

Great Bear Lake Sites

2017 Annual Water Licence Report (# S17L8-002)

APPENDIX C – 2017 Water Quality Monitoring Report

Great Bear Lake Sites

2017 Water Quality Monitoring Report FINAL V2

Prepared for: Indigenous and Northern Affairs Canada Contaminants and Remediation Division

Prepared by: DXB Projects Inc. Winnipeg, MB

May 14, 2018

Page Intentionally Left Blank

Table of Contents

1 INT	RODUCTION AND BACKGROUND	1
1.1	The Great Bear Lake Sites	1
1.2	The 2017 Water Sampling Program Overview	2
2 DE	SIGN CONSIDERATIONS AND OBJECTIVES	4
2.1	Previous Monitoring at the GBL Sites	4
2.2	Predecessor Monitoring Plans	5
2.3	Regulatory Considerations	6
2.4	Monitoring Objectives	7
3 GE	NERAL PROGRAM APPROACH	8
3.1	Program Planning, Dates and Roles	8
3.2	Field Camp and Access	9
3.3	Field Data and Observations	9
3.4	Sample Collection	10
3.5	Laboratory Analysis	11
3.5	.1 General Chemistry	12
3.5	.2 Metals	12
3.5	.3 Petroleum Hydrocarbons	13
3.5	.4 Radionuclides	14
3.5	.5 Surveillance Network Protocol Parameters	. 14
3.6	Quality Assurance and Quality Control	15
3.6	.1 Sampling QA/QC	15
3.6	.2 Laboratory QA/QC	17
4 DA	TA EVALUATION METHODOLOGY	18
4.1	Water Licence Effluent Quality Criteria	
4.2	Site Specific Target Levels	18
4.3	Reference Station Sampling	19
4.4	CCME Guidelines	19
4.5	Historic Results	20
5 QA	/QC SAMPLE EVALUATION	
5.1	Duplicate Evaluation	22
5.2	Field and Travel Blank Evaluation	23
6 TEI	RRA MINE – WATER QUALITY MONITORING	
6.1	Terra Mine – Site Summary	24
6.2	Terra Mine – Waterbodies, Concerns and Monitoring Approach	
6.3	Terra Mine – 2017 Monitoring Results	. 27

6.3	.1	Terra Mine – Aquatic Observations	28
6.3	.2	Terra Mine – General Chemistry	28
6.3	.3	Terra Mine – Total and Dissolved Metals	29
6.3	.4	Terra Mine – Hydrocarbons	34
7 NO	יידט		25
		RIM MINE – WATER QUALITY MONITORING	
7.1		thrim Mine – Site Summary	
7.2		thrim Mine – Waterbodies, Concerns and Monitoring Approach	
7.3		thrim Mine – 2017 Monitoring Results	
7.3 7.3		Northrim Mine – Aquatic Observations	
7.3 7.3		Northrim Mine – General Chemistry	
7.3 7.3		Northrim Mine – Total and Dissolved Metals	
7.3	.4	Northrim Mine – Hydrocarbons	40
8 NC	REX	AND GRAHAM VEIN MINE - WATER QUALITY MONITORING	41
8.1	Nor	ex and Graham Vein – Site Summary	41
8.2	Nor	ex and Graham Vein – Waterbodies, Concerns and Monitoring Approach	41
8.3	Nor	ex and Graham Vein – 2017 Monitoring Results	43
8.3	.1	Norex and Graham Vein – Aquatic Observations	43
8.3	.2	Norex and Graham Vein – General Chemistry	43
8.3	.3	Norex and Graham Vein – Total and Dissolved Metals	44
8.3	.4	Norex and Graham Vein – Hydrocarbons	44
9 SM	1411\	NOOD MINE – WATER QUALITY MONITORING	46
9.1		allwood Mine – Site Summary	
9.2		allwood Mine – Waterbodies, Concerns and Monitoring Approach	
9.3		allwood Mine – 2017 Monitoring Results	
9.3		Smallwood Mine – Aquatic Observations	
9.3		Smallwood Mine – General Chemistry	
9.3		Smallwood Mine – Total and Dissolved Metals	
9.3		Smallwood Mine – Hydrocarbons	
		,	
		CT LAKE MINE – WATER QUALITY MONITORING	
10.1		ntact Lake Mine – Site Summary	
10.2		ntact Lake Mine – Waterbodies, Concerns and Monitoring Approach	
10.3		ntact Lake Mine – 2017 Monitoring Results	
10.		Contact Lake Mine – Aquatic Observations	
-	3.2	Contact Lake Mine – General Chemistry	
	3.3	Contact Lake Mine – Total and Dissolved Metals	
	3.4	Contact Lake Mine – Hydrocarbons	
10.	3.5	Contact Lake Mine – Radionuclides	55

11 E	L BON	ANZA MINE – WATER QUALITY MONITORING	57
11.1	1 EIB	onanza Mine – Site Summary	57
11.2	2 El B	onanza Mine – Waterbodies, Concerns and Monitoring Approach	58
11.3	3 EIB	onanza Mine – 2017 Monitoring Results	60
11	1.3.1	El Bonanza Mine – Aquatic Observations	60
11	1.3.2	El Bonanza Mine – General Chemistry	60
11	1.3.3	El Bonanza Mine – Total and Dissolved Metals	60
11	1.3.4	El Bonanza Mine – Hydrocarbons	61
12 S	AWMIL	L BAY – WATER QUALITY MONITORING	62
12.1	1 Saw	/mill Bay – Site Summary	62
12.2	2 Saw	mill Bay – Waterbodies, Concerns and Monitoring Approach	63
12.3	3 Saw	mill Bay – 2017 Monitoring Results	64
12	2.3.1	Sawmill Bay – Aquatic Observations	65
12	2.3.2	Sawmill Bay – General Chemistry	65
12	2.3.3	Sawmill Bay – Total and Dissolved Metals	65
12	2.3.4	Sawmill Bay – Hydrocarbons	66
12	2.3.5	Sawmill Bay – Radionuclides	66
13 C	ONCLU	JSIONS	67
14 R	EFERE	ENCES	70

List of Figures

Figure 1	2017 Arsenic Concentrations in Ho Hum Drainage System Samples	31
Figure 2	2017 Copper Concentrations in Ho Hum Drainage System Samples	32
Figure 3	2017 Arsenic Concentrations in Northrim Mine Samples	39
Figure 4	2017 Copper Concentrations in Northrim Mine Samples	40
Figure 5	2017 Arsenic Concentrations in Contact Lake Mine Flow Path Samples	54
Figure 6	2017 Copper Concentrations in Contact Lake Mine Flow Path Samples	54
Figure 7	2017 Uranium Concentrations in Contact Lake Mine Flow Path Samples	55

List of Tables

List of GBL Water Quality Assessment and Monitoring Reports	4
Duplicate Evaluation Criteria	22
Terra Mine 2017 Sampling Stations	26
Northrim Mine 2017 Sampling Stations	36
Norex and Graham Vein Mine 2017 Sampling Stations	42
	Duplicate Evaluation Criteria Terra Mine 2017 Sampling Stations Northrim Mine 2017 Sampling Stations

Table 6	Smallwood Mine 2017 Sampling Stations	47
Table 7	Contact Lake Mine 2017 Sampling Stations	51
Table 8	El Bonanza Mine 2017 Sampling Stations	59
Table 9	Sawmill Bay 2017 Sampling Stations	64

List of Appendices

APPENDIX A – Figures APPENDIX B – Data Tables APPENDIX C – Field Data and Observations

APPENDIX D – Photo Log

APPENDIX E – Laboratory Certificates

1 INTRODUCTION AND BACKGROUND

1.1 THE GREAT BEAR LAKE SITES

Indigenous and Northern Affairs Canada (INAC) has the responsibility to manage a number of contaminated sites that are no longer maintained by the original occupant. INAC's portfolio of contaminated sites in the north originates from private sector mining, oil and gas activities, government, military activity and other users of the land dating back over half a century, many years before the environmental impacts of such activities were adequately understood. The abandoned Great Bear Lake (GBL) Sites are amongst these legacy properties. Under the Contaminated Sites Management Program (CSMP), the INAC Contaminants and Remediation Division (CARD) aims to complete remediation of the GBL Sites to improve environmental conditions and reduce environmental/safety risks.

The GBL Sites refer collectively to the abandoned historic industrial properties of Silver Bear Mines (made up of the larger Terra Mine and smaller satellite sites of Northrim, Norex, Graham Vein and Smallwood), El Bonanza/Bonanza Mine, Contact Lake Mine and the Sawmill Bay site. The GBL Sites are located on or adjacent to the eastern shore of Great Bear Lake, within the Sahtu Region of the Northwest Territories (Appendix A, Figure A1). The properties lie within the boundaries of the Sahtu Dene and Metis Comprehensive Land Claim Agreement and a portion of the Silver Bear Mines also overlap with the Tłįchǫ Mǫwhì Gogha Dè Nįįłèè Boundary. GBL Sites are 400-440 km north-northwest of Yellowknife, 175-220 km north of Gamètì and 215-275 km east of Délįne (the nearest community within the Sahtu Land Claim). The sites are within 60 km of one another and have therefore been logically consolidated for the purposes of monitoring and remediation. While the properties are remote and none are accessible by public or private roadway, they may be reached by rotary wing, fixed wing (floats at all sites or wheels at the abandoned airstrips at Terra Mine and Sawmill Bay) or by barge/boat.

Silver Bear Mines were underground mining properties (with a small volume of surface work), which produced primarily silver, copper and bismuth and were in operation from 1969 to 1985. The Contact Lake Mine was significantly smaller in scale and was originally an underground silver mine during the 1930s which was also mined for uranium in 1949/50. El Bonanza and Bonanza Mines are both located on the Dowdell Peninsula and were small scale silver mines operational 1934-1936, 1956-1957, and in 1965. The Sawmill Bay Site was established as a sawmill in the 1930's, after which it was used for barging and air transportation of uranium ore from Port Radium (1940's-1950). It was subsequently used for various military activities (1950s) and, later, as a fishing lodge (late 1950s to 1987). All GBL Sites now fall under the custodial responsibility of INAC-CARD.

The GBL Sites have been the subject of numerous assessments and studies to characterize the nature of environmental contamination and physical hazards. INAC's efforts to date have included Site Assessments, Hazardous Material Surveys, Risk Assessments and focused geochemical studies to name a few. Water quality monitoring has been conducted over multiple years, the results of which were relied upon to help determine the nature of site contamination, the impacts to the receiving environment and the requirements for site remediation. Efforts culminated in the production of Remedial Action Plans (RAPs) for each of the project sites, which summarized site conditions, interpreted results of sampling/assessment, evaluated remedial options and presented the selected remedial approach based on technical input and community consultations.

Remediation of the GBL Sites was first initiated as the Phase I Remediation Project completed in 2010-2011. Efforts focussed on work activities which could be completed without mobilization of heavy equipment at Contact Lake Mine, El Bonanza/Bonanza Mine and Sawmill Bay. This included drum consolidation, product consolidation/removal, building destruction (Contact Lake and El Bonanza/Bonanza mines only) and debris consolidation. This was followed with the ongoing consolidation and removal of drums with residual fuel/product in 2016, including at the Silver Bear Mines. While these efforts have reduced site risks, there have been no earthworks or other site alterations to date which could be expected to substantially alter the receiving environment or aquatic conditions.

Remaining work activities to complete the remediation as outlined in the RAPs will be completed as the GBL Sites Phase II Remediation Project, tentatively scheduled to require approximately five years. This will include completion of earthworks at Contact Lake Mine, EI Bonanza/Bonanza Mine and Sawmill Bay, as well as the comprehensive remediation of the Silver Bear Mines.

1.2 THE 2017 WATER SAMPLING PROGRAM OVERVIEW

Water quality assessment and monitoring at the GBL sites has been conducted since the early 1990s, through which an extensive water quality database has been amassed. In keeping with INAC's objectives of environmental management at its project sites and requirements of regulatory authorizations, water quality monitoring continued in 2017.

The objectives, rationale, monitoring methodologies and stations were presented within the *GBL Sites 2017 Water Sampling Plan* (the Plan), produced September 2017 and provided to the Sahtu Land and Water Board. As detailed in the Plan, the scope of the monitoring activities

included the specific requirements of the Water Licence Surveillance Network Program (SNP), as well as extended monitoring reflecting the recommendations of the *Great Bear Lake Sites Proposed Long-Term, Status of Environment and Construction Monitoring Plan* (SENES 2009), and the 2016 Water Quality Monitoring Report (SLR 2017).

The program was implemented by INAC and Public Services and Procurement Canada (PSPC) with assistance from DXB Projects and community members of Délıne through Techi?q Ltd. The field program operated September 6-15, 2017 utilizing the available facilities at the former Terra Mine as a basecamp. Fixed wing aircraft (on wheels and floats) and watercraft were used to access the various satellite sites. In keeping with the recommendations of predecessor documents, sample collection and field measurements were collected at each of the Silver Bear Mines (Terra, Northrim, Norex, Graham Vein and Smallwood), Contact Lake Mine, El Bonanza Mine and Sawmill Bay. This included sample collection at a total of 71 stations (plus multiple depth sampling at select stations and quality assurance/quality control samples), with analysis preformed by ALS Laboratories.

While water quality monitoring was the primary driver of the 2017 field program, additional work activities, inspections and gap filling was opportunistically implemented further to input from Inspectors and other regulatory agencies. The results of these secondary tasks have been reported as necessary to the INAC Land Use Inspector to address outstanding questions and concerns.

Upon completion of the field program, field observations and data were integrated with results of laboratory analyses. As directed by the Sahtu Land and Water Board, these findings have been synthesized into a concise data report presenting only 2017 findings. Per the requirements of the most recent Water Licence (S17L8-002, amended October 30, 2017), a *Baseline Water Quality Monitoring Report* will be produced at least six months prior to remediation which synthesizes the 2017 results with previous monitoring data to complete multi-year spatial and temporal trend analysis. While statistical analysis was not to be included within the 2017 data report, for the primary parameters of concern a summary level comparison of current and previous results was conducted.

2 DESIGN CONSIDERATIONS AND OBJECTIVES

The *GBL Sites 2017 Water Sampling Plan* (INAC-CARD 2017b) presented the design considerations and monitoring objectives used to develop the 2017 sampling program. These considerations include continuation of monitoring at previously established stations, recommendations of predecessor documents, regulatory requirements and additional monitoring where necessary to meet site objectives and refinements of remedial designs.

2.1 PREVIOUS MONITORING AT THE GBL SITES

Water quality assessment first commenced at the GBL Sites in 1992, followed by monitoring programs on an ad-hoc basis. A full itemization of the reports which include water quality assessment and monitoring data is provided in Table 1 below. These work activities helped in identifying aquatic concerns at the project sites and in characterizing the mobility of contaminant sources.

Year	Report Name	Author
1992	Environmental Assessment and Reclamation Options for Abandoned Mines in the Northwest Territories (Mine Sites in the Camsell River Area)	EBA Engineering Consultants Ltd.
1993	Site Characterization and Environmental Assessment of Seven Abandoned Mine Sites in the Northwest Territories, Volume 1 - Environmental Assessment Summary Report	EBA Engineering Consultants Ltd.
1993	Environmental Assessment of the Abandoned Contact Lake Mine Site. Prepared for Public Works Canada, Architecture and Engineering Services Architecture and Engineering Services Branch	EBA Engineering Consultants Ltd.
1997	1996 AES Abandoned Mine Assessments Volume II	Vista Engineering
2005	Silver Bear Mine Sites, Northwest Territories Water Quality Monitoring Program. Final Report 2002 to 2004.	INAC Water Resources Division
2005	Aquatic Pre-Remediation Studies 2004, Silver Bear Mines	Rescan Environmental Services Ltd.
2005	Enhanced Phase I Environmental Site Assessment (El Bonanza Mine).	Golder Associates Ltd.
2006	Summary Report Update: 2005 Monitoring Data for Contact Lake Mine.	INAC Water Resources Division
2006	Silver Bear Mine Sites, Northwest Territories, Hydrologic Monitoring Program	INAC Water Resources Division
2006	Silver Bear Mine Sites, Northwest Territories, Water Quality Monitoring Program	INAC Water Resources Division
2006	Phase I, II, and III Investigations of the Historic Northern Uranium Transportation Network in the Northwest Territories and Northern Alberta	SRK Consulting (Canada) Inc
2006	Contact Lake Mine Site Assessment Report on July 2006 Field Activities and Follow-Up Site Assessment	SENES Consultants Ltd.
2007	Silver Bear Mine Sites, Northwest Territories, 2006 Hydrologic Monitoring Program	INAC Water Resources Division
2007	Silver Bear Mine Sites, Northwest Territories, 2006 Water Quality Monitoring Program	INAC Water Resources Division

 Table 1
 List of GBL Water Quality Assessment and Monitoring Reports

Year	Report Name	Author
2007	Contact Lake Mine Site Assessment Report on July 2006 Field Activities and Follow-Up Site Assessment	SENES Consultants Ltd.
2007	El Bonanza Mine - Report on July 2006 Field Activities and Follow-Up Site Assessment	SENES Consultants Ltd.
2007	Phase III A Environmental Site Assessment, Sawmill Bay - SM 204, Northwest Territories, prepared by Franz Environmental Inc., 2007	FRANZ Environmental Inc. and Ecometrix Incorporated
2007	Contact Lake Mine Supplemental 2007 Site Assessment - June 2007 Field Activities and Follow-Up Site Assessment	SENES Consultants Ltd.
2007	El Bonanza Mine Supplemental 2007 Site Assessment - June 2007 Field Activities and Follow-Up Site Assessment	SENES Consultants Ltd.
2008	Silver Bear Mine Sites, Northwest Territories, 2007 Hydrologic Monitoring Program	INAC Water Resources Division
2008	Silver Bear Mine Sites, Northwest Territories, 2007 Water Quality Monitoring Program,	INAC Water Resources Division
2008	Detailed Environmental Site Assessment, Sawmill Bay, Northwest Territories NM-180	FRANZ Environmental Inc. and EcoMetrix Incorporated
2009	Silver Bear Mine Sites, Northwest Territories, 2008 Water Quality Monitoring Program	INAC Water Resources Division
2009	Program Division	
2009	Activities and Follow-Up Site Assessment	
2009	Contact Lake Supplemental Site Assessment - Report on June 2008 Field Activities and Follow-Up Site Assessment	SENES Consultants Ltd.
2010	Silver Bear Mine Sites, Northwest Territories, 2009 Hydrologic Monitoring Program	INAC Water Resources Division
2011	Silver Bear Mine Sites, Northwest Territories, 2009 Water Quality Monitoring Program	INAC Water Resources Division
2010		
2014	Silver Bear Mine Sites, Northwest Territories, 2013 Water Quality	
2016	2015 Water Quality Monitoring of Terra Mine	Arcadis Canada Inc.
2017	2016 Water Quality Monitoring Program at the Great Bear Lake Sites - Final Report	SLR Consulting (Canada) Ltd.

The results of these assessment and monitoring campaigns informed remedial decision making, serve as a pre-remediation baseline and were also incorporated into on-going monitoring to ensure pre-remediation site conditions remained stable and remedial assumptions continued to hold true. As much as possible, the monitoring methodologies from these earlier programs were evaluated and carried forward in 2017 to enable data comparison over the multi-year dataset.

2.2 PREDECESSOR MONITORING PLANS

As part of the Federal Contaminated Sites Action Plan (FCSAP) 10-Step Process, INAC-CARD has taken preliminary steps to outline monitoring requirements before, during and after

remediation. In 2009, SENES Consultants Ltd. produced the *Great Bear Lake Sites Proposed Long-Term, Status of Environment and Construction Monitoring Plan* (SENES 2009), including recommendations for pre-remediation monitoring. This document utilized the available RAPs to develop preliminary monitoring requirements for the Silver Bear Mines, Contact Lake Mine and El Bonanza/Bonanza Mine and incorporated a review of all water monitoring conducted at the sites. However, the RAP for Sawmill Bay had not yet been designed and monitoring components were consequently not included. Following the finalization of the SENES *Long-Term, Status of Environment and Construction Monitoring Plan*, the project advanced to the detailed design and engineering stage which resulted in minor updates to several of the concepts that were presented in the RAPs.

Monitoring at the GBL Sites has continued after development of the *Long-Term, Status of Environment and Construction Monitoring Plan.* This was implemented to ensure site conditions have been adequately characterized and are remaining stable. In addition to monitoring activities in 2010, 2013 and 2015, in 2016 SLR Consulting Ltd. (SLR) conducted monitoring at the project sites and produced the associated report *2016 Water Quality Monitoring Program at the GBL Sites* (SLR 2017). The report included a summary of site conditions, discussion of previous monitoring programs, synthesis of current and historic water quality data and recommended revisions to the monitoring outlined in the 2009 SENES report (primarily the addition of monitoring stations for Sawmill Bay).

The information provided within the 2009 SENES report and 2017 SLR report together provide a comprehensive evaluation of site conditions and monitoring requirements. The *GBL Sites 2017 Water Sampling Plan* compiled the recommendations of these predecessor documents to create a concise monitoring plan to ensure consistent application of site monitoring in the 2017 season. The 2017 monitoring program, as presented in the current report, generally implemented the recommendations as presented by SENES (2009) and SLR (2017), with adjustments to reflect current site conditions and remedial plans for the sites.

2.3 REGULATORY CONSIDERATIONS

In support of the GBL Sites Phase II Remediation Project, INAC has obtained the applicable regulatory authorizations through the Sahtu Land and Water Board (SLWB). This includes an updated Water Licence (S17L8-002), replacing the earlier Water Licence (S09L8-001), and taking effect on July 25, 2017. The Water Licence outlines the requirements of the site-specific Surveillance Network Program (SNP), including monitoring stations, analytical parameters and sampling frequency. These stations represent a small sub-set of the overall water monitoring

program implemented in 2017. The SNP monitoring requirements were conducted as part of the larger water quality monitoring program and have been included with this Plan to provide a comprehensive listing of all 2017 water sampling stations at the GBL Sites.

As required by the regulatory issuances, the Land Use Inspector was notified of the 2017 Water Sampling Program prior to commencement.

2.4 MONITORING OBJECTIVES

Based on the predecessor documents, regulatory considerations, best practice in environmental management and the pre-remedial phase at the GBL sites, the following general 2017 monitoring objectives were presented in the *GBL Sites 2017 Water Sampling Plan* (INAC-CARD 2017b):

- Continue monitoring at select established sampling stations to build upon the dataset at the project sites;
- Confirm pre-remediation conditions of the aquatic environment and potential source terms (e.g. water at waste rock piles, adit water) are remaining stable;
- Ensure there is sufficient pre-remediation (i.e., baseline) monitoring data at the stations identified in the *Great Bear Lake Sites Proposed Long-Term, Status of Environment and Construction Monitoring Plan* (SENES 2009);
- Incorporate technical recommendations where appropriate from the 2016 Water Quality Monitoring Program at the Great Bear Lake Sites (SLR 2017) and from the review of this document by the Sahtu Land and Water Board;
- Where refinements have been made to the remedial strategies for the sites, include additional monitoring stations if necessary to collect baseline data (e.g. locations of proposed soil treatment areas and the Terra Mine landfill); and,
- Meet the requirements of the Water Licence Surveillance Network Program (SNP) at the project sites, including compliance with the approved Quality Assurance and Quality Control Plan (INAC-CARD 2017a) as provided to the Sahtu Land and Water Board.

It is important to note that 2017 monitoring was confirmatory in nature and not an attempt to generate additional data for site characterization.

3 GENERAL PROGRAM APPROACH

3.1 PROGRAM PLANNING, DATES AND ROLES

INAC and PSPC completed the program internally, with project management assistance from DXB Projects and assistance/support from Déline through Techi?q Ltd. The program was planned and commenced within two weeks, running September 6-15, 2017 and using Terra Mine as a base of operations.

In addition to the resources of the INAC-CARD Project Manager (Candace DeCoste) and logistics support (Patricia Garbutt) both in Yellowknife, a team of personnel mobilized to Terra Mine to conduct work activities at the various GBL Sites. PSPC maintained responsibility for staffing and personnel, the field camp, charter aircraft, health and safety and general site logistics. INAC staff and their contractors planned, implemented and delegated the various work tasks, with the assistance of PSPC and Techi?q Ltd.

Some personnel were present for the duration of the program, while others were on-site for limited periods. The full list of personnel which participated in field activities (water quality sampling, support and ancillary tasks) is as follows:

- Candace DeCoste (INAC-CARD) INAC-CARD Project Manager
- Michael Bernardin (PSPC) PSPC Project Manager
- Rebecca Studer-Halbach (PSPC) PSPC Site Manager
- Caitlin Moore (PSPC) PSPC Program Assistance
- Stanley Yee (INAC-CARD) INAC Project Officer
- Claire Brown (DXB Projects) Project Management Assistance
- Barbara Perrott (INAC-CARD) Drone Operator
- Joel Gowman (INAC-CARD) Drone Operator
- Aaron Jaque (Cascom) Telecommunications Technician
- Chris Yukon (Techi?q Ltd.) Déline Team Lead
- Dave Taniton (Techi?q Ltd.) Wildlife Monitor/Field Assistant
- Greg Kenny (Techi?q Ltd.) Wildlife Monitor/Field Assistant
- Dennis Kenny (Techi?q Ltd.) Wildlife Monitor/Field Assistant
- Walter Modeste (Techi?q Ltd.) Wildlife Monitor/Field Assistant
- Brent Taniton (Techi?q Ltd.) Wildlife Monitor/Field Assistant
- Ed Reeves (Techi?q Ltd.) Camp/Vehicle Services
- Elaine Kenny (Techi?q Ltd.) Camp Cook
- Whitney Andre (Techi?q Ltd.) Cook's Helper
- Ray Rhine (Break-Away Drilling and Blasting Ltd.) Blasting Disposal Specialist

During most days two separate water quality monitoring teams worked to accomplish the sampling plan. Each team was composed of two specialists with support personnel.

3.2 FIELD CAMP AND ACCESS

The scope of work, as discussed in Sections 7 through 12, required transport to the smaller satellite Silver Bear Sites (Northrim, Norex, Graham Vein and Smallwood), as well as to Contact Lake Mine, El Bonanza Mine and Sawmill Bay. The *GBL Sites 2017 Water Sampling Plan* (INAC-CARD 2017b) was based primarily on the design of the SENES Consultants Ltd. *Great Bear Lake Sites Proposed Long-Term, Status of Environment and Construction Monitoring Plan* (2009), which made access/sampling assumptions based on the use of float equipped aircraft. Consequently, the decision was made to use float equipped aircraft for the 2017 monitoring activities (Twin Otter and Caravan).

Within each project site, transport was conducted by foot, boat, truck and with all terrain vehicles (ATVs) where available. On-site aluminum boats at Terra Mine, Contact Lake Mine and Sawmill Bay were used to conduct open water sampling, while an inflatable zodiac was transported to site for use at Smallwood Mine. Outboard motors scaled to the boat size were mobilized/available at site. Techi?q Ltd provided a larger landing craft boat (mobilized from Délįne) used to transport the field team and equipment from Terra Mine to the satellite Silver Bear sites. This same watercraft was used to sample Camsell River stations at these properties.

The pre-existing facilities at the former Terra Mine were used as a camp and base of operations. The Bunkhouse, Administration Building and pre-constructed tent frames provided sleeping facilities for staff. The kitchen and dining facilities of the Administration Building were also used, as well as the office space on the second floor. Temporary telecommunications were installed in the Administration Building, including satellite phone and internet (with Wi-Fi), which was removed at the completion of the field program. The small wooden building near the Bunkhouse was used as a storage facility, laboratory and equipment staging area.

3.3 FIELD DATA AND OBSERVATIONS

In addition to sample collection, *in situ* field data and observations were compiled to assist with the characterization of site conditions. Considerations included approaches applied during

earlier assessment programs, recommendations for ongoing monitoring (SENES 2009) and toxicity modifying factors which are required to assess performance relative to applicable guidelines (e.g., Canadian Council of Ministers of the Environment (CCME) Protection of Aquatic Life (PAL) - Freshwater Aquatic Life (FAL) guidelines). Based on these factors, the following field measurements were collected at aquatic monitoring stations: temperature, pH, dissolved oxygen, turbidity and specific conductivity. The two water quality monitoring teams used a Horiba U-52-2 Multiparameter Water Quality Meter and YSI ProDSS Multiparameter Water Quality Meter provided with 1-10m cables for *in-situ* measurements at depth. These meters were provided serviced and calibrated by the respective rental companies. Field calibration was conducted routinely to ensure ongoing data quality.

At on-land water stations (e.g. adit water and standing water), the shallow water depth limited the use of the large multiparameter units. Given these stations are not aquatic habitat, a smaller pen style Hanna meter was used to measure pH, conductivity and temperature.

For open water stations which required sampling at surface and depth, temperature measurements were collected at 1m intervals to approximately 10m (i.e. the limit of the apparatus) or to the pre-defined sampling depths. This was conducted to determine the stratification depths of the epilimnion, metalimnion or hypolimnion.

Additional information recorded at each sampling station included: date/time, sampling personnel, coordinates, general location description, access methodology (e.g. boat, shoreline), weather, waterbody condition (e.g. wave height estimate), potential contaminant sources (e.g. sheen, tailings), sampling methodology (syringe/pole/grab/column), water column depth, collection depth, number of sample bottles, sample parameters and any other pertinent information.

Figures documenting each of the 2017 sample locations are provided in Appendix A. Compiled field data and observations, including GPS coordinates and in-situ measurements are provided in Appendix C. Photographic documentation of sampling stations may be found in Appendix D.

3.4 SAMPLE COLLECTION

INAC and PSPC implemented the 2017 water sampling activities with the assistance of monitoring specialists and working closely with community members from Dél_inę. The methodologies listed below were selected for consistency with earlier sampling programs,

considerations of the receiving water body, access limitations, efficiency and cost. Sample collection was conducted as surface grabs and water column sampling as discussed below.

Grab Sampling

Open water grab samples were collected by submerging bottles under the water surface. At shoreline stations, a sampling pole was used to enable collection of water samples while minimizing disruption of sediment in shallow water conditions. Similarly, when sampling shallow on-land standing water, sterile syringes were used to collect representative water samples.

Water Column Sampling

Water column sampling was performed using a vertical Van Dorn sampler. The apparatus was rinsed in triplicate before sample collection. Sampling was conducted at prescribed depths, including surface and at depth at select stations, using a metered line.

3.5 LABORATORY ANALYSIS

Analytical parameters outlined in the *GBL Sites 2017 Water Sampling Plan* were selected based on: a) historic land-use; b) terrestrial and aquatic contaminants of concern identified during site characterization; c) cost effectiveness; d) anticipated remedial activities; e) post-remediation site conditions; and, f) recommendations within the *Proposed Long-Term, Status of Environment and Construction Monitoring Plans* (SENES 2009). To the extent possible, analytes were selected to be consistent with previous monitoring activities at the sites.

As indicated in the Water Licence (Annex A, Part A, Item 5), "All analyses shall be performed in a laboratory accredited by the Canadian Association for Laboratory Accreditation (CALA) for the specific analyses to be performed or as approved by an Analyst.". ALS Laboratories was selected based on this requirement, the availability of Yellowknife services and cost considerations. Sample analysis was conducted at their Vancouver, British Columbia facility, with the exception of radionuclides which were analyzed at their Fort Worth, Texas laboratory.

The laboratory parameters fell into the following categories discussed in sections below: General Chemistry, Metals, Petroleum Hydrocarbons, Radionuclides and specific SNP Parameters.

3.5.1 General Chemistry

General chemistry parameters for laboratory analysis are listed below, with any parameters with CCME-FAL guidelines underlined:

Physical Parameters	Major lons	Nutrients
Alkalinity	Calcium	<u>Ammonia (as N)</u>
Conductivity	<u>Chloride</u>	Total Phosphorous
рH	<u>Fluoride</u>	Dissolved Phosphorous
Turbidity	Total Hardness	<u>Nitrate</u>
Total Dissolved Solids	Magnesium	<u>Nitrite</u>
Total Suspended Solids	Potassium	Total Organic Carbon
	Sodium	Dissolved Organic Carbon
	Sulphate	

Sulphide

3.5.2 Metals

As former mining properties, metals are the dominant constituent of potential concern (COPC) at the GBL Sites. The current standard for metals analysis is inductively coupled plasma-mass spectrometry (ICP-MS), which was employed for all samples. In addition to the ICP-MS element scan, mercury analysis was conducted by Cold Vapour Atomic Absorption (CVAA). Standard ICP-MS scans for metals often include parameters that have not been assigned a relevant water quality criterion (CCME-FAL or otherwise). To address the potential that water quality criteria may be developed in the future and requirements of the Water Licence SNP, the following metals were included in the suite (with those parameters possessing CCME-FAL guidelines underlined):

<u>Aluminum</u>	Cobalt	Silicon
Antimony	Copper	<u>Silver</u>
Arsenic	Iron	Strontium
Barium	Lead	<u>Thallium</u>
Beryllium	Lithium	Tin
Bismuth	Manganese	Titanium
Boron	Mercury	<u>Uranium</u>
<u>Cadmium</u>	Molybdenum	Vanadium
Cesium	Nickel	<u>Zinc</u>
Chromium	<u>Selenium</u>	Zirconium

While the total metal concentration measures all physical and chemical forms of the metal present in the water sample, the dissolved concentration includes only forms of the metal that are less than 0.45 µm in size. Based on this operational definition, dissolved concentrations generally exclude particle bound metals (>0.45 µm), which are more readily removed from the water column. Dissolved metal forms are also more readily available for uptake, although uptake is ultimately determined by many factors (SENES 2008a). The total metal concentrations are of greater interest as CCME-FAL water quality guidelines are generally based on total concentrations; however, determining the proportions of particulate and dissolved metal phases of the total concentration may provide insight into the ultimate fate and transport of metals in the water body. While previous monitoring at the GBL sites has included analysis of both total and dissolved metals from many stations, generally consistent relationships between the two fractions were observed. On this basis, SENES concluded that ongoing collection of samples for dissolved metals analyses from all stations was not justified (SENES 2009). Nonetheless, in areas where elevated suspended sediment loadings were anticipated (e.g., site runoff, tailings containment areas), dissolved metals analysis was recommended, as well as approximately 10% of all other stations analyzed to confirm general relationships between dissolved and total metal fractions (SENES 2009). The 2017 sampling program was conducted on that basis.

Avoiding sample contamination during the field filtration process has proven to be challenging during previous monitoring campaigns, thus putting some of the dissolved metal results into question (SENES 2009). Given dissolved metals samples were submitted within the 14-day timeframe recommended by ALS Laboratories, dissolved metal filtration/preservation was conducted upon submission to the laboratory.

3.5.3 Petroleum Hydrocarbons

Site assessment work at the GBL sites has confirmed the presence of petroleum hydrocarbon (PHC) contamination at some locations in or near receiving waters. Remedial measures will include excavation and treatment of soils with PHC concentrations above prescribed criteria. Areas with concentrations below criteria will typically be left in place and monitored to confirm that migration to receiving waters is not occurring. Monitoring is therefore required in receiving waters adjacent to locations with historic and/or residual PHC concentrations and where soil treatment areas are to be sited (SENES 2009).

Samples collected for the purpose of PHC monitoring were analyzed for BTEX compounds (i.e.

benzene, toluene, ethylbenzene and total xylene) and F1 to F4 hydrocarbon fractions, as well as specific parameters as outlined in the Water Licence SNP (e.g. Oil and Grease).

3.5.4 Radionuclides

In addition to uranium which was analyzed as part of the metals scan, previous monitoring activities at Contact Lake Mine and Sawmill Bay have measured radium-226 and lead-210 as surrogates for a full radionuclide scan. Although none of the receiving waters were found to have detectable concentrations of these parameters, elevated results were observed in mine drainage and groundwater monitoring wells at some locations at Contact Lake Mine. Historic uranium ore handing at Sawmill Bay has also led to monitoring of radionuclides in the aquatic environment, though no concerns were identified. For consistency with previous monitoring, the 2017 monitoring program included the analysis of a number of samples for both radium-226 and lead-210 at these sites. Samples were tested using alpha spectrometry for radium-226 and beta counting for lead-210.

3.5.5 Surveillance Network Protocol Parameters

The GBL Sites 2017 Water Licence (S17L8-002) includes an expanded SNP. In addition to the assessment of general chemistry, metals, petroleum hydrocarbons and radionuclides discussed above, the SNP requires analysis of the following parameters at discrete stations:

- Cesium, Lithium and Bismuth: In addition to the standard ICP-MS element scan;
- Oil and Grease: By Gravimetric Analysis
- Volatile Hydrocarbons: Head Space Trap Gas Chromatography/Flame Ionization Detector/Mass Spectrometry (HS GC/FID/MS)
- Extractable Hydrocarbons: Gas Chromatography/Flame Ionization Detector (GC/FID);
- Non-Aqueous Phase Liquid/Free Product: Visual Exam
- Phenols: By Colourimetry
- Biochemical Oxygen Demand (BOD): 5 day, Seeded Incubation
- Fecal Coliforms: Colilert-18
- Phenols: Colourimetric
- Polychlorinated Biphenyls (PCBs): Gas Chromatography Election Capture Detection (GC-ECD)

It is important to note that many of these parameters were analyzed during site characterization and found not to be a concern at the GBL Sites. It is also noted that many of these parameters are specific to SNP stations which are not yet active (e.g. landfill monitoring, soil treatment monitoring).

3.6 QUALITY ASSURANCE AND QUALITY CONTROL

Adherence to best practices in Quality Assurance and Quality Control (QA/QC) is a crucial element of all sampling programs and provides confidence in data collection and analysis. In keeping with this consideration and as required within the Water Licence, INAC has produced a site-specific *Great Bear Lake Sites – Quality Assurance and Quality Control Plan* (INAC-CARD 2017a) tailored to SNP sampling. These same approaches were applied to all 2017 water sampling activities where applicable.

As part of this process, personnel experienced in sampling were a vital asset when implementing the sampling plan and facing unexpected field conditions. Notwithstanding the need to evaluate field conditions and apply additional QA/QC procedures accordingly, the following minimum QA/QC procedures were applied during sampling and analysis.

3.6.1 Sampling QA/QC

Field activities have the greatest potential to cause sample contamination and are a primary focus of QA procedures. The following QA approaches were applied during field sampling to reduce the risk of sample contamination and to ensure the reliability of data:

- Prior to sampling, all vehicles (e.g. boats, ATVs), work areas and equipment were inspected for potential contaminant sources, such as fuel leaks, fouled boat hulls or soiled sampling lines;
- All equipment used for the collection of field data (e.g. multi-meters) was calibrated per manufacturer specifications;
- As much as possible, single-use equipment and supplies were used to prevent cross contamination between sampling stations;
- Sampling equipment was an accepted brand, an approved design and made of noncontaminating materials;
- Where possible, sampling was conducted from the area of least impacts to greatest,

thereby minimizing the potential for cross contamination;

- Any water sampling apparatus used (e.g. pole, Van Dorn) was decontaminated prior to initial use and triple rinsed prior to sampling at each station;
- Sample bottles and preservatives were single-use and provided by the contract laboratory;
- All sampling and sample bottle handling was conducted wearing single-use unpowdered nitrile gloves, replaced at each sampling station;
- Before, during and after collection, sample bottles were kept away from contaminant sources as much as possible (e.g. fuel, dust);
- Where not pre-charged with preservatives, sample bottles were triple rinsed with the sample water prior to filling;
- Rinse water was discarded away from the sampling station, without disrupting the water column or sediments;
- Where sampling by boat, collection was conducted from the front of the boat, with rinse water discarded at the back;
- All laboratory requirements for sample preservation, headspace, etc. were adhered to;
- Samples were labelled with (at minimum) the sample identifier (i.e. SNP station), date, time, project name, requested analyte, preservative and filtration;
- Samples were kept cool prior to and during transport to the laboratories;
- Every effort was made to enable sample analysis within recommended hold times (all samples provided to ALS within four days, with only a small number of general chemistry parameters exceeding hold times); and,
- Chain of Custody (COC) forms were completed for all samples, with one copy retained and another included in sealed sample coolers.

Several standard QC approaches were used to confirm data precision and accuracy and to identify any potential field contamination:

- Duplicate samples were collected at a rate of 10% and submitted blind to the laboratory (i.e. the laboratory was not aware of which sample was duplicated).
- Field blanks (three full sets) were submitted to identify any potential contamination from the sampling procedures. Sampling methodology directly mirrored site samples (e.g. gloves, preservation); however, laboratory provided deionized water was used.
- Trip blanks were provided by the laboratory, transported to the field and returned unopened to identify any potential contamination from transport. A single trip blank was submitted with each sample shipment (as recommended in CCME (2011)) and put on hold pending results of field blank analysis.

Evaluation of QC sample results is an important final step. Due to the natural heterogeneity of environmental media, duplicate samples generally will not correspond perfectly with the original sample. To validate the data, the relative percent difference (RPD) was calculated and evaluated. Results of field and trip blanks were also reviewed to ensure sample contamination was not occurring during collection, handling or transportation.

3.6.2 Laboratory QA/QC

All samples were submitted for analysis to a CALA accredited laboratory (ALS) that has an internal approved QA/QC plan. Laboratory procedures included equipment calibration, Certified Reference Materials, Laboratory Control Samples, Method Blanks and Matrix Spikes. Results of these procedures are provided in the appended Laboratory Certificates (Appendix E). The methods applied by contract laboratories may vary; however, as part of CALA accreditation, all must meet rigorous requirements in conformance to standard methods of analysis.

4 DATA EVALUATION METHODOLOGY

Evaluation of 2017 water sampling data was conducted using applicable Water Licence Effluent Quality Criteria, Site-Specific Target Levels, results from background/reference station sampling, federal CCME guidelines and in consideration of historic monitoring results.

4.1 WATER LICENCE EFFLUENT QUALITY CRITERIA

The renewed Water Licence (S17L8-002) includes Effluent Quality Criteria (EQC) for several stations within the associated SNP. The Mackenzie Valley Land and Water Board defines EQC as "Numerical or narrative limits on the quality or quantity of the waste deposited to the receiving environment" (MVLWB 2011).

While the Water Licence SNP includes numerous station-specific EQC, several of these stations only apply during and after site remediation (e.g. sewage, greywater, landfill, landfarm and process water effluent, as well as potable water sources). However, one station within the Ho-Hum TCA (S17L8-002(7A), corresponding with station T-8) and one downstream station within Moose Bay (S18L8-002(7B) corresponding with station T-10) were sampled in 2017. Data tables within Appendix B include the EQC at these discrete stations.

4.2 SITE SPECIFIC TARGET LEVELS

The Ho Hum Tailings Containment Area (TCA), the associated wetland and downstream receiving environments at Terra Mine were studied extensively during the assessment phase due to the potential for downstream contaminant migration from the area. While the concentrations of multiple metals were elevated in water samples, arsenic concentrations represented the greatest potential concern from this system. In support of remedial decision making and design, INAC developed a site-specific target level (SSTL) for arsenic in surface water. A full report documenting the derivation of the SSTL is found within the *Site-Specific Target Level for Arsenic in Surface Water Associated with the Terra Mine Wetland* (SENES 2014). SSTLs are risk-based acceptable levels of contaminants (e.g., arsenic) that are not expected to result in adverse effects to humans and ecological receptors, based on the assumed receptor characteristics and exposures from the site. The recommended arsenic SSTL for water at the outlet of the wetland was 78 µg/L. It was recommended that the SSTL be applied to average annual measurements, to be confirmed with routine monitoring or additional studies if exceeding these levels (SENES 2014).

While active remedial measures have not yet been implemented at the Ho Hum TCA or wetland, 2017 water sampling results at the discharge point of the wetland into Moose Bay (station T-6) were evaluated with the SSTL to determine if arsenic concentrations may be predicted to have an adverse effect.

4.3 REFERENCE STATION SAMPLING

The *GBL Sites 2017 Water Sampling Plan* included previously established background or reference stations. In an effort to capture the natural influences of local mineralized zones, these stations are located upstream of historic site operations within the same watershed. Previous monitoring at these stations has confirmed the presence of naturally elevated metal concentrations in select waterbodies at the GBL Sites (SENES 2009), the results of which must be taken into consideration when evaluating results from potentially impacted stations. Due to the era of the industrial operations, baseline water quality sampling was not conducted prior to mining activities.

In addition to background stations upstream of project sites, sampling was also conducted at "reference lakes" that are further afield but still within the general project area. The results of reference lake sampling may be applicable to one or more of the project sites (e.g. Contact Lake and El Bonanza are approximately 11 km apart and share the same reference lake stations).

Results of background and reference station sampling has been incorporated within the data tables found in Appendix B and are integral in understanding natural site conditions and anthropogenic effects at the sites. Figures provided in Appendix A display the location of these stations, with coordinates provided in Appendix C.

4.4 CCME GUIDELINES

The Northwest Territories does not at present have territorial water quality guidelines for the aquatic environment. However, at the federal level CCME have developed the Canadian Water Guidelines for the Protection of Aquatic Life (PAL), both for the freshwater and marine environments. The following excerpt from the *CCME Canadian Water Quality Guidelines for the Protection of Aquatic Life – Introduction* summarizes the intent and applicability of the guideline:

"Canadian Water Quality Guidelines for the Protection of Aquatic Life (CWQGs-PAL) are nationally approved limits of substances and other attributes (such as pH and temperature) in

the water column where no adverse toxic effects are expected to aquatic plants and animals. The guidelines are one of a set of management tools developed to ensure that societal stresses, particularly the introduction of toxic substances, do not lead to the degradation of Canadian fresh and marine waters." (CCME 1999)

CCME notes that these guidelines are generic national recommendations and meant to "protect all forms of aquatic life and all aspects of the aquatic life cycles, including the most sensitive life stage of the most sensitive species over the long term". CCME provides additional national guidelines to assist in the derivation of site-specific guidelines tailored to the species present and site conditions (CCME 1999).

While the "most sensitive species" used to develop the CCME-PAL may not be present at the GBL sites, the guidelines have been used as a primary data evaluation threshold to identify the potential for aquatic effects. Specifically, the Freshwater Aquatic Guidelines (FAL) were applied to samples from aquatic waterbodies and are provided within the data tables of Appendix B. Where guidelines must be calculated based on toxicity-modifying factors (e.g. pH, temperature and hardness), the calculated guideline value is provided for each sample at the base of the table. Long-term exposure guidelines were selected as an appropriate and conservative measure.

CCME has developed guidelines for select total metal parameters, but not for dissolved metal fractions. Consistent with previous monitoring programs, the available total metal guidelines were applied to dissolved metal results.

As previously mentioned, CCME-FAL guidelines have been derived to ensure the protection of aquatic species. On-land stations, such as mine adit water, waste rock seepage and shallow standing water pools are not aquatic habitat and consequently CCME-FAL guidelines were not applied to these samples. Where the presence of aquatic life was in question (e.g. shallow ponds, small discharge streams), CCME-FAL guidelines were conservatively applied as a screening tool for elevated contaminant concentrations and do not indicate aquatic effects.

4.5 HISTORIC RESULTS

Full synthesis of 2017 data with historic sampling results is beyond the scope of the current data report, as directed by the Sahtu Land and Water Board. Instead, the synthesis will be implemented as part of a comprehensive Baseline Monitoring Report that will be prepared a minimum of six months prior to the commencement of site remediation.

While full historical data analysis was not conducted as part of the current study, elevated concentrations reported from 2017 sampling were evaluated within a historical context to confirm no new contaminants were identified at the sampling station (i.e. emerging contaminants).

5 QA/QC SAMPLE EVALUATION

In keeping with the requirements of the *Great Bear Lake Sites* - *Quality Assurance and Quality Control Plan* (INAC-CARD 2017a), duplicates, field blanks and travel blanks were collected during the 2017 monitoring program and evaluated below.

5.1 DUPLICATE EVALUATION

To assess the precision of sampling procedures and laboratory results, duplicate samples were collected at approximately 10% of sampling stations. During the 2017 monitoring program a total of nine blind duplicate samples were collected, distributed throughout the GBL Sites. While duplicates were collected at the same location and using identical procedures, due to the natural heterogeneity of environmental media, duplicate samples generally will not correspond perfectly with the original sample. To validate the data, the relative percent difference (RPD) was calculated using the following equation:

$$RPD = \frac{|X_1 - X_2|}{X_{avg}} \times 100$$

Where X_1 and X_2 are the sample/duplicate results and X_{avg} is the mean of these values.

The RPDs were then evaluated using criteria presented by Zeiner (1994), which were developed using guidelines developed by the United States Environmental Protection Agency (USEPA). These criteria indicate the RPD for duplicate samples should be less than 20% for aqueous samples; however, the RPD may only be calculated where the result is detected in both the original and the duplicate sample at a concentration five times greater than the reportable detection limit (RDL). Where one or more result is less than five times the RDL, alternate criteria are applied. If both are below, the RPD may not be calculated. These evaluation criteria are provided in Table 2.

Scenario	Result A	Result B	Criteria for Acceptance of Aqueous Samples
Α	< RDL	< RDL	Acceptable precision
В	< RDL	Positive	Result B – (0.5x RDL) < RDL
С	Positive and ≤ 5x RDL	Positive	Result B – Result A < 2x RDL
D	Positive and >5x RDL	Positive and >5x RDL	RPD <20%

Table 2 Duplicate	Evaluation Criteria
-------------------	---------------------

QA/QC sample and evaluation results are provided in Appendix B, Tables B-23 and B-24. Duplicate evaluation showed a strong correlation indicating sufficient precision in laboratory analysis and field methods. Despite these findings, there were expectedly some analytes which exceeded the acceptable limits as follows:

- Sample T-8-A and T-DUP-1: Turbidity and total titanium;
- Sample T-12 and T-DUP-2: Turbidity, total barium and total uranium;
- Sample T-19 and T-DUP-3: Total suspended solids, chloride, total dissolved phosphorous, total phosphorous and total potassium;
- Sample NX-6 and NX-DUP-1: Total suspended solids and total chromium;
- Sample SW-B-2 and SW-DUP-1: Total chromium and total manganese; and
- Sample CL-3 and CL-DUP-2: Total zinc.

A total of 730 individual results were evaluated for duplicate precision with a passing rate of 98%, demonstrating the high reliability of the results.

5.2 FIELD AND TRAVEL BLANK EVALUATION

Table B-23 and B-24 (Appendix B) provides the results of field blank analysis from the 2017 monitoring program. Three discrete field blanks were submitted, one each from Terra Mine, El Bonanza Mine and Contact Lake Mine. These samples were handled with the same procedures as site samples, but were filled with laboratory provided deionized water. All results were below reportable detection limits, indicating that sampling procedures were sound and there was no contamination introduced. The sole exception was a detectable concentration of total chromium in the Contact Lake field blank (notably the dissolved chromium concentration was below detection). Given the same procedures were applied to all field blanks, the remainder of which were below chromium detection limits, the elevated result may be an artefact of laboratory error. It is noted the pH values of 5.0-5.5 are typical for deionized water samples.

Trip blanks were also submitted to the laboratory and placed on hold pending results of field blank analysis. Based on the results of Field Blank analysis and the standard methodologies as proposed in the *Great Bear Lake Sites - Quality Assurance and Quality Control Plan*, these samples were not analyzed.

6 TERRA MINE – WATER QUALITY MONITORING

6.1 TERRA MINE – SITE SUMMARY

The Silver Bear Mines are five former mining properties located along the Camsell River, the largest of which is Terra Mine. Mineral claims in the area occupied by Terra Mine were first staked in the 1940's, though extensive exploration activities began decades later. Drilling completed in 1967 and 1968 indicated high-grade silver deposits and a decision was quickly made to put the site into production. The first large scale production began in 1969 and continued to 1985, though with several interruptions. By 1985 the Silver Bear Mines were abandoned by their developers and are now the responsibility of INAC (SENES and SRK 2008).

The primary mining method used at Terra Mine was shrinkage stoping. Narrow stopes followed the mineralized veins and the stopes were typically left un-filled at the end of the process. Ore was drawn from the stopes and hauled to the surface with diesel-powered mobile equipment, using a network of inclined ramps. The original ore processing plant had a nominal capacity of 300 short tons per day. The plant employed gravity separation methods to produce a silver-bismuth concentrate and froth flotation to produce a silver-copper concentrate. The gravity concentration process did not require the use of chemicals to extract the minerals. However, the froth flotation process required the use of lime as a pH modifier, xanthates as mineral collectors, and polypropylene glycol as a frothing agent (SENES and SRK 2008).

In addition to the 460,000 t of ore produced from the Terra Mine, an additional 63,000 t of ore from Norex Mine and Smallwood Mine were processed in the mill at Terra Mine. The total tailings production from the processing of this ore was approximately 500,000 t (SENES and SRK 2008).

Currently, the site has several openings into the underground mine and a small open cut (referred to as the open pit). Surface facilities include an ore processing plant, assay lab, power/heating and compressor plants, fuel storage tanks, maintenance shops, warehouses, offices and a camp. A dock is located on the Camsell River and a 1,500 m long airstrip sits on the northern shore of Moose Bay. Waste rock has been placed on the shore of Ho Hum Lake TCA and levelled to create storage yards for mining equipment and supplies. Tailings from ore processing have been disposed of in and adjacent to Ho Hum Lake TCA. Unpaved roads connect the various facilities including an 8 km haul road connecting the Terra Mine with the Northrim, Norex and Graham Vein sites to the east (SENES and SRK 2008).

6.2 TERRA MINE – WATERBODIES, CONCERNS AND MONITORING APPROACH

A large number of aquatic waterbodies lie within and surrounding Terra Mine. This includes the Camsell River, the largest of the Great Bear Lake tributaries (MacDonald *et al.* 2004), as well as numerous lakes, ponds and small streams. Some of these waterbodies have shorelines altered during operational periods (e.g. dykes, weirs, dock walls), or have been used to contain mine waste (e.g. tailings storage). However, the majority of waterbodies remain physically unaltered. Many of the waterbodies also lie downstream of previous mining/industrial activities and/or ongoing source terms such as waste rock, tailings or hydrocarbon impacted soils.

Aquatic assessment and monitoring has been conducted over many decades at Terra Mine. This has included water, sediment, benthos, fish and sediment pore water sampling. SLR provided a summary of the principal water related concerns identified at Tera Mine as follows (SLR 2017):

- The main contaminants of concern at the Terra Mine were arsenic and copper. Sampling results indicated there were elevated levels of arsenic, copper, aluminum and a small number of other metals in the inflow to Moose Bay from the Ho-Hum TCA.
- Sampling further downstream showed that metal concentrations reached background levels before the end of the airstrip, prior to entering the main flow of the Camsell River (SENES 2009). The elevated concentrations of arsenic in Ho-Hum TCA and Moose Bay were attributed primarily to tailings, and to a lesser extent to waste rock.
- Elevated metals were identified in waters from the adit and vent shaft samples with additional exceedances of cadmium, lead, silver and zinc in the Open Pit Adit, and copper and lead exceedances in the Vent Shaft (INAC–WRD 2011).
- Multi-year sampling reported little to no change in copper levels and a slight decrease in arsenic in Ho-Hum TCA.
- It was concluded that the berm and small wetland area above the outlet of Ho-Hum TCA is having a positive effect on water quality with respect to the uptake of metals. Metals concentrations return to background levels at the mid-way point of Moose Bay with generally good water quality found downstream in Camsell River (INAC-WRD 2013).
- The later desktop studies of arsenic at the Terra Mine indicate that the waste rock, exposed tailings and/or underground workings continue to be a source of arsenic loading at the site. Hemmera identified the submerged tailings in Ho-Hum TCA remains the major arsenic source, an order of magnitude greater than that of the waste rock or exposed tailings beaches combined (Hemmera 2015).

