculture and Agri-Food Canada, PARC Technical Bulletin No. 04-01, Summerland, British Columbia, 313 p

FIGURES


- Figure 1a Terrain Mapping
- Figure 1b Terrain Mapping
- Figure 1c Terrain Mapping
- Figure 1d Terrain Mapping
- Figure 2a Testpitting and Hand Augering Program
- Figure 2b Testpitting and Hand Augering Program





ilSIENVIRONMENTAL\WENW\WENW03039-04\Maps\008_Borrows\WENW03039-04_008_Figure01b_Terrain.mxd modified 20:

541000	541500	542000		542500	LEGEND
RESTRIT SAMPLE DEPTH GRAINSIZE	COMPLETION TESTPIT SA	AMPLE DEPTH GRAINSIZE	COMPLETION	* *	🖶 2019 Testpit
BS-18TP10 - GRAVEL - sandy, trace silt (cobbles, some boulders)	DEPTH (m)	(m) GRAVEL SAND SIL SA67 1.9 18% 34%	CLAY DEPTH (m) 48% 4		🖶 2018 Testpit
BS-18TP11 SA32 1.9 60% 25% 15%		SA70 1.9 36% 28%	36% 4.1	100 July 5	• 2018 Hand Auger
BS-18TP12 - GRAVEL - sandy, trace silt (boulders at bottom)		SA73 1.9 41% 27%	32% 4.1	100	Terrain Mapping Field Site
BS-18TP13 SA37 1.9 48% 36% 16% BS-18TP14 - SAND - gravelly, trace silt (cobbles, some boulders)	2.4 BS-18TP26 S 2 BS-18TP27 S	SA75 0.9 29% 28% - SAND & GRAVEL - silty (some cobbles a	43% 2.3 nd boulders) 2.1		Borrow Source Area
BS-18TP15 SA41 0.9 0% 32% 56% 12%		SA81 1.9 42% 39% 12%		"	Extent of Detailed Terrain Mapping (Tetra Tech)
BS-18TP16 SA45 1.6 27% 39% 34%		SA83 0.9 0% 41% 47%			Approximate Terrain Boundary (Tetra Tech)
BS-18TP17 - GRAVEL - sandy, silty (some cobbles and boulders) BS-18TP18 SA53 1.9 51% 32% 17%	4 BS-18TP30 3 BS-18TP31 S	- GRAVEL - sandy, trace silt (water table SA87 0.9 10% 37% 44%			Extent of Terrain Mapping (Stantec)
BS-18TP19 - SAND & GRAVEL - silty (some cobbles and boulders)	1.9 BS-18TP32	- SILT - some sand (water table at 1.3 m)	2		Terrain Class
BS-18TP20 SA57 0.9 41% 36% 23%		SA90 0.9 34% 42% 18%	5 [C - Colluvium
BS-18TP20 SA58 1.9 0% 29% 52% 20% BS-18TP20 SA60 3.9 0% 58% 30% 12%	1 m	SA91 1.9 0% 20% 60% SA52 1.9 58% 31%	11% 4.0		F - Fluvial
BS-18TP21 SA62 0.9 32% 30% 29% 9%		SA55 2.2 60% 25%	15% 3.3		FG - Glaciofluvial
BS-18TP22 SA64 0.9 40% 24% 27% 10%	4.5 BS-19TP19 S	SA58 2.0 62% 27%	11% 4.0		M - Glacial Till
		1260			R - Bedrock
		(240		TECO	Contour (20 m) Vatercourse
³ M		1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	A Stand A Stand	ALEO .	5 Waterbody
Ski Hill Bor			XIE A	M	
	row M		M 🔀	FGak	
Eorrow Source G		-Lonowsound b		BS-18TP11	
See Inset		1160		BS-18TP12	Detailed Terrain Symbol Legend
		BS-19TP18		BS-18TP13 BS-18TP10	SYMBOL DESCRIPTION
FG		G	BS:	8TP14 Gf	Cf Colluvial fan Colluvium fan to cone with avalanche and
		*H55:19TP17/		· · · · · · · · · · · · · · · · · · ·	Iandslides
	BS-18TF	Fp	F F		Cv Colluvium veneer overlying moraine (till) blanket
			dlandfill		Cvb Veneer to blanket of colluvium overlying Rks moderately steep to steep slope of bedrock
	FG F	2			Fp Fluvial plain
B FPM	18B (82.	,115 m ²) FG FGtE	050		Fp-M Fluvial plain with meandering river channel FGak Moderate to moderately steep glaciofluvial
				FG J	FGk Moderately steep glaciofluvial escarpment
		FGI FG	FG FG		Glaciofluvial material, moderately steep to
	C FG FGt			Gi FGp-E	FGt Glaciofluvial terrace
			1 1 1	FGPA	FGt-E Glaciofluvial terrace with glaciofluvial channels FGp-E Glaciofluvial plain with glaciofluvial channels
INSET: MARCH BS-18AH08 BS-18AH09					Mt Moraine (till) terrace
BS-18AH09 BS-18AH10_ BS-18AH10_ BS-18AH10_		horses		FGkFG	Mka-V Moderate to moderately steep slope, gullied till
		Provide the second seco		B	NOTES Stantec terrain mapping based on Stantec Report: Cantung Mine, NWT - Preliminary Terrain Mapping (November 2014, File #123311654).
◆BS-18AH04 ◆BS-18AH03 ◆ 9-16-JD-13	Ca	Mka-V	5-50		Base data source: CanVec 1:50,000 High resolution imagery from ESRI/DigitalGlobe (2012) and INAC (2013)
	-18TP.21	M		FGt -	Low resolution imagery from Terracolor Landsat
BS-18AH05		12:0	The second se	FG FG	STATUS ISSUED FOR REVIEW
B9-18TP23	FGt			ି ୍ ଦି ୍ ଭା	CANTUNG MINE
⁸ 18D (19,523 m ²)		TESTHOLE SA		RAINSIZE COMPLETION	
	FG	<u>CVb</u>	(m) GRAVEL SAN		
BS-18TP31			A01 0.60 57% 21% A02 0.70 59% 25%		Testpitting and Hand Augering Program
		BS-18AH03 S	A03 0.90 61% 20%	6 18% 1.2	PROJECTION DATUM CLIENT
BS-18TP32			A04 GRAVEL - sandy, trace silt (s		UTM Zone 9 NAD83 NORTH AMERICAN
◆BS-18AH06	0	BS-18AH05 S BS-18AH06	A05 1.1 8% 24% - GRAVEL - sandy, trace silt (s		Scale: 1:10,000
18C (16,914 m ²)	0000	BS-18AH07	- GRAVEL - sandy, trace silt (s		
BS-18TP33		ALE BS-18AH08	- GRAVEL - sandy, trace silt	0.6	FILE NO. WENW03039-04_008_Figure02a_Borrows.mxd
50 25 0 50 m F Fp-M		BS-18AH09 BS-18AH10	ORGANICS SAND - silty (some cobbles a	nd boulders at bottom) 0.8	OFFICE DWN CKD APVD REV
					Tt-VANC SL YL CC 0 DATE PROJECT NO. Figure 2a
6871000 539000 6870500 539		6870000 540000	6869500 540500	6869000 541000	April 21, 2020 ENW.WENW03039-04.008

545000		LEGEND			
* *			Testpit		
	545000	1 2018			
	545		n Mapping Fie	ald Sita	
4 2			w Source Area		
l g					opping (Tatro Tach)
					apping (Tetra Tech)
					ary (Tetra Tech)
			t of Terrain Ma	apping (Stantec)
		Terrain Clas			
			olluvium		
		F - Flu			
			Blaciofluvial		
	868000		acial Till		
	686	R - Be			
			ur (20 m)		
		0	course		
	544500	S Water	body		
A Mars / Mars	54				
	2				
		Detailed I	DESCRIPT		end
		Cf	Colluvial fan		
	6867500	Cfc-ARs	Colluvium fan landslides	to cone v	vith avalanche and
	88	Cv	Colluvium ver		ving moderate slope of
		FGa <u>Cv</u>	glacio fluvial m		
	2	Mb		neeroverly	ving moraine (till) blanket
The Part of State	544000	Fp	Fluvial plain Moderate to r	moderatel	y steep glaciofluvial
Mar Sala	ľ	FGak	escarpment		
23.72		FGk FGt	M o derately st Glaciofluvial to		fluvial escarpment
Same and		FGt-H	Glacio fluvial t	errace with	n kettle depressions
COMPLETION		FGp-E	Glaciofluvial p	plain with g	laciofluvial channels
DEPTH (m)		NOTES Stantec terrain ma	pping based on Sta	intec Report:	Cantung Mine,
3.6		NWT - Preliminary Base data source:	Terrain Mapping (N CanVec 1:50,000	November 20	114, File #123311654).
	1	High resolution ima		gitalGlobe (2 or Landsat	012) and INAC (2013)
4.1					STATUS ISSUED FOR REVIEW
3.5					ISSUED FOR REVIEW
3.5	8		CANTU	JNG N	IINE
3.5	8867000				
3.5	Ó		_	_	. –
3.3 3.3	-	Testpittin	g and Ha	nd Au	gering Program
3.7	8	PROJECTION		ATUM	CLIENT
3.5	543500	UTM Zone 9		IAD83	NORTH AMERICAN
4.0			le: 1:10,000		TUNGSTEN
3.6		200 100	0	200	

200	100	0			200	
		Metres				TE TETRA TECH
FILE NO						
WENW0	3039-04_008 <u>-</u>	_Figure(02b_Bo	rrows.m	nxd	
OFFICE		DWN	CKD	APVD	REV	
Tt-VANC		SL	YL	cc	0	Figure 2b
DATE		PROJ	ECTNO) .		Figure 20
April 21,	2020	ENW.	NENW	03039-0	3.008	

3.6 3.7 3.7 3.0 3.7 The l

TABLES

- Table 4-3
 Acid-Base Accounting Analysis Results
- Table 4-5 Trace Element Analysis by ICP-MS Results Comparison to Average Crustal Abundance
- Table 4-6 Shake Flask Extraction Analysis Results Comparison to Guideline Values

Table 4-3: Acid-Base Accounting Analysis Results

Sample ID	Туре	Fizz Rating	Maximum	Net Neutralization Potential (NNP)	Sobek Neutralization Potential (SNP)	Neutralization Potential Ratio, NPR (SNP:MPA)	Paste pH	Total Sulphur	Sulphide Sulphur	Sulphate Sulphur (HCI Leachable)	Inorganic Carbon, C	Inorganic Carbon, CO ₂	Carbonate Neutralization Potential (CNP) ¹	Carbonate Neutralization Potential Ratio, NPR (CNP:MPA) ¹
		Unity	tCaCO ₃ /1Kt	tCaCO ₃ /1Kt	tCaCO ₃ /1Kt	Unity	Unity	%	%	%	%	%	tCaCO ₃ /1Kt	Unity
9-16-JD-04	FG	2	1.3	34	35	28	8.2	0.04	0.02	<0.01	0.33	1.2	27.3	21.0
9-16-JD-05	FG	2	1.3	37	38	30.4	8	0.04	0.03	<0.01	0.38	1.4	31.8	24.5
9-16-JD-17	F	2	1.6	22	24	15.36	7.9	0.05	0.02	<0.01	0.19	0.7	15.9	9.9
9-16-JD-10	С	4	0.6	477	478	764.8	8.6	0.02	<0.01	<0.01	5.31	19.5	443.5	739.1
9-16-JD-13	С	4	0.9	339	340	362.7	8.4	0.03	<0.01	<0.01	3.57	13.1	297.9	331.0
9-16-JD-50	М	3	2.2	144	146	66.74	8.2	0.07	0.02	<0.01	1.59	5.8	131.9	60.0
SA09	FG	1	1.9	6	8	4.27	7.2	0.06	0.04	<0.01	<0.05	<0.2	2.3	1.2
SA49	С	3	6.3	236	242	38.72	8.6	0.2	0.19	<0.01	2.57	9.4	213.8	33.9
SA52	С	3	1.3	329	330	264	8.7	0.04	0.04	<0.01	3.57	13.1	297.9	229.2
SA55	С	3	2.2	105	107	48.91	8.5	0.07	0.07	<0.01	1.04	3.8	86.4	39.3
SA69	FG	3	0.6	349	350	560	8.2	0.02	0.01	<0.01	3.93	14.4	327.5	545.8
Minimum		1	0.6	6	8	4.27	7.2	0.02	0.01	<0.01	0.19	0.7	2.3	1.2
Maximum		4	6.3	477	478	764.8	8.7	0.20	0.19	<0.01	5.31	19.5	443.5	739.1
Mean		2.7	1.8	188.9	190.7	198.5	8.2	0.06	0.05	<0.01	2.2	8.2	170.6	185.0
Median		3.0	1.3	144.0	146.0	48.9	8.2	0.04	0.03	<0.01	2.1	7.6	131.9	39.3
10th Percentile		2	0.6	22	24	15.36	7.9	0.02	0.018	<0.01	0.316	1.15	15.9	9.9
90th Percentile		4	2.2	349	350	560	8.6	0.07	0.094	<0.01	4.068	14.91	327.5	545.8
9-16-JD-52	BR	1	<0.3	7	7	44.8	8.5	<0.01	0.01	0.01	<0.05	<0.2	2.3	15.2
9-16-JD-53	BR	1	<0.3	9	9	57.6	9.1	<0.01	0.01	<0.01	<0.05	0.2	4.5	30.3
Minimum		1	<0.3	7	7	44.8	8.5	<0.01	0.01	<0.01	<0.05	<0.2	2.3	15.2
Maximum		1	<0.3	9	9	57.6	9.1	<0.01	0.01	0.01	<0.05	0.2	4.5	30.3
Mean		1	<0.3	8	8	51.2	8.8	<0.01	0.01	0.0075	<0.05	0.15	3.4	22.8
Median		1	<0.3	8	8	51.2	8.8	<0.01	0.01	0.0075	<0.05	0.15	3.4	22.7
10th Percentile		1	<0.3	7.2	7.2	46.08	8.56	<0.01	0.01	<0.01	<0.05	<0.2	2.5	16.7
90th Percentile		1	<0.3	8.8	8.8	56.32	9.04	<0.01	0.01	0.01	<0.05	0.2	4.3	28.8
18TP1A_0-1A	Cover	3	27.2	279	306	11.26	7.5	0.87	0.69	0.2	3.13	11.5	261.5	9.6
18TP1A_0-1B	Cover	3	26.9	286	313	11.65	7.5	0.86	0.68	0.18	3.16	11.6	263.8	9.8
18TP1A-2.1	Cover	3	6.6	287	294	44.8	7.3	0.21	0.15	0.05	2.92	10.7	243.3	36.9
18TP2A_0-0.3	Cover	3	103.8	95	199	1.92	6.5	3.32	2.75	0.38	1.8	6.6	150.1	1.4
18TP2A_0.3-0.6	Cover	4	5.9	483	489	82.36	7.5	0.19	0.16	0.05	4.95	18.1	411.6	69.8
18TP2A_1.2-1.6	Cover	4	14.1	397	411	29.23	7.5	0.45	0.29	0.14	3.97	14.6	332.0	23.5
Minimum		3	5.9	95	199	1.92	6.5	0.19	0.15	0.05	1.80	6.60	150.1	1.4
Maximum		4	103.8	483	489	82.36	7.5	3.32	2.75	0.38	4.95	18.10	411.6	69.8
Mean		3	31	305	335	30	7	0.98	0.79	0.17	3.32	12.18	277.1	25.2
Median		3	20.5	287	310	20.44	7.5	0.66	0.49	0.16	3.15	11.55	262.7	16.7
10th Percentile		3	6.25	187	247	6.59	6.9	0.20	0.16	0.05	2.36	8.65	196.7	5.5
90th Percentile		3	6.25	187	247	6.59	6.9	0.20	0.16	0.05	2.36	8.65	196.7	5.5

FG-Glaciofluvial

M - Till C - Colluvium

F - Fluvial

BR - Bedrock

A value of one half of the detection limit of testing is used for summary statistics

 1 Calculated based on lab measured inorganic carbon (CO $_2\%)$

Table 4	-5: Trace	e Elemo	ent An	alysis I	by ICP	-MS Re	esults (Compa	rison t	o Aver	rage Ci	ustal A	Abunda	ance							1	
Sam	ple ID	9-16- JD-04	9-16- JD-05	9-16- JD-17	9-16- JD-10	9-16- JD-13	9-16- JD-50	9-16- JD-52	9-16- JD-53	SA09	SA49	SA52	SA55	SA69	18TP1 A_0- 1A	18TP1 A_0- 1B	18TP1 A-2.1	18TP2 A_0- 0.3	18TP2 A_0.3- 0.6	18TP2 A_1.2- 1.6	Average Crustal Abundance	10x Average Crustal Abundance
Ag	ppm	0.28	0.25	0.31	0.08	0.04	0.27	0.02	0.02	0.61	0.05	0.03	0.22	0.17	0.48	0.43	0.43	0.84	0.15	0.23	0.075	0.75
Al	%	6.27	6.16	7.71	3.53	4.6	6.59	7.55	7.55	6.1	4.04	5.49	5.69	4.1	4.87	4.79	5.37	5.03	3.81	4.21	8.23	82.3
As	ppm	19.3	19	22.4	5.9	8.4	20.2	0.7	0.8	29.7	5.8	3.8	19.4	12.4	21.1	18.5	37.5	10.9	16.4	16.3	1.8	18
Ва	ppm	5940	5830	8170	1220	840	4330	650	630	6530	1160	1370	3780	2170	820	750	1430	340	790	760	425	4250
Be	ppm	1.77	1.75	2.22	1.33	2.01	1.88	4.08	5.53	1.89	1.46	2.93	1.46	1.41	3.41	3.57	2.14	5.11	1.58	2.99	2.8	28
Bi	ppm	0.23	0.41	0.29	0.81	0.6	0.3	0.42	1.05	0.21	0.28	0.3	0.26	0.4	122	111.5	16.95	206	16.6	46.2	-	-
Ca	%	1.24	1.42	0.86	17.2	10.1	4.66	1.44	1.04	0.33	8.63	11.2	3.33	10.85	9.78	9.59	7.69	6.88	13.75	11.7	4.15	41.5
Cd	ppm	2.25	2.31	2.55	0.73	0.1	2.22	0.04	0.04	4.2	0.28	0.09	2.06	1.39	1.86	1.57	1.66	3.6	0.58	0.67	0.15	1.5
Ce	ppm	72.7	66.1	82	57.3	60.2	79.4	79.8	79.3	71.2	49.3	70.4	74.6	60	70	57.8	61.8	57.7	58.5	54.1	66.5	665
Co	ppm	12.2	10.5	15.4	4.9	5.2	12.1	3.5	3.4	12.5	5.6	6.3	10.2	9.2	17	16	17.7	22.1	11.4	13.3	25	250
Cr	ppm	63	65	76	24	27	66	11	12	72	34	27	57	44	46	43	63	38	35	42	102	1020
Cs	ppm	4.05	4	5.33	3.64	4.56	10.75	10.9	7.96	4.45	4.05	8.57	4.47	5.27	13.2	12.95	10	13.9	9.47	7.01	3	30
Cu	ppm	33.5	30.3	40.1	11.8	7.8	30.7	2.6	2.8	40.2	9	7.6	24.9	22.5	464	419	117	1065	98.7	224	60	600
Fe	%	3.6	3.48	4	1.54	1.8	3.35	1.88	1.7	3.5	1.67	2.14	2.9	2.28	5.64	5.52	4.14	8.94	2.84	3.85	5.63	56.3
Ga	ppm	15.15	15.1	19.05	8.3	10.15	18	19	18.65	15.55	9.4	13.05	13.75	10.1	15.95	15.8	14.65	17.35	10.05	12	19	190
Ge	ppm	0.14	0.14	0.14	0.11	0.13	0.15	0.15	0.14	0.14	0.14	0.14	0.14	0.11	0.13	0.13	0.12	0.14	0.11	0.1	1.5	15
Hf	ppm	2.5	2.2	2.6	1.4	1.4	2.6	1.6	1.7	2.4	1.6	1.9	2.3	1.7	1.6	1.5	2.1	1.5	1.6	1.7	3	30
In	ppm	0.047	0.04	0.057	0.028	0.028	0.044	0.036	0.018	0.054	0.03	0.045	0.048	0.036	0.403	0.377	0.139	0.687	0.099	0.211	0.16	1.6
к	%	2.39	2.2	2.73	1.9	2.36	2.4	3.78	3.7	2.31	2.13	2.83	2.29	1.61	1.85	1.83	1.86	1.9	1.59	1.62	2.09	20.9
La	ppm	35.7	32.8	41	27.3	29.6	40.6	39.9	39.3	37.3	25.8	36.5	38.3	31.3	33.7	29.7	30.4	27.1	26.9	25.3	39	390
Li	ppm	45.6	43.4	51.9	31.6	39.2	47.8	133	100.5	41.4	30.3	44.1	33.5	33.1	52	50.2	44.6	56.6	30.8	34.5	20	200
Mg	%	0.74	0.72	0.79	4.62	4.24	1.54	0.43	0.42	0.68	2.8	2.56	1.18	4.67	4.36	4.29	5.33	2.78	4.49	4.61	2.33	23.3
Mn	ppm	353	312	367	357	367	402	395	293	373	297	605	343	493	1140	1160	675	1510	519	1000	950	9500
Мо	ppm	5.21	5.69	5.76	0.52	0.41	5.48	2.49	0.8	8.09	1.11	0.75	5.43	2.04	3.31	3.56	3.84	6.63	2.15	1.47	1.2	12
Na	%	0.24	0.23	0.22	0.3	0.57	0.25	2.26	2.25	0.22	0.47	0.67	0.24	0.27	0.41	0.41	0.23	0.55	0.17	0.2	2.36	23.6
Nb	ppm	9.8	9.3	10.7	7.3	8.7	11.2	11.8	10.1	10.2	7.8	12.3	10	9.1	12.5	12.4	11.8	12	8.1	9.4	20	200
Ni	ppm	51.7	46.8	66.3	12.2	11.8	48.4	3.1	2.8	66.2	13.8	12.5	36	27.4	28	26.2	47.4	24.5	24.8	26.8	84	840
Р	ppm	930	950	1020	690	560	990	540	580	1240	600	650	870	780	770	760	890	840	1040	620	1050	10500
Pb	ppm	18.5	17.9	22.6	13.3	13.4	21.5	40.4	39.4	38.3	10.4	14.1	17.5	18.1	30.6	29.9	33.2	23.8	12.6	14.8	14	140
Rb	ppm	115	110	140.5	76.2	101.5	120	220	200	109.5	87.1	126.5	105	70.9	107.5	106	84.5	129.5	70.7	78.4	90	900
Re	ppm	0.004	0.008	0.006	<0.002	0.002	0.004	< 0.002	<0.002	0.004	<0.002	<0.002	0.004	<0.002	0.015	0.013	0.002	0.029	0.003	0.004	0.0015	0.015
S	%	0.05	0.05	0.06	0.01	0.03	0.07	0.01	0.01	0.07	0.21	0.05	0.07	0.02	0.86	0.83	0.21	2.82	0.21	0.46	0.35	3.5
Sb	ppm	4.08	3.76	4.53	0.43	0.31	3.87	0.14	0.11	8.52	0.41	0.21	2.92	1.51	1	0.89	1.99	1.86	0.74	0.79	0.2	2
Sc	ppm	10.7	10.5	14	5.2	5.5	10.9	5.6	5.2	11.7	6.8	7.4	8.6	6.7	8.1	7.7	9.5	7	6.7	7.7	22	220
Se	ppm	2	1	1	1	<1	1	<1	<1	3	1	<1	1	1	2	1	1	4	<1	1	0.05	0.5
Sn	ppm	1.7	1.9	2.2	1.8	2.2	2	4.4	2.9	1.9	2	3.3	2	1.7	10.1	10.2	6	11.1	3.2	6.1	2.3	23
Sr	ppm	76	85.5	81.6	193.5	157	114	238	221	53.9	131.5	172.5	88.8	136.5	180.5	182	117	164	225	191	370	3700
Та	ppm	0.73	0.67	0.77	0.54	0.7	0.81	1.33	1.14	0.72	0.58	1.02	0.73	0.62	0.83	0.82	0.78	0.77	0.56	0.64	2	20
Te Th	ppm	< 0.05	0.06	0.06	< 0.05	< 0.05	0.05	< 0.05	<0.05	0.05	< 0.05	< 0.05	0.05	<0.05 8.84	0.45	0.45 9.7	0.12 10	1.19	0.11	0.22 9.04	0.001 9.6	0.01 96
Ti	ppm %	12.15 0.325	10.75 0.313	0.38	8.2 0.167	11.85 0.195	12.5 0.351	18.55 0.213	18.8 0.202	11.5 0.298	8.71	12.3 0.227	11.75 0.284	8.84 0.216	9.49	9.7 0.26		9.42 0.21	8.63	9.04	9.6	96 5.65
 TI		0.325	0.313	1.22	0.167		0.351	0.213 1.21	0.202	0.298 1.15	0.205	0.227 0.77	0.284 0.85	0.216 0.63	0.264 0.8	0.26	0.311 0.82	0.21 1.06	0.223	0.249	0.565	5.65
U	ppm ppm	3.6	3.5	3.9	1.8	0.56 2.3	3.9	3.4	5.5	4.3	0.59	2.5	3.5	2.2	3.5	3.5	3.9	3.4	2.1	2.6	2.7	27
v	ppm ppm	3.6 290	3.5 259	3.9	39	42	3.9	3.4 29	5.5 28	4.3 393	67	2.5 47	3.5 241	2.2	3.5 80	3.3 75	3.9	3.4 104	68	2.6	120	1200
w	ppm	1.2	259 5.4	1.4	2.5	42 9.7	11.5	29 3.8	20 8.1	393 1.2	67 2.1	47 2.1	1.5	105 2.7	1910	1620	297	3390	338	340	1.25	1200
Y	ppm ppm	1.2	5.4 14.3	1.4	2.5	9.7 10.8	11.5	3.8 8.5	8.1 9.1	1.2	2.1	2.1 16.1	1.5	14.1	1910	1620	17.2	13.9	12.8	340 13.6	33	330
Zn	ppm	278	273	334	49	35	16.2 263	6.5 43	32	361	42	38	15.5	14.1	225	205	212	431	12.0	13.6	70	700
Zn	ppm	88.2	76.9	334 88.5	49	50.7	91.2	45	48.3	89.5	42	58.9	77.8	58.9	57	205 51	75.4	47.1	55.1	66.6	165	1650
21	phin	00.2	10.9	00.J	47	50.7	91.2	40.2	40.3	89.5	47.1	58.9	11.8	58.9	57	51	/5.4	47.1	55.1	0.00	100	1050

Table 4-5: Trace Element Analysis by ICP-MS Results Comparison to Average Crustal Abundance

Average crustal abundance values for all rock types. Multiple sources as compiled at https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth's_crust

Metal concentrations exceeding the average crustal abundance are $\ensuremath{\textbf{bold}}$

Metal concentrations exceeding 10 times the average crustal abundance are $\ensuremath{\textbf{bold}}$ shaded

Table 4-6: Shake Flask Extraction Analysis Results with Comparison to Guideline Values

Client Sample ID	Lowest Detection Limit	Units	9-16-JD-52	9-16-JD-04	9-16-JD-10	9-16-JD-50	CCME - AW (Freshwater) ⁰	Federal Interim Guideline - Res Park Coarse ¹	Federal Interim Guideline - Agriculture Coarse ²
ALS Sample ID			L2028191-1	L2028191-2	L2028191-3	L2028191-4	mg/L	mg/L	mg/L
									Ť
Physical Tests									
Hardness (as CaCO3)	0.5	mg/L	2.15	40	26.9	43.2	NG	NG	NG
Moisture	0.25	%	<0.25	<0.25	<0.25	<0.25	NG	NG	NG
Leachable Anions & Nutrients	-								
Acidity (as CaCO3)	4.0	mg/L	<4.0	<4.0	<4.0	<4.0	NG	NG	NG
Alkalinity, Total (as CaCO3)	1.0	mg/L	4.7	37.3	27.8	38.6	NG	NG	NG
Ammonia, Total Leachable (as N)	0.0050	mg/L	0.0151	0.0375	0.0245	0.0495	1.04	1.54	1.54
Bromide (Br)	0.050	mg/L	<0.050	<0.050	<0.050	< 0.050	NG	NG	NG
Chloride (CI)	0.50	mg/L	<0.50	<0.50	<0.50	<0.50	120	120	120
Conductivity	2.0	uS/cm	28	82.9	58.4	93.3	NG	NG	NG
Fluoride (F)	0.020	mg/L	0.071	0.175	0.045	0.522	0.12	0.12	0.12
Nitrate (as N)	0.020	mg/L	0.0075	0.1050	0.045	0.0408	13	13	13
Nitrite (as N)	0.0030	mg/L	<0.0075	0.0110	0.0052	0.0408	0.06	0.06	0.06
nH	0.10	pH	7.32	8.45	9.18	8.66	6.5-9.0	6.5-9.0	6.5-9.0
pn Sulfate (SO4)	0.10	mg/L	2.4	4.67	2.14	6.0	6.5-9.0 NG	100	100
Sullate (SO4)	0.50	mg/∟	2.4	4.07	2.14	0.0	NG	100	100
Leachable Metals									
Aluminum (AI)-Leachable	0.0050	mg/L	0.657	0.179	0.594	0.084	0.1 ³	0.1 ³	0.1 3
Antimony (Sb)-Leachable	0.00010	mg/L	<0.00010	0.00118	0.00018	0.00152	NG	2	2
Arsenic (As)-Leachable	0.0010	mg/L	<0.0010	<0.0010	0.002	0.001	0.005	0.005	0.005
Barium (Ba)-Leachable	0.0010	mg/L	0.007	0.570	0.078	0.196	NG	0.5	2.9
Beryllium (Be)-Leachable	0.00050	mg/L	<0.00050	<0.00050	<0.00050	< 0.00050	NG	0.0053	0.0053
Bismuth (Bi)-Leachable	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	1	NG	NG
Boron (B)-Leachable	0.010	mg/L	0.011	<0.010	<0.010	0.015	1.5	5	NG
Cadmium (Cd)-Leachable	0.000050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	0.001	0.000017	0.000017
Calcium (Ca)-Leachable	0.10	mg/L	0.55	14.80	9.55	14.90	NG	NG	NG
Chromium (Cr)-Leachable	0.00050	mg/L	<0.00050	0.00103	<0.00050	0.00117	0.001	0.0089	0.0089
Cobalt (Co)-Leachable	0.00010	mg/L	0.0002	< 0.00010	<0.00010	< 0.00010	0.0025	NG	NG
Copper (Cu)-Leachable	0.0010	mg/L	0.003	<0.0010	<0.0010	<0.0010	0.002 4	0.002 4	0.002 4
Iron (Fe)-Leachable	0.030	mg/L	0.250	0.036	<0.030	0.047	0.002	0.002	0.002
Lead (Pb)-Leachable	0.00010	mg/L	0.00082	<0.00010	<0.00010	<0.00010	0.001 4	0.001 4	0.001 4
Lithium (Li)-Leachable	0.0050	mg/L	< 0.0050	<0.0050	<0.0050	0.014	NG	0.001 NG	NG
Magnesium (Mg)-Leachable	0.050	mg/L	0.188	0.715	0.742	1.460	NG	NG	NG
Magnesium (Mg)-Leachable	0.00050	mg/L	0.0191	0.00122	<0.00050	0.00099	NG	NG	NG
Mercury (Hg)-Leachable	0.000050	mg/L	<0.00050	<0.000050	<0.000050	< 0.000050	0.000026	0.000026	0.000026
Molybdenum (Mo)-Leachable	0.00010	mg/L	0.00104	0.00314	0.00054	0.00749	0.073	0.00020	0.073
Nickel (Ni)-Leachable	0.00050	mg/L	<0.00050	<0.00050	<0.00054	< 0.00050	0.025 4	0.025 4	0.025 4
Phosphorus (P)-Leachable	0.30	mg/L	<0.30	<0.30	<0.30	<0.30	0.004 - 0.010 5	0.023 NG	0.025 NG
Potassium (K)-Leachable	0.050	mg/L	4.620	1.810	2.100	1.880	0.004 - 0.010 NG	NG	NG
Selenium (Se)-Leachable	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	0.001	0.001	0.001
Silicon (Si)-Leachable	0.050	mg/L	3.8	1.730	1.510	2.470	NG	NG	NG
Silver (Ag)-Leachable	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	0.00025	0.0001	0.0001
Sodium (Na)-Leachable	0.050	mg/L	2.340	0.546	0.187	0.578	0.00025 NG	NG	NG
Strontium (Sr)-Leachable	0.00050	mg/L	0.003	0.034	0.187	0.578	NG	NG	NG
Thallium (TI)-Leachable	0.00050	mg/L	<0.003	<0.00010	<0.0013	<0.0010	0.0008	0.0008	0.0008
	0.00010		<0.00010	<0.00010	<0.00010	<0.00010	0.0008 NG	0.0008 NG	0.0008 NG
Tin (Sn)-Leachable		mg/L							
Titanium (Ti)-Leachable	0.010	mg/L	0.014	< 0.010	< 0.010	<0.010	NG	0.1	0.1
Uranium (U)-Leachable	0.000010	mg/L	0.00628	0.00045	0.00027	0.00060	0.015	0.015	0.015
Vanadium (V)-Leachable	0.0010	mg/L	0.001	0.002	0.001	0.002	NG	NG	NG
Zinc (Zn)-Leachable	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	0.03	0.03	0.03

0. Canadian Council of Ministers of the Environment (CCME) Environmental Quality Guidelines (CEQG), for the protection of freshwater aquatic life.

1. Federal Contaminated Sites Action Plan (FCSAP) Guidance Document on Federal Interim Groundwater Quality Guidelines (FIGWQG)

for Federal Contaminated Sites Tier 1 and 2 Guidelines for Residential / Parkland Land Use - coarse- grained soils.

2. FFCSAP Guidance Document on FIGWQG for Federal Contaminated Sites Tier 1 and 2 Guidelines for Agricultural Land Use - coarse-grained soils.

3. Guideline is dependent upon the pH value.

4. Guideline is based on the Hardness value.

5. Guideline shown is based on the typical range of total phosphorous concentrations of a oligotrophic water body.

NG - No guideline

BOLD Black - Concentration exceeds the most stringent guideline

BOLD Black and Shaded - Concentration exceeds the most stringent guideline by an order of magnitude

APPENDIX A

TETRA TECH'S LIMITATIONS ON THE USE OF THIS DOCUMENT

GEOTECHNICAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by third parties other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this document, at or on the development proposed as of the date of the Professional Document requires a supplementary exploration, investigation, and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, TETRA TECH has not been retained to explore, address or consider and has not explored, addressed or considered any environmental or regulatory issues associated with development on the subject site.

1.8 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems, methods and standards employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgmental in nature as to both type and condition. TETRA TECH does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

1.9 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

1.10 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historical environment. TETRA TECH does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional exploration and review may be necessary.

1.11 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geological materials to climatic elements (freeze/thaw, wet/dry) and/or mechanical disturbance which can cause severe deterioration. Unless otherwise specifically indicated in this report, the walls and floors of excavations must be protected from the elements, particularly moisture, desiccation, frost action and construction traffic.

1.12 SUPPORT OF ADJACENT GROUND AND STRUCTURES

Unless otherwise specifically advised, support of ground and structures adjacent to the anticipated construction and preservation of adjacent ground and structures from the adverse impact of construction activity is required.

1.13 INFLUENCE OF CONSTRUCTION ACTIVITY

Construction activity can impact structural performance of adjacent buildings and other installations. The influence of all anticipated construction activities should be considered by the contractor, owner, architect and prime engineer in consultation with a geotechnical engineer when the final design and construction techniques, and construction sequence are known.

1.14 OBSERVATIONS DURING CONSTRUCTION

Because of the nature of geological deposits, the judgmental nature of geotechnical engineering, and the potential of adverse circumstances arising from construction activity, observations during site preparation, excavation and construction should be carried out by a geotechnical engineer. These observations may then serve as the basis for confirmation and/or alteration of geotechnical recommendations or design guidelines presented herein.

1.15 DRAINAGE SYSTEMS

Unless otherwise specified, it is a condition of this report that effective temporary and permanent drainage systems are required and that they must be considered in relation to project purpose and function. Where temporary or permanent drainage systems are installed within or around a structure, these systems must protect the structure from loss of ground due to mechanisms such as internal erosion and must be designed so as to assure continued satisfactory performance of the drains. Specific design details regarding the geotechnical aspects of such systems (e.g. bedding material, surrounding soil, soil cover, geotextile type) should be reviewed by the geotechnical engineer to confirm the performance of the system is consistent with the conditions used in the geotechnical design.

1.16 DESIGN PARAMETERS

Bearing capacities for Limit States or Allowable Stress Design, strength/stiffness properties and similar geotechnical design parameters quoted in this report relate to a specific soil or rock type and condition. Construction activity and environmental circumstances can materially change the condition of soil or rock. The elevation at which a soil or rock type occurs is variable. It is a requirement of this report that structural elements be founded in and/or upon geological materials of the type and in the condition used in this report. Sufficient observations should be made by qualified geotechnical personnel during construction to assure that the soil and/or rock conditions considered in this report in fact exist at the site.

1.17 SAMPLES

TETRA TECH will retain all soil and rock samples for 30 days after this report is issued. Further storage or transfer of samples can be made at the Client's expense upon written request, otherwise samples will be discarded.

1.18 APPLICABLE CODES, STANDARDS, GUIDELINES & BEST PRACTICE

This document has been prepared based on the applicable codes, standards, guidelines or best practice as identified in the report. Some mandated codes, standards and guidelines (such as ASTM, AASHTO Bridge Design/Construction Codes, Canadian Highway Bridge Design Code, National/Provincial Building Codes) are routinely updated and corrections made. TETRA TECH cannot predict nor be held liable for any such future changes, amendments, errors or omissions in these documents that may have a bearing on the assessment, design or analyses included in this report.

APPENDIX B

TETRA TECH'S 2018 TESTPIT AND TESTHOLE LOGS AND PARTICLE SIZE RESULTS

TERMS USED ON BOREHOLE LOGS

TERMS DESCRIBING CONSISTENCY OR CONDITION

COARSE GRAINED SOILS (major portion retained on 0.075mm sieve): Includes (1) clean gravels and sands, and (2) silty or clayey gravels and sands. Condition is rated according to relative density, as inferred from laboratory or in situ tests.