Based on these findings, previous monitoring and recommendations of predecessor documents,

the 2017 sampling program was designed for the Terra Mine as documented in Table 3 below, which also displays the revisions required based on field observations.

WATERBODY	STATION	SAMPLE TYPE	DEPTH	GENERAL LOCATION	General Chemistry	Total Metals	Dissolved Metals	PHC, BTEX	SNP Stn.	RATIONALE
Little Ho-Hum Lake	T-2	Shoreline	Surface	Shoreline, east end	x	x				Ho Hum drainage pathway within mineralized zone, upstream of TCA
Ho Hum Tailings Containment Area (TCA)	T-3	Shoreline	Surface	Shoreline, east end, north shore at tailings beach	x	x	x	x		Immediately offshore of tailings beach within TCA, to be covered during remediation; downstream of soil treatment area.
	T-5	Shoreline	Surface	Shoreline, west end, north shore below mill	x	х		x		Downstream of mill and outlet; downstream of future soil treatment area.
	T-16		Surface (A) - 1 m	Open water, middle, in line with tailings beach pipe	х	х				Characterization of Ho Hum TCA water
		Open Water	Bottom (B) - 10 m		x	x				
	T-8	Open Water	Surface (A) - 1 m	Open water, west end, middle of lake	х	х	х	х	Y	Characterization of Ho Hum TCA water; SNP requirement (S17L8- 002 (7A))
			Middle (B) - 5 m Bottom		x	x				
Ho Hum TCA Wetlands	T-9	Shoreline	(C)-13 m Surface	Shoreline, west end, at outlet weir	x x	x x	x x			Water quality leaving TCA and entering wetland
	MB-1	Shoreline	Surface	Lower Wetland, at discharge of water emerging from toe of airstrip	x	x	x			Characterize influence of water from toe of airstrip ADDED BASED ON FIELD OBS. (substitute for MB-4)
	MB-9	Shoreline	Surface	Lower Wetland, mid way between weir and Moose Bay Proper	x	x				Characterize downstream flow from wetland ADDED BASED ON FIELD OBS.
Camsell River (Including Moose Bay)	T-6	Open Water	Surface	Moose Bay, Ho- Hum discharge	x	х	x			Discharge point from Ho-Hum wetland to Moose Bay
	T-10	Open Water	Surface	Moose Bay, halfway down airstrip	x	x	x		Y	Moose Bay downstream of Ho- Hum discharge (S17L8-002 (7B))
	T-12	Open Water	Surface	Moose Bay, west end, end of airstrip	x	x				Location where Moose Bay meets Camsell River
	T-31	Shoreline	Surface	NEW STATION Moose Bay, half way along airstrip	x	x	x			Downstream of Ho Hum TCA and adjacent to airstrip

Table 3 Terra Mine 2017 Sampling Stations

WATERBODY	STATION	SAMPLE TYPE	DEPTH	GENERAL LOCATION	General Chemistry	Total Metals	Dissolved Metals	PHC, BTEX	SNP Stn.	RATIONALE
Camsell River (Including Moose Bay)	T-30	Open Water	Surface	NEW STATION, Camsell River, Approx 300m downstream of site	x	х				Downstream of Ho Hum TCA
	T-19B	Shoreline	Surface	Shore sample of Camsell River by water intake	x	х				Potable water sampling NO POTABLE WATER USE – Not sampled in 2017
	T-1	Open Water	Surface	Jackfish Bay	x	х				Landfills adjacent and to be remediated
	T-4	Shoreline	Surface	Rainy Lake, south shore at Terra dock	x	x		x		Camsell Dock area (Rainy Lake); to be removed during remediation
On-land Water	T-18	On-land	Surface	Boggy seep from landfill (scummy pond), near Jackfish Bay						Monitor conditions downstream of landfill and near to Jackfish Bay DRY – Not sampled in 2017
	T-25	On-land	Surface	Pool below landfill, near Jackfish Bay	x	x		x		Monitor conditions downstream of landfill and near to Jackfish Bay
	T-19	On-land	Surface	Northwest adit, uphill from open pit adit, along trail	x	x				Monitor adit water as potential source term and before closure
	T-20	On-land	Surface	North zone adit, upstream of Terra dock	x	x				Monitor adit water as potential source term and before closure
	T-22	On-land	Surface	Standing water in adit near airstrip						Monitor adit water as potential source term and before closure DRY – Not sampled in 2017
Site Samples					22	22	8	5	2	

6.3 TERRA MINE – 2017 MONITORING RESULTS

Sampling figures are provided in Appendix A, with Figure A1 documenting the location of Terra Mine within the larger GBL Sites project area, Figure A2 the specific location of the each of the Silver Bear Mines and Figure A3 the location of the individual Terra Mine sampling stations. Results of sample analysis are provided in Appendix B, Tables B1-B4. Field data and observations are presented in Appendix C and site photographs in Appendix D.

6.3.1 Terra Mine – Aquatic Observations

During the 2017 field campaign, the Camsell River water level was found to be slightly higher than documented during previous sampling campaigns. Water was at or slightly above the Camsell River dock, and during high wave conditions was clearly breaching the dock surface. Conversely, there was limited standing water observed at the on-land stations and several were found to be completely dry. This included one of the adit sampling stations (T-22) and the wetland station near Jackfish Bay (T-18).

Ground conditions at the Ho Hum TCA and downstream dyke, weir and wetland were per earlier field campaigns, with no change or notable degradation to site features observed. The water level upstream of the weir was approximately 0.6 m higher than downstream, confirming the direction of any potential water flow. However, limited water was observed exiting the weir through the culvert between the upper and lower wetland. In contrast, a small volume of visible water flow was observed at the downstream corner of the weir pad and the airstrip, confirming earlier observations of subsurface water flow through waste rock into the lower wetland. Given the observations and overlapping coordinates of stations T-9 and MB-4, station MB-1 was sampled at the discharge location of subsurface water flow into the lower wetland (substitution for MB-4). A second station, MB-9, was added at the downstream reaches of the lower wetland.

The aquatic waterbodies within and surrounding Terra Mine were generally clear and consistent with earlier classifications of primarily oligotrophic conditions.

6.3.2 Terra Mine – General Chemistry

Both field and analytical results indicate neutral to slightly alkaline pH at all stations, including Little Ho Hum Lake, Ho Hum TCA, the Upper and Lower Wetland and the Camsell River. This is consistent with reference stations and there is no evidence of acidic conditions at the sample sites. Water hardness ranged from soft to moderately hard and electrical conductivity was consistent with reference stations (with the exception of a single elevated measurement of adit water at station T-20). This corresponds with expectedly low total dissolved solids. Total suspended solids are similarly low, with most results below detection and reaching a maximum of 10 mg/L.

With respect to anions and nutrients, ammonia, chloride, nitrate, and nitrite were below the associated CCME guidelines. Fluoride concentrations exceeded the CCME guideline of 0.12 mg/L at all 2017 sampling stations, including reference sites (0.15 mg/L), consistent with earlier sampling campaigns at Terra Mine (Arcadis 2016). The amount of fluoride in water is

governed by climate, composition of rocks and hydrogeology. Sources of fluoride in surface water are the weathering or leaching of minerals fluorspar, fluorapalite, topaz and cryolite. Digging up of deeper aquifers during mining activities may result in higher levels of fluoride (Arcadis 2016), though the presence of tailings with high surface area may also provide opportunity for enhanced fluoride leaching. The highest concentrations in aquatic waterbodies were reported from within the Ho Hum TCA, Wetlands and discharge point (0.6-0.8 mg/L), reducing to background concentrations in Moose Bay (~0.15 mg/L). Little Ho Hum Lake fluoride concentrations were also elevated (0.376 mg/L), though tailings deposition is not known to have occurred at this location. Based on these findings, local mineralogy may have resulted in elevated fluoride concentrations within the Ho Hum drainage pathway, with additional contributions possibly coming from mining activities and/or tailings deposition.

Sulphide concentrations were below detection limit for all samples. Sulphate concentrations were approximately consistent with reference stations (2-15 mg/L), with the exception of the Ho Hum Wetland stations MB-1 and MB-9 (27.7 and 24.7 mg/L sulphate respectively), station T-6 within Moose Bay (25.6 mg/L) and from within standing water at the T-20 adit sampling station (91.6 mg/L). Total and dissolved organic carbon concentrations were low across all sampling sites, ranging from 4-30 mg/L. Results indicate carbon is found primarily in the dissolved phase.

All other general chemistry results were below applicable CCME-FAL guidelines and SNP Effluent Quality Guidelines (EQG) as provided in the updated water licence for stations T-8 and T-10.

In keeping with previous monitoring programs, in-situ measurements of temperature were collected to identify temperature stratifications in the water columns. A YSI Instruments multimeter probe was used at stations T-8 and T-16 to a depth of 10m (cable limit). Clear temperature changes were evident at depth and were used to determine sample depths within the epilimnion, metalimnion and/or hypolimnion as required within the sampling plan.

6.3.3 Terra Mine – Total and Dissolved Metals

Total and dissolved metal sampling results from Terra Mine's Ho Hum drainage system (including Moose Bay), other Camsell River sampling stations, and the on-land stations are discussed below.

6.3.3.1 Ho Hum Drainage System

Waterbodies from the Ho Hum drainage system that were sampled include: Little Ho Hum Lake (T-2), Ho Hum TCA (T-16 and T-8 at multiple depths, T-5 and T-3), the Upper Wetland (T-9), Lower Wetland (MB-1 and MB-9) and within Moose Bay and the Camsell River (T-6, T-10, T-31,

T-12 and T-30).

Arsenic and copper have been identified in previous years as the main parameters of environmental concern in the Ho Hum drainage system. Water Licence S17L8-002 provides discrete EQG for stations T-8 and stations T-10 (corresponding SNP identifiers are provided in the Data Tables within Appendix B). <u>All metal concentrations, including arsenic and copper,</u> were below the EQGs provided for these stations. In 2017 samples, <u>only</u> arsenic and copper exceeded CCME-FAL guidelines.

As in previous years, arsenic concentrations in Little Ho Hum Lake, Ho Hum TCA, the Upper/Lower Wetland and the nearest station in Moose Bay (T-6) exceeded the CCME-FAL guideline of 0.005 mg/L (or 5 μ g/L). Figure 1 below graphs 2017 total arsenic concentrations with dissolved arsenic concentrations (where sampled) in the Ho Hum drainage basin. Arsenic concentrations were found to be primarily in the dissolved phase at all stations. Added to the figure is the CCME-FAL guideline, the Site-Specific Target Level (SSTL) developed for Moose Bay and the maximum background concentration reported in 2017. The Water Licence EQC has not been added as all results are well below these levels.

As reported during previous monitoring events, the figure demonstrates elevated arsenic concentrations within the Ho Hum TCA (60-78 μ g/L) relative to Little Ho Hum Lake (approximately 5 μ g/L). Arsenic concentrations in the wetlands reduced to 47.2-54.4 μ g/L. Within Moose Bay, station T-6 (the assumed point of discharge from the Lower Wetland) had an arsenic concentration of 28.7 μ g/L. This result is generally consistent with earlier monitoring programs and well below the SSTL of 78 μ g/L (SENES 2009). All other Moose Bay sampling stations (T-10, T-31, T-12 and T-30) were well below both the SSTL and CCME-FAL guideline for arsenic.

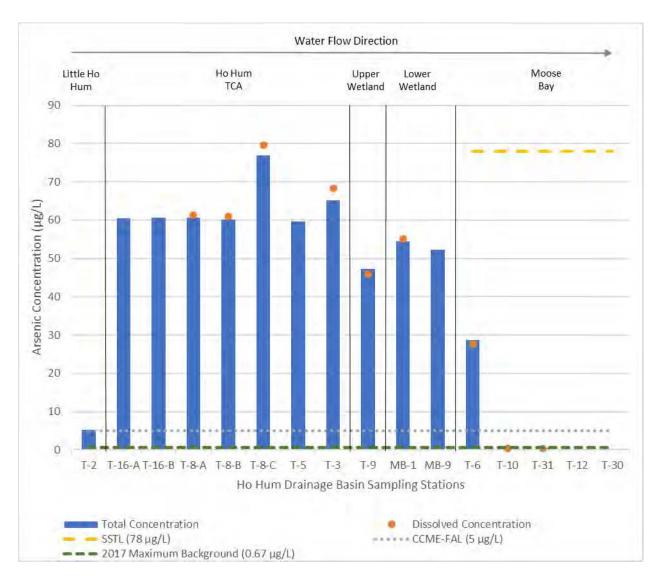


Figure 1 2017 Arsenic Concentrations in Ho Hum Drainage System Samples

While there were no exceedances of the copper EQC at the applicable stations (T-8 and T-10), concentrations exceeded the CCME-FAL guideline (2-4 μ g/L based on water hardness). Total and dissolved copper concentrations of 2017 samples are plotted within Figure 2, with the lowest CCME-FAL guideline of 2 μ g/L and maximum observed background concentration also incorporated. As shown if Figure 2, copper concentrations were primarily in the dissolved phase at all stations assessed. Little Ho Hum Lake, Ho Hum TCA and the Upper Wetland reported copper concentrations of 5-10 μ g/L. There was no visible trend observed in sample depth, or in proximity to shoreline tailings. These concentrations rose sharply in the Lower Wetland samples MB-1 and MB-9 (40-50 μ g/L). This may be attributable to subsurface water flow entering the

Lower Wetland from the toe of the airstrip near the weir. Based on this observation, station MB-9 was added in 2017 to provide greater spatial delineation of arsenic and copper concentrations. Within Moose Bay, station T-6 (proximal to the wetland) was above CCME-FAL copper guidelines, though all other downstream stations were below.

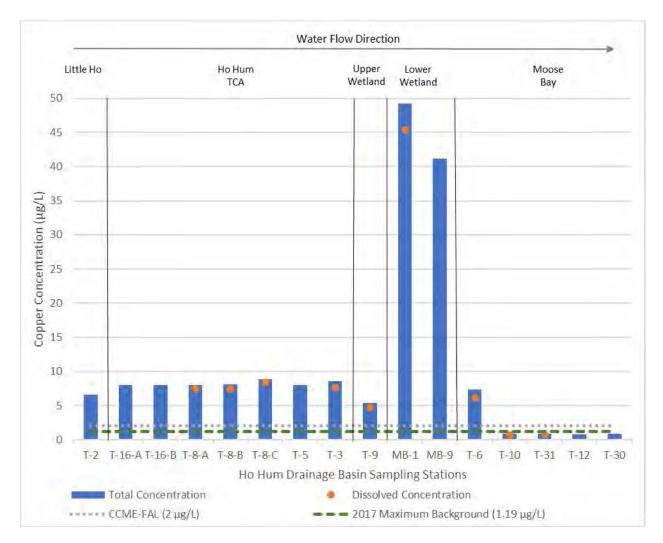


Figure 2 2017 Copper Concentrations in Ho Hum Drainage System Samples

6.3.3.2 Other Camsell River Sampling Stations

In addition to the previously discussed sampling in Moose Bay, stations were sampled at the Camsell River dock (T-4) and within Jackfish Bay downgradient of the former disposal area (T-1). At station T-4 a single exceedance of CCME-FAL guidelines was reported for total copper.

The calculated guideline (based on hardness) at this station was 2 μ g/L and total copper concentration 3.48 μ g/L, while dissolved copper concentration was 1.36 μ g/L. This sample was the only aquatic water body sample collected on September 8, 2017, during which extreme wind and wave height was observed across the Silver Bear sites. Visible suspended solid entrainment and high turbidity was noted during sampling and waves breached the shoreline at the T-4 station. Total suspended solids at the sample was 10 mg/L, while other Terra Mine samples were below detection (< 3 mg/L).

The 2017 findings at station T-4 were higher than reported in previous years, prompting opportunistic resampling during a return visit to the site on September 22, 2017. When resampled, copper concentration was 0.8 μ g/L, well below the CCME-FAL guideline and total suspended solids were less than detection limit. These findings confirm the earlier elevated copper concentration was attributable to anomalous wave heights and sediment/soil entrainment. Results of resampling are provided in Appendix E Laboratory Certificates (Laboratory Report L1998184), though the data table maintains the original September 8, 2017 result as a conservative measure.

Sample T-1 from Jackfish Bay of the Camsell River exceeded CCME-FAL guidelines for total aluminum and total copper. Total aluminum concentration was 152 μ g/L, while the guideline value is 100 μ g/L. Similarly, the total copper concentration of 4.21 μ g/L exceeded the calculated CCME-FAL guideline of 2 μ g/L. These results are consistent with findings from previous years at station T-1, though concentrations vary considerably at this location (SLR 2017). This may be attributable to shallow water conditions with fine sediments at this location.

6.3.3.3 On-Land Water

Samples were collected from ponded water at two adit openings (T-19 and T-20), and a third adit sampling station was found to be dry (T-22). While CCME-FAL guidelines are not applicable at these stations, it is noted that elevated aluminum, arsenic and copper in these waters were reported. Field notes provided in Appendix C document pooled conditions, with no downstream overland flow observed from the adit openings. Elevated metal concentrations in adit waters were documented during previous sampling at Terra Mine (SLR 2017).

Adjacent to the Jackfish Bay waste disposal area, the wetland station T-18 was found to be dry and no sample collected. In contrast, abundant water was observed at the pond station T-25, on the southern margin of the landfill/buried debris area. Given the potential for aquatic habitat at this station, sample results were evaluated with CCME-FAL guidelines. With the exception of total iron, all results were below the CCME-FAL guidelines. The total iron concentration of $402 \mu g/L$ was above the guideline of $300 \mu g/L$, though consistent with the range of iron concentrations reported from previous sampling events at this station (200-1740 $\mu g/L$). Along the margin of the pond there is visible metal debris and the area was used for waste disposal during the operational period of the mine, which may be contributing to elevated iron concentrations at this location.

6.3.4 Terra Mine – Hydrocarbons

Based on known PHC contamination of soils (e.g. from drum storage areas and fuel handing activities), reports of hydrocarbon sheens from earlier sampling campaigns, and analytical requirements of the Water Licence SNP, select stations were sampled for PHC analysis. This included three stations within the Ho Hum TCA: one open-water station (T-8, sampled at three depths) and two shoreline stations adjacent to known PHC contamination of soil/waste rock (T-5 and T-3). Within Moose Bay, station T-10 was sampled for PHCs in keeping with requirements of the SNP. Based on the earlier findings of hydrocarbon contamination in soils at the Camsell River Dock, station T-4 was sampled for PHCs, as was station the pond station T-25.

All 2017 water sample results were below detection limits for volatile organic compounds and PHCs.

7 NORTHRIM MINE – WATER QUALITY MONITORING

7.1 NORTHRIM MINE – SITE SUMMARY

As summarized by SENES/SRK (2008), initial development and underground exploration of the Northrim Mine was completed 1933-1935, after which a new adit was driven by Silver Bear Mines Limited in 1968. Intermittent work continued until 1978 under various ownership, with underground workings reaching a depth of approximately 100 m. Milling was conducted onsite, including the use of a small portable mill beginning in 1971 and applying gravity separation methods. In 1972 a larger underground mill was constructed and used both gravity separation and froth flotation methods. Milling was conducted in 1971-1972 and again from 1976 to 1978. Historical documentation and sampling activities indicate that during initial milling activities tailings were deposited in Hermandy Lake before transitioning to the Camsell River (near the mine entrance). An estimated 10,800 t of ore was milled at Northrim Mine during the operational period, producing approximately 10,000 t of tailings (SENES and SRK 2009).

7.2 NORTHRIM MINE – WATERBODIES, CONCERNS AND MONITORING APPROACH

In addition to several dilapidated building structures, mine openings are found throughout the site and a dock is located on the Camsell River. Waste rock is found on the shore of the river and in a small pile to the southeast, above the river. As well as the deposition of tailings in Hermandy Lake and the Camsell River, the Leachate Pond immediately southeast of Hermandy Lake was used to contain smelter waste and discarded debris (e.g. crucibles on shoreline) and determined to be a potential source of metal loadings. Hermandy Lake TCA currently discharges to the south-east, through the Leachate Pond and towards the Camsell River. However, historical documentation suggests the original drainage of Hermandy Lake was to the west, an alteration made during the operational period.

SLR provided a summary of Northrim Mine water quality monitoring data and trends up to 2016 (SLR 2017). From 2002 to 2004 concentrations of arsenic, copper, lead, iron and zinc regularly exceeded guidelines at Northrim Mine. From 2005 to 2007 these same exceedances were observed with the addition of aluminum and cadmium exceedances. It was determined that water with elevated concentrations of these metals was draining into the Camsell River from the mine adit and the Hermandy Lake outlet stream (INAC – WRD 2011); however, it did not appear to have a significant impact on the overall river water quality (SENES 2009).

Based on Water Resource Division (WRD) sampling and analysis, arsenic may be entering the system somewhere between Hermandy Lake and the Leachate Pond. Conversely, WRD concluded that copper concentrations were dropping between Hermandy Lake and the

Leachate Pond, before increasing again between the pond and the outlet stream. Lead concentrations were reportedly variable, fluctuating throughout the years and potential sources of zinc contamination were suggested between Hermandy Lake, the Leachate Pond and the outlet stream (INAC – WRD 2011).

Hydrocarbon contamination in the sediments in the area of the dock was also noted during earlier terrestrial and aquatic sampling events (INAC – WRD 2011).

Based on these findings, previous monitoring and recommendations of predecessor documents, the 2017 sampling program was designed for the Northrim Mine as documented in Table 4 below, in which revisions based on field observations are reported.

AREA	STATION	SAMPLE TYPE	DEPTH	GENERAL LOCATION	General Chemistry	Total Metals	Dissolved Metals	PHC, BTEX	SNP Station	RATIONALE
Hermandy Lake	NO-7	Shoreline	Surface	Hermandy Lake, Southeast end	x	x	x	x	Y	Current drainage pathway, near Leachate Pond, SNP Station (S17L8-002 (8C))
	NO-11	Shoreline	Surface	North end, submerged tailings	x	x				Tailings deposition in Hermandy Lake
Leachate Ponds	NO-2	Shoreline	Surface	North shore of leachate pond	x	x	x	x		Leachate pond elevated in metals from smelter waste
Stream	NO-4/ NO-8	On-land	Surface	Hermandy Lake outlet stream	x	x		x		Metals and detectable hydrocarbons in discharge water
	NO-21	On-land	From Pipe	Leaking Pipe						Pipe of unknown origin discharging water. NOT LOCATED – Assumed submerged and not sampled in 2017
On-land Water	NO-1	On-land	Surface	Standing water below adit	x	x		x		Metals in discharge water
	NO-9	On-land	Surface	Standing water in adit						Metals and detectable hydrocarbons in discharge water INSUFFICIENT WATER DEPTH – Not sampled in 2017
Camsell	NO-27	Open Water	Surface	NEW STATION, Camsell River downstream of site	x	x				Receiving environment downstream of Northrim and Norex
River	NO-25	Open Water	Surface	NEW STATION, Camsell River, at original drainage	x	x	x			Original drainage pathway from Hermandy Lake to Camsell River

Table 4 Northrim Mine 2017 Sampling Stations

AREA	STATION	SAMPLE TYPE	DEPTH	GENERAL LOCATION	General Chemistry	Total Metals	Dissolved Metals	PHC, BTEX	SNP Station	RATIONALE
	NO-5	Shoreline	Surface	Northrim dock	x	x		x		Metal and hydrocarbon contamination of soils
Camsell River	NO-6	Shoreline	Surface	Suspected entry point of current drainage pathway from Hermandy Lake	x	x	x	x	Y	Metals and detectable hydrocarbons in drainage waters from Hermandy Lake and the Leachate Pond, SNP Station (S17L8- 002 (9D))
Sample Numbers					9	9	4	6	2	

7.3 NORTHRIM MINE – 2017 MONITORING RESULTS

Sampling figures are provided in Appendix A, with Figure A1 documenting the location of Northrim Mine within the larger GBL Sites project area, Figure A2 the specific location of the each of the Silver Bear Mines and Figure A4 the location of the individual Northrim Mine Sampling Stations. Results of sample analysis are provided in Appendix B, Tables B5-B8. Field data and observations are tabled in Appendix C and site photographs in Appendix D.

7.3.1 Northrim Mine – Aquatic Observations

During the 2017 field campaign the Camsell River water levels were high and topped the dock wall at the Northrim Mine. Due to increased water levels, the formerly reported discharge pipe along the Camsell River shoreline (NO-21) could not be located and was suspected to be submerged. In contrast, Hermandy Lake TCA, the Leachate Pond and discharge stream water levels were generally consistent with earlier sampling campaigns. Water within the shoreline adit (NO-9) was approximately 3 cm deep and insufficient for sample collection.

Ground conditions were consistent with observations of previous assessment/monitoring programs.

7.3.2 Northrim Mine – General Chemistry

Both field and analytical results indicated neutral to slightly alkaline pH at all stations. This is consistent with reference stations and there is no evidence of acidic conditions at the sample

sites. Water hardness was considered to be soft to moderately hard and electrical conductivity was consistent with reference stations (R-2, R-3 and R-4). Total dissolved solids were low and total suspended solids were equal to or below the detection limit.

With respect to anions and nutrients, ammonia, chloride, nitrate, and nitrite were below the associated CCME-FAL guidelines. Fluoride concentrations exceeded the CCME guideline of 0.12 mg/L at all 2017 Northrim Mine sampling stations, ranging from 0.128 mg/L to 0.185 mg/L. However, these results are generally consistent with background stations and anthropogenic influence is not suspected.

Total and dissolved organic carbon concentrations were low in Camsell River sampling stations, though higher in Hermandy Lake, the Leachate Pond and discharge stream. Sulphide concentrations were below detection limit for all samples and sulphate concentrations were consistent with reference stations (~15 mg/L).

7.3.3 Northrim Mine – Total and Dissolved Metals

Total metal concentrations were analyzed in the nine samples collected from Northrim Mine (plus one duplicate), as well as dissolved metal concentrations in four samples (plus one duplicate). Exceedances of arsenic and copper CCME-FAL guidelines were reported for Hermandy Lake samples (NO-11 and NO-7), the Leachate Pond (NO-2) and the discharge stream (NO-4/NO-8). The adit water sample NO-1 is also elevated in arsenic, copper and lead; however, CCME-FAL guidelines are not applicable. All other total and dissolved metal results were below applicable CCME-FAL guidelines, including all stations within the Camsell River.

Results of arsenic and copper analysis for the Northrim Mine samples are provided below in Figures 3 and 4 respectively. Associated CCME-FAL guideline values and maximum 2017 reference station concentrations have been incorporated in the figures. Figures 3 and 4 demonstrate that concentrations of both arsenic and copper are primarily in the dissolved phase. Minor exceedances of arsenic in Hermandy Lake, increase in the Leachate Pond, with the presence of smelter waste the most probable cause. These concentrations decrease in the discharge stream and are below maximum background and CCME-FAL guidelines in the Camsell River stations.

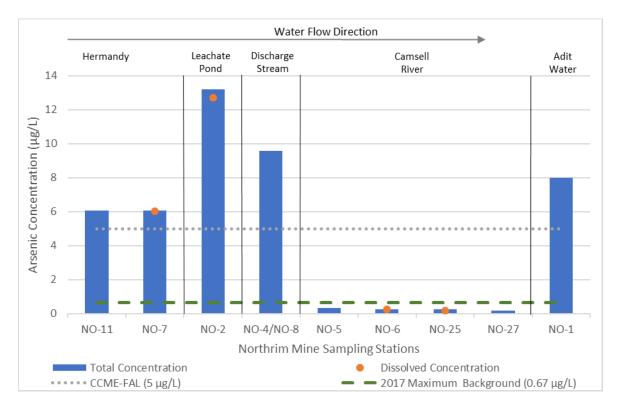


Figure 3 2017 Arsenic Concentrations in Northrim Mine Samples

A similar trend is noted for copper concentrations, though the maximum observed concentration was in the discharge stream (Figure 4). This may indicate an alternative source of copper concentration as the stream cascades over waste rock, debris and exposed mineralized bedrock.

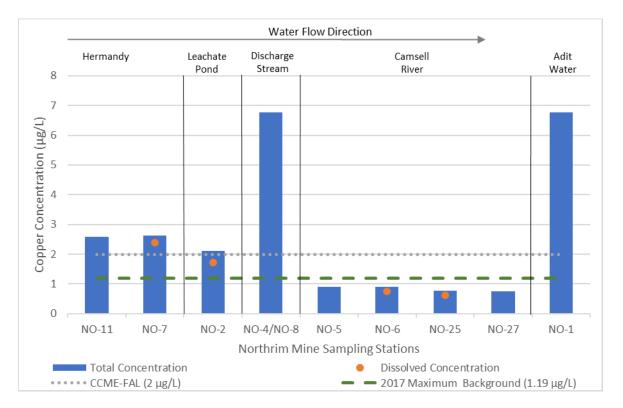


Figure 4 2017 Copper Concentrations in Northrim Mine Samples

As previously stated, all other total and dissolved metal concentrations in 2017 Northrim Mine water samples were below the CCME-FAL guidelines. Review of historical monitoring reports indicates these findings are generally consistent with previous results at the Northrim Mine (SLR 2017) and no emergent metal concerns are identified.

7.3.4 Northrim Mine – Hydrocarbons

Based on findings of terrestrial PHC contamination, reports of detectable PHC concentrations during earlier water sampling campaigns, and analytical requirements of the Water Licence SNP, select stations were sampled for PHC analysis. This included one station within Hermandy Lake (NO-7), one in the Leachate Pond (NO-2 plus duplicate), one in the Discharge Stream (NO-4/NO-8), two in the Camsell River (NO-5 and NO-6) and one from the pooled water below the lower adit (NO-1).

All 2017 water sample results were below detection limits for volatile organic compounds and PHCs.

8 NOREX AND GRAHAM VEIN MINE – WATER QUALITY MONITORING

8.1 NOREX AND GRAHAM VEIN - SITE SUMMARY

The development and operational history of the Norex and Graham Vein sites is provided in the associated Remedial Action Plan (SENES/SRK 2009). The sites were amongst the last to be developed at the Silver Bear Mines. Ore was first mined using open pit methodology from Graham Vein in 1970-1971, during which a small test mill was used and applied gravity separation methods. It is believed these tailings were deposited in and around the adjacent Xeron Pond. During the same time period, excavation of the decline to Norex Mine was advanced. The Norex Mine and Graham Vein trench were originally mined independently and later connected when the Norex workings were used to mine the Graham Vein from below. In 1973 a small volume of ore was transported to Terra Mine for processing using a winter road, after which an all-weather road was constructed to facilitate transport. Continuous production began in 1977, during which underground workings reached a depth of 180 m. During these time periods, approximately 1,000 t of ore was milled on site and an additional 45,000 t of ore hauled to Terra Mine for processing (SENES/SRK 2009).

The current surface features at Norex include two portals, three ventilation raises, a waste rock pile of approximately 40,000 m³ located just below the main adit entrance, a maintenance garage, a ventilation and compressor plant and fuel tanks. At Graham Vein, the features include an open mining trench, an old wooden ore bin, the remains of a crushing plant and approximately 4,000 m³ of waste rock (SENES/SRK 2009).

8.2 NOREX AND GRAHAM VEIN – WATERBODIES, CONCERNS AND MONITORING APPROACH

Seepages emerging from the Norex Mine waste rock pile have been routinely monitored since 2002. The majority of seepage occurs on the northeast side of the pile and was found to have elevated levels of arsenic, cadmium, copper, lead and zinc. The source of most of this water is drainage from the main portal, which enters the waste rock pile soon after it emerges from the mine. From June through August 2006, the volume of mine drainage was estimated to vary from 30 to 60 litres per minute, with the lower flow rate occurring later in the year. Significant geochemical changes are reported as the adit water flows through the waste rock pile. Iron, manganese and arsenic concentrations reduce, while concentrations of zinc and to a lesser extent copper, cobalt and lead, increase. The concentration of these metals was found not to have a material effect on the downstream Camsell River (SENES/SRK 2009).

Xeron pond is found down-gradient of the Graham Vein trench and workings. As previously mentioned, historical records suggest approximately 1,000 t of tailings were deposited in the pond during early milling activities. Intermittent monitoring since 2002 indicates the tailings are having a limited impact on water quality and, with the exception of silver and one anomalous lead result, metal concentrations in water samples were either below CCME-FAL or consistent with background findings (SENES/SRK 2009). Sampling at Xeron Pond was deemed unnecessary (INAC-WRD 2009) and not included in the 2017 monitoring program. However, minor elevations in silver concentration were noted in the small wetland bordering Xeron Pond, leading to inclusion of a single sampling station in 2017.

Based on these findings, previous monitoring and recommendations of predecessor documents, the 2017 sampling program was designed for the Norex Mine as documented in Table 5 below. It is noted that station NX-13 was opportunistically added and sampled while in field to confirm dock materials, and any potential contamination from previous fuel handling, is not impacting Camsell River water quality.

AREA	STATION	SAMPLE TYPE	DEPTH	GENERAL LOCATION	General Chemistry	Total Metals	Dissolved Metals	PHC, BTEX	SNP Station	RATIONALE
Camsell River	NX-12	Open Water	Surface	NEW STATIION, Camsell River, at drainage from Norex	x	x	x	x	Y	Location where suspected Norex and Graham Vein drainage enters the Camsell River, SNP Station S17L8-002 (11F))
	NX-13	Shoreline	Surface	NEW STATION, Camsell River, at Norex dock	x	x		x		Potential for hydrocarbon contamination or elevated metals
	NX-1	On-land	Surface	Outflow from adit	x	х				Monitor adit water as potential source term
	NX-2	On-land	Surface	Waste rock pile, east seep	x	x		x		Waste Rock seepage in area with hydrocarbon contamination
On-land Water	NX-3	On-land	Surface	Waste rock pile, west seep	x	x	x	x	Y	Waste Rock seepage in area with hydrocarbon contamination, SNP Station (S17L8-002 (10E))
	NX-4A	On-land	Surface	Small creek downstream of waste rock	x	x				Site drainage pathway toward Camsell River*
Xeron Pond	NX-6	Shoreline	Surface	Pond connected to Xeron Pond	x	x				Downstream of mining activities
Sample Numbers					7	7	2	4	2	

Table 5 Norex and Graham Vein Mine 2017 Sampling Stations

* Station coordinates align with 2016 station NX-4A. However, all previous monitoring events utilized NX-4 for the Norex discharge pathway station, and NX-4A was located within the Camsell River at the discharge point of the drainage pathway.

8.3 NOREX AND GRAHAM VEIN – 2017 MONITORING RESULTS

Sampling figures are provided in Appendix A, with Figure A1 documenting the location of Norex and Graham Vein Mines within the larger GBL Sites project area, Figure A2 the specific location of the each of the Silver Bear Mines and Figure A4 the location of the individual Norex and Graham Vein sampling stations. Results of sample analysis are provided in Appendix B, Tables B5-B8. Field data and observations are tabled in Appendix C and site photographs in Appendix D.

8.3.1 Norex and Graham Vein – Aquatic Observations

During the 2017 field campaign the Camsell River water levels were high, though did not surpass the level of the Norex dock. At the mine area proper, water flow was observed coming from the adit and the ice plug was melted back from the portal opening. At the toe of the waste rock slope, monitoring stations had sufficient water to sample, though were lower than has been observed during previous sampling events. No material changes to ground conditions were noted within or around the aquatic waterbodies.

8.3.2 Norex and Graham Vein – General Chemistry

Both field and analytical results indicated neutral to slightly alkaline pH at all stations. This is consistent with reference stations and despite obvious iron staining in water flowing from the adit, there is no evidence of acidic pH. All samples were classified as moderately hard to hard and electrical conductivity was elevated above reference stations in waters flowing from the adit (NX-1) and at the toe of the waste rock slope (NX-2, NX-3 and NX-4A). This corresponds with higher total dissolved solids at these locations, as well as elevated suspended solids.

Samples from the Camsell River (NX-12 and NX-13) and from the marsh adjacent to Xeron Pond (NX-6 plus duplicate) exceed CCME-FAL guidelines for fluoride; however, are within the range of normal for reference station concentrations. Alternatively, at the Norex Mine discharge stream (NX-4A) fluoride concentrations are greater than CCME guidelines and reference stations.

The sulphate and sulphide concentrations in the Camsell River were low and consistent with reference stations. These parameters were expectedly higher in seepage samples from waste rock drainage (NX-3 and NX-4A) and from within Xeron Pond (NX-6). Elevated sulphate may indicate increased sulphide concentration in waste rock resulting in enhanced metal leaching,

though based on neutral to alkaline pH, any acid generation is sufficiently buffered under current conditions.

8.3.3 Norex and Graham Vein – Total and Dissolved Metals

Samples from the Camsell River (NX-12 at the discharge of Norex site drainage and NX-13 at the dock) and from the marsh connected to Xeron Pond (NX-6) were below CCME-FAL guidelines for all total and dissolved metal parameters.

Consistent with earlier monitoring programs, elevated metals were identified in water discharging from the Norex adit (NX-1), in seeps from the toe of the waste rock pile (NX-2 and NX-3) and in the shallow discharge stream (NX-4A). Unlike results from other Silver Bear Sites at which arsenic and copper were the only pervasive metals of concern, a larger number of metal parameters were enriched in waters discharging from the Norex Mine. As reported earlier, a more complicated geochemical environment is observed at the Norex Mine waste rock pile and resultant metal concentrations change as water discharging from the adit passes through the waste rock pile. Concentrations of aluminum, cadmium, copper, iron, lead and zinc in many cases appear to increase at the toe of the waste rock slope relative to the adit discharge water. Conversely, arsenic concentrations decrease during passage though the waste rock pile. Within the discharge stream at station NX-4A, aluminum, arsenic, copper, iron and zinc exceed CCME-FAL guidelines (one to four times the guideline value). The source of the elevated aluminum concentration in is undetermined given the absence of this concern in adit and waste rock seepage water and may be attributable to high suspended solids (23 mg/L) and associated aluminosilicates. In future, this station would benefit from dissolved metal sample analysis. Results from the Camsell River near the discharge of these waters (NX-12), is below all CCME-FAL metal guidelines.

While minor differences were observed, metal trends were generally consistent with those reported in earlier monitoring programs compiled by SLR (2017). Exceedances of CCME-FAL guidelines at stations NX-4A (stream discharge) and NX-6 (marsh adjacent to Xeron Pond) are however, lower than reported during 2016 monitoring events.

8.3.4 Norex and Graham Vein – Hydrocarbons

Based on findings of terrestrial PHC contamination reported on the waste rock pile and analytical requirements of the Water Licence SNP, select stations were sampled for

hydrocarbon analysis. This included two waste rock seepage stations (NX-2 and NX-3), the discharge point of site drainage to the Camsell River (NX-12) and at the Camsell River dock (NX-13).

A single detectable result was reported for F2 fraction hydrocarbons in sample NX-3. Due to the elevated total organic carbon reported in the sample (27.3 mg/L) and the known potential for organic material to cause false positive hydrocarbon concentrations, reanalysis with silica gel cleanup was requested and reported a low but detectable F2 concentration of 0.7 mg/L. All other 2017 water sample results were below detection limits for volatile organic compounds and PHCs.

9 SMALLWOOD MINE – WATER QUALITY MONITORING

9.1 SMALLWOOD MINE – SITE SUMMARY

The development and operational history of Smallwood Mine is provided in the Remedial Action Plan (SENES/SRK 2009). Work by Terra Mining and Exploration Limited identified silver mineralization at the Smallwood Mine in 1978, beginning underground development using a decline ramp in 1979. Underground workings reached a total depth of approximately 120 m and from 1979 to 1983 approximately 18,000 t of ore was hauled from Smallwood Mine to Terra Mine for processing (SENES/SRK 2009).

Due to the small scale of operations and the intervening decades, there is limited infrastructure remaining at Smallwood Mine. This includes a few small service buildings, a fuel tank, adit and an estimated 53,000 m³ of waste rock downslope of the main mine portal and immediately upgradient of Smallwood Lake (SLR 2017).

9.2 SMALLWOOD MINE – WATERBODIES, CONCERNS AND MONITORING APPROACH

Two connected upland lakes drain via an intermittent stream into the north end of Smallwood Lake, and a natural wetland named Timler Slough drains into its south end. Smallwood Lake discharges to the northeast into a large chain of lakes that are thought to subsequently drain into the Camsell River. Smallwood Mine is found on the northwest shore of Smallwood Lake and the waste rock pile borders the shoreline (SLR 2017).

Earlier monitoring reports document discrete elevated metals in the thermally stratified Smallwood Lake, including arsenic, copper, lead, silver and zinc (INAC-WRD 2011). These exceedances have typically been lower magnitude than observed at the other Silver Bear Sites and there has been no documentation of increasing concentrations. Spatial trends in metal concentration adjacent to mining activity have not been identified (WRD 2010).

In keeping with these minor concerns, three sampling stations were assessed during the 2017 field program, including one open water station sampled at both surface and depth as documented in Table 6 below.

AREA	STATIO N	SAMPLE TYPE	DEPTH	GENERAL LOCATION	General Chemistry	Total Metals	Dissolved Metals	РНС, ВТЕХ	SNP Station	RATIONALE
	SM-1	Shoreline	Surface	Smallwood Lake shoreline, below waste rock pile, southwest side	x	x	x	x		Downstream of waste rock pile, evidence of PHC impacts within mine footprint
Smallwood Lake	SM-2	Shoreline	Surface	Smallwood Lake shoreline, below waste rock pile, northeast side	x	x		x		Downstream of waste rock pile, evidence of PHC impacts within mine footprint
	CM C	SM-6 Open Water	Surface (A) -2m	Smallwood Lake, Open	x	x				Offshore of waste rock
SM-6	SIVI-0		Bottom (B) -5m	water in north end	x	x				pile
Sample Numbers					4	4	1	2	0	

 Table 6 Smallwood Mine 2017 Sampling Stations

9.3 SMALLWOOD MINE - 2017 MONITORING RESULTS

Sampling figures are provided in Appendix A, with Figure A1 documenting the location of Smallwood Mine within the larger GBL Sites project area, Figure A2 the specific location of the each of the Silver Bear Mines and Figure A4 the location of the individual Smallwood Mine sampling stations. Results of sample analysis are provided in Appendix B, Tables B5-B8. Field data and observations are tabled in Appendix C and site photographs in Appendix D.

9.3.1 Smallwood Mine – Aquatic Observations

Smallwood Lake conditions during the 2017 field program appeared consistent with earlier sampling events, though the previously installed dock has since been removed.

9.3.2 Smallwood Mine – General Chemistry

Both field and analytical results indicated neutral to slightly alkaline pH at the four stations in Smallwood Lake, consistent with Silver Bear reference stations (R-2, R-3 and R-4). Water was considered to be soft and the electrical conductivity comparable to reference stations. Total suspended solids were below or marginally above detection limit, and total dissolved solids in keeping with reference stations.

With respect to anions and nutrients, ammonia, chloride, nitrate, and nitrite are all below the associated CCME-FAL guidelines. Fluoride concentrations exceeded the CCME-FAL guideline of 0.12 mg/L at all 2017 Smallwood Mine sampling stations, ranging from 0.142 mg/L to 0.263 mg/L. These concentrations are higher than reported at reference stations (maximum 0.150 mg/L) and may represent contribution from waste rock or natural variation.

Sulphide concentrations were below detection limit for all samples and sulphate concentrations consistent with reference stations. Total and dissolved organic carbon concentrations were low at all stations (~ 6 mg/L).

9.3.3 Smallwood Mine – Total and Dissolved Metals

Sample SM-2 collected from the shoreline of Smallwood Lake at the southern toe of the waste rock pile did not exceed CCME-FAL guidelines for any metal parameters. In contrast, station SM-1 at the northern toe of the waste rock pile on the shoreline of Smallwood Lake marginally exceeded the cadmium guideline (concentration of 0.102 μ g/L and guideline of 0.0979 μ g/L). Notably, the dissolved metal concentration was below the guideline. The sample demonstrated a greater exceedance of zinc, with a reported result of 82.7 μ g/L and guideline of 30 μ g/L. At the open water station SM-6, no exceedances were reported in the surface water sample; however, the sample from 4 m depth reported a marginal total zinc exceedance (38.1 μ g/L).

The 2017 cadmium concentration in sample SM-1 is approximately 3x higher than was reported at the same station in 2016 (SLR 2017). However, concentrations in 2007, 2008 and 2009 are consistent with 2017 findings. During these earlier sampling events, cadmium was not reported as an exceedance based on use of the previously higher CCME guideline (updated in 2014). Some of the 2017 zinc concentrations are higher than reported during previous sampling events. No definitive cause of increased zinc concentration was observed, and additional sampling may be conducted to help identify potential trends.

9.3.4 Smallwood Mine – Hydrocarbons

Based on findings of terrestrial PHC contamination reported on the waste rock pile at Smallwood Lake, two shoreline samples were selected for hydrocarbon analysis (SM-1 and SM-2). Both 2017 water sample results were below detection limits for volatile organic compounds and PHCs.

10 CONTACT LAKE MINE – WATER QUALITY MONITORING

10.1 CONTACT LAKE MINE - SITE SUMMARY

The development and operational history of Contact Lake Mine is provided in the associated Remedial Action Plan (INAC-CARD and SENES 2008a). The site operated intermittently from 1930 to 1980, after which the mine was finally abandoned. The property was first explored and mined for silver and a short adit developed underground. Milling activities began in 1935 and in 1938 the recovery of pitchblende, a uranium-rich mineral, became another focus of the operation. The site changed ownership multiple times, with exploration and underground development continuing intermittently. Milling of the silver and uranium ore was conducted both on site and in later years, was transported by barge and all-weather haul road to the Echo Bay Mines milling plant at Port Radium. During on-site milling activities, the tailings were contained within a pond immediately downgradient of the mine openings (i.e. the Tailings Pond), though in some areas were also left on ground surface. Waste rock was used to construct pads, roads and working areas throughout the site.

Upon abandonment, the large majority of site infrastructure remained standing though reached a dilapidated state. In 2010, the GBL Phase I Remediation Project was implemented and focussed on work activities which could be successfully completed without the use of heavy equipment. This included destruction of most buildings; burning of combustible building materials and debris; and consolidation of non-combustible materials (SENES 2011). In 2016 a drum removal program continued these efforts by removing all drums with residual product for off-site management. As with the other GBL Sites, completion of remediation will be conducted in the coming years and per the approaches detailed within the Contact Lake Mine Remedial Action Plan (INAC-CARD and SENES 2008a).

The Contact Lake Mine is distributed over three discrete areas: the Camp Area on the east shore of Contact Lake, the Mine Area on the bedrock ridge east of the lake and the Fuel Storage Area at Echo Bay (part of the East Arm of Great Bear Lake). These areas are connected by roadways which are now largely overgrown. In addition to the main adit, an open stope and raise/ventilation shaft are also observed in the Mine Area, as well as a small number of remaining buildings and debris piles. The total estimated volume of waste rock at the site is 29,000 m³ and approximately 1,000 m³ of gravity mill tailings are found as a thin layer (up to 20 cm) on ground surface between the mill and Tailings Pond, with additional tailings in the pond itself. At the Echo Bay East Arm Fuel Storage Area, a single above ground fuel storage tank and dock wall are the only significant items remaining.

10.2 CONTACT LAKE MINE - WATERBODIES, CONCERNS AND MONITORING APPROACH

Extensive study and monitoring of aquatic conditions has been conducted since 2002 at the Contact Lake Mine. Upper Lake is found topographically above the Contact Lake Mine and may represent aquatic conditions within the mineralized zone (due to uncertainty regarding deposition of dust from the mining operation, the site was not sampled as a reference station). The Mine Area lies on a tiered plateau, with water draining from the waste rock pile below the adit, through the tailings into the marsh area and Tailings Pond. The highest reported metal concentrations during assessment and monitoring at the Contact Lake Mine have been measured in this area, and from surrounding pools of standing water (SLR 2017). The principal concerns were arsenic, cadmium, copper, manganese, silver and uranium. Due to the presence of uranium rich minerals and processed tailings, assessment and monitoring has included radionuclides lead-210 and radium-226, which were similarly found to be exceeding applicable guidelines in the Tailings Pond and standing water within the main mine area (SENES 2007).

The Tailings Pond discharges to Contact Lake via a small cascading stream. Concentrations of metals and radionuclides were reduced from those documented in the Tailings Pond, though continued to exceed applicable guidelines for both the principal metals of concern and radionuclides. While this stream discharges into Contact Lake, no concerns were identified in shoreline or off shore samples in Contact Lake (SENES 2007).

The principal concerns identified at the East Arm Echo Bay Fuel Storage Area relate to fuel management and both terrestrial and aquatic releases of PHCs. Detailed studies of this area were previously conducted to determine the influence of these releases on the aquatic environment. This resulted in the identification of PHCs in sediments surrounding the dock area.

To address these concerns, the recommendations of the predecessor documents and the requirements of the Water Licence SNP, a detailed 2017 water monitoring plan was designed for Contact Lake Mine. The sampling stations, locations, parameters and rationale are provided in Table 7 below.

AREA	STATION	SAMPLE TYPE	DEPTH	GENERAL LOCATION	General Chemistry	Total Metals	Dissolved Metals	РНС, ВТЕХ	SNP	RATIONALE
	CL-6	Open Water	Surface (A) -2m Depth (B) -	Contact Lake; NW of island midway across lake from dock area	x	x	x			Contact Lake characterization station at offshore
	CL-9	Open Water Shoreline	10m	Contact Lake; Shoreline water 700-m SE of main mine site	x x	x x	x			from mine Receiving environment downstream of mine
Contact Lake	CL-5	Shoreline	Surface	At stream inflow from tailings pond into lake	х	х	х			Inflow from tailings pond
	CL-24	Shoreline	Surface	Contact Lake; Camp Area	x	x				Characterize influences from shoreline activities
	CL-26	Open Water	Surface	Contact Lake; offshore at outflow of stream from tailings pond	x	x	x	x	Y	Offshore from tailings pond discharge, SNP Station (S17L8-002 (13H))
Great Bear	CL-7	Shoreline	Surface Depth	Great Bear Lake-East Arm; From dock at fuel storage area	x	x	x	X		PHC contaminated soil and sediments; dock/tank removal planned INSUFFICIENT DEPTH – Only surface sample collected
Lake	CL-16	Open Water	Surface (A) - 2m Depth (B) -	East Arm, north of dock	x x	x x		x		Remediation includes removal of dock wall and any
	CL-20	Open Water	10m Surface	Great Bear Lake-East Arm; ~ 250 m SE of dock	x	x				impacted soils Remediation includes removal of dock wall and any impacted soils
Tailings Pond	CL-3	Shoreline	Surface	Tailings Pond; Outflow into stream flowing from pond	x	x	x	x	Y	Tailings pond monitoring, SNP Station (S17L8-002 (12G))
	CL-29	Shoreline	Surface	NEW STATION, Tailings Pond north end	x	х				Tailings pond monitoring
Stream	CL-2b	On-land	Surface	Stream flow between tailings pond and Contact Lake	x	x	x			Discharge pathway from Tailings Pond to Contact Lake
On-land	CL-2	On-land	Surface	Toe of waste rock	x	x				Elevated metals; remediation to drainage pathway planned
Water	CL-15	On-land	Surface	On-land; Upstream of inflow into tailings pond	x	x				Elevated metals; remediation to drainage pathway planned
Reference	CL-8	Open Water	2 meters	Contact Lake; Background Station in far NW of Lake	x	x				Background conditions
	CL-RL- 1B	Open Water	Surface	Regional Lake 1 Sample B - NW end of Thompson Lake	x	x		x		Background conditions
Sample Numbers					17	17	7	5	2	

 Table 7 Contact Lake Mine 2017 Sampling Stations

10.3 CONTACT LAKE MINE - 2017 MONITORING RESULTS

Sampling figures are provided in Appendix A, with Figure A1 documenting the location of Contact Lake Mine within the larger GBL Sites project area, Figure A5 providing an overview of the Contact Lake Mine areas, Figure A6 showing the Camp and Mine Area and Figure A7 the Echo Bay Fuel Area. Results of sample analysis are provided in Appendix B, Tables B9-B13. Field data and observations are tabled in Appendix C and site photographs in Appendix D.

10.3.1 Contact Lake Mine – Aquatic Observations

Contact Lake conditions during the 2017 field program appeared consistent with earlier sampling events, though the previously installed dock by the Camp Area has since been removed.

10.3.2 Contact Lake Mine – General Chemistry

Field and analytical results indicated neutral to slightly alkaline pH at all Contact Lake Mine sample stations, consistent with reference stations (CL-RL-1B and CL-8). Water sampled from Great Bear Lake, Contact Lake proper and the reference stations was classified as soft. This is in contrast with on-land water, the Tailings Pond and discharge stream samples which were moderately hard to hard water. The same general trend is noted for electrical conductivity which is low and at reference stations and Contact Lake (40-60 μ S/cm) and elevated in waters within the mine footprint and discharge stream (100-130 μ S/cm). Conductivity in Great Bear Lake is also elevated (~155 μ S/cm). All samples reported total suspended solids below detection, with the exception of the discharge stream (CL-2B) which was marginally above detection (3.1 mg/L)

Ammonia, chloride, nitrate, and nitrite were all below the associated CCME-FAL guidelines in all aquatic waterbodies. Fluoride concentrations exceeded the CCME guideline of 0.12 mg/L in samples from the Tailings Pond (CL-3 plus duplicate and CL-29) and in the discharge stream (CL-2B plus duplicate). Concentrations ranged from 0.262 mg/L to 0.299 mg/L, though it is noted that reference station CL-RL-1B from Thompson Lake also exceeded the CCME-FAL guideline and reported a concentration of 0.209 mg/L. These results confirm the natural abundance of fluoride, though mining and milling activities may be contributing to these concentrations.

Sulphide concentrations were below detection limit for all samples. However, sulphate

concentrations were significantly higher at on-land sample stations CL-2 and CL-15 (14.7 mg/L and 8.97 mg/L respectively). These samples were collected from shallow water pools surrounded by waste rock and tailings. Sulphate concentrations were lower in the Tailings Pond samples CL-3 and CL-29 (6.28 mg/L and 6.29 mg/L respectively) and equal to background in the discharge stream sample CL-2B. Sulphate concentrations in Great Bear Lake samples CL-7, CL-16 and CL-20 were 14.9 mg/L, despite the absence of mined materials and indicating the potential for natural variability in sulphate concentration. Total and dissolved organic carbon concentrations were low at all stations (<10 mg/L).