DESCRIPTIVE TERM
Very Loose
Loose
Compact

Compact Dense Very Dense 0 TO 20% 20 TO 40%

RELATIVE DENSITY

20 TO 40% 40 TO 75% 75 TO 90% 90 TO 100% N (blows per 0.3m)

0 to 4 4 to 10 10 to 30 30 to 50 greater than 50

The number of blows, N, on a 51mm 0.D. split spoon sampler of a 63.5kg weight falling 0.76m, required to drive the sampler a distance of 0.3m from 0.15m to 0.45m.

FINE GRAINED SOILS (major portion passing 0.075mm sieve): Includes (1) inorganic and organic silts and clays, (2) gravelly, sandy, or silty clays, and (3) clayey silts. Consistency is rated according to shearing strength, as estimated from laboratory or in situ tests.

DESCRIPTIVE TERM

Very Soft Soft Firm Stiff Very Stiff Hard

UNCONFINED COMPRESSIVE STRENGTH (KPA) Less than 25 25 to 50 50 to 100 100 to 200 200 to 400 Greater than 400

NOTE: Slickensided and fissured clays may have lower unconfined compressive strengths than shown above, because of planes of weakness or cracks in the soil.

GENERAL DESCRIPTIVE TERMS

Slickensided - having inclined planes of weakness that are slick and glossy in appearance.
Fissured - containing shrinkage cracks, frequently filled with fine sand or silt; usually more or less vertical.
Laminated - composed of thin layers of varying colour and texture.
Interbedded - composed of alternate layers of different soil types.
Calcareous - containing appreciable quantities of calcium carbonate.;
Well graded - having wide range in grain sizes and substantial amounts of intermediate particle sizes.
Poorly graded - predominantly of one grain size, or having a range of sizes with some intermediate size missing.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

					SOIL CLASSIFICATION				
MAJOR DIVISION GROUP SYMBOL TYPICAL DESCRIPTION				TYPICAL DESCRIPTION	LABORATORY CLASSIFICATION CRITERIA				
	fraction leve	CLEAN GRAVELS	GW	Well-graded gravels and gravel- sand mixtures, little or no fines	$\begin{array}{c c} C_{U} = D_{00} / D_{10} & \text{Greater than 4} \\ \hline C_{c} = \frac{(D_{00})^{2}}{D_{10} \times D_{00}} & \text{Between 1 and 3} \end{array}$				
sieve*	GRAVELS 50% or more of coarse fraction retained on No. 4 sieve	CLEAN G			Up to the second				
LS 75 µm	GF or mor retained	gravels With Fines	GM	Silty gravels, gravel-sand-silt mixtures	ae \$\mathcal{S}\$ is a = 0 Signal Atterberg limits plot below 'A' line or Atterberg limits plotting is is is is a = 0 plasticity index less than 4 in hatched area are				
IED SOII	50%	GRA MI FIN	GC	Clayey gravels, gravel-sand-clay mixtures	응 중 중 요 보 · · · · · · · · · · · · · · · · · ·				
COARSE - GRAINED SOILS an 50% retained on No. 75	oarse sieve	CLEAN SANDS	sw	Well-graded sands and gravelly sands, little or no fines	$\begin{array}{c} c_{c} \\ c_{c} \\$				
COARSE - GRAINED SOILS More than 50% retained on No. 75 µm sieve*	SANDS More than 50% of coarse fraction passes No. 4 sieve	CLEAN	SP	Poorly-graded sands and gravelly sands, little or no fines	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
W	S ore thar ction pa	Sands With Fines	SM	Silty sands, sand-silt mixtures	Atterberg limits plot above 'A' line and plasticity index less than 4 Atterberg limits plotting in hatched area are				
	Mc	SAN	SC	Clayey sands, sand-clay mixtures	Atterberg limits plot above 'A' line and plasticity index greater than 7 borderline classifications requiring use of dual symbols				
	IS	Liquid limit 50 <50	ML	Inorganic silts, very fine sands, rock flour, silty or clayey fine sands of slight plasticity	60 PLASTICITY CHART For classification of fine-grained				
*	SILTS	Liqui >50	МН	Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts	50 soils and fine fraction of coarse- grained soils Equation of 'A' line: PI = 0.73(LL-20)				
VE-GRAINED SOILS (by behavior) 50% or more passes 75 µm sieve*	art	t <30	CL	Inorganic clays of low plasticity, gravelly clays, sandy clays, silty clays, lean clays					
FINE-GRAINED SOILS (by behavior) 50% or more passes 75 µm siev	CLAYS Above "A" line on plasticity chart	Liquid limit 30-50	CI	Inorganic clay of medium plasticity, silty clays					
AINED SO	Abo		СН	Inorganic clay of high plasticity, fat clays	10 MH or OH				
FINE-GR	ORGANIC Silts And Clays	Liquid limit 50 <50	0L	Organic silts and organic silty clays of low plasticity					
	ORG SIL AND (Liquid >50	ОН	Organic clays of medium to high plasticity	LIQUID LIMIT				
HIGHLY ORGANIC SOILS PT Peat, muck and other highly organic soils			РТ		 * Based on the material passing the 75 mm sieve † ASTM Designation D 2487, for identification procedure see D 2488 USC as modified by PFRA 				

GROUND ICE DESCRIPTION

		ICE NOT VISIBLE	
GROUP SYMBOL	SYMBOL	SUBGROUP DESCRIPTION	
	Nf	Poorly-bonded or friable	
N	Nbn	No excess ice, well-bonded	
	Nbe	Excess ice, well-bonded	

NOTES:

LEGEND:

1. Dual symbols are used to indicate borderline or mixed ice classifications.

Ice

- 2. Visual estimates of ice contents indicated on borehole logs \pm 5%
- This system of ground ice description has been modified from NRC Technical Memo 79, Guide to the Field Description of Permafrost for Engineering Purposes.

VISIBLE ICE LESS THAN 50% BY VOLUME

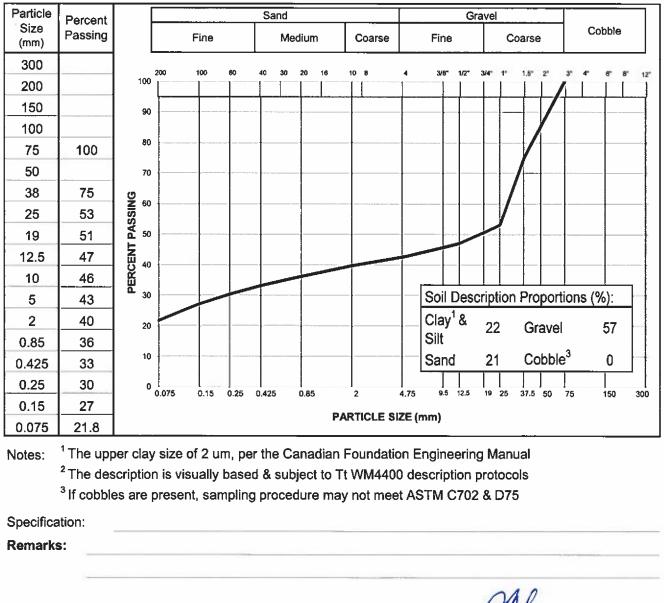
GROUP Symbol	SYMBOL	SUBGROUP DESCRIPTION	
	Vx	Individual ice crystals or inclusions	,
v	Vc	Ice coatings on particles	್ಟಿ
v	Vr	Random or irregularly oriented ice formations	KAN
	Vs	Stratified or distinctly oriented ice formations	

VISIBLE ICE GREATER THAN 50% BY VOLUME

Tt_Modified Unified Soil Classification_Arctic.cdr

Soil

BOREHOLE KEYSHEET Water Level Measurement Measured in standpipe, ∇ ⊻ Inferred piezometer or well Sample Types Disturbed, Bag, A-Casing Core HQ Core Jar Grab Jar and Bag 75 mm SPT No Recovery Split Spoon/SPT Tube **CRREL** Core **Backfill Materials** Cement/ Grout Drill Cuttings Asphalt Bentonite Grout <u>× /</u> <u>×</u> Gravel Slough Topsoil Backfill Sand Lithology - Graphical Legend¹ Coord Cobbles/Boulders Coal Bedrock Asphalt Mudstone Limestone *P* . N Concrete \bigotimes Fill Gravel e se se s <u>se se se</u> Sand \times Sandstone Organics Peat Shale 7.14 X Siltstone Conglomerate Topsoil Till Silt à 1. The graphical legend is an approximation and for visual representation only. Soil strata may comprise a combination of the basic symbols shown above. Particle sizes are not drawn to scale


North American		North American	Testhole No: BS-18AH01						
1	Tungsten Corporation		Project: Borrow Source Investigation		Project No: ENW.WENW03039-03.007				
			Location: Cantung Mine						
		Ltd.	Cantung, Northwest Territories				UTM: 54038	6 E; 6871473 N; Z 9	
Depth (m)	Method	Soil Descriptior	1	Sample Type	Sample Number		/	Notes and Comments	Depth (ft)
0						Vapour readii 200 400	ngs (ppmv) ■ 600 800		0
L		ORGANICS - roots, moss, moist, dark brown, (200 mm							
- - -	Hand augered	GRAVEL (TILL) - silty, sandy, damp to moist, compact, I	prownish grey, subangular gravel						1-
F	pug	- (Gravel - 57%; Sand - 21%; Silt & Clay - 22%)			SA01				
-1	Ξ								3-
-		END OF TESTHOLE (1.2 metres)		_					4-
_									
F									5-
-									6-
- 2									7-
_									
-									8-
-									9-
- 3									10-
F									
E									11-
F									12-
-									13-
- 4									13
-									14-
Ē									15-
F									
- 5									16-
-									17-
_									18-
-									
F									19-
- 6 -									20-
-									
Ē									21-
F									22-
-7									23-
-									
- 7.5									24-
		2	Contractor: North American Tu	ngste	n		Completion	Depth: 1.2 m	
	1	TETRA TECH	Drilling Rig Type: Hand auger				Start Date: 2018 September 24		
			Logged By: CPC				Completion Date: 2018 September 24		
			Reviewed By: TP				Page 1 of 1		

ASTM D7928 & C136

Project:	Borrow Source Investigation
Project No.:	ENW.WENW03039-03 (Task 007)
Site:	Cantung Mine, NT
Client:	North American Tungsten Corp. Ltd.
Client Rep.:	Callum Beveridge
Date Tested:	October 31, 2018 By: GK
Soil Description ² :	GRAVEL - some silt, some sand

50				
Sample No.:	AH01			
Material Type:	-			
Sample Loc.:	SA01			
Sample Depth:	0.6 - 0.8 m			
Sampling Method:	Grab			
Date Sampled:	Septemb	ber 24, 2	018	
Sampled By:	CPC			
USC Classification:	-	Cu:	#N/A	
		Cc:	#N/A	

Moisture Content: 8.4%

Reviewed By:

P.Eng.

TETRA TECH

North American		North American	Testhole	No:	B	S-18A	H02		
1	······································		Project: Borrow Source Ir	nvestigatio	n			o: ENW.WENW03039-03.007	
'			Location: Cantung Mine						
		Ltd.	Cantung, Northwest Terri	itories			UTM: 54036	6 E; 6871519 N; Z 9	
Depth (m)	Method	Soil Descriptior	1	Samole Type	Sample Number			Notes and Comments	Depth (ft)
0				S	Sam	■Vapour readir 200 400	ngs (ppmv) 🔳 300 800		0
-		ORGANICS - roots, moss, moist, dark brown, (200 mm					· · ·		
-	augered	GRAVEL (TILL) - sandy, some silt, some cobbles, damp subangular gravel	to moist, compact, brownish	grey,					1-
- - - - 1	Hand a	- (Gravel - 59%; Sand - 25%; Silt & Clay - 16%)			SA02				3
Ē		END OF TESTHOLE (1.2 metres)							- 4-
-									5-
E									
- 2									6
-									7-
Ē									8
E									
-									9-
- 3									10-
-									11-
Ē									
F									12-
- 4									13-
-									14-
Ē									
F									15-
-									16-
									17-
-									18-
-									19
- 6 -									20-
E									21-
-									
F									22-
- 7									23-
- - - 7.5									24
			Contractor: North Americ	an Tungst	en	·	Completion Depth: 1.2 m		
		TETRA TECH	Drilling Rig Type: Hand a	luger			Start Date: 2018 September 24		
	U		Logged By: CPC				Completion Date: 2018 September 24		
			Reviewed By: TP			Page 1 of 1			

ASTM D7928 & C136

Project:	Borrow Source Investigation	٦	
Project No.:	ENW.WENW03039-03 (Tas	ĸ	007)
Site:	Cantung Mine, NT		
Client:	North American Tungsten C	o	rp. Ltd.
Client Rep.:	Callum Beveridge		
Date Tested:	October 31, 2018 By:		GK
Soil Description ² :	GRAVEL - sandy, some silt		

8.4%

150				
Sample No.:	AH02			
Material Type:	-			
Sample Loc.:	SA02			
Sample Depth:	0.7 - 0.8 m			
Sampling Method:	Grab			
Date Sampled:	Septem	ber 24, 2	018	
Sampled By:	CPC			
USC Classification:	-	Cu:	#N/A	
		Cc:	#N/A	

Particle Sand Gravel Percent Size Cobble Passing Medium Fine Coarse Fine Coarse (mm) 300 100 60 30 20 16 10 8 3/8-200 1/2" 3/4 100 200 150 90 100 80 75 100 50 70 70 38 PERCENT PASSING 60 25 63 50 19 54 49 12.5 40 10 46 30 Soil Description Proportions (%): 41 5 Clay¹ & 2 34 20 16 Gravel 59 Silt 0.85 28 10 Cobble³ Sand 25 0 0.425 24 0.25 21 0 |_____ 0.075 0.15 0.25 0.425 0.85 4,75 9.5 12.5 19 25 37.5 50 75 150 2 0.15 19 PARTICLE SIZE (mm) 0.075 15.5 ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes: ² The description is visually based & subject to Tt WM4400 description protocols ³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75

Specification:

Moisture Content:

Remarks:

Reviewed By:

P.Eng.

300

North American		North American	Testhole No: BS-18AH03						
	. . .		Project: Borrow Source Inve					oject No: ENW.WENW03039-03.007	
			Location: Cantung Mine						
		Etd.	Cantung, Northwest Territori	ies			UTM: 54032	2 E; 6871559 N; Z 9	
o Depth (m)	Method	Soil Descriptior	1	Sample Type	S	■ Vapour readin 200 400 6	gs (ppmv) ■ 00 800	Notes and Comments	o (ft)
-		ORGANICS - roots, moss, moist, dark brown, (200 mm	thick)						
- - - - - - -	Hand augered	GRAVEL (TILL) - sandy, some silt, some cobbles, damp subangular gravel - (Gravel - 61%; Sand - 20%; Silt & Clay - 18%)	to moist, compact, brownish grey	y,	SA03				1 2 3
- '		END OF TESTHOLE (1.2 metres)							- 4-
									5 6 7 8 9 10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17 10 11 12 13 14 15 10 10 11 12 13 14 15 10 10 10 10 10 10 10 10 10 10
- - -									23-
7.5							<u> </u>		24
			Contractor: North American Drilling Rig Type: Hand auge	-	en		Completion Depth: 1.2 m Start Date: 2018 September 24		
	[TETRA TECH	Logged By: CPC					Date: 2018 September 24	
			Reviewed By: TP				Page 1 of 1		

ASTM D7928 & C136

Project:	Borrow Source Investig	ation		
Project No.:	ENW.WENW03039-03 (Task 007)			
Site:	Cantung Mine, NT			
Client:	North American Tungst	ten Co	rp. Ltd.	
Client Rep.:	Callum Beveridge			
Date Tested:	October 31, 2018	By:	GK	
Soil Description ² :	GRAVEL - some sand,	some	silt	

130					
Sample No.:	AH03				
Material Type:	-				
Sample Loc.:	SA03				
Sample Depth:	0.8 - 0.9 m				
Sampling Method:	Grab				
Date Sampled:	Septemb	oer 24, 2	018		
Sampled By:	CPC				
USC Classification:	-	Cu:	#N/A		
		Cc:	#N/A		

Moisture Content: 9.9%

Particle

Size

(mm) 300

> 200 150

> 100

75

50

38

25

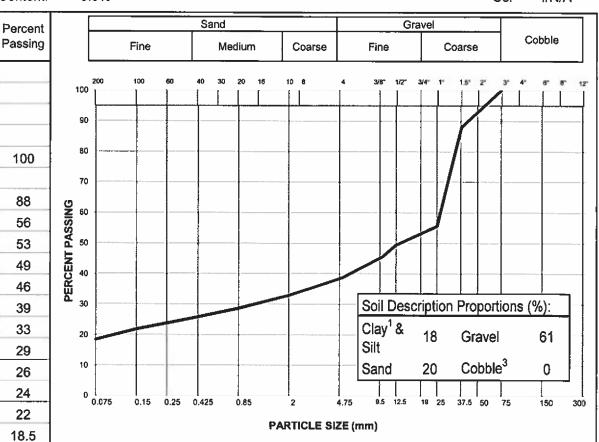
19

12.5

10

5

2


0.85

0.425

0.25

0.15

0.075

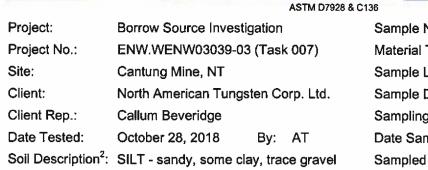
Notes: ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual ² The description is visually based & subject to Tt WM4400 description protocols ³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75

Specification:

Remarks:

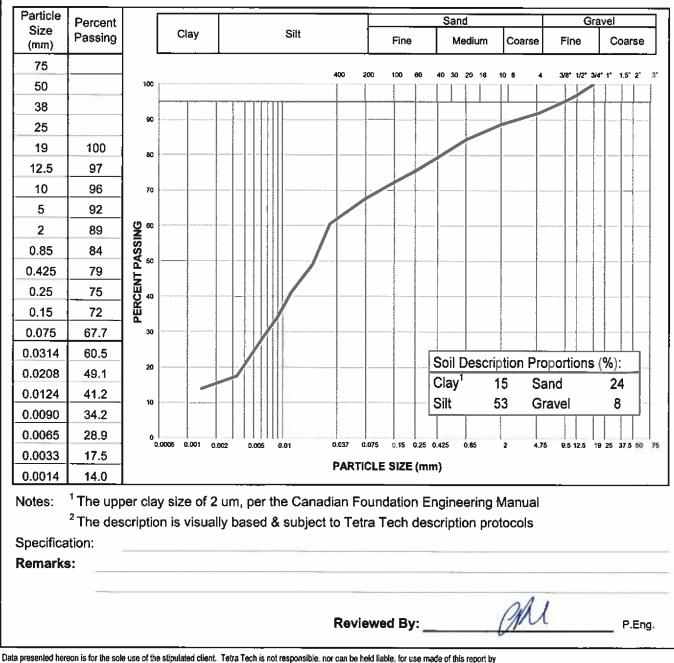
Reviewed By:

P.Eng.


Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

XX

		North American	Testhole	No:	B	S-18A	H04		
1	Гu	ingsten Corporation	Project: Borrow Source In				Project No: ENW.WENW03039-03.007		
		Ltd.	Location: Cantung Mine						
			Cantung, Northwest Terr	itories			UTM: 54028	2 E; 6871606 N; Z 9	
Depth (m)	Method	Soil Descriptior	ו	Sample Type	Sample Number	■ Vapour readio	ngs (ppmv)	Notes and Comments	Depth (ft)
	80	ORGANICS - roots, moss, moist, dark brown, (200 mm	thick)			200 400	000 800		0
- - - -	Hand augered	GRAVEL - sandy, some cobbles, trace silt, damp to moi subrounded gravel END OF TESTHOLE (0.8 metres)	st, compact, brownish grey,		SA04				2
- 1 - - - - - - - - - - - - - - - - - -									3 4 5 6 1
- - - - - - - - - - - - - - - -									7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
- - - - - - -									11 12 13
- - - - - - - - - - - 5									14
- - - - -									17 18 18
- - 6 - - -									20
- - - - - 7 -									22
- 									24-
7.5	I		Contractor: North Americ	-	n	I	Completion I		
	τ	TETRA TECH	Drilling Rig Type: Hand a	auger				018 September 24	
		•]	Logged By: CPC				-	Date: 2018 September 24	
			Reviewed By: TP				Page 1 of 1		


		North American	Testhole	No:	B	S-18AH05			
ר	Γu	ingsten Corporation	Project: Borrow Source li Location: Cantung Mine				Project No: ENW.WENW03039-03.007		
		Ltd.	Cantung, Northwest Terr	itories		UTM: 5403	71 E; 6871476 N; Z 9		
	1		Cantang, NorthWest Terr			01111.0400			
Depth (m)	Method	Soil Descriptior	١	Sample Type	S	■ Vapour readings (ppmv) 200 400 600 800	Notes and Comments	Depth (ft)	
0	-	ORGANICS - roots, moss, moist, dark brown, (300 mm ·	thick)			200 400 600 800		0	
- - - - - - -	Hand augered							1 2 3	
- ' - - - -		- (Gravel - 8%; Sand - 24%; Silt -53%; Clay - 15%) SAND (TILL) - silty, gravelly, some cobbles, damp to mo subangular gravel END OF TESTHOLE (1.3 metres)	ost, compact, brownish grey,		SA05			45	
- - 2 - - -								6	
- - - - - 3 -								9	
								11 12 13	
4 								14-	
- - - 5 -								16-	
- - - - -								18-	
- - - -								20-	
- - - 7 - -								22- 23- 24-	
7.5			1 -					24	
C			Contractor: North Americ		n		Depth: 1.3 m		
	TETRA TECH		Drilling Rig Type: Hand a Logged By: CPC	-			Start Date: 2018 September 24 Completion Date: 2018 September 24		
		5	Reviewed By: TP			Page 1 of 1			

Sample No.:	AH05					
Material Type:	-					
Sample Loc.:	SA05					
Sample Depth:	1.1 - 1.2 m					
Sampling Method:	Grab					
Date Sampled:	September 24, 2018					
Sampled By:	CPC					
USC Classification:	-	Cu:	#N/A			
		Cc:	#N/A			

TETRA TECH

Moisture Content: 70.8%

		North American	Testhole No: BS-18AH06							
- ٦	.	ngsten Corporation	Project: Borrow Source Investigation		Project No: ENW.WENW03039-03.007					
	u		Location: Cantung Mine							
		Ltd.	Cantung, Northwest Territories		UTM: 54018	1 E; 6871502 N; Z 9				
Depth (m)	Method	Soi Descrip	 	■ Vapour readi 200 400		Notes and Comments	Depth (ft)			
0	<u>s</u>	ORGANICS - roots, moss, moist, dark brown, (200 mm	thick)	200 400	600 800		0			
-	augered	SILT - sandy, damp to moist, brownish grey, fine sand, GRAVEL - sandy, some cobbles, trace silt, damp to mo	(100 mm thick)				1-			
Ē	Hand	END OF TESTHOLE (0.6 metres)					2-			
							$\begin{array}{c} 3 \\ 3 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$			
F							24-			
7.5			I		1		24			
	- 10		Contractor: North American Tungsten			Depth: 0.6 m				
	TETRA TECH		Drilling Rig Type: Hand auger		018 September 24					
			Logged By: CPC			Date: 2018 September 24				
			Reviewed By: TP	Reviewed By: TP			Page 1 of 1			

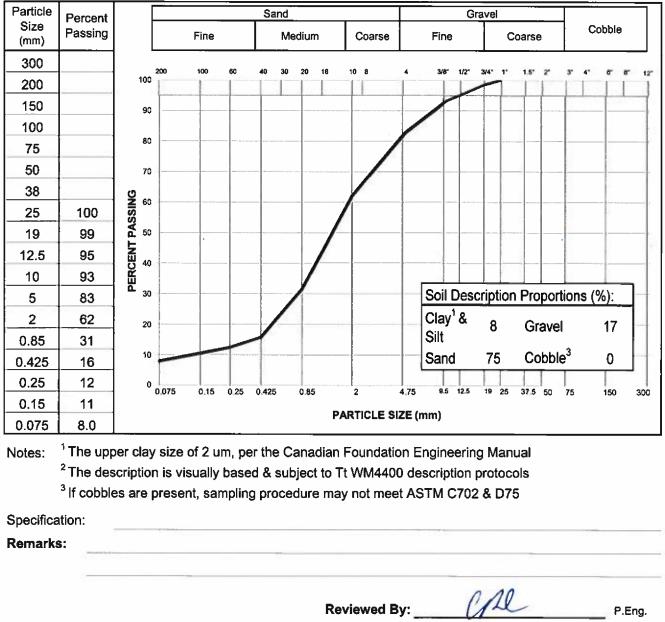
		North American	Testhole No: BS-18AH07								
- T	.	ingsten Corporation	Project: Borrow Source Investigation		Project No: ENW.WENW03039-03.007						
	ŭ	Ltd.	Location: Cantung Mine								
		LIU.	Cantung, Northwest Territories		UTM: 54034	9 E; 6871506 N; Z 9					
Depth (m)	Method	Soi Descrip				Notes and Comments	Depth (ft)				
0				■ Vapour readi 200 400	600 800		0				
L	erec	ORGANICS - roots, moss, moist, dark brown, (200 mm									
-	augered	GRAVEL - sandy, some cobbles, trace silt, damp to mo	oist, grey				1-				
-	Hand a						2-				
L	Ha	END OF TESTHOLE (0.6 metres)									
							3-				
Ľ							4-				
-							4				
-							5-				
L											
- 2							6-				
							7-				
L											
-							8				
-							9-				
- 3											
Ē							10-				
_							11-				
-											
_							12-				
- 4							13-				
- 7											
L							14-				
E							15-				
L											
_							16-				
— 5 _							17-				
F											
Ē							18-				
F							19-				
Ē							19				
6 -							20-				
F											
F							21-				
F							22				
F											
7 							23-				
- - - 7.5							24-				
		>	Contractor: North American Tungsten		Completion I	Depth: 0.6 m					
	TETRA TECH		Drilling Rig Type: Hand auger		Start Date: 2018 September 24						
	U		Logged By: CPC	Completion Date: 2018 September 24							
J	\Box		Reviewed By: TP		Page 1 of 1						

		North American	Testhole No: BS-18AH08								
- ٦	.	ingsten Corporation	Project: Borrow Source Investigation		Project No: ENW.WENW03039-03.007						
	ŭ	Ltd.	Location: Cantung Mine								
		LIU.	Cantung, Northwest Territories		UTM: 54039	3 E; 6871541 N; Z 9					
Depth (m)	Method	Soi Descrip	 	Vanour readi		Notes and Comments	Depth (ft)				
0	5	ORGANICS - roots, moss, moist, dark brown, (200 mm		■ Vapour readi 200 400	600 800		0				
- - - - - - - - - - -	Hand augered	GRAVEL - sandy, trace silt, damp to moist, compact, g					- 2- 3-				
- - - - - - - - - - - - - - - - -							4 5 6 7				
- - - - - - - - - - - - -							8- 9- 10-				
- - - - - - - - -							11 12 13				
- - - - - - - - - - - - - - - - - - -							14 15 16				
-							17-				
- 6 - - - - -							20				
- - 7 - - - <u>7.5</u>			1				23				
			Contractor: North American Tungsten		Completion I						
	ι.	TETRA TECH	Drilling Rig Type: Hand auger	Start Date: 2018 September 24							
			Logged By: CPC		Completion Date: 2018 September 24 Page 1 of 1						
			Reviewed By: TP	Reviewed By: TP							

		North American	Testhole No: BS-18AH09								
1	Γu	ingsten Corporation	Project: Borrow Source Investigation		Project No: ENW.WENW03039-03.007						
-		Ltd.	Location: Cantung Mine								
			Cantung, Northwest Territories		UTM: 54040	8 E; 6871522 N; Z 9					
Depth (m)	Method	Soi Descrip				Notes and Comments	Depth (ft)				
0				■ Vapour readi 200 400	ngs (ppmv) 📕 600 800		0				
-	augered	ORGANICS - roots, moss, moist, dark brown, (200 mm GRAVEL - sandy, trace silt, damp to moist, compact, g					1-				
-	aug	ORGANICS - moist			· · ·						
-	Hand						2-				
		END OF TESTHOLE (1.0 metre)			<u></u>		4				
-							5-				
-							6-				
- 2											
-							7-				
-							8				
-							9				
- 3 -							10-				
-							11-				
-							12-				
-							13-				
- 4											
-							14-				
-							15-				
-							16-				
— 5 - -							17-				
-							18-				
-							19-				
- 6							20-				
-											
- - -							21-				
-							22				
— 7 _							23-				
- - 7.5							24-				
			Contractor: North American Tungsten		Completion						
			Drilling Rig Type: Hand auger		2018 September 24						
			Logged By: CPC		Completion Date: 2018 September 24						
			Reviewed By: TP		Page 1 of 1						

		North American	Testhole No: BS-18AH10								
ר	۲u	ingsten Corporation	Project: Borrow Source Investigation Location: Cantung Mine		Project No: ENW.WENW03039-03.007						
		Ltd.	Cantung, Northwest Territories		UTM: 54042	2 E; 6871492 N; Z 9					
Depth (m)	Method	Soi Descriț				Notes and Comments	Depth (ft)				
0				■Vapour readi 200 400	ngs (ppmv) 🔳 600 800		0				
	Hand augered	ORGANICS - roots, moss, moist, dark brown SAND - silty, moist, brownish grey, fine sand - oobbles or boulders END OF TESTHOLE (0.8 metres)					0				
7 -							23-				
7.5	1		Contractor: North American Tungsten		Completion	 Depth: 0.8 m					
		TETRA TECH	Drilling Rig Type: Hand auger		Start Date: 2018 September 24						
	U		Logged By: CPC			Date: 2018 September 24					
			Reviewed By: TP	Page 1 of 1							

		North American	Testpit No: BS-18TP01							
ا	Γu	ngsten Corporation	Project: Borrow Source Investig				Project No: ENW.WENW03039-03.007			
		Ltd.	Location: Cantung Mine							
			Cantung, Northwest Territories				UTM: 54321	6 E; 6868760 N; Z 9		
o Depth (m)	Method	Soil Descriptior	1	Sample Type	Sample Number	■ Vapour readir 200 400 0	ngs (ppmv)■	Notes and Comments	o Depth (ft)	
-		SAND AND GRAVEL (FILL) - trace silt, damp to moist, I	prownish grey, subrounded gravel,			200 100 1				
		(300 mm thick) SAND - some gravel, trace silt, damp to moist, compact	brownish grey, subrounded gravel	_					1-	
- - - -					SA01				2-	
	Excavated								4	
	ШЩ	(Oracial 170/, Cand 750/, Cilt & Olac, 00/)			SA02				6	
- 2		- (Gravel - 17%; Sand - 75%; Silt & Clay - 8%)			5402				7-	
- - -										
- ⊻									8- ▼	
- 3		END OF TESTPIT (2.9 metres) water - 2.6 metres			SA03				10-	
-		water - 2.0 metres							11-	
-									12	
Ē									13	
-									14-	
-									15-	
-									16-	
- 5 - -									17-	
									18-	
									19-	
- - 6 -									20-	
									21	
-									22	
- - - 7									23	
- - 									24	
7.5			Contractor: North American Tu	ngste	en	I	Completion I	Lepth: 2.9 m		
		TETRA TECH		Drilling Rig Type: Cat Backhoe				018 September 20		
	U		Logged By: CPC				Completion I	Date: 2018 September 20		
	-		Reviewed By: TP				Page 1 of 1			



Moisture Content: 8.9%

2.5

Cc:

14.3

		North American	Testpit No: BS-18TP02								
Т	-	ingsten Corporation	Project: Borrow Source Investiga				Project No: ENW.WENW03039-03.007				
•	u		Location: Cantung Mine								
		Ltd.	Cantung, Northwest Territories				UTM: 54309	03 E; 6868923 N; Z 9			
			Cantang, Northwest Termones					, 0000320 N, 2 0			
(m)	Method	Soil Descriptior	1	Sample Type	Sample Number	■ Vapour readi 200 400	ngs (ppmv)	Notes and Comments	Depth		
0		SAND AND GRAVEL (FILL) - trace silt, moist, brown, su	brounded gravel (200 mm thick)			200 400	600 800				
		SILT - trace sand, moist, brown, (200 mm thick)									
		ASH - moist, light grey, (100 mm thick)									
		GRAVEL - sandy, some silt, damp to moist, stiff, orange	y brown, cobbles, subangular gravel	1					1		
		and cobbles									
1					SA04						
	Ited	- cobbles and boulders			SA05						
	Excavated	- (Gravel - 50%; Sand - 34%; Silt & Clay - 16%) SILT - some sand, damp, firm, brown									
2	Ш	Sici - some sand, damp, nim, brown			SA06						
					o .						
		- moist			SA07						
		SAND - gravelly, trace silt, damp, compact, brownish gre	y, subrounded gravel								
		END OF TESTPIT (3.5 metres)									
.5											
			Contractor: North American Tun	gstei	า		Completion	Depth: 3.5 m	-		
		TETRA TECH	Drilling Rig Type: Cat Backhoe				-	2018 September 20			
	t	TETRATECH	Logged By: CPC				+				
			Reviewed By: TP	Completion Date: 2018 September 20 Page 1 of 1							

ASTM D7928 & C136

Project:	Borrow Source Investigation						
Project No .:	ENW.WENW03039-03 (Task 007)						
Site:	Cantung Mine, NT						
Client:	North American Tungsten Corp. Ltd.						
Client Rep.:	Callum Beveridge						
Date Tested:	October 31, 2018 By: GK						
Soil Description ² :	GRAVEL - sandy, some silt						

6.6%

Moisture Content:

Sample No.:	TP02					
Material Type:	-					
Sample Loc.:	SA05					
Sample Depth:	1.5 - 1.6 m					
Sampling Method:	Grab					
Date Sampled:	Septemt	ber 20, 2	018			
Sampled By:	CPC					
USC Classification:	-	Cu:	#N/A			
		Cc:	#N/A			

Particle Gravel Sand Percent Size Cobble Passing Fine Medium Coarse Fine Coarse (mm) 300 20 10 8 100 30 16 1.5 200 100 200 150 90 100 80 100 75 50 70 38 72 PERCENT PASSING 60 64 25 50 19 62 12.5 57 40 10 56 Soil Description Proportions (%): 30 5 51 Clay¹ & 2 43 20 16 Gravel 50 Silt 0.85 36 Cobble³ 10 0 Sand 34 0.425 31 0 | 0.075 26 0.25 0.15 0.25 0.425 0.85 9.5 12.5 19 25 4.75 37.5 50 75 150 300 2 22 0.15 PARTICLE SIZE (mm) 0.075 16.4 ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes: ² The description is visually based & subject to Tt WM4400 description protocols ³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75 Specification: **Remarks:** ere **Reviewed By:** P.Eng.

North American		North American	Testpit No: BS-18TP03						
	Tungsten Corporation		Project: Borrow Source Investigation				Project No: ENW.WENW03039-03.007		
		Ltd.	Location: Cantung Mine				,		
	LU.		Cantung, Northwest Territories				UTM: 54294	5 E; 6868932 N; Z 9	
			-						
Depth (m)	Method	Soil Descriptior	ו	Sample Type	Sample Number	■ Vapour readii 200 400	ngs (ppmv) ■	Notes and Comments	Depth (ft)
-		ORGANICS - roots, moss, moist, dark brown, (100 mm				200 400	<u>:</u> :::::::::::::::::::::::::::::::::::		0
F		GRAVEL - sandy, trace silt, occasional cobble, damp, or	rangey brown, subrounded gravel						1-
- - - - - - - - - -	Excavated				SA09				2 3 4
E	xca	- boulders, brownish grey							5
E	Ш								6-
2		- (Gravel - 65%; Sand - 26%; Silt & Clay - 9%)			SA10				
F									7-
L									8
F									
F									9-
- 3		END OF TESTPIT (3.0 metres)			SA11				10-
F									
F									11-
-									12-
F									10
- 4									13-
F									14-
-									
-									15-
F									16-
- 5									47
F									17-
F									18-
-									
F									19-
- 6 -									20-
F									
F									21-
F									22
E ₇									23
F,									23
									24-
7.5		l	Contractor: North American Tun	L aste	n		Completion I	Depth: 3 m	
		TETRATECH	Drilling Rig Type: Cat Backhoe	3010				018 September 20	
		TETRA TECH	Logged By: CPC					Date: 2018 September 20	
			Reviewed By: TP				Page 1 of 1	,	

ASTM D7928 & C136

Project:	Borrow Source Investigation			
Project No.:	ENW.WENW03039-03 (Task 007)			
Site:	Cantung Mine, NT			
Client:	North American Tungsten Corp. Ltd	d.		
Client Rep.:	Callum Beveridge			
Date Tested:	November 2, 2018 By: GK			
Soil Description ² :	GRAVEL - sandy, trace silt			

8.1%

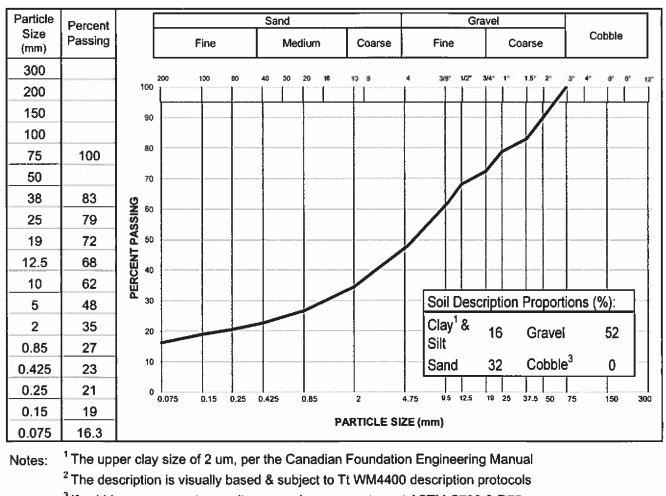
Moisture Content:

1	36			
	Sample No.:	TP03		
	Material Type:	-		
	Sample Loc.:	SA10		
	Sample Depth:	1.9 - 2.	0 m	
	Sampling Method:	Grab		
	Date Sampled:	Septer	n <mark>ber 20, 2</mark> 0	018
	Sampled By:	CPC		
	USC Classification:	-	Cu:	157.5
			Cc:	7.1

Particle Sand Gravel Percent Size Cobble Passing Fine Medium Coarse Fine Coarse (mm) 300 30 20 10 8 100 16 3/8 1/2 200 а 1.57 42 100 200 150 90 100 80 75 100 50 70 38 85 PERCENT PASSING 60 74 25 50 61 19 12.5 54 40 10 49 30 Soil Description Proportions (%): 5 35 Clay¹ & 2 22 9 20 Gravel 65 Silt 0.85 15 10 Cobble³ Sand 26 0 0.425 13 0 | 0.075 0.25 12 0.15 0.25 0.425 0.85 9.5 12.5 4.75 19 25 37.5 50 75 150 300 2 0.15 11 PARTICLE SIZE (mm) 0.075 9.2 ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes: ² The description is visually based & subject to Tt WM4400 description protocols ³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75 **Specification: Remarks:** AR **Reviewed By:** P.Eng.