10.3.3 Contact Lake Mine – Total and Dissolved Metals

Consistent with earlier monitoring, concentrations of arsenic, copper, mercury, silver and uranium were elevated in pooled surface water samples (CL-2 and CL-15). Within the downstream Tailings Pond (CL-3 plus duplicate and CL-29), concentrations of mercury and silver were well below the CCME-FAL guidelines, though arsenic, copper and uranium concentrations exceeded. This same trend was observed in the discharge stream sample CL-2B (and duplicate), and while lower in concentration than the Tailings Pond, arsenic, copper and uranium exceeded guidelines. However, at the discharge point of the stream into Contact Lake (CL-5) all metal concentrations were below CCME-FAL guidelines. The same result is noted for the remaining four Contact Lake stations (CL-26, CL-6 at 2 m and 10 m, CL-9 and CL-24) and no exceedances of aquatic guidelines were reported. Summaries of the arsenic, copper and uranium concentrations in the Tailings Pond, discharge stream and Contact Lake are provided in Figures 5 through 7 below. The figures demonstrate that the Tailings Pond metal concentrations are expectedly the highest of the aquatic waterbodies sampled and are a maximum of approximately four times the associated CCME-FAL guideline values.

Analysis of dissolved metal concentration was conducted at stations CL-3 (plus duplicate), CL-2B (plus duplicate), CL-5, CL-26, CL-6 (2 m and 10 m depth) and station CL-7. Dissolved arsenic and uranium concentrations were approximately equal to total concentrations (+/- 10% in keeping with natural variability and analytical accuracy). Dissolved copper concentrations were 76-95% of those reported in corresponding total copper results.

Comparison with 2016 findings indicate an increase in mercury and silver concentrations at the standing water station CL-2 below the waste rock pile; however, arsenic has decreased. In contrast, a notable decrease in metal concentration was reported at station CL-5. Further evaluation determined the 2016 sample at station CL-5 was erroneously sampled from within the discharge creek and not at the shoreline of Contact Lake, as was previously conducted during other monitoring programs. With the exception of these two observations, 2017 data shows the same general concentration trends as earlier sampling programs.

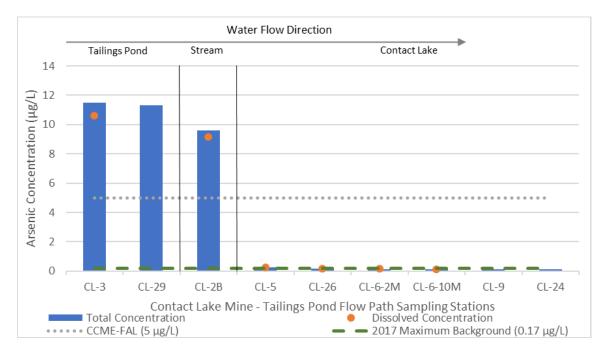


Figure 5 2017 Arsenic Concentrations in Contact Lake Mine Flow Path Samples

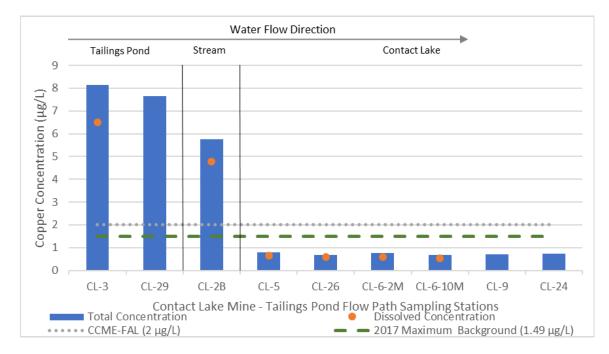


Figure 6 2017 Copper Concentrations in Contact Lake Mine Flow Path Samples

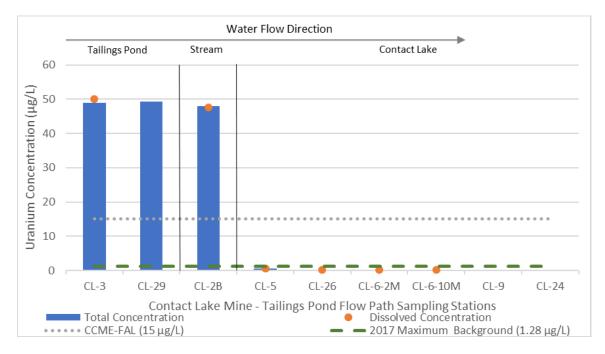


Figure 7 2017 Uranium Concentrations in Contact Lake Mine Flow Path Samples

Sampling at the Echo Bay East Arm fuel storage area on Great Bear Lake was conducted at three stations (CL-7, CL-20 and CL-16 at two depths). All total metal results were below CCME-FAL guidelines.

10.3.4 Contact Lake Mine – Hydrocarbons

Based on findings of terrestrial PHC contamination reported at the main mine site, camp area and at the East Arm Echo Bay fuel storage area, samples were collected from the Tailings Pond (CL-3 plus duplicate), Contact Lake offshore of mine discharge (CL-26) and at the former East Arm fuel storage area (CL-7 and CL-16). All 2017 sample results were below detection limits for volatile organic compounds and PHCs.

10.3.5 Contact Lake Mine – Radionuclides

Radium-226 and lead-210 were analyzed in samples from reference stations (CL-RL-1B and CL-8) and stations associated with mine activities and waste deposition (e.g. tailings, waste rock). This included the two on-land stations of pooled standing water in the waste rock and

tailings areas (CL-2 and CL-15), one station within the tailings pond (CL-3 plus duplicate), one station within the discharge stream (CL-2B plus duplicate) and three stations within Contact Lake (CL-5, CL-26 and CL-6 at two depths). The Echo Bay East Arm fuel storage area on Great Bear Lake also housed the barge docking area used to transport ore to the Echo Bay mill at Port Radium. The dock wall station (CL-7) was therefore analyzed for radionuclides.

To date, environmental criteria for radionuclides in water have not been developed for protection of aquatic species. The measured concentration of radionuclides in water has instead been compared to Canadian Guidelines for Drinking Water Quality (CGDWQ) published by Health Canada on behalf of the Federal-Provincial-Territorial Committee on Drinking Water (Health Canada 2009). This approach was applied during previous assessment and monitoring, ensuring the consistency in result evaluation.

Within Contact Lake and Great Bear Lake, all radium-226 and lead-210 concentrations were below detection limits in 2017. Radium-226 concentrations were above detection in on-land standing water (CL-2 and CL-15), the Tailings Pond (CL-3) and the discharge stream (CL-2B); however, concentrations were below the CGDWG. At station CL-2 (pooled standing water in tailings/waste rock area), the lead-210 concentration of 0.35 Bq/L exceeded the CDWQG of 0.2 Bq/L. However, all other reported lead-210 results were below detection limits.

11 EL BONANZA MINE – WATER QUALITY MONITORING

11.1 EL BONANZA MINE – SITE SUMMARY

The development and operational history of the El Bonanza Mine is provided in the associated Remedial Action Plan (INAC-CARD and SENES 2008b). A rich silver deposit was discovered at the property in 1931 and in 1934 the site was acquired by the El Bonanza Mining Corporation Limited, a subsidiary of Eldorado Gold Mines Limited. The claims and deposits fell in two distinct areas, the El Bonanza mine on the shore of Silver Lake and Bonanza Mine on Whale Lake approximately 1.5 km to the northwest. Both surface and underground work commenced in 1934 at El Bonanza, with ore hand picked through vein systems and transported to British Columbia for processing. Additional ore was stockpiled for shipment to Eldorado Mine for milling; however, due to declining silver prices, operations were suspended. Exploration for uranium was conducted at the El Bonanza property in the 1940s by the federal government; however, there was no record of uranium mining having been conducted at the property.

Silver activities recommenced intermittently in 1956 and again in 1965, including ongoing underground development and sinking of the shaft. By 1972 approximately 2,500 t of ore were reportedly stockpiled. Additional exploration was conducted at the property, though no economic silver encountered.

A similar operational history is documented at the Bonanza Mine, with work commencing in 1937 to explore for silver potential. A short shaft was developed with lateral extensions and a small volume of ore extracted which was shipped to the Eldorado Mill at Labine Point (i.e. Port Radium Mine). The property changed hands multiple times over the following decades and work included exploration, trenching, drilling and bulk sampling (680 kg of ore) before abandonment.

Access roads were constructed to connect Mile Lake and Great Bear Lake to the El Bonanza Mine. Access to the Bonanza Mine likely occurred across the ice on the small lakes between Great Bear Lake and the mine site, though a former trail is also observed.

In 2010, the GBL Phase I Remediation Project was implemented and focussed on work activities which could be successfully implemented without the use of heavy equipment. This included destruction of most buildings; burning of combustible building materials and debris; and consolidation of non-combustible materials. In 2016, a drum removal program continued these efforts by removing all drums with residual product for off-site management. As with the other GBL Sites, completion of the site remediation will be conducted in the coming years per the approaches detailed within the EI Bonanza Mine 2007 Remedial Action Plan (INAC-CARD and

SENES 2008b).

In its current form, infrastructure at the property is distributed over three discrete areas: El Bonanza Mine on Silver Lake (adjacent to Mile Lake), Bonanza Mine to the northwest on Whale Lake and the Great Bear Lake former airstrip and fuel storage area. However, following the 2010 remedial activities, there is limited infrastructure remaining at the small operation. This includes a small number of buildings which require heavy equipment for demolition (e.g. headframes), empty drums, debris, four above-ground storage tanks, mine openings (four at el Bonanza and one at Bonanza) and waste rock (3,000 m³ at El Bonanza Mine and 600 m³ at Bonanza Mine).

11.2 EL BONANZA MINE – WATERBODIES, CONCERNS AND MONITORING APPROACH

El Bonanza Mine is located at the base of a rock ridge and glacial till outcrop between Mile Lake and the small Silver Lake (INAC-CARD and SENES 2008b). Mile Lake discharges into Silver Lake through a culvert installed in the narrow strip of land separating the lakes. This causeway is believed to have been constructed during mining operations (SENES 2007b). At the northern tip of Silver Lake, a small stream discharges Silver Lake to the northwest. The El Bonanza Mine waste rock pile extends into Silver Lake; however, no milling activities were conducted onsite and there were no tailings identified. The Bonanza Mine also contains no tailings, though a small waste rock pile is found upgradient of the Whale Lake shoreline. The fuel storage area and former airstrip lie near the shore of Great Bear Lake, within a shallow bay with a gravel and sand beach (INAC-CARD and SENES 2008b).

Assessment and water quality monitoring has been conducted intermittently at the sites since 2004. While a small number of early sample results exceeded the CCME-FAL for copper in Mile Lake and equaled the guideline in Silver Lake, subsequent monitoring results were below all guidelines (INAC-CARD and SENES 2008b). Previous investigations concluded that the El Bonanza Mine has had negligible impacts on the water quality of Mile Lake. Metal concentrations observed in Silver Lake (adjacent to the mine and waste rock) are likely attributable to the presence of waste rock in and near the lake. However, given the concentrations were below CCME-FAL, any impacts that were occurring are considered to be immaterial (INAC-CARD and SENES 2008b). Based on results from previous monitoring activities at the Bonanza Mine and an absence of residual contaminant sources (e.g., tailings or waste rock in water), sampling in Whale Lake adjacent to the Bonanza Mine was not considered justified and was not included in the *Great Bear Lake Sites Proposed Long-Term, State of Environment and Construction Monitoring Plans* (SENES 2009).

The 2017 water quality monitoring program primarily aimed to build upon the baseline state of knowledge. This included sampling at proposed soil treatment areas, which were not known during the early phase of monitoring activities. As per earlier monitoring programs and due to the close proximity of the Contact Lake Mine, the two reference stations sampled as part of the Contact Lake program (CL-8 and CL-RL-1B), were used as reference water quality stations for the El Bonanza Mine as well. The sampling stations, locations, parameters and rationale are provided in Table 8 below.

AREA	STATION	SAMPLE TYPE	DEPTH	GENERAL LOCATION	General Chemistry	Total Metals	Dissolved Metals	PHC, BTEX	SNP	RATIONALE
	ELB-1G- GBL	Shoreline	Surface	Great Bear Lake; Airstrip; North end of bay	x	x	x	x		PHC contaminated soil excavation and treatment area planned
Great Bear Lake	ELB-2G- GBL	Shoreline	Surface	Great Bear Lake; Airstrip; South end of bay	x	x		x		PHC contaminated soils and soil treatment area planned
	ELB-9- GBL	Open Water	Surface	Great Bear Lake by Airstrip, approximately 200m from shore	x	x		x		PHC contaminated soils and soil treatment area planned
Mile Lake	ELB-4- ML-2M	Shoreline	Surface	Mile Lake; Near shore station; Directly east of mine	x	x				Identify potential contaminant migration from mine
Mile Lake	ELB-10- ML	Open Water	Surface	Mile Lake; Narrows of small bay E of mine site	x	x				Identify potential contaminant migration from mine
	ELB-6-SL	Shoreline	Surface	Silver Lake; At culvert between Mile Lake and Silver Lake	x	x				Identify any contaminant migration; baseline measurements prior to culvert removal
Silver Lake	ELB-7-SL	Shoreline	Surface	Silver Lake; Shoreline region at waste rock pile	x	x	x	x		Waste rock influence
	ELB-8-SL	Shoreline	Surface	Silver Lake; Shoreline region at outflow of Silver Lake	x	x				Waste rock influence
Stream	ELB-SW- 2	On-land	Surface	On-land; Small stream outflow of Silver Lake; 50-m from Silver Lake	x	x	x			Waste rock influence and migration
	CL-8	Open Water	2 meters	Contact Lake; Background Station in far NW bay of Lake	x	x				Background conditions
Reference	CL-RL- 1B	Open Water	Surface	Regional Lake 1 - Sample B - NW end of Thompson Lake	x	x		x		Background conditions
Sample Numbers					11	11	3	5		

 Table 8 El Bonanza Mine 2017 Sampling Stations

11.3 EL BONANZA MINE – 2017 MONITORING RESULTS

Sampling figures are provided in Appendix A, with Figure A1 documenting the location of El Bonanza Mine within the larger GBL Sites project area and Figure A8 the individual El Bonanza sampling stations. Results of sample analysis are provided in Appendix B, Tables B14-B17. Field data and observations are tabled in Appendix C and site photographs in Appendix D.

11.3.1 El Bonanza Mine – Aquatic Observations

Water levels in Mile Lake were higher than reported in previous years, resulting in difficulty in plane docking. Despite this observation, there was no visible change in ground conditions at the project site.

11.3.2 El Bonanza Mine – General Chemistry

Field and analytical results indicated neutral to slightly alkaline pH all EI Bonanza Mine sample stations, consistent with reference stations (CL-RL-1B and CL-8). Silver Lake, Mile Lake and the discharge stream were classified as soft water (29.8-32.5 mg/L as CaCO₃), and Great Bear Lake as moderately hard (71.6-74.5 mg/L as CaCO₃). Conductivity in Great Bear Lake is also elevated (157-158 μ S/cm) relative to the other aquatic water bodies sampled (43.6-64.5 μ S/cm).

Ammonia, chloride, nitrate, nitrite and fluoride were below the associated CCME-FAL guidelines in all samples. Sulphide concentrations were below detection limit for all samples. Sulphate concentrations reported from Mile Lake, Silver Lake and the discharge stream were above detection (1.45-1.24 mg/L); however, were less than reported at the Thompson Lake reference station (1.84 mg/L). Sulphate concentrations in Great Bear Lake samples ELB-1G-GBL, ELB-2G-GBL and ELB-9-GBL were 14.9-15.0 mg/L despite the absence of mined materials and indicating the potential for natural variability in sulphate concentration. Total and dissolved organic carbon concentrations were low at all stations (<5 mg/L).

11.3.3 El Bonanza Mine – Total and Dissolved Metals

All 2017 total and dissolved metal results were below applicable CCME-FAL guidelines. This included results from Mile Lake, Silver Lake, the discharge stream and Great Bear Lake at the former airstrip/fuel storage area.

11.3.4 El Bonanza Mine – Hydrocarbons

Based on findings of terrestrial PHC reported at the main mine site and in the vicinity of the Great Bear Lake fuel storage tanks, select sampling stations were also assessed for PHCs. Samples analyzed for hydrocarbon concentration included one station in Silver Lake at the waste rock pile (ELB-7-SL) and three stations at the Great Bear Lake former airstrip/fuel storage area (ELB-1G-GBL, ELB-2G-GBL and ELB-9-GBL). All 2017 sample results were below detection limits for volatile organic compounds and PHCs.

12 SAWMILL BAY – WATER QUALITY MONITORING

12.1 SAWMILL BAY - SITE SUMMARY

The development and operational history of Sawmill Bay is provided in the associated Remedial Action Plan (INAC-CARD and Franz 2010). The first reported industrial use of the site was as a sawmill from the 1930s to 1940s. In the 1940s to 1960s, the site was used for barge and air transportation of uranium ore from the Port Radium Mine. From 1947 to 1950, an airfield and basecamp were established at Sawmill Bay for the Loran Navigation System (a hyperbolic radio system developed during World War II). Sawmill Bay was also used from the late 1940s to early 1950s to support refuelling and supply for Royal Canadian Air Force photographic operations and aerial mapping. From 1944-1947 the site airstrip and lodge provided support for construction of the Distant Early Warning (DEW) Line stations. In the late 1950s, Sawmill Bay became the site of a commercial fishing camp. Unlike the other GBL Sites, Sawmill bay did not host any mining or milling activities.

Due to the diverse range of site uses, some areas of infrastructure served distinct purposes while others had overlapping uses. The site is broken into six principal areas as follows:

- 1. Two intersecting airstrips
- 2. Former Great Bear Lake Lodge (i.e. fishing lodge between airstrip and Sawmill Bay)
- 3. Former fishing dock area (at shoreline of Great Bear Lake, apex of Sawmill Bay)
- 4. Main Barrel Cache with approximately 8,000 drums (south shore of Sawmill Bay)
- 5. Beach Landing and former Arctic Enterprises Lease Area (south shore of sawmill Bay)
- 6. Former Sawmill Site (south shore of Sawmill Bay).

The principal site infrastructure in support of these operations was building structures, totalling 1,800 m² of floor area. In addition, a substantial volume of drums, debris and vehicles were found discarded throughout the site and in consolidated piles. Assessment activities documented large areas of PHC contaminated soils, though metal impacts and low-level radiological impacts (from uranium ore transport) were also reported in discrete areas. Based on site evaluations, arsenic, cobalt, copper lead and uranium were identified as metals of concern at the site. Metal impacts at the site are generally attributed to debris (e.g. metal, broken batteries) and uranium ore also rich in other metals (including arsenic).

Comprehensive site remediation has not yet been conducted; however, discrete work programs have been implemented to address specific concerns. While a 1996 investigation concluded that under the current land use at Sawmill Bay no remedial action was required, a clean-up was completed at the site in September 1998 by the Low Level Radioactive Waste Management Office (LLRWMO) to remove approximately 22 m³ of soil containing more than 500 ppm of

uranium. Cleanup of uranium contaminated soil was conducted at the Beach Landing, Great Bear Lodge and Airstrip areas, with soil removed for offsite management (Franz/Ecometrix 2008). In 2010/2011, the GBL Phase I Remediation Project was implemented and focussed on work activities which could be successfully implemented without the use of heavy equipment. At Sawmill Bay, this work primarily focussed on the consolidation of debris and the management of drums and residual product. Drums with residual product were consolidated, fuel product transported off-site and the emptied drums washed and crushed (SENES 2011 and SENES 2012). The remainder of remedial activities specified within the RAP (e.g. contaminated soil management, building demolition and debris management) will be implemented over the coming years as part of the large scale GBL Sites Phase II Remediation Project.

12.2 SAWMILL BAY – WATERBODIES, CONCERNS AND MONITORING APPROACH

Sawmill Bay lies on the southeast corner of Great Bear Lake, on the eastern margin of the Leith Peninsula. The narrow east/west oriented shallow bay is largely protected by Richardson Island to the east. Numerous smaller lakes are found to the south and west, though these are beyond the footprint of industrial activities. A small ravine situated south of the airstrip runs through the Lodge Area before draining into Sawmill Bay via an ephemeral stream (SLR 2017). Unlike the other GBL sites, there is little topographic elevation change at the Sawmill Bay site.

Assessment and water quality monitoring has been conducted intermittently at the sites since 1992. Despite the presence of terrestrial PHC contamination, there was no evidence of PHCs in surface waters and only one sediment sample reported PHC concentrations exceeding applicable guidelines. A sunken barge was identified in the Beach Landing and former Arctic Enterprises Lease Area, around which sediment samples slightly exceeded total chromium guidelines, though no other metal concerns associated with ore handling were identified in surface water or sediment. Elevated iron has been documented in the site drainage between the Main Lodge Area and Sawmill Bay proper, though based on background sampling these concentrations were suggested to be natural in origin. Radionuclide analysis failed to identify any concerns in the waterbodies sampled (SLR 2017).

Given the absence of aquatic water quality concerns at Sawmill Bay, the 2017 water quality monitoring program primarily aimed to build upon the baseline state of knowledge. This included sampling areas at which remedial activities and infrastructure will occur (e.g. soil treatment area, soil cleanup area). Recommendations by SLR were used as the primary guidance document in the design of the 2017 monitoring activities, with minor adjustments to address remedial plans and recommendations from Sahtu Land and Water Board reviews. The

sampling stations, locations, parameters and rationale are provided in Table 9 below, in which revisions based on field conditions are reported.

AREA	STATION	SAMPLE TYPE	DEPTH	GENERAL LOCATION	General Chemistry	Total Metals	Dissolved Metals	PHC, BTEX	SNP	RATIONALE	
	A3-SW08-05	Open Water	Surface (2m)	Sawmill Bay, at mouth of ravine	x	x				Receiving water downgradient of creek monitoring	
	SW-B-2	Open Water	Surface (2m)	APEC 1 + 5a, Beach Landing, barge transect	x	x	x	x		Area of sunken barge	
	SW07-3	Open Water	Surface	APEC 1 + 5a, Beach Landing	x	х		x		Area of PHC impacted sediment	
0	SW16-01	Open Water	Surface - 2 m	Sawmill Bay, deeper area out from Beach	x	х		x		Offshore of Beach Landing and remedial	
Sawmill Bay	30010-01	Open water	Depth - 6 m	from Beach Landing, epilimnion and hypolimnion	x	х				activities	
	A5-SW08-11	Open Water	Surface	Sawmill Bay, shoreline at Arctic Enterprises	x	x	x	x		Shoreline excavation of contaminated soil planned during remediation	
	SW16-02		Surface	Sawmill Bay,	х	х					
		Open Water	Depth - 6 m	deeper area, out from former Arctic Enterprises area, epilimnion and hypolimnion	x	x		x		Offshore of Arctic Enterprises and remedial activities	
Ravine Creek	SW07-5	On-land	Surface	APEC 7j, Camp Landfill / Dump						Monitoring downstream of landfill/dump areas DRY – No 2017 sample collected	
Pathway	A3-SW08-01	Shoreline	Surface	AEC 3, Sawmill Bay, d/g and south of fishing dock	x	х				Monitoring downstream of landfill/dump areas	
On-land Water	A2-SW08-03	On-land	Surface	AEC 2j, Lodge area, dumps						Monitoring downstream of landfill/dump areas DRY – No 2017 sample collected	
	BG-SW08-04	Shoreline	Surface	Small Lk 1	х	х	х			Background station	
Reference	BG-SW08-01	Open Water	Surface - 2 m	Sawmill Bay Background, Along N shore, epilimnion	x	x				Background station	
Sample Numbers					11	11	3	5			

Table 9 Sawmill Bay 2017 Sampling Stations

12.3 SAWMILL BAY - 2017 MONITORING RESULTS

Sampling figures are provided in Appendix A, with Figure A1 documenting the location of Sawmill Bay within the larger GBL Sites project area and Figure A9 the individual Sawmill Bay sampling stations. Results of sample analysis are provided in Appendix B, Tables B18-B22. Field data and observations are tabled in Appendix C and site photographs in Appendix D.

12.3.1 Sawmill Bay – Aquatic Observations

Water levels in Sawmill Bay were found to be generally consistent with earlier monitoring events. During 2017 monitoring there was light rain and some wave action; however, the water column was clear and any increased sediment entrainment was expected to be minimal. As was observed at Terra Mine, on-land water levels were low as expected during late season sampling. At station SW07-5 (drainage channel downgradient of dump) and station A2-SW08-03 (drainage channel from camp area), no water was observed despite extensive reconnaissance and samples were not collected.

12.3.2 Sawmill Bay – General Chemistry

Field and analytical results indicated neutral to slightly alkaline pH all Sawmill Bay sample stations, consistent with reference stations (BG-SW08-04 and BG-SW08-01). Water hardness was classified as moderately hard to hard and fell within the bounds of results reported at background stations (71.2-153 mg/L as CaCO₃). The same trend was noted for conductivity, with site samples consistent with background measurements of 160-262 μ S/cm. With the exception of the total suspended solids results from sample A3-SW08-01 at the discharge of ravine creek into Sawmill Bay (14 mg/L), all other total suspended solids were below detection.

Ammonia, chloride, nitrate, nitrite and fluoride were all below the associated CCME-FAL guidelines. Sulphide concentrations were below detection limit for all samples. Sulphate concentrations reported from stations within Sawmill Bay were 15.7-17.7 mg/L, and a minor increase reported at the station A3-SW08-01 where the ravine creek discharges to Sawmill Bay (21.3 mg/L). Total and dissolved organic carbon concentrations were very low at all stations (<3 mg/L).

12.3.3 Sawmill Bay – Total and Dissolved Metals

Collected at the discharge point of ravine creek into Sawmill Bay, sample A3-SW08-01 concentrations of aluminum (0.201 mg/L) and iron (0.698 mg/L) exceeded the CCME-FAL guidelines of 0.1 mg/L and 0.3 mg/L respectively. The total suspended solids result in this sample was elevated (14 mg/L) and field notes document visibly high turbidity. However, aluminum and iron have not been identified as COPC from the various source terms at the site. Consequently, these concentrations are expected to be associated with suspended solids transported by the creek or through wave action at the shallow apex of the bay.

All other total and dissolved metal sample results were below the associated CCME-FAL

guidelines. These findings are consistent with earlier monitoring programs at which a small number of exceedances have been reported at station A3-SW08-01, though not at downstream stations in Sawmill Bay (SLR 2017).

12.3.4 Sawmill Bay – Hydrocarbons

Based on findings of terrestrial contamination in shoreline environments and remedial plans for the excavation/treatment of these soils, 2017 monitoring included PHC and VOC analysis at discrete stations. Five stations were sampled for PHCs (plus one duplicate), all of which were located immediately offshore of the former barrel cache and Beach Landing/Arctic Enterprises area. All 2017 sample results were below detection limits for volatile organic compounds and PHCs.

12.3.5 Sawmill Bay – Radionuclides

Radium-226 and lead-210 were analyzed at one reference station (BG-SW08-01), and in areas associated with the Beach Landing Area and ore transport infrastructure (A5-SW08-11, SW-B-2 plus duplicate and SW16-02-2m).

All sample results were below the CDWQG for lead-210 and radium-226. With the exception of radium-226 at reference station BG-SW08-01, all results were below detection limits.

13 CONCLUSIONS

The results of 2017 monitoring were generally consistent with findings from earlier aquatic assessment and monitoring campaigns. The principal conclusions of 2017 monitoring are summarized as follows:

- Terra Mine:
 - There were no exceedances of the Water Licence EQC at the sampling stations.
 - Elevated fluoride above CCME-FAL guidelines was reported at all stations (including reference stations), with the greatest concentrations in the Ho Hum TCA and downstream wetlands. The extent to which fluoride concentrations are due to anthropogenic activity is difficult to confirm without pre-mining data.
 - o The Ho Hum TCA demonstrated arsenic and copper concentrations in exceedance of CCME-FAL guidelines due to the presence of tailings (submerged and shoreline) and waste rock. Arsenic concentrations decrease in the downstream Upper and Lower Wetland; however, copper concentrations increase in the Lower Wetland where visible water flow was observed entering the wetland from the toe of the airstrip. Further downstream, arsenic concentrations at the discharge point of the Lower Wetland to Moose Bay decrease dramatically. While still in exceedance of CCME-FAL guidelines, arsenic concentrations are below the SSTL derived for this location (SENES 2014). All other stations within Moose Bay are below CCME-FAL guidelines for arsenic and copper and are generally consistent with reference stations.
 - Samples from on-land monitoring stations (adits and pond adjacent to buried debris area) reported elevated concentrations of aluminum, arsenic, copper and/or iron.
 - $\circ~$ All PHC and VOC samples from Terra Mine were below detection limits.
- Northrim Mine:
 - Fluoride concentrations exceeded the CCME-FAL guidelines but were consistent with reference station concentrations.
 - Concentrations of arsenic and copper marginally exceeded CCME-FAL guidelines in the Hermandy Lake TCA. Concentrations of arsenic increase in the Leachate Pond, after which copper concentration increases in the discharge stream which cascades over waste rock and exposed bedrock. Adit water was similarly enriched in arsenic and copper, as well as lead. However, all metal concentrations were below guidelines in the Camsell River stations.
 - All PHC and VOC samples from Northrim Mine were below detection limits.

- Norex and Graham Vein Mine:
 - Fluoride concentrations in Xeron Pond and Camsell River stations were consistent with reference stations. The greatest fluoride concentrations were reported in seepage water from the adit and waste rock piles.
 - As documented during earlier monitoring programs, adit seepage water appeared to change geochemically during flow through the waste rock pile. Concentrations of aluminum, cadmium, copper, iron, lead and zinc in many cases increased at the toe of the waste rock slope relative to the adit discharge water. Conversely, arsenic concentrations decreased during passage though the waste rock pile. Aluminum, arsenic, copper, iron and zinc exceed CCME-FAL guidelines in the discharge pathway (one to four times the guideline values); however, all sample results were below guidelines in Camsell River samples.
 - One station at the toe of the waste rock slope (NX-3) demonstrated low but detectable concentrations of PHCs in the F2 range, which may represent migration from PHC contaminated waste rock or be attributable to higher organic carbon at this station. All other PHC and VOC sample results were below detection limits.
- Smallwood Mine:
 - Fluoride concentrations within Smallwood Lake exceeded CCME-FAL guidelines and were higher than reported at reference stations (though lower than in TCAs). This may represent contribution from waste rock or a natural elevation in Smallwood Lake.
 - Metal concentrations were generally low within Smallwood Lake, with the exception of a single cadmium exceedance and zinc above CCME-FAL guidelines in two samples. One sample reported zinc concentrations higher than were documented during earlier sampling programs.
 - All PHC and VOC samples from Smallwood Mine were below detection limits.
- Contact Lake Mine:
 - Fluoride concentrations exceeded the CCME-FAL guideline in samples from the Tailings Pond and in the discharge stream.
 - Concentrations of arsenic, copper, mercury, silver and uranium were elevated in pooled surface water samples (aquatic guidelines not applicable). Within the downstream Tailings Pond the concentrations of mercury and silver dropped below the associated CCME-FAL guidelines, though arsenic, copper and uranium concentrations continued to exceed (maximum of approximately four times CCME-FAL guidelines). This same trend was observed in the discharge

stream sample CL-2B (and duplicate), and while lower in concentration than the Tailings Pond, arsenic, copper and zinc exceeded guidelines. However, at the discharge point of the stream into Contact Lake and at all other Contact Lake sampling stations, metal concentrations were below CCME-FAL guidelines. Similarly, metal concentrations were below guideline values at the Great Bear Lake East Arm monitoring stations.

- Despite extensive sampling in the Mine Area and at the East Arm fuel storage area, all samples were below detection limit for PHCs and VOCs.
- Analysis of radionuclides (lead-210 and radium-226) was conducted throughout the site, though no aquatic guidelines are available for these parameters and Canadian Drinking Water Quality Guidelines (CDWQG) were applied. A single exceedance of the lead-210 guideline was identified at shallow standing water below the waste rock pile (CL-2), though no other exceedances were noted. All results from Contact Lake proper and Echo Bay were below detection limits for both radionuclides.
- El Bonanza Mine:
 - There were no exceedances of any CCME-FAL guidelines at the project site. This includes fluoride, metals (in total or dissolved fraction) and PHCs/VOCs (below detection limits).
- Sawmill Bay:
 - Sample results in Sawmill Bay were below CCME-FAL guidelines for general chemistry, metals and PHC parameters. The sole exception was the sample collected at the discharge point of the Ravine Creek into Sawmill Bay (A3-SW08-01), at which aluminum and iron exceeded the associated guidelines. It is noted that these parameters were not identified as COPC during the extensive site assessments and given the high suspended solids and visible turbidity at this shallow water station, it is predicted that these concentrations are attributable to transport of suspended sediments from the shallow creek and not representative of aquatic contamination.

14 REFERENCES

Arcadis Canada Inc. (Arcadis). 2016. 2015 Water Quality Monitoring of Terra Mine Report. Prepared for Public Works and Government Services Canada. March 2016.

Canadian Council of Ministers of the Environment (CCME). 1999. *Canadian Water Quality Guidelines for the Protection of Aquatic Life – Introduction.* In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.

Canadian Council of Ministers of the Environment (CCME). 2011. Protocols Manual for Water Quality Sampling in Canada.

Canadian Council of Ministers of the Environment (CCME). 2016. *Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment – Volume 3 Suggested Operating Procedures.*

Canadian Council of Ministers of the Environment (CCME). 2017. *Water Quality Guidelines for the Protection of Aquatic Life – Summary Tables*. Accessed October 2017.

Health Canada. 2009. *Guidelines for Canadian Drinking Water Quality – Guideline Technical Document – Radiological Parameters.* May 2009.

Hemmera Envirochem Inc. (Hemmera). 2015. *Mass Balance and Flux Estimates for Arsenic Environmental Loading to Ho Hum Lake and the Camsell River from the Silver Bear Terra Minesite, Northwest Territories, Canada – Draft Report.* Prepared for Public Works and Government Services Canada, March 2015.

Indigenous and Northern Affairs Canada – Contaminants and Remediation Division (INAC-CARD). 2017a. *Great Bear Lake Sites – Quality Assurance and Quality Control Plan.* Prepared for the Sahtu Land and Water Board. August 2017.

Indigenous and Northern Affairs Canada – Contaminants and Remediation Division (INAC-CARD). 2017b. *Great Bear Lake Sites Remediation Project - 2017 Water Sampling Plan.* Prepared for the Sahtu Land and Water Board. September 2017.

Indian and Northern Affairs Canada - Water Resources Division (INAC-WRD). 2011. *Silver Bear Mine Sites, Northwest Territories Water Quality Monitoring Program – 2009; Terra, Norex, Smallwood, Northrim, Contact Lake and El Bonanza Mines – Final Report.* Prepared for Contaminants and Remediation Directorate, Indian and Northern Affairs Canada and Public Works and Government Services Canada. January 2011.

Indian and Northern Affairs Canada - Water Resources Division (INAC-WRD). 2014. 2013

Water Quality Monitoring of Terra Mine, Northwest Territories, Canada. Prepared for Contaminants and Remediation Directorate, Indian and Northern Affairs Canada. Draft Report. February 2014.

Indian and Northern Affairs Canada – Contaminants and Remediation Directorate in association with Franz Environmental Inc. (INAC-CARD and Franz). 2010. *Sawmill Bay – NM180, Northwest Territories, Remedial Action Plan Mine Remedial Action Plan.* May 2010.

Indian and Northern Affairs Canada – Contaminants and Remediation Directorate in association with SENES Consultants Ltd. (INAC-CARD and SENES). 2008a. *Contact Lake Mine Remedial Action Plan.* March 2008.

Indian and Northern Affairs Canada – Contaminants and Remediation Directorate in association with SENES Consultants Ltd. (INAC-CARD and SENES). 2008b. *El Bonanza Mine Remedial Action Plan.* March 2008.

MacDonald, D.D., Levy, D.A, Czarnecki, A., Low, G. & Richea, N. 2004. *State of the Aquatic Knowledge of Great Bear Lake Watershed*. Prepared for Water Resources Division – Indian and Northern Affairs Canada. January.

Mackenzie Valley Land and Water Board (MVLWB). 2011. *Water and Effluent Quality Management Policy*. March.

SENES Consultants Ltd. (SENES). 2007a. *Contact Lake Mine Site Assessment – Report on July 2006 Field Activities and Follow-Up Site Assessment.* Prepared for Indian and Northern Affairs Canada. May 2007.

SENES Consultants Ltd. (SENES). 2007b. *El Bonanza Mine Site Assessment – Report on July 2006 Field Activities and Follow-Up Site Assessment*. Prepared for Indian and Northern Affairs Canada. May 2007.

SENES Consultants Ltd. (SENES). 2009. *Great Bear Lake Sites Proposed Long-Term, State of Environment and Construction Monitoring Plans.* Prepared for Indian and Northern Affairs Canada – Contaminants and Remediation Directorate. January 2009.

SENES Consultants Ltd. (SENES). 2011. 2010 Completion Report for Great Bear Lake Sites *Phase I Remediation – Sawmill Bay, Contact Lake, El Bonanza, Bonanza, NWT.* Prepared for Indian and Northern Affairs Canada and Public Works and Government Services Canada. March 2011.

SENES Consultants Ltd. (SENES). 2012. 2011 Completion Report for Great Bear Lake Sites -

Phase I Remediation – Sawmill Bay, NWT. Prepared for Public Works and Government Services Canada. June 2012.

SENES Consultants Ltd. (SENES). 2014. *Site-Specific Target Level for Arsenic in Surface Waters Associated with the Terra Mine Wetland – Final Report.* Prepared for Public Works Government Services Canada. March 2014.

SENES Consultants Ltd. and SRK Consulting Inc. (SENES and SRK). 2008. *Final Remedial Action Plan, Silver Bear Mines, NT.* Prepared for Public Works and Government Services Canada. March 2008.

SLR Consulting (Canada) Ltd. (SLR). 2017. *Water Quality Monitoring Program at the Great Bear Lake Sites.* Prepared for Indigenous and Northern Affairs Canada – Contaminants and Remediation Division. June 2017.

Zeiner, S.T. 1994. *Realistic Criteria for the Evaluation of Field Duplicate Field Results.* Proceedings of Superfund XV, November 29-December 1, 1994. Sheraton Washington Hotel, Washington, D.C. **APPENDIX A – Figures**

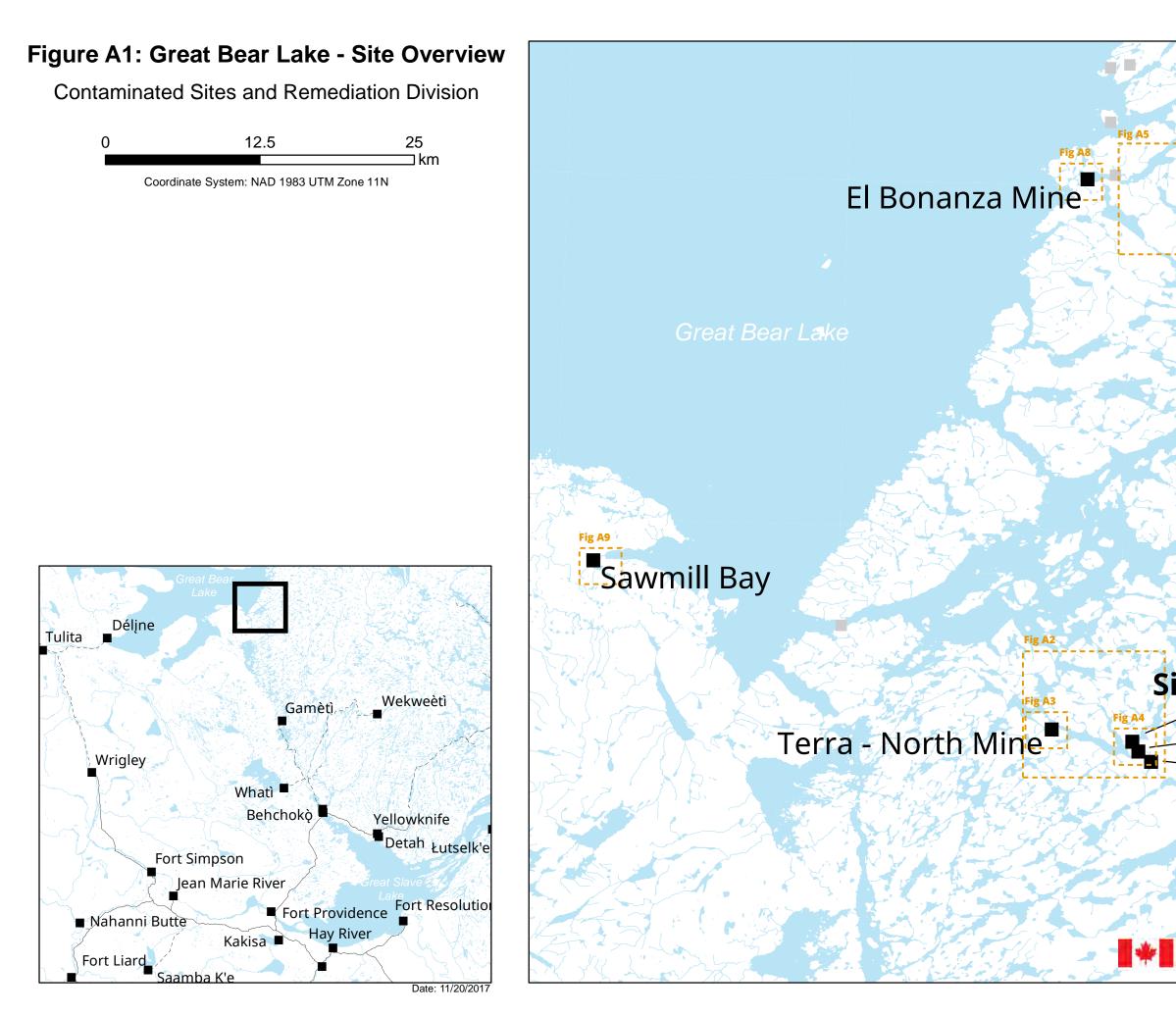
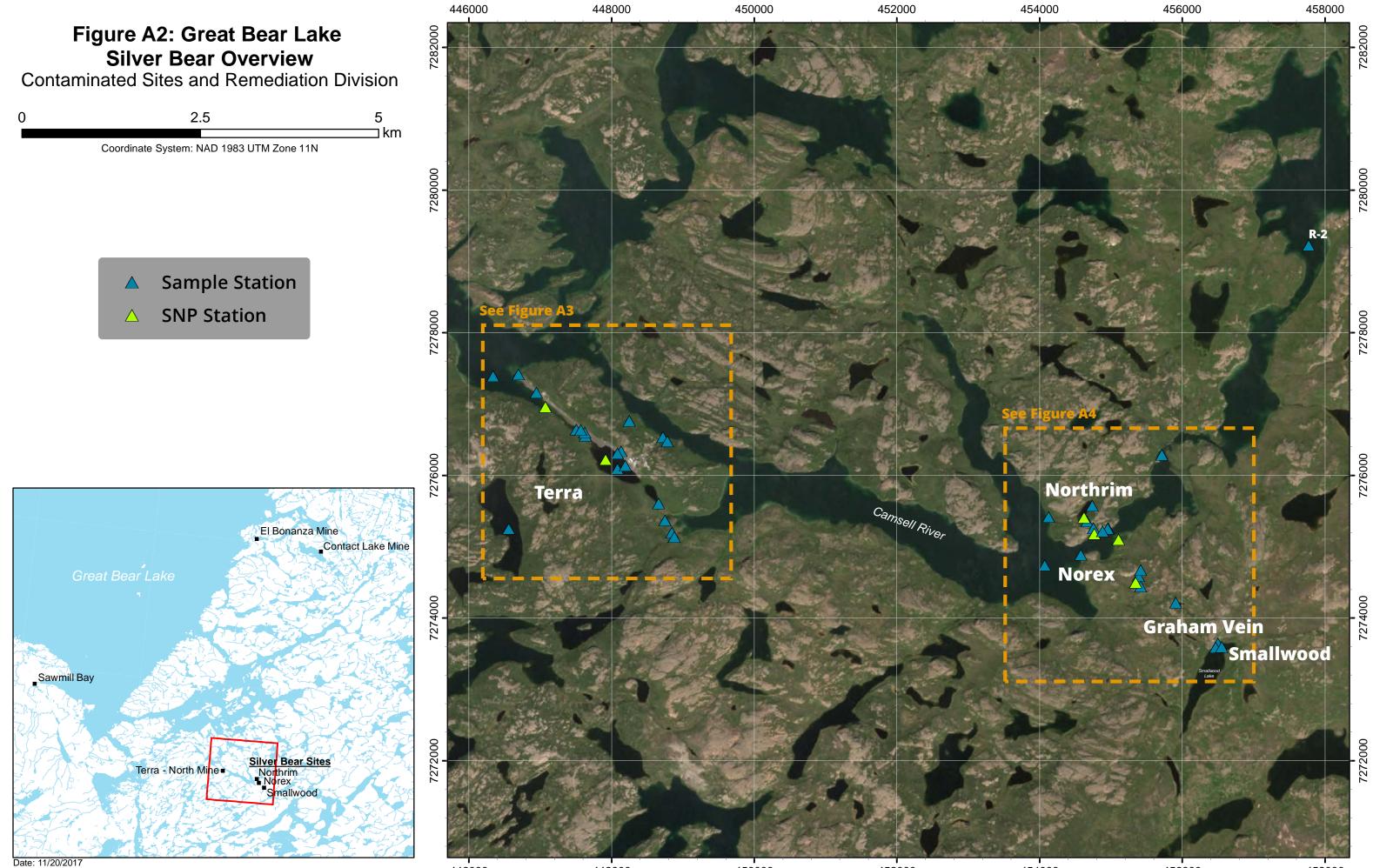
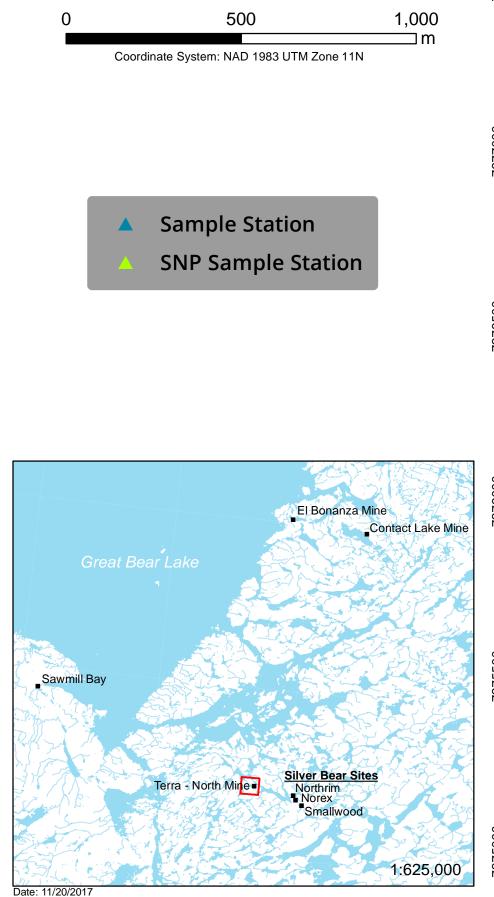
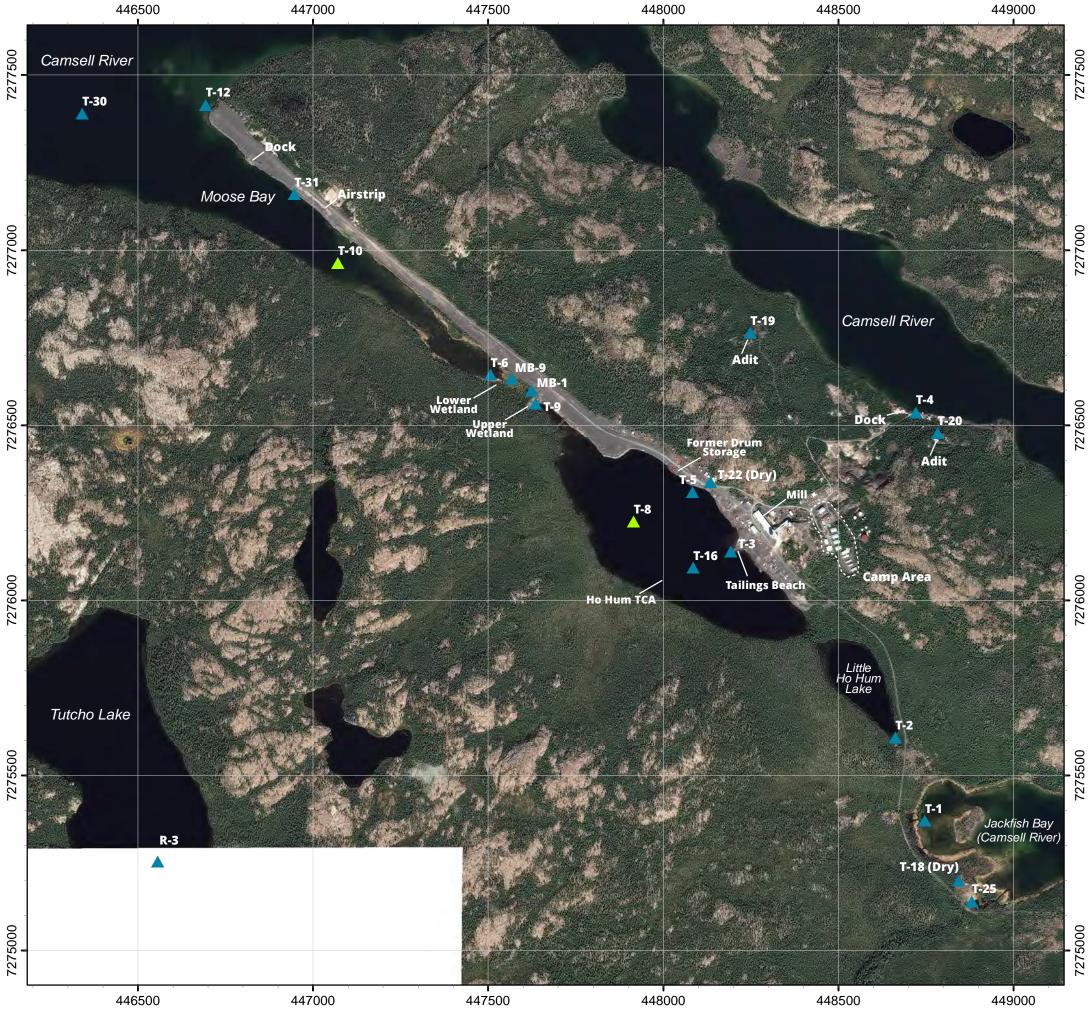



Fig A7


Silver Bear Sites Northrim Norex Smallwood


Indigenous and Northern Affairs Canada Affaires autochtones et du Nord Canada

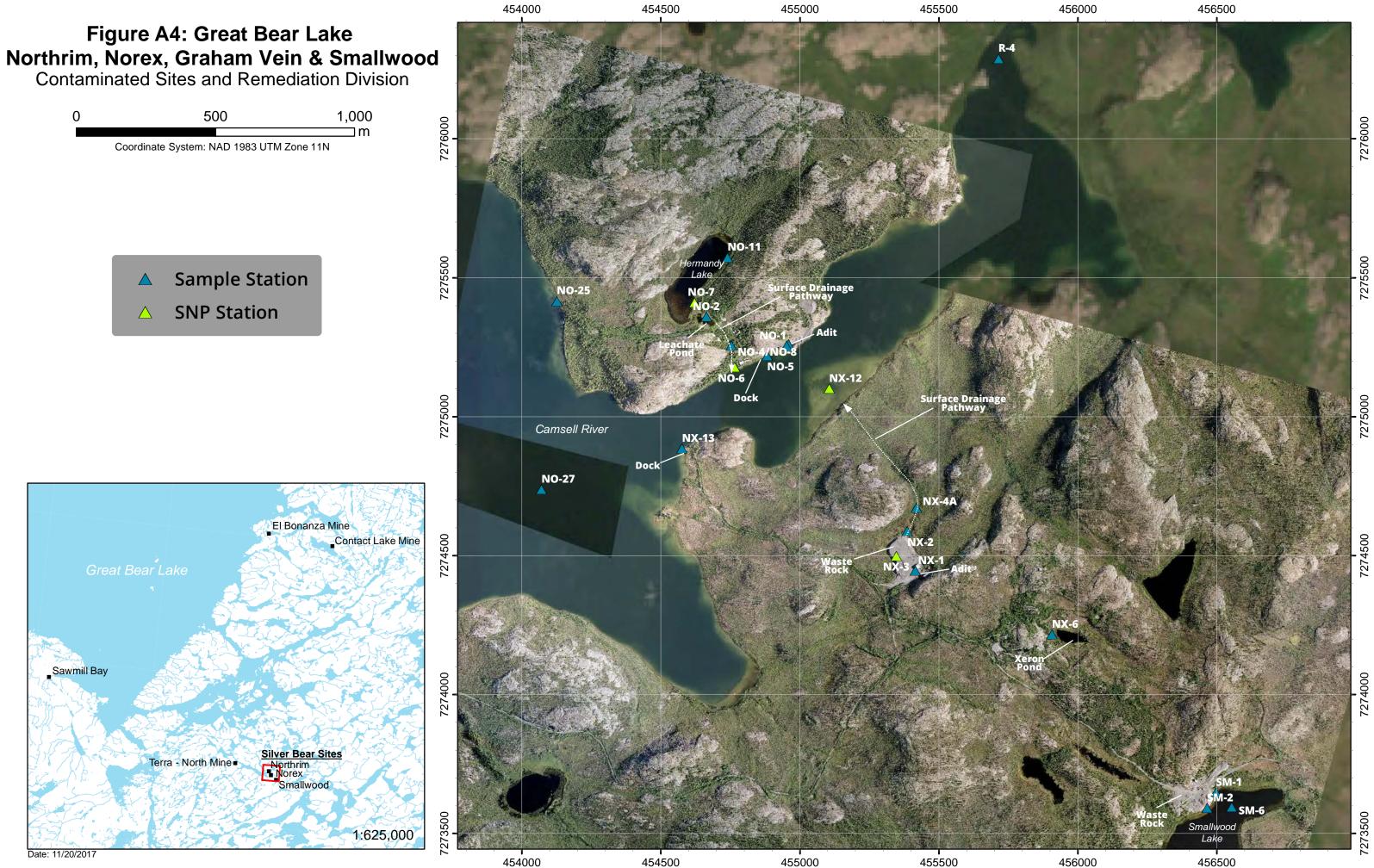
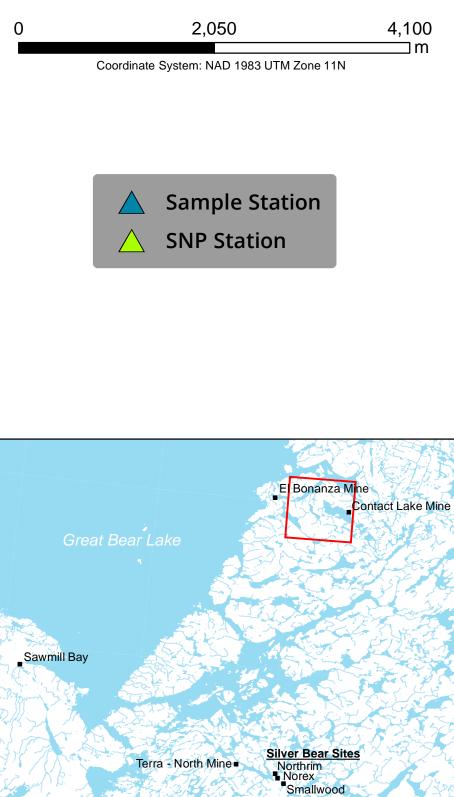
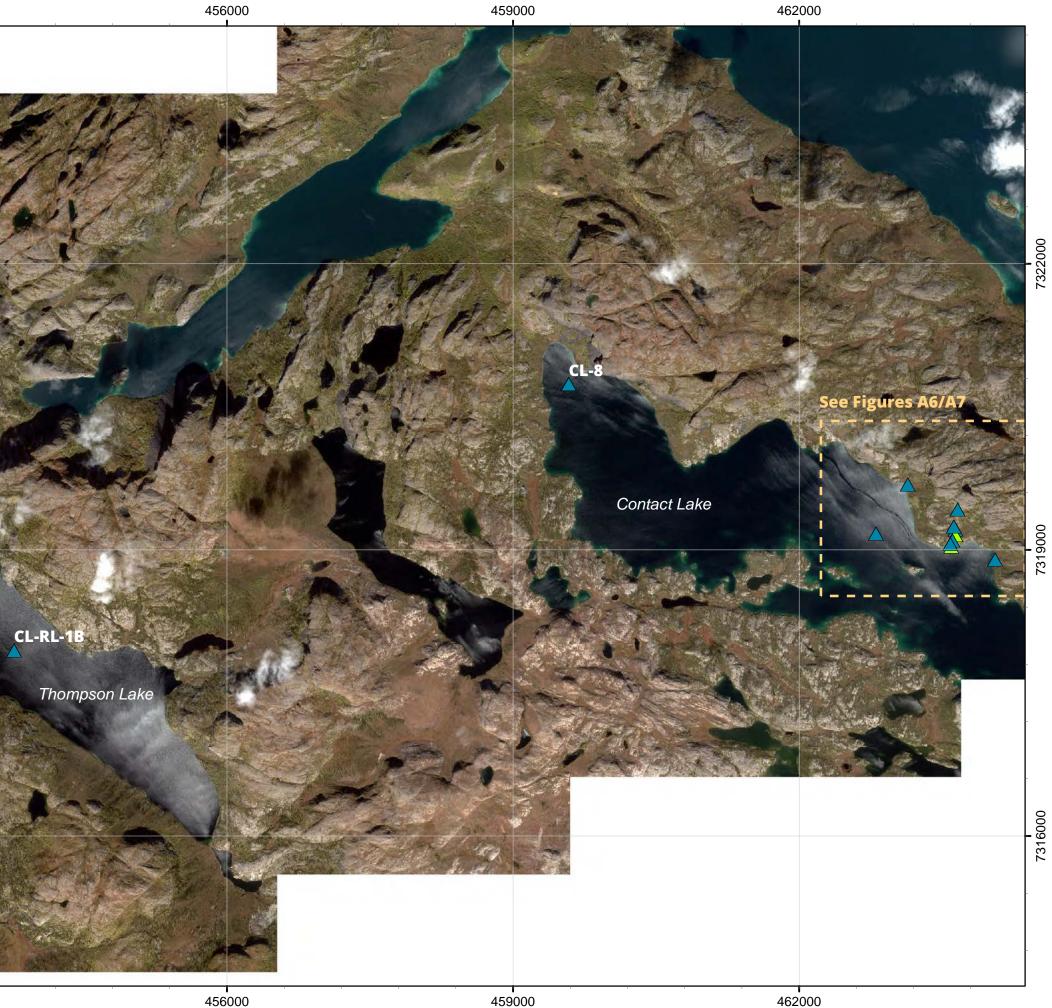