North American		North American	Testpit No: BS-18TP04						
	Гu	ngsten Corporation	Project: Borrow Source Investigation				Project No: ENW.WENW03039-03.007		
-		Ltd.	Location: Cantung Mine						
		Ltd.	Cantung, Northwest Territories				UTM: 54304	5 E; 6868916 N; Z 9	
Depth (m)	Method	Soil		Sample Type	Sample Number			Notes and	Depth (ft)
	ž	Descriptior	I	Sam	Sampl	■Vapour readin 200 400 6	igs (ppmv) ■ 800 800	Comments	
- - -		SAND - gravelly, some silt to silty, some cobbles and bo brown, subangular gravel	ulders, damp, compact, orangey						1-
- - - - - -		SILT - trace sand, damp, brown GRAVEL - sandy, trace silt, cobbles, damp, compact, da	rk brown, oubongular group		SA12				2
-	Excavated		in Diown, subangulai gravei		SA13				4-
- - - 2	Ш Ш								6
- - -									8-
- - - - 3		END OF TESTPIT (2.9 metres)			SA14				9
-									10-
- - -									12-
- 4 - -									13-
- - -									15
- - 5									16-
- - -									18-
- - - 6									19-
- - -									20-
- - -									22-
- 7 - -									23-
7.5			-						24-
C			Contractor: North American Tu	ngste	n		Completion I		
	•	TETRA TECH	Drilling Rig Type: Cat Backhoe Logged By: CPC					018 September 20	
			Reviewed By: TP				Completion Date: 2018 September 20 Page 1 of 1		

North American		North American	Testpit No: BS-18TP05						
ا ا	Tungsten Corporation		Project: Borrow Source Investigation				Project No: ENW.WENW03039-03.007		
-		Ltd.	Location: Cantung Mine						
	Ltd.		Cantung, Northwest Territories				UTM: 54284	5 E; 6868974 N; Z 9	
Depth (m)	Method	Soil Descriptior	1	Sample Type	Sample Number	■ Vapour readii 200 400	ngs (ppmv)	Notes and Comments	Depth (ft)
0		GRAVEL - sandy, trace silt, cobbles, damp, compact, or	angey brown, subangular gravel			200 400	000 800 : :		0
- - - - - - - - - - - - - - - - - - -	Excavated	- some boulders			SA15 SA16				1 2 3 4 5 6 7 7
-									
-					SA17				9-
- 3		END OF TESTPIT (2.9 metres)							10-
									11 12 13 13 14 15 16 17 18 19 19 19 20 21 21 22 23 24
7.5				<u> </u>			Que L ii		
			Contractor: North American Tu Drilling Rig Type: Cat Backhoe		n		Completion I	Depth: 2.9 m 018 September 20	
		TETRA TECH	Logged By: CPC					Date: 2018 September 20	
			Reviewed By: TP				Page 1 of 1		


North American Tungsten Corporation Ltd.		North American	Testpit No: BS-18TP06						
			Project: Borrow Source Investigation				Project No: ENW.WENW03039-03.007		
			Location: Cantung Mine						
			Cantung, Northwest Territories			UTN	1: 54246	5 E; 6869371 N; Z 9	
								, ,	
Depth (m)	Method	Soil Descriptior	ו	Sample Type	ഗ			Notes and Comments	Depth (ft)
0						■ Vapour readings (p 200 400 600	pmv) 📕 800		0
-		ORGANICS - roots, moss, moist, dark brown, (100 mm	thick)						
- - -		ASH - damp, light grey, (100 mm thick) GRAVEL - sandy, some silt, cobbles, boulders, damp, c gravel	ompact, orangey brown, subrounded	1					1-
-		- brown							
- - 1					SA18				3-
	Excavated	- very large boulder							4
-									6-
- 2		- (Gravel - 52%; Sand - 32%; Silt & Clay - 16%)			SA19				
_									7-
Ē							:		8-
Ē							:		
E		END OF TESTPIT (2.8 metres)			SA20				9-
- 3									10-
_									
-									11
F									12-
-									
- 4									13-
-									14-
-									
-									15-
-									16-
									17-
-									
_									18-
-									10
Ē									19
6 									20-
L									21-
F									
F									22-
- 7									23-
Ļ									
- - 7.5									24-
(.5			Contractor: North American Tur	ngste	n	Corr	pletion [Depth: 2.8 m	
		TETRA TECH	Drilling Rig Type: Cat Backhoe	<u> </u>				018 September 20	
	t		Logged By: CPC					Date: 2018 September 20	
	Reviewed By: TP					Page 1 of 1			

ASTM D7928 & C136

Project:	Borrow Source Investigation			
Project No.:	ENW.WENW03039-03 (Task 007)			
Site:	Cantung Mine, NT			
Client:	North American Tungsten Corp. Ltd			
Client Rep.:	Callum Beveridge			
Date Tested:	October 31, 2018 By: GK			
Soil Description ² :	GRAVEL - sandy, some silt			

130			
Sample No.:	TP06		
Material Type:	-		
Sample Loc.:	SA19		
Sample Depth:	1.9 - 2.0	m	
Sampling Method:	Grab		
Date Sampled:	Septemb	oer 20, 2	2018
Sampled By:	CPC		
USC Classification:	-	Cu:	#N/A
		Cc:	#N/A

Moisture Content: 15.5%

³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75

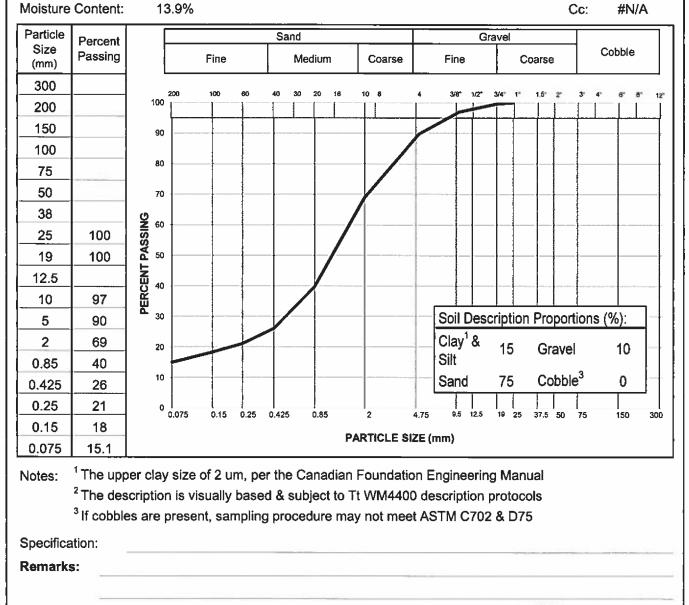
Specification:

Remarks:

Reviewed By:

P.Eng.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.


OAR

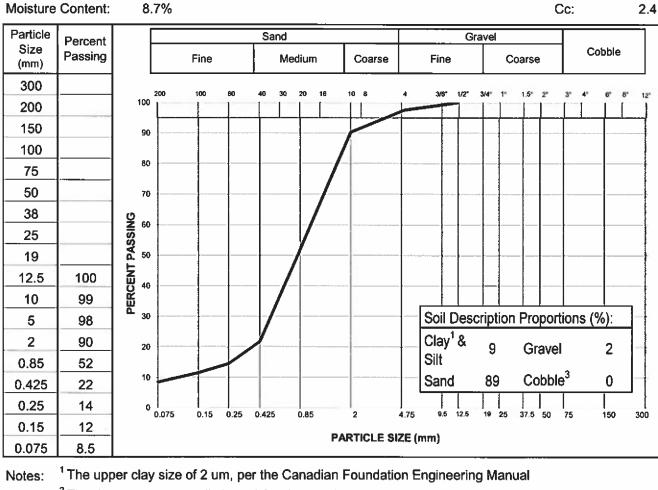
North American		North American	Testpit No: BS-18TP07						
1	Tungsten Corporation Ltd.		Project: Borrow Source Investigation				Project No: ENW.WENW03039-03.007		
			Location: Cantung Mine	<u> </u>					
			Cantung, Northwest Territor	ies			UTM: 54239	7 E; 6869416 N; Z 9	
Depth (m)	Method	Soil Descriptior	l	Sample Type	Sample Number	■ Vapour readir 200 400 (ngs (ppmv) 🔳	Notes and Comments	Depth (ft)
0	-	ORGANICS - roots, moss, moist, dark brown, (100 mm	hick)			200 400 6	500 800		0
- - - - - - - -		ASH - damp, light grey, (100 mm thick) GRAVEL - sandy, trace silt, cobbles, boulders, damp, co gravel - brownish grey		led	SA21				1
F .									
- - -	Excavated	SAND - some gravel, some silt, damp, compact, grey, si	ibrounded oravel						5
F _		- (Gravel - 10%; Sand - 75%; Silt & Clay - 15%)	abrounded graver		SA22				6-
- 2 -		- trace gravel							7-
E									
_							· · ·		8
_									9-
- 3		- (Gravel - 2%; Sand - 89%; Silt & Clay - 9%)			SA23				
-		END OF TESTPIT (3.0 metres)							10-
-									11-
-									12-
-									
- 4									13-
_									14-
_									
-									15-
-									16-
- 5 - -									17-
-									18-
-									19-
									19
- 6 - -									20-
_									21-
									22
- - - 7 -									23-
F									24-
7.5	<u> </u>		Contractor: North American	Tupgete			Completion	 Denth: 3 m	
			Drilling Rig Type: Cat Backh	-					
	R	TETRA TECH	Logged By: CPC					Date: 2018 September 21	
			Reviewed By: TP	Page 1 of 1					

ASTM D7928 & C136

Project:	Borrow Source Investigation
Project No .:	ENW.WENW03039-03 (Task 007)
Site:	Cantung Mine, NT
Client:	North American Tungsten Corp. Ltd.
Client Rep.:	Callum Beveridge
Date Tested:	November 1, 2018 By: GK
Soil Description ² :	SAND - some silt, trace gravel

1	30			
	Sample No.:	TP07		
	Material Type:	-		
	Sample Loc.:	SA22		
	Sample Depth:	1.9 - 2.0	m	
	Sampling Method:	Grab		
	Date Sampled:	Septemb	er 21, 2	018
	Sampled By:	CPC		
	USC Classification:	-	Cu:	#N/A
			0	215 17 A

Reviewed By:


P.Eng.

ASTM D7928 & C136

Project:	Borrow Source Investigation
Project No.:	ENW.WENW03039-03 (Task 007)
Site:	Cantung Mine, NT
Client:	North American Tungsten Corp. Ltd.
Client Rep.:	Callum Beveridge
Date Tested:	November 1, 2018 By: GK
Soil Description ² :	SAND - trace silt, trace gravel

50							
Sample No.:	TP07						
Material Type:	-						
Sample Loc.:	SA23						
Sample Depth:	2.9 - 3.0 m						
Sampling Method:	Grab						
Date Sampled:	Septemb	per 21, 2018					
Sampled By:	CPC						
USC Classification:	-	Cu:	9.8				

Notes: ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual ² The description is visually based & subject to Tt WM4400 description protocols ³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75

Specification:

Remarks:

Reviewed By:

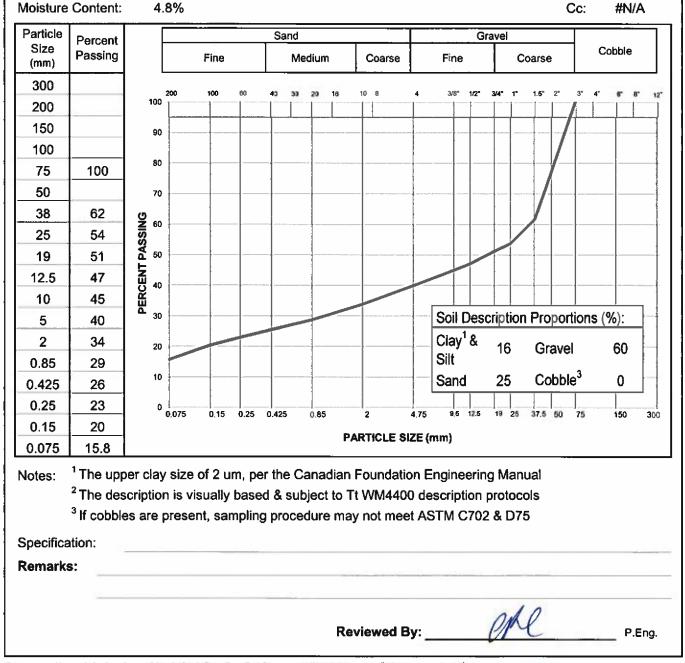
P.Eng.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

Onle

North American		North American	Testpit No: BS-18TP08						
1	Γu	ngsten Corporation	Project: Borrow Source Investigation				Project No: ENW.WENW03039-03.007		
Ltd.			Location: Cantung Mine						
			Cantung, Northwest Territories				UTM: 54233	6 E; 6869506 N; Z 9	
Depth (m)	Method	Soil Descriptior	1	Sample Type	Sample Number	Vanour readir	nas (nnmv)	Notes and Comments	Depth (ft)
0						■Vapour readir 200 400	600 800		0
E		ORGANICS - roots, moss, moist, dark brown, (100 mm ASH - moist, light grey, (100 mm thick)	thick)						
- - - -		GRAVEL - sandy, some cobbles, trace silt, damp, comp gravel - brownish grey	act, orangey brown, subrounded						2-
					SA24				3-
-	5								4-
-	Excavated						· · ·		
-	cav								5-
-	Ш						· · ·		6-
- 2					SA25		· · ·		
-									7-
-		- boulders							8-
-									
-									9-
- 3		END OF TESTPIT (3.0 metres)			SA26				10-
E									
-									11-
-									12-
-									
- 4									13-
-									14-
-									
-									15-
-									16-
5 									17-
-									18-
_									19
6									20
									21-
-									22
- 7 7									23
- - 									24
7.5	1	1	Contractor: North American Tur		∟ n	<u> </u>	Completion I	Lepth: 3 m	<u> </u>
		TETRATECH	Drilling Rig Type: Cat Backhoe	.9010				018 September 21	
		TETRA TECH	Logged By: CPC					Date: 2018 September 21	
							Page 1 of 1		

North American			Testpit No:	Β	S-	18TP0)9				
ר	Ги	ingsten Corporation	Project: Borrow Source Investig				Project No: ENW.WENW03039-03.007				
		Ltd.	Location: Cantung Mine								
			Cantung, Northwest Territories				UTM: 54220	3 E; 6869674 N; Z 9			
Depth (m)	Method	Soil		Sample Type	Sample Number			Notes and	Depth (ft)		
	Me	Descriptior	1	Samp	Sample	■Vapour readir 200 400	ngs (ppmv) ■	Comments			
		ORGANICS - roots, moss, moist, dark brown, (100 mm :	thick)			200 400	500 600		0		
- -		ASH - moist, light grey, (100 mm thick) SILT - trace to some sand, damp, firm, brown, (300 mm	thick)						1-1-1-1		
-		GRAVEL - sandy, some cobbles, trace silt, damp, comp gravel	act, brownish grey, subrounded						2-		
- 1					SA27				3-		
-	0								4-		
-	Excavated						· · ·				
E	xca								5		
E	Ш								6-		
- 2		SAND - trace silt, moist to wet, compact, light brown, fin	e to medium sand		SA28						
-		GRAVEL - sandy, trace silt, moist, compact, brownish g	rey, subrounded gravel				· · ·		7-		
-									8		
-									9		
F					SA29						
- 3 -		END OF TESTPIT (3.0 metres)							10-		
-									11-		
-											
-									12-		
- 4									13-		
-									14		
-											
Ē									15-		
-									16-		
— 5 _									17-		
-									18-		
- - -									19		
- 6 -									20-		
									21		
-									22		
- 7 -									23		
- - - 7.5									24		
			Contractor: North American Tur	gste	n		Completion I	Depth: 3 m			
		TETRA TECH	Drilling Rig Type: Cat Backhoe					018 September 21			
	U		Logged By: CPC					Date: 2018 September 21			
			Reviewed By: TP						Page 1 of 1		


North American		Testpit No: BS-18TP					10			
1	Γu	Ingsten Corporation	Project: Borrow Source Investigation				Project No: ENW.WENW03039-03.007			
-		Ltd.	Location: Cantung Mine							
		Ltd.	Cantung, Northwest T					UTM: 54192	4 E; 6870047 N; Z 9	
Depth (m)	Method	Soil Descriptior	١		Sample Type	Sample Number			Notes and Comments	Depth (ft)
0							■ Vapour readin 200 400	ngs (ppmv) ■ 600 800		0
F		ORGANICS - roots, moss, moist, dark brown, (200 mm								
- - - - - - - - - - -	Excavated	GRAVEL - sandy, trace silt, cobbles, boulders,, moist, co gravel	ompact, dark brown, suba	ngular		SA30				1 2 3 4
 - -		END OF TESTPIT (1.6 metres)								5-
										6
- - - - - -										16
- - - - 6										19-
- - -										20
- - -										21-
7										23-
- - 										24-
7.5			Contractor: North American Tungsten				Completion I	Depth: 1.6 m		
		TETRA TECH	Drilling Rig Type: Cat						018 September 21	
	t		Logged By: CPC						Date: 2018 September 21	
							Page 1 of 1			

		North American	Testpit No:	В	S-	18TP11	1			
Tungsten Corporation Ltd.			Project: Borrow Source Investig				Project No: ENW.WENW03039-03.007			
			Location: Cantung Mine							
			Cantung, Northwest Territories			U	TM: 54191	1 E; 6870200 N; Z 9		
Depth (m)	Method	Soil Descriptio	n	Sample Type	Sample Number			Notes and Comments	Depth (ff)	
0						Vapour readings 200 400 600	(ppmv) D 800		0	
		ORGANICS - roots, moss, moist, dark brown, (100 mm SILT - trace to some sand, damp, firm, light brown, (20								
		GRAVEL - sandy, some silt, cobbles, boulders, damp,							1 2 3 4 5 6 7 8 9 10 11 12	
		gravel							2	
1	ted				SA31		· · · · · · · · · · · · · · · · · · ·			
	Excavated									
	ШЩ									
		- (Gravel - 60%; Sand - 25%; Silt & Clay - 16%)			SA32				'	
2		- (Graver - 60%, Sanu - 25%, Sin & Cray - 16%)			07.02					
					SA33					
		END OF TESTPIT (2.4 metres)			0,100					
3										
5									1	
									1	
4									1	
									1:	
									1: 1(1 [*] 1 [*]	
									1	
5										
									1	
									1	
-										
6									1	
									,	
									2	
7									2	
									2 2 2 2 2	
7.5									2	
			Contractor: North American Tu	ngste	n	Co	ompletion [Depth: 2.4 m		
	r 1	TETRA TECH	Drilling Rig Type: Cat Backhoe					018 September 21		
	U		Logged By: CPC					Date: 2018 September 21		
-	-	AL ZONE9.GPJ EBA.GDT 19-10-17	Reviewed By: TP			Pa	age 1 of 1			

ASTM D7928 & C136

Project:	Borrow Source Investigation								
Project No.:	ENW.WENW03039-03 (Task 007)								
Site:	Cantung Mine, NT								
Client:	North American Tungsten Corp. Ltd.								
Client Rep.:	Callum Beveridge								
Date Tested:	November 2, 2018 By: GK								
Soil Description ² :	GRAVEL - sandy, some silt								

136							
Sample No.:	TP11						
Material Type:	-						
Sample Loc.:	SA32						
Sample Depth:	1.9 - 2.0 m						
Sampling Method:	Grab						
Date Sampled:	Septem	ber 21, 2	018				
Sampled By:	CPC						
USC Classification:	-	Cu:	#N/A				
		Cc:	#N/A				

North American		North American	Testpit No	o: B	2				
1	Γu	Ingsten Corporation	Project: Borrow Source Investigation				Project No: ENW.WENW03039-03.007		
-		Ltd.	Location: Cantung Mine						
			Cantung, Northwest Territo	ories			UTM: 54177	'3 E; 6870276 N; Z 9	
Depth (m)	Method	Soil Descriptior	1	Sample Type	Sample Number			Notes and Comments	Depth (ft)
0					S	■ Vapour readir 200 400 0	ngs (ppmv) 🔳 600 800		0
-		ORGANICS - roots, moss, moist, dark brown, (200 mm							
- - - - - - - - - -	Excavated	GRAVEL - sandy, trace silt, damp, compact, orangey br	own, subangular gravel		SA34				1 2 3 4
- - - -					SA35				5-
- - 2 -		- boulders END OF TESTPIT (1.8 metres)			5435		<u> </u>		6-
- - - -									8
- - - 3 -									10-
- - -									11-
- - 4 -									13-
- - 									14 15
- - 5 -									16-
- - -									17-
- - - - 6									19-
-									20-
- - -									22
7 - -									23-
7.5			Contractory North America				Completion	 Dopth: 1.9 m	
			Contractor: North America Drilling Rig Type: Cat Back	-	:[]			Depth: 1.8 m 2018 September 21	
	5	TETRA TECH	Logged By: CPC					Date: 2018 September 21	
							Page 1 of 1		

North American		North American	Testpit No:	В	S-	3			
1	Γu	ngsten Corporation	Project: Borrow Source Investig				Project No: ENW.WENW03039-03.007		
-		Ltd.	Location: Cantung Mine						
			Cantung, Northwest Territories				UTM: 54164	6 E; 6870319 N; Z 9	
o Depth (m)	Method	Soil Descriptior	n	Sample Type	Sample Number	■Vapour readir 200 400 6	ngs (ppmv)■	Notes and Comments	Depth (ft)
-		ORGANICS - roots, moss, moist, dark brown, (200 mm	thick)			200 100 (0
- - - - - - - - - - - - -	Excavated	GRAVEL - sandy, some silt, cobbles, boulders, damp, c gravel - brownish grey	ompact, orangey brown, subangular		SA36				1 2 3 4
- - - - - - - - - - -	Exce	- (Gravel - 48%; Sand - 36%; Silt & Clay - 16%)			SA37				5
-		END OF TESTPIT (2.4 metres)			SA28				8-
									9
-									24-
7.5			Contractor: North American Tun	 aste	n		Completion I	 Depth: 2.4 m	
	2	TETRA TECH	Drilling Rig Type: Cat Backhoe	9010				018 September 21	
	t		Logged By: CPC					Date: 2018 September 21	
							Page 1 of 1		

ASTM D7928 & C136

Project:	Borrow Source Investigation				
Project No .:	ENW.WENW03039-03 (Task 007)				
Site:	Cantung Mine, NT				
Client:	North American Tungsten Corp. Ltd.				
Client Rep.:	Callum Beveridge				
Date Tested:	November 1, 2018 By: GK				
Soil Description ² :	GRAVEL and SAND - some silt				

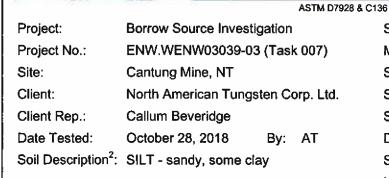
5.5%

Moisture Content:

30			
Sample No.:	TP13		
Material Type:	-		
Sample Loc.:	SA37		
Sample Depth:	1.9 - 2.0	m	
Sampling Method:	Grab		
Date Sampled:	Septemb	per 21, 2	018
Sampled By:	CPC		
USC Classification:	-	Cu:	#N/A
		Cc:	#N/A

Particle Sand Gravel Percent Size Cobble Passing Medium Fine Coarse Fine Coarse (mm) 300 100 60 20 16 10 8 ٨ħ 30 200 3/81 1/2 100 200 150 90 100 80 100 75 50 70 38 82 PERCENT PASSING 60 25 72 50 19 66 61 12.5 40 10 59 Soil Description Proportions (%): 30 53 5 Clay¹ & 2 45 20 16 Gravel 48 Silt 0.85 37 10 Cobble³ Sand 36 0 0.425 30 26 0.25 0 <u>|</u> 0.075 0.15 0.25 0.425 0.85 9.5 12.5 19 25 300 4 75 37.5 50 75 150 2 0.15 23 PARTICLE SIZE (mm) 16.3 0.075 ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes: ² The description is visually based & subject to Tt WM4400 description protocols ³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75 Specification:

Remarks:


Reviewed By:

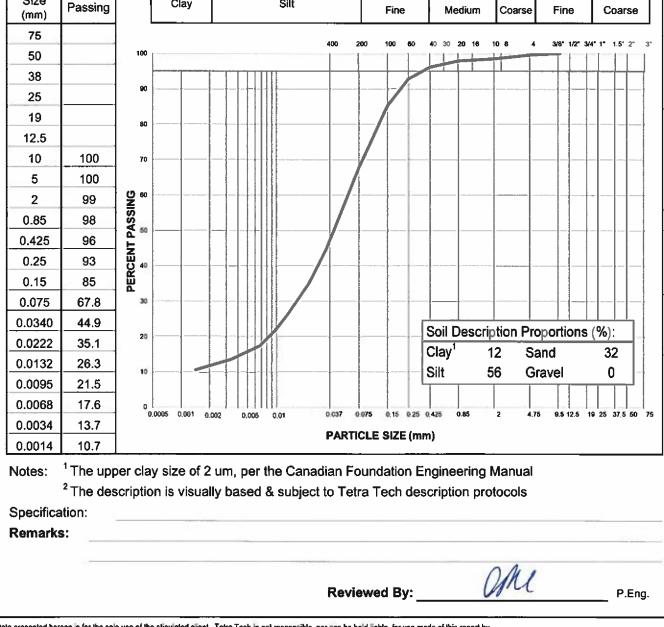
P.Eng.

	Tungsten Corporation Ltd.	Testpit No: BS-18TP14							
-		Project: Borrow Source Investiga					ENW.WENW03039-03.007		
	Ltd.		Location: Cantung Mine						
			Cantung, Northwest Territories				UTM: 54156	2 E; 6870353 N; Z 9	
Depth (m)	Method	Soil Descriptior	1	Sample Type	Sample Number			Notes and Comments	Depth (ft)
						■ Vapour readin 200 400 6	gs (ppmv) 🔳		
-		ORGANICS - roots moss, moist, dark brown, (100 mm t				200 400 0			0
- - - - - - - - - - - - - - - - - - -	Excavated	SAND - gravelly, trace silt, damp, compact, grey, subant	gular gravel		SA39				2
- 2					SA40				6-
-		END OF TESTPIT (2.0 metres)							7-
-									8-
-									
Ē									9-
- 3									10-
-									
-									11-
-									12-
F									13-
- 4									
Ē									14
-									15-
-									
- 5									16-
Ē									17-
F									18-
-									
F _									19
6									20-
L									21-
-									
F									22
- 7									23-
-									24
7.5							0 1 1		
			Contractor: North American Tun	gste	n		Completion I		
	1	TETRA TECH	Drilling Rig Type: Cat Backhoe Logged By: CPC					018 September 21 Date: 2018 September 21	
		5	Reviewed By: TP				Page 1 of 1		

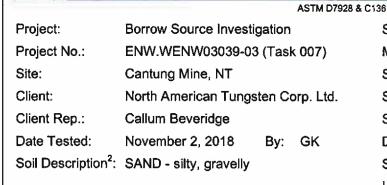
	North American Tungsten Corporation Ltd.	Testpit No:	В	S-	18TP 1	5			
	Γu		Project: Borrow Source Investig					ENW.WENW03039-03.007	
			Location: Cantung Mine				,		
			Cantung, Northwest Territories				UTM: 54069	2 E; 6871084 N; Z 9	
				Τ					
Depth (m)	Method	Soil Descriptior	1	Sample Type	Sample Number	■ Vapour readii 200 400	ngs (ppmv) 🔳	Notes and Comments	Depth (ft)
0		GRAVEL (FILL) - sandy, silty, damp, compact, brownish	arey, subrounded gravel. (300 mm			200 400	600 800		0
F		thick)							
-		SILT - sandy, damp, firm, brown							1-
F									2-
F									
- 1		- (Gravel - 0%; Sand - 32%; Silt -56%; Clay - 12%)			SA41				3-
F	g	SAND - some gravel, some silt, damp, compact, brownis	sh arev, subrounded gravel	_					4-
-	Excavated		, g. ey, easteanaea g. atei						
-	xca								5-
E	Ш								6-
2					SA42		· · · · · · · · · · · · · · · · · · ·		
-		GRAVEL - sandy, trace silt, damp, compact, grey, subro	unded gravel	-					7-
-			,						8-
-									
F					SA43				9-
- 3		END OF TESTPIT (3.0 metres)		-			·····		10-
F									
-									11-
F									12-
F									
- 4									13-
F									14-
-									
-									15-
-									16-
- 5									
-									17-
F									18-
F									
F									19-
- 6 -									20-
F									
-									21-
E									22-
E ₇									23
Ę									
- 7.5									24-
		<u> </u>	Contractor: North American Tur	ngste	n		Completion I	Depth: 3 m	
	1	TETRA TECH	Drilling Rig Type: Cat Backhoe				Start Date: 2	018 September 21	
	U		Logged By: CPC					Date: 2018 September 21	
	-		Reviewed By: TP				Page 1 of 1		

25.6%

Moisture Content:


30			
Sample No.:	TP15		
Material Type:	-		
Sample Loc.:	SA 41		
Sample Depth:	0.9 - 1.0	m	
Sampling Method:	Grab		
Date Sampled:	Septemb	per 21, 2	018
Sampled By:	CPC		
USC Classification:	-	Cu:	#N/A
		Cc:	#N/A

Gravel


TETRA TECH

Sand

Particle Percent Size Clay Silt Passing 75 400 100 38 90 25 19 80

		North American	Testpit No:	B	S-	18TP1	6		
Т	Tungsten Corporation		Project: Borrow Source Inves				Project No: ENW.WENW03039-03.007		
Ltd.			Location: Cantung Mine						
		Lla.	Cantung, Northwest Territorie	25			UTM: 54048	3 E; 6871443 N; Z 9	
			Canang, Horamoot Formore				0111101010		
(m)	Method	Soil Descriptio	'n	Sample Type	Sample Number			Notes and Comments	Depth (ft)
0						Vapour readin 200 400 6	ngs (ppmv) – 300 800		0
		GRAVEL (FILL) - sandy, silty, damp, compact, brownis	sh grey, subangular gravel						
									1-
									2- 3- 4- 5- 6-
1		ORGANICS - roots, moss, moist			SA44		· · · · · · · · · · · · · · · · · · ·		3
									4
		ASH - moist, light grey							5
	ð	SAND - gravelly, silty, damp to moist, compact, grey, s - (Gravel - 27%; Sand - 39%; Silt & Clay - 34%)	ubangular gravel		SA45				
2	Excavated								6
-	ХСа	- cobbles and boulders							7 8 9
									8
									9
3					SA46				10-
									11-
		- boulders							
									12
4					SA47				13
		END OF TESTPIT (4.0 metres)							_ 13 14 15
									14
									15
									16
5									
									17
									18
									19
5									
-									20
									21
									22
7									23
7.5									24
			Contractor: North American T	ungste	n		Completion [Depth: 4 m	
-		TETRA TECH	Drilling Rig Type: Hitachi 200					018 September 22	
	U		Logged By: CPC					Date: 2018 September 22	
		AL ZONE9.GPJ EBA.GDT 19-10-17	Reviewed By: TP				Page 1 of 1		

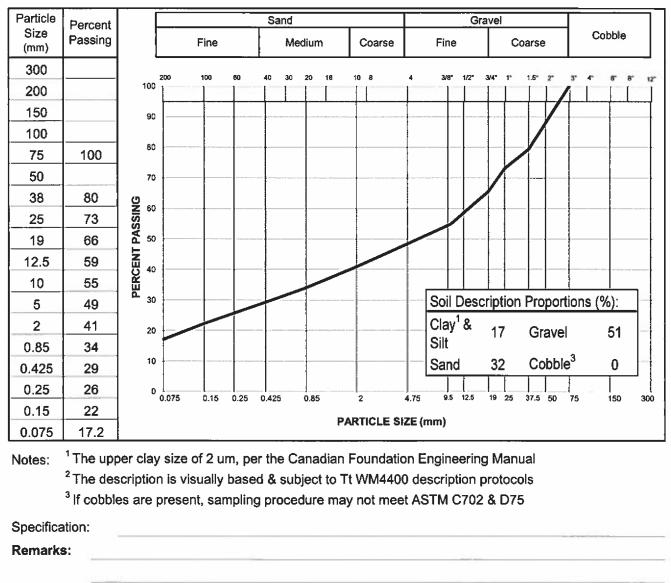
19.3%

Moisture Content:

5)	36			
	Sample No.:	TP16		
	Material Type:	-		
	Sample Loc.:	SA45		
	Sample Depth:	1.6 - 1.7	m	
	Sampling Method:	Grab		
	Date Sampled:	Septemt	per 22, 2	018
	Sampled By:	CPC		
	USC Classification:	-	Cu:	#N/A
			Cc:	#N/A

Particle Sand Gravel Percent Size Cobble Passing Fine Medium Coarse Fine Coarse (mm)300 10 200 100 20 16 100 200 150 90 100 80 75 50 70 38 PERCENT PASSING 60 100 25 50 94 19 12.5 89 40 10 85 30 Soil Description Proportions (%): 5 73 Clay¹ & 2 60 20 34 Gravel 27 Silt 0.85 51 10 Cobble³ Sand 39 0 0.425 47 0 | 0.075 0.25 43 0.15 0.25 0.425 0.85 9.5 12.5 19 25 4.75 37.5 50 75 150 300 0.15 40 PARTICLE SIZE (mm) 0.075 34.0 ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes: ² The description is visually based & subject to Tt WM4400 description protocols ³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75 Specification: **Remarks: Reviewed By:** P.Eng.

	North American		Testpit No: BS-18TP17							
ר	Ги	Ingsten Corporation	Project: Borrow Source Investig				Project No: ENW.WENW03039-03.007			
		Ltd.	Location: Cantung Mine				,			
		Etd.	Cantung, Northwest Territories				UTM: 54045	7 E; 6871457 N; Z 9		
Depth (m)	Method	Soil Description	n	Sample Type	Sample Number			Notes and Comments	Depth (ft)	
0						Vapour readi 200 400	ngs (ppmv) ■ 600 800		0	
- - - -		GRAVEL (FILL) - sandy, silty, damp, compact, brownish ORGANICS - roots, moss, most	n grey, subangular gravel	_					1-	
-									2-	
- - - - - -		ASH - moist, light grey GRAVEL - sandy, silty, some cobbles, damp to moist, c	ompact, grey, subangular gravel		SA48				3- 4- 5-	
- - - - - - -	Excavated	- boulders			SA49				6	
					SA50				9-	
- - - - - - - -		SAND AND GRAVEL - trace silt, moist, grey, subrounde END OF TESTPIT (4.0 metres)	ed gravel		SA51				11- 12- - 13-	
-									14	
- 									16- 17- 18-	
- - - - 6									19	
-									20-	
- - -									22	
7 -									23-	
7.5			Contractor: North American Tur				Completion	Donth: 1 m		
			Contractor: North American Tur Drilling Rig Type: Hitachi 200	เมูรเย	11		Completion I Start Date: 2	018 September 22		
	F	TETRA TECH	Logged By: CPC					Date: 2018 September 22		
			Reviewed By: TP				Page 1 of 1			


		Testpit No: BS-18TP18							
1	Γu	ingsten Corporation	Project: Borrow Source				Project No: ENW.WENW03039-03.007		
-	Ltd.		Location: Cantung Mine						
		Ltd.	Cantung, Northwest Te				UTM: 54042	9 E; 6871474 N; Z 9	
Depth (m)	Method	Soil Descriptior	٦	Sample Type	Sample Number	Vapour readin	as (ppmv)	Notes and Comments	Depth (ft)
0		ORGANICS - roots, moss, moist, dark brown, (200 mm	thick)			■ Vapour readin 200 400 6	500 [°] 800		0
- - - - - - - - - - -	p	ASH - moist, light grey, (100 mm thick) GRAVEL - sandy, some silt, damp, compact, light browr			SA52				1 2 3 4
- - - - - - - - - -	Excavated	- cobbles - (Gravel - 51%; Sand - 32%; Silt & Clay - 17%) - boulders			SA53				6
					SA54				8-
- 3 - - - - - -		END OF TESTPIT (3.0 metres)							10-11-11-11-11-11-11-11-11-11-11-11-11-1
- 4 - - - - -									13 14 15
- - - - - - - -									16
- - - - - 6 -									19
									21
- 7 - - - - 7.5									23-
1.5	1		Contractor: North Ame	rican Tungste	en	·	Completion I	Depth: 3 m	
	1	TETRA TECH	Drilling Rig Type: Hitac				Start Date: 2	018 September 22	
	U		Logged By: CPC				· · · · · · · · · · · · · · · · · · ·	Date: 2018 September 22	
	-		Reviewed By: TP				Page 1 of 1		

ASTM D7928 & C136

Project:	Borrow Source Investigation
Project No.:	ENW.WENW03039-03 (Task 007)
Site:	Cantung Mine, NT
Client:	North American Tungsten Corp. Ltd.
Client Rep.:	Callum Beveridge
Date Tested:	October 31, 2018 By: GK
Soil Description ² :	GRAVEL - sandy, some silt

1	30			
	Sample No.:	TP18		
	Material Type:	-		
	Sample Loc.:	SA53		
	Sample Depth:	2.0 - 2.1	m	
	Sampling Method:	Grab		
	Date Sampled:	Septemb	oer 22, 2	018
	Sampled By:	CPC		
	USC Classification:	-	Cu:	#N/A
			Cc:	#N/A

Moisture Content: 6.7%

Reviewed By:

P.Eng.

North American		North American	Testpit No:	B	S-	18TP19			
Г	Tungsten Corporation		Project: Borrow Source Inves				Project No: ENW WENW03039-03.007		
•			Location: Cantung Mine						
		Ltd.	Cantung, Northwest Territorie	es		UTM: 54040	4 E; 6871450 N; Z 9		
							, , .		
Depth (m)	Method	Soil Descriptio	n	Sample Type	Sample Number		Notes and Comments	Depth (ft)	
0						■ Vapour readings (ppmv) ■ 200 400 600 800		0	
-		SAND - gravelly, silty, damp, compact, brownish grey,	subangular sand						
-								1-	
_								2	
-	ted	SAND AND GRAVEL - silty, some cobbles and boulder subangular gravel	s, damp to moist, compact, grey,						
- 1	Excavated				SA55			3-	
-	Ш							4-	
-									
-								5-	
		GRAVEL - sandy, trace silt, damp, compact, subangula	r gravel		SA56			6	
- 2		END OF TESTPIT (1.9 metres)						7	
-									
-								8	
-								9-	
- - - 3								_	
- 3								10-	
-								11-	
-								10	
-								12-	
- 4								13-	
-								14	
_								14-	
_								15-	
-								16-	
— 5 -								-	
-								17-	
								18-	
_								19-	
- 6								-	
-								20-	
-								21-	
-								-	
-								22	
- 7								23-	
_								24-	
7.5			1					24-	
	_		Contractor: North American T		n		Depth: 1.9 m		
		TETRA TECH	Drilling Rig Type: Hitachi 200				018 September 22		
				Logged By: CPC			Date: 2018 September 22		
		AL ZONE9.GPJ EBA.GDT 19-10-17	Reviewed By: TP			Page 1 of 1			

North American Tungsten Corporation		North American	Testpit No: BS-18TP20						
		ngsten Corporation	Project: Borrow Source Investi	gation			Project No: ENW.WENW03039-03.007		
		Ltd.	Location: Cantung Mine						
			Cantung, Northwest Territories			1	UTM: 540437	7 E; 6871430 N; Z 9	
(m)	Method	Soil Descriptio	n	Sample Type	Sample Number	■ Vapour readi 200 400	ngs (ppmv)	Notes and Comments	Depth
0		GRAVEL (FILL) - sandy, silty, some cobbles, damp, cor	npact,, brownish grey, subangular			200 400	: :		
		gravel							
1		- (Gravel - 41%; Sand - 36%; Silt & Clay - 23%)			SA57				
		GRAVEL - sandy, trace silt, damp, compact, grey, suba	ngular gravel						
0		SILT - some sand, damp, firm, brown			SA58				
2		- (Gravel - 0%; Sand - 29%; Silt -52%; Clay - 20%)							
		SAND - silty, damp to moist, firm, brown, fine sand		_					
	Excavated				SA59				
	xcav				0/100				
	Ш								
		- (Gravel - 0%; Sand - 58%; Silt -30%; Clay - 12%)			SA60				
		- some silt							
		SILT - trace to some sand, damp to moist, light brown, t	thin laminated layers		SA61				
		END OF TESTPIT (6.0 metres)							
,									
<u>′.5</u>	1		Contractor: North American Tu	ngste	n	1	Completion E	Depth: 6 m	
-		TETRA TECH	Drilling Rig Type: Hitachi 200					018 September 22	
	U		Logged By: CPC				Completion E	Date: 2018 September 22	

PARTICLE SIZE ANALYSIS REPORT ASTM D7928 & C136 Project: **Borrow Source Investigation** Sample No.: **TP20** Project No.: ENW.WENW03039-03 (Task 007) Material Type: Site: Cantung Mine, NT Sample Loc.: **SA57 Client:** North American Tungsten Corp. Ltd. Sample Depth: 0.9 - 1.0 m Client Rep.: Callum Beveridge Sampling Method: Grab By: Date Tested: November 1, 2018 GK Date Sampled: September 22, 2018 Soil Description²: GRAVEL and SAND - silty CPC Sampled By: USC Classification: -Cu: #N/A Moisture Content: 11.0% Cc: #N/A Particle Sand Gravel Percent Size Cobble Passing Medium Fine Coarse Fine Coarse (mm) 300 100 60 30 20 16 10 8 3/81 100 200 150 90 100 80 75 100 50 70 38 88 PERCENT PASSING 60 25 80 50 19 78 72 12.5 40 10 71 30 Soil Description Proportions (%): 5 59 Clay¹ & 2 48 20 23 Gravel 41 Silt 0.85 39 10 Cobble³ Sand 36 0 0.425 34 0 | 0.075 0.25 30 95 0.15 0.25 0.425 0.85 2 4.75 12.5 19 25 37.5 50 75 150 300 28 0.15 PARTICLE SIZE (mm) 0.075 23.2

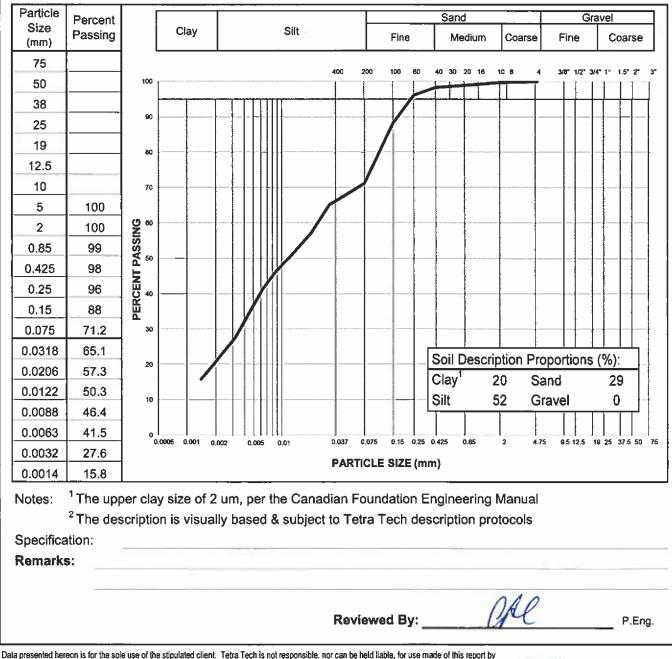
Notes: ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual ² The description is visually based & subject to Tt WM4400 description protocols ³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75

Specification:

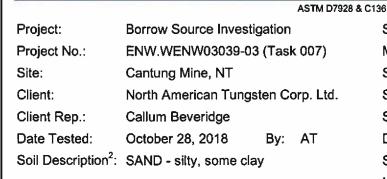
Remarks:

Reviewed By:

P.Eng.

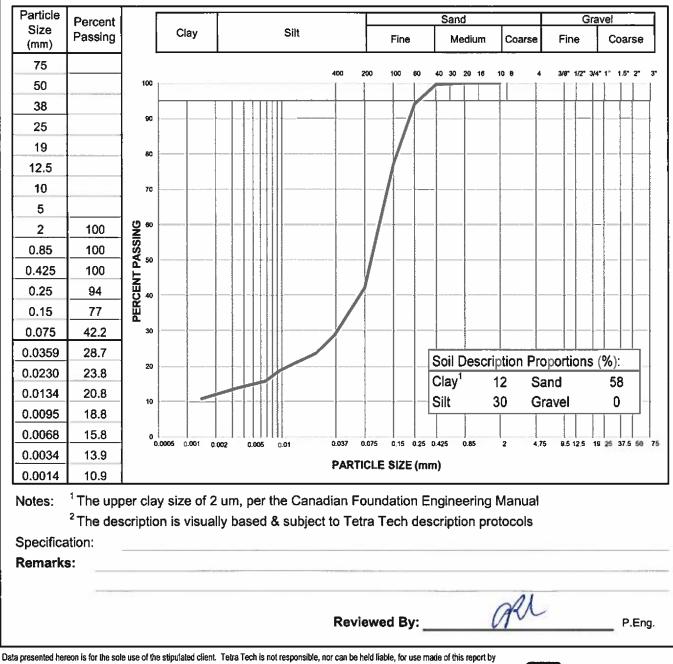


ASTM D7928 & C136


Project:	Borrow Source Investigation
Project No.:	ENW.WENW03039-03 (Task 007)
Site:	Cantung Mine, NT
Client:	North American Tungsten Corp. Ltd.
Client Rep.:	Callum Beveridge
Date Tested:	October 28, 2018 By: AT
Soil Description ² :	SILT - sandy, some clay

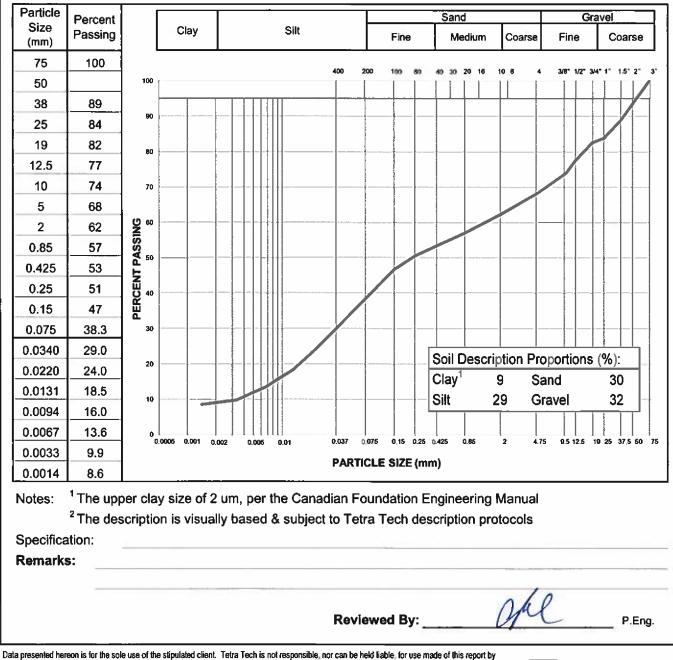
Sample No.:	TP20		
Material Type:	-		
Sample Loc.:	SA58		
Sample Depth:	1.8 - 1.9	m	
Sampling Method:	Grab		
Date Sampled:	Septeml	ber 22, 2	018
Sampled By:	CPC		
USC Classification:	-	Cu:	#N/A
		Cc:	#N/A

Moisture Content: 22.9%



ļ	36			
	Sample No.:	TP20		
	Material Type:	-		
	Sample Loc.:	SA60		
	Sample Depth:	3.9 - 4.0	m	
	Sampling Method:	Grab		
	Date Sampled:	Septemb	per 22, 2	018
	Sampled By:	CPC		
	USC Classification:	-	Cu:	#N/A
			Cc:	#N/A

Moisture Content: 13.4%


		North American	Testpit No:	В	S-	18TP2	21		
٦	Tu	ingsten Corporation	Project: Borrow Source Invest					ENW.WENW03039-03.007	
		Ltd.	Location: Cantung Mine	<u>.</u>					
		Ltd.	Cantung, Northwest Territories	8			UTM: 540464	4 E; 6871397 N; Z 9	
(m)	Method	Soil Descriptio	n	Sample Type	Sample Number			Notes and Comments	Depth (ft)
I	Σ	Descriptio	11	Sam	Samp	■Vapour readi 200 400	ngs (ppmv) 🔳	Comments	
)		SILT (FILL) - gravelly, sandy, some cobbles, damp, co	mpact, brownish grey, subangular	_		200 400	600 800 : :		0
		gravel							1
					0400				1 2 3 4 5 6 7 8 9
1		- (Gravel - 32%; Sand - 30%; Silt -29%; Clay - 9%)			SA62				4
									5
2		GRAVEL - some sand, trace silt, damp, compact, brow	nish grey, subrounded gravel		SA63				6
	Excavated								8
	Exca								ę
3									10
									11
1									
									1: 1: 1:
									1
5		END OF TESTPIT (5.0 metres)					: :		-
									1
5									1
									2
									2
7									2
7.5			Contractor: North American Tu	Ingete			Completion [Denth: 5 m	2
		TETRATECH	Drilling Rig Type: Hitachi 200	angole				018 September 22	
٦	t	TETRA TECH	Logged By: CPC					Date: 2018 September 22	
			Reviewed By: TP				Page 1 of 1	,	

	A018107320
Project:	Borrow Source Investigation
Project No.:	ENW.WENW03039-03 (Task 007)
Site:	Cantung Mine, NT
Client:	North American Tungsten Corp. Ltd.
Client Rep.:	Callum Beveridge
Date Tested:	October 28, 2018 By: AT
Soil Description ² :	GRAVEL - sandy, silty, trace clay

ASTM D7928 & C1	36			
	Sample No.;	TP2 1		
< 007)	Material Type:	-		
	Sample Loc.:	SA62		
orp. Ltd.	Sample Depth:	0.9 - 1.0	m	
	Sampling Method:	Grab		
AT	Date Sampled:	Septem	ber 22, 2018	5
clay	Sampled By:	CPC		
	USC Classification:	-	Cu:	435.8
			Cc:	0.3

TETRA TECH

Moisture Content: 11.3%

any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering Interpretation be required. Tetra Tech will provide it upon written request.

		North American	Testpit No:	Β	S-	18TP2	22		
٦	Гл	ngsten Corporation	Project: Borrow Source Investi					NW.WENW03039-03.007	
-		Ltd.	Location: Cantung Mine	0			,		
		Llu.	Cantung, Northwest Territories	;			UTM: 54043	5 E; 6871399 N; Z 9	
Uepth (m)	Method	Soil Descriptio	n	Sample Type	Sample Number			Notes and Comments	Depth (ft)
0					Х	■Vapour readi 200 400	ings (ppmv) ■ 600 800		0
0		GRAVEL (FILL) - sandy, silty, some cobbles, damp to r subangular gravel	noist, compact, brownish grey,						
		Subangulai gravei							1-
									1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12-
									2
• 1		- (Gravel - 40%; Sand - 24%; Silt -27%; Clay - 10%)			SA64		· · · · · · · · · · · · · · · · · · ·		
									4
									5
									6-
2	ated	GRAVEL - some sand to sandy, trace silt, damp, compared	act, brownish grey, subrounded grave	el l					7-
	Excavated								
	Ê								8
									9-
- 3							····;····		10-
									11-
									10
									12
4		SAND - some silt, moist, compact, brown, fine sand			SA65		· · · · · · · · · · · · · · · · · · ·		13
									14
		END OF TESTPIT (4.5 metres)					; ;		13 [.] 14 [.] 15 [.] 16 [.]
- 5									16
5									17
									17 ⁻ 18
									19
- 6									20
									21 22
									22
- 7									23-
7.5			1						24
			Contractor: North American Tu	ngste	n		Completion [
7	5-	TETRA TECH	Drilling Rig Type: Hitachi 200					018 September 22	
			Logged By: CPC Reviewed By: TP				Completion I Page 1 of 1	Date: 2018 September 22	

Moisture Content: 10.9%

Particle Sand Percent Gravel Size Clay Silt Passing Fine Medium Fine Coarse Coarse (mm) 75 100 400 100 60 20 16 10 8 3/8" 1/2" 3/4" 1" 1.5" 2" 200 40 30 100 50 38 87 90 25 73 19 68 80 12.5 66 10 65 70 5 60 2 55 0.85 51 0.425 49 0.25 46 0.15 43 0.075 36.2 30 0.0335 28.0 Soil Description Proportions (%): 20 0.0219 23.0 Clay¹ 10 Sand 24 0.0129 18.7 10 Silt 27 Gravel 40 0.0093 15.9 0.0066 14.3 0.0005 0,037 0.075 0.15 0.25 0.425 0.85 2 4,75 9.5 12 5 19 25 37 5 50 75 0.001 0.002 0.005 0.01 0.0033 11.5 PARTICLE SIZE (mm) 0.0014 8.8 Notes: ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual ² The description is visually based & subject to Tetra Tech description protocols Specification: **Remarks: Reviewed By:** P.Eng.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

TETRA TECH R-

Cu:

Cc:

2158.7

0.2

		North American	Testpit No:	B	S-	18TP2	23		
٦	-	ingsten Corporation	Project: Borrow Source Investiga					ENW.WENW03039-03.007	
-	м	Ltd.	Location: Cantung Mine						
		Lla.	Cantung, Northwest Territories				UTM: 54040	09 E; 6871419 N; Z 9	
			Cantarig, Horanicot Formorios						
(m)	Method	Soil Descriptio	n	Sample Type	Sample Number	Vapour readi	nas (ppmy)	Notes and Comments	Depth
0						■ Vapour readi 200 400	600 800		C
		SILT (FILL) - sandy, some gravel, trace organics, damp gravel	, compact, brownish grey, subangular						
									1
1					SA66				
							· · ·		
	q								
2	Excavated	- (Gravel - 18%; Sand - 34%; Silt & Clay - 48%)			SA67				
2	xca	(,,,,,							
	ш								
							· · ·		
		SILT - trace to some sand, damp, firm, light brown			SA68				
		GRAVEL - sandy, trace silt, cobbles, damp, compact, g	rey, subrounded gravel						
									·
		END OF TESTPIT (4.0 metres)							- '
i									
,									2
.5									2
.0			Contractor: North American Tun	gste	n	1	Completion	Depth: 4 m	
		TETRA TECH	Drilling Rig Type: Hitachi 200					2018 September 22	
	U		Logged By: CPC				Completion	Date: 2018 September 22	
_	_		Reviewed By: TP				Page 1 of 1		

ASTM D7928 & C136

Project:	Borrow Source Investigation
Project No.:	ENW.WENW03039-03 (Task 007)
Site:	Cantung Mine, NT
Client:	North American Tungsten Corp. Ltd.
Client Rep.:	Callum Beveridge
Date Tested:	November 2, 2018 By: GK
Soil Description ² :	SILT - sandy, some gravel

17.9%

'	30			
	Sample No.:	TP23		
	Material Type:	-		
	Sample Loc.:	SA67		
	Sample Depth:	1.9 - 2.0	m	
	Sampling Method:	Grab		
	Date Sampled:	Septemb	oer 22, 2	018
	Sampled By:	CPC		
	USC Classification:	-	Cu:	#N/A
			Cc:	#N/A

Particle Sand Gravel Percent Size Cobble Passing Medium Fine Coarse Fine Coarse (mm) 300 100 60 10 8 20 16 2 3 200 30 3/8* 1/2" 1.5 3/4" 1 100 200 150 90 100 80 75 50 70 38 100 PERCENT PASSING 60 25 94 50 19 12.5 89 40 89 10 30 Soil Description Proportions (%): 5 82 Clay¹ & 2 74 20 48 18 Gravel Silt 67 0.85 Cobble³ 10 0 Sand 34 0.425 64 0 | 0.075 0.25 61 0.15 0.25 0.425 0.85 2 4 75 9.5 12.5 19 25 37.5 50 150 300 75 0.15 57 PARTICLE SIZE (mm) 0.075 48.3 ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes: ² The description is visually based & subject to Tt WM4400 description protocols

³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75

Specification:

Moisture Content:

Remarks:

Reviewed By:

P.Eng.

		North American	Testpit No:	В	S-	18TP2	24		
٦	โม	ngsten Corporation	Project: Borrow Source Investig				1	NW.WENW03039-03.007	
•		Ltd.	Location: Cantung Mine				,		
		Ltd.	Cantung, Northwest Territories				UTM: 54038	2 E; 6871394 N; Z 9	
_	po	Soil		Sample Type	Sample Number			Notes and	
ш ш	Method	Descriptio	n	Jde	le N			Comments	Depth (ff)
•	≥	Descriptio	11	San	Samp			Commenta	
						■ Vapour read 200 400	ings (ppmv) 🔳		
0		GRAVEL AND SILT (FILL) - sandy, trace organics, trac	e cobbles damp compact brownish	-		200 400	600 800		0
		grey, subangular gravel							1
									1
									2 3 4 5 6 7
					0.400				3
1					SA69				
									4
							· · ·		5
	_								
2	atec	- (Gravel - 36%; Sand - 28%; Silt & Clay - 36%)			SA70				6
	Excavated								1
	ш								
							· · ·		
					SA71				10
									1
									12
		GRAVEL - sandy, trace silt, cobbles, damp, compact, g	rey, subrounded gravel						1; 1_
		END OF TESTPIT (4.1 metres)							14
									1
									1
									1
									'
									18
									19
									20
									2
									2
									2
.5									2
			Contractor: North American Tur	ngste	n		Completion [Depth: 4.1 m	
		TETRA TECH	Drilling Rig Type: Hitachi 200					018 September 22	
	U		Logged By: CPC				-	Date: 2018 September 22	
		AL ZONE9.GPJ EBA.GDT 19-10-17	Reviewed By: TP				Page 1 of 1		

ASTM D7928 & C136

Project:	Borrow Source Investigation						
Project No.:	ENW.WENW03039-03 (Task 007)						
Site:	Cantung Mine, NT						
Client:	North American Tungsten Corp. Ltd						
Client Rep.:	Callum Beveridge						
Date Tested:	October 31, 2018 B	y:	GK				
Soil Description ² :	GRAVEL and SILT - sand	ly					

15.0%

Moisture Content:

130						
Sample No.:	TP24					
Material Type:	-					
Sample Loc.:	SA70					
Sample Depth:	1.9 - 2.0 m					
Sampling Method:	Grab					
Date Sampled:	Septemb	per 22, 2	018			
Sampled By:	CPC					
USC Classification:	-	Cu:	#N/A			
		Cc:	#N/A			

Particle Sand Gravel Percent Size Cobble Passing Fine Medium Coarse Fine Coarse (mm) 300 60 10 B 100 40 30 20 16 3/8* 200 100 200 150 90 100 80 75 100 50 70 38 88 PERCENT PASSING 60 78 25 50 19 73 12.5 71 40 10 69 30 Soil Description Proportions (%): 5 64 Clay¹ & 2 58 36 20 Gravel 36 Silt 0.85 53 10 Cobble³ 0 Sand 28 0.425 50 0 | 0.075 0.25 47 19 25 0.15 0.25 0.425 0.85 4,75 9.5 12.5 37.5 50 2 75 150 300 0.15 44 PARTICLE SIZE (mm) 0.075 36.0 ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes: ² The description is visually based & subject to Tt WM4400 description protocols ³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75 Specification: **Remarks: Reviewed By:** P.Eng.

		North American	Testpit No:	Β	S-	18TP	25		
Tungsten Corporation Ltd.			Project: Borrow Source Invest					NW.WENW03039-03.007	
			Location: Cantung Mine	gation					
		Lla.	Cantung, Northwest Territories				UTM: 54040	5 E; 6871381 N; Z 9	
			Cantaing, NorthWest Territories	,				5 L, 007 1301 N, 2 3	
(m)	Method	Soil Descriptio	n	Sample Type	Sample Number	Vapour rea	idinas (nnmy)	Notes and Comments	Depth (ft)
0	GRAVEL (FILL) - silty, some sand, damp to moist, com		inact brownish arev, subangular			200 400	dings (ppmv) ■ 0 600 800		0
		gravel	paci, brownish grey, subangular						1
									1 2 3 4 5 6 7 8 9 10 11
									2
1					SA72				3
									4
2	/atec	- (Gravel - 41%; Sand - 27%; Silt & Clay - 32%)			SA73				6
-	Excavated								
	ш								4
3									
0		GRAVEL - sandy, trace silt, damp to moist, compact, b	rownish grey, subrounded gravel		SA74				10
					0/114				11
									12
4									
-		END OF TESTPIT (4.1 metres)		_			: :		1: 14 18 18
									1
5									1
5									1
									1
e									1
6									20
									2: 2: 2:
									2
_									
7									
7.5									2
			Contractor: North American Tu	Ingste	n	۰ 	Completion [Depth: 4.1 m	
		TETRA TECH	Drilling Rig Type: Hitachi 200					018 September 22	
			Logged By: CPC				Completion [Date: 2018 September 22	

ASTM D7928 & C136

Project:	Borrow Source Investigation						
Project No.:	ENW.WENW03039-03 (Task 007)						
Site:	Cantung Mine, NT						
Client:	North American Tungsten Corp. Ltd						
Client Rep.:	Callum Beveridge						
Date Tested:	November 2, 2018	By:	GK				
Soil Description ² :	: GRAVEL - silty, sandy						

9.8%

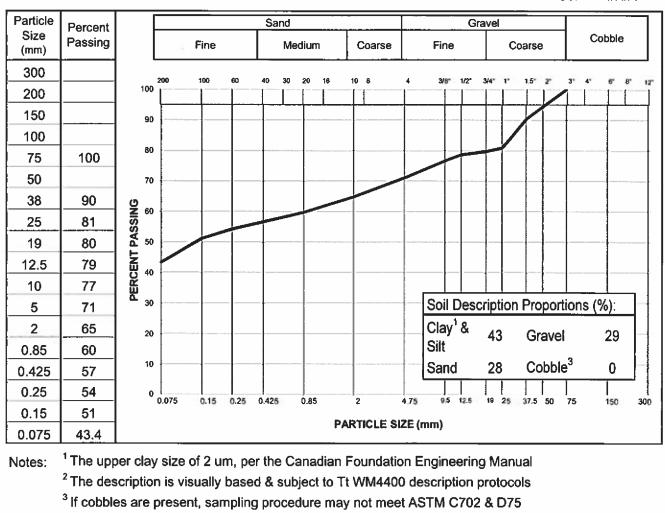
Moisture Content:

130						
Sample No.:	TP25					
Material Type:	-					
Sample Loc.:	SA73					
Sample Depth:	1.9 - 2.0 m					
Sampling Method:	Grab					
Date Sampled:	Septemb	oer 22, 2	018			
Sampled By:	CPC					
USC Classification:	-	Cu:	#N/A			
		Cc:	#N/A			

Particle Sand Gravel Percent Size Cobble Passing Fine Medium Coarse Fine Coarse (mm) 300 10 8 100 30 20 16 3/81 1/Z 100 200 150 90 100 80 75 100 50 70 38 69 **PERCENT PASSING** 60 25 50 19 67 12.5 65 40 10 63 30 Soil Description Proportions (%): 5 59 Clay¹ & 2 53 32 20 Gravel 41 Silt 0.85 48 Cobble³ 10 27 0 Sand 0.425 45 0 |____ 0.075 42 0.25 19 25 0.15 0.25 0.425 0.85 4.75 9.5 12.5 37.5 50 300 2 75 150 0.15 39 PARTICLE SIZE (mm) 0.075 31.9 ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes: ² The description is visually based & subject to Tt WM4400 description protocols ³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75 Specification: **Remarks:**

Reviewed By:

P.Eng.


North American		North American	Testpit No:	В	S-	18TP26	26			
-	Tungsten Corporation		Project: Borrow Source Investig					ENW.WENW03039-03.007		
		Ltd.	Location: Cantung Mine							
		Ltd.	Cantung, Northwest Territories			וט	TM: 54036	3 E; 6871369 N; Z 9		
Depth (m)	Method	Soil Descriptior	1	Sample Type	Sample Number			Notes and Comments	Depth (ft)	
						■ Vapour readings 200 400 600	(ppmv)			
-		SILT (FILL) - gravelly, sandy, damp to moist, compact, b	rownish grey, subangular gravel			200 400 000			0	
- - - - - - - - - - - - - - -	Excavated	- (Gravel - 29%; Sand - 28%; Silt & Clay - 43%)			SA75				2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
E		SILT - trace to some sand, damp to moist, firm, brown		_						
- 2			· · · · · · · · · · · · · · · · · · ·						6-	
-		GRAVEL - sandy, trace silt, damp to moist, compact, bro	ownish grey, subrounded gravel		SA76				7-	
Ē		END OF TESTPIT (2.3 metres)			0/110		1		8-	
Ē										
-									9-	
- 3									10-	
Ē									11-	
-									12-	
E										
- 4									13-	
-									14	
Ē									15-	
-										
- 5									16-	
Ē									17-	
-									18-	
-									10	
- 6									19-	
-									20-	
-									21-	
-									22	
									22	
- - - 7.5			I						24-	
	~		Contractor: North American Tur	ngste	n			Depth: 2.3 m		
	5	TETRA TECH	Drilling Rig Type: Hitachi 200					2018 September 22		
			Logged By: CPC Reviewed By: TP				ige 1 of 1	Date: 2018 September 22		

ASTM D7928 & C136

Project:	Borrow Source Investigation					
Project No.:	ENW.WENW03039-03 (Task 007)					
Site:	Cantung Mine, NT					
Client:	North American Tungsten Corp. Ltd.					
Client Rep.:	Callum Beveridge					
Date Tested:	October 31, 2018 By: GK					
Soil Description ² :	SILT - gravelly, sandy					

13	50			
	Sample No.:	TP26		
	Material Type:	-		
	Sample Loc.:	SA75		
	Sample Depth:	0.9 - 1.0	m	
	Sampling Method:	Grab		
	Date Sampled:	Septemb	er 22, 2	018
	Sampled By:	CPC		
	USC Classification:	-	Cu:	#N/A
			Cc:	#N/A

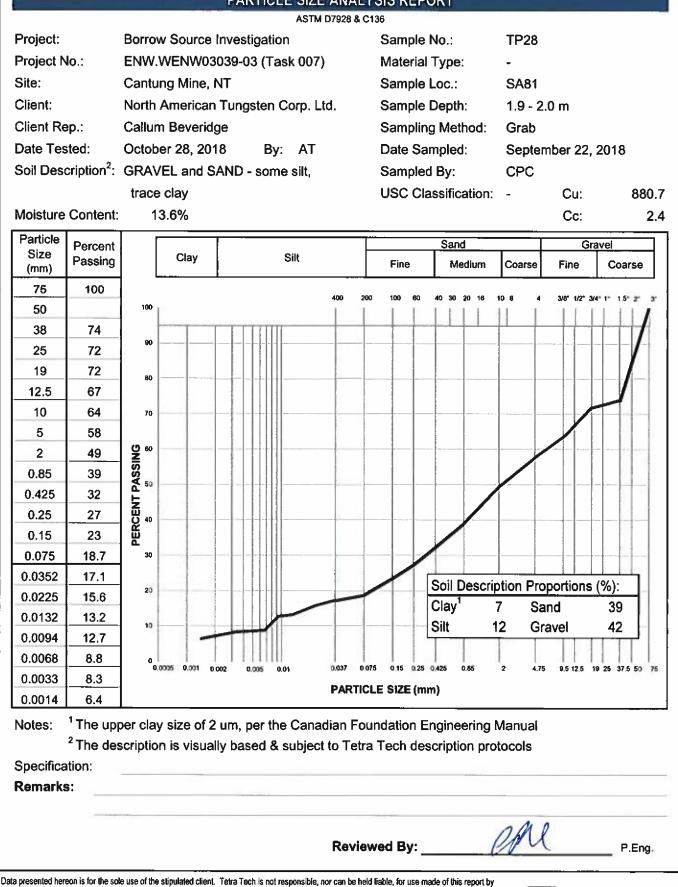
Moisture Content: 15.3%

Specification:

Remarks:

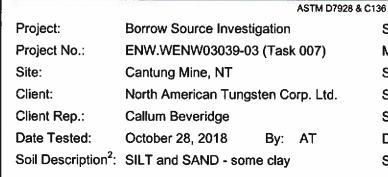
Reviewed By:

P.Eng.

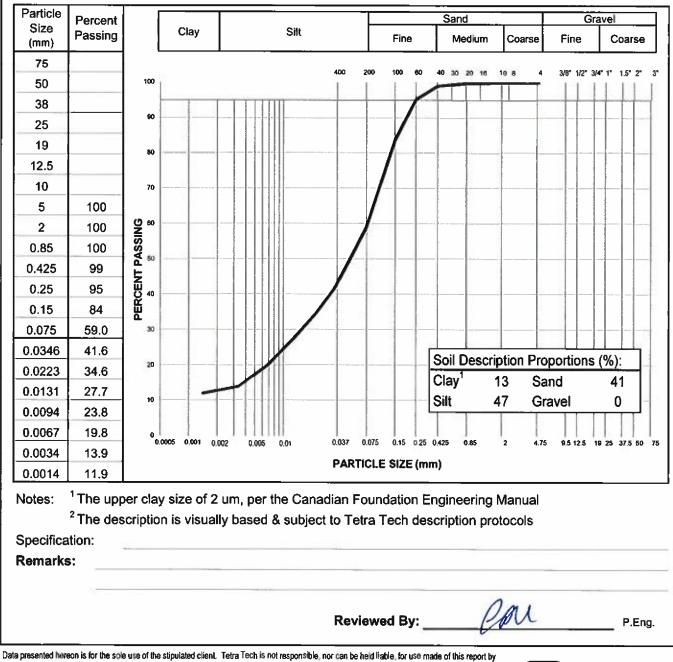

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

Ral

North American		North American	Testpit No:	Β	S-	18TP2	27		
- T	Γu	ingsten Corporation	Project: Borrow Source Investig					ENW.WENW03039-03.007	
		Ltd.	Location: Cantung Mine				,		
		Liu.	Cantung, Northwest Territories				UTM: 54038	3 E; 6871354 N; Z 9	
Depth (m)	Method	Soil Description	n	Sample Type	Sample Number	■ Vapour reading 200 400 6	gs (ppmv) 🔳	Notes and Comments	Depth (ft)
0	-	SAND (FILL) - gravelly, silty, damp, compact, brownish	grev, subangular gravel			200 400 6	00 ^{°°} 800́		0
- - - - - - - - - - - - - - - - - - -	Excavated	GRAVEL - sandy, trace silt, damp, compact, grey, subro			SA77 SA78				2
-									6
- 2		END OF TESTPIT (2.1 metres)			SA79	· · · · · · · · · · · · · · · · · · ·			7-
- - - - - -									8
- 3 - -									10-
-									11-
-									12-
-									13-
- 4									
-									14-
Ē									15-
-									16-
- 5 - -									17-
- -									18
-									
- 6									19
-									20-
-									21-
									22
- - - 7									23
									24
- 7.5			Contractor: North American Tur				Completion !	Dopth: 2.1 m	
	2		Contractor: North American Tun Drilling Rig Type: Hitachi 200	yste	11			Depth: 2.1 m 018 September 22	
	ŀt	TETRA TECH	Logged By: CPC					Date: 2018 September 22	
			Reviewed By: TP				Page 1 of 1		

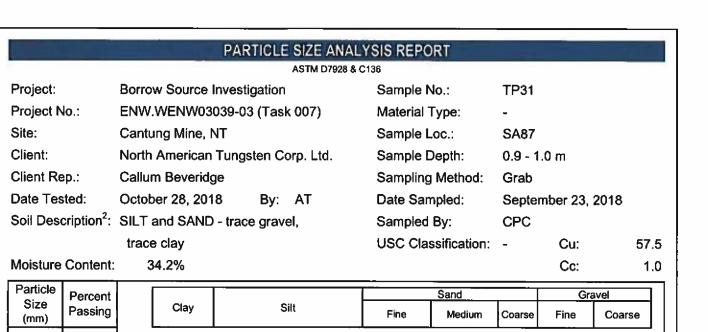

North American		North American	Testpit No:	В	S-	18TP2	28		
-	Tungsten Corporation		Project: Borrow Source Investig					ENW.WENW03039-03.007	
		Ltd.	Location: Cantung Mine				,		
			Cantung, Northwest Territories				UTM: 54034	6 E; 6871352 N; Z 9	
Depth (m)	Method	Soil Descriptior	ו	Sample Type	Sample Number	■ Vapour readir 200 400 0	ngs (ppmv)	Notes and Comments	Depth (ft)
-		SAND AND GRAVEL (FILL) - some silt, damp, compact	, brownish grey, subangular gravel			200 400 0	500 600		0
- - - - - - - - - - - - - - - - - - -	Excavated	- trace to some silt, no visible gravel - silty, gravelly			SA80				1 2 3 4 5
Ē									6-
2		- (Gravel - 42%; Sand - 39%; Silt -12%; Clay - 7%)		_	SA81				7-
-		GRAVEL - sandy, trace silt, damp, compact, grey, subro	unded gravel		SA82				
-		END OF TESTPIT (2.4 metres)			SHOZ				8-
									10 11 12 13 14 14 15 16 17 17 18 19 19 20 19 19 21 10 19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10
- - 7.5									24-
			Contractor: North American Tur	ngste	n		Completion I		
	r l	TETRA TECH	Drilling Rig Type: Hitachi 200					018 September 22	
	U		Logged By: CPC					Date: 2018 September 22	
			Reviewed By: TP				Page 1 of 1		

any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.