Figure A3: Great Bear Lake - Terra Mine

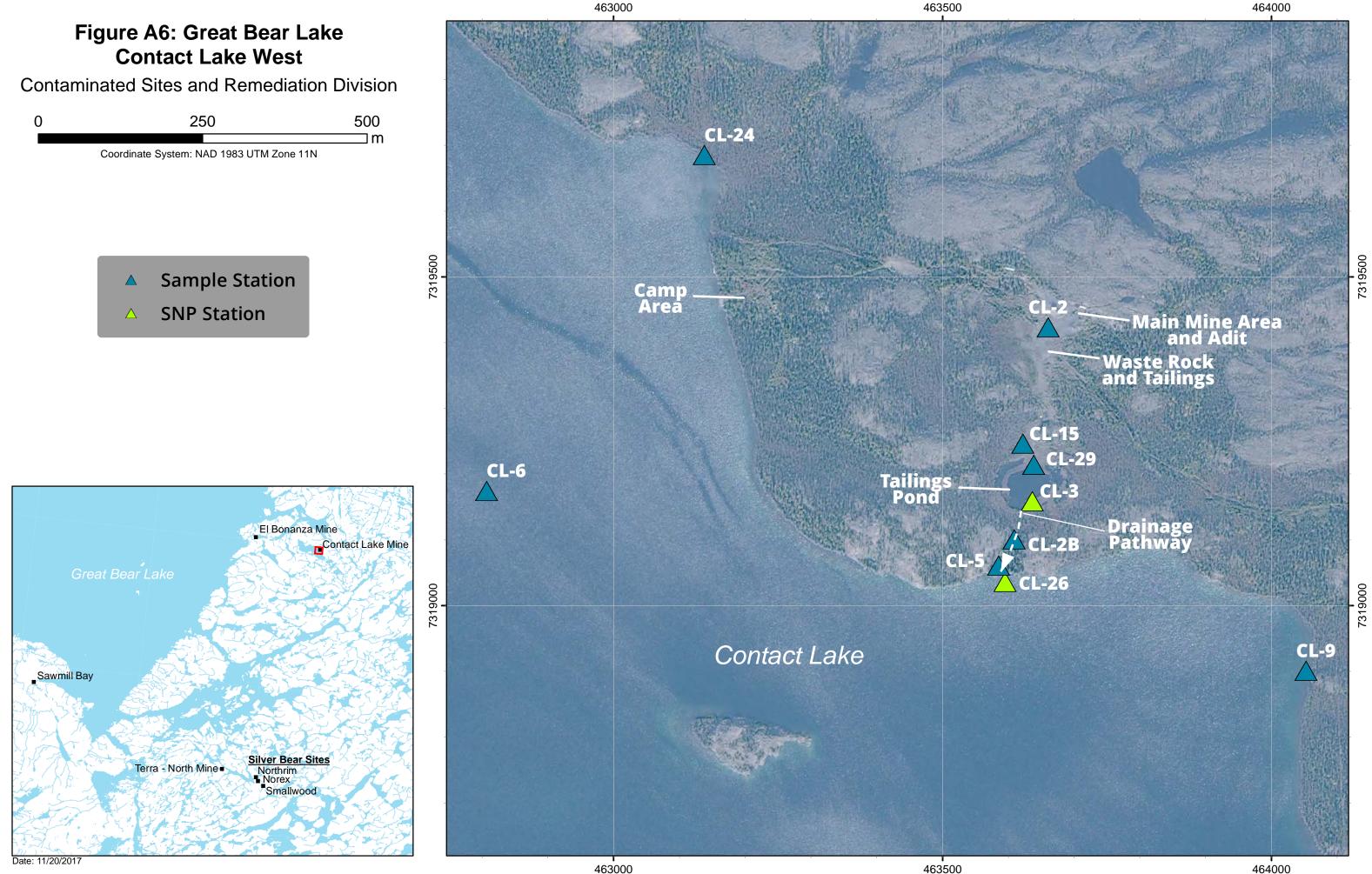
Contaminated Sites and Remediation Division

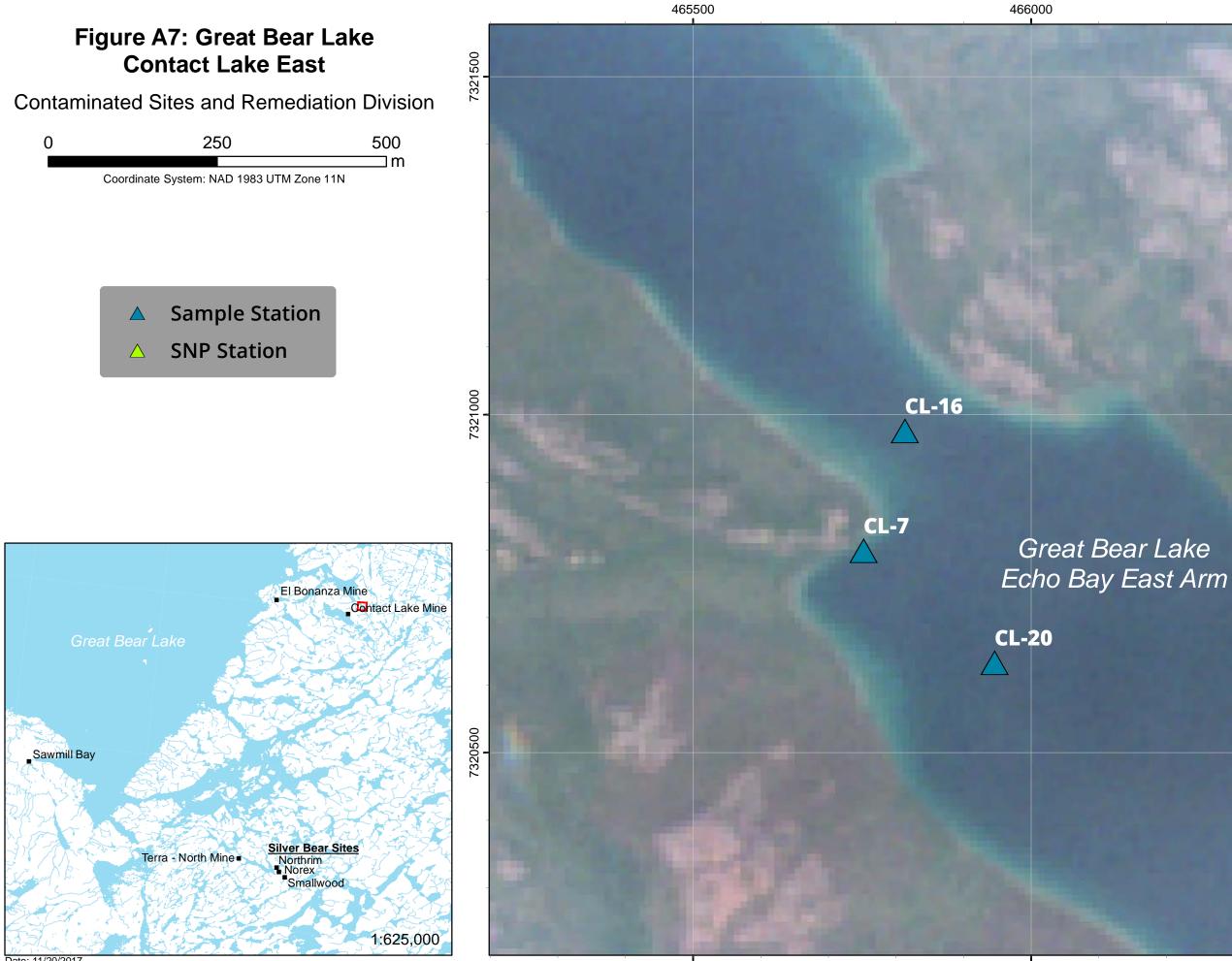

Figure A5: Great Bear Lake **Contact Lake Overview**


Contaminated Sites and Remediation Division

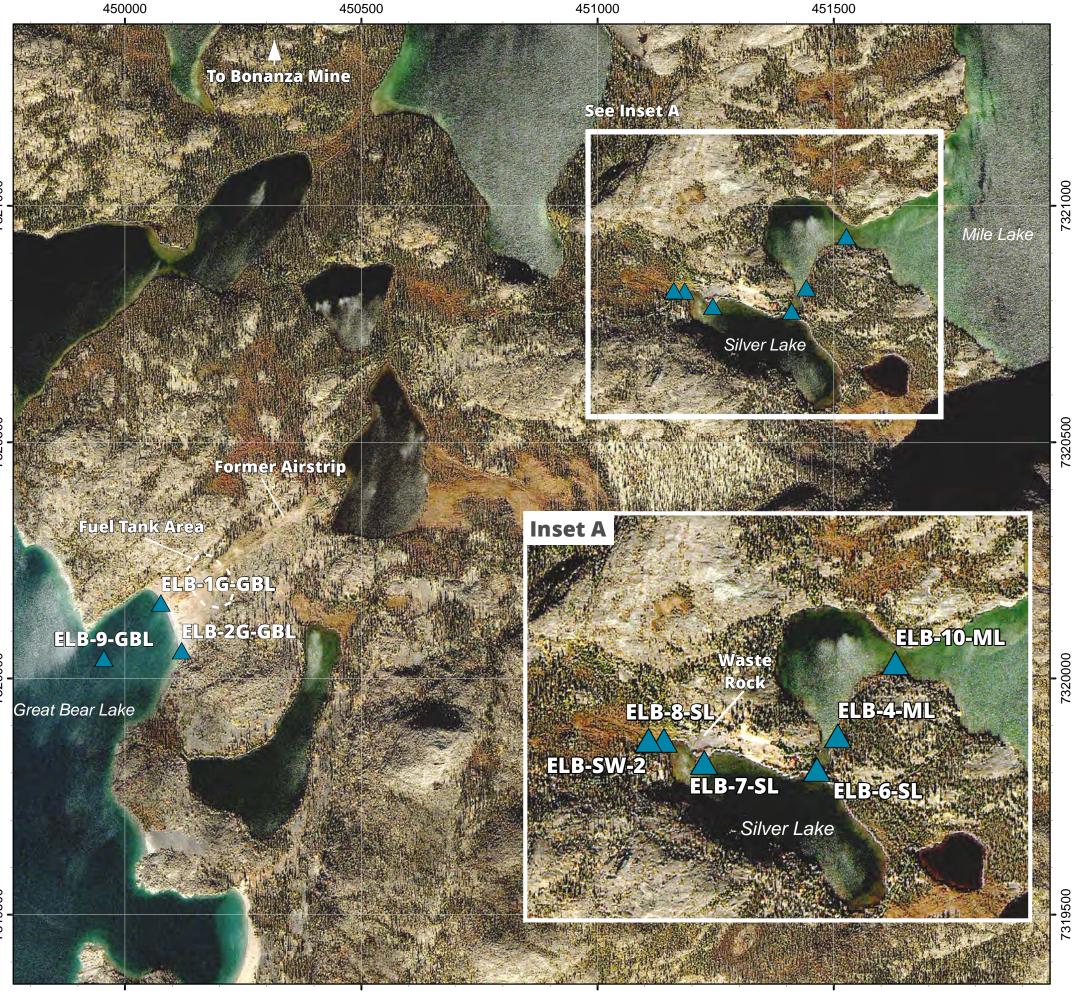
7322000

7319000


7316000



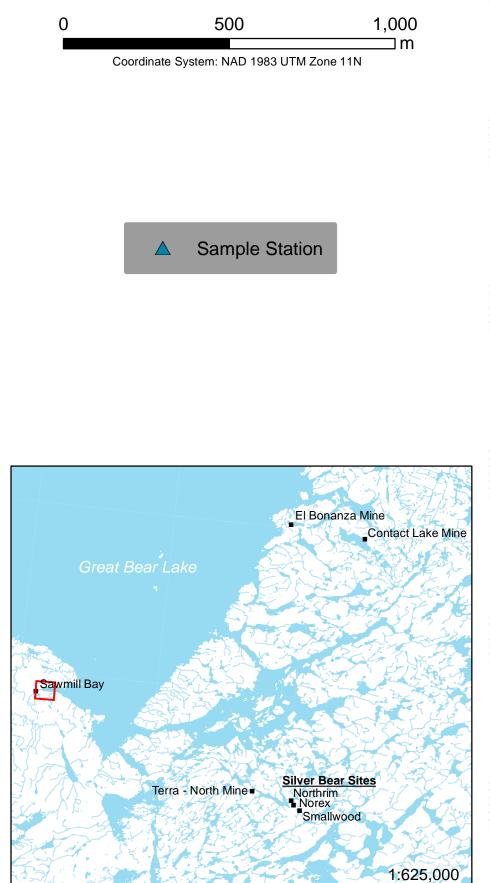
Date: 11/20/2017

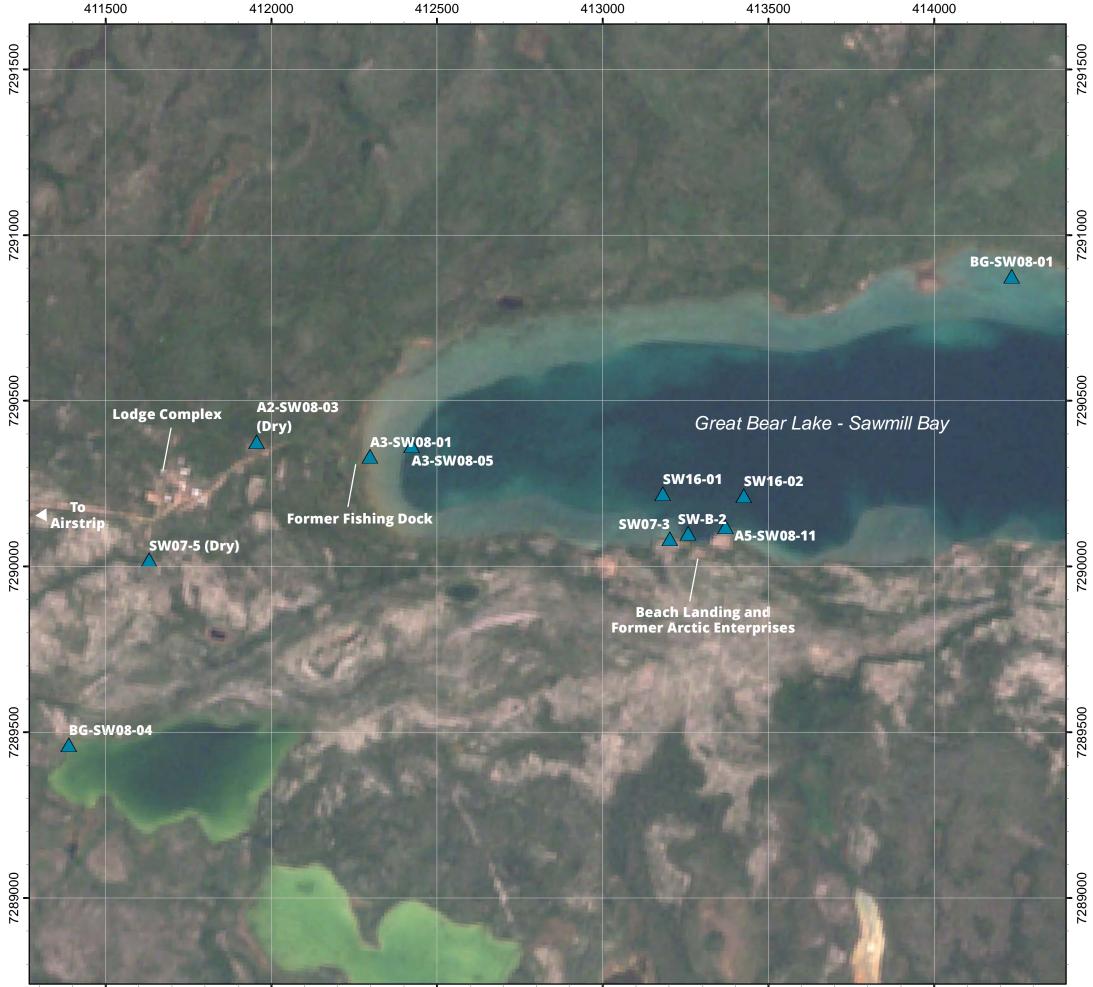


Date: 11/20/2017

Figure A8: Great Bear Lake - El Bonanza

Contaminated Sites and Remediation Division





Date: 11/20/2017

Figure A9: Great Bear Lake - Sawmill Bay

Contaminated Sites and Remediation Division

Date: 11/20/2017

APPENDIX B – Data Tables

Table B1 - Terra Mine: General Chemistry

	San	nple Area		SNP Effluent	Re	eference Static	ons	Little Ho Hum Lake			Но	Hum Tailings Co	ontainment Area (1	FCA)		
	S	ample ID	ССМЕ	Quality Criteria (EQC) for	R-2	R-4	R-3	T-2	T-16-A	T-16-B	T-8-A	T-DUP-1	Т-8-В	T-8-C	T-5	T-3
	SNP S	ample ID	Guidelines ^A	T-8 and T-10 ^B							S17L8-002 (7A)	S17L8-002 (7A)	S17L8-002 (7A)	S17L8-002 (7A)		
PARAMETER	Lowest Detection Limit	Units			13-Sep-2017	12-Sep-2017	10-Sep-2017	8-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017
Physical Tests																
Conductivity	2.0	uS/cm			152	147	75.0	85.8	197	195	196	196	197	235	197	196
Hardness (as CaCO3)	0.50	mg/L			70	69.3	38.8	46.5	77	76.5	78.3	78.7	79.1	92.6	76.3	78.9
рН	0.10	pН	Between 6.5 and 9.0	Between 6.0 and 9.0	7.96	7.91	7.75	7.56	7.93	7.94	7.93	7.92	7.93	7.90	7.94	7.92
Total Suspended Solids	3.0	mg/L		30	<3.0	<3.0	<3.0	3.2	<3.0	5.5	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Total Dissolved Solids	13	mg/L			89	98	61	90	140	132	134	137	129	160	136	133
Turbidity	0.10	NTU			0.90	0.44	0.64	1.69	0.79	0.73	0.69	0.86	0.83	0.45	0.68	1.11
Anions and Nutrients																
Alkalinity, Total (as CaCO3)	1.0	mg/L			58.8	56.4	36.8	36.1	61.9	62.7	62.9	62.3	63.2	75.8	62.9	61.1
Ammonia, Total (as N)	0.0050	mg/L	0.021-231 ^D	10	0.0132	0.0084	0.0057	0.0075	0.0117	0.0057	0.0118	<0.0050	0.0082	<0.0050	0.0059	0.0073
Bromide (Br)	0.050	mg/L			< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050	< 0.050	<0.050	0.054	< 0.050	< 0.050
Chloride (CI)	0.50	mg/L	120		2.45	2.41	0.53	<0.50	11.5	11.6	11.5	11.5	11.5	14.6	11.5	11.5
Fluoride (F)	0.020	mg/L	0.12		0.148	0.150	0.131	0.376	0.683	0.685	0.683	0.682	0.681	0.765	0.685	0.685
Nitrate (as N)	0.0050	mg/L	13	10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0064	0.0051	0.0051	<0.0050	0.0843	<0.0050	0.0072
Nitrite (as N)	0.0010	mg/L	0.06	0.8	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Phosphorus (P)-Total Dissolved	0.0020	mg/L			<0.0020	<0.0020	0.0026	0.0086	0.0040	0.0041	0.0039	0.0040	0.0042	0.0044	0.0040	0.0039
Phosphorus (P)-Total	0.0020	mg/L			0.0028	<0.0020	0.0048	0.0138	0.0050	0.0054	0.0051	0.0059	0.0041	0.0037	0.0050	0.0166
Sulfate (SO4)	0.30	mg/L			15.1	14.9	2.41	5.86	16.1	16.1	16.1	16.1	16.1	18.6	16.1	16.1
Sulphide as S	0.018	mg/L			<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon																
Dissolved Organic Carbon	0.50	mg/L			4.81	5.31	7.31	21.3	11.9	12.0	12.5	12.5	12.1	12.7	11.6	11.8
Total Organic Carbon	0.50	mg/L			4.73	4.63	7.77	20.6	12.1	12.2	12.3	12.3	12.6	12.6	11.7	11.5

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life (Freshwater), summary table accessed October 16, 2017 B Water Licence S17L8-002 Amend (September 11, 2017)

D Minimum CCME guideline based on temperature and pH x 0.8224 mg/L total ammonia - N	0.5880	0.5880	0.5880	1.8257	0.8553	12.5827	0.5880	0.5880	0.8553	12.5827	0.5880	0.5880
* Not aquatic habitat; CCME-FAL guidelines not applicable												

Table B1 - Terra Mine: General Chemistry

	San	nple Area		SNP Effluent	H	lo Hum Wetlar	d			Cams	ell River (Inclu	iding Moose B	ay)		
	s	ample ID	CCME	Quality Criteria (EQC) for	Т-9	MB-1	MB-9	T-6	T-10	T-31	T-12	T-DUP-2	T-30	T-4	T-1
	SNP S	ample ID	Guidelines ^A	T-8 and T-10 ^B					S17L8-002 (7B)						
PARAMETER	Lowest Detection Limit	Units			13-Sep-2017	14-Sep-2017	14-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	8-Sep-2017	13-Sep-2017
Physical Tests															
Conductivity	2.0	uS/cm			190	244	237	254	148	147	147	147	146	145	134
Hardness (as CaCO3)	0.50	mg/L			77.3	96.3	97.9	108	67.9	67.8	68	67.8	67.5	69.8	62.7
рН	0.10	pН	Between 6.5 and 9.0	Between 6.0 and 9.0	7.93	7.93	7.96	8.02	7.95	7.95	7.96	7.96	7.92	7.86	7.87
Total Suspended Solids	3.0	mg/L		30	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	7.0	<3.0
Total Dissolved Solids	13	mg/L			124	161	154	168	95	97	91	92	92	94	93
Turbidity	0.10	NTU			0.84	0.81	0.69	1.12	0.83	0.57	0.65	0.89	0.51	2.43	3.33
Anions and Nutrients															
Alkalinity, Total (as CaCO3)	1.0	mg/L			62.6	79.3	78.9	89.9	57.9	57.8	58.0	57.6	57.9	57.7	56.2
Ammonia, Total (as N)	0.0050	mg/L	0.021-231 ^D	10	0.0125	0.0076	0.0110	<0.0050	<0.0050	<0.0050	0.0072	0.0106	0.0088	< 0.0050	0.0121
Bromide (Br)	0.050	mg/L			< 0.050	0.053	0.052	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050
Chloride (CI)	0.50	mg/L	120		11.3	10.9	11.1	9.52	2.34	2.34	2.34	2.33	2.33	2.36	1.71
Fluoride (F)	0.020	mg/L	0.12		0.682	0.795	0.786	0.641	0.147	0.146	0.144	0.144	0.144	0.158	0.211
Nitrate (as N)	0.0050	mg/L	13	10	<0.0050	0.0797	0.0401	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Nitrite (as N)	0.0010	mg/L	0.06	0.8	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Phosphorus (P)-Total Dissolved	0.0020	mg/L			0.0057	0.0095	0.0059	0.0048	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0021	0.0036
Phosphorus (P)-Total	0.0020	mg/L			0.0075	0.0080	0.0065	0.0057	0.0025	0.0029	0.0020	0.0023	0.0024	0.0037	0.0097
Sulfate (SO4)	0.30	mg/L			15.5	27.7	24.7	25.6	14.2	14.2	14.2	14.2	14.2	14.5	10.6
Sulphide as S	0.018	mg/L			<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon															
Dissolved Organic Carbon	0.50	mg/L			11.8	9.58	9.49	9.03	4.77	4.98	4.83	4.77	4.53	4.66	6.81
Total Organic Carbon	0.50	mg/L			11.7	9.54	9.53	9.10	4.69	4.82	4.82	4.56	4.74	5.42	6.90

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquati

B Water Licence S17L8-002 Amend (September 11, 2017)

D Minimum CCME guideline based on temperature and pH x 0.8224 mg/L total ammonia - N 2.6810 1.8257 1.8257 0.8553 0.5880 0

Table B1 - Terra Mine: General Chemistry

	San	nple Area		SNP Effluent		On-Lan	d Water	
	s	ample ID	CCME Guidelines ^A	Quality Criteria (EQC) for	T-20 *	T-19 *	T-DUP-3 *	T-25
	SNP S	ample ID	Guidelines."	T-8 and T-10 ^B				
PARAMETER	Lowest Detection Limit	Units			8-Sep-2017	8-Sep-2017	8-Sep-2017	14-Sep-2017
Physical Tests								
Conductivity	2.0	uS/cm			398	155	152	191
Hardness (as CaCO3)	0.50	mg/L			204	87.7	86.4	89.8
pН	0.10	pН	Between 6.5 and 9.0	Between 6.0 and 9.0	8.09	7.72	7.70	7.92
Total Suspended Solids	3.0	mg/L		30	4.4	3.0	10.0	3.7
Total Dissolved Solids	13	mg/L			298	159	156	150
Turbidity	0.10	NTU			1.49	2.04	2.37	1.14
Anions and Nutrients								
Alkalinity, Total (as CaCO3)	1.0	mg/L			122	61.1	61.0	80.7
Ammonia, Total (as N)	0.0050	mg/L	0.021-231 ^D	10	<0.0050	0.0158	0.0159	0.0103
Bromide (Br)	0.050	mg/L			<0.050	<0.050	<0.050	<0.050
Chloride (CI)	0.50	mg/L	120		0.54	1.06	<0.50	2.46
Fluoride (F)	0.020	mg/L	0.12		0.727	0.332	0.334	0.281
Nitrate (as N)	0.0050	mg/L	13	10	<0.0050	0.0720	0.0676	<0.0050
Nitrite (as N)	0.0010	mg/L	0.06	0.8	<0.0010	0.0011	<0.0010	<0.0010
Phosphorus (P)-Total Dissolved	0.0020	mg/L			0.0148	0.0185	0.0259	0.0094
Phosphorus (P)-Total	0.0020	mg/L			0.0479	0.0159	0.0253	0.0140
Sulfate (SO4)	0.30	mg/L			91.6	15.9	16.0	15.6
Sulphide as S	0.018	mg/L			<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon								
Dissolved Organic Carbon	0.50	mg/L			10.9	29.8	30.5	7.86
Total Organic Carbon	0.50	mg/L			12.6	29.1	29.4	8.65

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquati-

B Water Licence S17L8-002 Amend (September 11, 2017)

D Minimum CCME guideline based on temperature and PH x 0.8224 mg/L total ammonia - N 2.6810 12.5827 12.5827 2.6810 * Not aquatic habitat; CCME-FAL guidelines not applicable

Table B2 - Terra Mine: Total Metals

	San	nple Area		010 5/1	SSTL for	R	eference Static	ns	Little Ho Hum Lake			Но	Hum Tailings Co	ntainment Area (T	CA)		
	S	ample ID		SNP Effluent Quality Criteria	Discharge Point from Ho	R-2	R-4	R-3	T-2	T-16-A	T-16-B	T-8-A	T-DUP-1	Т-8-В	T-8-C	T-5	T-3
	SNP S	ample ID	Guidelines ^A	(EQC) for T-8 and T-10 ^B	Hum Wetland at							S17L8-002 (7A)	S17L8-002 (7A)	S17L8-002 (7A)	S17L8-002 (7A)		
PARAMETER	Lowest Detection Limit	Units			T-6 ^c	13-Sep-2017	12-Sep-2017	10-Sep-2017	8-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017
Total Metals																	
Aluminum (Al)-Total	0.0030	mg/L	0.005- 0.100 ^F	0.8		0.0194	0.0234	0.0077	0.0573	0.0338	0.0357	0.0339	0.0327	0.0339	0.0190	0.0329	0.0580
Antimony (Sb)-Total	0.00010	mg/L				<0.00010	<0.00010	<0.00010	0.00015	0.00132	0.00129	0.00129	0.00131	0.00129	0.00138	0.00124	0.00127
Arsenic (As)-Total	0.00010	mg/L	0.005	1 @T-8 and 0.2@T-10	0.078	0.00017	0.00020	0.00067	0.00524	0.0605	0.0607	0.0607	0.0608	0.0602	0.0769	0.0596	0.0652
Barium (Ba)-Total	0.000050	mg/L		0.26110		0.0106	0.0104	0.00565	0.00731	0.0162	0.0159	0.0157	0.0159	0.0161	0.0183	0.0159	0.0162
Beryllium (Be)-Total	0.000020	mg/L				< 0.000020	< 0.000020	< 0.000020	< 0.000020	< 0.000020	<0.000020	<0.000020	< 0.000020	<0.000020	<0.000020	< 0.000020	< 0.000020
Bismuth (Bi)-Total	0.000050	mg/L				< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	0.000222
Boron (B)-Total	0.010	mg/L	1.5			0.012	0.011	0.010	< 0.010	0.027	0.027	0.027	0.028	0.028	0.033	0.027	0.027
Cadmium (Cd)-Total	0.0000050	mg/L	0.00009- 0.00037 ^G			<0.000050	<0.000050	<0.0000050	<0.000050	0.0000077	0.0000057	0.0000066	0.0000076	0.0000070	0.000080	0.0000069	0.0000116
Calcium (Ca)-Total	0.050	mg/L				16.3	15.7	9.57	12.3	23.2	23.2	22.9	23.0	23.4	28.1	23.0	23.1
Cesium (Cs)-Total	0.000010	mg/L				<0.000010	<0.000010	<0.000010	< 0.000010	0.000048	0.000048	0.000047	0.000048	0.000047	0.000044	0.000044	0.000079
Chromium (Cr)-Total	0.00010	mg/L				0.00010	<0.00010	<0.00010	0.00019	0.00017	0.00015	0.00015	0.00019	0.00015	0.00010	0.00015	0.00018
Cobalt (Co)-Total	0.00010	mg/L				<0.00010	<0.00010	<0.00010	0.00014	0.00014	0.00013	0.00013	0.00013	0.00013	0.00011	0.00014	0.00103
Copper (Cu)-Total	0.00050	mg/L	0.002-0.004 ^H	0.02		0.00071	0.00077	0.00119	0.00657	0.00797	0.00797	0.00797	0.00812	0.00808	0.00882	0.00797	0.00859
Iron (Fe)-Total	0.010	mg/L	0.3			0.019	0.022	0.012	0.199	0.038	0.037	0.035	0.037	0.038	0.027	0.039	0.085
Lead (Pb)-Total	0.000050	mg/L	0.001-0.007	0.02		<0.000050	<0.000050	<0.000050	0.000075	0.000146	0.000147	0.000131	0.000137	0.000136	0.000080	0.000152	0.00128
Lithium (Li)-Total	0.0010	mg/L				0.0026	0.0026	0.0013	0.0016	0.0073	0.0074	0.0075	0.0075	0.0077	0.0092	0.0076	0.0075
Magnesium (Mg)-Total	0.10	mg/L				7.10	6.97	2.73	3.82	4.67	4.51	4.67	4.68	4.55	5.36	4.55	4.53
Manganese (Mn)-Total	0.00010	mg/L				0.00106	0.00116	0.00113	0.0168	0.00306	0.00312	0.00299	0.00304	0.00303	0.00533	0.00313	0.00673
Mercury (Hg)-Total	0.0000050	mg/L	0.000026			<0.000050	< 0.0000050	< 0.0000050	<0.000050	< 0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050	< 0.0000050	<0.000050
Molybdenum (Mo)-Total	0.000050	mg/L	0.073			0.000269	0.000245	0.000221	0.000193	0.00255	0.00258	0.00254	0.00250	0.00255	0.00287	0.00256	0.00258
Nickel (Ni)-Total	0.00050	mg/L	0.025-0.150 ^J	0.1		<0.00050	<0.00050	<0.00050	0.00118	0.00374	0.00375	0.00377	0.00385	0.00380	0.00438	0.00376	0.00406
Phosphorus (P)-Total	0.050	mg/L				< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050
Potassium (K)-Total	0.10	mg/L				0.97	0.92	0.72	1.08	1.94	1.96	1.95	1.97	1.96	2.34	1.94	1.96
Selenium (Se)-Total	0.000050	mg/L	0.001			<0.000050	<0.000050	<0.000050	0.000056	0.000065	0.000062	0.000051	<0.000050	0.000051	0.000055	<0.000050	<0.000050
Silicon (Si)-Total	0.10	mg/L				0.83	0.78	1.00	1.08	0.73	0.74	0.73	0.73	0.73	1.43	0.71	0.74
Silver (Ag)-Total	0.000010	mg/L	0.00025	0.004		<0.000010	<0.000010	<0.000010	<0.000010	0.000018	0.000017	0.000015	0.000017	0.000026	0.000013	0.000017	0.000063
Sodium (Na)-Total	0.050	mg/L				2.56	2.51	1.61	1.11	7.63	7.55	7.60	7.77	7.55	9.40	7.48	7.63
Strontium (Sr)-Total	0.00020	mg/L				0.0571	0.0553	0.0210	0.0175	0.0736	0.0730	0.0742	0.0736	0.0745	0.0904	0.0752	0.0740
Sulfur (S)-Total	0.50	mg/L				5.41	4.71	0.95	2.13	5.48	5.40	5.36	5.53	5.60	6.29	5.44	5.32
Thallium (TI)-Total	0.000010	mg/L	0.0008			<0.000010	<0.000010	<0.000010	0.000016	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Tin (Sn)-Total	0.00010	mg/L				<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Total	0.00030	mg/L				<0.00060	0.00086	<0.00030	< 0.0012	0.00062	< 0.00090	<0.00090	0.00090	0.00067	0.00039	<0.00090	<0.0012
Uranium (U)-Total	0.000010	mg/L	0.015			0.000486	0.000528	0.000162	0.000149	0.00250	0.00255	0.00245	0.00251	0.00253	0.00324	0.00247	0.00258
Vanadium (V)-Total	0.00050	mg/L				< 0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	< 0.00050
Zinc (Zn)-Total	0.0030	mg/L	0.03	0.04		< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	0.0032	0.0040	0.0042	0.0048	0.0036	0.0040
Zirconium (Zr)-Total	0.00030	mg/L				< 0.00030	<0.00030	<0.00030	0.00031	<0.00030	< 0.00030	<0.00030	<0.00030	< 0.00030	<0.00030	<0.00030	< 0.00030

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life (Freshwater), summary table accessed October 16, 2017

B Water Licence S17L8-002 Amend (September 11, 2017)

C Site-Specific Target Level for Arsenic in Surface Waters Associated with the Terra Mine Wetland (SENES Consultants Ltd. 2014)

F Aluminum: 0.005 mg/L if pH 6.5; 0.1 mg/L if pH >= 6.5		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
G Cadmium caculated from hardness per CCME guidance, provided for each sample.	0	.0001179	0.0001169	0.0000722	0.0000839	0.0001276	0.0001269	0.0001294	0.0001299	0.0001305	0.0001487	0.0001266	0.0001302	
H Copper caculated from hardness per CCME guidance, provided for each sample		0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0022	0.0020	0.0020	
I Lead caculated from hardness per CCME guidance, provided for each sample		0.00202	0.00199	0.00100	0.00100	0.00228	0.00226	0.00233	0.00235	0.00236	0.00288	0.00225	0.00235	
J Nickel caculated from hardness per CCME guidance, provided for each sample		0.07288	0.07233	0.02500	0.02500	0.07836	0.07797	0.07936	0.07967	0.07998	0.09015	0.07782	0.07982	
* Not aquatic habitat; CCME-FAL guidelines not applicable														

aquatic habitat; CCME-FAL guidelines not applic

Table B2 - Terra Mine: Total Metals

<table-container> Image: series in the series of the</table-container>		San	nple Area		SNP Effluent	SSTL for	H	Ho Hum Wetlar	ıd			Came	sell River (Incl	uding Moose E	Bay)		
<table-container> SHP SHP<!--</th--><th></th><th>S</th><th>ample ID</th><th></th><th>Quality Criteria</th><th></th><th>T-9</th><th>MB-1</th><th>MB-9</th><th>T-6</th><th>T-10</th><th>T-31</th><th>T-12</th><th>T-DUP-2</th><th>T-30</th><th>T-4</th><th>T-1</th></table-container>		S	ample ID		Quality Criteria		T-9	MB-1	MB-9	T-6	T-10	T-31	T-12	T-DUP-2	T-30	T-4	T-1
PARAMER Detection LongUnder Detection LongUnder<		SNP S	ample ID	Guidelines *		at					S17L8-002 (7B)						
Annumum (A)-Total 0.0000 mgL 0.000-010 0.0001 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.0000010 0.000010 0.0	PARAMETER		Units			T-6 °	13-Sep-2017	14-Sep-2017	14-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	8-Sep-2017	13-Sep-2017
Numery (Sb)-Tasi 0.00010 mg/L mg/L 0.00016 1.91 F and 0.00016 0.00121 0.00082 0.00026 0.00020 0.000020	Total Metals																
Associa (A)-Total 0.0001 mgL 0.0007 0.0072 0.0047 0.0028 0.0028 0.00038 0.00038 0.00024 0.00003 0.0014 0.01158 0.00024 0.00038 0.00038 0.00024 0.00024 0.00026 0.00020 0.000050 0.00020 0.00020 0.000050 0.00020 0.000050 0.00020 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.0000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000000 0.000010 0.000011 <	Aluminum (Al)-Total	0.0030	mg/L	0.005- 0.100 ^F	0.8		0.0299	0.0285	0.0261	0.0549	0.0276	0.0232	0.0243	0.0231	0.0239	0.0862	0.152
Predmice (s)-road 0.00010 mpL 0.0005 0.00042 0.00055 0.000055 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.000055 0.00005 0.00005	Antimony (Sb)-Total	0.00010	mg/L				0.00116	0.00142	0.00123	0.00092	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00011	0.00011
Banyline Bi-Intal 0.000020 mgl	Arsenic (As)-Total	0.00010	mg/L	0.005		0.078	0.0472	0.0544	0.0522	0.0287	0.00036	0.00035	0.00024	0.00032	0.00024	0.00130	0.00180
Barman (B):Total 0.00050 mgL M <td>Barium (Ba)-Total</td> <td>0.000050</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>0.0108</td> <td>0.0207</td> <td>0.0208</td> <td>0.0243</td> <td>0.0108</td> <td>0.0107</td> <td>0.0104</td> <td>0.0154</td> <td>0.0106</td> <td>0.0114</td> <td>0.0128</td>	Barium (Ba)-Total	0.000050	mg/L				0.0108	0.0207	0.0208	0.0243	0.0108	0.0107	0.0104	0.0154	0.0106	0.0114	0.0128
Baron (B)-Total 0.010 mgL 1.5 0.0224 0.024 0.027 0.012 0.011 0.011 0.012 0.010 0.012 Cadmum (Ca)-Total 0.0000050 mgL 0.0000057 0.0000057 0.0000058 0.0000058 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.0000050 0.000001 0.000010 0.000010 0.000010 0.000010 0.000010 0.000011 0.000010 0.000011 0.000010 0.000011 0.000010 0.000011 0.000010 0.000011 0.000010 0.000011 0.000010 0.000011<	Beryllium (Be)-Total	0.000020	mg/L				<0.000020	0.000041	0.000040	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Cardmium (Cgl-Total 0.000056 mgL 0.000056 -0.000016 -0.000016 -0.000016 -0.000016 -0.000016 -0.000016 -0.000016 -0.000016 -0.000016 -0.00016 -0.00016 -0.00011 -0.000011 -0.00011 -0.0001	Bismuth (Bi)-Total	0.000050	mg/L				<0.000050	0.000064	0.000051	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000247	< 0.000050
Cadmiun (Ca)-Total 0.0000050 mg/L 0.0000057 0.0000057 0.0000057 0.0000057 0.0000057 0.0000057 0.0000057 0.0000057 0.0000057 0.0000057 0.0000057 0.0000057 0.0000057 0.0000057 0.0000057 0.0000057 0.000010 mg/L 16.0 15.6 15.7 17.5	Boron (B)-Total	0.010	mg/L	1.5			0.024	0.024	0.024	0.027	0.012	0.011	0.011	0.011	0.012	0.010	0.012
Cesium (Cs)-Total 0.000010 mgL 0.000027 0.000287 0.000287 0.000010 <0.00011 <0.00010 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.000111 <0.00011 <0.00011	Cadmium (Cd)-Total	0.0000050	mg/L				<0.0000050	0.0000648	0.0000572	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	0.0000055
Chronium (C)-Total 0.00010 mg/L mg/L mg/L mg/L mg/L 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00010 0.00021 0.	Calcium (Ca)-Total	0.050	mg/L				22.6	30.1	29.9	30.9	16.0	16.1	16.0	15.6	15.7	17.5	15.7
Cobait (Co)-Total 0.00010 mg/L mg/L mg/L 0.00011 0.00012 0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000000 <0.000000 <0.000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.0000000 <0.00000000000000 <0.00000000000000000000000000000000000	Cesium (Cs)-Total	0.000010	mg/L				0.000024	0.000287	0.000266	0.000048	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.000037	0.000027
Copper (Cu)-Total 0.00050 mgL 0.002 0.00855 0.00492 0.00739 0.00088 0.00078 0.00077 0.00844 0.00348 0.00421 Uron (Fe)-Total 0.010 mgL 0.3 0.068 0.036 0.022 0.023 0.024 0.022 0.029 0.029 0.029 0.029 0.029 0.029 0.0022 0.0023 0.0021 0.0022 0.0023 0.0022 0.0023 0.0022 0.0023 0.0022 0.0023 0.0023 0.0022 0.0023 0.0023 0.0022 0.0023 0.00026 0.000050 rd.000050 rd.000050 rd.000050 rd.000050 rd.000050 rd.00050 rd.00050<	Chromium (Cr)-Total	0.00010	mg/L				0.00010	0.00015	0.00014	0.00015	0.00013	0.00011	0.00011	<0.00010	0.00145	0.00018	0.00037
http://tail 0.010 mg/L 0.031 0.065 0.086 0.088 0.072 0.026 0.024 0.022 0.029 0.122 0.208 Lad (Pb)Total 0.000050 mg/L 0.001.007/ 0.02 0.00055 0.00016 0.000050 0.000050 0.000050 0.000050 0.00023 0.00030 mg/u b/u 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033	Cobalt (Co)-Total	0.00010	mg/L				0.00015	0.00348	0.00406	0.00014	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00051	<0.00010
Lead (Pb)-Total 0.00050 mgL 0.001-0.007' 0.02 0.00065 0.000134 0.00055 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050	Copper (Cu)-Total	0.00050	mg/L	0.002-0.004 H	0.02		0.00535	0.0492	0.0412	0.00739	0.00088	0.00089	0.00078	0.00077	0.00084	0.00348	0.00421
Lithium (L)-Total 0.0010 mgL 0.0023 0.00050 0.00050 0.00050 0.000050	Iron (Fe)-Total	0.010	mg/L	0.3			0.065	0.036	0.088	0.072	0.026	0.023	0.024	0.022	0.029	0.122	0.208
Magnesium (Mg)-Total 0.10 mgL 1 4.54 5.52 5.68 7.30 6.84 6.67 6.84 7.02 6.88 6.56 5.72 Manganese (Mn)-Total 0.00010 mgL 0.00026 0.00737 0.0373 0.0375 0.0175 0.00155 0.00157 0.001005 0.000050 0.00050 0.00050 0.000050 0.000050 0.000050 0.000050 0.000050 0.00	Lead (Pb)-Total	0.000050	mg/L	0.001-0.0071	0.02		0.000085	0.000161	0.000134	0.000055	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000945	0.000219
Marganese LMi)-Total 0.00010 mg/L 0.00026 0.000737 0.0539 0.105 0.00752 0.00189 0.00171 0.00155 0.00167 0.00160 0.000531 0.00638 Mercury (Hg)-Total 0.000050 mg/L 0.000256 <	Lithium (Li)-Total	0.0010	mg/L				0.0072	0.0075	0.0073	0.0073	0.0024	0.0022	0.0023	0.0023	0.0023	0.0022	0.0023
Mercury (Hg)-Total 0.000050 mgL 0.000026 0.000026 0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.000050 <0.000050 <0.000050	Magnesium (Mg)-Total	0.10	mg/L				4.54	5.52	5.68	7.30	6.84	6.67	6.84	7.02	6.88	6.56	5.72
Molybelenum (Mo)-Total 0.000050 mg/L 0.0073 0.00238 0.00371 0.00327 0.00232 0.000262 0.000263 0.00259 0.00428 0.000262 0.000263 0.000250 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.000010 <0.000010 <0.000010	Manganese (Mn)-Total	0.00010	mg/L				0.00737	0.0539	0.105	0.00752	0.00189	0.00171	0.00155	0.00157	0.00160	0.00531	0.00638
Nickel (Ni)-Total 0.00050 mg/L 0.025-0.150 0.1 0.00348 0.00614 0.0027 <0.00050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050			-														
Phosphorus (P)-Total 0.050 mg/L 0 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010	Molybdenum (Mo)-Total		mg/L	0.073													
Potassium (K)-Total 0.10 mg/L 0.001 1.97 1.93 1.91 1.70 1.00 1.01 0.98 1.00 1.01 0.97 0.94 Selenium (Se)-Total 0.000050 mg/L 0.001 <.000050	()		-	0.025-0.150 ^J	0.1												
Selenium (Se)-Total 0.00050 mg/L 0.001 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <			Ň														
Silicon (Si)-Total 0.10 mg/L 0.00025 0.004 0.34 1.43 1.41 1.25 0.82 0.80 0.81 0.80 0.81 0.92 1.10 Silver (Ag)-Total 0.000010 mg/L 0.00025 0.004 0.000014 0.000143 0.000143 0.000010 <0.000010			Ň														
Silver (Ag)-Total 0.00010 mg/L 0.00025 0.004 0.00014 0.00013 0.00018 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <t< td=""><td></td><td></td><td></td><td>0.001</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				0.001													
Soliam (Na)-Total 0.050 mg/L 0 7.31 7.18 7.32 7.14 2.54 2.48			Ň														
Strontium (s)-Total 0.00020 mg/L 0 0.0738 0.0827 0.0827 0.0511 0.0541 0.0530 0.0525 0.0531 0.0547 0.0414 Sulfur (S)-Total 0.50 mg/L 5.07 9.12 8.23 8.36 4.63 4.61 4.76 4.60 4.91 3.36 Thallium (TI)-Total 0.00010 mg/L 0.0008 <0.00010	1 0/		Ň	0.00025	0.004												
Sulfur (S)-Total 0.50 mg/L 0.00010 mg/L 0.0008 5.07 9.12 8.23 8.36 4.63 4.60 4.61 4.76 4.60 4.91 3.36 Thallium (TI)-Total 0.00010 mg/L 0.0008 <0.000010			-								-	-	-	-	-		
Thallium (Th)-Total 0.00010 mg/L 0.0008 0.000010 0.00020 0.00021 0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <			ů														
Tin (sn)-Total 0.00010 mg/L Columnation columation columnation co			ů	0.0008				-						-			
Titanium (Ti)-Total 0.00030 mg/L Colomos colomos <thcolomos< th=""> colomos <thcolomos< th=""></thcolomos<></thcolomos<>				0.0000													
Unanium (U)-Total 0.00010 mg/L 0.015 0.0012 0.00142 0.00194 0.000545 0.000539 0.000534 0.000240 0.000537 0.000537 0.000547 <t< td=""><td>. ,</td><td></td><td>Ň</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	. ,		Ň														
Vanadium (V)-Total 0.00050 mg/L Columbra			Ň	0.015													
Zinc (Zn)-Total 0.0030 mg/L 0.03 0.04 <0.0030 0.0265 0.0215 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0			Ň	0.010													
			Ň	0.03	0.04												
2irconium (zr)-rotai 1 0.00030 0 0 0.00030 0 0 0 0 0 0 0 0 0	Zirconium (Zr)-Total	0.00030	mg/L				< 0.00030	< 0.00030	< 0.00030	< 0.00030	<0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.00030

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life

B Water Licence S17L8-002 Amend (September 11, 2017)

C Site-Specific Target Level for Arsenic in Surface Waters Associated with the Terra Mine Wetland (SENES

F Aluminum: 0.005 mg/L if pH 6.5; 0.1 mg/L if pH >= 6.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
G Cadmium caculated from hardness per CCME guidance, provided for each sample.	0.0001280	0.0001536	0.0001557	0.0001689	0.0001149	0.0001148	0.0001151	0.0001148	0.0001144	0.0001176	0.0001076	
H Copper caculated from hardness per CCME guidance, provided for each sample	0.0020	0.0023	0.0023	0.0025	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	
I Lead caculated from hardness per CCME guidance, provided for each sample	0.00229	0.00303	0.00310	0.00351	0.00194	0.00194	0.00195	0.00194	0.00193	0.00201	0.00176	
J Nickel caculated from hardness per CCME guidance, provided for each sample	0.07859	0.09288	0.09405	0.10133	0.07122	0.07114	0.07129	0.07114	0.07090	0.07272	0.06703	
* Not aquatic habitat; CCME-FAL guidelines not applicable												