North American		North American	Testpit No	o: B	S-	18TP2	29			
1	Tungsten Corporation		Project: Borrow Source In					ENW.WENW03039-03.007		
		Ltd.	Location: Cantung Mine	<u> </u>						
		Etd.	Cantung, Northwest Terri	tories			UTM: 54037	1 E; 6871412 N; Z 9		
Depth (m)	Method	Soil Descriptior	١	Sample Type	Sample Number			Notes and Comments	Depth (ft)	
0						■ Vapour readir 200 400	ngs (ppmv) ■ 600 800		0	
F		ORGANICS - roots, moss, moist, dark brown, (200 mm	thick)							
F		SILT - sandy, moist, firm, dark brown							1-	
-		- light brown							2	
- - - 1		- (Gravel - 0%; Sand - 41%; Silt - 47%; Clay - 13%)			SA83		······································		3-	
- - -	pe								4	
- - - 2	Excavated				SA84				6	
- - -		- some water seepage, grey							7-	
- - -									9-	
3 - - -					SA85				10-	
E		END OF TESTPIT (3.5 metres)								
-									12-	
- 4									13-	
-									14-	
Ē										
F									15-	
F									16-	
5 - - -									17-	
F									18-	
- - - - 6									19-	
F									20-	
-									21-	
- - -									22-	
- 7									23-	
- - - 7.5									24	
C			Contractor: North America		n		Completion I			
	1	TETRA TECH	Drilling Rig Type: Hitachi	200				2018 September 23		
			Logged By: CPC				-	Date: 2018 September 23		
			Reviewed By: TP				Page 1 of 1			

50						
Sample No.:	TP29					
Material Type:	-					
Sample Loc.:	SA83					
Sample Depth:	0.9 - 1.0 m					
Sampling Method:	Grab					
Date Sampled:	Septemb	per 23, 2	018			
Sampled By:	CPC					
USC Classification:	-	Cu:	#N/A			
		Cc:	#N/A			


Moisture Content: 39.6%

North American Tungsten Corporation			Testpit No: BS-18TP30								
			Project: Borrow Source Investigation				Project No: ENW.WENW03039-03.007				
		Ltd.	Location: Cantung Mine				,				
		Ltd.	Cantung, Northwest Territories				UTM: 54038	0 E; 6871441 N; Z 9			
-Fi - G	ро	Soil		Sample Type	umber			Notes and	-ti		
0 Depth (m)	Method	Description			Sample Number	■Vapour readi 200 400	ngs (ppmv) Ⅲ 600 800	Comments	o Depth (ft)		
- -		ORGANICS - roots, moss, moist, dark brown, (100 mm SAND (FILL) - trace gravel, damp, grey, (300 mm thick)	thick)	1					1-		
		ORGANICS - roots, moist, (100 mm thick) GRAVEL - sandy, trace silt, damp, compact, brownish g	rey, subrounded gravel						2-		
- - 1					SA86				3-		
-	ted								4-		
-	Excavated								6		
_2 _ Ţ		- very wet							T		
									8-		
- - - 3 -									10-		
		END OF TESTPIT (3.2 metres) water - 2.2 metres				· · ·			11-		
-									12-		
- 4 - -									13-		
-									15-		
									16-		
- - -									17-		
									18-		
6									20		
- - -									21-		
- - -									22-		
- 7 -									23-		
- - 7.5									24-		
	_		Contractor: North American Tur	ctor: North American Tungsten				Completion Depth: 3.2 m			
	F	TETRA TECH	Drilling Rig Type: Hitachi 200				Start Date: 2018 September 23				
			Logged By: CPC					Date: 2018 September 23			
			Reviewed By: TP				Page 1 of 1				

North American			Testpit No: BS-18TP31							
	Γu	Ingsten Corporation	Project: Borrow Source Investig					ENW.WENW03039-03.007		
		Ltd.	Location: Cantung Mine				,			
		Ltd.	Cantung, Northwest Territories				UTM: 54035	7 E; 6871390 N; Z 9		
Depth (m)	Method	Soil Descriptior	1	Sample Type	Sample Number			Notes and Comments	Depth (ft)	
0				ŭ	Sar	■ Vapour reading 200 400 60	js (ppmv) ■ 00 800		0	
	be	ORGANICS - roots, moss, moist, dark brown, (100 mm SILT (FILL) - some sand, moist, firm, brown, (100 mm th GRAVEL (FILL) - sandy, trace to some silt, damp, comp ORGANICS - roots, moist SILT - sandy, trace gravel, moist, compact, brown, subr - (Gravel - 10%; Sand - 37%; Silt - 44%; Clay - 10%)	nick) aact, dark brown		SA87				1 2 3	
- 1 - - - - - - - -	Excavated	- wet							4 5	
- 2 -		- trace sand, firm, grey			SA88				7-	
- - - -		END OF TESTPIT (2.3 metres) water - 1.8 metres							8 9	
3 - - -									10-	
 - -									12-	
4 - - -									13	
- - -									15-	
- 5 - -									16- 17-	
- - - -									18-	
- - - 6 -									20	
- - -									21-	
- - - 7 - 7									22-	
- - - 7.5			I						24-	
			Contractor: North American Tur	ngste	n		Completion Depth: 2.3 m			
	٢.	TETRA TECH	Drilling Rig Type: Hitachi 200				Start Date: 2018 September 23			
			Logged By: CPC					Date: 2018 September 23		
			Reviewed By: TP				Page 1 of 1			

200

400

100 60

40 30

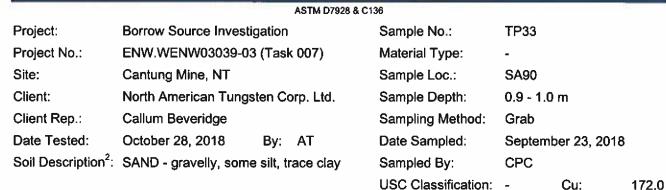
16 10

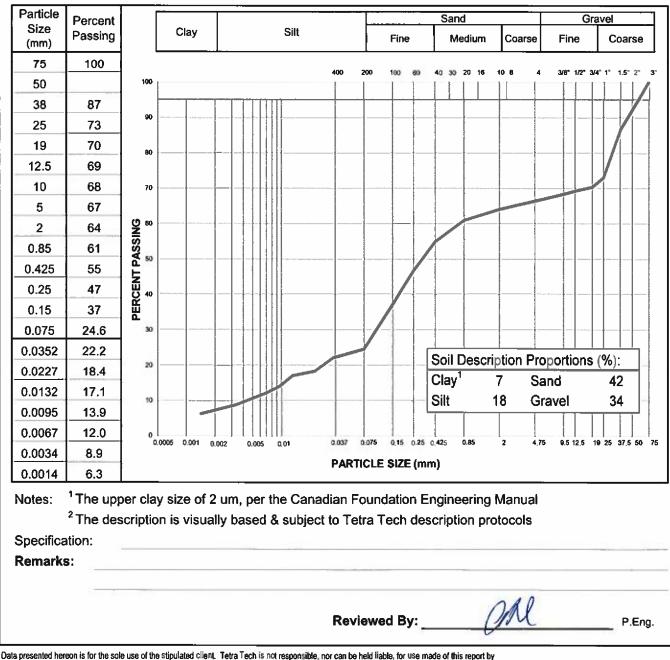
38 90 25 19 100 80 100 12.5 10 98 70 5 90 PERCENT PASSING 2 83 0.85 78 0.425 71 0.25 65 0.15 60 0.075 53.7 30 0.0336 41.2 Soil Description Proportions (%): 20 0.0220 32.1 Clay¹ 10 Sand 37 0.0131 24.7 10 Silt 44 Gravel 10 0.0094 21.4 0.0067 16.5 0.15 0.25 0.425 0.0005 0.001 0.002 0.01 0.037 0.075 0.85 2 4.75 9.5 12.5 19 25 37.5 50 75 0.005 10.7 0.0034 PARTICLE SIZE (mm) 0.0014 9.1 ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes: ² The description is visually based & subject to Tetra Tech description protocols Specification: **Remarks:** Reviewed By: P.Eng.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

75

50

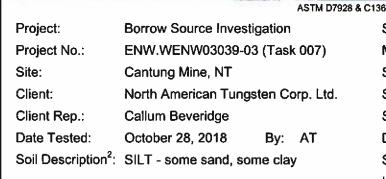

100


3/6" 1/2" 3/4" 1" 1.5" 2"

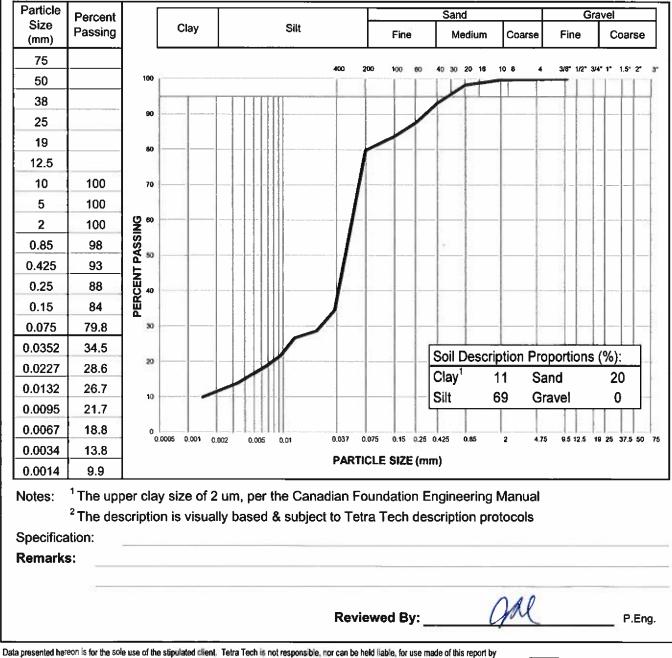
North American			Testpit No: BS-18TP32							
	Γu	ngsten Corporation	Project: Borrow Source Investigation				Project No: ENW.WENW03039-03.007			
-		Ltd.	Location: Cantung Mine							
		Etd.	Cantung, Northwest Territories				UTM: 54033	4 E; 6871381 N; Z 9		
Depth (m)	Method	Soil Descriptior	1	Sample Type	Sample Number	■ Vapour readio 200 400 0	ngs (ppmv) ■	Notes and Comments	Depth (ft)	
0		ORGANICS - roots, moss, moist, dark brown, (100 mm)	thick)			200 400 (00800		0	
- - - - - - - - - - - - -	Excavated	SILT - some sand, moist, firm, light brown, sand lenses			SA89				1 2 3 ■ 5	
F		- grey							6-	
		END OF TESTPIT (2.0 metres) water - 1.3 metres							7	
- - - -									21-	
- 7 -									23-	
- - 7.5									24	
			Contractor: North American Tungsten				Completion Depth: 2 m			
	r l	TETRA TECH	Drilling Rig Type: Hitachi 200				Start Date: 2018 September 23			
			Logged By: CPC				Completion Date: 2018 September 23			
			Reviewed By: TP		Page 1 of 1					

		North American	Testpit No:	В	S-	18TP33	3			
	Γυ	Ingsten Corporation	Project: Borrow Source Invest	tigation		Pr	Project No: ENW.WENW03039-03.007			
		Ltd.	Location: Cantung Mine	-			-			
L td.		Etd.	Cantung, Northwest Territorie	-				7 E; 6871314 N; Z 9		
(m)	Method	Soil Descriptio	n	Sample Type	Sample Number			Notes and Comments	Depth	
				w w	San	Vapour readings	(ppmv) 🔳			
0	_	SAND (FILL) - gravelly, silty, some cobbles, damp, com	nact brownich grow subangular			Vapour readings 200 400 600	0.800			
		gravel	ipaol, brownian groy, aubangular							
									:	
		- (Gravel - 34%; Sand - 42%; Silt - 18%; Clay - 7%)			SA90					
1		- (Gravel - 34%, Sand - 42%, Silt - 10%, Glay - 7%)			0,100		· · · · · .			
			wiele energy and and even all layout							
		SILT - some sand and gravel, damp to most, firm, brow throughout	nish grey, sand and gravel layers							
2		- (Gravel - 0%; Sand - 20%; Silt - 60%; Clay - 11%)			SA91		· · · · · · · · · · · · · · · · · · ·			
	b									
	Excavated	- wet								
					SA92					
₹					0/132		•••••			
1							· · · · · · · · · · · · · · · · · · ·		.	
_										
5		END OF TESTPIT (5.0 metres) water - 3.1 metres								
5									:	
,									:	
.5									:	
			Contractor: North American T	ungste	n		Completion Depth: 5 m			
1	R	TETRA TECH	Drilling Rig Type: Hitachi 200 Logged By: CPC	Drilling Rig Type: Hitachi 200				Start Date: 2018 September 23 Completion Date: 2018 September 23		
			Reviewed By: TP				age 1 of 1	Jale. 20 To September 23		

Moisture Content: 10.9%



Data presented neteon is for the sole use of the supulated client. There is not responsible, nor can be need have, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.


Cc:

3.2

36			
Sample No.:	TP33		
Material Type:	-		
Sample Loc.:	SA91		
Sample Depth:	1.9 - 2	.0 m	
Sampling Method:	Grab		
Date Sampled:	Septer	n ber 23, 20	18
Sampled By:	CPC		
USC Classification:	-	Cu:	38.6
		Cc:	7.6

Moisture Content: 27.1%

any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

APPENDIX C

TETRA TECH'S 2019 TESTPIT AND TESTHOLE LOGS AND PARTICLE SIZE RESULTS

TERMS USED ON BOREHOLE LOGS

TERMS DESCRIBING CONSISTENCY OR CONDITION

COARSE GRAINED SOILS (major portion retained on 0.075mm sieve): Includes (1) clean gravels and sands, and (2) silty or clayey gravels and sands. Condition is rated according to relative density, as inferred from laboratory or in situ tests.

DESCRIPTIVE TERM
Very Loose
Loose
Compact

Dense Very Dense RELATIVE DENSITY

0 TO 20%

20 TO 40%

40 TO 75%

75 TO 90%

90 TO 100%

N (blows per 0.3m)

0 to 4 4 to 10 10 to 30 30 to 50 greater than 50

The number of blows, N, on a 51mm 0.D. split spoon sampler of a 63.5kg weight falling 0.76m, required to drive the sampler a distance of 0.3m from 0.15m to 0.45m.

FINE GRAINED SOILS (major portion passing 0.075mm sieve): Includes (1) inorganic and organic silts and clays, (2) gravelly, sandy, or silty clays, and (3) clayey silts. Consistency is rated according to shearing strength, as estimated from laboratory or in situ tests.

DESCRIPTIV	E TERM
------------	--------

Very Soft Soft Firm Stiff Very Stiff Hard

UNCONFINED COMPRESSIVE STRENGTH (KPA) Less than 25 25 to 50 50 to 100 100 to 200 200 to 400 Greater than 400

NOTE: Slickensided and fissured clays may have lower unconfined compressive strengths than shown above, because of planes of weakness or cracks in the soil.

GENERAL DESCRIPTIVE TERMS

Slickensided - having inclined planes of weakness that are slick and glossy in appearance.
Fissured - containing shrinkage cracks, frequently filled with fine sand or silt; usually more or less vertical.
Laminated - composed of thin layers of varying colour and texture.
Interbedded - composed of alternate layers of different soil types.
Calcareous - containing appreciable quantities of calcium carbonate.;
Well graded - having wide range in grain sizes and substantial amounts of intermediate particle sizes.
Poorly graded - predominantly of one grain size, or having a range of sizes with some intermediate size missing.

					SOIL CLASSIFICATION							
MAJ	or Division	I	group Symbol	TYPICAL DESCRIPTION	LABORATORY CLASSIFICATION CRITERIA							
	fraction leve	CLEAN GRAVELS	GW	Well-graded gravels and gravel- sand mixtures, little or no fines	$\begin{array}{c c} C_{U} = D_{00} / D_{10} & \text{Greater than 4} \\ \hline C_{c} = \frac{(D_{00})^{2}}{D_{10} \times D_{00}} & \text{Between 1 and 3} \end{array}$							
sieve*	GRAVELS 50% or more of coarse fraction retained on No. 4 sieve	CLEAN G	GP	Poorly-graded gravels and gravel- sand mixtures, little or no fines	$C_{c} = \frac{C_{sol}}{D_{10} \times D_{sol}}$ Between 1 and 3 Not meeting both criteria for GW Solution Soluti							
LS 75 µm	GF or mor retained	gravels With Fines	GM	Silty gravels, gravel-sand-silt mixtures	ae \$\mathcal{S}\$ is a = 0 Signal Atterberg limits plot below 'A' line or Atterberg limits plotting is is is is a = 0 plasticity index less than 4 in hatched area are							
IED SOII	50%	GRA MI FIN	GC	Clayey gravels, gravel-sand-clay mixtures	응 중 중 요 보 · · · · · · · · · · · · · · · · · ·							
COARSE - GRAINED SOILS an 50% retained on No. 75	oarse sieve	CLEAN SANDS	sw	Well-graded sands and gravelly sands, little or no fines	$\begin{array}{c} c_{c} \\ c_{c} \\$							
COARSE - GRAINED SOILS More than 50% retained on No. 75 µm sieve*	SANDS More than 50% of coarse fraction passes No. 4 sieve	CLEAN	SP	Poorly-graded sands and gravelly sands, little or no fines	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
W	S ore thar ction pa	Sands With Fines	SM	Silty sands, sand-silt mixtures	Atterberg limits plot above 'A' line and plasticity index less than 4 Atterberg limits plotting in hatched area are							
	Mc	SAN	SC	Clayey sands, sand-clay mixtures	Atterberg limits plot above 'A' line and plasticity index greater than 7 borderline classifications requiring use of dual symbols							
	IS	Liquid limit 50 <50	ML	Inorganic silts, very fine sands, rock flour, silty or clayey fine sands of slight plasticity	60 PLASTICITY CHART For classification of fine-grained							
*	SILTS	Liqui >50	МН	Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts	50 soils and fine fraction of coarse- grained soils Equation of 'A' line: PI = 0.73(LL-20)							
VE-GRAINED SOILS (by behavior) 50% or more passes 75 µm sieve*	art	t <30	CL	Inorganic clays of low plasticity, gravelly clays, sandy clays, silty clays, lean clays								
FINE-GRAINED SOILS (by behavior) 50% or more passes 75 µm siev	CLAYS Above "A" line on plasticity chart	Liquid limit 30-50	CI	Inorganic clay of medium plasticity, silty clays								
AINED SO	Abo		СН	Inorganic clay of high plasticity, fat clays	10 MH or OH							
FINE-GR	ORGANIC Silts And Clays	Liquid limit 50 <50	OL	Organic silts and organic silty clays of low plasticity								
	ORG SIL AND (Liquid >50	ОН	Organic clays of medium to high plasticity	LIQUID LIMIT							
HIGHLY O	RGANIC SOIL	.S	РТ	Peat, muck and other highly organic soils	 * Based on the material passing the 75 mm sieve 1 ASTM Designation D 2487, for identification procedure see D 2488 USC as modified by PFRA 							

GROUND ICE DESCRIPTION

		ICE NOT VISIBLE	
GROUP SYMBOL	SYMBOL	SUBGROUP DESCRIPTION	
	Nf	Poorly-bonded or friable	
N	Nbn	No excess ice, well-bonded	
	Nbe	Excess ice, well-bonded	

NOTES:

LEGEND:

1. Dual symbols are used to indicate borderline or mixed ice classifications.

Ice

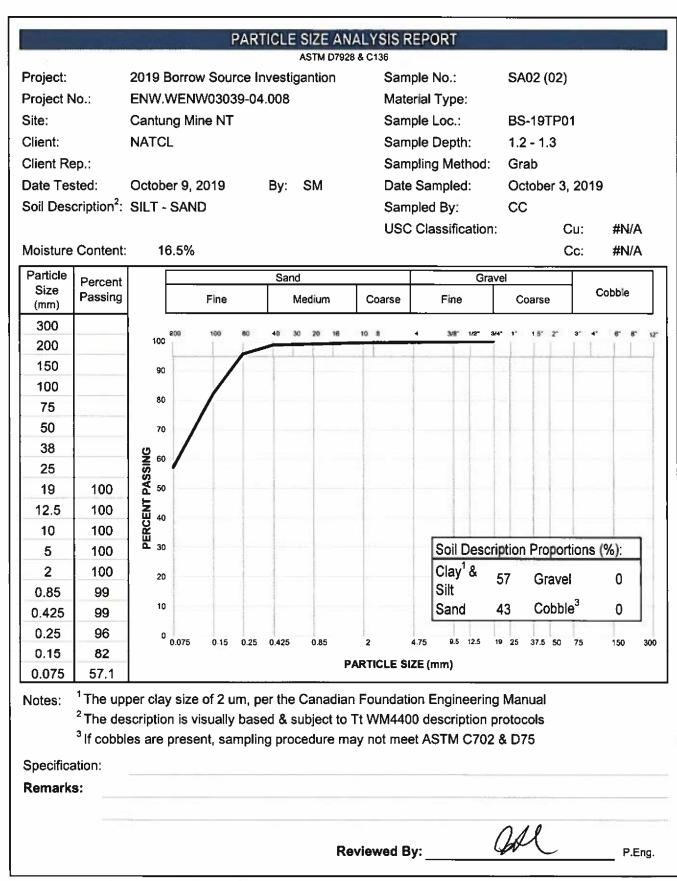
- 2. Visual estimates of ice contents indicated on borehole logs \pm 5%
- This system of ground ice description has been modified from NRC Technical Memo 79, Guide to the Field Description of Permafrost for Engineering Purposes.

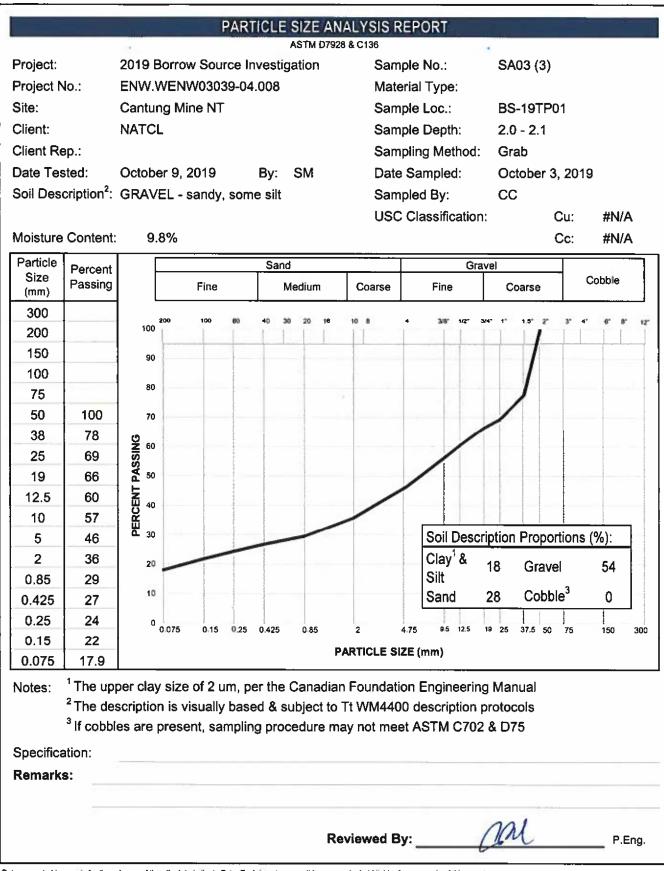
VISIBLE ICE LESS THAN 50% BY VOLUME

GROUP Symbol	SYMBOL	SUBGROUP DESCRIPTION	
	Vx	Individual ice crystals or inclusions	,
v	Vc	Ice coatings on particles	್ಟಿ
v	Vr	Random or irregularly oriented ice formations	KAN
	Vs	Stratified or distinctly oriented ice formations	

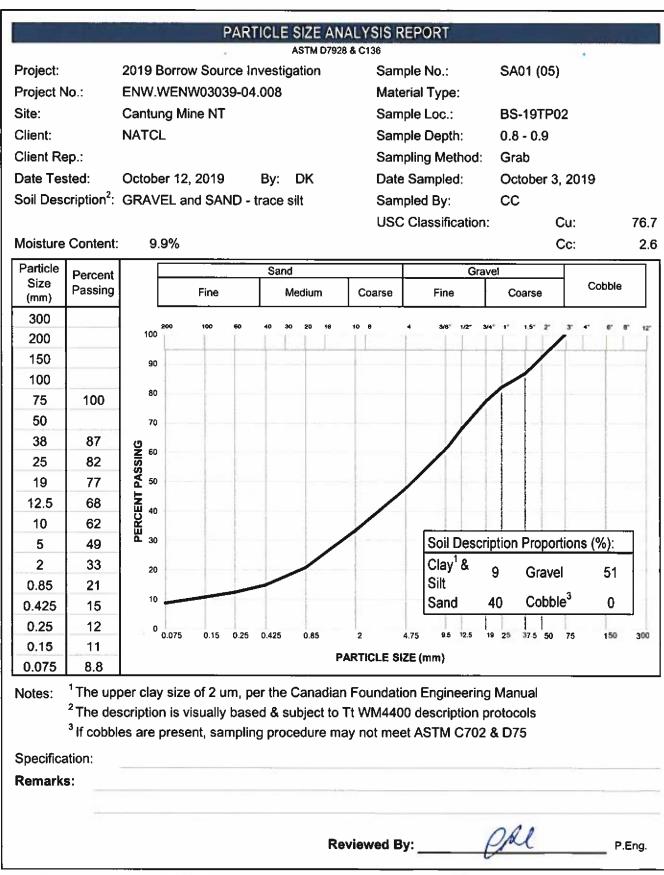
VISIBLE ICE GREATER THAN 50% BY VOLUME

Tt_Modified Unified Soil Classification_Arctic.cdr


Soil


BOREHOLE KEYSHEET Water Level Measurement Measured in standpipe, ∇ ⊻ Inferred piezometer or well Sample Types Disturbed, Bag, A-Casing Core HQ Core Jar Grab Jar and Bag 75 mm SPT No Recovery Split Spoon/SPT Tube **CRREL** Core **Backfill Materials** Cement/ Grout Drill Cuttings Asphalt Bentonite Grout <u>× /</u> <u>×</u> Gravel Slough Topsoil Backfill Sand Lithology - Graphical Legend¹ Coord Cobbles/Boulders Coal Bedrock Asphalt Mudstone Limestone *P* . N Concrete \bigotimes Fill Gravel e se se s <u>se se se</u> Sand \times Sandstone Organics Peat Shale 7.14 X Siltstone Conglomerate Topsoil Till Silt à 1. The graphical legend is an approximation and for visual representation only. Soil strata may comprise a combination of the basic symbols shown above. Particle sizes are not drawn to scale

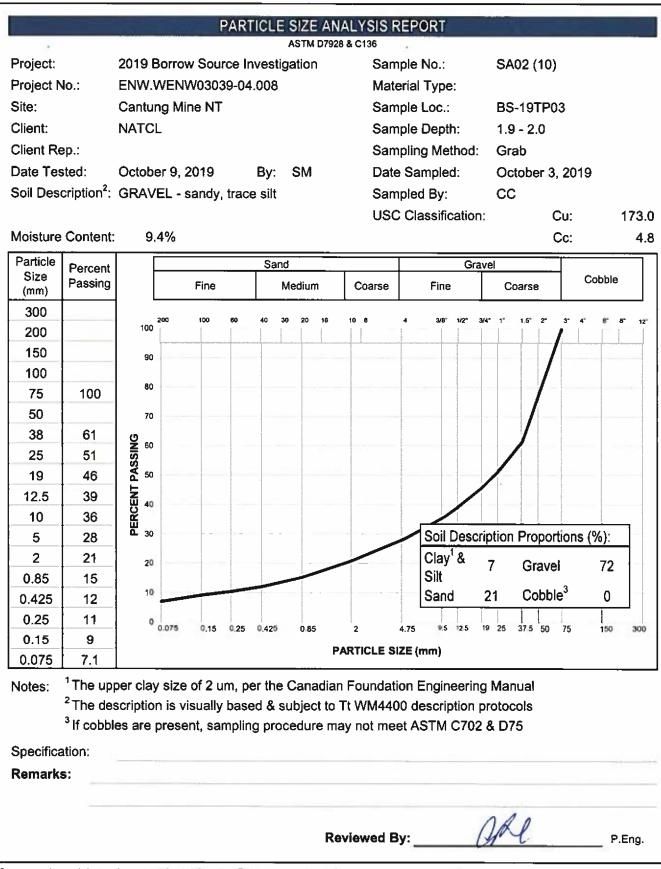
			Testpit No	D: BS-19TF	20	1			
			Project: 2019 Borrow Sour				t No: E	ENW.WENW03039-04.008	
			Location: Cantung Mine					/: 1120.28 m	
			Tungsten, Northwest Terri	tories				70 E; 6869553 N; Z 9	
Depth (m)	Method	Soil Description		Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Plastic Moisture Liquid	Elevation (m)
0						Š	Mois	Limit Content Limit 20 40 60 80	
-		ORGANICS - moss, peat, ash, roots, moist, dark brown	, (200 mm thick)	Unfrozen					
		SAND - some gravel, some silt, cobbles, moist, compac	t, grey, subrounded gravel			SA01	11.4	•	1120-
- 1		SILT AND SAND - moist, firm, brownish grey, fine sand - (Gravel - 0%; Sand - 43%; Silt & Clay - 57%)				SA02	16.5	• 1	1119-
- 2	Excavation	GRAVEL - sandy, some cobbles, trace to some silt, dan subrounded gravel - (Gravel - 54%; Sand - 28%; Silt & Clay - 18%)	np, compact, brownish grey,			SA03	9.8	•	1118-
- 3						SA04	7.7		1117-
- 4		END OF TESTPIT (3.6 metres)							
-								1	1116-
5		l	Contractor: North America	n Tungsten Corporation Ltd		l Comn	l letion	L Depth: 3.6 m	
			Contractor: North American Tungsten Corporation Ltd. Drilling Rig Type: Hitachi 200					Depth: 3.011	
		TETRA TECH	Logged By: CPC					Date: October 3, 2019	
	-		Reviewed By: TP			Page		Daie. Oolobel 3, 2018	



			Testpit No	D: BS-19T	P0	2			
			Project: 2019 Borrow Sour				t No: E	ENW.WENW03039-04.008	
			Location: Cantung Mine			Groun	d Elev	r: 1119.29 m	
		1	Tungsten, Northwest Terri	tories		UTM:	54236	0 E; 6869531 N; Z 9	
o Uepth (m)	Method	Soil Description		Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80	Elevation
		ORGANICS - moss, peat, ash, roots, moist, dark brown SAND AND GRAVEL - some cobbles, trace to some sill subrounded gravel		Unfrozen					1119
1		- (Gravel - 52%; Sand - 39%; Silt & Clay - 9%)				SA05	9.9	•	
2	Excavation	SAND - trace to some silt, moist, compact, grey - (Gravel - 1%; Sand - 83%; Silt & Clay - 16%)				SA06	15.3	•	1118
3		- some gravel to gravelly				SA07	4.6	•	111
4		- trace to some gravel				SA08	8.7	•	
5		END OF TESTPIT (4.1 metres)							111
<u> </u>			Contractor: North America	n Tungsten Corporation Ltd	.	Comp	etion	Depth: 4.1 m	1
		TETRA TECH	Drilling Rig Type: Hitachi 2					October 3, 2019	
	t		Logged By: CPC					Date: October 3, 2019	
_			Reviewed By: TP			Page			

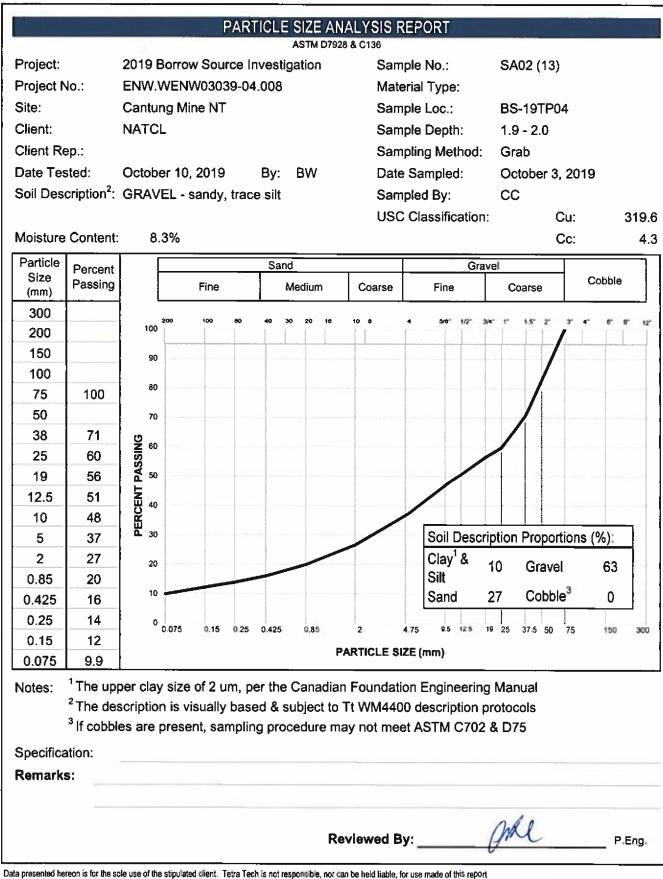
PARTICLE SIZE ANALYSIS REPORT ASTM D7928 & C136 Project: 2019 Borrow Source Investigation Sample No.: SA02 (06) ENW.WENW03039-04.008 Project No.: Material Type: Site: Cantung Mine NT Sample Loc .: **BS-19TP02** Client: NATCL Sample Depth: 2.0 - 2.1 Sampling Method: Client Rep.: Grab Date Tested: October 9, 2019 By: SM Date Sampled: October 3, 2019 Soil Description²: SAND - some silt, trace gravel Sampled By: CC **USC Classification:** Cu: #N/A Moisture Content: 15.3% Cc: #N/A Particle Sand Grave! Percent Size Cobble Passing Fine Medium Coarse Fine Coarse (mm) 300 100 10 8 200 60 40 30 20 16 3/8' 12 100 200 150 90 100 80 75

38 PERCENT PASSING 60 25 19 50 12.5 100 40 10 99 30 Soil Description Proportions (%): 5 99 2 Clav¹ & 98 20 16 Gravel 1 Silt 0.85 97 10 Cobble³ Sand 83 0 0.425 95 0.25 74 0 0.075 9.5 0.15 0.25 0.425 0.85 4 75 12.5 19 25 37.5 50 75 150 300 0.15 37 PARTICLE SIZE (mm) 0.075 16.1 ¹The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes: ² The description is visually based & subject to Tt WM4400 description protocols ³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75 **Specification: Remarks: Reviewed By:** P.Eng.