Table B2 - Terra Mine: Total Metals

	San	ple Area		CND Effluent	SSTL for		On-Lan	d Water	
	S	ample ID	CCME Guidelines ^A	SNP Effluent Quality Criteria	Discharge Point from Ho Hum Wetland	T-20 *	T-19 *	T-DUP-3 *	T-25
	SNP S	ample ID	Guidelines	(EQC) for T-8 and T-10 ^B	at				
PARAMETER	Lowest Detection Limit	Units			T-6 ^c	8-Sep-2017	8-Sep-2017	8-Sep-2017	14-Sep-2017
Total Metals									
Aluminum (Al)-Total	0.0030	mg/L	0.005- 0.100 ^F	0.8		0.0044	0.197	0.201	0.0258
Antimony (Sb)-Total	0.00010	mg/L				0.00088	0.00520	0.00529	<0.00010
Arsenic (As)-Total	0.00010	mg/L	0.005	1 @T-8 and 0.2@T-10	0.078	0.0325	0.286	0.284	0.00237
Barium (Ba)-Total	0.000050	mg/L		0.28110		0.0166	0.00945	0.00895	0.0131
Beryllium (Be)-Total	0.000020	mg/L				<0.000020	0.000049	0.000044	< 0.000020
Bismuth (Bi)-Total	0.000050	mg/L				< 0.000050	0.00162	0.00159	< 0.000050
Boron (B)-Total	0.010	mg/L	1.5			0.029	0.013	0.012	0.105
Cadmium (Cd)-Total	0.0000050	mg/L	0.00009- 0.00037 ^G			0.0000058	0.0000441	0.0000498	<0.0000050
Calcium (Ca)-Total	0.050	mg/L				59.4	26.4	25.9	22.6
Cesium (Cs)-Total	0.000010	mg/L				0.000027	0.000016	0.000015	0.000015
Chromium (Cr)-Total	0.00010	mg/L				<0.00010	0.00058	0.00059	0.00021
Cobalt (Co)-Total	0.00010	mg/L				0.00099	0.0179	0.0178	0.00019
Copper (Cu)-Total	0.00050	mg/L	0.002-0.004 ^H	0.02		0.00469	0.0267	0.0267	0.00135
Iron (Fe)-Total	0.010	mg/L	0.3			0.032	0.235	0.236	0.402
Lead (Pb)-Total	0.000050	mg/L	0.001-0.0071	0.02		< 0.000050	0.000568	0.000566	0.000114
Lithium (Li)-Total	0.0010	mg/L				0.0036	0.0021	0.0021	0.0039
Magnesium (Mg)-Total	0.10	mg/L				13.4	5.30	5.26	8.10
Manganese (Mn)-Total	0.00010	mg/L				0.0604	0.0688	0.0639	0.0203
Mercury (Hg)-Total	0.0000050	mg/L	0.000026			< 0.0000050	0.0000179	0.0000178	< 0.0000050
Molybdenum (Mo)-Total	0.000050	mg/L	0.073			0.00208	0.0152	0.0150	0.000218
Nickel (Ni)-Total	0.00050	mg/L	0.025-0.150	0.1		0.00175	0.0281	0.0280	0.00085
Phosphorus (P)-Total	0.050	mg/L				0.077	< 0.050	< 0.050	< 0.050
Potassium (K)-Total	0.10	mg/L				5.73	1.49	1.16	1.72
Selenium (Se)-Total	0.000050	mg/L	0.001			0.000073	0.000122	0.000110	< 0.000050
Silicon (Si)-Total	0.10	mg/L				2.66	3.63	3.58	0.90
Silver (Ag)-Total	0.000010	mg/L	0.00025	0.004		<0.000010	0.000104	0.000104	< 0.000010
Sodium (Na)-Total	0.050	mg/L				5.28	1.28	1.26	3.53
Strontium (Sr)-Total	0.00020	mg/L				0.100	0.0337	0.0332	0.0627
Sulfur (S)-Total	0.50	mg/L				34.1	5.95	6.02	5.29
Thallium (TI)-Total	0.000010	mg/L	0.0008			<0.000010	0.000027	0.000027	<0.000010
Tin (Sn)-Total	0.00010	mg/L				<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Total	0.00030	mg/L				<0.00030	< 0.0048	<0.0042	0.00067
Uranium (U)-Total	0.000010	mg/L	0.015			0.00291	0.00239	0.00239	0.000252
Vanadium (V)-Total	0.00050	mg/L				<0.00050	0.00064	0.00063	<0.00050
Zinc (Zn)-Total	0.0030	mg/L	0.03	0.04		<0.0030	0.0154	0.0141	<0.0030
Zirconium (Zr)-Total	0.00030	mg/L				< 0.00030	0.00190	0.00186	< 0.00030

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life

B Water Licence S17L8-002 Amend (September 11, 2017)

C Site-Specific Target Level for Arsenic in Surface Waters Associated with the Terra Mine Wetland (SENES

F Aluminum: 0.005 mg/L if pH 6.5; 0.1 mg/L if pH >= 6.5	0.1	0.1	0.1	0.1	
G Cadmium caculated from hardness per CCME guidance, provided for each sample.	0.0002864	0.0001421	0.0001404	0.0001450	
H Copper caculated from hardness per CCME guidance, provided for each sample	0.0040	0.0021	0.0021	0.0022	
I Lead caculated from hardness per CCME guidance, provided for each sample	0.00700	0.00269	0.00264	0.00277	
J Nickel caculated from hardness per CCME guidance, provided for each sample	0.15000	0.08650	0.08553	0.08807	
* Not aquatic habitat; CCME-FAL guidelines not applicable					

aquatic habitat; CCME-FAL guidelines not applic

Table B3 - Terra Mine: Dissolved Metals

	San	nple Area	1		SSTL for	Referenc	e Stations		Ho Hum Ta	illings Containment A	area (TCA)	
	s	ample ID		SNP Effluent Quality Criteria (EQC) for	Discharge Point from Ho Hum	R-4	R-3	T-8-A	T-DUP-1	Т-8-В	T-8-C	T-3
	SNP S	ample ID	Guidelines ^A	T-8 and T-10 ^B	Wetland at T-6 ^c			S17L8-002 (7A)	S17L8-002 (7A)	S17L8-002 (7A)	S17L8-002 (7A)	
PARAMETER	Lowest Detection Limit	Units	1			12-Sep-2017	10-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017
Dissolved Metals												
Aluminum (Al)-Dissolved	0.0010	mg/L	0.005-0.100 ^F	0.8		0.0021	0.0026	0.0093	0.0100	0.0102	0.0082	0.0075
Antimony (Sb)-Dissolved	0.00010	mg/L				<0.00010	<0.00010	0.00129	0.00127	0.00128	0.00139	0.00136
Arsenic (As)-Dissolved	0.00010	mg/L	0.005	1 @T-8 and 0.2@T-10	0.078	0.00019	0.00061	0.0614	0.0612	0.0610	0.0796	0.0683
Barium (Ba)-Dissolved	0.000050	mg/L				0.0113	0.00560	0.0165	0.0164	0.0167	0.0192	0.0169
Beryllium (Be)-Dissolved	0.000020	mg/L				<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Bismuth (Bi)-Dissolved	0.000050	mg/L				<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Boron (B)-Dissolved	0.010	mg/L	1.5			0.011	0.010	0.026	0.026	0.026	0.031	0.026
Cadmium (Cd)-Dissolved	0.0000050	mg/L	0.00009-0.00037 ^G			<0.000050	<0.000050	0.0000063	0.0000055	<0.000050	0.000082	0.000085
Calcium (Ca)-Dissolved	0.050	mg/L				16.5	10.40	23.6	23.9	23.9	28.2	24.3
Cesium (Cs)-Dissolved	0.000010	mg/L				<0.000010	<0.000010	0.000043	0.000040	0.000041	0.000039	0.000046
Chromium (Cr)-Dissolved	0.00010	mg/L				<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Cobalt (Co)-Dissolved	0.00010	mg/L				<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00038
Copper (Cu)-Dissolved	0.00020	mg/L	0.002-0.004 ^H	0.02		0.00060	0.00104	0.00742	0.00741	0.00746	0.00839	0.00759
Iron (Fe)-Dissolved	0.010	mg/L	0.3			<0.010	<0.010	<0.010	<0.010	<0.010	0.010	<0.010
Lead (Pb)-Dissolved	0.000050	mg/L	0.001-0.007	0.02		<0.000050	< 0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.00015
Lithium (Li)-Dissolved	0.0010	mg/L				0.0025	0.0011	0.0078	0.0080	0.0080	0.0095	0.0079
Magnesium (Mg)-Dissolved	0.10	mg/L				6.80	3.11	4.73	4.64	4.72	5.41	4.39
Manganese (Mn)-Dissolved	0.00010	mg/L				<0.00010	<0.00010	0.00012	0.00012	0.00016	0.00141	0.00010
Mercury (Hg)-Dissolved	0.0000050	mg/L	0.000026			<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Molybdenum (Mo)-Dissolved	0.000050	mg/L	0.073			0.000243	0.000201	0.00253	0.00255	0.00255	0.00285	0.00259
Nickel (Ni)-Dissolved	0.00050	mg/L	0.025-0.150	0.1		<0.00050	<0.00050	0.00375	0.00374	0.00375	0.00437	0.00400
Phosphorus (P)-Dissolved	0.050	mg/L				<0.050	<0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050
Potassium (K)-Dissolved	0.10	mg/L				1.07	0.81	1.99	1.98	2.03	2.40	1.99
Selenium (Se)-Dissolved	0.000050	mg/L	0.001			<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Silicon (Si)-Dissolved	0.050	mg/L				0.74	0.99	0.65	0.66	0.67	1.39	0.58
Silver (Ag)-Dissolved	0.000010	mg/L	0.00025	0.004		<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Sodium (Na)-Dissolved	0.050	mg/L				2.51	1.81	7.78	7.53	7.72	9.47	7.55
Strontium (Sr)-Dissolved	0.00020	mg/L				0.0582	0.0216	0.0755	0.0754	0.0756	0.0916	0.0744
Sulfur (S)-Dissolved	0.50	mg/L				4.60	0.80	5.15	5.24	5.28	6.10	5.05
Thallium (TI)-Dissolved	0.000010	mg/L	0.0008			<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Tin (Sn)-Dissolved	0.00010	mg/L				<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Dissolved	0.00030	mg/L				<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Uranium (U)-Dissolved	0.000010	mg/L	0.015			0.000556	0.000208	0.00251	0.00248	0.00260	0.00319	0.00227
Vanadium (V)-Dissolved	0.00050	mg/L				<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Zinc (Zn)-Dissolved	0.0010	mg/L	0.03	0.04		<0.0010	<0.0010	0.0027	0.0027	0.0023	0.0047	0.0029
Zirconium (Zr)-Dissolved	0.00030	mg/L				<0.00030	<0.00030	< 0.00030	<0.00030	<0.00030	<0.00030	< 0.00030

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life (Freshwater), summary table accessed October 16, 2017

B Water Licence S17L8-002 Amend (September 11, 2017)

C Site-Specific Target Level for Arsenic in Surface Waters Associated with the Terra Mine Wetland (SENES Consultants Ltd. 2014)

F Aluminum: 0.005 mg/L if pH 6.5; 0.1 mg/L if pH >= 6.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1
G Cadmium caculated from hardness per CCME guidance, provided for each sample.	0.0001169	0.0000722	0.0001294	0.0001299	0.0001305	0.0001487	0.0001302
H Copper caculated from hardness per CCME guidance, provided for each sample	0.0020	0.0020	0.0020	0.0020	0.0020	0.0022	0.0020
I Lead caculated from hardness per CCME guidance, provided for each sample	0.0020	0.0010	0.0023	0.0023	0.0024	0.0029	0.0024
J Nickel caculated from hardness per CCME guidance, provided for each sample	0.0723	0.0250	0.0794	0.0797	0.0800	0.0902	0.0798

Table B3 - Terra Mine: Dissolved Metals

	San	nple Area		SNP Effluent	SSTL for	Ho Hum V	Wetland		Camsell River (Inc	luding Moose Bay)	
	S	Sample ID		Quality Criteria	Discharge Point from Ho Hum	Т-9	MB-1	T-6	T-10	T-31	T-4
	SNP S	Sample ID	Guidelines ^A	(EQC) for T-8 and T-10 ^B	Wetland at T-6 ^c				S17L8-002 (7B)		
PARAMETER	Lowest Detection Limit	Units				13-Sep-2017	14-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	8-Sep-2017
Dissolved Metals											
Aluminum (AI)-Dissolved	0.0010	mg/L	0.005-0.100 ^F	0.8		0.0071	0.0155	0.0051	0.0028	0.0026	0.0030
Antimony (Sb)-Dissolved	0.00010	mg/L				0.00114	0.00144	0.00092	<0.00010	<0.00010	<0.00010
Arsenic (As)-Dissolved	0.00010	mg/L	0.005	1 @T-8 and 0.2@T-10	0.078	0.0460	0.0552	0.0277	0.00034	0.00031	0.00056
Barium (Ba)-Dissolved	0.000050	mg/L				0.0110	0.0227	0.0245	0.0110	0.0106	0.0107
Beryllium (Be)-Dissolved	0.000020	mg/L				<0.000020	0.000039	<0.000020	<0.000020	<0.000020	<0.000020
Bismuth (Bi)-Dissolved	0.000050	mg/L				<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Boron (B)-Dissolved	0.010	mg/L	1.5			0.023	0.023	0.026	0.011	0.011	0.011
Cadmium (Cd)-Dissolved	0.0000050	mg/L	0.00009-0.00037 ^G			<0.000050	0.0000683	<0.0000050	<0.000050	<0.000050	<0.000050
Calcium (Ca)-Dissolved	0.050	mg/L				23.3	29.4	31.2	16.2	16.3	16.9
Cesium (Cs)-Dissolved	0.000010	mg/L				0.000022	0.000272	0.000043	<0.000010	<0.000010	<0.000010
Chromium (Cr)-Dissolved	0.00010	mg/L				<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Cobalt (Co)-Dissolved	0.00010	mg/L				<0.00010	0.00285	<0.00010	<0.00010	<0.00010	<0.00010
Copper (Cu)-Dissolved	0.00020	mg/L	0.002-0.004 ^H	0.02		0.00473	0.0454	0.00615	0.00071	0.00073	0.00136
Iron (Fe)-Dissolved	0.010	mg/L	0.3			0.013	0.016	<0.010	<0.010	<0.010	<0.010
Lead (Pb)-Dissolved	0.000050	mg/L	0.001-0.0071	0.02		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Lithium (Li)-Dissolved	0.0010	mg/L				0.0078	0.0074	0.0077	0.0025	0.0025	0.0024
Magnesium (Mg)-Dissolved	0.10	mg/L				4.64	5.57	7.22	6.65	6.61	6.72
Manganese (Mn)-Dissolved	0.00010	mg/L				0.00023	0.0490	0.00014	<0.00010	<0.00010	<0.00010
Mercury (Hg)-Dissolved	0.0000050	mg/L	0.000026			<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Molybdenum (Mo)-Dissolved	0.000050	mg/L	0.073			0.00241	0.00352	0.00233	0.000256	0.000259	0.000266
Nickel (Ni)-Dissolved	0.00050	mg/L	0.025-0.150	0.1		0.00326	0.00597	0.00211	<0.00050	<0.00050	<0.00050
Phosphorus (P)-Dissolved	0.050	mg/L				<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050
Potassium (K)-Dissolved	0.10	mg/L				1.99	1.88	1.73	1.00	0.96	1.02
Selenium (Se)-Dissolved	0.000050	mg/L	0.001			<0.000050	0.000060	<0.000050	<0.000050	<0.000050	<0.000050
Silicon (Si)-Dissolved	0.050	mg/L				0.26	1.39	1.15	0.76	0.75	0.75
Silver (Ag)-Dissolved	0.000010	mg/L	0.00025	0.004		<0.000010	0.000070	<0.000010	<0.000010	<0.000010	<0.000010
Sodium (Na)-Dissolved	0.050	mg/L				7.48	7.07	7.15	2.43	2.40	2.44
Strontium (Sr)-Dissolved	0.00020	mg/L				0.0753	0.0802	0.104	0.0537	0.0546	0.0538
Sulfur (S)-Dissolved	0.50	mg/L				5.05	9.12	8.43	4.58	4.59	4.84
Thallium (TI)-Dissolved	0.000010	mg/L	0.0008			<0.000010	0.000022	<0.000010	<0.000010	<0.000010	<0.000010
Tin (Sn)-Dissolved	0.00010	mg/L				0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Dissolved	0.00030	mg/L				<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Uranium (U)-Dissolved	0.000010	mg/L	0.015			0.00220	0.00139	0.00196	0.000551	0.000552	0.000503
Vanadium (V)-Dissolved	0.00050	mg/L				<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Zinc (Zn)-Dissolved	0.0010	mg/L	0.03	0.04		<0.0010	0.0266	0.0012	<0.0010	<0.0010	<0.0010
Zirconium (Zr)-Dissolved	0.00030	mg/L				<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life (Freshwater), sumr

B Water Licence S17L8-002 Amend (September 11, 2017)

C Site-Specific Target Level for Arsenic in Surface Waters Associated with the Terra Mine Wetland (SENES Consultants Ltd. 20

F Aluminum: 0.005 mg/L if pH 6.5; 0.1 mg/L if pH >= 6.5 0.1 0.1 0.1 0.1 0.1 0.1 0.0001536 0.0001148 0.0001176 G Cadmium caculated from hardness per CCME guidance, provided for each sample. 0.0001280 0.0001689 0.0001149 H Copper caculated from hardness per CCME guidance, provided for each sample 0.0023 0.0020 0.0020 0.0020 0.0020 0.0025 I Lead caculated from hardness per CCME guidance, provided for each sample 0.0023 0.0030 0.0035 0.0019 0.0019 0.0020 J Nickel caculated from hardness per CCME guidance, provided for each sample 0.1013 0.0711 0.0727 0.0786 0.0929 0.0712

Table B4 - Terra Mine: Hydrocarbons

	San	nple Area		SNP Effluent		н	o Hum Tailings Co	ntainment Area (TC	A)		Camsell River (I Ba	•	On-Land Water
	s	ample ID	CCME Guidelines ^A	Quality Criteria (EQC) for	T-8-A	T-DUP-1	Т-8-В	T-8-C	T-5	T-3	T-10	T-4	T-25
	SNP S	ample ID		T-8 and T-10 ^B	S17L8-002 (7A)	S17L8-002 (7A)	S17L8-002 (7A)	S17L8-002 (7A)			S17L8-002 (7B)		
PARAMETER	Lowest Detection Limit	Units			13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	13-Sep-2017	8-Sep-2017	14-Sep-2017
Volatile Organic Compounds													
Benzene	0.00050	mg/L	0.37		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Ethylbenzene	0.00050	mg/L	0.9		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Methyl t-butyl ether (MTBE)	0.00050	mg/L			<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Styrene	0.00050	mg/L			<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Toluene	0.00045	mg/L	0.002		<0.00045	<0.00045	<0.00045	<0.00045	<0.00045	< 0.00045	<0.00045	<0.00045	<0.00045
Xylenes	0.00075	mg/L			<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
F1 (C6-C10)	0.10	mg/L			<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Hydrocarbons													
F1-BTEX	0.10	mg/L			<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
F2 (C10-C16)	0.30	mg/L			<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
F3 (C16-C34)	0.30	mg/L			<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
F4 (C34-C50)	0.30	mg/L			<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Aggregate Organics													
Oil and Grease			5	5	<5.0	<5.0	<5.0	<5.0			<5.0		

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life (Freshwater), summary table accessed October 16, 2017 B Water Licence S17L8-002 Amend (September 11, 2017)

Table B5 - Silver Bear Mines: General Chemistry

		Site			REFERENCE						NOR	THRIM				
	San	ple Area		I	Reference Station	S	Herma	andy Lake	Leacha	ate Pond	Discharge Stream		Camsell	River		On-Land Water
	S	ample ID	CCME Guidelines ^A	R-2	R-4	R-3	NO-11	NO-7	NO-2	NO-DUP-1	NO-4/NO-8	NO-5	NO-6	NO-25	NO-27	NO-1 *
	SNP S	ample ID						S17L8-002 (8C)					S17L8-002 (9D)			
PARAMETER	Lowest Detection Limit	Units		13-Sep-2017	12-Sep-2017	10-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017
Physical Tests																
Conductivity	2.0	uS/cm		152	147	75.0	138	139	150	153	214	148	148	152	144	149
Hardness (as CaCO3)	0.50	mg/L		70	69.3	38.8	70.9	72.3	79.5	79.1	116	70.2	70.6	68.5	66.2	70.6
рН	0.10	pН	Between 6.5 and 9.0	7.96	7.91	7.75	7.91	7.91	7.95	7.94	8.17	7.92	7.90	7.87	7.91	7.92
Total Suspended Solids	3.0	mg/L		<3.0	<3.0	<3.0	<3.0	3.0	<3.0	<3.0	<3.0	3.0	<3.0	3.0	<3.0	<3.0
Total Dissolved Solids	13	mg/L		89	98	61	115	111	116	121	158	94	93	96	96	93
Turbidity	0.10	NTU		0.90	0.44	0.64	0.53	0.51	0.43	0.45	0.65	0.47	0.48	0.48	0.52	0.76
Anions and Nutrients																
Alkalinity, Total (as CaCO3)	1.0	mg/L		58.8	56.4	36.8	62.3	62.8	69.5	71.5	122	55.9	59.2	54.5	57.8	60.0
Ammonia, Total (as N)	0.0050	mg/L	0.021-231 ^D	0.0132	0.0084	0.0057	0.0127	0.0114	0.0122	0.0083	0.0105	0.0054	<0.0050	0.0087	<0.0050	<0.0050
Bromide (Br)	0.050	mg/L		<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050
Chloride (CI)	0.50	mg/L	120	2.45	2.41	0.53	<0.50	<0.50	<0.50	<0.50	<0.50	2.39	2.38	2.35	2.34	2.39
Fluoride (F)	0.020	mg/L	0.12	0.148	0.150	0.131	0.128	0.129	0.169	0.166	0.185	0.143	0.143	0.142	0.141	0.149
Nitrate (as N)	0.0050	mg/L	13	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Nitrite (as N)	0.0010	mg/L	0.06	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0012	<0.0010	<0.0010	<0.0010	<0.0010
Phosphorus (P)-Total Dissolved	0.0020	mg/L		<0.0020	<0.0020	0.0026	0.0047	0.0045	0.0063	0.0065	0.0021	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Phosphorus (P)-Total	0.0020	mg/L		0.0028	<0.0020	0.0048	0.0058	0.0043	0.0086	0.0072	<0.0020	0.0024	0.0026	<0.0020	<0.0020	0.0037
Sulfate (SO4)	0.30	mg/L		15.1	14.9	2.41	8.94	8.95	8.52	8.51	<0.30	14.8	14.8	14.5	14.5	15.2
Sulphide as S	0.018	mg/L		<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon																
Dissolved Organic Carbon	0.50	mg/L		4.81	5.31	7.31	14.1	13.9	13.6	13.8	12.2	4.78	4.92	4.84	5.26	4.66
Total Organic Carbon	0.50	mg/L		4.73	4.63	7.77	14.4	14.3	13.9	14.0	14.0	4.60	4.77	4.72	4.82	4.67

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life (Freshwater), summary table accessed October 16, 2017

B Water Licence S17L8-002 Amend (September 11, 2017)

D Minimum CCME guideline based on temperature and pH x 0.8224 mg/L total amm	0.5880	0.5880	0.5880	0.8553	0.8553	0.8553	0.8553	0.8553	0.5880	0.5880	0.5880	0.5880	1.8257
* Not aquatic habitat; CCME-FAL guidelines not applicable													

Table B5 - Silver Bear Mines: General Chemistry

		Site				Ν	IOREX AND (GRAHAM VEI	N				SMAL	LWOOD	
	San	nple Area			On-L	and Water			cent to Xeron and	Camsell	River		Smallw	ood Lake	
	S	ample ID	CCME Guidelines ^A	NX-1 *	NX-2 *	NX-3 *	NX-4A	NX-6	NX-DUP-1	NX-12	NX-13	SM-1	SM-2	SM-6-1M	SM-6-4M
	SNP S	ample ID				S17L8-002 (10E)				S17L8-002 (11F)					
PARAMETER	Lowest Detection Limit	Units		10-Sep-2017	10-Sep-2017	10-Sep-2017	10-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	10-Sep-2017	10-Sep-2017	10-Sep-2017	10-Sep-2017
Physical Tests															
Conductivity	2.0	uS/cm		363	441	508	158	53.0	49.9	152	155	119	112	113	114
Hardness (as CaCO3)	0.50	mg/L		165	206	313	81.8	21.7	22	70.8	65.2	56	54.8	53.5	56.6
pН	0.10	pН	Between 6.5 and 9.0	8.28	8.39	7.66	7.22	7.32	7.33	7.97	7.90	7.83	7.83	7.86	7.82
Total Suspended Solids	3.0	mg/L		<3.0	9.0	69.8	23.8	9.7	<3.0	<3.0	3.1	<3.0	3.2	<3.0	<3.0
Total Dissolved Solids	13	mg/L		223	290	397	333	44	64	92	94	76	70	75	83
Turbidity	0.10	NTU		3.39	0.30	23.4	5.15	1.02	1.14	0.42	0.37	0.61	0.50	0.57	0.52
Anions and Nutrients															
Alkalinity, Total (as CaCO3)	1.0	mg/L		174	157	77.4	51.3	21.4	21.0	58.6	56.4	42.4	42.6	43.1	42.8
Ammonia, Total (as N)	0.0050	mg/L	0.021-231 ^D	0.197	0.0283	0.285	0.0354	0.0090	0.0064	<0.0050	0.0073	<0.0050	0.0160	< 0.0050	<0.0050
Bromide (Br)	0.050	mg/L		<0.050	< 0.050	<0.050	<0.25	< 0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050
Chloride (CI)	0.50	mg/L	120	1.36	1.25	<0.50	<2.5	<0.50	<0.50	2.39	2.36	<0.50	<0.50	<0.50	<0.50
Fluoride (F)	0.020	mg/L	0.12	0.716	0.751	0.496	0.37	0.173	0.167	0.144	0.142	0.261	0.260	0.259	0.263
Nitrate (as N)	0.0050	mg/L	13	0.0055	0.304	<0.0050	<0.025	< 0.0050	<0.0050	< 0.0050	<0.0050	0.0073	<0.0050	< 0.0050	< 0.0050
Nitrite (as N)	0.0010	mg/L	0.06	<0.0010	<0.0010	<0.0010	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Phosphorus (P)-Total Dissolved	0.0020	mg/L		<0.0020	0.0196	0.0028	0.121	0.0077	0.0064	<0.0020	<0.0020	0.0026	0.0023	0.0025	0.0024
Phosphorus (P)-Total	0.0020	mg/L		<0.0020	0.302	0.113	0.184	0.0227	0.0261	0.0038	0.0039	0.0026	0.0084	0.0030	0.0022
Sulfate (SO4)	0.30	mg/L		29.2	84.5	186	21.6	2.16	2.15	14.8	14.4	17.7	13.2	13.1	15.0
Sulphide as S	0.018	mg/L		<0.018	<0.018	0.432	0.146	0.022	0.021	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon															
Dissolved Organic Carbon	0.50	mg/L		5.29	4.96	22.7	120	18.3	18.7	5.06	4.88	6.49	6.65	6.62	6.53
Total Organic Carbon	0.50	mg/L		5.51	21.7	27.3	116	19.5	19.4	4.94	4.78	6.62	6.81	6.64	6.68

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the P

B Water Licence S17L8-002 Amend (September 11, 2017)

D Minimum CCME guideline based on temperature and pH x 0.8224 mg/L total amm 3.9804 2.6810 8.4707 5.7404 8.4707 8.4707 0.5880 0.

Table B6 - Silver Bear Mines: Total Metals

		Site			REFERENCE						NOR	THRIM				
	Sam	ple Area		Re	eference Statio	ins	Herma	ndy Lake	Leacha	te Pond	Discharge Stream		Camsel	l River		On-Land Water
	S	ample ID	CCME Guidelines ^A	R-2	R-4	R-3	NO-11	NO-7	NO-2	NO-DUP-1	NO-4/NO-8	NO-5	NO-6	NO-25	NO-27	NO-1 *
	SNP S	ample ID						S17L8-002 (8C)					S17L8-002 (9D)			
PARAMETER	Lowest Detection Limit	Units		13-Sep-2017	12-Sep-2017	10-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017
Total Metals																
Aluminum (Al)-Total	0.0030	mg/L	0.005-0.100 ^F	0.0194	0.0234	0.0077	0.0164	0.0184	0.0058	0.0051	0.0051	0.0157	0.0262	0.0329	0.0254	0.0637
Antimony (Sb)-Total	0.00010	mg/L		<0.00010	<0.00010	<0.00010	0.00018	0.00019	0.00019	0.00018	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00016
Arsenic (As)-Total	0.00010	mg/L	0.005	0.00017	0.00020	0.00067	0.00606	0.00605	0.0132	0.0125	0.00958	0.00032	0.00027	0.00024	0.00019	0.00799
Barium (Ba)-Total	0.000050	mg/L		0.0106	0.0104	0.00565	0.00702	0.00725	0.00561	0.00536	0.00731	0.0107	0.0108	0.0106	0.0101	0.0102
Beryllium (Be)-Total	0.000020	mg/L		<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Bismuth (Bi)-Total	0.000050	mg/L		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000161
Boron (B)-Total	0.010	mg/L	1.5	0.012	0.011	0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.011	0.011	0.010	0.011	0.013
Cadmium (Cd)-Total	0.0000050	mg/L	0.00009-0.00037 ^G	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.0000107	<0.000050	<0.000050	<0.000050	<0.000050	0.0000572
Calcium (Ca)-Total	0.050	mg/L		16.3	15.7	9.57	20.8	21.3	23.1	22.9	34.5	16.2	16.1	15.8	15.6	16.7
Cesium (Cs)-Total	0.000010	mg/L		<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Chromium (Cr)-Total	0.00010	mg/L		0.00010	<0.00010	<0.00010	<0.00010	0.00013	0.00014	<0.00010	0.00017	<0.00010	0.00015	0.00013	<0.00010	0.00020
Cobalt (Co)-Total	0.00010	mg/L		<0.00010	<0.00010	<0.00010	0.00018	0.00019	0.00069	0.00065	0.00082	<0.00010	<0.00010	<0.00010	<0.00010	0.00178
Copper (Cu)-Total	0.00050	mg/L	0.002-0.004 ^H	0.00071	0.00077	0.00119	0.00259	0.00262	0.00210	0.00197	0.00677	0.00090	0.00090	0.00078	0.00075	0.00677
Iron (Fe)-Total	0.010	mg/L	0.3	0.019	0.022	0.012	0.045	0.046	0.096	0.089	0.071	0.015	0.030	0.032	0.023	0.104
Lead (Pb)-Total	0.000050	mg/L	0.001-0.007	<0.000050	<0.000050	<0.000050	0.000272	0.000297	0.00223	0.00218	0.000737	0.000311	0.000092	<0.000050	<0.000050	0.0120
Lithium (Li)-Total	0.0010	mg/L		0.0026	0.0026	0.0013	0.0016	0.0017	0.0017	0.0017	0.0013	0.0027	0.0027	0.0025	0.0026	0.0025
Magnesium (Mg)-Total	0.10	mg/L		7.10	6.97	2.73	4.58	4.71	4.84	4.43	7.36	7.19	6.99	6.75	6.58	7.05
Manganese (Mn)-Total	0.00010	mg/L		0.00106	0.00116	0.00113	0.0129	0.0127	0.0148	0.0132	0.0923	0.00093	0.00146	0.00183	0.00128	0.00569
Mercury (Hg)-Total	0.0000050	mg/L	0.000026	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050
Molybdenum (Mo)-Total	0.000050	mg/L	0.073	0.000269	0.000245	0.000221	0.000668	0.000717	0.000543	0.000555	0.00156	0.000276	0.000287	0.000271	0.000265	0.000423
Nickel (Ni)-Total	0.00050	mg/L	0.025-0.150	<0.00050	<0.00050	<0.00050	0.00086	0.00085	0.00103	0.00092	0.00157	<0.00050	0.00052	<0.00050	<0.00050	0.00186
Phosphorus (P)-Total	0.050	mg/L		<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Potassium (K)-Total	0.10	mg/L		0.97	0.92	0.72	0.61	0.63	0.75	0.69	1.34	0.94	0.94	0.90	0.89	0.97
Selenium (Se)-Total	0.000050	mg/L	0.001	<0.000050	<0.000050	<0.000050	<0.000050	0.000056	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Silicon (Si)-Total	0.10	mg/L		0.83	0.78	1.00	0.84	0.86	0.89	0.83	1.73	0.81	0.82	0.83	0.79	0.82
Silver (Ag)-Total	0.000010	mg/L	0.00025	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.000014	<0.000010	<0.000010	<0.000010	<0.000010	0.000065
Sodium (Na)-Total	0.050	mg/L		2.56	2.51	1.61	1.49	1.54	2.22	2.06	2.63	2.58	2.52	2.42	2.38	2.54
Strontium (Sr)-Total	0.00020	mg/L		0.0571	0.0553	0.0210	0.0259	0.0271	0.0268	0.0264	0.0406	0.0578	0.0567	0.0551	0.0546	0.0559
Sulfur (S)-Total	0.50	mg/L		5.41	4.71	0.95	3.09	3.06	3.10	2.92	<0.50	4.71	4.82	4.72	4.57	4.96
Thallium (TI)-Total	0.000010	mg/L	0.0008	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Tin (Sn)-Total	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Total	0.00030	mg/L		<0.00060	0.00086	<0.00030	<0.00030	0.00033	<0.00030	<0.00030	<0.00030	0.00040	0.00078	0.00120	0.00095	0.00195
Uranium (U)-Total	0.000010	mg/L	0.015	0.000486	0.000528	0.000162	0.000191	0.000200	0.000120	0.000111	0.000175	0.000559	0.000520	0.000521	0.000534	0.000654
Vanadium (V)-Total	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Zinc (Zn)-Total	0.0030	mg/L	0.03	<0.0030	<0.0030	<0.0030	0.0031	0.0057	0.0075	0.0060	0.0102	<0.0030	<0.0030	0.0045	0.0032	0.0276
Zirconium (Zr)-Total	0.00030	mg/L		<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	< 0.00030	<0.00030	<0.00030

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life (Freshwater), summary table accessed October 16, 2017

F Aluminum: 0.005 mg/L if pH 6.5; 0.1 mg/L if pH >= 6.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
G Cadmium caculated from hardness per CCME guidance, provided for each :	0.0001179	0.0001169	0.0000722	0.0001191	0.0001211	0.0001310	0.0001305	0.0001793	0.0001182	0.0001187	0.0001158	0.0001125	0.0001187
H Copper caculated from hardness per CCME guidance, provided for each sar	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0027	0.0020	0.0020	0.0020	0.0020	0.0020
I Lead caculated from hardness per CCME guidance, provided for each sample	0.00202	0.00199	0.00100	0.00205	0.00211	0.00238	0.00236	0.00384	0.00203	0.00204	0.00197	0.00188	0.00204
J Nickel caculated from hardness per CCME guidance, provided for each sam	0.07288	0.07233	0.02500	0.07359	0.07470	0.08028	0.07998	0.10699	0.07304	0.07336	0.07169	0.06986	0.07336
* Not aquatic habitat; CCME-FAL guidelines not applicable													

Table B6 - Silver Bear Mines: Total Metals

		Site				Ν	IOREX AND	GRAHAM VEI	N				SMALI	WOOD	
	San	nple Area			On-L	and Water		-	cent to Xeron	Camsell	River		Smallwo	ood Lake	
	S	ample ID	CCME Guidelines ^A	NX-1 *	NX-2 *	NX-3 *	NX-4A	NX-6	NX-DUP-1	NX-12	NX-13	SM-1	SM-2	SM-6-1M	SM-6-4M
	SNP S	ample ID				S17L8-002 (10E)				S17L8-002 (11F)					
PARAMETER	Lowest Detection Limit	Units		10-Sep-2017	10-Sep-2017	10-Sep-2017	10-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	10-Sep-2017	10-Sep-2017	10-Sep-2017	10-Sep-2017
Total Metals															
Aluminum (Al)-Total	0.0030	mg/L	0.005-0.100 ^F	0.0037	0.0055	0.0336	0.293	0.0561	0.0573	0.0269	0.0261	0.0143	0.0158	0.0181	0.0179
Antimony (Sb)-Total	0.00010	mg/L		0.00048	0.00100	0.00099	0.00060	<0.00010	<0.00010	<0.00010	<0.00010	0.00012	0.00016	0.00010	0.00011
Arsenic (As)-Total	0.00010	mg/L	0.005	0.0647	0.0520	0.0391	0.0133	0.00056	0.00058	0.00020	0.00022	0.00049	0.00054	0.00048	0.00057
Barium (Ba)-Total	0.000050	mg/L		0.0554	0.0334	0.0258	0.0164	0.00571	0.00578	0.0110	0.0114	0.00648	0.00711	0.00671	0.00780
Beryllium (Be)-Total	0.000020	mg/L		0.000021	<0.000020	<0.000020	0.000024	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Bismuth (Bi)-Total	0.000050	mg/L		0.000056	0.000112	0.000094	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000060	<0.000050	<0.000050
Boron (B)-Total	0.010	mg/L	1.5	0.089	0.083	0.055	0.041	<0.010	<0.010	0.011	0.011	0.010	0.011	0.011	0.011
Cadmium (Cd)-Total	0.0000050	mg/L	0.00009-0.00037 ^G	0.0000138	0.000882	0.000765	0.0000555	<0.0000050	<0.000050	<0.0000050	<0.0000050	0.000102	0.0000192	0.0000125	0.0000435
Calcium (Ca)-Total	0.050	mg/L		50.2	65.9	92.1	24.7	5.23	5.29	15.0	14.9	16.3	15.1	14.9	15.6
Cesium (Cs)-Total	0.000010	mg/L		0.000073	0.000101	0.000040	0.000031	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Chromium (Cr)-Total	0.00010	mg/L		<0.00010	0.00022	0.00037	0.00168	0.00018	0.00038	<0.00010	<0.00010	<0.00010	<0.00010	0.00011	<0.00010
Cobalt (Co)-Total	0.00010	mg/L		0.00117	0.0212	0.0554	0.00441	0.00022	0.00022	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00012
Copper (Cu)-Total	0.00050	mg/L	0.002-0.004 ^H	<0.00050	0.00988	0.00153	0.00351	<0.00050	<0.00050	0.00078	0.00079	0.00154	0.00168	0.00157	0.00174
Iron (Fe)-Total	0.010	mg/L	0.3	1.84	0.021	3.23	1.14	0.142	0.147	0.028	0.027	0.020	0.023	0.023	0.027
Lead (Pb)-Total	0.000050	mg/L	0.001-0.007	0.0156	0.00977	0.0367	0.00232	0.000160	0.000120	<0.000050	<0.000050	<0.000050	0.000062	<0.000050	0.000061
Lithium (Li)-Total	0.0010	mg/L		0.0110	0.0107	0.0069	0.0118	<0.0010	0.0010	0.0022	0.0022	0.0011	<0.0010	0.0011	0.0011
Magnesium (Mg)-Total	0.10	mg/L		9.62	10.1	10.9	4.87	2.10	2.13	6.59	6.79	4.09	4.13	3.96	4.31
Manganese (Mn)-Total	0.00010	mg/L		0.345	0.0632	1.39	0.0390	0.0168	0.0176	0.00131	0.00144	0.0105	0.0112	0.0111	0.0144
Mercury (Hg)-Total	0.0000050	mg/L	0.000026	<0.000050	<0.000050	<0.000050	<0.00010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050	< 0.0000050	<0.000050
Molybdenum (Mo)-Total	0.000050	mg/L	0.073	0.0140	0.0159	0.00511	0.00187	0.000056	0.000075	0.000247	0.000243	0.00110	0.00109	0.00107	0.00110
Nickel (Ni)-Total	0.00050	mg/L	0.025-0.150 ^J	0.00096	0.00913	0.0109	0.00377	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Phosphorus (P)-Total	0.050	mg/L		<0.050	<0.050	0.069	0.263	<0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050	< 0.050	<0.050
Potassium (K)-Total	0.10	mg/L		2.29	2.36	2.20	0.50	0.41	0.41	1.00	1.03	0.64	0.68	0.66	0.68
Selenium (Se)-Total	0.000050	mg/L	0.001	<0.000050	0.000314	0.000252	0.000231	0.000052	<0.000050	<0.000050	<0.000050	0.000064	0.000116	0.000073	0.000087
Silicon (Si)-Total	0.10	mg/L		4.61	4.34	4.42	3.97	1.91	1.93	0.85	0.86	0.62	0.58	0.57	0.58
Silver (Ag)-Total	0.000010	mg/L	0.00025	<0.000010	0.000016	0.000027	0.000022	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Sodium (Na)-Total	0.050	mg/L		14.5	13.5	6.01	16.5	2.18	2.26	2.53	2.57	2.52	2.62	2.51	2.71
Strontium (Sr)-Total	0.00020	mg/L		0.269	0.254	0.160	0.0841	0.0101	0.0103	0.0522	0.0514	0.0285	0.0272	0.0267	0.0275
Sulfur (S)-Total	0.50	mg/L		10.2	30.1	79.3	10.2	1.07	1.13	5.07	4.85	6.57	4.66	4.69	5.62
Thallium (TI)-Total	0.000010	mg/L	0.0008	<0.000010	0.000024	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.000054	<0.000010	<0.000010
Tin (Sn)-Total	0.00010	mg/L		<0.00010	<0.00010	<0.00010	0.00017	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Total	0.00030	mg/L		0.00042	<0.00030	0.00137	< 0.0063	0.00040	<0.00030	0.00077	<0.00090	<0.00030	<0.00030	<0.00030	<0.00030
Uranium (U)-Total	0.000010	mg/L	0.015	0.00982	0.00863	0.000921	0.00169	0.000074	0.000077	0.000505	0.000529	0.000321	0.000300	0.000305	0.000316
Vanadium (V)-Total	0.00050	mg/L		0.00074	<0.00050	0.00104	0.00063	< 0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	< 0.00050	<0.00050	<0.00050
Zinc (Zn)-Total	0.0030	mg/L	0.03	0.0162	0.636	1.25	0.0315	0.0039	0.0037	<0.0030	<0.0030	0.0827	0.0146	0.0170	0.0381
Zirconium (Zr)-Total	0.00030	mg/L		0.00081	<0.00030	0.00034	0.00113	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
A Canadian Council of Mir F Aluminum: 0.005 mg/L i G Cadmium caculated from	f pH 6.5; 0.1 mg/L if p	oH >= 6.5		0.1	0.1 0.0002887	0.1 0.0003700	0.1 0.0001341	0.1 0.0000446	0.1 0.0000451	0.1 0.0001190	0.1 0.0001111	0.1 0.0000979	0.1 0.0000962	0.1 0.0000943	0.1 0.0000988

G Cadmium caculated from hardness per CCME guidance, provided for each :	0.0002402	0.0002887	0.0003700	0.0001341	0.0000446	0.0000451	0.0001190	0.0001111	0.0000979	0.0000962	0.0000943	0.0000988
H Copper caculated from hardness per CCME guidance, provided for each sar	0.0036	0.0040	0.0040	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020
I Lead caculated from hardness per CCME guidance, provided for each sample	0.00602	0.00700	0.00700	0.00246	0.00100	0.00100	0.00205	0.00185	0.00100	0.00100	0.00100	0.00100
J Nickel caculated from hardness per CCME guidance, provided for each sam	0.13984	0.15000	0.15000	0.08204	0.02500	0.02500	0.07352	0.06905	0.02500	0.02500	0.02500	0.02500
* Not aquatic habitat; CCME-FAL guidelines not applicable												

Table B7 - Silver Bear Mines: Dissolved Metals

		Site				NORTHRIM			NOREX AND G	RAHAM VEIN	SMALLWOOD
	San	nple Area		Hermandy Lake	Leacha	te Pond	Camse	II River	On-Land Water	Camsell River	Smallwood Lake
	s	ample ID	CCME Guidelines ^A	NO-7	NO-2	NO-DUP-1	NO-6	NO-25	NX-3 *	NX-12	SM-1
	SNP S	ample ID		S17L8-002 (8C)			S17L8-002 (9D)		S17L8-002 (10E)	S17L8-002 (11F)	
PARAMETER	Lowest Detection Limit	Units		12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	10-Sep-2017	12-Sep-2017	10-Sep-2017
Dissolved Metals											
Aluminum (AI)-Dissolved	0.0010	mg/L	0.005-0.100 ^F	0.0101	0.0037	0.0054	0.0026	0.0026	0.0106	0.0031	0.0052
Antimony (Sb)-Dissolved	0.00010	mg/L		0.00018	0.00019	0.00019	<0.00010	<0.00010	0.00127	<0.00010	<0.00010
Arsenic (As)-Dissolved	0.00010	mg/L	0.005	0.00603	0.0127	0.0128	0.00026	0.00019	0.0117	0.00020	0.00045
Barium (Ba)-Dissolved	0.000050	mg/L		0.00743	0.00593	0.00619	0.0116	0.0113	0.0265	0.0115	0.00627
Beryllium (Be)-Dissolved	0.000020	mg/L		<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Bismuth (Bi)-Dissolved	0.000050	mg/L		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000085	<0.000050	<0.000050
Boron (B)-Dissolved	0.010	mg/L	1.5	<0.010	<0.010	<0.010	0.011	0.011	0.048	0.011	0.011
Cadmium (Cd)-Dissolved	0.0000050	mg/L	0.00009-0.00037 ^G	<0.000050	<0.000050	<0.000050	<0.0000050	<0.000050	0.000898	<0.000050	0.000072
Calcium (Ca)-Dissolved	0.050	mg/L		21.0	23.6	23.5	16.4	15.9	107.0	16.6	15.5
Cesium (Cs)-Dissolved	0.000010	mg/L		<0.000010	< 0.000010	<0.000010	<0.000010	<0.000010	0.000053	<0.000010	<0.000010
Chromium (Cr)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00020	<0.00010	<0.00010
Cobalt (Co)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.1260	<0.00010	<0.00010
Copper (Cu)-Dissolved	0.00020	mg/L	0.002-0.004 ^H	0.00239	0.00172	0.00174	0.00075	0.00063	0.00136	0.00063	0.00139
Iron (Fe)-Dissolved	0.010	mg/L	0.3	0.025	0.041	0.042	<0.010	<0.010	0.57	<0.010	<0.010
Lead (Pb)-Dissolved	0.000050	mg/L	0.001-0.007	0.000067	0.00061	0.00059	< 0.000050	<0.000050	0.0274	<0.000050	<0.000050
Lithium (Li)-Dissolved	0.0010	mg/L		0.0013	0.0014	0.0015	0.0025	0.0024	0.0082	0.0025	0.0015
Magnesium (Mg)-Dissolved	0.10	mg/L		4.83	4.98	4.99	7.19	7.03	11.4	7.15	4.17
Manganese (Mn)-Dissolved	0.00010	mg/L		0.0005	0.0003	0.0003	<0.00010	<0.00010	1.83	<0.00010	0.0001
Mercury (Hg)-Dissolved	0.0000050	mg/L	0.000026	<0.000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050
Molybdenum (Mo)-Dissolved	0.000050	mg/L	0.073	0.000639	0.000534	0.000532	0.000260	0.000254	0.00762	0.000238	0.00107
Nickel (Ni)-Dissolved	0.00050	mg/L	0.025-0.150 ^J	0.00069	0.00084	0.00086	<0.00050	<0.00050	0.0250	<0.00050	<0.00050
Phosphorus (P)-Dissolved	0.050	mg/L		<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Potassium (K)-Dissolved	0.10	mg/L		0.72	0.88	0.82	1.13	1.03	2.83	1.12	0.72
Selenium (Se)-Dissolved	0.000050	mg/L	0.001	<0.000050	0.000051	<0.000050	<0.000050	<0.000050	0.000459	<0.000050	0.000051
Silicon (Si)-Dissolved	0.050	mg/L		0.81	0.85	0.87	0.78	0.76	4.20	0.75	0.55
Silver (Ag)-Dissolved	0.000010	mg/L	0.00025	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.000022	<0.000010	<0.000010
Sodium (Na)-Dissolved	0.050	mg/L		1.61	2.31	2.34	2.67	2.59	5.06	2.62	2.68
Strontium (Sr)-Dissolved	0.00020	mg/L		0.0264	0.0272	0.0276	0.0580	0.0562	0.158	0.0590	0.0277
Sulfur (S)-Dissolved	0.50	mg/L		3.20	3.04	3.03	4.89	4.71	86.6	4.71	5.62
Thallium (TI)-Dissolved	0.000010	mg/L	0.0008	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.000017	<0.000010	<0.000010
Tin (Sn)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Dissolved	0.00030	mg/L		<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	0.00046	<0.00030	<0.00030
Uranium (U)-Dissolved	0.000010	mg/L	0.015	0.000192	0.000113	0.000113	0.000549	0.000543	0.000844	0.000564	0.000305
Vanadium (V)-Dissolved	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Zinc (Zn)-Dissolved	0.0010	mg/L	0.03	0.0013	0.0036	0.0039	<0.0010	<0.0010	3.07	<0.0010	0.0612
Zirconium (Zr)-Dissolved	0.00030	mg/L		<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life (Freshwater), summary table accessed October 16, 2017

F Aluminum: 0.005 mg/L if pH 6.5; 0.1 mg/L if pH >= 6.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
G Cadmium caculated from hardness per CCME guidance, provided for ea	ach sample. 0.0001211	0.0001310	0.0001305	0.0001187	0.0001158	0.0003700	0.0001190	0.0000979
H Copper caculated from hardness per CCME guidance, provided for each	h sample 0.0020	0.0020	0.0020	0.0020	0.0020	0.0040	0.0020	0.0020
I Lead caculated from hardness per CCME guidance, provided for each sa	ample 0.0021	0.0024	0.0024	0.0020	0.0020	0.0070	0.0020	0.0010
J Nickel caculated from hardness per CCME guidance, provided for each s	sample 0.0747	0.0803	0.0800	0.0734	0.0717	0.1500	0.0735	0.0250
* Not equatio habitat: COME EAL quidelines not applicable								

* Not aquatic habitat; CCME-FAL guidelines not applicable

Table B8 - Silver Bear Mines: Hydrocarbons

	San	nple Area		Hermandy Lake	Leacha	te Pond	Discharge Stream	Cams	ell River	On-Land Water	On-La	and Water	Camsell	River	Smallw	rood Lake
	s	ample ID	ССМЕ	NO-7	NO-2	NO-DUP-1	NO-4/NO-8	NO-5	NO-6	NO-1 *	NX-2 *	NX-3 *	NX-12	NX-13	SM-1	SM-2
	SNP S	ample ID	Guidelines ^A	S17L8-002 (8C)					S17L8-002 (9D)			S17L8-002 (10E)	S17L8-002 (11F)			
PARAMETER	Lowest Detection Limit	Units		12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	10-Sep-2017	10-Sep-2017	12-Sep-2017	12-Sep-2017	10-Sep-2017	10-Sep-2017
Volatile Organic Compounds																
Benzene	0.00050	mg/L	0.37	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050
Ethylbenzene	0.00050	mg/L	0.9	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Methyl t-butyl ether (MTBE)	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Styrene	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050
Toluene	0.00045	mg/L	0.002	<0.00045	<0.00045	<0.00045	<0.00045	<0.00045	<0.00045	<0.00045	<0.00045	<0.00045	<0.00045	<0.00045	<0.00045	<0.00045
Xylenes	0.00075	mg/L		<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
F1 (C6-C10)	0.10	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.30	<0.10	<0.10	<0.10	<0.10
Hydrocarbons																
F1-BTEX	0.10	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.30	<0.10	<0.10	<0.10	<0.10
F2 (C10-C16)	0.30	mg/L		<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	< 0.30	< 0.30	0.7 ^L	<0.30	<0.30	<0.30	<0.30
F3 (C16-C34)	0.30	mg/L		<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	< 0.30	<0.3 ^L	<0.30	<0.30	<0.30	<0.30
F4 (C34-C50)	0.30	mg/L		<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	< 0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Aggregate Organics																
Oil and Grease			5													

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life (Freshwater), summary table accessed October 16, 2017

L Silica gel cleanup applied due to organic constituents

* Not aquatic habitat; CCME-FAL guidelines not applicable

Table B9 - Contact Lake Mine: General Chemistry

		Referenc	Reference Stations		d Water	Tailings Pond			Stream			
	CCME	CL-RL-1B	CL-8	CL-2 *	CL-15 *	CL-3	CL-DUP-2	CL-29	CL-2B	CL-DUP-1		
SNP Sample ID			Guidelines ^A					S17L8-002 (12G)				
PARAMETER	Lowest Detection Limit	Units		10-Sep-2017	10-Sep-2017	9-Sep-2017	9-Sep-2017	10-Sep-2017	10-Sep-2017	10-Sep-2017	9-Sep-2017	9-Sep-2017
Physical Tests												
Conductivity	2.0	uS/cm		64.5	43.6	213	244	238	238	239	223	221
Hardness (as CaCO3)	0.50	mg/L		30.1	20.2	106	125	128	128	122	122	126
рН	0.10	pН	Between 6.5 and 9.0	7.69	7.56	8.17	8.28	8.25	8.26	8.26	8.19	8.19
Total Suspended Solids	3.0	mg/L		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	3.1	<3.0
Total Dissolved Solids	13	mg/L		42	28	132	144	150	151	165	144	142
Turbidity	0.10	NTU		0.23	0.27	1.26	0.16	0.45	0.40	0.41	0.35	0.31
Anions and Nutrients												
Alkalinity, Total (as CaCO3)	1.0	mg/L		30.3	22.8	105	129	134	133	130	123	122
Ammonia, Total (as N)	0.0050	mg/L	0.021-231 ^D	0.0098	<0.0050	0.0073	<0.0050	0.0119	0.0137	0.0163	0.0092	0.0076
Bromide (Br)	0.050	mg/L		< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050
Chloride (CI)	0.50	mg/L	120	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Fluoride (F)	0.020	mg/L	0.12	0.209	0.097	0.300	0.339	0.297	0.295	0.299	0.262	0.262
Nitrate (as N)	0.0050	mg/L	13	0.172	0.0311	0.103	<0.0050	<0.0050	<0.0050	<0.0050	0.0296	0.0304
Nitrite (as N)	0.0010	mg/L	0.06	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Phosphorus (P)-Total Dissolved	0.0020	mg/L		0.0021	<0.0020	0.0075	0.0029	0.0032	0.0031	0.0029	0.0023	0.0024
Phosphorus (P)-Total	0.0020	mg/L		0.0022	<0.0020	0.0053	0.0150	0.0024	0.0029	0.0028	<0.0020	<0.0020
Sulfate (SO4)	0.30	mg/L		1.84	1.09	14.7	8.97	6.28	6.27	6.29	5.88	5.88
Sulphide as S	0.018	mg/L		<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon												
Dissolved Organic Carbon	0.50	mg/L		4.40	2.23	5.58	4.71	9.17	8.84	8.91	7.64	8.02
Total Organic Carbon	0.50	mg/L		4.55	2.12	5.45	5.16	8.98	9.02	9.16	7.80	8.34

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life (Freshwater), summary table accessed October 16, 2017

B Water Licence S17L8-002 Amend (September 11, 2017)

D Minimum CCME guideline based on temperature and pH x 0.8224 mg/L total amm 0.5880 0.5880 8.4707 0.8553 1.8257 1.8257 1.8257 0.8553 0.8553 * Not aquatic habitat; CCME-FAL guidelines not applicable

Table B9 - Contact Lake Mine: General Chemistry

	San	nple Area		Contact Lake						Echo Bay - East Arm Great Bear Lake				
Sample ID				CL-5	CL-26	CL-6-2M	CL-6-10M	CL-9	CL-24	CL-7-1M	CL-20	CL-16-2M	CL-16-10M	
			Guidelines ^A		S17L8-002 (13H)									
PARAMETER	Lowest Detection Limit	Units		9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	10-Sep-2017	10-Sep-2017	10-Sep-2017	10-Sep-2017	
Physical Tests														
Conductivity	2.0	uS/cm		47.4	48.0	44.9	43.7	47.4	44.3	155	157	157	155	
Hardness (as CaCO3)	0.50	mg/L		24.5	22.9	22.3	21.8	22.9	20.3	74.6	68.4	68.6	69.3	
рН	0.10	pН	Between 6.5 and 9.0	7.60	7.23	7.55	7.56	7.61	7.58	7.99	8.00	7.99	7.99	
Total Suspended Solids	3.0	mg/L		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	
Total Dissolved Solids	13	mg/L		31	28	23	27	29	26	88	90	100	92	
Turbidity	0.10	NTU		0.31	0.24	0.26	0.25	0.28	0.31	0.28	0.38	0.29	0.30	
Anions and Nutrients														
Alkalinity, Total (as CaCO3)	1.0	mg/L		24.2	24.3	23.1	22.7	24.6	22.7	59.7	60.4	61.2	60.3	
Ammonia, Total (as N)	0.0050	mg/L	0.021-231 ^D	<0.0050	<0.0050	< 0.0050	< 0.0050	0.0078	0.0066	< 0.0050	<0.0050	0.0067	<0.0050	
Bromide (Br)	0.050	mg/L		< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Chloride (CI)	0.50	mg/L	120	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	4.83	4.82	4.83	4.83	
Fluoride (F)	0.020	mg/L	0.12	0.098	0.097	0.097	0.094	0.099	0.096	0.080	0.080	0.080	0.079	
Nitrate (as N)	0.0050	mg/L	13	0.0267	0.0272	0.0278	0.0471	0.0271	0.0269	0.125	0.125	0.126	0.136	
Nitrite (as N)	0.0010	mg/L	0.06	<0.0010	0.0011	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Phosphorus (P)-Total Dissolved	0.0020	mg/L		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	
Phosphorus (P)-Total	0.0020	mg/L		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0022	
Sulfate (SO4)	0.30	mg/L		1.15	1.08	1.08	1.09	1.43	1.09	14.9	14.9	14.9	14.9	
Sulphide as S	0.018	mg/L		<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	
Organic / Inorganic Carbon														
Dissolved Organic Carbon	0.50	mg/L		2.24	2.23	2.28	2.16	2.20	2.30	1.96	1.96	1.86	2.15	
Total Organic Carbon	0.50	mg/L		2.64	2.65	2.51	2.26	2.46	2.33	2.02	1.93	2.47	2.09	

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the P

B Water Licence S17L8-002 Amend (September 11, 2017)

D Minimum CCME guideline based on temperature and pH x 0.8224 mg/L total amr 0.5880 0.5880 0.5880 0.5880 0.5880 0.5880 0.5880 0.5880 0.2821 0.2821 0.2821 0.2821 0.2821 * Not aquatic habitat; CCME-FAL guidelines not applicable

Table B10 - Contact Lake Mine: Total Metals

	Sample Area			Referenc	e Stations	On-Lan	d Water	Т	ailings Pond	Stream		
Sample ID SNP Sample ID			CCME	CL-RL-1B	CL-8	CL-2 *	CL-15 *	CL-3	CL-DUP-2	CL-29	CL-2B	CL-DUP-1
			Guidelines ^A					S17L8-002 (12G)				
PARAMETER	Lowest Detection Limit	Units		10-Sep-2017	10-Sep-2017	9-Sep-2017	9-Sep-2017	10-Sep-2017	10-Sep-2017	10-Sep-2017	9-Sep-2017	9-Sep-2017
Total Metals												
Aluminum (AI)-Total	0.0030	mg/L	0.005-0.100 F	0.0090	0.0030	0.0199	0.0048	0.0033	0.0038	0.0032	0.0061	0.0059
Antimony (Sb)-Total	0.00010	mg/L		<0.00010	<0.00010	0.00356	0.00159	0.00047	0.00048	0.00049	0.00027	0.00028
Arsenic (As)-Total	0.00010	mg/L	0.005	0.00017	0.00015	0.0956	0.0424	0.0115	0.0115	0.0113	0.00958	0.00966
Barium (Ba)-Total	0.000050	mg/L		0.00492	0.00365	0.0537	0.0117	0.0284	0.0279	0.0281	0.0187	0.0188
Beryllium (Be)-Total	0.000020	mg/L		<0.000020	<0.000020	<0.000020	< 0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Bismuth (Bi)-Total	0.000050	mg/L		<0.000050	<0.000050	0.00159	0.000131	<0.000050	< 0.000050	<0.000050	<0.000050	<0.000050
Boron (B)-Total	0.010	mg/L	1.5	<0.010	<0.010	0.051	0.038	0.034	0.035	0.036	0.027	0.028
Cadmium (Cd)-Total	0.0000050	mg/L	0.00009-0.00037 ^G	<0.000050	< 0.0000050	0.0000066	< 0.0000050	<0.000050	<0.000050	<0.000050	< 0.000050	< 0.0000050
Calcium (Ca)-Total	0.050	mg/L		7.00	4.79	29.2	33.3	30.6	30.7	30.8	28.9	28.2
Cesium (Cs)-Total	0.000010	mg/L		<0.000010	<0.000010	0.000023	0.000013	0.000013	0.000014	0.000013	<0.000010	<0.000010
Chromium (Cr)-Total	0.00010	mg/L		<0.00010	<0.00010	<0.00010	0.00012	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Cobalt (Co)-Total	0.00010	mg/L		<0.00010	<0.00010	0.00230	<0.00010	0.00012	0.00011	0.00012	0.00024	0.00025
Copper (Cu)-Total	0.00050	mg/L	0.002-0.004 ^H	0.00149	0.00072	0.122	0.0431	0.00813	0.00796	0.00765	0.00575	0.00520
Iron (Fe)-Total	0.010	mg/L	0.3	<0.010	<0.010	0.168	<0.010	0.041	0.041	0.031	0.036	0.036
Lead (Pb)-Total	0.000050	mg/L	0.001-0.007	< 0.000050	<0.000050	0.000685	<0.000050	<0.000050	< 0.000050	<0.000050	<0.000050	<0.000050
Lithium (Li)-Total	0.0010	mg/L		<0.0010	<0.0010	0.0043	0.0028	0.0031	0.0032	0.0032	0.0029	0.0029
Magnesium (Mg)-Total	0.10	mg/L		3.07	2.01	7.94	10.1	10.9	10.6	10.9	10.4	10.0
Manganese (Mn)-Total	0.00010	mg/L		0.00052	0.00086	0.0136	0.00303	0.0973	0.0970	0.0940	0.0885	0.100
Mercury (Hg)-Total	0.0000050	mg/L	0.000026	<0.0000050	<0.000050	0.000700	0.000355	<0.000050	<0.000050	<0.000050	< 0.000050	0.0000050
Molybdenum (Mo)-Total	0.000050	mg/L	0.073	0.000370	0.000166	0.00298	0.00114	0.000435	0.000402	0.000403	0.000435	0.000426
Nickel (Ni)-Total	0.00050	mg/L	0.025-0.150	<0.00050	<0.00050	0.0124	0.00196	0.00125	0.00125	0.00122	0.00104	0.00114
Phosphorus (P)-Total	0.050	mg/L		<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050
Potassium (K)-Total	0.10	mg/L		0.57	0.48	2.32	1.87	1.55	1.55	1.55	1.38	1.36
Selenium (Se)-Total	0.000050	mg/L	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050	<0.000050	<0.000050	<0.000050
Silicon (Si)-Total	0.10	mg/L		0.91	0.32	2.82	3.53	2.29	2.31	2.32	2.46	2.35
Silver (Ag)-Total	0.000010	mg/L	0.00025	<0.000010	<0.000010	0.00424	0.000289	0.000035	0.000040	0.000026	0.000031	0.000024
Sodium (Na)-Total	0.050	mg/L		1.36	0.890	4.36	4.45	4.84	4.77	4.80	4.72	4.55
Strontium (Sr)-Total	0.00020	mg/L		0.0155	0.0102	0.110	0.0805	0.0782	0.0783	0.0793	0.0703	0.0687
Sulfur (S)-Total	0.50	mg/L		0.79	<0.50	5.98	3.37	2.52	2.52	2.45	2.41	2.27
Thallium (TI)-Total	0.000010	mg/L	0.0008	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Tin (Sn)-Total	0.00010	mg/L		<0.00010	<0.00010	0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Total	0.00030	mg/L		<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Uranium (U)-Total	0.000010	mg/L	0.015	0.00128	0.000155	0.187	0.137	0.0490	0.0482	0.0494	0.0480	0.0472
Vanadium (V)-Total	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Zinc (Zn)-Total	0.0030	mg/L	0.03	<0.0030	<0.0030	0.0048	<0.0030	<0.0030	0.0055	<0.0030	<0.0030	0.0036
Zirconium (Zr)-Total	0.00030	mg/L		<0.00030	<0.00030	<0.00030	< 0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life (Freshwater), summary table accessed October 16, 2017

F Aluminum: 0.005 mg/L if pH 6.5; 0.1 mg/L if pH >= 6.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
G Cadmium caculated from hardness per CCME guidance, provided for each :	0.0000585	0.0000420	0.0001663	0.0001907	0.0001945	0.0001945	0.0001869	0.0001869	0.0001920	
H Copper caculated from hardness per CCME guidance, provided for each sar	0.0020	0.0020	0.0025	0.0029	0.0029	0.0029	0.0028	0.0028	0.0029	
I Lead caculated from hardness per CCME guidance, provided for each sample	0.00100	0.00100	0.00343	0.00423	0.00436	0.00436	0.00410	0.00410	0.00427	
J Nickel caculated from hardness per CCME guidance, provided for each sam	0.02500	0.02500	0.09990	0.11324	0.11530	0.11530	0.11117	0.11117	0.11393	
* Not aquatic habitat; CCME-FAL guidelines not applicable										

Table B10 - Contact Lake Mine: Total Metals

	San	nple Area				Contact	Lake			Ech	o Bay - East A	ay - East Arm Great Bear Lake		
	S	ample ID		CL-5	CL-26	CL-6-2M	CL-6-10M	CL-9	CL-24	CL-7-1M	CL-20	CL-16-2M	CL-16-10N	
	SNP S	ample ID	Guidelines ^A		S17L8-002 (13H)									
PARAMETER	Lowest Detection Limit	Units		9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	10-Sep-2017	10-Sep-2017	10-Sep-2017	10-Sep-201	
Total Metals	Dottootton Lint													
Aluminum (AI)-Total	0.0030	mg/L	0.005-0.100 ^F	0.0053	0.0033	0.0042	0.0031	0.0040	0.0054	0.0127	0.0141	0.0131	0.0102	
Antimony (Sb)-Total	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	< 0.00010	<0.00010	
Arsenic (As)-Total	0.00010	mg/L	0.005	0.00025	0.00015	0.00014	0.00014	0.00014	0.00014	0.00024	0.00020	0.00019	0.00018	
Barium (Ba)-Total	0.000050	mg/L		0.00403	0.00354	0.00357	0.00359	0.00369	0.00344	0.0219	0.0217	0.0217	0.0218	
Beryllium (Be)-Total	0.000020	mg/L		<0.000020	<0.000020	<0.000020	<0.000020	< 0.000020	<0.000020	<0.000020	<0.000020	<0.000020	< 0.000020	
Bismuth (Bi)-Total	0.000050	mg/L		< 0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	
Boron (B)-Total	0.010	mg/L	1.5	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	0.010	0.010	0.011	
Cadmium (Cd)-Total	0.0000050	mg/L	0.00009-0.00037 ^G	<0.0000050	<0.000050	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.000050	< 0.0000050	<0.0000050	< 0.0000050	
Calcium (Ca)-Total	0.050	mg/L		5.37	4.85	4.81	4.82	5.40	4.78	16.0	15.9	16.0	16.4	
Cesium (Cs)-Total	0.000010	mg/L		<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	< 0.000010	
Chromium (Cr)-Total	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00011	
Cobalt (Co)-Total	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	
Copper (Cu)-Total	0.00050	mg/L	0.002-0.004 ^H	0.00079	0.00069	0.00076	0.00068	0.00071	0.00073	<0.00050	<0.00050	<0.00050	<0.00050	
Iron (Fe)-Total	0.010	mg/L	0.3	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.014	0.015	0.013	0.011	
Lead (Pb)-Total	0.000050	mg/L	0.001-0.007	<0.000050	<0.000050	<0.000050	< 0.000050	<0.000050	<0.000050	0.000050	<0.000050	<0.000050	<0.000050	
Lithium (Li)-Total	0.0010	mg/L		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0031	0.0031	0.0032	0.0032	
Magnesium (Mg)-Total	0.10	mg/L		2.19	2.01	1.99	2.02	2.28	2.02	6.99	7.00	6.95	6.87	
Manganese (Mn)-Total	0.00010	mg/L		0.00372	0.00102	0.00112	0.00082	0.00143	0.00159	0.00109	0.00105	0.00101	0.00080	
Mercury (Hg)-Total	0.0000050	mg/L	0.000026	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	< 0.000050	<0.000050	<0.000050	<0.000005	
Molybdenum (Mo)-Total	0.000050	mg/L	0.073	0.000186	0.000170	0.000182	0.000168	0.000194	0.000160	0.000315	0.000308	0.000323	0.000329	
Nickel (Ni)-Total	0.00050	mg/L	0.025-0.150	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	
Phosphorus (P)-Total	0.050	mg/L		<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050	
Potassium (K)-Total	0.10	mg/L		0.50	0.49	0.47	0.48	0.49	0.48	0.72	0.72	0.73	0.71	
Selenium (Se)-Total	0.000050	mg/L	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050	
Silicon (Si)-Total	0.10	mg/L		0.37	0.31	0.32	0.34	0.38	0.32	1.16	1.17	1.17	1.16	
Silver (Ag)-Total	0.000010	mg/L	0.00025	0.000033	<0.000010	<0.000010	<0.000010	0.000011	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	
Sodium (Na)-Total	0.050	mg/L		0.981	0.910	0.887	0.907	0.966	0.893	3.97	3.97	4.00	3.90	
Strontium (Sr)-Total	0.00020	mg/L		0.0112	0.0100	0.0103	0.0101	0.0113	0.0101	0.101	0.100	0.102	0.104	
Sulfur (S)-Total	0.50	mg/L		0.60	0.53	0.54	<0.50	0.58	<0.50	5.32	5.31	5.12	5.29	
Thallium (TI)-Total	0.000010	mg/L	0.0008	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	
Tin (Sn)-Total	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	
Titanium (Ti)-Total	0.00030	mg/L		<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00060	<0.00060	<0.00030	
Uranium (U)-Total	0.000010	mg/L	0.015	0.000639	0.000151	0.000176	0.000150	0.000191	0.000165	0.000292	0.000280	0.000279	0.000293	
Vanadium (V)-Total	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	
Zinc (Zn)-Total	0.0030	mg/L	0.03	< 0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	< 0.0030	<0.0030	
Zirconium (Zr)-Total	0.00030	mg/L		< 0.00030	<0.00030	<0.00030	< 0.00030	<0.00030	<0.00030	< 0.00030	<0.00030	< 0.00030	<0.00030	

F Aluminum: 0.005 mg/L if pH 6.5; 0.1 mg/L if pH >= 6.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
G Cadmium caculated from hardness per CCME guidance, provided for each :	0.0000493	0.0000466	0.0000456	0.0000448	0.0000466	0.0000422	0.0001243	0.0001156	0.0001159	0.0001169
H Copper caculated from hardness per CCME guidance, provided for each sar	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020
I Lead caculated from hardness per CCME guidance, provided for each sample	0.00100	0.00100	0.00100	0.00100	0.00100	0.00100	0.00219	0.00196	0.00197	0.00199
J Nickel caculated from hardness per CCME guidance, provided for each sam	0.02500	0.02500	0.02500	0.02500	0.02500	0.02500	0.07650	0.07161	0.07177	0.07233
* Not aquatic habitat; CCME-FAL guidelines not applicable										

Table B11 - Contact Lake Mine: Dissolved Metals

	San	nple Area		Tailing	gs Pond	Str	eam		Contac	ct Lake		Echo Bay - East Arm Great Bear Lake
	s	Sample ID	CCME	CL-3	CL-DUP-2	CL-2B	CL-DUP-1	CL-5	CL-26	CL-6-2M	CL-6-10M	CL-7-1M
	SNP S	Sample ID	Guidelines ^A	S17L8-002 (12G)	S17L8-002 (12G)				S17L8-002 (13H)			
PARAMETER	Lowest Detection Limit	Units		10-Sep-2017	10-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	10-Sep-2017
Dissolved Metals												
Aluminum (AI)-Dissolved	0.0010	mg/L	0.005-0.100 F	0.0018	0.0019	0.0023	0.0027	0.0016	0.0013	0.0014	<0.0010	0.0012
Antimony (Sb)-Dissolved	0.00010	mg/L		0.00047	0.00047	0.00025	0.00026	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Arsenic (As)-Dissolved	0.00010	mg/L	0.005	0.0106	0.0109	0.00914	0.00935	0.00024	0.00016	0.00015	0.00012	0.00021
Barium (Ba)-Dissolved	0.000050	mg/L		0.0274	0.0275	0.0182	0.0185	0.00414	0.00366	0.00369	0.00362	0.0227
Beryllium (Be)-Dissolved	0.000020	mg/L		<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Bismuth (Bi)-Dissolved	0.000050	mg/L		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050	<0.000050	<0.000050
Boron (B)-Dissolved	0.010	mg/L	1.5	0.035	0.035	0.027	0.029	<0.010	<0.010	<0.010	<0.010	<0.010
Cadmium (Cd)-Dissolved	0.0000050	mg/L	0.00009-0.00037 ^G	< 0.0000050	< 0.000050	<0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	<0.0000050	< 0.0000050	<0.000050
Calcium (Ca)-Dissolved	0.050	mg/L		32.5	32.2	30.3	31.4	5.80	5.35	5.27	5.15	17.4
Cesium (Cs)-Dissolved	0.000010	mg/L		0.000014	0.000014	<0.000010	< 0.000010	< 0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Chromium (Cr)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	< 0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Cobalt (Co)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	< 0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Copper (Cu)-Dissolved	0.00020	mg/L	0.002-0.004 ^H	0.00651	0.00669	0.00479	0.00494	0.00065	0.00060	0.00058	0.00053	0.00032
Iron (Fe)-Dissolved	0.010	mg/L	0.3	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead (Pb)-Dissolved	0.000050	mg/L	0.001-0.0071	< 0.000050	<0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	<0.000050	<0.000050
Lithium (Li)-Dissolved	0.0010	mg/L		0.0031	0.0031	0.0027	0.0029	< 0.0010	<0.0010	<0.0010	< 0.0010	0.0031
Magnesium (Mg)-Dissolved	0.10	mg/L		11.3	11.4	11.4	11.6	2.44	2.31	2.22	2.16	7.59
Manganese (Mn)-Dissolved	0.00010	mg/L		0.0001	<0.00010	<0.00010	<0.00010	< 0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Mercury (Hg)-Dissolved	0.0000050	mg/L	0.000026	<0.000050	< 0.000050	<0.0000050	<0.000050	< 0.0000050	< 0.0000050	<0.0000050	< 0.0000050	<0.000050
Molybdenum (Mo)-Dissolved	0.000050	mg/L	0.073	0.000388	0.000371	0.000422	0.000397	0.000146	0.000144	0.000136	0.000126	0.000288
Nickel (Ni)-Dissolved	0.00050	mg/L	0.025-0.150	0.00081	0.00077	0.00074	0.00072	< 0.00050	< 0.00050	<0.00050	< 0.00050	<0.00050
Phosphorus (P)-Dissolved	0.050	mg/L		< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	<0.050
Potassium (K)-Dissolved	0.10	mg/L		1.63	1.65	1.49	1.55	0.54	0.53	0.52	0.51	0.78
Selenium (Se)-Dissolved	0.000050	mg/L	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Silicon (Si)-Dissolved	0.050	mg/L		2.31	2.23	2.38	2.45	0.34	0.30	0.29	0.32	1.13
Silver (Ag)-Dissolved	0.000010	mg/L	0.00025	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Sodium (Na)-Dissolved	0.050	mg/L		5.12	5.26	5.14	5.23	1.070	0.994	0.977	0.953	4.38
Strontium (Sr)-Dissolved	0.00020	mg/L		0.0789	0.0797	0.0716	0.0723	0.0121	0.0106	0.0107	0.0104	0.104
Sulfur (S)-Dissolved	0.50	mg/L		2.21	2.18	2.06	1.96	< 0.50	<0.50	<0.50	< 0.50	4.91
Thallium (TI)-Dissolved	0.000010	mg/L	0.0008	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Tin (Sn)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Dissolved	0.00030	mg/L		<0.00030	<0.00030	<0.00030	<0.00030	< 0.00030	<0.00030	< 0.00030	< 0.00030	<0.00030
Uranium (U)-Dissolved	0.000010	mg/L	0.015	0.0500	0.0501	0.0477	0.0503	0.000606	0.000138	0.000210	0.000140	0.000299
Vanadium (V)-Dissolved	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	< 0.00050	<0.00050
Zinc (Zn)-Dissolved	0.0010	mg/L	0.03	<0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	<0.0010	0.0014	< 0.0010	<0.0010
Zirconium (Zr)-Dissolved	0.00030	mg/L		<0.00030	< 0.00030	<0.00030	<0.00030	< 0.00030	< 0.00030	<0.00030	< 0.00030	<0.00030

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life (Freshwater), summary table accessed October 16, 2017

B Water Licence S17L8-002 Amend (September 11, 2017)

C Site-Specific Target Level for Arsenic in Surface Waters Associated with the Terra Mine Wetland (SENES Consultants Ltd. 2014)

F Aluminum: 0.005 mg/L if pH 6.5; 0.1 mg/L if pH >= 6.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
G Cadmium caculated from hardness per CCME guidance, provided for each sample.	0.0001945	0.0001945	0.0001869	0.0001920	0.0000493	0.0000466	0.0000456	0.0000448	0.0001243
H Copper caculated from hardness per CCME guidance, provided for each sample	0.0029	0.0029	0.0028	0.0029	0.0020	0.0020	0.0020	0.0020	0.0020
I Lead caculated from hardness per CCME guidance, provided for each sample	0.0044	0.0044	0.0041	0.0043	0.0010	0.0010	0.0010	0.0010	0.0022
J Nickel caculated from hardness per CCME guidance, provided for each sample	0.1153	0.1153	0.1112	0.1139	0.0250	0.0250	0.0250	0.0250	0.0765

Table B12 -	Contact	Lake Mine:	Hydrocarbons
-------------	---------	------------	--------------

	San	nple Area		Reference Stations	Tailing	s Pond	Contact Lake		Arm Great Bear ke
	S	ample ID	CCME	CL-RL-1B	CL-3	CL-DUP-2	CL-26	CL-7-1M	CL-16-10M
	SNP S	ample ID	Guidelines ^A		S17L8-002 (12G)		S17L8-002 (13H)		
PARAMETER	Detection Limit			10-Sep-2017	10-Sep-2017	10-Sep-2017	9-Sep-2017	10-Sep-2017	10-Sep-2017
Volatile Organic Compounds									
Benzene	0.00050	mg/L	0.37	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Ethylbenzene	0.00050	mg/L	0.9	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Methyl t-butyl ether (MTBE)	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Styrene	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Toluene	0.00045	mg/L	0.002	<0.00045	<0.00045	<0.00045	<0.00045	<0.00045	<0.00045
Xylenes	0.00075	mg/L		<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
F1 (C6-C10)	0.10	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Hydrocarbons									
F1-BTEX	0.10	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
F2 (C10-C16)	0.30	mg/L		<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
F3 (C16-C34)	0.30	mg/L		<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
F4 (C34-C50)	0.30	mg/L		<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Aggregate Organics									
Oil and Grease			5						

Table B13 - Contact Lake Mine: Radionuclides

	Sam	ple Area		Reference	e Stations	On-Lan	d Water	Tailings	Pond	Str	eam		Contact	Lake		Echo Bay - East Arm Great Bear Lake
	Sample I		Candian Drinking Water Quality	CL-RL-1B	CL-8	CL-2	CL-15	CL-3	CL-DUP-2	CL-2B	CL-DUP-1	CL-5	CL-26	CL-6-2M	CL-6-10M	CL-7-1M
SNP Sample II		ample ID	Guidelines ^A					S17L8-002 (12G)	517L8-002 (12G	i)			S17L8-002 (13H)			
PARAMETER	Lowest Detection Limit	Units		10-Sep-2017	10-Sep-2017	9-Sep-2017	9-Sep-2017	10-Sep-2017	10-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	10-Sep-2017
Radiological Parameters																
Pb-210	0.023	Bq/L	0.2	<0.023	<0.026	0.35	<0.028	<0.026	<0.025	<0.025	<0.027	<0.024	<0.023	<0.024	<0.024	<0.031
Ra-226	0.0056	Bq/L	0.5	0.0052	<0.0063	0.29	0.049	0.077	0.086	0.03	0.029	<0.0073	<0.0076	<0.0068	<0.0060	<0.0080

A CCME guidelines not developed. Applied Canadian Drinking Water Guidelines for Radiological Parameters.

Table B14 - El Bonanza Mine: General Chemistry

	Sample Area Sample ID		Referenc	e Stations		Sil	ver Lake		Stream	Mile	Lake		Great Bear Lak	æ	
	S	ample ID	ССМЕ	CL-RL-1B	CL-8	ELB-7-SL	ELB-6-SL	ELB-8-SL	ELB-DUP-1	ELB-SW-2	ELB-10-ML	ELB-4-ML	ELB-1G-GBL	ELB-2G-GBL	ELB-9-GLB
	SNP S	ample ID	Guidelines ^A												
PARAMETER	Lowest Detection Limit	Units		10-Sep-2017	10-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017							
Physical Tests															
Conductivity	2.0	uS/cm		64.5	43.6	64.2	63.3	63.5	64.0	62.8	63.2	59.2	158	157	158
Hardness (as CaCO3)	0.50	mg/L		30.1	20.2	32.3	32.5	32.4	31.4	32	29.8	29.9	74.5	72.8	71.6
рН	0.10	pН	Between 6.5 and 9.0	7.69	7.56	7.67	7.69	7.71	7.70	7.70	7.54	7.68	7.99	7.99	7.98
Total Suspended Solids	3.0	mg/L		<3.0	<3.0	<3.0	3.0	<3.0	4.2	3.4	<3.0	3.2	<3.0	3.4	3.4
Total Dissolved Solids	13	mg/L		42	28	39	40	39	40	37	35	33	83	84	83
Turbidity	0.10	NTU		0.23	0.27	0.47		0.50	0.46	0.49	0.46	0.39	0.23	0.25	0.25
Anions and Nutrients															
Alkalinity, Total (as CaCO3)	1.0	mg/L		30.3	22.8	32.0	32.6	32.5	32.2	32.2	29.1	29.7	59.6	59.9	58.6
Ammonia, Total (as N)	0.0050	mg/L	0.021-231 ^D	0.0098	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0059	<0.0050	<0.0050	<0.0050
Bromide (Br)	0.050	mg/L		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	<0.050
Chloride (CI)	0.50	mg/L	120	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	4.81	4.80	4.82
Fluoride (F)	0.020	mg/L	0.12	0.209	0.097	0.091	0.090	0.089	0.091	0.089	0.057	0.055	0.082	0.083	0.079
Nitrate (as N)	0.0050	mg/L	13	0.172	0.0311	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0595	0.0548	0.138	0.138	0.139
Nitrite (as N)	0.0010	mg/L	0.06	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Phosphorus (P)-Total Dissolved	0.0020	mg/L		0.0021	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Phosphorus (P)-Total	0.0020	mg/L		0.0022	<0.0020	<0.0020	<0.0020	<0.0020	0.0025	0.0022	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Sulfate (SO4)	0.30	mg/L		1.84	1.09	1.27	1.25	1.27	1.27	1.26	1.45	1.45	14.9	14.9	15.0
Sulphide as S	0.018	mg/L		<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon															
Dissolved Organic Carbon	0.50	mg/L		4.40	2.23	3.86	3.58	3.83	4.07	3.74	3.60	3.57	1.97	2.09	2.35
Total Organic Carbon	0.50	mg/L		4.55	2.12	3.88	3.81	3.83	4.02	4.22	3.65	3.87	2.04	2.03	2.12

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life (Freshwater), summary table accessed October 16, 2017 B Water Licence S17L8-002 Amend (September 11, 2017)

D Minimum CCME guideline based on temperature and pH x 0.8224 mg/L total amn	r 0.5880	0.5880	0.0995	0.0995	0.0995	0.0995	0.0995	0.2821	0.2821	0.2821	0.2821	0.2821
--	----------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------

Table B15- El Bonanza Mine: Total Metals

Sample Area Sample ID		Referenc	e Stations		Silv	er Lake		Stream	Mile	Lake		Great Bear Lake			
	S	ample ID	CCME	CL-RL-1B	CL-8	ELB-7-SL	ELB-6-SL	ELB-8-SL	ELB-DUP-1	ELB-SW-2	ELB-10-ML	ELB-4-ML	ELB-1G-GBL	ELB-2G-GBL	ELB-9-GLB
	SNP S	ample ID	Guidelines ^A												
PARAMETER	Lowest Detection Limit	Units		10-Sep-2017	10-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017
Total Metals															
Aluminum (Al)-Total	0.0030	mg/L	0.005-0.100 F	0.0090	0.0030	0.0049	0.0059	0.0066	0.0072	0.0064	0.0121	0.0106	0.0057	0.0083	0.0074
Antimony (Sb)-Total	0.00010	mg/L		<0.00010	<0.00010	<0.00010	0.00036	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Arsenic (As)-Total	0.00010	mg/L	0.005	0.00017	0.00015	0.00021	0.00018	0.00020	0.00017	0.00017	0.00018	0.00017	0.00017	0.00020	0.00020
Barium (Ba)-Total	0.000050	mg/L		0.00492	0.00365	0.00740	0.00800	0.00768	0.00713	0.00752	0.00517	0.00503	0.0228	0.0229	0.0222
Beryllium (Be)-Total	0.000020	mg/L		<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Bismuth (Bi)-Total	0.000050	mg/L		< 0.000050	< 0.000050	< 0.000050	< 0.000050	<0.000050	< 0.000050	<0.000050	<0.000050	< 0.000050	<0.000050	<0.000050	<0.000050
Boron (B)-Total	0.010	mg/L	1.5	<0.010	<0.010	0.012	0.012	0.012	0.012	0.012	0.011	0.011	0.011	0.011	0.010
Cadmium (Cd)-Total	0.0000050	mg/L	0.00009-0.00037 ^G	<0.000050	< 0.0000050	< 0.0000050	< 0.000050	< 0.0000050	<0.000050	<0.000050	<0.000050	<0.000050	< 0.0000050	<0.000050	0.0000058
Calcium (Ca)-Total	0.050	mg/L		7.00	4.79	8.80	8.97	8.95	8.76	8.89	8.04	8.08	17.4	17.5	17.1
Cesium (Cs)-Total	0.000010	mg/L		<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Chromium (Cr)-Total	0.00010	mg/L		< 0.00010	<0.00010	< 0.00010	<0.00010	<0.00010	<0.00010	0.00012	<0.00010	<0.00010	< 0.00010	<0.00010	<0.00010
Cobalt (Co)-Total	0.00010	mg/L		<0.00010	<0.00010	< 0.00010	< 0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	< 0.00010	<0.00010	<0.00010
Copper (Cu)-Total	0.00050	mg/L	0.002-0.004 ^H	0.00149	0.00072	0.00113	0.00114	0.00115	0.00110	0.00110	0.00123	0.00125	< 0.00050	< 0.00050	< 0.00050
Iron (Fe)-Total	0.010	mg/L	0.3	<0.010	<0.010	0.086	0.099	0.087	0.082	0.106	0.025	0.019	<0.010	<0.010	<0.010
Lead (Pb)-Total	0.000050	mg/L	0.001-0.007	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	<0.000050
Lithium (Li)-Total	0.0010	mg/L		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0032	0.0031	0.0031
Magnesium (Mg)-Total	0.10	mg/L		3.07	2.01	2.36	2.44	2.44	2.32	2.39	2.37	2.36	7.08	7.09	7.04
Manganese (Mn)-Total	0.00010	mg/L		0.00052	0.00086	0.0138	0.0166	0.0127	0.0124	0.0258	0.00288	0.00284	0.00073	0.00093	0.00073
Mercury (Hg)-Total	0.0000050	mg/L	0.000026	<0.000050	< 0.000050	< 0.0000050	< 0.000050	< 0.0000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Molybdenum (Mo)-Total	0.000050	mg/L	0.073	0.000370	0.000166	0.000189	0.000180	0.000199	0.000183	0.000176	0.000179	0.000194	0.000316	0.000324	0.000310
Nickel (Ni)-Total	0.00050	mg/L	0.025-0.150 ^J	< 0.00050	<0.00050	< 0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Phosphorus (P)-Total	0.050	mg/L		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Potassium (K)-Total	0.10	mg/L		0.57	0.48	0.41	0.43	0.42	0.40	0.41	0.42	0.42	0.72	0.73	0.71
Selenium (Se)-Total	0.000050	mg/L	0.001	<0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	<0.000050	<0.000050	< 0.000050	<0.000050	<0.000050	<0.000050
Silicon (Si)-Total	0.10	mg/L		0.91	0.32	1.02	1.06	1.06	1.00	1.00	0.52	0.52	1.17	1.17	1.16
Silver (Ag)-Total	0.000010	mg/L	0.00025	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Sodium (Na)-Total	0.050	mg/L		1.36	0.890	0.963	0.978	0.996	0.939	0.962	0.897	0.906	4.15	4.12	4.04
Strontium (Sr)-Total	0.00020	mg/L		0.0155	0.0102	0.0132	0.0133	0.0133	0.0130	0.0130	0.0123	0.0123	0.103	0.104	0.102
Sulfur (S)-Total	0.50	mg/L		0.79	<0.50	<0.50	<0.50	0.61	<0.50	<0.50	0.58	0.52	5.60	5.49	5.37
Thallium (TI)-Total	0.000010	mg/L	0.0008	< 0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Tin (Sn)-Total	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Total	0.00030	mg/L		<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Uranium (U)-Total	0.000010	mg/L	0.015	0.00128	0.000155	0.000141	0.000130	0.000135	0.000132	0.000119	0.000069	0.000068	0.000345	0.000369	0.000327
Vanadium (V)-Total	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050
Zinc (Zn)-Total	0.0030	mg/L	0.03	<0.0030	<0.0030	<0.0030	0.0042	<0.0030	0.0043	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Zirconium (Zr)-Total	0.00030	mg/L		<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030

F Aluminum: 0.005 mg/L if pH 6.5; 0.1 mg/L if pH >= 6.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
G Cadmium caculated from hardness per CCME guidance, provided for each :	0.0000585	0.0000420	0.0000620	0.0000624	0.0000622	0.0000606	0.0000616	0.0000580	0.0000582	0.0001241	0.0001218	0.0001201
H Copper caculated from hardness per CCME guidance, provided for each sar	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020
I Lead caculated from hardness per CCME guidance, provided for each sample	0.00100	0.00100	0.00100	0.00100	0.00100	0.00100	0.00100	0.00100	0.00100	0.00219	0.00212	0.00208
J Nickel caculated from hardness per CCME guidance, provided for each sam	0.02500	0.02500	0.02500	0.02500	0.02500	0.02500	0.02500	0.02500	0.02500	0.07642	0.07509	0.07415

Table B16 - El Bonanza Mine: Dissolved Metals

	San	nple Area		Silver Lake	Stream	Great Bear Lake
	s	ample ID		ELB-7-SL	ELB-SW-2	ELB-1G-GBL
	SNP S	ample ID	Guidelines ^A			
PARAMETER	Lowest Detection Limit	Units		9-Sep-2017	9-Sep-2017	9-Sep-2017
Dissolved Metals						
Aluminum (AI)-Dissolved	0.0010	mg/L	0.005-0.100 F	0.0018	0.0025	<0.0010
Antimony (Sb)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010
Arsenic (As)-Dissolved	0.00010	mg/L	0.005	0.00017	0.00017	0.00019
Barium (Ba)-Dissolved	0.000050	mg/L		0.00750	0.00735	0.0232
Beryllium (Be)-Dissolved	0.000020	mg/L		<0.000020	<0.000020	<0.000020
Bismuth (Bi)-Dissolved	0.000050	mg/L		<0.000050	<0.000050	<0.000050
Boron (B)-Dissolved	0.010	mg/L	1.5	0.012	0.012	0.011
Cadmium (Cd)-Dissolved	0.0000050	mg/L	0.00009-0.00037 ^G	<0.000050	<0.0000050	<0.000050
Calcium (Ca)-Dissolved	0.050	mg/L		8.90	8.76	17.6
Cesium (Cs)-Dissolved	0.000010	mg/L		<0.000010	<0.000010	
Chromium (Cr)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010
Cobalt (Co)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010
Copper (Cu)-Dissolved	0.00020	mg/L	0.002-0.004 ^H	0.00093	0.00088	0.00027
Iron (Fe)-Dissolved	0.010	mg/L	0.3	0.010	0.015	<0.010
Lead (Pb)-Dissolved	0.000050	mg/L	0.001-0.007	<0.000050	<0.000050	<0.000050
Lithium (Li)-Dissolved	0.0010	mg/L		<0.0010	<0.0010	0.0034
Magnesium (Mg)-Dissolved	0.10	mg/L		2.45	2.47	7.43
Manganese (Mn)-Dissolved	0.00010	mg/L		<0.00010	0.0001	<0.00010
Mercury (Hg)-Dissolved	0.0000050	mg/L	0.000026	<0.000050	<0.0000050	<0.000050
Molybdenum (Mo)-Dissolved	0.000050	mg/L	0.073	0.000172	0.000162	0.000289
Nickel (Ni)-Dissolved	0.00050	mg/L	0.025-0.150	<0.00050	<0.00050	<0.00050
Phosphorus (P)-Dissolved	0.050	mg/L		<0.050	<0.050	<0.050
Potassium (K)-Dissolved	0.10	mg/L		0.42	0.44	0.77
Selenium (Se)-Dissolved	0.000050	mg/L	0.001	<0.000050	<0.000050	<0.000050
Silicon (Si)-Dissolved	0.050	mg/L		1.01	0.97	1.13
Silver (Ag)-Dissolved	0.000010	mg/L	0.00025	<0.000010	<0.000010	<0.000010
Sodium (Na)-Dissolved	0.050	mg/L		0.992	0.988	4.24
Strontium (Sr)-Dissolved	0.00020	mg/L		0.0132	0.0126	0.104
Sulfur (S)-Dissolved	0.50	mg/L		<0.50	<0.50	5.06
Thallium (TI)-Dissolved	0.000010	mg/L	0.0008	<0.000010	<0.000010	<0.000010
Tin (Sn)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010
Titanium (Ti)-Dissolved	0.00030	mg/L		<0.00030	<0.00030	<0.00030
Uranium (U)-Dissolved	0.000010	mg/L	0.015	0.000112	0.000093	0.000340
Vanadium (V)-Dissolved	0.00050	mg/L		<0.00050	<0.00050	<0.00050
Zinc (Zn)-Dissolved	0.0010	mg/L	0.03	<0.0010	<0.0010	<0.0010
Zirconium (Zr)-Dissolved	0.00030	mg/L		< 0.00030	< 0.00030	< 0.00030

F Aluminum: 0.005 mg/L if pH 6.5; 0.1 mg/L if pH >= 6.5	0.1	0.1	0.1
G Cadmium caculated from hardness per CCME guidance, provided for each sample.	0.0000620	0.0000616	0.0001241
H Copper caculated from hardness per CCME guidance, provided for each sample	0.0020	0.0020	0.0020
I Lead caculated from hardness per CCME guidance, provided for each sample	0.0010	0.0010	0.0022
J Nickel caculated from hardness per CCME guidance, provided for each sample	0.0250	0.0250	0.0764

Table B17 - El Bonanza Mine: Hydrocarbons

	San	nple Area		Silver Lake		Great Bear Lake	
	S	ample ID	CCME	ELB-7-SL	ELB-1G-GBL	ELB-2G-GBL	ELB-9-GLB
	SNP S	ample ID	Guidelines ^A				
PARAMETER	Lowest Detection Limit	Units		9-Sep-2017	9-Sep-2017	9-Sep-2017	9-Sep-2017
Volatile Organic Compounds							
Benzene	0.00050	mg/L	0.37	<0.00050	<0.00050	< 0.00050	<0.00050
Ethylbenzene	0.00050	mg/L	0.9	<0.00050	<0.00050	<0.00050	<0.00050
Methyl t-butyl ether (MTBE)	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050
Styrene	0.00050	mg/L		<0.00050	<0.00050	< 0.00050	<0.00050
Toluene	0.00045	mg/L	0.002	<0.00045	<0.00045	<0.00045	<0.00045
Xylenes	0.00075	mg/L		<0.00075	<0.00075	<0.00075	<0.00075
F1 (C6-C10)	0.10	mg/L		<0.10	<0.10	<0.10	<0.10
Hydrocarbons							
F1-BTEX	0.10	mg/L		<0.10	<0.10	<0.10	<0.10
F2 (C10-C16)	0.30	mg/L		<0.30	<0.30	<0.30	<0.30
F3 (C16-C34)	0.30	mg/L		<0.30	<0.30	<0.30	<0.30
F4 (C34-C50)	0.30	mg/L		<0.30	<0.30	<0.30	<0.30
Aggregate Organics							
Oil and Grease			5				

Table B18 - Sawmill Bay: General Chemistry

	San	nple Area		Referenc	e Stations	Ravine Creek Discharge	Sawmill Bay								
	S	ample ID	ССМЕ	BG-SW08-04	BG-SW08-01	A3-SW08-01	A3-SW08-05	SW07-3	SW16-01-2M	SW16-01-6M	A5-SW08-11	SW-B-2	SW-DUP-1	SW16-02-2M	SW16-02-6M
	SNP S	ample ID	Guidelines ^A												
PARAMETER	Lowest Detection Limit	Units		11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017
Physical Tests															
Conductivity	2.0	uS/cm		262	160	185	160	159	160	157	166	166	160	161	157
Hardness (as CaCO3)	0.50	mg/L		153	71.2	86.8	76.9	79	77.3	71.6	80.8	77.9	74	72.8	70.8
pН	0.10	pН	Between 6.5 and 9.0	8.33	7.99	8	7.97	7.95	7.96	7.95	7.96	7.99	7.97	7.98	7.97
Total Suspended Solids	3.0	mg/L		4.4	<3.0	14	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Total Dissolved Solids	13	mg/L		174	96	112	94	98	99	96	102	98	96	95	97
Turbidity	0.10	NTU		0.83	0.24	2.36	0.23	0.19	0.19	0.19	0.19	0.19	0.2	0.19	0.21
Anions and Nutrients															
Alkalinity, Total (as CaCO3)	1.0	mg/L		149	59.2	68.6	58.8	57.2	56.3	58.1	60	60	56.8	58.7	58.1
Ammonia, Total (as N)	0.0050	mg/L	0.021-231 ^D	0.0148	<0.0050	0.0154	0.0084	<0.0050	0.0061	<0.0050	<0.0050	<0.0050	<0.0050	0.0083	< 0.0050
Bromide (Br)	0.050	mg/L		<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050
Chloride (CI)	0.50	mg/L	120	<0.50	4.98	4.67	4.98	4.97	4.99	4.98	4.91	4.96	4.98	4.98	4.99
Fluoride (F)	0.020	mg/L	0.12	0.042	0.08	0.085	0.079	0.081	0.08	0.079	0.081	0.08	0.079	0.079	0.079
Nitrate (as N)	0.0050	mg/L	13	<0.0050	0.135	0.108	0.137	0.139	0.14	0.141	0.138	0.139	0.141	0.14	0.141
Nitrite (as N)	0.0010	mg/L	0.06	<0.0010	<0.0010	0.0013	<0.0010	<0.0010	<0.0010	<0.0010	0.0012	<0.0010	<0.0010	<0.0010	<0.0010
Phosphorus (P)-Total Dissolved	0.0020	mg/L		0.0022	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Phosphorus (P)-Total	0.0020	mg/L		0.0099	<0.0020	0.013	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Sulfate (SO4)	0.30	mg/L		3.7	15.8	21.3	15.9	16.5	15.7	15.7	17.7	16.8	16	16	15.7
Sulphide as S	0.018	mg/L		<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon															
Dissolved Organic Carbon	0.50	mg/L		10.1	1.6	2.25	1.72	1.78	1.82	1.68	1.6	1.74	2.72	2.95	1.92
Total Organic Carbon	0.50	mg/L		9.74	1.65	2.71	1.65	1.8	1.69	1.87	1.62	1.67	2.21	2.09	1.96

A Canadian Council of Ministers of Enivronment - Water Quality Guidelines for the Protection of Aquatic Life (Freshwater), summary table accessed October 16, 2017 B Water Licence S17L8-002 Amend (September 11, 2017)

D Minimum CCME guideline based on temperature and pH x 0.8224 mg/L total amm	0.5880	0.2821	2.6810	0.2821	0.8553	0.2821	0.2821	0.2821	0.2821	0.2821	0.2821	0.2821
--	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------

Table B19 - Sawmill Bay: Total Metals

	San	nple Area		Referenc	e Stations	Ravine Creek Discharge	scharge Sawmill Bay								
	s	Sample ID	CCME	BG-SW08-04	BG-SW08-01	A3-SW08-01	A3-SW08-05	SW07-3	SW16-01-2M	SW16-01-6M	A5-SW08-11	SW-B-2	SW-DUP-1	SW16-02-2M	SW16-02-6M
	SNP S	Sample ID	Guidelines ^A												
PARAMETER	Lowest Detection Limit	Units		11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017
Total Metals															
Aluminum (Al)-Total	0.0030	mg/L	0.005-0.100 F	0.0076	0.0118	0.201	0.0055	0.0048	0.0043	0.0044	0.0054	0.0046	0.005	0.0049	0.0045
Antimony (Sb)-Total	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Arsenic (As)-Total	0.00010	mg/L	0.005	0.00012	0.0002	0.00034	0.00021	0.00022	0.00019	0.00023	0.00019	0.0002	0.00019	0.00024	0.00021
Barium (Ba)-Total	0.000050	mg/L		0.0901	0.0224	0.0281	0.023	0.0239	0.0231	0.0227	0.0236	0.0236	0.0232	0.0232	0.0227
Beryllium (Be)-Total	0.000020	mg/L		<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	< 0.000020	<0.000020	<0.000020	<0.000020	< 0.000020	<0.000020
Bismuth (Bi)-Total	0.000050	mg/L		<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050	<0.000050	< 0.000050	<0.000050	<0.000050	<0.000050	< 0.000050	< 0.000050
Boron (B)-Total	0.010	mg/L	1.5	0.073	0.012	0.017	0.013	0.012	0.013	0.011	0.013	0.013	0.013	0.011	0.011
Cadmium (Cd)-Total	0.0000050	mg/L	0.00009-0.00037 ^G	< 0.0000050	< 0.0000050	0.0000081	<0.000050	< 0.0000050	<0.0000050	<0.000050	< 0.000050	<0.0000050	< 0.0000050	<0.000050	< 0.000050
Calcium (Ca)-Total	0.050	mg/L		22.7	16.6	19.4	18.5	19	18.3	16.7	19	18.7	18.6	17.2	16.6
Cesium (Cs)-Total	0.000010	mg/L		<0.000010	<0.000010	0.000056	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Chromium (Cr)-Total	0.00010	mg/L		<0.00010	0.00011	0.00061	<0.00010	<0.00010	<0.00010	0.00015	<0.00010	<0.00010	0.00015	<0.00010	<0.00010
Cobalt (Co)-Total	0.00010	mg/L		<0.00010	<0.00010	0.00016	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Copper (Cu)-Total	0.00050	mg/L	0.002-0.004 ^H	< 0.00050	< 0.00050	0.00082	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050	<0.00050
Iron (Fe)-Total	0.010	mg/L	0.3	0.011	0.017	0.698	0.011	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead (Pb)-Total	0.000050	mg/L	0.001-0.007	<0.000050	< 0.000050	0.000251	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	<0.000050	< 0.000050	< 0.000050
Lithium (Li)-Total	0.0010	mg/L		0.003	0.003	0.0032	0.0034	0.0031	0.0032	0.003	0.0031	0.0033	0.0031	0.0031	0.003
Magnesium (Mg)-Total	0.10	mg/L		22.7	7.2	9.3	7.45	7.68	7.65	7.24	7.74	7.55	7.54	7.22	7.14
Manganese (Mn)-Total	0.00010	mg/L		0.00394	0.00079	0.0244	0.00087	0.00077	0.00067	0.00068	0.00082	0.00084	0.00068	0.00071	0.00058
Mercury (Hg)-Total	0.0000050	mg/L	0.000026	< 0.0000050	< 0.0000050	< 0.0000050	< 0.000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.000050
Molybdenum (Mo)-Total	0.000050	mg/L	0.073	<0.000050	0.000306	0.000339	0.000352	0.000335	0.000342	0.000301	0.000357	0.000339	0.000339	0.000314	0.000314
Nickel (Ni)-Total	0.00050	mg/L	0.025-0.150 ^J	< 0.00050	< 0.00050	0.00057	<0.00050	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050	<0.00050
Phosphorus (P)-Total	0.050	mg/L		< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050
Potassium (K)-Total	0.10	mg/L		1.7	0.78	0.96	0.76	0.78	0.76	0.77	0.78	0.76	0.76	0.78	0.77
Selenium (Se)-Total	0.000050	mg/L	0.001	<0.000050	<0.000050	0.000052	<0.000050	<0.000050	< 0.000050	< 0.000050	<0.000050	<0.000050	<0.000050	< 0.000050	<0.000050
Silicon (Si)-Total	0.10	mg/L		0.57	1.15	1.61	1.12	1.14	1.12	1.16	1.16	1.14	1.12	1.18	1.17
Silver (Ag)-Total	0.000010	mg/L	0.00025	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Sodium (Na)-Total	0.050	mg/L		1.02	4.39	4.29	4.18	4.17	4.19	4.39	4.21	4.26	4.22	4.27	4.35
Strontium (Sr)-Total	0.00020	mg/L		0.0596	0.105	0.132	0.117	0.12	0.115	0.106	0.123	0.119	0.115	0.108	0.106
Sulfur (S)-Total	0.50	mg/L		1.69	5.97	7.55	5.57	6.01	5.32	5.72	6	5.95	5.47	5.82	5.53
Thallium (TI)-Total	0.000010	mg/L	0.0008	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Tin (Sn)-Total	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Total	0.00030	mg/L		<0.00030	0.00055	0.00849	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Uranium (U)-Total	0.000010	mg/L	0.015	0.000214	0.000287	0.000369	0.000306	0.00031	0.000303	0.000261	0.000319	0.000321	0.000308	0.000266	0.00026
Vanadium (V)-Total	0.00050	mg/L		<0.00050	<0.00050	0.00083	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Zinc (Zn)-Total	0.0030	mg/L	0.03	0.0039	<0.0030	<0.0030	0.0036	0.0035	<0.0030	<0.0030	<0.0030	<0.0030	0.0039	<0.0030	<0.0030
Zirconium (Zr)-Total	0.00030	mg/L		< 0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	< 0.00030	<0.00030	<0.00030

F Aluminum: 0.005 mg/L if pH 6.5; 0.1 mg/L if pH >= 6.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
G Cadmium caculated from hardness per CCME guidance, provided for each :	0.0002256	0.0001196	0.0001409	0.0001274	0.0001303	0.0001280	0.0001201	0.0001328	0.0001288	0.0001234	0.0001218	0.0001190
H Copper caculated from hardness per CCME guidance, provided for each sar	0.0034	0.0020	0.0021	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020
I Lead caculated from hardness per CCME guidance, provided for each sample	0.00547	0.00206	0.00266	0.00228	0.00236	0.00229	0.00208	0.00243	0.00232	0.00217	0.00212	0.00205
J Nickel caculated from hardness per CCME guidance, provided for each sam	0.13204	0.07383	0.08583	0.07828	0.07990	0.07859	0.07415	0.08128	0.07905	0.07603	0.07509	0.07352

Table B20 - Sawmill Bay: Dissolved Metals

	San	ple Area		Reference Stations		Sawmill Bay	
	S	ample ID	CCME	BG-SW08-04	A5-SW08-11	SW-B-2	SW-DUP-1
	SNP S	ample ID	Guidelines ^A				
PARAMETER	Lowest Detection Limit	Units		11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017
Dissolved Metals							
Aluminum (AI)-Dissolved	0.0010	mg/L	0.005-0.100 F	0.0022	0.0015	<0.0010	<0.0010
Antimony (Sb)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010
Arsenic (As)-Dissolved	0.00010	mg/L	0.005	<0.00010	0.00018	0.00018	0.00018
Barium (Ba)-Dissolved	0.000050	mg/L		0.0883	0.0237	0.0232	0.023
Beryllium (Be)-Dissolved	0.000020	mg/L		<0.000020	<0.000020	<0.000020	<0.000020
Bismuth (Bi)-Dissolved	0.000050	mg/L		<0.000050	<0.000050	<0.000050	<0.000050
Boron (B)-Dissolved	0.010	mg/L	1.5	0.067	0.013	0.012	0.012
Cadmium (Cd)-Dissolved	0.0000050	mg/L	0.00009-0.00037 ^G	<0.0000050	<0.0000050	<0.0000050	<0.0000050
Calcium (Ca)-Dissolved	0.050	mg/L		23	19.5	18.8	17.6
Cesium (Cs)-Dissolved	0.000010	mg/L		<0.000010	<0.000010	<0.000010	<0.000010
Chromium (Cr)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010
Cobalt (Co)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010
Copper (Cu)-Dissolved	0.00020	mg/L	0.002-0.004 ^H	<0.00020	0.00033	0.00027	0.00024
Iron (Fe)-Dissolved	0.010	mg/L	0.3	<0.010	<0.010	<0.010	<0.010
Lead (Pb)-Dissolved	0.000050	mg/L	0.001-0.007	<0.000050	<0.000050	<0.000050	<0.000050
Lithium (Li)-Dissolved	0.0010	mg/L		0.0026	0.0034	0.0033	0.003
Magnesium (Mg)-Dissolved	0.10	mg/L		23.2	7.82	7.49	7.3
Manganese (Mn)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010
Mercury (Hg)-Dissolved	0.0000050	mg/L	0.000026	<0.000050	<0.0000050	<0.0000050	<0.000050
Molybdenum (Mo)-Dissolved	0.000050	mg/L	0.073	<0.000050	0.000368	0.000361	0.000336
Nickel (Ni)-Dissolved	0.00050	mg/L	0.025-0.150 ^J	<0.00050	<0.00050	<0.00050	<0.00050
Phosphorus (P)-Dissolved	0.050	mg/L		<0.050	<0.050	<0.050	<0.050
Potassium (K)-Dissolved	0.10	mg/L		1.69	0.77	0.75	0.74
Selenium (Se)-Dissolved	0.000050	mg/L	0.001	<0.000050	<0.000050	<0.000050	<0.000050
Silicon (Si)-Dissolved	0.050	mg/L		0.517	1.14	1.11	1.11
Silver (Ag)-Dissolved	0.000010	mg/L	0.00025	<0.000010	<0.000010	<0.000010	<0.000010
Sodium (Na)-Dissolved	0.050	mg/L		1	4.18	4.1	4.06
Strontium (Sr)-Dissolved	0.00020	mg/L		0.0575	0.121	0.121	0.112
Sulfur (S)-Dissolved	0.50	mg/L		1.54	5.8	5.81	5.51
Thallium (TI)-Dissolved	0.000010	mg/L	0.0008	<0.000010	<0.000010	<0.000010	<0.000010
Tin (Sn)-Dissolved	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Dissolved	0.00030	mg/L		<0.00030	<0.00030	<0.00030	<0.00030
Uranium (U)-Dissolved	0.000010	mg/L	0.015	0.000212	0.000326	0.000317	0.000301
Vanadium (V)-Dissolved	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050
Zinc (Zn)-Dissolved	0.0010	mg/L	0.03	<0.0010	<0.0010	<0.0010	<0.0010
Zirconium (Zr)-Dissolved	0.00030	mg/L		< 0.00030	< 0.00030	< 0.00030	< 0.00030

F Aluminum: 0.005 mg/L if pH 6.5; 0.1 mg/L if pH >= 6.5	0.1	0.1	0.1	0.1
G Cadmium caculated from hardness per CCME guidance, provided for each sample.	0.0002256	0.0001328	0.0001288	0.0001234
H Copper caculated from hardness per CCME guidance, provided for each sample	0.0034	0.0020	0.0020	0.0020
I Lead caculated from hardness per CCME guidance, provided for each sample	0.0055	0.0024	0.0023	0.0022
J Nickel caculated from hardness per CCME guidance, provided for each sample	0.1320	0.0813	0.0791	0.0760

Table B21 - Sawmill Bay: Hydrocarbons

	San	ple Area				Sawm	ill Bay		
	S	ample ID		SW07-3	SW16-01-2M	A5-SW08-11	SW-B-2	SW-DUP-1	SW16-02-6M
	SNP S	ample ID	Guidelines ^A						
PARAMETER	Lowest Detection Limit	Units		11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017
Volatile Organic Compounds									
Benzene	0.00050	mg/L	0.37	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Ethylbenzene	0.00050	mg/L	0.9	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Methyl t-butyl ether (MTBE)	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Styrene	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Toluene	0.00045	mg/L	0.002	<0.00045	<0.00045	<0.00045	<0.00045	<0.00045	<0.00045
Xylenes	0.00075	mg/L		<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
F1 (C6-C10)	0.10	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Hydrocarbons									
F1-BTEX	0.10	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
F2 (C10-C16)	0.30	mg/L		<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
F3 (C16-C34)	0.30	mg/L		<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
F4 (C34-C50)	0.30	mg/L		<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Aggregate Organics									
Oil and Grease			5						

Table B22 - Sawmill Bay: Radionuclides

	San	ple Area		Reference Stations		Sawm	ill Bay	
	s	ample ID	Candian Drinking Water Quality	BG-SW08-01	A5-SW08-11	SW-B-2	SW-DUP-1	SW16-02-2M
	SNP S	ample ID	Guidelines ^A					
PARAMETER	Lowest Detection Limit	Units		11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017	11-Sep-2017
Radiological Parameters								
Pb-210	0.023	Bq/L	0.2	<0.023	<0.024	<0.029	<0.023	<0.025
Ra-226	0.0056	Bq/L	0.5	0.0066	<0.0079	<0.0077	< 0.0063	<0.0086

A CCME guidelines not developed. Applied Canadian Drinking Water Guidelines for Radiological Parameters.