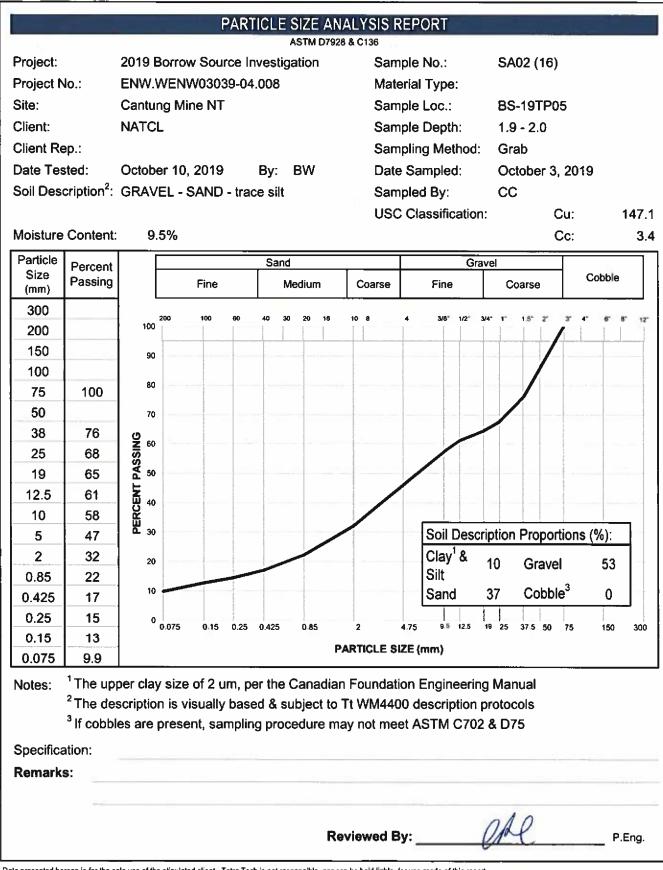

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

50

70



			Testpit No	D: BS-19TI	P0	3			
			Project: 2019 Borrow Sour		- 1		t No: I	ENW.WENW03039-04.008	
			Location: Cantung Mine			Groun	d Elev	/: 1120 m	
			Tungsten, Northwest Territ	tories		UTM:	54247	2 E; 6869432 N; Z 9	
o Depth (m)	Method	Soil Description		Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Limit Content Limit	Elevation
- 1		ORGANICS - moss, peat, ash, roots, moist, dark brown, GRAVEL - sandy, trace of silt, trace of cobbles and boul compact, greyish brown, subrounded gravel	, (100 mm thick) ders near surface, moist,	Unfrozen		SA09	10.3		1119
- 2	Excavation	- cobble and boulder layer - (Gravel - 72%; Sand - 21%; Silt & Clay - 7%)				SA10	9.4	•	1118
3		END OF TESTPIT (3.5 metres)				SA11	8.2	•	1117
4									1116
5		TETRATECH	Drilling Rig Type: Hitachi 2	n Tungsten Corporation Ltd. 00		Start [Date: C	Depth: 3.5 m Dctober 3, 2019	111:
L	t		Logged By: CPC Reviewed By: TP				letion	Date: October 3, 2019	



			Testpit No	D: BS-19T	P0	4			
			Project: 2019 Borrow Sour				t No: I	ENW.WENW03039-04.008	
			Location: Cantung Mine			-		/: 1119.29 m	
			Tungsten, Northwest Territ	tories				i4 E; 6869409 N; Z 9	
o Depth (m)	Method	Soil Description) mm thick)	Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80	Elevation (m)
		GRAVEL - sandy, trace silt, cobbles throughout, occasic greyish brown, subrounded gravel							- 1119- - - -
- 1 - 1 -						SA12	8	•	
- 2	Excavation	- (Gravel - 63%; Sand - 28%; Silt & Clay - 10%)				SA13	8.3	•	1117-
- 3						SA14	6.5	•	1116-
- 4		END OF TESTPIT (3.5 metres)							
									1115-
5			1 -		,				
	_			n Tungsten Corporation Ltd				Depth: 3.5 m	
		TETRA TECH	Drilling Rig Type: Hitachi 2	00				October 3, 2019	
	U		Logged By: CPC			Comp	etion	Date: October 3, 2019	
-	_		Reviewed By: TP			Page	1 of 1		

			Testpit No	D: BS-19T	20	5					
			Project: 2019 Borrow Sour				t No: I	ENW.WEN	W03039-04.0	08	
			Location: Cantung Mine			-		r: 1118.23			
			Tungsten, Northwest Territ	tories		UTM:	54258	8 E; 6869	272 N; Z 9		
o Depth (m)	Method	Soil Description ORGANICS - moss, peat, ash, roots, moist, dark brown,	(100 mm thick)	Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Limit	Moisture Lic Content Li 40 60 8	mit	Elevation (m)
		GRAVEL - sandy, trace silt, trace cobbles, trace boulder brown, subrounded gravel		Unfrozen							1118-
- 1						SA15	8.7	•			1117-
- 2	Excavation	- (Gravel - 53%; Sand - 37%; Silt & Clay - 10%)				SA16	9.5	•			1116 [.]
3						SA17	7.5	•			1115
- 4		END OF TESTPIT (3.5 metres)									
7											1114
5											
				n Tungsten Corporation Ltd.				Depth: 3.5			
		TETRA TECH	Drilling Rig Type: Hitachi 2	00				October 3,			
	U		Logged By: CPC			Comp	letion	Date: Octo	ober 3, 2019		
-	_		Reviewed By: TP			Page	1 of 1				

			Testpit No	D: BS-19TI	P0	6			
			Project: 2019 Borrow Sour				t No: E	ENW.WENW03039-04.0	008
			Location: Cantung Mine			-		r: 1118.82 m	
			Tungsten, Northwest Territ	tories				9 E; 6869254 N; Z 9	
G Depth (m)	Method	Soil Description	(100 mm thick)	Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Limit Content L	Diminition (m) (m)
- - - - - - - - - - - - - - - - - - -	Excavation	 ORGANICS - moss, peat, ash, roots, moist, dark brown GRAVEL - sandy, trace silt, trace cobbles, trace boulder brown, subrounded gravel - orangey brown - (Gravel - 58%; Sand - 33%; Silt & Clay - 9%) 		Unfrozen		SA18 SA19	8.2	•	
- 3		END OF TESTPIT (3.5 metres)				SA20	9.4	•	1116-
- 4									1115-
5				n Tungsten Corporation Ltd.				Depth: 3.5 m	1114-
	[]	TETRA TECH	Drilling Rig Type: Hitachi 2	200				October 3, 2019	
	U		Logged By: CPC			Comp	letion	Date: October 3, 2019	
-			Reviewed By: TP			Page	1 of 1		

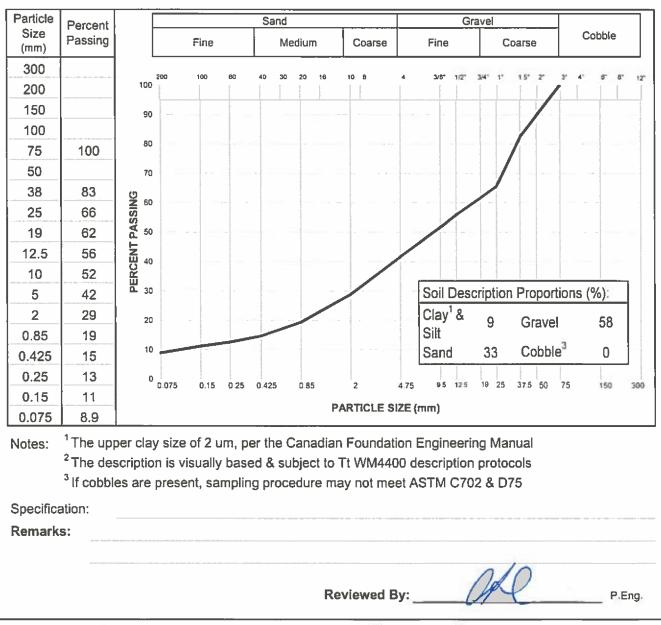
	PARTICLE SIZE A	VALYSIS REPORT	
	ASTM D79		
Project:	2019 Borrow Source Investigation	Sample No.:	SA02 (19)
Project No.:	ENW.WENW03039-04.008	Material Type:	
Site:	Cantung Mine NT	Sample Loc.:	BS-19TP06
Client:	NATCL	Sample Depth:	1.9 - 2.0
Client Rep.:		Sampling Method:	Grab
Date Tested:	October 10, 2019 By: BW	Date Sampled:	October 3, 2019

Sampled By:

USC Classification:

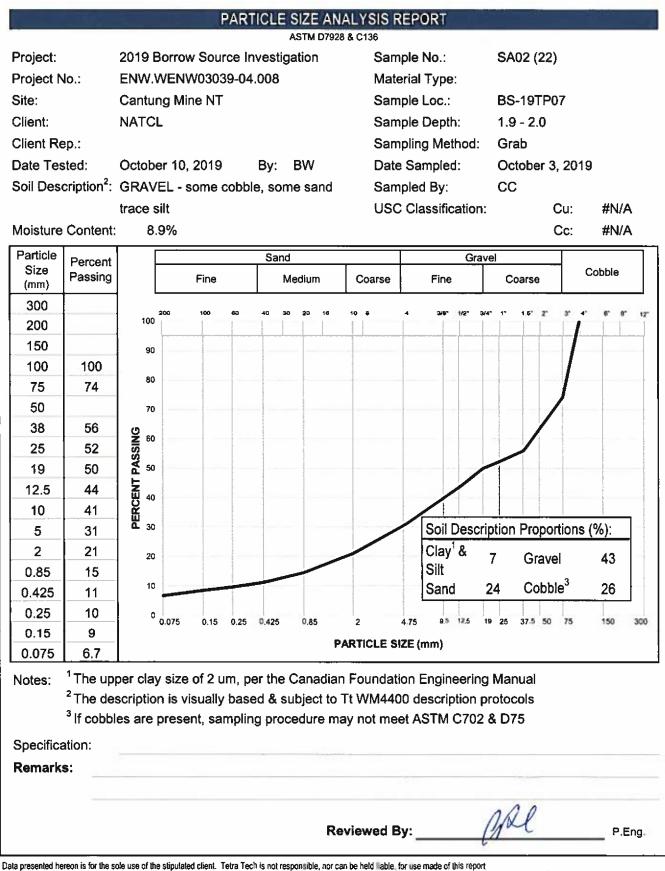
CC

Cu:

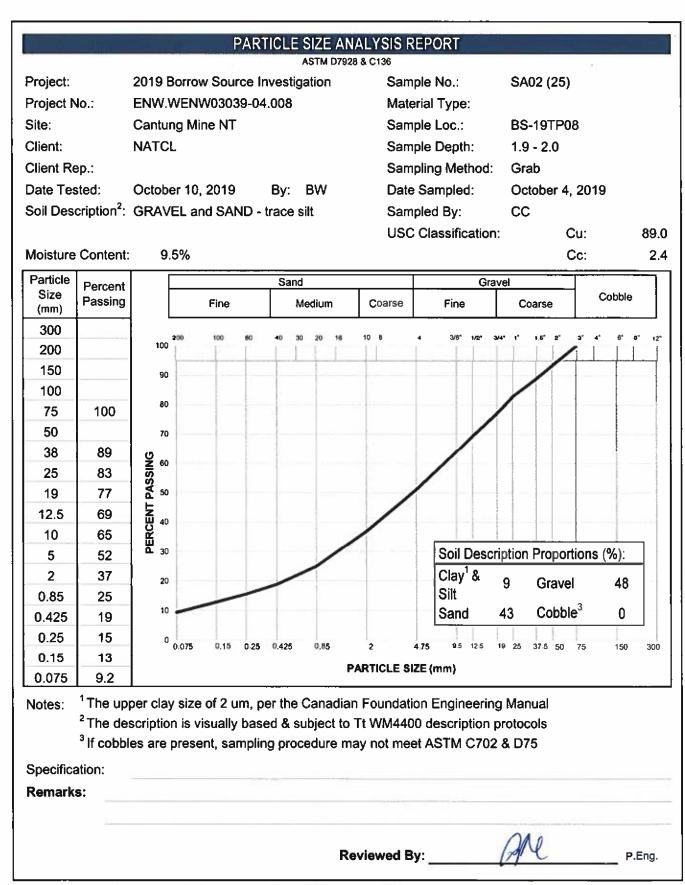

Cc:

155.3

2.7


Moisture Content: 9.9%

Soil Description²: GRAVEL - sandy, trace silt



				D: BS-19T						
			Project: 2019 Borrow Sour	ce Investigation		Projec	t No: E	ENW.WENW03039-04.008		
			Location: Cantung Mine			Groun	id Elev	r: 1116.46 m		
	-		Tungsten, Northwest Terri	tories		UTM:	54259	9 E; 6869297 N; Z 9		
(m)	Method	Soil Description		Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80	Elevation (m)	
		ORGANICS - moss, peat, roots, moist, dark brown, (100 GRAVEL - sandy, trace silt, trace cobbles, trace boulder		Unfrozen						
- 1		brown, subrounded gravel				SA21	7	•	1116	
2	Excavation	- (Gravel - 69%; Sand - 24%; Silt & Clay - 7%)				SA22	8.9	•	1115	
3		- cobble and boulder layer				SA23	5.9	•	1114	
		END OF TESTPIT (3.3 metres)			_					
4									1113	
									1112	
5					<u> </u>					
			Contractor: North American Tungsten Corporation Ltd. Completion Depth: 3.3 m							
-	r.	TETRA TECH	Drilling Rig Type: Hitachi 200			Start Date: October 3, 2019				
			Logged By: CPC		Completion Date: October 3, 2019					

			Testpit No	D: BS-19T	> 0	8					
			Project: 2019 Borrow Sour				t No: E	ENW.WE	VW03039-0	4.008	
			Location: Cantung Mine			-		r: 1113.04			
			Tungsten, Northwest Terri	tories		UTM:	54273	8 E; 6869	9173 N; Z 9		
o Depth (m)	Method	Soil Description) more thick)	Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Plastic Limit 20	Moisture Content 40 60	Liquid Limit -1 80	Elevation (m)
- 1	Excavation	ORGANICS - moss, peat, roots, moist, dark brown, (100 GRAVEL AND SAND - trace silt, occasional cobble, mo subrounded gravel - (Gravel - 48%; Sand - 43%; Silt & Clay - 9%)		Unfrozen		SA24 SA25 SA26	10.5	•			1113-
- 4		END OF TESTPIT (3.3 metres)									1109-
	ł	TETRATECH	Contractor: North America Drilling Rig Type: Hitachi 2 Logged By: CPC Reviewed By: TP	n Tungsten Corporation Ltd. 00		Start [Date: C letion	Depth: 3.3 Dctober 4, Date: Oct		9	· · · · · · · · · · · · · · · · · · ·

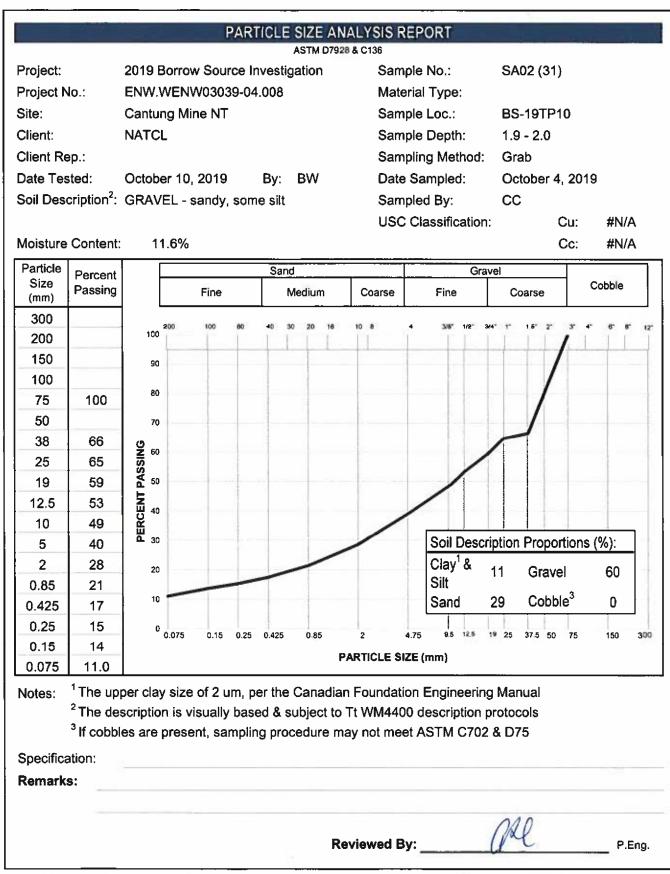
			Testpit No	D: BS-19T	20	9					
			Project: 2019 Borrow Sour				t No: F	ENW.WEI	NW03039-04	.008	
			Location: Cantung Mine	ee meetigation				: 1115.49		.000	
			Tungsten, Northwest Territ	ories					0156 N; Z 9		
			rungsten, Northwest Fern						/100 N, 2 0		
⊖ Depth (m)	Method	Soil Description		Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Plastic Limit 20	Content	_iquid Limit 80	Elevation (m)
		ORGANICS - moss, peat, roots, moist, dark brown, (10) GRAVEL - sandy, some cobbles, trace silt, moist, comp		Unfrozen					· · ·		
1		subrounded gravel	act, greyisii biowii,			SA27	10.7	•			1115
- 2	Excavation	- cobbles, some boulders - (Gravel - 65%; Sand - 27%; Silt & Clay - 8%)				SA28	7.8	•			1114-
3											1113
						SA29	7.1	•			1112-
		END OF TESTPIT (3.7 metres)									
4											
											1111
5			Contractor: North America	a Tungeton Corneration Ltd	<u> </u>	[lotion	Donth: 3 7	7 m		
			Contractor: North American Tungsten Corporation Ltd. Completion Depth: 3.7 m								
		TETRA TECH	Drilling Rig Type: Hitachi 200			Start Date: October 4, 2019 Completion Date: October 4, 2019					
	6	' J	Logged By: CPC					Date: Octo	ober 4, 2019		
			Reviewed By: TP			Page	1 of 1				

		ASTM D7928 & C	36	
Project:	2019 Borrow Source Investig	ation	Sample No.:	SA02 (28)
Project No.:	ENW.WENW03039-04.008		Material Type:	
Site:	Cantung Mine NT		Sample Loc.:	BS-19TP09
Client:	NATCL		Sample Depth:	1.9 - 2.0
Client Rep.:			Sampling Method:	Grab
Date Tested:	October 10, 2019 By:	BW	Date Sampled:	October 4, 2019
Soil Description ² :	GRAVEL - sandy, trace silt		Sampled By:	CC
			USC Classification:	Cu: 239.6

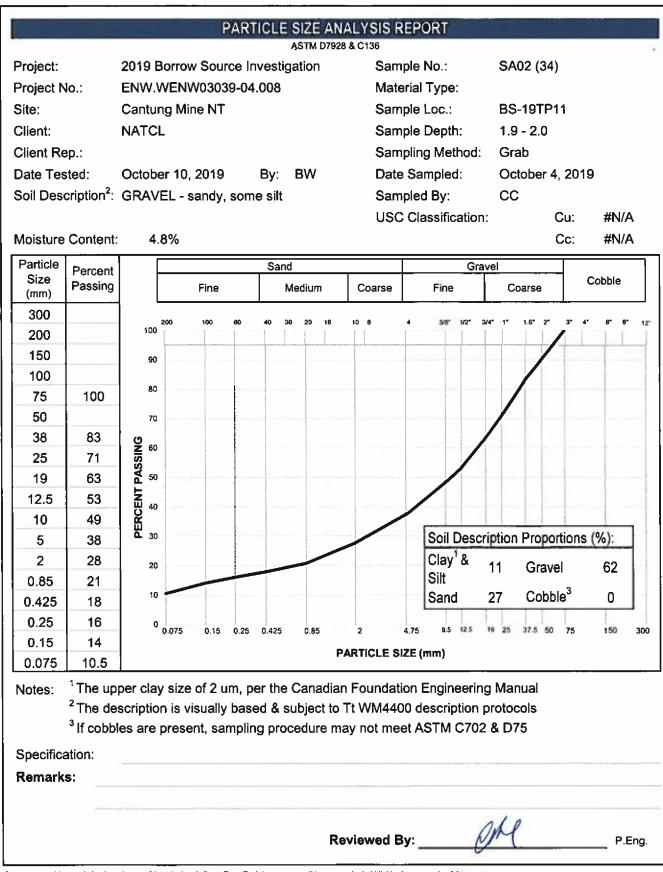
Moisture Content:

7.5%

Particle Sand Gravel Percent Size Cobble Passing Medium Fine Coarse Fine Coarse (mm) 300 1/2" 1.5* 2 31 3/47 100 200 150 90 100 80 75 100 50 70 38 62 PERCENT PASSING 60 54 25 19 52 50 12.5 49 40 10 44 30 Soil Description Proportions (%): 5 35 Clay¹ & 2 25 8 20 Gravel 65 Silt 0.85 18 Cobble³ 10 Sand 27 0 0.425 14 0.25 12 0 0.075 9.5 0.15 0.25 0.425 0.85 4.75 12.5 19 25 300 2 37.5 50 75 150 0.15 10 PARTICLE SIZE (mm) 0.075 8.0 ¹The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes: ² The description is visually based & subject to Tt WM4400 description protocols ³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75 Specification: **Remarks: Reviewed By:** P.Eng.


Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required. Tetra Tech will provide it upon written request.

Cc:

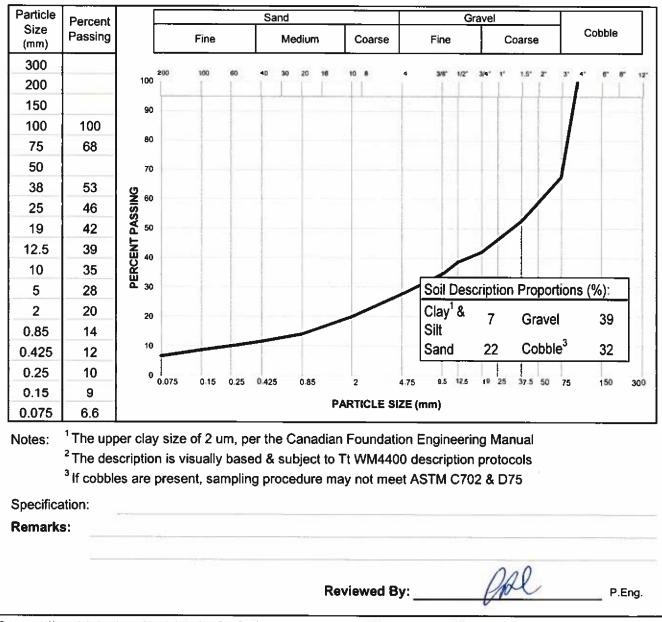

2.5

			Testpit No	D: BS-19T F	21	0					
			Project: 2019 Borrow Sour				t No: E	ENW.WEN	NW03039-04	4.008	
			Location: Cantung Mine	U U		-		r: 1115.48			
			Tungsten, Northwest Territ	tories		UTM:	54269	3 E; 6869	131 N; Z 9		
o Depth (m)	Method	Soil Description) mm thick)	Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Plastic Limit 20	Moisture Content 40 60	Liquid Limit ¶ 80	Elevation (m)
- - - - - - - - - -	vation	GRAVEL - sandy, some silt, some cobbles and boulders brown, subrounded gravel		Unfrozen		SA30	9.6	•			1115-
- 2 - 3	Excavation	- (Gravel - 60%; Sand - 29%; Silt & Clay - 11%)				SA31 SA32		•			1113-
- 4		END OF TESTPIT (3.5 metres)									- 1112-
- 5			Contractor: North America	n Tungatan Corneration Ltd		Come		Donth: 3.5	- m		1111-
	- 00		Contractor: North American Tungsten Corporation Ltd.			Completion Depth: 3.5 m					
	۲.	TETRA TECH	Drilling Rig Type: Hitachi 200			Start Date: October 4, 2019					
	6					Completion Date: October 4, 2019					
			Reviewed By: TP			Page					

			Testpit No	D: BS-19TI	P1	1					
			Project: 2019 Borrow Sour				t No: E	ENW.WEN	N03039-0	4.008	
			Location: Cantung Mine					r: 1115.59 r			
			Tungsten, Northwest Territ	tories		UTM:	54288	0 E; 68690	76 N; Z 9		
ے Depth (m)	Method	Soil Description		Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Limit	Moisture Content 40 60	Liquid Limit – 1 80	Elevation (m)
- 1		ORGANICS - moss, peat, roots, moist, dark brown, (100 GRAVEL - sandy, some silt, moist, compact, greyish bro		Unfrozen		SA33	7.9	•			1115-
- 2	Excavation	- (Gravel - 62%; Sand - 27%; Silt & Clay - 11%)				SA34	4.6	•			1114-
- 3											1113
- 4						SA35	4.5	•			1112
5		END OF TESTPIT (4.0 metres)									1111
			Contractor: North America	n Tungsten Corporation Ltd.		Comp	etion	Depth: 4 m			
	ł	TETRA TECH	Drilling Rig Type: Hitachi 2 Logged By: CPC Reviewed By: TP	00			letion	October 4, 2 Date: Octol		9	

		-	D: BS-19TI					
		Project: 2019 Borrow Sour	ce Investigation		-		ENW.WENW03039-04.008	
		Location: Cantung Mine					r: 1117.19 m	
	Ι	Tungsten, Northwest Terri	tories		UTM:	54288	4 E; 6869039 N; Z 9	
0 (m) Method			Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80	Elevation
	ORGANICS - moss, peat, roots, moist, dark brown, (100 GRAVEL - sandy, some cobbles, trace silt, moist, comp		Unfrozen					
	subrounded gravel							1117
1					SA36	8.7	•	1116
5 Excavation	 - one very large boulder (1.0 metre diameter) SAND - some silt, trace gravel, moist, compact, greyish - (Gravel - 2%; Sand - 85%; Silt & Clay - 13%) 	brown, fine to medium sand			SA37	7.7	•	
								111
3					SA38	5.8	•	1114
	END OF TESTPIT (3.6 metres)							-
4								111:
5								
<u> </u>		Contractor: North America	n Tungsten Corporation Ltd.	-	Comp	letion	Depth: 3.6 m	1
-	TETRATECH	Drilling Rig Type: Hitachi 2					Dctober 4, 2019	
It								
	TETRATECH				Start [Date: C letion		9

PARTICLE SIZE ANALYSIS REPORT ASTM D7928 & C136 Project: 2019 Borrow Source Investigation Sample No.: SA02 (37) Project No.: ENW.WENW03039-04.008 Material Type: Site: Cantung Mine NT Sample Loc.: **BS-19TP12** Client: NATCL Sample Depth: 1.9 - 2.0 Client Rep.: Sampling Method: Grab Date Tested: October 10, 2019 By: BW Date Sampled: October 4, 2019 Soil Description²: SAND - some silt, trace gravel Sampled By: CC **USC Classification:** #N/A Cu: Moisture Content: 7.6% Cc: #N/A Particle Sand Gravel Percent Size Cobble Passing Fine Medium Coarse Fiлe Coarse (mm) 300 38 100 200 150 90 100 80 75 50 70 38 PERCENT PASSING 60 25 50 19 12.5 100 40 10 100 30 Soil Description Proportions (%): 5 98 2 Clay¹ & 95 20 13 2 Gravel Silt 0.85 88 Cobble³ 10 Sand 85 0 0.425 63 0.25 36 0 0.075 95 0.15 0.25 0.425 0.85 4.75 12.5 19 25 37.5 50 75 150 300 0.15 22 PARTICLE SIZE (mm) 12.4 0.075 ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual Notes: ² The description is visually based & subject to Tt WM4400 description protocols ³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75 Specification: **Remarks:** ollo **Reviewed By:** P.Eng.

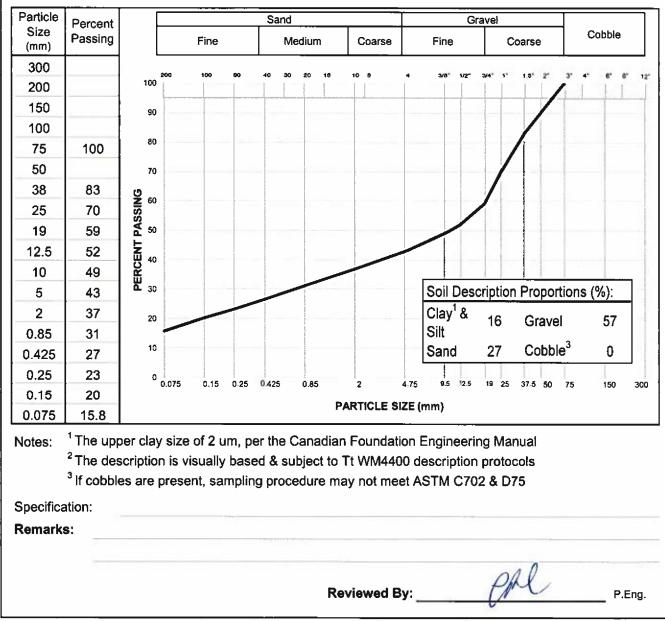

			Testpit No	D: BS-19TI	P1	3					
			Project: 2019 Borrow Sour				t No: E	ENW.WE	NW03039-04.	800	
			Location: Cantung Mine	0				r: 1114.74			
			Tungsten, Northwest Territ	tories					017 N; Z 9		
o Depth (m)	Method	Soil Description) mm thick)	Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Plastic Limit 20	Content	iquid Limit 80	Elevation (m)
- - - - - - - - - - - - - - - - - - -	Excavation	ORGANICS - moss, peat, roots, moist, dark brown, (10/ GRAVEL - sandy, trace silt, cobbles, moist, compact, gr gravel - (Gravel - 71%; Sand - 22%; Silt & Clay - 7%)		Unfrozen		SA39 SA40	9.6	•			11114
- 3		END OF TESTPIT (3.7 metres)				SA41	10.7	•			1111-
5	ł	TETRATECH	Contractor: North American Drilling Rig Type: Hitachi 2 Logged By: CPC Reviewed By: TP	n Tungsten Corporation Ltd. 00		Start [Date: C letion	Depth: 3.7 October 4, Date: Octo			

	ASTM 07928 8	k C136	
Project:	2019 Borrow Source Investigation	Sample No .:	SA02 (40)
Project No.:	ENW.WENW03039-04.008	Material Type:	
Site:	Cantung Mine NT	Sample Loc.:	BS-19TP13
Client:	NATCL	Sample Depth:	1.9 - 2.0
Client Rep.:		Sampling Method:	Grab
Date Tested:	October 10, 2019 By: KC	Date Sampled:	October 4, 2019
Soil Description ² :	GRAVEL - cobbley, sandy, trace silt	Sampled By:	CC
		USC Classification:	Cu: #N/A

Moisture Content:

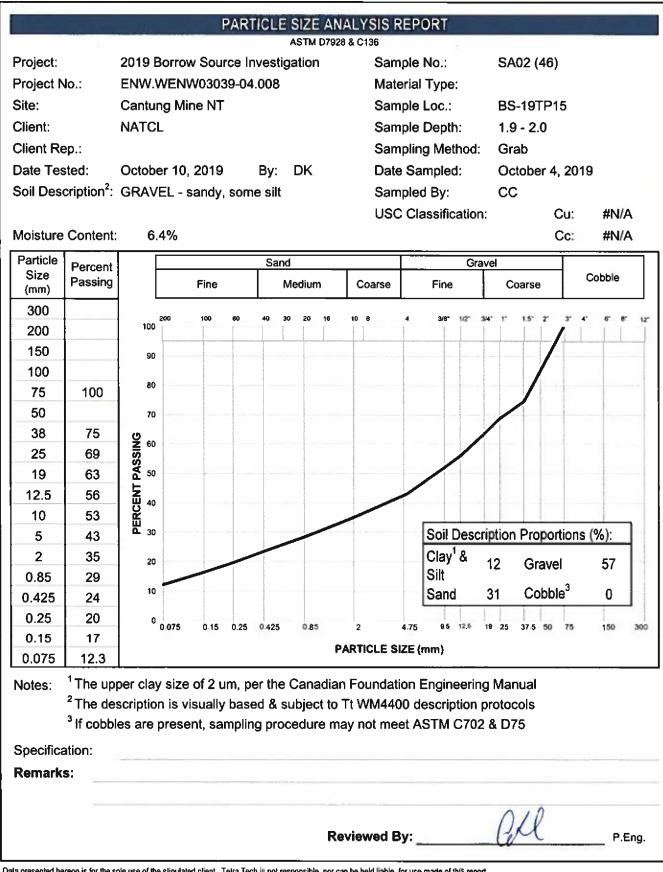
7.5%

Cc: #N/A

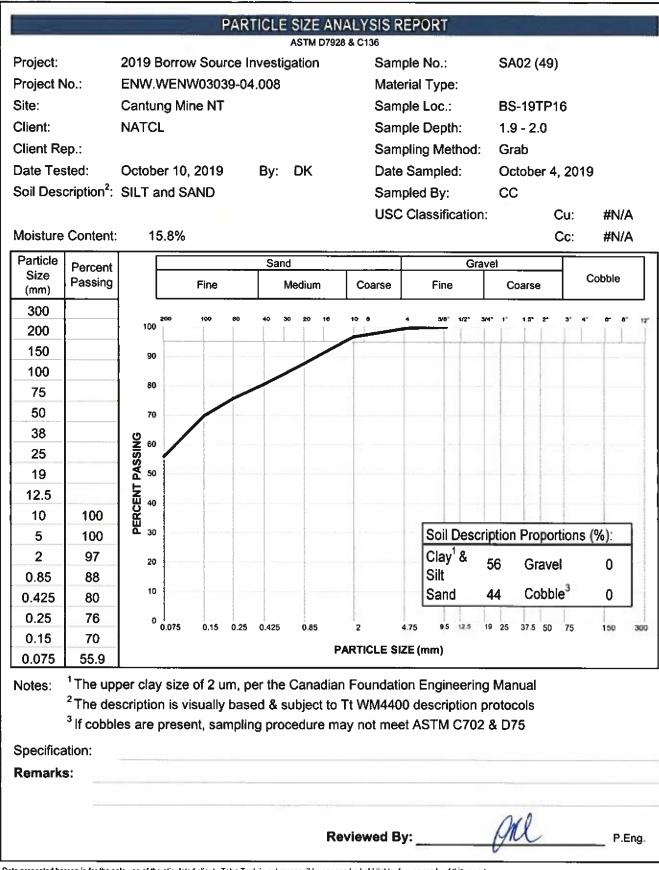


			Testpit No	D: BS-19TI	21	4				
			Project: 2019 Borrow Sour				t No: E	ENW.WENW03039-04.00	8	
			Location: Cantung Mine			Groun	d Elev	/: 1121.45 m		
			Tungsten, Northwest Territ	tories		UTM:	54302	6 E; 6868982 N; Z 9		
o Depth (m)	Method	Soil Description		Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Plastic Moisture Liqu Limit Content Lim 20 40 60 80	nit	
		ORGANICS - moss, peat, roots, moist, dark brown, (100 GRAVEL - sandy, some silt, moist, compact, greyish bro		Unfrozen						
- 1		GRAVEL - Sanuy, some sir, moist, compact, greyish bit	Jwir, Subangulai gravei			SA42	6	•	112 [,]	
	Excavation	- ash layer							1120	
3	Exc	- (Gravel - 57%; Sand - 27%; Silt & Clay - 16%)				SA43		•	111:	
5		END OF TESTPIT (3.7 metres)				SA44	4.9		111;	
4										
									111	
5				-	<u> </u>					
	- 20	٦				n Depth: 3.7 m				
	<u>, </u>	TETRA TECH	Drilling Rig Type: Hitachi 200			Start Date: October 4, 2019				
						Completion Date: October 4, 2019 Page 1 of 1				

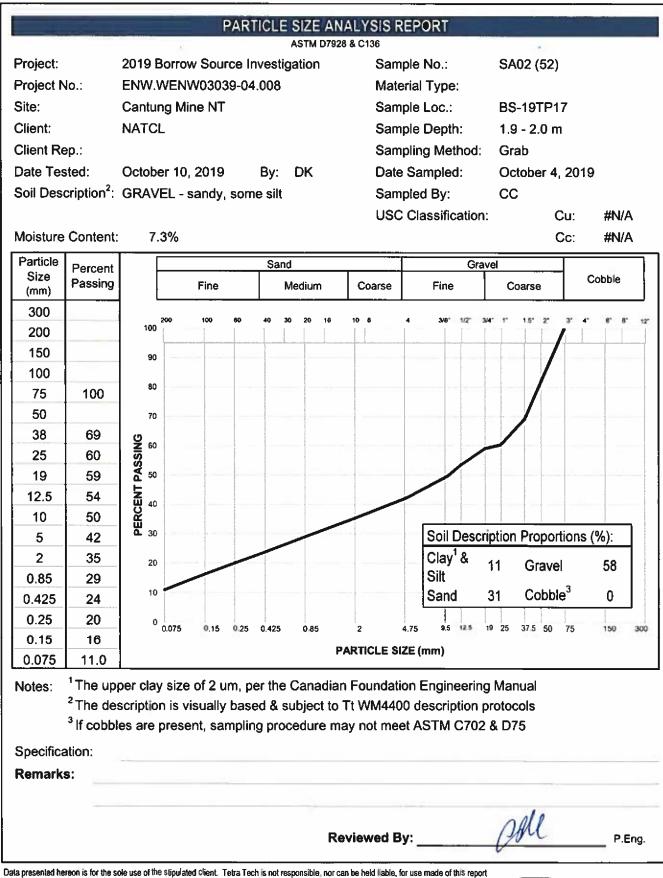
		ASTM 01920 &	0130
Project:	2019 Borrow Source Invest	igation	S
Project No .:	ENW.WENW03039-04.008		Ν
Site:	Cantung Mine NT		S
Client:	NATCL		S
Client Rep.:			S
Date Tested:	October 10, 2019 By:	DK	0
Soil Description ² :	GRAVEL - sandy, some silt		S


C136			
Sample No.:	SA02 (43)		
Material Type:			
Sample Loc.:	BS-19TP14		
Sample Depth:	1.9 - 2.0		
Sampling Method:	Grab		
Date Sampled:	October 4, 2019		
Sampled By:	CC		
USC Classification:		Cu:	#N/A
		Cc:	#N/A

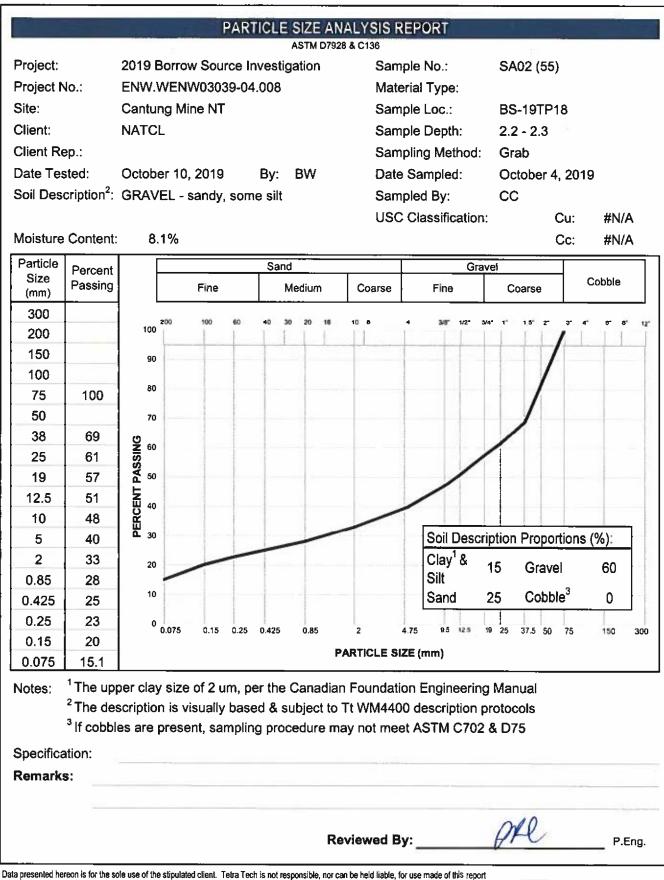
Moisture Content: 6.7%


			1 Colpit NC	D: BS-19T		J					
			Project: 2019 Borrow Sour	ce Investigation		Projec	t No: E	ENW.WENM	/03039-04.	800	
			Location: Cantung Mine			Groun	id Elev	: 1117.57 m			
			Tungsten, Northwest Terri	tories		UTM:	54304	4 E; 686895	5 N; Z 9		
o Depth (m)	Method	Soil Description	0 mm this!)	Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)			iquid Limit 80	Elevation (m)
		ORGANICS - moss, peat, roots, moist, dark brown, (10 GRAVEL - sandy, some silt, moist, compact, greyish br		Unfrozen							
- 1		- thin ash layer - orangey brown				SA45	11.2	•			
	Excavation	- greyish brown									1116
2		- (Gravel - 57%; Sand - 31%; Silt & Clay - 12%) - some cobbles and boulders				SA46	6.4				1115
3						SA47	3.7	•			_
4		END OF TESTPIT (3.0 metres)									1114
5											111:
				n Tungsten Corporation Ltd				Depth: 3 m			
	٢.	TETRA TECH	Drilling Rig Type: Hitachi 2	00				October 4, 20			
	U		Logged By: CPC			Comp	letion	Date: Octob	er 4, 2019		

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required. Tetra Tech will provide it upon written request.


			Testpit No	D: BS-19TI	P1	6					
			Project: 2019 Borrow Sour				t No: E	ENW.WEI	NW03039-(04.008	
			Location: Cantung Mine	0				: 1116.02			
			Tungsten, Northwest Terri	tories					930 N; Z 9		
o Depth (m)	Method	Soil Description ORGANICS - moss, peat, roots, moist, dark brown, (20	0 mm thick)	Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Plastic Limit 20	Moisture Content 40 60	Limit	Elevation (m)
		CRGANICS - Moss, pear, roots, moist, dark brown, (20		Unfrozen							
- 1		GRAVEL - sandy, trace to some silt, one large boulder, brown, subrounded gravel	moist, compact, greyish			SA48	6	•			1115-
	tion	- cobbles and boulders									
2	Excavation	SILT AND SAND - moist, firm, brownish grey - (Gravel - 0%; Sand - 44%; Silt & Clay - 56%)				SA49	15.8	•			1114
- 3		GRAVEL - sandy, some cobbles, trace to some silt, mo subrounded gravel	ist, compact, greyish brown,			SA50	7.5	•			1113-
- 4											1112-
			Contractor: North America	n Tungsten Corporation Ltd.	.	Comp	letion l	Depth: 3.7	7 m		
		TETRA TECH	Drilling Rig Type: Hitachi 2					Dctober 4,			
			Logged By: CPC						ober 4, 201	9	
			Reviewed By: TP			Page			-		

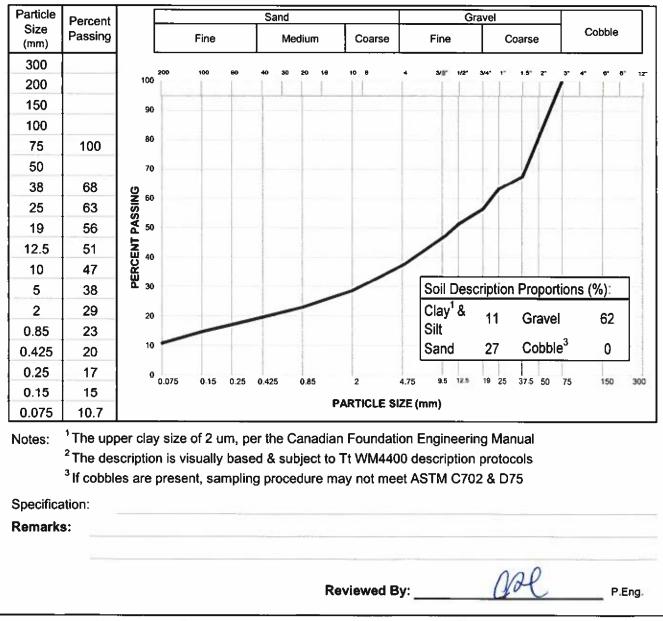
Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.


			Testpit No): BS-19TI	P1	7					
			Project: 2019 Borrow Sour				t No: I	ENW.WEI	NW03039-0	4.008	
			Location: Cantung Mine			-		r: 1142.14			
			Tungsten, Northwest Terri	tories)999 N; Z 9		
o Uepth (m)	Method	Soil Description ORGANICS - moss, peat, roots, moist, dark brown, (30)	0 mm thick)	Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Plastic Limit 20	Moisture Content 40 60	Liquid Limit 1 80	Elevation
		Choning - moss, pear, roots, moist, dairt brown, (ou		Unirozen						-	1142
		SILT - some sand, firm, (200 mm thick)								-	
2	Excavation	GRAVEL - sandy, some silt, moist, compact, greyish br - (Gravel - 58%; Sand - 31%; Silt & Clay - 11%)	own, subrounded gravel			SA51		•			114
3						SA53	7.7	•			113
4		END OF TESTPIT (4.0 metres)									113
5			Contractor: North America	n Tungsten Corporation Ltd.		Comp	letion	 Depth: 4 r	m		
			Drilling Rig Type: Hitachi 2					October 3,			
	1	TETRA TECH								۵	
			Logged By: CPC Reviewed By: TP			Comp Page			ober 3, 201	5	

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held lable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required. Tetra Tech will provide it upon written request.

			Testpit No	D: BS-19T	21	8			
			Project: 2019 Borrow Sour				t No: E	ENW.WENW03039-04.008	
			Location: Cantung Mine	¥		Groun	id Elev	/: 1141.86 m	
			Tungsten, Northwest Territ	tories		UTM:	54085	50 E; 6871100 N; Z 9	
o Depth (m)	Method	Soil Description		Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80	Elevation (m)
-		ORGANICS - moss, peat, roots, moist, dark brown, (300	0 mm thick)	Unfrozen					-
- - - -		SILT - some sand, some gravel, cobbles and boulders, subrounded gravel, (300 mm thick) GRAVEL - sandy, some silt, cobbles and boulders, mois subangular gravel							-
- 1 - -									1141-
- - -	Excavation					SA54	7.4	•	
- - - 2 -	ش ا	- (Gravel - 60%; Sand - 25%; Silt & Clay - 15%)				SA55	8.1	•	1140-
3						0.00			1139-
		END OF TESTPIT (3.3 metres)				SA56	5.3	•	
_									
- 4 - -									1138-
- -									-
- Б									1137-
5			Contractor: North America	n Tungsten Corporation Ltd.		Comp	letion	Depth: 3.3 m	ı
		TETRA TECH	Drilling Rig Type: Hitachi 2					Dctober 3, 2019	
	U		Logged By: CPC			Comp	letion	Date: October 3, 2019	
	-	W-WENW03039-04-008.GPJ EBA.GDT 11/15/19	Reviewed By: TP			Page	1 of 1		

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required. Tetra Tech will provide it upon written request.



			Testpit No	D: BS-19T	21	9			
			Project: 2019 Borrow Sour				rt No: I	ENW.WENW03039-04.008	
			Location: Cantung Mine	oo mooligalon		-		/: 1141.82 m	
			Tungsten, Northwest Territ	tories				i0 E; 6871200 N; Z 9	
o Depth (m)	Method	Soil Description		Ground Ice Description	Sample Type	Sample Number	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80	Elevation (m)
		ORGANICS - moss, peat, roots, moist, dark brown, (200	0 mm thick)	Unfrozen					
		SILT - some sand, trace gravel, moist, firm, brownish gr	rey, (200 mm thick)						
- 1		GRAVEL - sandy, some silt, subrounded gravel							1141
						SA57	10.6	•	
- 2	Excavation	- (Gravel - 62%; Sand - 27%; Silt & Clay - 11%)				SA58	7.2	•	1140 [.]
3						SA59	6	•	1139
- 4		END OF TESTPIT (4.0 metres)							1138
									1137
5		1	Contractor: North America	n Tungsten Corporation Ltd.	<u> </u>	Comp	letion	 Depth: 4 m	
	-	TETRATECH	Drilling Rig Type: Hitachi 2					Depth. 4 m Dctober 3, 2019	
		TETRA TECH	Logged By: CPC					Date: October 3, 2019	
			Reviewed By: TP			Page			

PARTICLE SIZE ANALYSIS REPORT

1000 D			NALCONS.
	ASTM D792	8 & C136	
Project:	2019 Borrow Source Investigation	Sample No.:	SA02 (58)
Project No.:	ENW.WENW03039-04.008	Material Type:	
Site:	Cantung Mine NT	Sample Loc.:	BS-19TP19
Client:	NATCL	Sample Depth:	2.0 - 2.1
Client Rep.:		Sampling Method:	Grab
Date Tested:	October 10, 2019 By: BW	Date Sampled:	October 3, 2019
Soil Description ² :	GRAVEL - sandy, some silt	Sampled By:	CC
		USC Classification:	Cu: #N/A

Moisture Content: 7.2%

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

Cc:

#N/A

APPENDIX D

GEOCHEMISTRY TESTING LABORATORY CERTIFICATES

	ALS Canada Ltd. To: T 2103 Dollarton Hwy North Vancouver BV 7H 0A7 Phone: +1 (604) 984 0218 www.alsglobal.com/geochemistry	To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5	Tot	Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM
CEI	CERTIFICATE VA17251091		SAMPLE PREPARATION	
		ALS CODE	DESCRIPTION	
Project: 704- ENW.WENW03039- 02	:039-02	WEI- 21	Received Sample Weight	
P.O. No.: ENW WENW03039-02	- 02	SND- 01	Send samples to external laboratory	
This report is for 6 Rock sa	This report is for 6 Rock samples submitted to our lab in Vancouver, BC, Canada on	LOG- 22 CRU- 31	Sample login - Rcd w/o BarCode Fine crushina - 70% <2mm	
	· · · · · · · · · · · · · · · · · · ·	SPL- 21	Split sample - riffle splitter	
I he following have acces	I he following have access to data associated with this certificate:	PUL- 31	Pulverize split to 85% < 75 um	
NDICONIN'S		SPL- 21X	Addnl Crush Split w No Analysis	
			ANALYTICAL PROCEDURES	
		ALS CODE	DESCRIPTION	INSTRUMENT
		S- IR07	Sulphide Sulphur (Leco)	LECO
		C- GAS05	Inorganic Carbon (CO2)	
		ME- MS61	48 element four acid ICP- MS	
		OA- VOL08	Basic Acid Base Accounting	
		S- IR08	Total Sulphur (Leco)	LECO
		OA- ELE07	Paste pH	

TETRA TECH CANADA INC. ATTN: S. KINGSTON 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5 .: То

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release

***** See Appendix Page for comments regarding this certificate *****

Signature: Colin Ramshaw, Vancouver Laboratory Manager

WST- SEQ

Sulfate Sulfur (HCI leachable)

S-GRA06a

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET

2 - A - D) ages 2017 TGM	Γ		ME- MS61 As ppm 0.2	19.3 19.0 5.9 8.4	20.2
Page: 2 - A ges: 2 (A - D) ppendix Pages : 5- DEC- 2017 Account: TGM					
l # Page lus App Date: 5 A		25109	ME- MS61 Al % 0.01	6.27 6.16 7.71 3.53 4.60	9.59
Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM		VA17251091	ME-MS61 Ag ppm 0.01	0.28 0.25 0.31 0.08	0.27
Ľ	2127	YSIS	S- GRA06a S % 0.01	 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 	<0.01
		ANALYSIS	C- GAS05 CO2 % 0.2	1.2 1.4 0.7 19.5	8 G
INC. N5		ATE OF	C- GAS05 C % 0.05	0.33 0.38 0.19 5.31 3.57	1.59
To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5	NW.WENW	CERTIFICATE	S- IR07 Sulphide % 0.01	0.02 0.03 60.01 <0.01	0.02
A TECH DUNSMU COUVER	ct: 704- E		S- IR08 5 % 0.01	0.04 0.04 0.05 0.02 0.03	0.07
To: TETR 885 VAN0	Proje		OA- ELE07 pH Unity 0.1	8.2 8.0 8.6 8.6	8.2
			OA- VOL08 Ratio (N Unity 0.01	28.00 30.40 15.36 764.8 362.7	66.74 2
4 0218			OA- VOL08 NP tCaCO3/1Kt 1	35 38 24 478 340	- 146
Fax: +1 (604) 984 0218 emistry			OA- VOL08 NNP tCaCO3/1Kt 1	34 37 22 477 339	1 44
H 0A7 221 Fax: geochemis			0A- VOL08 MPA tCaCO3/1Kt 0.3	1.3 1.6 0.6 0.9	22
ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 www.alsglobal.com/geochemistry			OA- VOL08 FIZZ RAT Unity 1	00044	κ
ALS Canada Ltd. 2103 Dollarto North Vancour Phone: +1 (60 www.alsglob			WEI- 21 Recvd Wt. kg 0.02	1.96 1.94 2.14 2.26 2.26	2.06
	~		Method Analyte Units LOR		
	LN,		scription	04 05 10	9
	1		Sample Description	9- 16- JD- 04 9- 16- JD- 05 9- 16- JD- 17 9- 16- JD- 17 9- 16- JD- 13	9- 16- JD- 50

***** See Appendix Page for comments regarding this certificate *****

B () S ⊢ Σ	Г				
Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages lized Date: 5- DEC- 2017 Account: TGM			ME- MS61 In ppm 0.005	0.047 0.040 0.057 0.028 0.028	0.04
F # Pages: us Apper Date: 5- Acc		VA17251091	ME- MS61 Hf ppm 0.1	2.5 2.2 1.4 1.4	ç N
Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM		VA172	ME- MS61 Ge ppm 0.05	0.14 0.14 0.14 0.11 0.13	0.15
ш		YSIS	ME- MS61 Ga ppm 0.05	15.15 15.10 19.05 8.30 10.15	18.00 18.00
		F ANALYSIS	ME- MS61 Fe % 0.01	3.60 3.48 4.00 1.54 1.80	9. 9. 9.
INC. N5	/03039-0	ATE OF	ME-MS61 Cu ppm 0.2	33.5 30.3 40.1 11.8 7.8	2.08 8
CANADA R STREET 3C V6C 11	NW.WENW	CERTIFICATE	ME-MS61 Cs ppm 0.05	4.05 4.00 5.33 3.64 4.56	10.75
To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5	Project: 704- ENW.WENW03039- 02	CE	ME- MS61 Cr ppm 1	63 65 76 24 27	ê
To: TETF 885 VAN	Proje		ME-MS61 Co ppm 0.1	12.2 10.5 15.4 4.9 5.2	12.1
			ME-MS61 Ce ppm 0.01	72.7 66.1 82.0 57.3 60.2	4.67
4 0218			ME-MS61 Cd ppm 0.02	2.25 2.31 2.55 0.73 0.10	5.22
Fax: +1 (604) 984 0218 emistry			ME- MS61 Ca % 0.01	1.24 1.42 0.86 17.20 10.10	4. 66
H 0A7 21 Fax: Jeochemist			ME-MS61 Bi ppm 0.01	0.23 0.41 0.29 0.81 0.60	0.30
ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 www.alsglobal.com/geochemistry			ME-MS61 Be ppm 0.05	1.77 1.75 2.22 1.33 2.01	× 88
ALS Canada Ltd. 2103 Dollarto North Vancour Phone: +1 (60 www.alsglob			ME-MS61 Ba ppm 10	5940 5830 8170 1220 840	4 330 0
	~		Method Analyte Units LOR		
	S		cription		
	3		Sample Description	9- 16- JD- 04 9- 16- JD- 05 9- 16- JD- 17 9- 16- JD- 17 9- 16- JD- 13	9- 16- JD- 50

N 1 & D C	Г		_		
Page: 2 - C ges: 2 (A - D) ppendix Pages : 5- DEC- 2017 Account: TGM			ME- MS61 Sb ppm 0.05	4.08 3.76 4.53 0.43 0.31	3.87
F # Pages: Ls Apper Date: 5- Acc	1001	51091	ME- MS61 S % 0.01	0.05 0.05 0.06 0.01 0.03	20 [.] 0
Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM		VA17251091	ME- MS61 Re ppm 0.002	0.004 0.008 0.006 <0.002 0.002	0.004
ш	2127	YSIS	ME- MS61 Rb ppm 0.1	115.0 110.0 140.5 76.2 101.5	120.0
		- ANALYSIS	ME-MS61 Pb ppm 0.5	18.5 17.9 22.6 13.3 13.4	کر ت
NC.		A I E OF	ME- MS61 P ppm 10	930 950 1020 690 560	0 6 6
CANADA R STREET SC V6C 11	NW.WENW	CERTIFICATE	ME- MS61 Ni ppm 0.2	51.7 46.8 66.3 12.2 11.8	4 8 4
To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5	ct: 704- El		ME- MS61 Nb ppm 0.1	9.8 9.3 10.7 7.3 8.7	1.2
To: TETR 885 I VANO	Proje		ME-MS61 Na 8.01	0.24 0.23 0.22 0.30 0.57	0.25
			ME- MS61 Mo ppm 0.05	5.21 5.69 5.76 0.52 0.41	5. 48
4 0218			ME-MS61 Mn ppm 5	353 312 367 357	402
Fax: +1 (604) 984 0218 emistry			ME- MS61 Mg 0.01	0.74 0.72 0.79 4.62 4.24	۲. 4
H 0A7 21 Fax: Jeochemist			ME-MS61 Li ppm 0.2	45.6 43.4 51.9 31.6 39.2	47.8 8
ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 www.alsglobal.com/geochemistry			ME-MS61 La ppm 0.5	35.7 32.8 41.0 27.3 29.6	40.6
ALS Canada Ltd. 2103 Dollarto North Vancour Phone: +1 (60 www.alsglob			ME- MS61 K % 0.01	2.39 2.20 2.73 1.90 2.36	2.40
	~		Method Analyte Units LOR		
-	S		scription	4 ις Λ Ο ω	
	3		Sample Description	9- 16- JD- 04 9- 16- JD- 05 9- 16- JD- 17 9- 16- JD- 13 9- 16- JD- 13	9- 16- JD- 50

2 - D A - D) Pages 2017 :: TGM	ſ		ME- MS61 Zr ppm 0.5	88.2 76.9 88.5 47.0 50.7	6
Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM		191		278 273 334 49 35	79 293
al # Pag Plus Ap d Date:		251(Σ	2 6 % 7 N	X X
Tota F Finalizee		VA17251091	ME-MS61 Y ppm 0.1	15.6 14.3 17.1 10.2 10.8	18.2
_		YSIS	ME-MS61 W ppm 0.1	1.2 1.4 1.4 2.5 7	17 2
		ANALYSIS	ME-MS61 V ppm 1	290 259 316 39	370 8
NC.	03039-02	ATE OF	ME-MS61 U ppm 0.1	3.6 3.5 2.8 3.8 3.8 3.9 3.6	ත. ෆ්
ANADA I R STREET C V6C 1N	JW.WENW	CERTIFICATE	ME- MS61 TI ppm 0.02	1.00 0.95 1.22 0.41 0.56	66 C
To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5	Project: 704- ENW.WENW03039- 02	CE	ME- MS61 Ti % 0.005	0.325 0.313 0.380 0.167 0.195	0.351
To: TETR 885 I VANC	Proje		ME- MS61 Th ppm 0.01	12.15 10.75 12.75 8.20 11.85	12.50
			ME- MS61 Te ppm 0.05	<0.05 0.06 <0.05 <0.05	0 ^{.05}
4 0218			ME- MS61 Ta ppm 0.05	0.73 0.67 0.77 0.54 0.70	O. 81
Fax: +1 (604) 984 0218 emistry			ME- MS61 Sr ppm 0.2	76.0 85.5 81.6 193.5 157.0	0.4 0
H 0A7 21 Fax: geochemist			ME-MS61 Sn ppm 0.2	1.7 2.2 2.2 2.2	20
ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 www.alsglobal.com/geochemistry			ME- MS61 Se ppm 1	N ← ← ← 7	~
ALS Canada Ltd. 2103 Dollarto North Vancour Phone: +1 (60 www.alsglob			ME-MS61 Sc ppm 0.1	10.7 10.5 14.0 5.2 5.5	6.0 9
	~		Method Analyte Units LOR		
	N		cription	t 10 N O	
Y	3		Sample Description	9- 16- JD- 04 9- 16- JD- 05 9- 16- JD- 17 9- 16- JD- 13 9- 16- JD- 13	9- 16- JD- 50

	ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 021 Fax: +1 (604) 984 0218 Phono = 1 (604) 984 0218	To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5	Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 5- DEC- 201 7 Account: TGM
ALS)		Project: 704- ENW.WENW03039- 02	10012261001
		CERTIFICATE OF ANALTSIS	1601C7/1AV
	CERTIFICATE COMMENTS	COMMENTS	
Applies to Method:	KEE's may not be totally soluble in this method. ME- MS61	ANALYTICAL COMMENTS	
Applies to Method:	LABORATORY ADDRESSESProcessed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.C- GAS05CRU- 31C- GAS05OA- VOL08OA- ELE07OA- VOL08S- IR07S- IR08	LABORATORY ADDRESSES Hwy, North Vancouver, BC, Canada. LOG- 22 PUL- 31 SND- 01	ME- MS61 S- GRA06a SPL- 21
	×		

ALS: ALS: Nor Who	ALS Canada Ltd. TO: T 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry	To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5	Tot Finalize	Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM
CERI	CERTIFICATE VA17251089		SAMPLE PREPARATION	
		ALS CODE	DESCRIPTION	
Project: 704- ENW.WENW03039- 02	:9- 02	WEI- 21 1 OG- 22	Received Sample Weight Sample login - Rcd w/o BarCode	
This report is for 2 Rock samp	P.O. NO ENW.WENW03039-02 This report is for 2 Rock samples submitted to our lab in Vancouver RC Canada on	CRU-31	Fine crushing - 70% < 2mm	
15- NOV- 2017.	קרט סמסווווורים וס סמו ומס ווו אמוריסמירו, דרי כמוממת סו	SPL-21	Split sample - riffle splitter	
The following have access	The following have access to data associated with this certificate:	PUL-31	Pulverize split to 85% < 75 um	
S. KINGSTON		SND- 01	Addril Crush Split w No Analysis Send samples to external laboratory	
			ANALYTICAL PROCEDURES	
		ALS CODE	DESCRIPTION	
		OA- ELE07	Paste pH	
		S-GRA06a	Sulfate Sulfur (HCI leachable)	WST- SEQ
		S-IR07	Sulphide Sulphur (Leco)	LECO
		C- CAS05	Inorganic Carbon (CO2)	
		ME- MS61	48 element four acid ICP- MS	
		0A- VOL08	Basic Acid Base Accounting	
		S- IR08	Total Sulphur (Leco)	LECO

TETRA TECH CANADA INC. ATTN: S. KINGSTON 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5 То: Т

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Colin Ramshaw, Vancouver Laboratory Manager

	Г			
Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM			ME- MS61 As ppm 0.2	0.0 8.0
Pa # Pages: Ls Appen Date: 5- D Acco		VA17251089	ME- MS61 AI % 0.01	7.55
Total Plu inalized		VA172	ME- MS61 Ag ppm 0.01	0.02
ш		YSIS	S- GRA06a S % 0.01	0.0 20.05
		F ANALYSIS	C- GAS05 CO2 % 0.2	0.2 0.2
INC. N5		ATE OF	C- GAS05 C % 0.05	6.05 6.05
To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5	NW.WENV	CERTIFICATE	S- IR07 Sulphide % 0.01	0.0 0.0
ka TECH DUNSMU COUVER	ct: 704- E	Ū	5- IR08 5 % 0.01	40.05 20.05
To: TETF 885 VAN	Proje		OA- ELE07 PH Unity 0.1	ອີ ອີ
			OA- VOL08 Ratio (N Unity 0.01	44.80 57,60
4 0218			OA- VOL08 NP tCaCO3/1Kt 1	۲ o
Fax: +1 (604) 984 0218 emistry			OA- VOL08 OA- VOL08 MPA NNP tCaCO3/1Kt tCaCO3/1Kt 0.3 1	ト の
ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 www.alsglobal.com/geochemistry			OA- VOL08 MPA tCaCO3/1Kt 0.3	40.3 40.3
rta. rton Hwy couver BC V7 (604) 984 03 lobal.com/			OA- VOL08 FIZZ RAT Unity 1	~ ~
ALS Canada Ltd. 2103 Dollarto North Vancou Phone: +1 (60 www.alsglob			WEI- 21 Recvd Wt. kg 0.02	10.40 7.48
	~		Method Analyte Units LOR	
	ALS		Sample Description	9- 16- JD- 53 9- 16- JD- 53

***** See Appendix Page for comments regarding this certificate *****

	Г			
Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM			ME- M561 In ppm 0.005	0.036
P # Pages: Is Appen Date: 5- D Acco		51089	ME- MS61 Hf ppm 0.1	1. 1. 1. 7
Total ; Plu inalized [VA17251089	ME- MS61 Ge ppm 0.05	0.15 15
Ē			ME- MS61 Ga ppm 0.05	13.65
		ANALYSIS	ME- MS61 Fe % 0.01	1.88 1.70
- NS V5	03039-0	ATE OF	ME-MS61 Cu ppm 0.2	5 8 Q
To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5	Project: 704- ENW.WENW03039- 02	CERTIFICATE	ME- MS61 Cs ppm 0.05	10.90 7.96
A TECH (DUNSMUI COUVER E	ct: 704- El	CE	ME- MS61 Cr ppm 1	÷ ↔
To: TETR 885 VAN0	Proje		ME-MS61 Co ppm 0.1	ω. ω. Α
			ME- MS61 Ce ppm 0.01	79.8 79.3
4 0218			ME- MS61 Cd ppm 0.02	0.0.0 40
Fax: +1 (604) 984 0218 :mistry			ME- MS61 Ca % 0.01	4.1.1. 4.0.1
H 0A7 21 Fax: -			ME- MS61 Bi ppm 0.01	0.42
ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 www.alsglobal.com/geochemistry			ME- MS61 Be ppm 0.05	4.08 5.53
ALS Canada Ltd. 2103 Dollarto North Vancou Phone: +1 (60 www.alsglob			ME- MS61 Ba ppm 10	e 20 e 32
			Method Analyte Units LOR	
	5	ì		
q	AL		Sample Description	9- 16-JD-53
			Sar	φ.φ.

***** See Appendix Page for comments regarding this certificate *****

	Г		-	
Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM			ME- MS61 Sb ppm 0.05	0 0 4 E
Pa # Pages: Is Appen Date: 5- D Acco		51089	ME- MS61 S 0.01	0.0
Total ; Plu inalized [VA17251089	ME- MS61 Re ppm 0.002	<0.002 <0.002
Ē		YSIS	ME-MS61 Rb ppm 0.1	220 200
		ANALYSIS	ME- MS61 Pb ppm 0.5	4.04 4.05
VS VS	03039-0	ATE OF	ME-MS61 P ppm 10	5 8 9 8 9
To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5	Project: 704- ENW.WENW03039- 02	CERTIFICATE	ME- MS61 Ni ppm 0.2	ю 8. 7 8
A TECH (DUNSMUI COUVER E	ct: 704- El	CE	ME- MS61 Nb ppm 0.1	8.11 1.01
To: TETR 885 VAN0	Proje		ME- MS61 Na % 0.01	2.25
			ME- MS61 Mo ppm 0.05	2.49
4 0218			ME-MS61 Mn ppm 5	5 3 3 2 9
Fax: +1 (604) 984 0218 emistry			ME- MS61 Mg % 0.01	0.43
H 0A7 21 Fax: ·			ME- MS61 Li ppm 0.2	133.0
ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 www.alsglobal.com/geochemistry			ME- MS61 La ppm 0.5	8. 8. 9. 6.
ALS Canada Ltd. 2103 Dollarto North Vancour Phone: +1 (60 www.alsglob			ME- MS61 K % 0.01	3.78 3.70
			Method Analyte Units LOR	
	5	Ì		
q	AL		Sample Description	9- 16- JD- 53 16- JD- 53
	C	1	Sam	์ ธิ.

	Г			1
Page: 2 - D ges: 2 (A - D) ppendix Pages : 5- DEC- 2017 Account: TGM			ME- MS61 Zr ppm 0.5	46.2 48.3
Pages: # Pages: Js Appen Date: 5- D Acco		51089	ME- MS61 Zn ppm 2	8 8
Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM		VA17251089	ME-MS61 Y ppm 0.1	ອ ບີ
LL.		<u>YSIS</u>	ME-MS61 W ppm 0.1	κ, α α Γ
		F ANALYSIS	ME- MS61 V ppm 1	3° 38
INC. N5		ATE OF	ME-MS61 U ppm 0.1	ແ ຊັບ
To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5	NW.WENV	CERTIFICATE	ME-MS61 TI ppm 0.02	1.21
RA TECH	ct: 704- E	CE	ME- MS61 Ti % 0.005	0.202
To: TETF 885 VAN	Proje		ME-MS61 Th ppm 0.01	18.55 8.05
			ME- MS61 Te ppm 0.05	<0.05 <0.05
4 0218			ME-MS61 Ta ppm 0.05	1.33
Fax: +1 (604) 984 0218 emistry			ME-MS61 Sr ppm 0.2	238
H 0A7 21 Fax: geochemist			ME-MS61 Sn ppm 0.2	4 6 6
ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 www.alsglobal.com/geochemistry			ME- MS61 Se ppm 1	Σ Σ
ALS Canada Ltd. 2103 Dollarto North Vancour Phone: +1 (60 www.alsglob			ME-MS61 Sc ppm 0.1	νο υνο
			Method Analyte Units LOR	
	5			
S	AL		Sample Description	9- 16-JD-53 9- 16-JD-53
	V	6	Sai	ခံ ခ်

	ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www alsolichal concremistry	To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5	Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 5- DEC- 2017 Account: TGM
ALS)		Project: 704- ENW.WENW03039- 02	0801775101
		CENTIFICATE OF ANALTSIS	6001C7/1W
	CERTIFICATE COMMENTS	COMMENTS	
Applies to Method:	A REE's may not be totally soluble in this method. ME- MS61	ANALYTICAL COMMENTS	
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. C- GAS05 CC. 22	LABORATORY ADDRESSES Hwy, North Vancouver, BC, Canada. LOG- 22	ME- MS61
	OA- ELE07 OA- VOL08 5- IR07 5- IR08 SPL- 21X WEI- 21	PUL- 31 SND- 01	S- GRA06a SPL- 21

Tetra Tech Canada Inc. ATTN: Scott Kingston 1000 - 885 Dunsmuir Street, 10th floor Vancouver BC V6E 1N5 Date Received:28- NOV- 17Report Date:05- DEC- 17 15:51 (MT)Version:FINAL

Client Phone: 604-685-0275

Certificate of Analysis

Lab Work Order #: L2028191

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 704- ENW.WENW03039- 02

Brent Mack, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 났

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2028191 CONTD.... PAGE 2 of 5 05-DEC-17 15:51 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2028191-1 Other 9-16-JD-52	L2028191-2 Other 9-16-JD-04	L2028191-3 Other 9-16-JD-10	L2028191-4 Other 9-16-JD-50	
Grouping	Analyte					
SOIL						
Physical Tests	Hardness (as CaCO3) (mg/L)	2.15	40.0	26.9	43.2	
	Moisture (%)	<0.25	<0.25	<0.25	<0.25	
Leachable Anions & Nutrients	Acidity (as CaCO3) (mg/L)	<4.0	<4.0	<4.0	<4.0	
	Alkalinity, Total (as CaCO3) (mg/L)	4.7	37.3	27.8	38.6	
	Ammonia, Total Leachable (as N) (mg/L)	0.0151	0.0375	0.0245	0.0495	
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	<0.50	
	Conductivity (uS/cm)	27.5	82.9	58.4	93.3	
	Fluoride (F) (mg/L)	0.071	0.175	0.045	0.522	
	Nitrate (as N) (mg/L)	0.0075	0.105	0.0762	0.0408	
	Nitrite (as N) (mg/L)	<0.0010	0.0110	0.0052	0.0137	
	рН (рН)	7.32	8.45	9.18	8.66	
	Sulfate (SO4) (mg/L)	2.39	4.67	2.14	5.95	
Leachable Metals	Aluminum (Al)-Leachable (mg/L)	0.657	0.179	0.594	0.0839	
	Antimony (Sb)-Leachable (mg/L)	<0.00010	0.00118	0.00018	0.00152	
	Arsenic (As)-Leachable (mg/L)	<0.0010	<0.0010	0.0015	0.0010	
	Barium (Ba)-Leachable (mg/L)	0.0070	0.570	0.0779	0.196	
	Beryllium (Be)-Leachable (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Bismuth (Bi)-Leachable (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Boron (B)-Leachable (mg/L)	0.011	<0.010	<0.010	0.015	
	Cadmium (Cd)-Leachable (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Calcium (Ca)-Leachable (mg/L)	0.55	14.8	9.55	14.9	
	Chromium (Cr)-Leachable (mg/L)	<0.00050	0.00103	<0.00050	0.00117	
	Cobalt (Co)-Leachable (mg/L)	0.00020	<0.00010	<0.00010	<0.00010	
	Copper (Cu)-Leachable (mg/L)	0.0025	<0.0010	<0.0010	<0.0010	
	Iron (Fe)-Leachable (mg/L)	0.250	0.036	<0.030	0.047	
	Lead (Pb)-Leachable (mg/L)	0.00082	<0.00010	<0.00010	<0.00010	
	Lithium (Li)-Leachable (mg/L)	<0.0050	<0.0050	<0.0050	0.0138	
	Magnesium (Mg)-Leachable (mg/L)	0.188	0.715	0.742	1.46	
	Manganese (Mn)-Leachable (mg/L)	0.0191	0.00122	<0.00050	0.00099	
	Mercury (Hg)-Leachable (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Molybdenum (Mo)-Leachable (mg/L)	0.00104	0.00314	0.00054	0.00749	
	Nickel (Ni)-Leachable (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Phosphorus (P)-Leachable (mg/L)	<0.30	<0.30	<0.30	<0.30	
	Potassium (K)-Leachable (mg/L)	4.62	1.81	2.10	1.88	
	Selenium (Se)-Leachable (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Silicon (Si)-Leachable (mg/L)	3.80	1.73	1.51	2.47	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2028191 CONTD.... PAGE 3 of 5 05-DEC-17 15:51 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2028191-1 Other 9-16-JD-52	L2028191-2 Other 9-16-JD-04	L2028191-3 Other 9-16-JD-10	L2028191-4 Other 9-16-JD-50	
Grouping	Analyte					
SOIL						
Leachable Metals	Silver (Ag)-Leachable (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Sodium (Na)-Leachable (mg/L)	2.34	0.546	0.187	0.578	
	Strontium (Sr)-Leachable (mg/L)	0.00346	0.0341	0.0128	0.0307	
	Thallium (TI)-Leachable (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Tin (Sn)-Leachable (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Titanium (Ti)-Leachable (mg/L)	0.014	<0.010	<0.010	<0.010	
	Uranium (U)-Leachable (mg/L)	0.00628	0.000446	0.000270	0.000599	
	Vanadium (V)-Leachable (mg/L)	0.0012	0.0016	0.0012	0.0016	
	Zinc (Zn)-Leachable (mg/L)	<0.010	<0.010	<0.010	<0.010	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

L2028191 CONTD PAGE 4 of 5 05-DEC-17 15:51 (MT) Version[.] FINAI

QC Samples with Qualifiers & Comments:

QC Type Description		Parameter	Qualifier	Applies to Sample Number(s)
Duplicate		Antimony (Sb)-Leachable	DUP-H	L2028191-1, -2, -3, -4
Qualifiers for Indiv	dual Parameters	Listed:		
Qualifier Des	cription			
DUP-H Du	licate results outs	side ALS DQO, due to sample heteroger		
est Method Refere	nces: Matrix	Test Description		Method Reference**
ACY-SHKFLSK-PCT		Acidity by PCT (SHAKEFLASK)		BC MINISTRY OF ENERGY AND MINES
	am A. Price, 2009	9). In summary, a sample is extracted w	vith deionized wa	ge Chemistry from Sulphidic Geologic Materials (MEND ater at a 3:1 liquid to solids ratio for 24 hours. The er and analysed using procedures adapted from APHA

Lab deionized water is used in the creation of the samples for acidity testing. Although of very low ionic strength, the water does have pH <8.3, and hence inherent acidity, and may contribute measurable acidity levels near the limit of reporting."

Alkalinity by PCT (SHAKEFLASK) ALK-SHKFLSK-PCT-VA Soil

BC MINISTRY OF ENERGY AND MINES

BC MIN. OF ENERGY AND MINES/APHA 4110 B.

BC MIN. OF ENERGY AND MINES/APHA 4110 B.

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using procedures adapted from APHA Method 2320 "Alkalinity".

BR-SHKFLSK-IC-VA Bromide by IC (SHAKEFLASK) Soil

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter. The analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate.

CL-SHKELSK-IC-VA Soil Chloride by IC (SHAKEFLASK)

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter. The analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate.

Soil EC by PCT (SHAKEFLASK) **EC-SHKELSK-PCT-VA**

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using procedures adapted from APHA Method 2510 "Conductivity".

F-SHKFLSK-IC-VA

Soil Fluoride by IC (SHAKEFLASK)

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter. The analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate.

HARDNESS-CALC-VA Soil Hardness

APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

Mercury by CVAAS (SHAKEFLASK) HG-SHKFLSK-CVAFS-VA Soil

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using atomic absorption spectrophotometry (EPA Method 245.7). The Shakeflask extraction is an empirical procedure with pre-defined characteristics. Recovery of some elements (Ag, Bi, Hg, and Sn) by this method can be variable due to the neutral pH of the extraction fluid. LCS QC sample DQOs for these elements have been established at 50-130% for this reason

MET-SHKFLSK-MS-VA Soil Metals by ICPMS (SHAKEFLASK)

BC MINISTRY OF ENERGY AND MINES

BC MINISTRY OF ENERGY AND MINES

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using inductively coupled plasma mass spectrophotometry (EPA Method 6020A).

The Shakeflask extraction is an empirical procedure with pre-defined characteristics. Recovery of some elements (Ag, Bi, Hg, and Sn) by this method can be variable due to the neutral pH of the extraction fluid. LCS QC sample DQOs for these elements have been established at 50-130% for this reason.

BC MINISTRY OF ENERGY AND MINES

BC MIN. OF ENERGY AND MINES/APHA 4110 B.

Reference Information

MOISTURE-VA Soil Moisture content CWS for PHC in Soil - Tier 1 This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours. Ammonia by Fluoresence (SHAKE FLASK) BC MIN. OF ENERGY AND MINES NH3-SHKFLSK-F-VA Soil This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter. The analysis is carried out using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al. NO2-SHKELSK-IC-VA Nitrite by IC (SHAKEFLASK) BC MIN OF ENERGY AND MINES/APHA 4110 B Soil This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter. The analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. BC MIN. OF ENERGY AND MINES/APHA 4110 B. NO3-SHKFLSK-IC-VA Soil Nitrate by IC (SHAKEFLASK) This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter. The analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. PH-SHKFLSK-MAN-VA Soil pH by Manual Meter (SHAKEFLASK) BC MINISTRY OF ENERGY AND MINES This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently analysed using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode. SO4-SHKFLSK-IC-VA Sulfate by IC (SHAKEFLASK) BC MIN. OF ENERGY AND MINES/APHA 4110 B. Soil This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter. The analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA Chain of Custody Numbers: GLOSSARY OF REPORT TERMS Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample. mg/kg wwt - milligrams per kilogram based on wet weight of sample. mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre. < - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

L2028191-COFC

Analysis Request Form

Data:	11/25/2017
Date: Workorder Number:	VA17251089 & 91 TGM
Analyzing Laboratory:	ALSE
Client Contact Name:	Scott Kingston
Client Company Name:	
	Tetra Tech Canada Inc.
Project Name:	704-ENW.WENW03039-02
Number of Samples &	1 Canada
Country of Origin:	4, Canada
Sample IDs:	9-16-JD-52 (VA17251089)
	9-16-JD-04 , 9-16-JD-10 , 9-16-JD-50 (VA17251091)
Sample Type: 🗌 Dr	ill Core 🗌 Percussion 🔲 Rock 🗌 Soil 🔲 Pulp 🖾 Other
Analysis Required:	
	Shake Flask (OA-SFE01)
Special Instructions:	SCAN TO OUTCIDE LAB
	ALS contact (Deidre Heffernan)
Sample Disposition: 🖉 🛛	Return 🖾 Dispose after analysis
Results to:	
	Attention: Scott Kingston
	Tetra Tech Canada Inc.
	885 Dunsmuir St.
	885 Dunsmuir St. Vancouver BC
	885 Dunsmuir St. Vancouver BC Canada , V6C 1N5
	885 Dunsmuir St. Vancouver BC
Invoice to:	885 Dunsmuir St. Vancouver BC Canada , V6C 1N5 Email:scott.kingston@tetratech.com
Invoice to:	885 Dunsmuir St. Vancouver BC Canada , V6C 1N5
Invoice to:	885 Dunsmuir St. Vancouver BC Canada , V6C 1N5 Email:scott.kingston@tetratech.com Attention: Scott Kingston
Invoice to:	885 Dunsmuir St. Vancouver BC Canada , V6C 1N5 Email:scott.kingston@tetratech.com
Invoice to:	885 Dunsmuir St. Vancouver BC Canada , V6C 1N5 Email:scott.kingston@tetratech.com Attention: Scott Kingston Address: Same as above
Invoice to:	 885 Dunsmuir St. Vancouver BC Canada, V6C 1N5 Email:scott.kingston@tetratech.com Attention: Scott Kingston Address: Same as above Phone: Enter Client Phone Number Here
Invoice to:	885 Dunsmuir St. Vancouver BC Canada , V6C 1N5 Email:scott.kingston@tetratech.com Attention: Scott Kingston Address: Same as above
Invoice to:	 885 Dunsmuir St. Vancouver BC Canada, V6C 1N5 Email:scott.kingston@tetratech.com Attention: Scott Kingston Address: Same as above Phone: Enter Client Phone Number Here

NOV 28 2017 17'C 13:35 JC

ADDRESS 2103 Dollarton Hwy, North Vancouver BC V7H 0A7 Canada | PHONE +1 604 984 0221 | FAX +1 604 984 0218 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Minerals

Quantitative XRD Results for Two Samples – ALS Work Order #VA18022192

Date: Prepared by: Reviewed by: Contributors:	16 February 2018 Ben Eaton Peter Whittaker
Distribution:	ClientServicesCANW@alsglobal.com
Document #: Revision #: AuTec project #:	R2018-029 O 100433

This report may contain information regarding proprietary processes and intellectual property and as such should be kept confidential. Please also note that this report has been prepared by AuTec Innovative Extractive Solutions Ltd. ('AuTec') for the exclusive use of AuTec and its client named above and not for use by any other party. Any unauthorized use of this report is strictly prohibited and at the user's own risk. In the event that you have received this report in error, please immediately destroy or return it to AuTec without reading or copying in any manner.