		Sample Area						TERR	AMINE				
		Sample ID		T-8-A	T-DUP-1				T-12	T-DUP-2			
		SNP Sample ID	Units	S17L8-002 (7A)	S17L8-002 (7A)								
Parameter	Lowest Detection Limit	5x Lowest Detection Limit (5x RDL)		13-Sep-2017	13-Sep-2017	Scenario	Value	Acceptable	13-Sep-2017	13-Sep-2017	Scenario	Value	Acceptable
Physical Tests (Water)													
Conductivity	2.0	10.0	uS/cm	196	196	D	0	YES	147	147	D	0	YES
Hardness (as CaCO3)	0.50	2.50	mg/L	78.3	78.7	D	0.50955414	YES	68	67.8	D	0.29455081	YES
pH	0.10	0.50	pH	7.93	7.92	D	0.13	YES	7.96	7.96	D	0.00	YES
Total Suspended Solids	3.0	15.0	mg/L	<3.0	<3.0	<u>A</u>	Not Calculated	YES	<3.0	<3.0	<u>A</u>	Not Calculated	YES
Total Dissolved Solids Turbidity	13 0.10	65 0.50	mg/L NTU	134 0.69	137 0.86	D	21.94	YES NO	91 0.65	92 0.89	D	31.17	YES NO
Anions and Nutrients (Water)	0.10	0.50	NIU	0.09	0.00	D	21.94	NO	0.05	0.89	D	31.17	INO
Alkalinity, Total (as CaCO3)	1.0	5.0	mg/L	62.9	62.3	D	1.0	YES	58.0	57.6	D	0.7	YES
Ammonia, Total (as N)	0.0050	0.0250	mg/L	0.0118	<0.0050	B	0.0093	NO	0.0072	0.0106	C	0.0034	YES
Bromide (Br)	0.050	0.250	mg/L	<0.050	<0.0000	A	Not Calculated	YES	<0.050	<0.050	A	Not Calculated	YES
Chloride (Cl)	0.50	2.50	mg/L	11.5	11.5	D	0.0	YES	2.34	2.33	C	0.0	YES
Fluoride (F)	0.020	0.100	mg/L	0.683	0.682	D	0.147	YES	0.144	0.144	D	0.000	YES
Nitrate (as N)	0.0050	0.0250	mg/L	0.0051	0.0051	С	0.0000	YES	< 0.0050	< 0.0050	А	Not Calculated	YES
Nitrite (as N)	0.0010	0.0050	mq/L	<0.0010	<0.0010	А	Not Calculated	YES	<0.0010	<0.0010	A	Not Calculated	YES
Phosphorus (P)-Total Dissolved	0.0020	0.0100	mg/L	0.0039	0.0040	С	0.0001	YES	<0.0020	<0.0020	A	Not Calculated	YES
Phosphorus (P)-Total	0.0020	0.0100	mg/L	0.0051	0.0059	С	0.0008	YES	0.0020	0.0023	С	0.0003	YES
Sulfate (SO4)	0.30	1.50	mg/L	16.1	16.1	D	0.0	YES	14.2	14.2	D	0.0	YES
Sulphide as S	0.018	0.090	mg/L	<0.018	<0.018	A	Not Calculated	YES	<0.018	<0.018	A	Not Calculated	YES
Organic / Inorganic Carbon (Water)	0.50	0.50	4	10.5	10.5			NEO.	1.00	4 77		4.0)/50
Dissolved Organic Carbon Total Organic Carbon	0.50	2.50 2.50	mg/L mg/L	12.5 12.3	12.5 12.3	D D	0.0	YES YES	4.83 4.82	4.77 4.56	D D	1.3 5.5	YES YES
Total Metals (Water)	0.50	2.50	mg/L	12.3	12.3	D	0.0	TES	4.82	4.50	D	5.5	TES
Aluminum (Al)-Total	0.0030	0.0150	mg/L	0.0339	0.0327	D	3.6036	YES	0.0243	0.0231	D	5.0633	YES
Antimony (Sb)-Total	0.00010	0.00050	mg/L	0.00129	0.0327	D	1.53846	YES	<0.00010	<0.00010	A	Not Calculated	YES
Arsenic (As)-Total	0.00010	0.00050	mg/L	0.0607	0.0608	D	0.1646	YES	0.00024	0.00032	C	0.0001	YES
Barium (Ba)-Total	0.000050	0.000250	mg/L	0.0157	0.0159	D	1.2658	YES	0.0104	0.0154	D	38.7597	NO
Beryllium (Be)-Total	0.000020	0.000100	mg/L	<0.000020	<0.000020	A	Not Calculated	YES	< 0.000020	<0.000020	A	Not Calculated	YES
Bismuth (Bi)-Total	0.000050	0.000250	mg/L	< 0.000050	< 0.000050	A	Not Calculated	YES	< 0.000050	< 0.000050	A	Not Calculated	YES
Boron (B)-Total	0.010	0.050	mg/L	0.027	0.028	С	0.001	YES	0.011	0.011	С	0.000	YES
Cadmium (Cd)-Total	0.0000050	0.0000250	mg/L	0.0000066	0.0000076	С	0.0000010	YES	<0.000050	<0.0000050	A	Not Calculated	YES
Calcium (Ca)-Total	0.050	0.250	mg/L	22.9	23.0	D	0.4	YES	16.0	15.6	D	2.5	YES
Cesium (Cs)-Total	0.000010	0.000050	mg/L	0.000047	0.000048	С	0.000001	YES	<0.000010	<0.000010	A	Not Calculated	YES
Chromium (Cr)-Total	0.00010	0.00050	mq/L	0.00015	0.00019	C	0.00004	YES	0.00011	<0.00010	B	0.00006	YES
Cobalt (Co)-Total Copper (Cu)-Total	0.00010 0.00050	0.00050 0.00250	mg/L mg/L	0.00013	0.00013 0.00812	C D	0.00000 1.86451	YES YES	<0.00010 0.00078	<0.00010 0.00077	A C	Not Calculated 0.00001	YES YES
Iron (Fe)-Total	0.00030	0.050	mg/L	0.035	0.037	C	0.002	YES	0.00078	0.022	c	0.0001	YES
Lead (Pb)-Total	0.000050	0.000250	mg/L	0.000131	0.000137	č	0.000006	YES	<0.000050	<0.00050	A	Not Calculated	YES
Lithium (Li)-Total	0.0010	0.0050	mg/L	0.0075	0.0075	D	0.0000	YES	0.0023	0.0023	C	0.0000	YES
Magnesium (Mg)-Total	0.10	0.50	mg/L	4.67	4.68	D	0.21	YES	6.84	7.02	D	2.60	YES
Manganese (Mn)-Total	0.00010	0.00050	mq/L	0.00299	0.00304	D	1.65837	YES	0.00155	0.00157	D	1.28205	YES
Mercury (Hg)-Total	0.0000050	0.0000250	mg/L	< 0.0000050	<0.0000050	А	Not Calculated	YES	<0.000050	<0.0000050	А	Not Calculated	YES
Molybdenum (Mo)-Total	0.000050	0.000250	mg/L	0.00254	0.00250	D	1.58730	YES	0.000263	0.000259	D	1.53257	YES
Nickel (Ni)-Total	0.00050	0.00250	mg/L	0.00377	0.00385	D	2.09974	YES	<0.00050	<0.00050	A	Not Calculated	YES
Phosphorus (P)-Total	0.050	0.250	mg/L	<0.050	< 0.050	A	Not Calculated	YES	<0.050	<0.050	A	Not Calculated	YES
Potassium (K)-Total	0.10	0.50	mg/L	1.95	1.97	D	1.02	YES	0.98	1.00	D	2.02	YES
Selenium (Se)-Total	0.000050	0.000250	mg/L	0.000051	<0.000050	B	0.000026	YES YES	<0.000050	<0.000050	A D	Not Calculated	YES YES
Silicon (Si)-Total Silver (Aq)-Total	0.10	0.50 0.000050	mg/L mg/L	0.73	0.73 0.000017	D C	0.000	YES	0.81 <0.000010	0.80	A	1.24 Not Calculated	YES
Sodium (Na)-Total	0.050	0.250	mg/L	7.60	7.77	D	2.21	YES	2.48	2.48	D	0.00	YES
Strontium (Sr)-Total	0.00020	0.00100	mg/L	0.0742	0.0736	D	0.8119	YES	0.0530	0.0525	D	0.9479	YES
Sulfur (S)-Total	0.50	2.50	mg/L	5.36	5.53	D	3.12	YES	4.61	4.76	D	3.20	YES
Thallium (TI)-Total	0.000010	0.000050	mg/L	< 0.000010	<0.000010	Ā	Not Calculated	YES	< 0.000010	<0.000010	A	Not Calculated	YES
Tin (Sn)-Total	0.00010	0.00050	mg/L	<0.00010	<0.00010	А	Not Calculated	YES	<0.00010	<0.00010	А	Not Calculated	YES
Titanium (Ti)-Total	0.00030	0.00150	mg/L	<0.00090	0.00090	В	0.00075	NO	0.00077	0.00081	С	0.00004	YES
Uranium (U)-Total	0.000010	0.000050	mg/L	0.00245	0.00251	D	2.41935	YES	0.000534	0.000240	D	75.96899	NO
Vanadium (V)-Total	0.00050	0.00250	mg/L	<0.00050	<0.00050	A	Not Calculated	YES	<0.00050	<0.00050	A	Not Calculated	YES
Zinc (Zn)-Total	0.0030	0.0150	mg/L	0.0032	0.0040	C	0.0008	YES	<0.0030	<0.0030	A	Not Calculated	YES
Zirconium (Zr)-Total	0.00030	0.00150	mg/L	<0.00030	<0.00030	A	Not Calculated	YES	<0.00030	<0.00030	A	Not Calculated	YES

		Sample Area	Die ID T-19 T-DUP-3 NO-2 NO-DUP-1								E		
		Sample ID		T-19	T-DUP-3				NO-2	NO-DUP-1			
	-	SNP Sample ID	Units			Scenario	Value	Assentable			Scenario	Value	Acceptable
Parameter	Lowest Detection Limit	5x Lowest Detection Limit (5x RDL)		8-Sep-2017	8-Sep-2017	Scenario	value	Acceptable	12-Sep-2017	12-Sep-2017	Scenano	value	Acceptable
Physical Tests (Water)													
Conductivity	2.0	10.0	uS/cm	155	152	D	2.0	YES	150	153	D	2.0	YES
Hardness (as CaCO3)	0.50 0.10	2.50 0.50	mg/L	87.7 7.72	86.4 7.70	D	1.5 0.3	YES YES	79.5 7.95	79.1 7.94	D	0.5 0.1	YES YES
pH Total Suspended Solids	3.0	15.0	pH mg/L	3.0	10.0	C	7.0	NO	<3.0	<3.0	A	0.1 Not Calculated	YES
Total Dissolved Solids	13	65	mg/L	159	156	D	1.9	YES	116	121	D	4.2	YES
Turbidity	0.10	0.50	NTU	2.04	2.37	D	15.0	YES	0.43	0.45	C	0.0	YES
Anions and Nutrients (Water)													
Alkalinity, Total (as CaCO3)	1.0	5.0	mq/L	61.1	61.0	D	0.2	YES	69.5	71.5	D	2.8	YES
Ammonia, Total (as N)	0.0050	0.0250	mg/L	0.0158	0.0159	С	0.0	YES	0.0122	0.0083	С	0.0	YES
Bromide (Br)	0.050	0.250	mg/L	< 0.050	< 0.050	A	Not Calculated	YES	< 0.050	< 0.050	A	Not Calculated	YES
Chloride (Cl) Fluoride (F)	0.50	2.50 0.100	mg/L ma/L	1.06	<0.50 0.334	B D	0.8	NO YES	<0.50 0.169	<0.50 0.166	A D	Not Calculated 1.8	YES YES
Nitrate (as N)	0.0050	0.0250	mg/L mg/L	0.332	0.334	D	6.3	YES	< 0.0050	< 0.0050	A	1.8 Not Calculated	YES
Nitrite (as N)	0.0010	0.0050	mg/L	0.0011	<0.0010	B	0.0	YES	<0.0010	<0.0010	A	Not Calculated	YES
Phosphorus (P)-Total Dissolved	0.0020	0.0100	mg/L	0.0185	0.0259	D	33.3	NO	0.0063	0.0065	C	0.0	YES
Phosphorus (P)-Total	0.0020	0.0100	mg/L	0.0159	0.0253	D	45.6	NO	0.0086	0.0072	Ċ	0.0	YES
Sulfate (SO4)	0.30	1.50	mg/L	15.9	16.0	D	0.6	YES	8.52	8.51	D	0.1	YES
Sulphide as S	0.018	0.090	mg/L	<0.018	<0.018	A	Not Calculated	YES	<0.018	<0.018	A	Not Calculated	YES
Organic / Inorganic Carbon (Water)													
Dissolved Organic Carbon	0.50	2.50	mg/L	29.8	30.5	D	2.3	YES	13.6	13.8	D	1.5	YES
Total Organic Carbon	0.50	2.50	mg/L	29.1	29.4	D	1.0	YES	13.9	14.0	D	0.7	YES
Total Metals (Water)	0.0000	0.0450	4	0.407	0.001			NEO.	0.0050	0.0054			V/F 0
Aluminum (Al)-Total Antimony (Sb)-Total	0.0030 0.00010	0.0150 0.00050	mg/L mg/L	0.197 0.00520	0.201 0.00529	D	2.0 1.7	YES YES	0.0058 0.00019	0.0051 0.00018	C C	0.0	YES YES
Artimony (Sb)-Total Arsenic (As)-Total	0.00010	0.00050	mg/L	0.286	0.00529	D	0.7	YES	0.00019	0.00018	D	5.4	YES
Barium (Ba)-Total	0.000050	0.000250	mg/L	0.00945	0.00895	D	5.4	YES	0.00561	0.00536	D	4.6	YES
Beryllium (Be)-Total	0.000020	0.000100	mg/L	0.000049	0.000044	C	0.0	YES	<0.000020	<0.000020	A	Not Calculated	YES
Bismuth (Bi)-Total	0.000050	0.000250	mg/L	0.00162	0.00159	D	1.9	YES	< 0.000050	< 0.000050	А	Not Calculated	YES
Boron (B)-Total	0.010	0.050	mg/L	0.013	0.012	С	0.0	YES	<0.010	<0.010	А	Not Calculated	YES
Cadmium (Cd)-Total	0.0000050	0.0000250	mg/L	0.0000441	0.0000498	D	12.1	YES	<0.000050	<0.000050	A	Not Calculated	YES
Calcium (Ca)-Total	0.050	0.250	mg/L	26.4	25.9	D	1.9	YES	23.1	22.9	D	0.9	YES
Cesium (Cs)-Total	0.000010	0.000050	mg/L	0.000016	0.000015	C	0.0	YES	<0.000010	<0.000010	<u>A</u>	Not Calculated	YES
Chromium (Cr)-Total Cobalt (Co)-Total	0.00010 0.00010	0.00050 0.00050	mg/L mg/L	0.00058	0.00059	D	1.7 0.6	YES YES	0.00014 0.00069	<0.00010 0.00065	B D	0.0 6.0	YES YES
Copper (Cu)-Total	0.00050	0.00250	mg/L	0.0267	0.0267	D	0.0	YES	0.00009	0.00197	C	0.0	YES
Iron (Fe)-Total	0.010	0.050	ma/L	0.235	0.236	D	0.4	YES	0.096	0.089	D	7.6	YES
Lead (Pb)-Total	0.000050	0.000250	mg/L	0.000568	0.000566	D	0.4	YES	0.00223	0.00218	D	2.3	YES
Lithium (Li)-Total	0.0010	0.0050	mg/L	0.0021	0.0021	С	0.0	YES	0.0017	0.0017	С	0.0	YES
Magnesium (Mg)-Total	0.10	0.50	mg/L	5.30	5.26	D	0.8	YES	4.84	4.43	D	8.8	YES
Manganese (Mn)-Total	0.00010	0.00050	mg/L	0.0688	0.0639	D	7.4	YES	0.0148	0.0132	D	11.4	YES
Mercury (Hq)-Total	0.0000050	0.0000250	mq/L	0.0000179	0.0000178	C	0.0	YES	<0.000050	<0.0000050	<u>A</u>	Not Calculated	YES
Molybdenum (Mo)-Total Nickel (Ni)-Total	0.000050 0.00050	0.000250 0.00250	mg/L	0.0152	0.0150	D	1.3 0.4	YES YES	0.000543	0.000555 0.00092	D C	2.2 0.0	YES YES
Nickel (NI)-Total Phosphorus (P)-Total	0.00050	0.00250	mg/L mg/L	<0.0281	<0.0280	A	0.4 Not Calculated	YES	<0.00103	<0.00092	A	0.0 Not Calculated	YES
Potassium (K)-Total	0.050	0.250	mg/L mg/L	<0.050	<0.050	D	24.9	NO	<0.050	<0.050	D	Not Calculated 8.3	YES
Selenium (Se)-Total	0.000050	0.000250	mg/L	0.000122	0.000110	C	0.0	YES	<0.000050	<0.00050	A	Not Calculated	YES
Silicon (Si)-Total	0.10	0.50	mg/L	3.63	3.58	D	1.4	YES	0.89	0.83	D	7.0	YES
Silver (Ag)-Total	0.000010	0.000050	mg/L	0.000104	0.000104	D	0.0	YES	< 0.000010	<0.000010	А	Not Calculated	YES
Sodium (Na)-Total	0.050	0.250	mg/L	1.28	1.26	D	1.6	YES	2.22	2.06	D	7.5	YES
Strontium (Sr)-Total	0.00020	0.00100	mg/L	0.0337	0.0332	D	1.5	YES	0.0268	0.0264	D	1.5	YES
Sulfur (S)-Total	0.50	2.50	mg/L	5.95	6.02	D	1.2	YES	3.10	2.92	D	6.0	YES
Thallium (TI)-Total	0.000010	0.000050	mg/L	0.000027	0.000027	C	0.0	YES	<0.000010	<0.000010	<u>A</u>	Not Calculated	YES
Tin (Sn)-Total Titanium (Ti)-Total	0.00010	0.00050 0.00150	mg/L mg/L	<0.00010 <0.0048	<0.00010 <0.0042	A	Not Calculated Not Calculated	YES YES	<0.00010 <0.00030	<0.00010 <0.00030	AA	Not Calculated Not Calculated	YES YES
Uranium (U)-Total	0.00030	0.00150	ma/L ma/L	<0.0048	<0.0042	D A	Not Calculated	YES	<0.00030	<0.00030	D A	Not Calculated 7.8	YES
Vanadium (V)-Total	0.00050	0.00250	mg/L	0.00239	0.00239	C	0.0	YES	<0.000120	<0.00050	A	Not Calculated	YES
Zinc (Zn)-Total	0.0030	0.0150	mg/L	0.0154	0.0141	c	0.0	YES	0.0075	0.0060	c	0.0	YES
Zirconium (Zr)-Total	0.00030	0.00150	mg/L	0.00190	0.00186	D	2.1	YES	<0.00030	< 0.00030	Ă	Not Calculated	YES

		Sample Area		NOREX MINE					EL BONANZA MINE				
		Sample ID	Units	NX-6	NX-DUP-1				ELB-8-SL	ELB-DUP-1			
Parameter	Lowest Detection Limit	SNP Sample ID 5x Lowest Detection Limit (5x RDL)	Units	12-Sep-2017	12-Sep-2017	Scenario	Value	Acceptable	9-Sep-2017	9-Sep-2017	Scenario	Value	Acceptable
Physical Tests (Water)													
Conductivity	2.0	10.0	uS/cm	53.0	49.9	D	6.0	YES	63.5	64.0	D	0.8	YES
Hardness (as CaCO3)	0.50	2.50	mg/L	21.7	22	D	1.4	YES	32.4	31.4	D	3.1	YES
pH Total Suspended Solids	0.10 3.0	0.50 15.0	pH mg/L	7.32 9.7	7.33 <3.0	DB	0.1 8.2	YES NO	7.71 <3.0	7.70 4.2	D B	0.1 2.7	YES YES
Total Dissolved Solids	13	65	mg/L	9.7	64	C	20.0	YES	39	4.2	C	1.0	YES
Turbidity	0.10	0.50	NTU	1.02	1.14	D	11.1	YES	0.50	0.46	č	0.0	YES
Anions and Nutrients (Water)						_							
Alkalinity, Total (as CaCO3)	1.0	5.0	mg/L	21.4	21.0	D	1.9	YES	32.5	32.2	D	0.9	YES
Ammonia, Total (as N)	0.0050	0.0250	mg/L	0.0090	0.0064	С	0.0	YES	<0.0050	< 0.0050	А	Not Calculated	YES
Bromide (Br)	0.050	0.250	mg/L	<0.050	<0.050	A	Not Calculated	YES	<0.050	< 0.050	A	Not Calculated	YES
Chloride (Cl)	0.50	2.50	mg/L	< 0.50	< 0.50	A	Not Calculated	YES	< 0.50	<0.50	A	Not Calculated	YES
Fluoride (F)	0.020	0.100	mg/L	0.173	0.167	D	3.5	YES	0.089	0.091	C	0.0	YES
Nitrate (as N)	0.0050	0.0250 0.0050	mg/L	<0.0050	<0.0050 <0.0010	A	Not Calculated	YES	<0.0050 <0.0010	<0.0050	A	Not Calculated Not Calculated	YES
Nitrite (as N) Phosphorus (P)-Total Dissolved	0.0010	0.0050	mg/L mg/L	<0.0010 0.0077	<0.0010 0.0064	A	Not Calculated 0.0	YES YES	<0.0010	<0.0010 <0.0020	A A	Not Calculated Not Calculated	YES YES
Phosphorus (P)-Total	0.0020	0.0100	mg/L	0.0227	0.0261	D	13.9	YES	<0.0020	0.0025	B	0.0	YES
Sulfate (SO4)	0.30	1.50	mg/L	2.16	2.15	D	0.5	YES	1.27	1.27	C	0.0	YES
Sulphide as S	0.018	0.090	mg/L	0.022	0.021	C	0.0	YES	<0.018	<0.018	A	Not Calculated	YES
Organic / Inorganic Carbon (Water)													
Dissolved Organic Carbon	0.50	2.50	mg/L	18.3	18.7	D	2.2	YES	3.83	4.07	D	6.1	YES
Total Organic Carbon	0.50	2.50	mg/L	19.5	19.4	D	0.5	YES	3.83	4.02	D	4.8	YES
Total Metals (Water)													
Aluminum (Al)-Total	0.0030	0.0150	mg/L	0.0561	0.0573	D	2.1	YES	0.0066	0.0072	С	0.0	YES
Antimony (Sb)-Total	0.00010	0.00050	mg/L	<0.00010	<0.00010	A	Not Calculated	YES	<0.00010	<0.00010	A	Not Calculated	YES
Arsenic (As)-Total	0.00010	0.00050	mg/L	0.00056	0.00058	D	3.5	YES	0.00020	0.00017	С	0.0	YES
Barium (Ba)-Total Beryllium (Be)-Total	0.000050	0.000250 0.000100	mg/L mg/L	0.00571 <0.00020	0.00578 <0.000020	D	1.2 Not Calculated	YES YES	0.00768	0.00713	D A	7.4 Not Calculated	YES YES
Bismuth (Bi)-Total	0.000020	0.000250	mg/L	<0.000020	<0.000020	A	Not Calculated	YES	<0.000020	<0.000020	A	Not Calculated	YES
Boron (B)-Total	0.010	0.050	mg/L	<0.010	<0.010	A	Not Calculated	YES	0.012	0.012	c	0.0	YES
Cadmium (Cd)-Total	0.0000050	0.0000250	mg/L	<0.0000050	<0.0000050	A	Not Calculated	YES	<0.000050	< 0.000050	A	Not Calculated	YES
Calcium (Ca)-Total	0.050	0.250	mg/L	5.23	5.29	D	1.1	YES	8.95	8.76	D	2.1	YES
Cesium (Cs)-Total	0.000010	0.000050	mg/L	<0.000010	<0.000010	A	Not Calculated	YES	<0.000010	<0.000010	А	Not Calculated	YES
Chromium (Cr)-Total	0.00010	0.00050	mq/L	0.00018	0.00038	С	0.0	NO	<0.00010	<0.00010	A	Not Calculated	YES
Cobalt (Co)-Total	0.00010	0.00050	mg/L	0.00022	0.00022	C	0.0	YES	<0.00010	<0.00010	A	Not Calculated	YES
Copper (Cu)-Total	0.00050	0.00250	mg/L	<0.00050	<0.00050	A	Not Calculated	YES	0.00115	0.00110	C	0.0	YES YES
Iron (Fe)-Total Lead (Pb)-Total	0.010	0.050 0.000250	mg/L mg/L	0.142 0.000160	0.147 0.000120	D C	3.5 0.0	YES YES	0.087	0.082	D A	5.9 Not Calculated	YES
Lithium (Li)-Total	0.0010	0.0050	mg/L	<0.0010	0.00120	В	0.0	YES	<0.000030	<0.000030	A	Not Calculated	YES
Magnesium (Mg)-Total	0.10	0.50	mg/L	2.10	2.13	D	1.4	YES	2.44	2.32	D	5.0	YES
Manganese (Mn)-Total	0.00010	0.00050	mg/L	0.0168	0.0176	D	4.7	YES	0.0127	0.0124	D	2.4	YES
Mercury (Hg)-Total	0.0000050	0.0000250	mq/L	<0.0000050	<0.0000050	А	Not Calculated	YES	< 0.0000050	<0.0000050	А	Not Calculated	YES
Molybdenum (Mo)-Total	0.000050	0.000250	mg/L	0.000056	0.000075	С	0.0	YES	0.000199	0.000183	С	0.0	YES
Nickel (Ni)-Total	0.00050	0.00250	mg/L	<0.00050	<0.00050	A	Not Calculated	YES	<0.00050	<0.00050	A	Not Calculated	YES
Phosphorus (P)-Total	0.050	0.250	mg/L	<0.050	< 0.050	A	Not Calculated	YES	< 0.050	< 0.050	A	Not Calculated	YES
Potassium (K)-Total	0.10	0.50	mg/L	0.41	0.41	C	0.0	YES	0.42	0.40	C	0.0	YES
Selenium (Se)-Total Silicon (Si)-Total	0.000050	0.000250	mg/L mg/L	0.000052	<0.000050 1.93	B D	0.0	YES YES	<0.000050 1.06	<0.000050 1.00	A D	Not Calculated 5.8	YES YES
Silicon (SI)-Total Silver (Ag)-Total	0.000010	0.000050	mg/L mg/L	<0.000010	<0.000010	A	Not Calculated	YES	<0.000010	<0.000010	A	5.8 Not Calculated	YES
Sodium (Na)-Total	0.050	0.250	mg/L	2.18	2.26	D	3.6	YES	0.996	0.939	D	5.9	YES
Strontium (Sr)-Total	0.00020	0.00100	mg/L	0.0101	0.0103	D	2.0	YES	0.0133	0.0130	D	2.3	YES
Sulfur (S)-Total	0.50	2.50	mg/L	1.07	1.13	С	0.1	YES	0.61	<0.50	В	0.4	YES
Thallium (TI)-Total	0.000010	0.000050	mg/L	<0.000010	<0.000010	A	Not Calculated	YES	<0.000010	<0.000010	A	Not Calculated	YES
Tin (Sn)-Total	0.00010	0.00050	mq/L	<0.00010	<0.00010	A	Not Calculated	YES	<0.00010	<0.00010	A	Not Calculated	YES
Titanium (Ti)-Total	0.00030	0.00150	mq/L	0.00040	< 0.00030	В	0.0	YES	< 0.00030	< 0.00030	A	Not Calculated	YES
Uranium (U)-Total	0.000010	0.000050	mg/L	0.000074	0.000077	D	4.0	YES	0.000135	0.000132	D	2.2	YES
Vanadium (V)-Total	0.00050 0.0030	0.00250 0.0150	mg/L	<0.00050 0.0039	< 0.00050	A C	Not Calculated	YES YES	< 0.00050	<0.00050	A	Not Calculated	YES YES
Zinc (Zn)-Total			ma/L		0.0037		0.0		< 0.0030	0.0043	В	0.0	

		Sample Area CONTACT LAKE MINE											
		Sample ID		CL-3	CL-DUP-2				CL-2B	CL-DUP-1			
		SNP Sample ID	Units	S17L8-002 (12G)	S17L8-002 (12G)								
Parameter	Lowest Detection Limit	5x Lowest Detection Limit (5x RDL)		10-Sep-2017	10-Sep-2017	Scenario	Value	Acceptable	9-Sep-2017	9-Sep-2017	Scenario	Value	Acceptable
Physical Tests (Water)													
Conductivity	2.0	10.0	uS/cm	238	238	D	0.0	YES	223	221	D	0.9	YES
Hardness (as CaCO3)	0.50	2.50	mg/L	128	128	D	0.0	YES	122	126	D	3.2	YES
pH Tatal Supported Solida	0.10 3.0	0.50 15.0	pH	8.25	8.26 <3.0	D A	0.1 Not Calculated	YES YES	8.19 3.1	8.19 <3.0	D B	0.0	YES YES
Total Suspended Solids Total Dissolved Solids	13	65	mg/L mg/L	<3.0 150	<3.0	D	0.7	YES	144	142	D	1.6	YES
Turbidity	0.10	0.50	NTU	0.45	0.40	C	0.7	YES	0.35	0.31	C	0.0	YES
Anions and Nutrients (Water)	0.10	0.00		0.10	0.10	<u> </u>	0.1	120	0.00	0.01	Ŭ	0.0	120
Alkalinity, Total (as CaCO3)	1.0	5.0	mq/L	134	133	D	0.7	YES	123	122	D	0.8	YES
Ammonia, Total (as N)	0.0050	0.0250	mg/L	0.0119	0.0137	С	0.0	YES	0.0092	0.0076	С	0.0	YES
Bromide (Br)	0.050	0.250	mg/L	<0.050	< 0.050	А	Not Calculated	YES	<0.050	< 0.050	А	Not Calculated	YES
Chloride (CI)	0.50	2.50	mg/L	<0.50	<0.50	A	Not Calculated	YES	<0.50	<0.50	A	Not Calculated	YES
Fluoride (F)	0.020	0.100	mg/L	0.297	0.295	D	0.7	YES	0.262	0.262	D	0.0	YES
Nitrate (as N)	0.0050	0.0250	mg/L	<0.0050	<0.0050	A	Not Calculated	YES YES	0.0296	0.0304	D	2.7	YES YES
Nitrite (as N) Phosphorus (P)-Total Dissolved	0.0010	0.0050	mg/L mg/L	<0.0010	<0.0010	A C	Not Calculated	YES	<0.0010	<0.0010	A	Not Calculated	YES
Phosphorus (P)-Total	0.0020	0.0100	mg/L	0.0032	0.0031	c	0.0	YES	<0.0023	<0.0024	A	Not Calculated	YES
Sulfate (SO4)	0.30	1.50	mg/L	6.28	6.27	D	0.2	YES	5.88	5.88	D	0.0	YES
Sulphide as S	0.018	0.090	mg/L	<0.018	<0.018	A	Not Calculated	YES	< 0.018	<0.018	A	Not Calculated	YES
Organic / Inorganic Carbon (Water)													
Dissolved Organic Carbon	0.50	2.50	mg/L	9.17	8.84	D	3.7	YES	7.64	8.02	D	4.9	YES
Total Organic Carbon	0.50	2.50	mg/L	8.98	9.02	D	0.4	YES	7.80	8.34	D	6.7	YES
Total Metals (Water)													
Aluminum (Al)-Total	0.0030	0.0150	mg/L	0.0033	0.0038	С	0.0	YES	0.0061	0.0059	С	0.0	YES
Antimony (Sb)-Total	0.00010	0.00050	mg/L	0.00047	0.00048	С	0.0	YES	0.00027	0.00028	С	0.0	YES
Arsenic (As)-Total	0.00010	0.00050	mg/L	0.0115	0.0115	D	0.0	YES	0.00958	0.00966	D	0.8	YES
Barium (Ba)-Total Beryllium (Be)-Total	0.000050	0.000250 0.000100	mg/L mg/L	0.0284	0.0279	D A	1.8 Not Calculated	YES YES	0.0187	0.0188	D A	0.5 Not Calculated	YES YES
Bismuth (Bi)-Total	0.000020	0.000250	ma/L	<0.000020	<0.000020	A	Not Calculated	YES	<0.000020	<0.000020	A	Not Calculated	YES
Boron (B)-Total	0.010	0.050	mg/L	0.034	0.035	C	0.0	YES	0.027	0.028	C	0.0	YES
Cadmium (Cd)-Total	0.0000050	0.0000250	mg/L	< 0.0000050	< 0.0000050	A	Not Calculated	YES	< 0.000050	< 0.0000050	Ă	Not Calculated	YES
Calcium (Ca)-Total	0.050	0.250	mg/L	30.6	30.7	D	0.3	YES	28.9	28.2	D	2.5	YES
Cesium (Cs)-Total	0.000010	0.000050	mg/L	0.000013	0.000014	С	0.0	YES	<0.000010	<0.000010	A	Not Calculated	YES
Chromium (Cr)-Total	0.00010	0.00050	mq/L	<0.00010	<0.00010	A	Not Calculated	YES	<0.00010	<0.00010	A	Not Calculated	YES
Cobalt (Co)-Total	0.00010	0.00050	mq/L	0.00012	0.00011	C D	0.0	YES	0.00024	0.00025	C D	0.0	YES
Copper (Cu)-Total Iron (Fe)-Total	0.00050	0.00250	mg/L mg/L	0.00813	0.00796	C	0.0	YES YES	0.00575	0.00520	C	10.0	YES YES
Lead (Pb)-Total	0.00050	0.000250	mg/L	<0.000050	<0.000050	A	Not Calculated	YES	<0.000050	<0.000050	A	Not Calculated	YES
Lithium (Li)-Total	0.0010	0.0050	mg/L	0.0031	0.0032	C	0.0	YES	0.0029	0.0029	C	0.0	YES
Magnesium (Mg)-Total	0.10	0.50	mg/L	10.9	10.6	D	2.8	YES	10.4	10.0	D	3.9	YES
Manganese (Mn)-Total	0.00010	0.00050	mg/L	0.0973	0.0970	D	0.3	YES	0.0885	0.100	D	12.2	YES
Mercury (Hg)-Total	0.0000050	0.0000250	mq/L	<0.000050	<0.000050	A	Not Calculated	YES	<0.000050	0.0000050	В	0.0	YES
Molybdenum (Mo)-Total	0.000050	0.000250	mg/L	0.000435	0.000402	D	7.9	YES	0.000435	0.000426	D	2.1	YES
Nickel (Ni)-Total	0.00050	0.00250	mg/L	0.00125	0.00125	C	0.0	YES	0.00104	0.00114	C	0.0	YES
Phosphorus (P)-Total Potassium (K)-Total	0.050	0.250	mg/L mg/L	<0.050 1.55	<0.050 1.55	A D	Not Calculated 0.0	YES YES	<0.050 1.38	<0.050 1.36	A D	Not Calculated 1.5	YES YES
Selenium (Se)-Total	0.000050	0.000250	mg/L mg/L	<0.000050	<0.000050	A	Not Calculated	YES	<0.000050	<0.000050	A	Not Calculated	YES
Silicon (Si)-Total	0.10	0.50	mg/L	2.29	2.31	D	0.9	YES	2.46	2.35	D	4.6	YES
Silver (Ag)-Total	0.000010	0.000050	mg/L	0.000035	0.000040	C	0.0	YES	0.000031	0.000024	C	0.0	YES
Sodium (Na)-Total	0.050	0.250	mg/L	4.84	4.77	D	1.5	YES	4.72	4.55	D	3.7	YES
Strontium (Sr)-Total	0.00020	0.00100	mg/L	0.0782	0.0783	D	0.1	YES	0.0703	0.0687	D	2.3	YES
Sulfur (S)-Total	0.50	2.50	mg/L	2.52	2.52	D	0.0	YES	2.41	2.27	C	0.1	YES
Thallium (TI)-Total	0.000010	0.000050	mg/L	<0.000010	<0.000010	<u>A</u>	Not Calculated	YES	<0.000010	<0.000010	A	Not Calculated	YES
Tin (Sn)-Total	0.00010	0.00050	mg/L	<0.00010	<0.00010	<u>A</u>	Not Calculated	YES YES	<0.00010	<0.00010	<u>A</u>	Not Calculated	YES
Titanium (Ti)-Total Uranium (U)-Total	0.00030	0.00150	ma/L ma/L	<0.00030 0.0490	<0.00030 0.0482	A D	Not Calculated	YES	<0.00030 0.0480	<0.00030 0.0472	A D	Not Calculated 1.7	YES YES
Vanadium (V)-Total	0.00050	0.00050	mg/L mg/L	<0.00050	<0.00050	A	Not Calculated	YES	<0.00050	<0.00050	A	1.7 Not Calculated	YES
Zinc (Zn)-Total	0.00030	0.0150	mg/L	<0.0030	0.0055	B	0.0	NO	<0.00030	0.0036	B		YES
Zirconium (Zr)-Total	0.00030	0.00150	mg/L	<0.00030	< 0.00030	A	Not Calculated	YES	<0.00030	< 0.00030	A	Not Calculated	YES

		Sample Area				SAWMILL BAY				FIELD BLANKS	
		Sample ID SNP Sample ID	Units	SW-B-2	SW-DUP-1				T-FIELD BLANK	ELB-FIELD BLANK	CL-FIELD BLANK
Parameter	Lowest Detection Limit	5x Lowest Detection Limit (5x RDL)		42989	42989	Scenario	Value	Acceptable	Water	Water	Water
Physical Tests (Water)											
Conductivity	2.0	10.0	uS/cm	166	160	D	3.7	YES	<2.0	<2.0	<2.0
Hardness (as CaCO3) pH	0.50	2.50 0.50	mg/L pH	77.9 7.99	74 7.97	D D	5.1 0.3	YES YES	<0.50 5.43	<0.50 5.40	<0.50 5.44
Total Suspended Solids	3.0	15.0	mg/L	<3.0	<3.0	A	Not Calculated	YES	<3.0	<3.0	<3.0
Total Dissolved Solids	13	65	ma/L	98	96	D	2.1	YES	<10	<10	<10
Turbidity	0.10	0.50	NTU	0.19	0.2	С	0.0	YES	<0.10	<0.10	<0.10
Anions and Nutrients (Water)											
Alkalinity, Total (as CaCO3)	1.0	5.0	mq/L	60	56.8	D	5.5	YES	<1.0	<1.0	<1.0
Ammonia, Total (as N)	0.0050	0.0250	mg/L	< 0.0050	< 0.0050	A	Not Calculated	YES	<0.0050	< 0.0050	< 0.0050
Bromide (Br)	0.050	0.250	mg/L	< 0.050	< 0.050	A D	Not Calculated	YES	<0.050 <0.50	<0.050	<0.050
Chloride (CI) Fluoride (F)	0.50	2.50 0.100	mg/L mg/L	4.96 0.08	4.98	C	0.4	YES YES	<0.50	<0.50 <0.020	<0.50 <0.020
Nitrate (as N)	0.0050	0.0250	mg/L	0.139	0.141	D	1.4	YES	<0.020	<0.020	<0.0050
Nitrite (as N)	0.0010	0.0050	mg/L	<0.0010	<0.0010	A	Not Calculated	YES	<0.0010	<0.0010	<0.0000
Phosphorus (P)-Total Dissolved	0.0020	0.0100	mg/L	<0.0020	<0.0020	А	Not Calculated	YES	<0.0020	<0.0020	<0.0020
Phosphorus (P)-Total	0.0020	0.0100	mg/L	<0.0020	<0.0020	A	Not Calculated	YES	<0.0020	<0.0020	<0.0020
Sulfate (SO4)	0.30	1.50	mg/L	16.8	16	D	4.9	YES	<0.30	<0.30	<0.30
Sulphide as S	0.018	0.090	mg/L	<0.018	<0.018	A	Not Calculated	YES	<0.018	<0.018	<0.018
Organic / Inorganic Carbon (Water)	0.50	0.50	0	171	0.70	<u>^</u>	1.0	\/F.0	0.50	0.50	0.50
Dissolved Organic Carbon Total Organic Carbon	0.50	2.50 2.50	mg/L mg/L	1.74 1.67	2.72 2.21	C C	1.0 0.5	YES YES	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50
Total Metals (Water)	0.50	2.50	mg/∟	1.07	2.21	U	0.5	160	<0.50	<0.50	<0.50
Aluminum (Al)-Total	0.0030	0.0150	ma/L	0.0046	0.005	С	0.0	YES	<0.0030	<0.0030	<0.0030
Antimony (Sb)-Total	0.00010	0.00050	mg/L	<0.00010	<0.00010	A	Not Calculated	YES	<0.00010	<0.00010	<0.00010
Arsenic (As)-Total	0.00010	0.00050	mg/L	0.0002	0.00019	C	0.0	YES	<0.00010	< 0.00010	< 0.00010
Barium (Ba)-Total	0.000050	0.000250	mg/L	0.0236	0.0232	D	1.7	YES	< 0.000050	<0.000050	<0.000050
Beryllium (Be)-Total	0.000020	0.000100	mq/L	<0.000020	<0.000020	A	Not Calculated	YES	< 0.000020	<0.000020	<0.000020
Bismuth (Bi)-Total	0.000050	0.000250	mg/L	<0.000050	<0.000050	A	Not Calculated	YES	<0.000050	< 0.000050	<0.000050
Boron (B)-Total Cadmium (Cd)-Total	0.010	0.050	mg/L	0.013	0.013	C	0.0 Not Calculated	YES YES	<0.010 <0.000050	<0.010	<0.010 <0.0000050
Cadmium (Cd)-Total Calcium (Ca)-Total	0.000050	0.0000250	mg/L mg/L	<0.0000050	18.6	A D	0.5	YES	<0.000050	<0.000050	<0.000050
Cesium (Cs)-Total	0.000010	0.000050	mg/L	<0.000010	<0.000010	A	Not Calculated	YES	<0.000010	<0.00010	<0.000010
Chromium (Cr)-Total	0.00010	0.00050	mg/L	<0.00010	0.00015	В	0.0	NO	<0.00010	<0.00010	0.00036
Cobalt (Co)-Total	0.00010	0.00050	mg/L	<0.00010	<0.00010	А	Not Calculated	YES	<0.00010	< 0.00010	<0.00010
Copper (Cu)-Total	0.00050	0.00250	mg/L	<0.00050	<0.00050	A	Not Calculated	YES	< 0.00050	<0.00050	< 0.00050
Iron (Fe)-Total	0.010	0.050	mg/L	<0.010	<0.010	A	Not Calculated	YES	<0.010	<0.010	<0.010
Lead (Pb)-Total	0.000050	0.000250 0.0050	mg/L	<0.000050	<0.000050 0.0031	A	Not Calculated 0.0	YES	<0.000050	<0.000050	<0.000050 <0.0010
Lithium (Li)-Total Magnesium (Mg)-Total	0.0010	0.0050	mg/L mg/L	0.0033 7.55	7.54	C D	0.0	YES YES	<0.0010 <0.10	<0.0010 <0.10	<0.0010
Manganese (Mn)-Total	0.00010	0.00050	ma/L	0.00084	0.00068	D	21.1	NO	<0.00010	<0.00010	<0.00010
Mercury (Hg)-Total	0.0000050	0.0000250	mg/L	<0.0000050	<0.0000050	A	Not Calculated	YES	<0.0000050	<0.0000050	<0.0000050
Molybdenum (Mo)-Total	0.000050	0.000250	mg/L	0.000339	0.000339	D	0.0	YES	< 0.000050	< 0.000050	< 0.000050
Nickel (Ni)-Total	0.00050	0.00250	mg/L	<0.00050	<0.00050	A	Not Calculated	YES	<0.00050	<0.00050	< 0.00050
Phosphorus (P)-Total	0.050	0.250	mg/L	<0.050	<0.050	A	Not Calculated	YES	< 0.050	<0.050	<0.050
Potassium (K)-Total	0.10	0.50	mg/L	0.76	0.76	D	0.0	YES	<0.10	<0.10	<0.10
Selenium (Se)-Total	0.000050	0.000250	mg/L	<0.000050	<0.000050	A	Not Calculated	YES	<0.000050	<0.000050	<0.000050
Silicon (Si)-Total Silver (Ag)-Total	0.10	0.50 0.000050	mg/L mg/L	1.14 <0.000010	1.12 <0.000010	D A	1.8 Not Calculated	YES YES	<0.10 <0.000010	<0.10 <0.000010	<0.10 <0.000010
Soliver (Ag)-Total Sodium (Na)-Total	0.000010	0.250	mg/L mg/L	4.26	4.22	D	0.9	YES	<0.00010	<0.00010	<0.00010
Strontium (Sr)-Total	0.00020	0.00100	mg/L	0.119	0.115	D	3.4	YES	<0.00020	<0.00020	<0.00020
Sulfur (S)-Total	0.50	2.50	mg/L	5.95	5.47	D	8.4	YES	<0.50	< 0.50	<0.50
Thallium (TI)-Total	0.000010	0.000050	mg/L	<0.000010	<0.000010	А	Not Calculated	YES	<0.000010	<0.000010	<0.000010
Tin (Sn)-Total	0.00010	0.00050	mg/L	<0.00010	<0.00010	A	Not Calculated	YES	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Total	0.00030	0.00150	mg/L	<0.00030	<0.00030	A	Not Calculated	YES	<0.00030	<0.00030	<0.00030
Uranium (U)-Total	0.000010	0.000050	mg/L	0.000321	0.000308	D	4.1	YES	< 0.000010	<0.000010	< 0.000010
Vanadium (V)-Total	0.00050 0.0030	0.00250 0.0150	mg/L mg/L	<0.00050 <0.0030	<0.00050 0.0039	A B	Not Calculated 0.0	YES YES	<0.00050 <0.0030	<0.00050 <0.0030	<0.00050 <0.0030
Zinc (Zn)-Total											

Table B24 - QA/QC Sample Analysis: Dissolved Metals, Hydrocarbons and Radionuclides