1 Introduction

Two samples (Table 1) were received from ALS for quantitative X-ray diffraction (QXRD) analysis.

Table 1 – ALS and corresponding Autec miner	alogy sample descriptions and numbers
ALS Sample Number	Mineralogy Sample Number
9-16-JD-13	M180211
9-16-JD-50	M180212

Table 1 – ALS and corresponding AuTec mineralogy sample descriptions and numbers.

2 Sample Preparation

The samples were ground for approximately five minutes in a McCrone Micronizing Mill using reagent alcohol. Grinding in the Micronizing Mill reduces particles to between 5 and 10 μ m in size without distorting the crystal lattices which are critical for diffraction of X-rays.

Diffraction data was collected over a range of $5-75^{\circ}2\theta$ with Co K_a radiation using a Bruker D8 Focus Bragg-Brentano diffractometer. The diffractometer uses a 0.6mm divergence slit and incident and diffracted-beam Soller slits. The system is equipped with a LYNXEYE - Super Speed Detector.

Diffraction data produced is analyzed and peaks are identified using HighScore Plus software by Panalytical using the Crystallography Open Database. Refinement of diffraction data is done using Topas 5.0 by Bruker AXS.

Detection limits for X-ray diffraction depend on multiple factors but, as a general rule if the peak to background ratio is low, the detection limit is approximately 2.0 wt%. For samples in which the peak to background ratio is high and there is good crystallinity, the detection limit can be less than 0.5 wt%. If a phase is present at less than 0.5 wt%, it could still be identified, but confidence decreases.

3 Results

The minerals identified in these samples along with their ideal chemical formulae are included in Table 2.

Within this sample suite, the major phases identified were quartz and muscovite, and the moderate phases were orthoclase and dolomite. The minor phases identified were albite, clinochlore, phlogopite, and calcite. The modal abundances of the major, intermediate, minor, and trace phases (Table 3) vary between samples (Table 4).

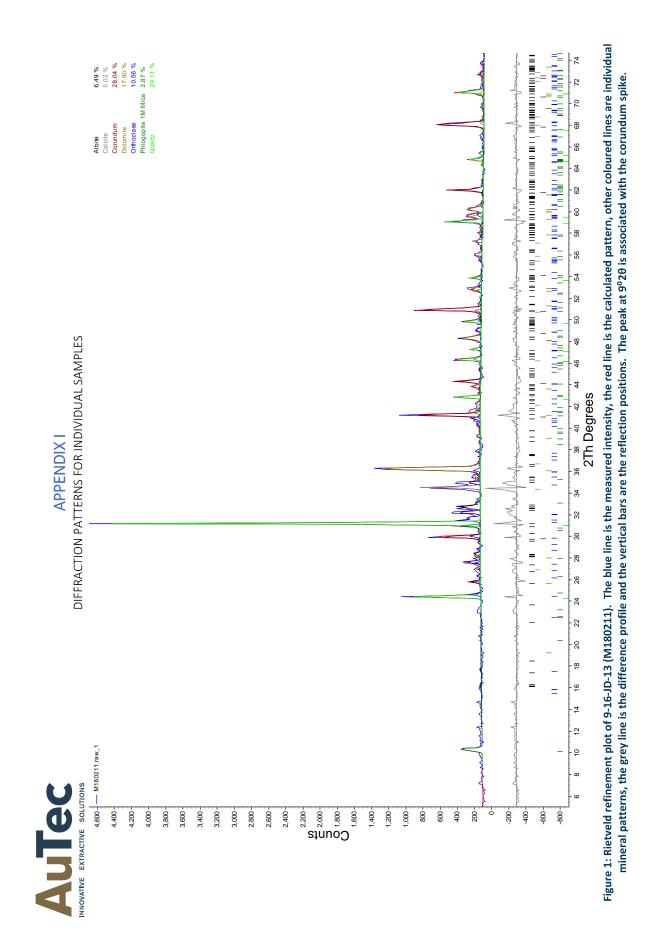
The minerals used during refinement were selected with no knowledge of provenance but were selected based on best fit. QXRD values are normalized to 100% of the minerals that are detected after removal of the corundum spike value.

Corundum spikes are a known crystalline phase added at a known weight percent that can then be used to quantify amorphous content if it is present in a sample. Amorphous material will show as a hump in the background intensity between 20 and 30 $^{\circ}2\theta$. Amorphous content is not apparent in the scan data for the current samples. The Rietveld refinement plots show a value for corundum. The values in Table 4 have been normalized to 100% after removing the value that was calculated for corundum.

Copies of individual diffraction patterns are found in Appendix I (Figures 1 to 2).

Ideal Chemical Formula	
SiO ₂	
NaAlSi ₃ O ₈	
KAlSi ₃ O ₈	
(Mg,Fe) ₅ AlSi ₃ Al ₂ O ₁₀ (OH) ₈	
KAl₂(AlSi₃O ₁₀)(OH)₂	
KMg ₃ (Si ₃ Al)O ₁₀ (FOH) ₂	
CaCO ₃	
$CaMg(CO_3)_2$	

Table 2 – Identified minerals with ideal chemical formulae.


Table 3 – Major, intermediate, minor, and trace phase grouping definitions.

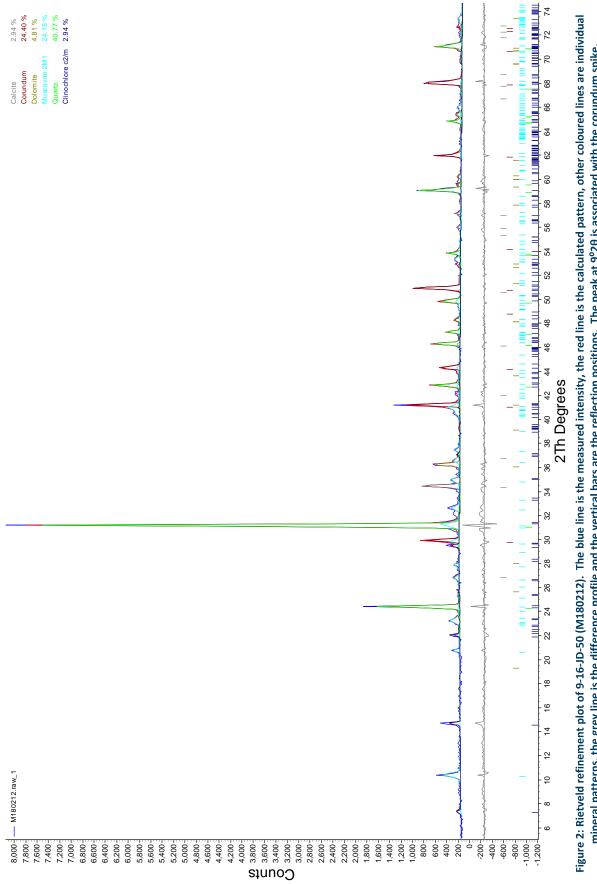

Grouped Amount	Weight Percent Range	
Major	>30	
Moderate	<30 >10	
Minor	<10 >2	
Trace	<2	

Table 4 - Quantitative XRD results, modal wt%.

Mineral	M180211	M180212
wineral	9-16-JD-13	9-16-JD-50
Quartz	40.5	53.9
Albite	9.0	0.0
Orthoclase	14.7	0.0
Clinochlore	0.0	3.9
Muscovite	0.0	31.9
Phlogopite	4.0	0.0
Calcite	7.0	3.9
Dolomite	24.9	6.4
Total	100.0	100.0

AuTec

APPENDIX D

GEOCHEMISTRY TESTING LABORATORY CERTIFICATES

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM

CERTIFICATE VA17251091

Project: 704- ENW.WENW03039- 02

P.O. No.: ENW.WENW03039-02

This report is for 6 Rock samples submitted to our lab in Vancouver, BC, Canada on 15-NOV-2017.

The following have access to data associated with this certificate:

S. KINGSTON

SAMPLE PREPARATION			
ALS CODE	DESCRIPTION		
WEI- 21	Received Sample Weight		
SND- 01	Send samples to external laboratory		
LOG- 22	Sample login - Rcd w/o BarCode		
CRU- 31	Fine crushing - 70% < 2mm		
SPL- 21	Split sample - riffle splitter		
PUL- 31	Pulverize split to 85% < 75 um		
SPL-21X	Addnl Crush Split w No Analysis		

ANALYTICAL PROCEDURES				
ALS CODE	DESCRIPTION	INSTRUMENT		
S- IR07	Sulphide Sulphur (Leco)	LECO		
C- GAS05	Inorganic Carbon (CO2)			
ME- MS61	48 element four acid ICP- MS			
OA- VOL08	Basic Acid Base Accounting			
S- IR08	Total Sulphur (Leco)	LECO		
OA- ELE07	Paste pH			
S- GRA06a	Sulfate Sulfur (HCl leachable)	WST- SEQ		

To: TETRA TECH CANADA INC. ATTN: S. KINGSTON 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM

ALS	,								C	ERTIFIC	CATE O	F ANAI	YSIS	VA172	251091	
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	OA- VOL08 FIZZ RAT Unity 1	OA- VOL08 MPA tCaCO3/1Kt 0.3	OA- VOL08 NNP tCaCO3/1Kt 1	OA- VOL08 NP tCaCO3/1Kt 1	OA- VOL08 Ratio (N Unity 0.01	OA- ELE07 pH Unity 0.1	S- IR08 S % 0.01	S- IR07 Sulphide % 0.01	C- GAS05 C % 0.05	C- GAS05 CO2 % 0.2	S- GRA06a S % 0.01	ME- MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME- MS61 As ppm 0.2
9-16-JD-04 9-16-JD-05 9-16-JD-17 9-16-JD-10 9-16-JD-13		1.96 1.94 2.14 2.26 2.26	2 2 2 4 4	1.3 1.3 1.6 0.6 0.9	34 37 22 477 339	35 38 24 478 340	28.00 30.40 15.36 764.8 362.7	8.2 8.0 7.9 8.6 8.4	0.04 0.04 0.05 0.02 0.03	0.02 0.03 0.02 <0.01 <0.01	0.33 0.38 0.19 5.31 3.57	1.2 1.4 0.7 19.5 13.1	<0.01 <0.01 <0.01 <0.01 <0.01	0.28 0.25 0.31 0.08 0.04	6.27 6.16 7.71 3.53 4.60	19.3 19.0 22.4 5.9 8.4
9- 16- JD- 50		2.06	3	2.2	144	146	66.74	8.2	0.07	0.02	1.59	5.8	<0.01	0.27	6.59	20.2

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM

ALS	,								C	ERTIFIC	CATE O	F ANAI	YSIS	VA172	51091	
Sample Description	Method Analyte Units LOR	ME-MS61 Ba ppm 10	ME- MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME- MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005
9- 16- JD- 04 9- 16- JD- 05 9- 16- JD- 17 9- 16- JD- 10 9- 16- JD- 13		5940 5830 8170 1220 840	1.77 1.75 2.22 1.33 2.01	0.23 0.41 0.29 0.81 0.60	1.24 1.42 0.86 17.20 10.10	2.25 2.31 2.55 0.73 0.10	72.7 66.1 82.0 57.3 60.2	12.2 10.5 15.4 4.9 5.2	63 65 76 24 27	4.05 4.00 5.33 3.64 4.56	33.5 30.3 40.1 11.8 7.8	3.60 3.48 4.00 1.54 1.80	15.15 15.10 19.05 8.30 10.15	0.14 0.14 0.14 0.11 0.13	2.5 2.2 2.6 1.4 1.4	0.047 0.040 0.057 0.028 0.028
9- 16- JD- 50		4330	1.88	0.30	4.66	2.22	79.4	12.1	66	10.75	30.7	3.35	18.00	0.15	2.6	0.044

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM

(ALS	,								C	ERTIFIC	CATE O	F ANAL	YSIS	VA172	251091	
Sample Description	Method Analyte Units LOR	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05
9- 16- JD- 04 9- 16- JD- 05 9- 16- JD- 17 9- 16- JD- 10 9- 16- JD- 13		2.39 2.20 2.73 1.90 2.36	35.7 32.8 41.0 27.3 29.6	45.6 43.4 51.9 31.6 39.2	0.74 0.72 0.79 4.62 4.24	353 312 367 357 367	5.21 5.69 5.76 0.52 0.41	0.24 0.23 0.22 0.30 0.57	9.8 9.3 10.7 7.3 8.7	51.7 46.8 66.3 12.2 11.8	930 950 1020 690 560	18.5 17.9 22.6 13.3 13.4	115.0 110.0 140.5 76.2 101.5	0.004 0.008 0.006 <0.002 0.002	0.05 0.05 0.06 0.01 0.03	4.08 3.76 4.53 0.43 0.31
9- 16- JD- 50		2.40	40.6	47.8	1.54	402	5.48	0.25	11.2	48.4	990	21.5	120.0	0.004	0.07	3.87

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM

ALS	,								C	ERTIFIC	CATE O	F ANAI	YSIS	VA172	51091	
Sample Description	Method Analyte Units LOR	ME-MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME- MS61 Ti % 0.005	ME- MS61 TI ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME- MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5
9- 16- JD- 04 9- 16- JD- 05 9- 16- JD- 17 9- 16- JD- 10 9- 16- JD- 13		10.7 10.5 14.0 5.2 5.5	2 1 1 1 <1	1.7 1.9 2.2 1.8 2.2	76.0 85.5 81.6 193.5 157.0	0.73 0.67 0.77 0.54 0.70	<0.05 0.06 0.06 <0.05 <0.05	12.15 10.75 12.75 8.20 11.85	0.325 0.313 0.380 0.167 0.195	1.00 0.95 1.22 0.41 0.56	3.6 3.5 3.9 1.8 2.3	290 259 316 39 42	1.2 5.4 1.4 2.5 9.7	15.6 14.3 17.1 10.2 10.8	278 273 334 49 35	88.2 76.9 88.5 47.0 50.7
9- 16- JD- 50		10.9	1	2.0	114.0	0.81	0.05	12.50	0.351	0.99	3.9	370	11.5	18.2	263	91.2

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 5- DEC- 2017 Account: TGM

Project: 704- ENW.WENW03039-02

		CERTIFICATE COM	MENTS	
			TICAL COMMENTS	
Applies to Method:	REE's may not be totally sol ME- MS61	uble in this method.		
		LABORA	TORY ADDRESSES	
		r located at 2103 Dollarton Hwy, Nor		
Applies to Method:	C- GAS05	CRU- 31	LOG-22	ME-MS61
	OA- ELE07 S- IR07	OA- VOL08 S- IR08	PUL- 31 SND- 01	S- GRA06a SPL- 21
	SPL-21X	WEI- 21	300-01	3FL- 21

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM

CERTIFICATE VA17251089

Project: 704- ENW.WENW03039- 02

P.O. No.: ENW.WENW03039-02

This report is for 2 Rock samples submitted to our lab in Vancouver, BC, Canada on 15-NOV-2017.

The following have access to data associated with this certificate:

S. KINGSTON

SAMPLE PREPARATION
DESCRIPTION
Received Sample Weight
Sample login - Rcd w/o BarCode
Fine crushing - 70% < 2mm
Split sample - riffle splitter
Pulverize split to 85% < 75 um
Addnl Crush Split w No Analysis
Send samples to external laboratory

	ANALYTICAL PROCEDUR	RES
ALS CODE	DESCRIPTION	
OA- ELE07	Paste pH	
S- GRA06a	Sulfate Sulfur (HCI leachable)	WST- SEQ
S- IR07	Sulphide Sulphur (Leco)	LECO
C- GAS05	Inorganic Carbon (CO2)	
ME- MS61	48 element four acid ICP- MS	
OA- VOL08	Basic Acid Base Accounting	
S- IR08	Total Sulphur (Leco)	LECO

To: TETRA TECH CANADA INC. ATTN: S. KINGSTON 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM

Project: 704- ENW.WENW03039-02

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	OA- VOL08 FIZZ RAT Unity 1	MPA	OA- VOL08 NNP tCaCO3/1Kt 1	NP	OA- VOL08 Ratio (N Unity 0.01	OA- ELEO7 pH Unity 0.1	S- IRO8 S % 0.01	S- IR07 Sulphide % 0.01	C- GAS05 C % 0.05	C- GAS05 CO2 % 0.2	S- GRA06a S % 0.01	ME- MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME- MS61 As ppm 0.2
Sample Description 9- 16- JD- 52 9- 16- JD- 53	Units LOR	kg 0.02 10.40 7.48														

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM

Project: 704- ENW.WENW03039- 02

Sample Description	Method Analyte Units LOR	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME- MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005
9- 16- JD- 52 9- 16- JD- 53		650 630	4.08 5.53	0.42 1.05	1.44 1.04	0.04 0.04	79.8 79.3	3.5 3.4	11 12	10.90 7.96	2.6 2.8	1.88 1.70	19.00 18.65	0.15 0.14	1.6 1.7	0.036 0.018

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM

Project: 704- ENW.WENW03039- 02

Sample Description	Method Analyte Units LOR	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME- MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME- MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05
Sample Description 9- 16- JD- 52 9- 16- JD- 53	LOR		0.5													

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- DEC- 2017 Account: TGM

Project: 704- ENW.WENW03039- 02

Sample Description	Method Analyte Units LOR	ME-MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME- MS61 Ti % 0.005	ME- MS61 TI ppm 0.02	ME- MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5
9- 16- JD- 52 9- 16- JD- 53		5.6 5.2	<1 <1	4.4 2.9	238 221	1.33 1.14	<0.05 <0.05	18.55 18.80	0.213 0.202	1.21 1.00	3.4 5.5	29 28	3.8 8.1	8.5 9.1	43 32	46.2 48.3

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 5- DEC- 2017 Account: TGM

Project: 704- ENW.WENW03039-02

		CERTIFICATE COM	MENTS	
		ANALY	TICAL COMMENTS	
Applies to Method:	REE's may not be totally solu ME- MS61	ble in this method.		
		LABORA	TORY ADDRESSES	
	Processed at ALS Vancouver	located at 2103 Dollarton Hwy, Nor	th Vancouver, BC, Canada.	
Applies to Method:	C- GAS05 OA- ELE07 S- IR07	CRU- 31 OA- VOL08 S- IR08	LOG- 22 PUL- 31 SND- 01	ME- MS61 S- GRA06a SPL- 21
	SPL- 21X	WEI- 21		

Tetra Tech Canada Inc. ATTN: Scott Kingston 1000 - 885 Dunsmuir Street, 10th floor Vancouver BC V6E 1N5 Date Received:28- NOV- 17Report Date:05- DEC- 17 15:51 (MT)Version:FINAL

Client Phone: 604-685-0275

Certificate of Analysis

Lab Work Order #: L2028191

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 704- ENW.WENW03039- 02

Brent Mack, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 났

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2028191 CONTD.... PAGE 2 of 5 05-DEC-17 15:51 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2028191-1 Other 9-16-JD-52	L2028191-2 Other 9-16-JD-04	L2028191-3 Other 9-16-JD-10	L2028191-4 Other 9-16-JD-50	
Grouping	Analyte					
SOIL						
Physical Tests	Hardness (as CaCO3) (mg/L)	2.15	40.0	26.9	43.2	
	Moisture (%)	<0.25	<0.25	<0.25	<0.25	
Leachable Anions & Nutrients	Acidity (as CaCO3) (mg/L)	<4.0	<4.0	<4.0	<4.0	
	Alkalinity, Total (as CaCO3) (mg/L)	4.7	37.3	27.8	38.6	
	Ammonia, Total Leachable (as N) (mg/L)	0.0151	0.0375	0.0245	0.0495	
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	<0.50	
	Conductivity (uS/cm)	27.5	82.9	58.4	93.3	
	Fluoride (F) (mg/L)	0.071	0.175	0.045	0.522	
	Nitrate (as N) (mg/L)	0.0075	0.105	0.0762	0.0408	
	Nitrite (as N) (mg/L)	<0.0010	0.0110	0.0052	0.0137	
	рН (рН)	7.32	8.45	9.18	8.66	
	Sulfate (SO4) (mg/L)	2.39	4.67	2.14	5.95	
Leachable Metals	Aluminum (AI)-Leachable (mg/L)	0.657	0.179	0.594	0.0839	
	Antimony (Sb)-Leachable (mg/L)	<0.00010	0.00118	0.00018	0.00152	
	Arsenic (As)-Leachable (mg/L)	<0.0010	<0.0010	0.0015	0.0010	
	Barium (Ba)-Leachable (mg/L)	0.0070	0.570	0.0779	0.196	
	Beryllium (Be)-Leachable (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Bismuth (Bi)-Leachable (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Boron (B)-Leachable (mg/L)	0.011	<0.010	<0.010	0.015	
	Cadmium (Cd)-Leachable (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Calcium (Ca)-Leachable (mg/L)	0.55	14.8	9.55	14.9	
	Chromium (Cr)-Leachable (mg/L)	<0.00050	0.00103	<0.00050	0.00117	
	Cobalt (Co)-Leachable (mg/L)	0.00020	<0.00010	<0.00010	<0.00010	
	Copper (Cu)-Leachable (mg/L)	0.0025	<0.0010	<0.0010	<0.0010	
	Iron (Fe)-Leachable (mg/L)	0.250	0.036	<0.030	0.047	
	Lead (Pb)-Leachable (mg/L)	0.00082	<0.00010	<0.00010	<0.00010	
	Lithium (Li)-Leachable (mg/L)	<0.0050	<0.0050	<0.0050	0.0138	
	Magnesium (Mg)-Leachable (mg/L)	0.188	0.715	0.742	1.46	
	Manganese (Mn)-Leachable (mg/L)	0.0191	0.00122	<0.00050	0.00099	
	Mercury (Hg)-Leachable (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Molybdenum (Mo)-Leachable (mg/L)	0.00104	0.00314	0.00054	0.00749	
	Nickel (Ni)-Leachable (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Phosphorus (P)-Leachable (mg/L)	<0.30	<0.30	<0.30	<0.30	
	Potassium (K)-Leachable (mg/L)	4.62	1.81	2.10	1.88	
	Selenium (Se)-Leachable (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Silicon (Si)-Leachable (mg/L)	3.80	1.73	1.51	2.47	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2028191 CONTD.... PAGE 3 of 5 05-DEC-17 15:51 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2028191-1 Other 9-16-JD-52	L2028191-2 Other 9-16-JD-04	L2028191-3 Other 9-16-JD-10	L2028191-4 Other 9-16-JD-50	
Grouping	Analyte					
SOIL						
Leachable Metals	Silver (Ag)-Leachable (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Sodium (Na)-Leachable (mg/L)	2.34	0.546	0.187	0.578	
	Strontium (Sr)-Leachable (mg/L)	0.00346	0.0341	0.0128	0.0307	
	Thallium (TI)-Leachable (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Tin (Sn)-Leachable (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Titanium (Ti)-Leachable (mg/L)	0.014	<0.010	<0.010	<0.010	
	Uranium (U)-Leachable (mg/L)	0.00628	0.000446	0.000270	0.000599	
	Vanadium (V)-Leachable (mg/L)	0.0012	0.0016	0.0012	0.0016	
	Zinc (Zn)-Leachable (mg/L)	<0.010	<0.010	<0.010	<0.010	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

L2028191 CONTD PAGE 4 of 5 05-DEC-17 15:51 (MT) Version[.] FINAI

QC Samples with Qualifiers & Comments:

QC Type Description	n	Parameter	Qualifier	Applies to Sample Number(s)
Duplicate		Antimony (Sb)-Leacha	ble DUP-H	L2028191-1, -2, -3, -4
Qualifiers for Indiv	idual Param	eters Listed:		
Qualifier De	escription			
DUP-H Du	uplicate result	s outside ALS DQO, due to samp	le heterogeneity.	
est Method Refer	ences:			
ALS Test Code	Ma	trix Test Description		Method Reference**
ACY-SHKFLSK-PCT	-VA Soil	Acidity by PCT (SHAKEF	LASK)	BC MINISTRY OF ENERGY AND MINES
	ed upon the			ge Chemistry from Sulphidic Geologic Materials (MENI ater at a 3:1 liguid to solids ratio for 24 hours. The

Lab deionized water is used in the creation of the samples for acidity testing. Although of very low ionic strength, the water does have pH <8.3, and hence inherent acidity, and may contribute measurable acidity levels near the limit of reporting."

Alkalinity by PCT (SHAKEFLASK) ALK-SHKFLSK-PCT-VA Soil

BC MINISTRY OF ENERGY AND MINES

BC MIN. OF ENERGY AND MINES/APHA 4110 B.

BC MIN. OF ENERGY AND MINES/APHA 4110 B.

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using procedures adapted from APHA Method 2320 "Alkalinity".

BR-SHKFLSK-IC-VA Bromide by IC (SHAKEFLASK) Soil

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter. The analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate.

CL-SHKELSK-IC-VA Soil Chloride by IC (SHAKEFLASK)

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter. The analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate.

Soil EC by PCT (SHAKEFLASK) **EC-SHKELSK-PCT-VA**

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using procedures adapted from APHA Method 2510 "Conductivity".

F-SHKFLSK-IC-VA

Soil Fluoride by IC (SHAKEFLASK)

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter. The analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate.

HARDNESS-CALC-VA Soil Hardness

APHA 2340B

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

Mercury by CVAAS (SHAKEFLASK) HG-SHKFLSK-CVAFS-VA Soil

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using atomic absorption spectrophotometry (EPA Method 245.7). The Shakeflask extraction is an empirical procedure with pre-defined characteristics. Recovery of some elements (Ag, Bi, Hg, and Sn) by this method can be variable due to the neutral pH of the extraction fluid. LCS QC sample DQOs for these elements have been established at 50-130% for this reason

MET-SHKFLSK-MS-VA Soil Metals by ICPMS (SHAKEFLASK)

BC MINISTRY OF ENERGY AND MINES

BC MINISTRY OF ENERGY AND MINES

This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter and analysed using inductively coupled plasma mass spectrophotometry (EPA Method 6020A).

The Shakeflask extraction is an empirical procedure with pre-defined characteristics. Recovery of some elements (Ag, Bi, Hg, and Sn) by this method can be variable due to the neutral pH of the extraction fluid. LCS QC sample DQOs for these elements have been established at 50-130% for this reason.

BC MINISTRY OF ENERGY AND MINES

BC MIN. OF ENERGY AND MINES/APHA 4110 B.

Reference Information

MOISTURE-VA Soil Moisture content CWS for PHC in Soil - Tier 1 This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours. Ammonia by Fluoresence (SHAKE FLASK) BC MIN. OF ENERGY AND MINES NH3-SHKFLSK-F-VA Soil This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter. The analysis is carried out using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al. NO2-SHKELSK-IC-VA Nitrite by IC (SHAKEFLASK) BC MIN OF ENERGY AND MINES/APHA 4110 B Soil This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter. The analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. BC MIN. OF ENERGY AND MINES/APHA 4110 B. NO3-SHKFLSK-IC-VA Soil Nitrate by IC (SHAKEFLASK) This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter. The analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by this method include: bromide, chloride, fluoride, nitrate, nitrite and sulphate. PH-SHKFLSK-MAN-VA Soil pH by Manual Meter (SHAKEFLASK) BC MINISTRY OF ENERGY AND MINES This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently analysed using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode. SO4-SHKFLSK-IC-VA Sulfate by IC (SHAKEFLASK) BC MIN. OF ENERGY AND MINES/APHA 4110 B. Soil This analysis is based upon the extraction procedure outlined in "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND Report 1.20.1)" (William A. Price, 2009). In summary, a sample is extracted with deionized water at a 3:1 liquid to solids ratio for 24 hours. The extract is then allowed to settle and subsequently filtered through a 0.45 micron membrane filter. The analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA Chain of Custody Numbers: **GLOSSARY OF REPORT TERMS** Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample. mg/kg wwt - milligrams per kilogram based on wet weight of sample. mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre. < - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

L2028191-COFC

Analysis Request Form

	11/25/2017		
Date:			
Workorder Number:	VA17251089 & 91 TGM		
Analyzing Laboratory:	ALSE		
Client Contact Name:	Scott Kingston		
Client Company Name:	Tetra Tech Canada Inc.		
Project Name:	704-ENW.WENW03039-02		
Number of Samples &			
Country of Origin:	4 , Canada		
Sample IDs:	9-16-JD-52 (VA17251089)		
	9-16-JD-04 , 9-16-JD-10 , 9-16-JD-50 (VA17251091)		
Sample Type: Dr	ill Core 🗌 Percussion 🗌 Rock 🗌 Soil 🔲 Pulp 🖾 Other		
Analysis Required:			
	Shake Flask (OA-SFE01)		
Special Instructions:	SCAN TO OUTSIDE LAB		
	ALS contact (Deidre Heffernan)		
Sample Disposition:	Return 🖾 Dispose after analysis		
Results to:			
	Attention: Scott Kingston		
	Tetra Tech Canada Inc.		
	885 Dunsmuir St.		
	Vancouver BC		
	Canada , V6C 1N5		
	Email:scott.kingston@tetratech.com		
Invoice to:			
	Attention: Scott Kingston		
	Address: Same as above		
	Phone: Enter Client Phone Number Here		
	Email: scott.kingston@tetratech.com		
	Email: Scott.Kingstone/tetratech.com		

NOV 28 2017 17'C 13:35 JC

ADDRESS 2103 Dollarton Hwy, North Vancouver BC V7H 0A7 Canada | PHONE +1 604 984 0221 | FAX +1 604 984 0218 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Minerals

Quantitative XRD Results for Two Samples – ALS Work Order #VA18022192

Date: Prepared by: Reviewed by: Contributors:	16 February 2018 Ben Eaton Peter Whittaker
Distribution:	ClientServicesCANW@alsglobal.com
Document #: Revision #: AuTec project #:	R2018-029 0 100433

This report may contain information regarding proprietary processes and intellectual property and as such should be kept confidential. Please also note that this report has been prepared by AuTec Innovative Extractive Solutions Ltd. ('AuTec') for the exclusive use of AuTec and its client named above and not for use by any other party. Any unauthorized use of this report is strictly prohibited and at the user's own risk. In the event that you have received this report in error, please immediately destroy or return it to AuTec without reading or copying in any manner.

1 Introduction

Two samples (Table 1) were received from ALS for quantitative X-ray diffraction (QXRD) analysis.

Table 1 – ALS and corresponding Autec mineralogy sample descriptions and numbe			
ALS Sample Number	Mineralogy Sample Number		
9-16-JD-13	M180211		
9-16-JD-50	M180212		

Table 1 – ALS and corresponding AuTec mineralogy sample descriptions and numbers.

2 Sample Preparation

The samples were ground for approximately five minutes in a McCrone Micronizing Mill using reagent alcohol. Grinding in the Micronizing Mill reduces particles to between 5 and 10 μ m in size without distorting the crystal lattices which are critical for diffraction of X-rays.

Diffraction data was collected over a range of $5-75^{\circ}2\theta$ with Co K_a radiation using a Bruker D8 Focus Bragg-Brentano diffractometer. The diffractometer uses a 0.6mm divergence slit and incident and diffracted-beam Soller slits. The system is equipped with a LYNXEYE - Super Speed Detector.

Diffraction data produced is analyzed and peaks are identified using HighScore Plus software by Panalytical using the Crystallography Open Database. Refinement of diffraction data is done using Topas 5.0 by Bruker AXS.

Detection limits for X-ray diffraction depend on multiple factors but, as a general rule if the peak to background ratio is low, the detection limit is approximately 2.0 wt%. For samples in which the peak to background ratio is high and there is good crystallinity, the detection limit can be less than 0.5 wt%. If a phase is present at less than 0.5 wt%, it could still be identified, but confidence decreases.

3 Results

The minerals identified in these samples along with their ideal chemical formulae are included in Table 2.

Within this sample suite, the major phases identified were quartz and muscovite, and the moderate phases were orthoclase and dolomite. The minor phases identified were albite, clinochlore, phlogopite, and calcite. The modal abundances of the major, intermediate, minor, and trace phases (Table 3) vary between samples (Table 4).

The minerals used during refinement were selected with no knowledge of provenance but were selected based on best fit. QXRD values are normalized to 100% of the minerals that are detected after removal of the corundum spike value.

Corundum spikes are a known crystalline phase added at a known weight percent that can then be used to quantify amorphous content if it is present in a sample. Amorphous material will show as a hump in the background intensity between 20 and 30 $^{\circ}2\theta$. Amorphous content is not apparent in the scan data for the current samples. The Rietveld refinement plots show a value for corundum. The values in Table 4 have been normalized to 100% after removing the value that was calculated for corundum.

Copies of individual diffraction patterns are found in Appendix I (Figures 1 to 2).

Ideal Chemical Formula	
SiO ₂	
NaAlSi ₃ O ₈	
KAlSi ₃ O ₈	
(Mg,Fe) ₅ AlSi ₃ Al ₂ O ₁₀ (OH) ₈	
KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂	
KMg ₃ (Si ₃ Al)O ₁₀ (FOH) ₂	
CaCO ₃	
$CaMg(CO_3)_2$	

Table 2 – Identified minerals with ideal chemical formulae.

Table 3 – Major, intermediate, minor, and trace phase grouping definitions.

Grouped Amount	Weight Percent Range	
Major	>30	
Moderate	<30 >10	
Minor	<10 >2	
Trace	<2	

Table 4 - Quantitative XRD results, modal wt%.

Mineral	M180211	M180212
wineral	9-16-JD-13	9-16-JD-50
Quartz	40.5	53.9
Albite	9.0	0.0
Orthoclase	14.7	0.0
Clinochlore	0.0	3.9
Muscovite	0.0	31.9
Phlogopite	4.0	0.0
Calcite	7.0	3.9
Dolomite	24.9	6.4
Total	100.0	100.0

AuTec

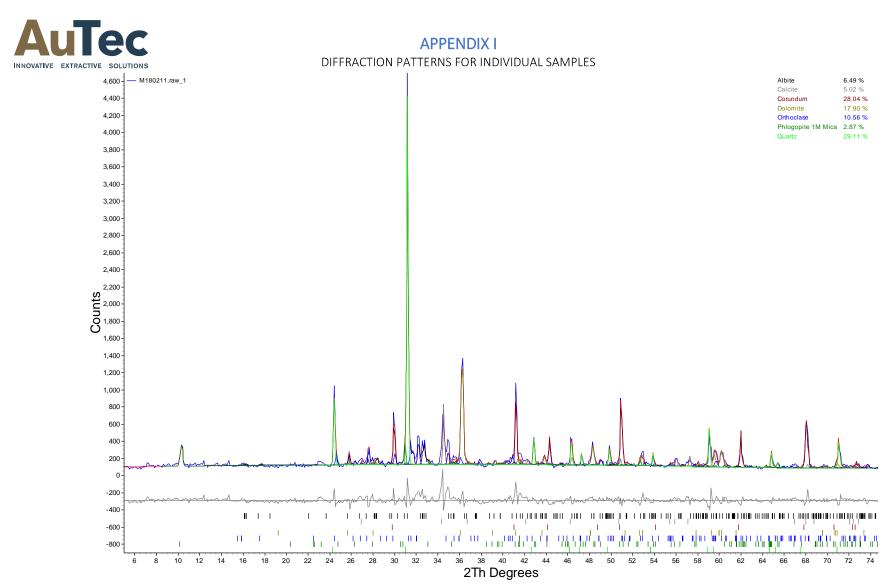


Figure 1: Rietveld refinement plot of 9-16-JD-13 (M180211). The blue line is the measured intensity, the red line is the calculated pattern, other coloured lines are individual mineral patterns, the grey line is the difference profile and the vertical bars are the reflection positions. The peak at 9°20 is associated with the corundum spike.

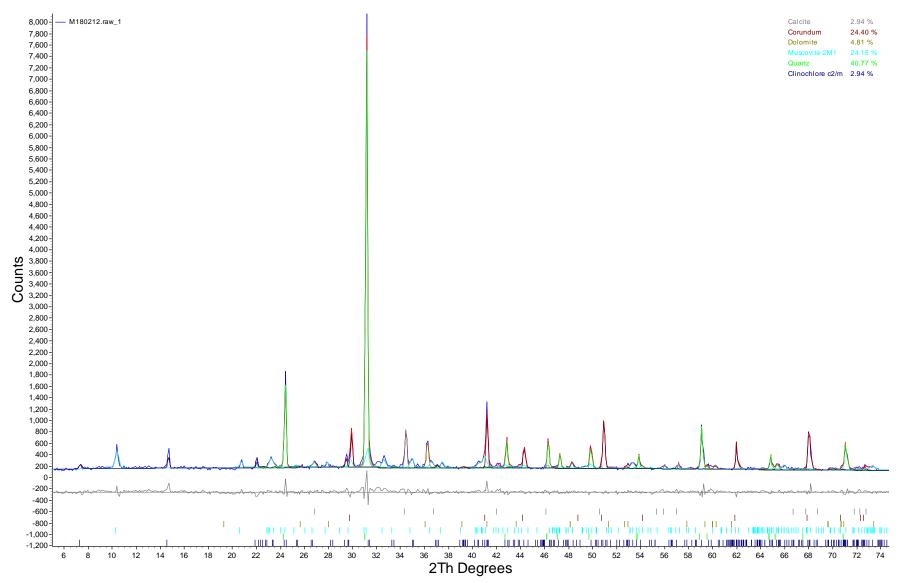


Figure 2: Rietveld refinement plot of 9-16-JD-50 (M180212). The blue line is the measured intensity, the red line is the calculated pattern, other coloured lines are individual mineral patterns, the grey line is the difference profile and the vertical bars are the reflection positions. The peak at 9°20 is associated with the corundum spike.