Dissolved Metals (Water) Post P			NORTHRIM MI	NE					
SNP sample tu Parameter Si Lovest Detection Limit (sk Petection Limit (sk Petectio	NO-DUP-1	NO-2							
Aluminum (A)-Dissolved 0.0010 0.0056 mqL 0.0012 0.0102 T.2539 YES 0.00019 Aramicron (5b)-Dissolved 0.00010 0.00050 mqL 0.00112 D 1.56250 YES 0.00017 Brain (Ba)-Dissolved 0.000050 mqL 0.00124 D 0.2263 YES 0.00025 Brain (Ba)-Dissolved 0.000020 0.000020 0.000020 A Net Calculated YES -0.000026 Brain (Ba)-Dissolved 0.000050 Mark 0.000050 A Net Calculated YES -0.00005 Brain (Ba)-Dissolved 0.000050 mqL 0.000050 A Net Calculated YES -0.00005 Brain (Ba)-Dissolved 0.00010 0.000050 mqL 0.00010 A Net Calculated YES -0.00010 Cobust (Calculated) 0.00010 mqL 0.00010 A Net Calculated YES -0.00010 Cobust (Calculated) 0.00010 mqL -0.00010 A Net Calculated </th <th>017 12-Sep-2017</th> <th>12-Sep-2017</th> <th>Scenario</th> <th>Value</th> <th>Acceptable</th>	017 12-Sep-2017	12-Sep-2017	Scenario	Value	Acceptable				
Antmory (Sb)-Dissolved 0.00110 0.00026 mg/L 0.00121 D 1.56250 YES 0.00019 Baruin (Ba)-Dissolved 0.000050 0.000250 mg/L 0.01614 D 0.6679 VES 0.00253 Baruin (Ba)-Dissolved 0.000050 0.000100 mg/L 0.01654 D.0162 D 0.6679 VES 0.00025 Bismuth (Bi)-Dissolved 0.000056 0.000020 0.00100 VES <0.000056									
Argenic (As)Dissolved 0.00010 0.00020 mgl, 0.0187 D 0.3283 YES 0.0177 Barun (Ba)-Dissolved 0.000020 0.00010 mgl, 0.000050 A. Not Calculated YES 0.000020 Barun (Ba)-Dissolved 0.000020 0.00010 mgl, 0.000050 A. Not Calculated YES -0.000020 Barun (Ba)-Dissolved 0.00000 0.000000 Not Calculated YES -0.00000 Barun (Ba)-Dissolved 0.000010 0.000000 mgl, 0.0000055 C 0.000008 YES -0.00001 Calculation 0.000010 0.000000 mgl, 0.000010 C 0.000003 YES -0.00001 Coloation 0.000010 0.000000 mgl, -0.00010 A. Not Calculated YES -0.00010 Coloation 0.00010 0.000000 mgl, -0.00101 A. Not Calculated YES -0.00010 Coloation mgl, -0.00010 0.000050 A. Not Calculated YES 0.00011			С	0.0	YES				
Bartum (Ba-Dissolved 0.000250 mg/L 0.01653 0.01641 D 0.6079 YES 0.00533 Bardum (Bb-Dissolved 0.000020 0.000100 mg/L 0.000020 A Not Calculated YES <0.000020			С	0.0	YES				
Bendium (Ba)-Dissolved 0.000020 0.000020 A Not Calculated YES 0.000050 Bornun (Br)-Dissolved 0.0010 0.0020 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.0000055 C 0.0000061 VES <.0000063			D	0.8	YES				
Barnut (Bi):Dissolved 0.000050 0.000050 -0.000050 A Not Calculated YES -0.000050 Cadmim (G2)-Dissolved 0.0000250 mg/L 0.0000053 C.0000055 C 0.0000050 VES -0.00005 Cadium (G2)-Dissolved 0.000010 0.000050 mg/L 0.000010 C 0.000003 VES -0.00000 Cesium (G2)-Dissolved 0.000010 0.000050 mg/L 0.000010 C 0.000003 VES -0.00010 Cobalt (G2)-Dissolved 0.00010 0.00050 mg/L -0.00010 A Not Calculated YES -0.00010 Cobalt (G2)-Dissolved 0.00010 0.00020 0.00110 mg/L -0.00110 A Not Calculated YES -0.00011 Cobalt (G2)-Dissolved 0.00010 0.00250 mg/L -0.0010 A Not Calculated YES -0.00011 Cobalt (G2)-Dissolved 0.00010 mg/L -0.00050 -0.00724 VES -0.00014 Linium (G2)-Dissolved 0.00			D	4.3	YES				
Born (B):Disolved 0.010 0.050 mgL 0.026 0.026 C 0.000 VES -0.0100 Carlium (Ca)-Dissolved 0.0500 0.000050 mgL 23.6 23.9 D 1.3 VES -20.00005 Carlium (Ca)-Dissolved 0.000010 0.000050 mgL -0.00010 A.0000010 A.000003 VES <0.000010			A	Not Calculated	YES				
Cadmim (Ca)-Dissolved 0.000050 0.0000051 C 0.00000081 YES < Casium (Ca)-Dissolved 0.000010 0.000050 mgL 0.000010 C.0000003 YES 23.6 Consum (Ca)-Dissolved 0.00010 0.000050 mgL 0.000010 A Not Calculated YES <0.00010			A	Not Calculated	YES				
Calcium (Ca)-Dissolved 0.050 mg/L 23.6 23.9 D 1.3 YES 23.6 Cesium (Ca)-Dissolved 0.00010 0.000050 mg/L 0.000010 A. 000010 A. 0000010 A. 000010 A. 000			A	Not Calculated	YES				
Cesum (Cs)-Dissolved 0.000010 0.000050 mg/L 0.000010 C. 0.000101 A Not Calculated YES <0.00010 Cobalt (Cs)-Dissolved 0.00010 mg/L <0.00010			A	Not Calculated	YES				
Chromium (Cr)-Dissolved 0.00010 0.00050 mg/L < 0.00010 ANC Calculated YES < 0.00010 Cobalt (Co-Dissolved 0.00020 0.00100 mg/L 0.000741 D Not Calculated YES 0.00172 Cobalt (Co-Dissolved 0.00050 mg/L < <td><0.00050</td> ANC Calculated YES 0.00011 Lead (Pb-Dissolved 0.00050 mg/L < <td><0.00050</td> ANC Calculated YES 0.00060 Manganese (Mh)-Dissolved 0.0101 0.00050 mg/L < <td><0.00050</td> ANC Calculated YES 4.98 Manganese (Mh)-Dissolved 0.000050 mg/L < <td><0.000050</td> ANC Calculated YES 4.98 Manganese (Mh)-Dissolved 0.000050 mg/L <0.000250	<0.00050	<0.00050	<0.00050	<0.000050	23.5		D	0.4	YES
Cobalt (Co)-Dissolved 0.00010 0.00010 mol. 0.00010 AN Calculated YES 0.0011 Lind (Pb)-Dissolved 0.00050 0.000250 mol. -0.00080 D 2.5316 YES 0.00010 Lind (Pb)-Dissolved 0.0010 0.0050 mol. 0.00078 0.00080 D 2.5316 YES 0.00010 Manganeset (Mn)-Dissolved 0.00010 0.00050 mol. 0.00012 0.000012 C.0000000 AN Calculated YES 0.00033 Mecury (Ha)-Dissolved 0.000050 0.000250 mol. 0.002530 D 0.28702 YES 0.00054 Moleckel (N)-Dissolved 0.00050 0.00250 mol. 0.00055 D 0.28702 YES 0.0050 Dissolved 0.050 0.250 mgl. 0.050 A			A	Not Calculated	YES				
Concert (Cu)-Dissolved 0.0010 mod.L 0.00742 0.00741 D 0.13486 YES 0.0011 Lond (Fb)-Dissolved 0.00050 mod.L <0.00050			A	Not Calculated	YES YES				
Inn (Fe)-Dissolved 0.010 0.050 mg/L <0.010 A Not Calculated YES 0.040 Liftlium (L)-Dissolved 0.0010 0.0050 mg/L 0.00800 D 2.5316 YES 0.00000 Liftlium (L)-Dissolved 0.0010 0.00050 mg/L 4.73 4.64 D 1.92 YES 4.98 Mananese (Mn)-Dissolved 0.000050 0.000250 mg/L -0.000050 A.0000050 A.00000050 A.0000050 A.0			A D	Not Calculated	YES				
Lead (Pb)-Dissolved 0.000050 Molt Calculated YES 0.000050 Magnessum (Ma)-Dissolved 0.0010 0.0050 mg/L 4.00078 0.00000 P 2.5316 YES 4.981 Magnessum (Ma)-Dissolved 0.00010 0.00050 mg/L 4.73 4.64 D 1.92 YES 4.981 Manganess (Mn)-Dissolved 0.000050 0.0000250 mg/L 0.000050 4.0000050 4.0000050 4.0000050 4.0000050 4.0000050 4.0000050 4.0000050 4.0000050 4.0000050 4.0000050 4.0000050 4.0000050 4.0000050 4.0000050 4.0000050 4.0000050 4.000050 4.	2 0.00174 0.042		C	0.0	YES				
Lithium (L)-Dissolved 0.0010 0.0050 mg/L 4.73 4.64 D 1.92 YES 4.98 Mannaseu (Mh)-Dissolved 0.00010 0.000250 mg/L 4.73 4.64 D 1.92 YES 4.98 Mannanese (Mh)-Dissolved 0.000050 mg/L 0.000050 -0.000050 A.0000050 VES 0.000050 Mohdmannese (Mh)-Dissolved 0.000050 0.000250 mg/L -0.00255 D 0.28702 YES 0.000050 Mohdmannese (Mh)-Dissolved 0.00050 0.000250 mg/L -0.00257 D 0.28702 YES -0.000050 Prosphorus (P)-Dissolved 0.0050 0.000250 mg/L -0.00050 A. Not Calculated YES -0.080 Belenium (S)-Dissolved 0.000050 0.000250 mg/L -0.00050 A. Not Calculated YES -0.030 Siltern (A)-Dissolved 0.000010 0.000050 A. Not Calculated YES -0.030 Softm (Na)-Dissolved 0.000010 0.000010 -0.0			D	3.2	YES				
Magnasium (Ma):Dissolved 0.10 0.50 mg/L 4.73 4.64 D 1.92 YES 4.98 Manganese (Mn-Dissolved 0.00010 0.000050 0.00012 0.000012 C 0.000050 A Not Calculated YES 0.000050 Machanum (Ma):Dissolved 0.000050 0.000250 mg/L 0.000250 -0.000050 A Not Calculated YES 0.00053 Mohdenum (Ma):Dissolved 0.00050 0.00250 mg/L -0.06375 0.00374 D 0.26702 YES -0.000051 Phosphorus (P):Dissolved 0.010 0.50 mg/L -0.050 -0.080 A Not Calculated YES -0.050 Steinium (Se):Dissolved 0.00050 0.000250 mg/L -0.000050 A Not Calculated YES -0.000051 Silver (Aa):Dissolved 0.000050 mg/L -0.646 0.659 D 1.992 YES -0.0272 Silver (Aa):Dissolved 0.00050 mg/L -7.78 7.73 D			C	0.0	YES				
Manganese (Mn)-Dissolved 0.00010 0.000050 mg/L 0.00012 C 0.000000 YES 0.000033 Mercurv (Hq)-Dissolved 0.000050 0.0000250 mg/L <0.0000250	4.99		D	0.2	YES				
Intercurv (Hal-Dissolved 0.0000050 0.0000250 mg/L <0.0000050 A Not Calculated YES <0.000053 Nickel (NI)-Dissolved 0.000250 mg/L 0.00253 0.00256 D 0.78740 YES 0.000053 Nickel (NI)-Dissolved 0.0050 0.00250 mg/L <0.0050			C	0.0	YES				
Mohbcherum (Mo)-Dissolved 0.00050 0.00250 mg/L 0.00255 D 0.78740 YES 0.00054 Nickel (M)-Dissolved 0.0050 0.00250 mg/L 0.00374 D 0.26702 YES 0.00054 Phosphorus (P)-Dissolved 0.050 0.250 mg/L 1.98 D 0.50 YES 0.000056 Selinium (S)-Dissolved 0.000050 0.000250 mg/L 0.000050 A Not Calculated YES 0.000010 Silicon (S)-Dissolved 0.000010 0.000010 A.000010 A.000010 <td< td=""><td></td><td></td><td>A</td><td>Not Calculated</td><td>YES</td></td<>			A	Not Calculated	YES				
Nickel (Ni)-Dissolved 0.00250 mg/L 0.00374 D 0.26702 YES 0.0008 Phosphorus (P)-Dissolved 0.050 0.250 mg/L <0.050			D	0.4	YES				
Phosphorus (P)-Dissolved 0.050 -0.250 mg/L <0.050 A Not Calculated YES <0.050 Potassium (K)-Dissolved 0.000050 0.000250 mg/L <0.000050			C	0.0	YES				
Potassium (K)-Dissolved 0.10 0.50 YES 0.88 Selenium (Se)-Dissolved 0.000050 0.000250 mg/L <0.000050			Ă	Not Calculated	YES				
Selenium (Se)-Dissolved 0.000050 mg/L <0.000050 cd. 000050 A Not Calculated YES 0.000015 Silicon (Si)-Dissolved 0.000010 0.000010 0.000010 cd. 000010 A Not Calculated YES 0.00001 Sodium (Na)-Dissolved 0.000010 0.000010 mg/L <0.000010	0.82		D	7.1	YES				
Silver (Åq)-Dissolved 0.000010 0.000050 mg/L <0.000010 <0.000010 A Not Calculated YES <0.00001 Softum (Na)-Dissolved 0.00020 0.00100 mg/L 0.07755 0.07754 D 0.1325 YES 0.00272 Suffur (S)-Dissolved 0.000010 0.000010 0.000010 0.00272 YES 0.0272 Thallium (Ti)-Dissolved 0.000010 0.000050 mg/L <0.000010			В	0.0	YES				
Sodium (Na)-Dissolved 0.050 0.250 mg/L 7.78 7.53 D 3.27 YES 2.31 Strontium (Sr)-Dissolved 0.00020 0.00100 mg/L 0.0755 0.0754 D 0.1325 YES 0.0272 Sulfur (S)-Dissolved 0.000010 0.000050 mg/L 4.0.00010 A.000010 A.Not Calculated YES 4.000011 Thallium (TI)-Dissolved 0.00010 0.000050 mg/L <0.00010	0.873	0.853	D	2.3	YES				
Strontium (Sr)-Dissolved 0.00020 0.00100 mg/L 0.0755 0.0754 D 0.1325 YES 0.0272 Suffur (Sr)-Dissolved 0.00010 0.000050 mg/L 5.15 5.24 D 1.73 YES 3.04 Thallium (Ti)-Dissolved 0.00010 0.000050 mg/L <0.00010	10 <0.000010	< 0.000010	A	Not Calculated	YES				
Sulfur (S)-Dissolved 0.50 2.50 mg/L 5.15 5.24 D 1.73 YES 3.04 Thallium (Ti)-Dissolved 0.000010 0.000050 mg/L <0.000010	2.34	2.31	D	1.3	YES				
Thallium (TI)-Dissolved 0.000010 0.000050 mg/L <0.00010 <0.00010 A Not Calculated YES <0.00011 Tinalium (TI)-Dissolved 0.00010 0.00050 mg/L <0.00010	0.0276	0.0272	D	1.5	YES				
Tin (Sn)-Dissolved 0.00010 0.00050 mg/L <0.00010 <0.00010 A Not Calculated YES <0.00010 Titanium (Ti)-Dissolved 0.00030 0.00150 mg/L <0.00030	3.03		D	0.3	YES				
Titanium (Ti)-Dissolved 0.00030 0.00150 mg/L <0.00030 <0.00030 A Not Calculated YES <0.00030 Uranium (U)-Dissolved 0.000050 mg/L 0.002251 0.00248 D 1.20240 YES 0.00010 Vanadium (V)-Dissolved 0.00050 0.00250 mg/L <0.00050	10 <0.000010	<0.000010	A	Not Calculated	YES				
Uranium (U)-Dissolved 0.000010 0.000050 mg/L 0.00251 0.00248 D 1.20240 YES 0.000113 Vanadium (V)-Dissolved 0.00050 0.00250 mg/L 0.00050 <0.00050			A	Not Calculated	YES				
Vanadium (V)-Dissolved 0.00050 0.00250 mg/L <0.00050 <0.00050 A Not Calculated YES <0.00050 Zinc (Zn)-Dissolved 0.0010 0.0050 mg/L 0.0027 0.0027 C 0.0000 YES 0.0030 Zirconium (Zr)-Dissolved 0.00030 0.00150 mg/L <0.00030			A	Not Calculated	YES				
Zinc (Zn)-Dissolved 0.0010 0.0050 mg/L 0.0027 0.0027 C 0.0000 YES 0.0036 Zirconium (Zr)-Dissolved 0.00030 0.01150 mg/L <0.00030			D	0.0	YES				
Zirconium (Zr)-Dissolved 0.00030 0.00150 mg/L <0.00030 A Not Calculated YES <0.00030 Volatile Organic Compounds (Water) mg/L <0.00030			A	Not Calculated	YES				
Volatile Organic Compounds (Water) mg/L <0.00050 <0.00250 mg/L <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.000050 <0.00075 <0			С	0.0	YES				
Benzene 0.00050 0.00250 mg/L <0.00050 <0.00050 A Not Calculated YES <0.00050 Ethylbenzene 0.00050 0.00250 mg/L <0.00050	<0.00030	<0.00030	A	Not Calculated	YES				
Ethylbenzene 0.00050 0.00250 mg/L <0.00050 <0.00050 A Not Calculated YES <0.00050 Methyl t-butyl ether (MTBE) 0.00050 0.00250 mg/L <0.00050									
Methyl +butyl ether (MTBE) 0.00050 0.00250 mg/L <0.00050 <0.00050 A Not Calculated YES <0.00050 Styrene 0.00050 0.00250 mg/L <0.00050			A	Not Calculated	YES				
Styrene 0.00050 0.00250 mg/L <0.00050 <0.00050 A Not Calculated YES <0.00050 Toluene 0.00045 0.00225 mg/L <0.00045			A	Not Calculated	YES				
Toluene 0.00045 0.00225 mg/L <0.00045 <0.00045 A Not Calculated YES <0.00045 Xvlenes 0.00075 0.0375 mg/L <0.00075			A	Not Calculated	YES				
Xylenes 0.00075 0.00375 mg/L <0.00075 <0.00075 A Not Calculated YES <0.00075 F1 (C6-C10) 0.10 0.50 mg/L <0.10			A	Not Calculated	YES				
F1 (C6-C10) 0.10 0.50 mg/L <0.10 <0.10 A Not Calculated YES <0.10 Hydrocarbons (Water) </td <td></td> <td></td> <td>A</td> <td>Not Calculated</td> <td>YES</td>			A	Not Calculated	YES				
Hydrocarbons (Water) mg/L <0.10 0.50 mg/L <0.10 A Not Calculated YES <0.10 F1-BTEX 0.10 0.50 mg/L <0.30			A	Not Calculated	YES				
F1-BTEX 0.10 0.50 mg/L <0.10 <0.10 A Not Calculated YES <0.10 F2 (C10-C16) 0.30 1.50 mg/L <0.30	<0.10	<0.10	A	Not Calculated	YES				
F2 (C10-C16) 0.30 1.50 mg/L <0.30 <0.30 A Not Calculated YES <0.30 F3 (C16-C34) 0.30 1.50 mg/L <0.30	0.45	0.40	<u> </u>		2/50				
F3 (C16-C34) 0.30 1.50 mg/L <0.30 <0.30 A Not Calculated YES <0.30 F4 (C34-C50) 0.30 1.50 mg/L <0.30	<0.10		A	Not Calculated	YES				
F4 (C34-C50) 0.30 1.50 mg/L <0.30 <0.30 A Not Calculated YES <0.30 Aggregate Organics (Water) 0 0 -	<0.30		A	Not Calculated	YES YES				
Aggregate Organics (Water) 0 <th< th=""> <th< th=""> <th<< td=""><td><0.30 <0.30</td><td></td><td>A</td><td>Not Calculated</td><td>YES</td></th<<></th<></th<>	<0.30 <0.30		A	Not Calculated	YES				
Oil and Grease 0 <5.0 <5.0 A Not Calculated YES	<0.30	<0.30	A	Not Calculated	TES				
Padialagiaal Peramatara (Mina)			+						
Radiological Parameters (Misc.) C 0 YES			+						
PD-210 0.023 0.115 BQ/L C 0 YES Ra-226 0.0056 0.0280 Bg/L C 0 YES			+	-					

Table B24 - QA/QC Sample Analysis: Dissolved Metals, Hydrocarbons and Radionuclides

		Sample Area						CONTACT	LAKE MINE				
		Sample ID	Units	CL-3	CL-DUP-2				CL-2B	CL-DUP-1			
Parameter	Lowest Detection Limit	SNP Sample ID 5x Lowest Detection Limit (5x RDL)	enne	S17L8-002 (12G) 10-Sep-2017	S17L8-002 (12G) 10-Sep-2017	Scenario	Value	Acceptable	9-Sep-2017	9-Sep-2017	Scenario	Value	Acceptable
Dissolved Metals (Water)													
Aluminum (AI)-Dissolved	0.0010	0.0050	mg/L	0.0018	0.0019	С	0.0	YES	0.0023	0.0027	С	0.0	YES
Antimony (Sb)-Dissolved	0.00010	0.00050	mg/L	0.00047	0.00047	С	0.0	YES	0.00025	0.00026	C	0.0	YES
Arsenic (As)-Dissolved	0.00010	0.00050	mg/L	0.0106	0.0109	D	2.8	YES	0.00914	0.00935	D	2.3	YES
Barium (Ba)-Dissolved	0.000050	0.000250	mg/L	0.0274	0.0275	D	0.4	YES	0.0182	0.0185	D	1.6	YES
Beryllium (Be)-Dissolved	0.000020	0.000100	mg/L	<0.000020	<0.000020	A	Not Calculated	YES	<0.000020	<0.000020	A	Not Calculated	YES
Bismuth (Bi)-Dissolved	0.000050	0.000250	mg/L	<0.000050	<0.000050	A	Not Calculated	YES	<0.000050	<0.000050	A	Not Calculated	YES
Boron (B)-Dissolved	0.010	0.050	mg/L	0.035	0.035	С	0.0	YES	0.027	0.029	С	0.0	YES
Cadmium (Cd)-Dissolved	0.0000050	0.0000250	mg/L	<0.000050	<0.0000050	<u>A</u>	Not Calculated	YES	<0.000050	<0.0000050	<u>A</u>	Not Calculated	YES
Calcium (Ca)-Dissolved	0.050	0.250	mg/L	32.5	32.2	D	0.9	YES	30.3	31.4	D	3.6	YES
Cesium (Cs)-Dissolved	0.000010	0.000050	mg/L	0.000014	0.000014	C		YES	< 0.000010	<0.000010	A	Not Calculated	YES
Chromium (Cr)-Dissolved	0.00010	0.00050	mg/L	<0.00010	<0.00010	A	Not Calculated	YES	<0.00010	<0.00010	A	Not Calculated	YES
Cobalt (Co)-Dissolved	0.00010	0.00050 0.00100	mg/L	<0.00010 0.00651	<0.00010 0.00669	A D	Not Calculated	YES YES	<0.00010 0.00479	<0.00010 0.00494	A D	Not Calculated 3.1	YES YES
Copper (Cu)-Dissolved			mg/L		<0.00669				<0.00479				
Iron (Fe)-Dissolved Lead (Pb)-Dissolved	0.010 0.000050	0.050	mg/L mg/L	<0.010 <0.000050	<0.010	A A	Not Calculated Not Calculated	YES YES	<0.00050	<0.010 <0.000050	A	Not Calculated Not Calculated	YES YES
Lithium (Li)-Dissolved	0.000050	0.00250	mg/L	0.00050	0.00050	C		YES	<0.000050	0.00050	C	0.0	YES
Magnesium (Mg)-Dissolved	0.0010	0.0050	mg/L	11.3	11.4	D	0.0	YES	11.4	11.6	D	1.7	YES
Manganese (Mn)-Dissolved	0.00010	0.00050	mg/L	0.00013	<0.00010	B	0.0	YES	<0.00010	<0.00010	A	Not Calculated	YES
Manganese (Min)-Dissolved Mercury (Hg)-Dissolved	0.0000050	0.0000250	ma/L	<0.000050	<0.000050	A	Not Calculated	YES	<0.000050	<0.000050	A A	Not Calculated	YES
Molvbdenum (Mo)-Dissolved	0.000050	0.000250	mg/L	0.000388	0.000371	D	4.5	YES	0.000422	0.000397	D	6.1	YES
Nickel (Ni)-Dissolved	0.00050	0.00250	ma/L	0.000388	0.00077	C	0.0	YES	0.00074	0.000397	C	0.0	YES
Phosphorus (P)-Dissolved	0.050	0.250	mg/L	<0.050	< 0.050	Ă	Not Calculated	YES	<0.050	<0.050	A	Not Calculated	YES
Potassium (K)-Dissolved	0.10	0.50	mg/L	1.63	1.65	D	1.2	YES	1.49	1.55	D	3.9	YES
Selenium (Se)-Dissolved	0.000050	0.000250	mg/L	< 0.000050	<0.000050	A	Not Calculated	YES	<0.000050	<0.000050	A	Not Calculated	YES
Silicon (Si)-Dissolved	0.050	0.250	mg/L	2.31	2.23	D	3.5	YES	2.38	2.45	D	2.9	YES
Silver (Ag)-Dissolved	0.000010	0.000050	mg/L	< 0.000010	< 0.000010	A	Not Calculated	YES	< 0.000010	< 0.000010	A	Not Calculated	YES
Sodium (Na)-Dissolved	0.050	0.250	mg/L	5.12	5.26	D	2.7	YES	5.14	5.23	D	1.7	YES
Strontium (Sr)-Dissolved	0.00020	0.00100	ma/L	0.0789	0.0797	D	1.0	YES	0.0716	0.0723	D	1.0	YES
Sulfur (S)-Dissolved	0.50	2.50	mg/L	2.21	2.18	С	0.0	YES	2.06	1.96	С	0.1	YES
Thallium (TI)-Dissolved	0.000010	0.000050	mg/L	< 0.000010	< 0.000010	А	Not Calculated	YES	< 0.000010	< 0.000010	A	Not Calculated	YES
Tin (Sn)-Dissolved	0.00010	0.00050	mg/L	< 0.00010	< 0.00010	А	Not Calculated	YES	< 0.00010	< 0.00010	A	Not Calculated	YES
Titanium (Ti)-Dissolved	0.00030	0.00150	mg/L	< 0.00030	< 0.00030	А	Not Calculated	YES	<0.00030	< 0.00030	А	Not Calculated	YES
Uranium (U)-Dissolved	0.000010	0.000050	mg/L	0.0500	0.0501	D	0.2	YES	0.0477	0.0503	D	5.3	YES
Vanadium (V)-Dissolved	0.00050	0.00250	mg/L	<0.00050	<0.00050	А	Not Calculated	YES	<0.00050	<0.00050	А	Not Calculated	YES
Zinc (Zn)-Dissolved	0.0010	0.0050	mg/L	<0.0010	<0.0010	А	Not Calculated	YES	<0.0010	<0.0010	А	Not Calculated	YES
Zirconium (Zr)-Dissolved	0.00030	0.00150	mg/L	<0.00030	<0.00030	А	Not Calculated	YES	<0.00030	<0.00030	A	Not Calculated	YES
Volatile Organic Compounds (Wate	er)												
Benzene	0.00050	0.00250	mg/L	<0.00050	<0.00050	А	Not Calculated	YES					
Ethylbenzene	0.00050	0.00250	mg/L	<0.00050	<0.00050	А	Not Calculated	YES					
Methyl t-butyl ether (MTBE)	0.00050	0.00250	mg/L	<0.00050	<0.00050	А	Not Calculated	YES					
Styrene	0.00050	0.00250	mg/L	<0.00050	<0.00050	А	Not Calculated	YES			-		-
Toluene	0.00045	0.00225	mg/L	<0.00045	< 0.00045	А	Not Calculated	YES					
Xylenes	0.00075	0.00375	mg/L	<0.00075	<0.00075	А	Not Calculated	YES					
F1 (C6-C10)	0.10	0.50	mg/L	<0.10	<0.10	A	Not Calculated	YES					
Hydrocarbons (Water)													
F1-BTEX	0.10	0.50	mg/L	<0.10	<0.10	А	Not Calculated	YES					
F2 (C10-C16)	0.30	1.50	mg/L	<0.30	<0.30	А	Not Calculated	YES					
F3 (C16-C34)	0.30	1.50	mg/L	<0.30	<0.30	А	Not Calculated	YES					
F4 (C34-C50)	0.30	1.50	mg/L	<0.30	<0.30	А	Not Calculated	YES			-		-
Aggregate Organics (Water)		0											
Oil and Grease		0											
Radiological Parameters (Misc.)													
Pb-210	0.023	0.115	Bq/L	<0.026	<0.025	A	Not Calculated	YES	<0.025	<0.027	A	Not Calculated	YES
Ra-226	0.0056	0.0280	Bq/L	0.077	0.086	D	11.0	YES	0.03	0.029	D	3.4	YES

Table B24 - QA/QC Sample Analysis: Dissolved Metals, Hydrocarbons and Radionuclides

		Sample Area				SAWMILL BAY	,		FIELD BLANKS			
		Sample ID	Units	SW-B-2	SW-DUP-1				T-FIELD BLANK	ELB-FIELD	CL-FIELD	
Parameter	Lowest Detection Limit	5x Lowest	42989	Scenario	Value	Acceptable	Water	BLANK Water	BLANK Water			
Dissolved Metals (Water)												
Aluminum (Al)-Dissolved	0.0010	0.0050	mg/L	< 0.0010	< 0.0010	A	Not Calculated	YES	< 0.0010	<0.0010	< 0.0010	
Antimony (Sb)-Dissolved	0.00010	0.00050	mg/L	<0.00010	<0.00010	А	Not Calculated	YES	<0.00010	<0.00010	<0.00010	
Arsenic (As)-Dissolved	0.00010	0.00050	mg/L	0.00018	0.00018	С	0.0	YES	<0.00010	<0.00010	<0.00010	
Barium (Ba)-Dissolved	0.000050	0.000250	mg/L	0.0232	0.023	D	0.9	YES	<0.000050	<0.000050	<0.000050	
Beryllium (Be)-Dissolved	0.000020	0.000100	mq/L	<0.000020	<0.000020	A	Not Calculated	YES	<0.000020	<0.000020	<0.000020	
Bismuth (Bi)-Dissolved	0.000050	0.000250	mg/L	< 0.000050	<0.000050	A	Not Calculated	YES	< 0.000050	<0.000050	<0.000050	
Boron (B)-Dissolved	0.010	0.050	mg/L	0.012	0.012	С	0.0	YES	< 0.010	<0.010	<0.010	
Cadmium (Cd)-Dissolved	0.0000050	0.0000250	mg/L	<0.0000050	<0.0000050	A	Not Calculated	YES	<0.000050	<0.0000050	<0.0000050	
Calcium (Ca)-Dissolved	0.050	0.250	mg/L	18.8	17.6	D	6.6	YES	<0.050	<0.050	<0.050	
Cesium (Cs)-Dissolved	0.000010	0.000050	mg/L	<0.000010	<0.000010	A	Not Calculated	YES	< 0.000010	<0.000010	<0.000010	
Chromium (Cr)-Dissolved	0.00010	0.00050	mg/L	<0.00010	<0.00010	A	Not Calculated	YES	<0.00010	<0.00010	<0.00010	
Cobalt (Co)-Dissolved	0.00010	0.00050	mq/L	<0.00010	<0.00010	A	Not Calculated	YES	<0.00010	<0.00010	<0.00010	
Copper (Cu)-Dissolved	0.00020	0.00100	mg/L	0.00027	0.00024	C	0.0	YES	<0.00020	<0.00020	<0.00020	
Iron (Fe)-Dissolved	0.010	0.050	mg/L	<0.010	<0.010	A	Not Calculated	YES	<0.010	<0.010	<0.010	
Lead (Pb)-Dissolved	0.000050	0.000250	mg/L	<0.000050	<0.000050	A	Not Calculated	YES	< 0.000050	< 0.000050	<0.000050	
Lithium (Li)-Dissolved	0.0010	0.0050	mg/L	0.0033	0.003	С	0.0	YES	<0.0010	<0.0010	<0.0010	
Magnesium (Mg)-Dissolved	0.10	0.50 0.00050	mg/L	7.49 <0.00010	7.3	D	2.6	YES YES	<0.10 <0.00010	<0.10 <0.00010	<0.10	
Manganese (Mn)-Dissolved			mg/L		<0.00010	A	Not Calculated					
Mercury (Hg)-Dissolved	0.0000050	0.0000250	mq/L	<0.0000050	<0.000050	A	Not Calculated	YES	<0.0000050	<0.0000050	<0.000050	
Molybdenum (Mo)-Dissolved Nickel (Ni)-Dissolved	0.000050 0.00050	0.000250 0.00250	mq/L	0.000361 <0.00050	0.000336	D A	7.2 Not Calculated	YES YES	<0.000050 <0.00050	<0.000050 <0.00050	<0.000050 <0.00050	
	0.00050	0.250	mg/L mg/L	<0.00050	<0.00050	A	Not Calculated	YES	<0.00050	<0.00050	<0.00050	
Phosphorus (P)-Dissolved Potassium (K)-Dissolved	0.050	0.250	ma/L	0.75	<0.050	D	1.3	YES	<0.050	<0.10	<0.050	
Selenium (Se)-Dissolved	0.000050	0.000250	ma/L	<0.000050	<0.000050	A	Not Calculated	YES	<0.00050	<0.00050	<0.000050	
Silicon (Si)-Dissolved	0.050	0.250	ma/L	1.11	1.11	D	0.0	YES	<0.050	<0.050	<0.050	
Silver (Ag)-Dissolved	0.000010	0.000050	mg/L	<0.000010	<0.000010	A	Not Calculated	YES	<0.00010	<0.00010	<0.000010	
Sodium (Na)-Dissolved	0.050	0.250	ma/L	4.1	4.06	D	1.0	YES	<0.050	<0.050	<0.050	
Strontium (Sr)-Dissolved	0.00020	0.00100	mg/L	0.121	0.112	D	7.7	YES	<0.00020	<0.00020	<0.00020	
Sulfur (S)-Dissolved	0.50	2.50	mg/L	5.81	5.51	D	5.3	YES	<0.50	<0.50	<0.50	
Thallium (TI)-Dissolved	0.000010	0.000050	ma/L	<0.000010	<0.00010	A	Not Calculated	YES	<0.000010	<0.000010	<0.000010	
Tin (Sn)-Dissolved	0.00010	0.00050	ma/L	< 0.00010	<0.00010	A	Not Calculated	YES	< 0.00010	< 0.00010	< 0.00010	
Titanium (Ti)-Dissolved	0.00030	0.00150	mg/L	< 0.00030	<0.00030	A	Not Calculated	YES	< 0.00030	< 0.00030	< 0.00030	
Uranium (U)-Dissolved	0.000010	0.000050	mg/L	0.000317	0.000301	D	5.2	YES	< 0.000010	< 0.000010	< 0.000010	
Vanadium (V)-Dissolved	0.00050	0.00250	ma/L	< 0.00050	<0.00050	A	Not Calculated	YES	< 0.00050	< 0.00050	< 0.00050	
Zinc (Zn)-Dissolved	0.0010	0.0050	mg/L	< 0.0010	< 0.0010	A	Not Calculated	YES	< 0.0010	< 0.0010	< 0.0010	
Zirconium (Zr)-Dissolved	0.00030	0.00150	mg/L	< 0.00030	< 0.00030	Α	Not Calculated	YES	< 0.00030	< 0.00030	< 0.00030	
Volatile Organic Compounds (Wate	er)											
Benzene	0.00050	0.00250	mg/L	<0.00050	< 0.00050	А	Not Calculated	YES	< 0.00050		< 0.00050	
Ethylbenzene	0.00050	0.00250	mg/L	< 0.00050	< 0.00050	A	Not Calculated	YES	<0.00050		< 0.00050	
Methyl t-butyl ether (MTBE)	0.00050	0.00250	mg/L	< 0.00050	< 0.00050	Α	Not Calculated	YES	< 0.00050		< 0.00050	
Styrene	0.00050	0.00250	mg/L	<0.00050	<0.00050	А	Not Calculated	YES	<0.00050		<0.00050	
Toluene	0.00045	0.00225	mq/L	<0.00045	<0.00045	А	Not Calculated	YES	<0.00045		<0.00045	
Xylenes	0.00075	0.00375	mq/L	<0.00075	<0.00075	А	Not Calculated	YES	<0.00075		<0.00075	
F1 (C6-C10)	0.10	0.50	mg/L	<0.10	<0.10	A	Not Calculated	YES	<0.10		<0.10	
Hydrocarbons (Water)												
F1-BTEX	0.10	0.50	mg/L	<0.10	<0.10	А	Not Calculated	YES	<0.10		<0.10	
F2 (C10-C16)	0.30	1.50	mg/L	<0.30	<0.30	А	Not Calculated	YES	<0.30		<0.30	
F3 (C16-C34)	0.30	1.50	mg/L	<0.30	<0.30	A	Not Calculated	YES	<0.30		<0.30	
F4 (C34-C50)	0.30	1.50	mg/L	<0.30	<0.30	A	Not Calculated	YES	<0.30		<0.30	
Aggregate Organics (Water)		0										
Oil and Grease		0										
Radiological Parameters (Misc.)												
Pb-210	0.023	0.115	Bq/L	<0.029	< 0.023	А	Not Calculated	YES			<0.024	
Ra-226	0.0056	0.0280	Bq/L	<0.0077	< 0.0063	А	Not Calculated	YES			< 0.0049	

APPENDIX C – Field Data and Observations

STATION	T-2	1	-16		Т-8		T-3
Date	08-Sep-17	13-9	Sep-17		13-Sep-17		13-Sep-17
Personnel	CB, SY, DK	CB, R	SH, WM		CB, RSH, WM		CB, RSH, WM
Location Description	South end of Little Ho Hum Lake		Ho Hum TCA, directly offshore of tailings beach		Ho Hu TCA, midline at downstream end		Ho Hum TCA, shoreline sample at tailings beach
Latitude (Decimal Degrees N)	65.59846°	65.6	50272°		65.60387°		65.60315°
Longitude (Decimal Degrees W)	118.11367°	118.	12638°		118.13012°		118.12407°
Sample Type	Shoreline	Oper	n Water		Open Water		Shoreline
Access	Foot	E	Boat		Boat		Boat/Foot
Method	Grab-Pole	Var	n Dorn		Van Dorn		Grab
Water Column Depth	0.2m	11m		16m			<0.2m
Sample Depth	Surface	1m	10m	1m	7m	10m	Surface
Parameters	General, T. Metals	A: General, T. Metals	B: General, T. Metals	A: General, T. Metals, D. Metals, PHCs, O&G	B: General, T. Metals, D. Metals, PHCs, O&G	C: General, T. Metals, D. Metals, PHCs, O&G	General, T. Metals, D. Metals, PHCs
рН	7.17	7.68	7.09	7.69	7.68	7.07	7.79
Conductivity (mS/cm)	0.109	0.142	0.14	0.142	0.142	0.14	0.143
Temperature (°C)	12	11.3	4.9	11.3	10.1	4.6	11.7
Dissolved Oxygen (mg/L)	NA	9.54	4.86	9.57	9.47	4.65	10.15
Turbidity (NTU)	NA	4.6	4.6	4.5	4.5	4.5	5
QA/QC Samples	None	None	None	T-DUP-1	None	None	None
Notes	Yellow tint, some wave action, no visible turbidity	wave action, based on measure identif	and minimal sample depths temperature ements and ication of noclines	Light wind and n on temperatu	Minimal wave height, tailings beach exposed and dry enough to support walking		

STATION	T-5	T-9	MB-1	MB-9	T-6	T-10	T-31
Date	13-Sep-17	13-Sep-17	14-Sep-17	14-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17
Personnel	CB, RSH, WM	CB, RSH, WM	CB, RSH, DK	CB, RSH, DK	CB, RSH, WM	CB, RSH, WM	CB, RSH, WM
Location Description	Ho Hum TCA, shoreline between tailings beach and wetland	Ho Hum Wetland, upper wetland immediately upgradient of weir	Lower Ho Hum Wetland, corner where weir pad meets airstrip	Lower Ho Hum Wetland, approximately mid way between weir and Moose Bay proper (NEW)	Moose Bay, discharge point from Ho Hum Wetland into Moose Bay	Moose Bay, mid channel along airstrip	Moose Bay, shoreline station mid-way down airstrip
Latitude (Decimal Degrees N)	65.60465°	65.60685°	65.60710°	65.60725°	65.60757°	65.61036°	65.61210°
Longitude (Decimal Degrees W)	118.12650°	118.13632°	118.13602°	118.13712°	118.13915°	118.14873°	118.15151°
Sample Type	Shoreline	Shoreline	Shoreline	Shoreline	Open Water	Open Water	Shoreline
Access	Boat	Foot	Foot	Foot	Boat	Boat	Foot
Method	Grab	Grab-Pole	Grab	Grab	Grab	Grab	Grab-Pole
Water Column Depth	<0.5m	0.3m	0.2m	0.2m	0.5m	2.2m	0.5m
Sample Depth	Surface	Surface	Surface	Surface	Surface	Surface	Surface
Parameters	General, T. Metals, PHCs	General, T. Metals, D. Metals	General, T. Metals, D. Metals	General, T. Metals	General, T. Metals, D. Metals	General, T. Metals, D. Metals, PHCs, O&G	General, T. Metals, D. Metals
рН	7.74	7.58	7.26	7.12	7.85	7.93	7.97
Conductivity (mS/cm)	0.142	0.299	0.16	0.175	0.162	0.109	0.1
Temperature (°C)	11.4	10.7	12	11.2	7.7	12.4	13.2
Dissolved Oxygen (mg/L)	9.84	11.08	6.99	6.02	11.27	10.12	10.09
Turbidity (NTU)	4.5	6.7	4.1	5.4	5.4	4.5	4.3
QA/QC Samples	None	None	None	None	None	None	None
Notes	Sampled from boat due to steep waste rock shoreline, minimal wave height	No vegetation surrounding sampling station, evidence of stressed/dead vegetation within wetland (high water levels)	Visible water flow from toe of waste rock forming airstrip into wetland	Transition point to aquatic vegetation (e.g. sedges)	Sample collected as close as possible to wetland without disturbing substrate (~5m from vegetation edge)	Minimal wave action	Steep drop off, waste rock substrate and shoreline

STATION	T-12	T-30	T-4	T-1	T-19	T-20
Date	13-Sep-17	13-Sep-17	08-Sep-17	13-Sep-17	08-Sep-17	08-Sep-17
Personnel	CB, RSH, WM	CB, RSH, WM	CB, SY, DK	CB, RSH, WM	CB, SY, DK	CB, SY, DK
Location Description	Camsell River, end of airstrip	Camsell River, outside of mouth of Moose Bay (NEW)	Dock at Camsell River	Camsell River, Jackfish Bay ~20m from shore	Adit northwest of Camsell Dock	North zone adit, near Camsell Dock (~50m uphill in wooded area)
Latitude (Decimal Degrees N)	65.61435°	65.61407°	65.606800°	65.59634°	65.60876°	65.60628°
Longitude (Decimal Degrees W)	118.15710°	118.16474°	118.112767°	118.11176°	118.12309°	118.11138°
Sample Type	Shoreline (~5m from shore)	Open Water	Shoreline	Open Water	On-Land	On-Land
Access	Boat	Boat	Foot	Boat	Foot	Foot
Method	Grab	Grab	Grab	Grab	Grab	Grab
Water Column Depth	1.8m	6.7m	2.8m	1.5m	0.2m where sampled (deeper at adit opening- near top)	0.2m where sampled (deeper at adit opening- near top)
Sample Depth	Surface	Surface	Surface	Surface	Surface	Surface
Parameters	General, T. Metals	General, T. Metals	General, T. Metals, PHCs	General, T. Metals	General, T. Metals	General, T. Metals
рН	7.91	7.9	8.12	7.69	6.99	7.16
Conductivity (mS/cm)	0.111	0.112	0.146	0.096	0.215	0.489
Temperature (°C)	12.8	13.3	14.4	9	2.6	6.3
Dissolved Oxygen (mg/L)	9.99	9.87	9.55	10.6	NA	NA
Turbidity (NTU)	4.3	4.3	5	6.1	NA	NA
QA/QC Samples	T-DUP-2	None	None	None	T-DUP-3	None
Notes	Minimal wave height, steep shoreline (accessed by boat)	Minimal wave height	Strong winds with wave height ~0.15m, visible suspended solids	Some wave action with shallow water conditions	Calm water, tea coloured, no visible iron, organic matter/leaves, no visible stress in surrounding vegetation, water pooled and no overland flow downstream observed, coordinates in database incorrect	

STATION	T-22	T-18	T-25	R-2	R-3
Date	08-Sep-17	14-Sep-17	14-Sep-17	13-Sep-17	10-Sep-17
Personnel	CB, SY, DK	CB, RSH, DK	CB, RSH, DK	CB, RSH, WM	CB, SY, DK
Location Description	Maintenance Shop Adit near Mill		Pool below landfil at	Reference station, Belachey Lake (upstream of rapids)	Poforance Station
Latitude (Decimal Degrees N)	65.60492°	65.59482°	65.59430°	65.63223°	65.59494°
Longitude (Decimal Degrees W)	118.12542°	118.10960°		117.91731°	118.15921°
Sample Type			Shoreline	Open Water	Open Water
Access			Foot	Float Plane	Float Plane
Method			Grab-Pole	Grab-Pole	Grab
Water Column Depth			0.3m		
Sample Depth			Surface	Surface	Surface
Parameters			General, T. Metals, PHCs	General, T. Metals	General, T. Metals, D. Metals
рН			7.24	7.93	7.82
Conductivity (mS/cm)				0.114	0.076
Temperature (°C)			10.1	12.8	12.9
Dissolved Oxygen (mg/L)			NA	10.41	9.48
Turbidity (NTU)			NA	4.4	4.5
QA/QC Samples			None	None	None
Notes	DRY, no field measurements or sample collected	DRY, wetland vegetation though no standing/flowing water present	vegetation in and	Minimal wave height	Reference Lake, calm water

STATION	R-4
Date	12-Sep-17
Personnel	CB, SY, DT, CY
Location Description	Reference Station, upstream of Silver Bear Sites, immediately below rapids
Latitude (Decimal Degrees N)	65.60560°
Longitude (Decimal Degrees W)	117.96095°
Sample Type	Open Water
Access	Boat
Method	Van Dorn
Water Column Depth	
Sample Depth	Surface
Parameters	General, T. Metals, D. Metals
pН	7.94
Conductivity (mS/cm)	0.114
Temperature (°C)	13.2
Dissolved Oxygen (mg/L)	10.27
Turbidity (NTU)	4.4
QA/QC Samples	None
Notes	Water levels at rapids appear high, calm at sampling station

STATION	NO-7	NO-11	NO-2	NO-4/NO-8	NO-9	NO-1
Date	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17
Personnel	CB, SY, DT	CB, SY, DT	CB, SY, DT	CB, SY, DT	CB, SY, DT	CB, SY, DT
Location Description	Hermandy Lake, south end, east shore	Hermandy Lake, north end, east shore	Leachate Pond, adjacent to Hermandy Lake	Drainage channel from Hermandy Lake/Leachate Pond to dock area of Camsell River	Northrim Adit	Standing water immediately below Northrim adit
Latitude (Decimal Degrees N)	65.59757°	65.59904°	65.59712°	65.59621°	65.59628°	65.59621°
Longitude (Decimal Degrees W)	117.98439°	117.98186°	117.98344°	117.98146°	117.97700°	117.97714°
Sample Type	Shoreline	Shoreline	Shoreline	On-Land		On-Land
Access	Foot	Foot	Foot	Foot		Foot
Method	Grab	Grab-Pole	Grab	Grab		Grab
Water Column Depth	0.3m	0.35m	0.15m	0.10m		0.15m
Sample Depth	Surface	Surface	Surface	Surface		Surface
Parameters	General, T. Metals, D. Metals, PHCs, NAPL	General, T. Metals	General, T. Metals, D. Metals, PHCs	General, T. Metals, PHCs		General, T. Metals, PHCs
рН	7.62	7.64	7.7	7.41		7.58
Conductivity (mS/cm)	0.102	0.102	0.109	0.529		0.229
Temperature (°C)	10.7	10.7	9.3	9.5		11.6
Dissolved Oxygen (mg/L)	9.86	9.83	10.67	NA		NA
Turbidity (NTU)	13	6.6	2	NA		NA
QA/QC Samples	None	None	NO-DUP-1	None	None	None
Notes	Some wave action, no visible suspended solids (though high turbidity), dense vegetation on shoreline	Some wave action, no visible suspended solids (though high turbidity), dense vegetation on shoreline and organic substrate	Slight wave action, waste rock on east shore, visible waste debris and metal on west shore, no visible vegetation stress	Visible iron staining and bacterial sheen/sludge, flow rate ~1-2 L/s	(~0.03m), blocky rock overhead, iron and iron staining in pooled	Influenced by high water levels in Camsell River diluting adit water, waste rock with fines, visible turbidity and bacterial sheen

STATION	NO-21	NO-6	NO-5	NO-25	NO-27
Date	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17
Personnel	CB, SY, DT	CB, SY, DT	CB, SY, DT	CB, SY, CY, DT	CB, SY, CY, DT
Location Description	with flowing water, no	Camsell River, at suspected current discharge pathway from Hermandy Lake to Camsell River	Camsell River, off Northrim Dock	Camsell River, at suspected original discharge pathway from Hermandy Lake	Camsell River, Downstream of Northrim and Norex mines, mid stream (NEW)
Latitude (Decimal Degrees N)	Not Located	65.59551°	65.59589°	65.59755°	65.59146°
Longitude (Decimal Degrees W)	Not Located	117.98116°	117.97865°	117.99513°	117.99609°
Sample Type		Shoreline	Shoreline	Shoreline (~5m from shore)	Open Water
Access		Foot	Foot	Boat	Boat
Method		Grab-Pole	Grab	Van Dorn	Van Dorn
Water Column Depth		0.2m	3m	2.5m	-
Sample Depth		Surface	Surface	Surface	Surface
Parameters		General, T. Metals, D. Metals, PHC, NAPL	General, T. Metals, PHCs	General, T. Metals, D. Metals	General, T. Metals
рН		7.63	7.93	7.89	7.91
Conductivity (mS/cm)		0.12	0.114	0.113	0.113
Temperature (°C)		12.1	13	13.2	13.3
Dissolved Oxygen (mg/L)		9.88	10.3	10.18	10.18
Turbidity (NTU)		5.8	4.9	4.8	4.4
QA/QC Samples	None	None	None	None	None
Notes	Despite extensive search, pipe could not be located. Personnel were present during original sampling and indicated may be within the river in 2017 given high water levels.	Minimal water in discharge creek, Camsell River water levels high, abundant vegetation at shoreline with no visible stress	Minimal wave height, water topping dock surface	Marshy shoreline with thick vegetation, steep drop off, moderate wave action, no visible suspended solids	Moderate wave action, no visible suspended sediments

Norex and Graham Vein Mine - 2017 Water Quality Monitoring Field Notes

STATION	NX-1	NX-2	NX-3	NX-4A	NX-6	NX-12	NX-13
Date	10-Sep-17	10-Sep-17	10-Sep-17	10-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17
Personnel	CM, RSH	CM, RSH	CM, RSH	CM, RSH	CB, RSH	CB, RSH	CB, RSH
Location Description	Outflow from adit	East seep of waste rock pile	West seep of waste rock pile	Downstream of east adit seep @ flagging tape		Camsell River, suspected discharge location of Norex drainage	Camsell River, from Norex Dock (NEW)
Latitude (Decimal Degrees N)	65.589033°	65.590300°	65.589500°	65.591067°	65.58704°	65.59486°	65.59286°
Longitude (Decimal Degrees W)	117.966833°	117.967500°	117.968333°	117.966833°	117.95609°	117.97376°	117.98518°
Sample Type	On-land	On-land	On-land	On-land	Shoreline	Open Water	Shoreline
Access	Foot	Foot	Foot	Foot	Foot	Boat	Foot
Method	Grab-Syringe	Grab-Syringe	Grab-Syringe	Grab-Syringe	Grab-Pole	Grab-Pole	Grab-Pole
Water Column Depth	0.05m	0.05m	0.03-0.05m	0.05m	0.5m	0.5m	NA
Sample Depth	Surface	Surface	Surface	Surface	Surface	Surface	Surface
Parameters	General, T. Metals	General, T. Metals, PHCs	General, T. Metals, D. Metals,	General, T. Metals	General, T. Metals	General, T. Metals, D. Metals, PHC,	General, T. Metals, PHCs
рН	7.23	7.21	6.96	7.1	7.06	7.93	7.89
Conductivity (mS/cm)	0.387	0.475	0.684	0.183	0.147	0.147	0.113
Temperature (°C)	5.5	8	8.9	13.3	9.3	13.2	13.3
Dissolved Oxygen (mg/L)	NA	NA	NA	NA	NA	10.29	10.15
Turbidity (NTU)	NA	NA	NA	NA	NA	4.5	4.3
QA/QC Samples	None	None	None	None	NX-DUP-1	None	None
Notes	Ponded water with some flow through waste rock, coordinates provided from earlier sampling shifted (did not align with adit)	Flowing seep, clear, debris in seep, coordinates provided from earlier sampling shifted	Stagnant water with no flow, bacterial sheen on surface, coordinates provided from earlier sampling shifted	Low flow in drainage pathway	Pond ~25m2, no visible stress in surrounding vegetation, organic substrate, expected drainage from adit toward Xeron Pond	Very shallow and boat could not reach shoreline without beaching	Dock dilapidated, no visible evidence of PHC contamination

Smallwood Mine - 2017 Water Quality Monitoring Field Notes

STATION	SM-1	SM-2	S	M-6
Date	10-Sep-17	10-Sep-17	10-5	Sep-17
Personnel	CB, SY	CB, SY	CE	3, SY
Location Description	Smallwood Lake, south end of raodway as it enters lake, ~20m south at toe of waste rock pile	Smallwood Lake, south end of waste rok pile		e, ~mid lake across te rock pile
Latitude (Decimal Degrees N)	65.58201°	65.58151°	65.5	8156°
Longitude (Decimal Degrees W)	117.94312°	117.94380°	117.	94188°
Sample Type	Shoreline	Shoreline	Oper	Water
Access	Foot	Boat (zodiac, though also accessible by foot)	Boat	(zodiac)
Method	Grab	Grab	Van	Dorn
Water Column Depth	0.25m	0.2m		
Sample Depth	Surface	Surface	1m	4m
Parameters	General, T. Metals, D. Metals	General, T. Metals, PHCs	General, T. Metals	General, T. Metals
рН	7.94	8.01	7.85	7.85
Conductivity (mS/cm)	0.086	0.117	0.112	0.112
Temperature (°C)	13.6	13.7	13	12.8
Dissolved Oxygen (mg/L)	8.63	10.26	9.5	9.46
Turbidity (NTU)	3.6	4.8	4.8	4.9
QA/QC Samples	None	None	None	None
Notes	Calm water, iron staining evident in adjacent waste rock	Calm water, adjacent to waste rock, cobble substrate	Calm, no visible	suspended solids

Contact Lake Mine - 2017 Water Quality Monitoring Field Notes

STATION	CL-2	CL-15	CL-3	CL-29	CL-2B	CL-5	CL-26
Date	09-Sep-17	09-Sep-17	10-Sep-17	10-Sep-17	09-Sep-17	09-Sep-17	09-Sep-17
Personnel	CB, SY, DT	CB, SY, DT	CM, RSH	CM, RSH	CB, SY, DT	CB, SY, DT	CB, SY, DT
Location Description	Mine Area, pooled water at base of waste rock pile below adit	Mine Area, shallow pool immediately upstream of where gravel road meets Tailings Pond	Tailings Pond, south shore	Tailings Pond, north shore (NEW)	Stream from Tailings Pond to Contact Lake, ~bottom 1/3 of stream	Contact Lake, at inflow point of stream into lake	Contact Lake, ~50m offshore of discharge point of stream from Tailings Pond
Latitude (Decimal Degrees N)	65.99326°	65.99167°	65.990883°	65.991383°	65.99036°	65.99000°	65.98978°
Longitude (Decimal Degrees W)	117.80037°	117.80117°	117.800833°	117.800800°	117.80142°	117.80193°	117.80171°
Sample Type	On-Land	On-Land	Shoreline	Shoreline	On-Land	Shoreline	Open Water
Access	Foot	Foot	Foot	Foot	Foot	Boat- Due to wave action	Boat
Method	Grab	Grab-Syringe	Grab-Pole	Grab-Pole	Grab	Grab	Grab
Water Column Depth	Max 0.15m	0.05m	0.5m	1m	0.05-0.15m	0.25m	11m
Sample Depth	Surface	Surface	Surface	Surfae	Surface	Surface	Surface
Parameters	General, T. Metals, Rads.	General, T. Metals, Rads.	General, T. Metals, D. Metals, Rad., PHC, O&G	General, T. Metals	General, T. Metals, D. Metals, Rads.	General, T. Metals, D. Metals, Rads.	General, T. Metals, D. Metals, PHCs, Rads., O&G
рН	6.9	8.02	7.27	7.37	7.56	7.95	7.83
Conductivity (mS/cm)	0.217	0.251	0.369	0.311	0.229	0.047	0.0453
Temperature (°C)	6.9	8.8	14	12.8	9.7	12.5	12.5
Dissolved Oxygen (mg/L)	NA	NA	NA	NA	8.9	10.1	10.05
Turbidity (NTU)	NA	NA	NA	NA	NA (too shallow)	3.8	4.3
QA/QC Samples	None	None	CL-DUP-2	None	CL-DUP-1	None	None
Notes	Pool ~25m2, waste rock and tailings surrounding, visible flow from waste rock toward Tailings Pond, surrounding vegetative stress	Pool ~0.2m wide along roadway, evidence water level typically higher, no visible tailings, adjacent road way constructed of waste rock	Calm water	Calm water	Substrate cobbles and sand, orange tint to water, no visible stress in surrounding vegetation, stream ~0.2-0.5 wide, shallow, visible flow	visible suspended solids	Increasing wave height, possibility for suspended solids, no visible flow from stream discharge at this location

Contact Lake Mine - 2017 Water Quality Monitoring Field Notes

STATION	CL	6	CL-9	CL-24	CL-7	CL-20	CL	-16
Date	09-Se	ep-17	09-Sep-17	09-Sep-17	10-Sep-17	10-Sep-17	10-S	ep-17
Personnel	CB, SY, DT		CB, SY, DT	CB, SY, DT	CB, SY, DK	CB, SY, DK	CB, SY, DK	
Location Description	Contact Lake, ~500m west of		Contact Lake, east of mine drainage	Contact Lake, immediately north of Camp Area in small bay	Great Bear Lake - East Arm, at dock	Great Bear Lake - East Arm, open water ~200m southeast of dock	Great Bear Lake - East Arm, open water directly north of dock	
Latitude (Decimal Degrees N)	65.99	9093°	65.98862°	65.99555°	66.00619°	66.00474°	66.00	0780°
Longitude (Decimal Degrees W)	117.8	1911°	117.79159°	117.81196°	117.75313°	117.75061°	117.7	′5362°
Sample Type	Open-	Water	Shoreline	Shoreline	Shoreline	Open Water	Open	Water
Access	Bc	bat	Boat	Boat	Float Plane	Float Plane	Float	Plane
Method	Van	Dorn	Grab	Grab	Van Dorn	Grab	Van	Dorn
Water Column Depth	48	3m	0.9m	0.25m	2.25m			
Sample Depth	2m	10m	Surface	Surface	1m	Surface	1m	10m
Parameters	General, T. Metals, D. Metals, Rads.	General, T. Metals, D. Metals, Rads.	General, T. Metals	General, T. Metals	General, T. Metals, D. Metals, PHC, Rads.	General, T. Metals	General, T. Metals	General, T. Metals, PHCs
рН	7.85	7.83	7.81	7.84	8.11	8.13	8.12	8.1
Conductivity (mS/cm)	0.0452	0.0452	0.0477	0.0453	0.158	0.158	0.158	0.158
Temperature (°C)	12.4	12.3	12.6	12.5	8.7	8.5	8.6	8.4
Dissolved Oxygen (mg/L)	10.08	10.11	10.09	10.2	11.41	11.46	11.44	11.49
Turbidity (NTU)	3.7	3.7	3.6	3.7	4.6	4.6	4.2	3.7
QA/QC Samples	None	None	None	None	None	None	None	None
Notes		ave action, no ended solids	Shoreline evidence of lower water levels, moderate wave height, no visible suspended solids	Moderate wave height, no visible suspended solids	Moderate wae action, sampled from float plane anchored to dock, water depth ~2m, not the 4m reported (no depth sample collected)	Calm water, minimal wave height, engines running		minimal wave ines running

STATION	CL-RL-1B	CL-8
Date	10-Sep-17	10-Sep-17
Personnel	CB, SY, DK	CB, SY, DK
Location Description	Reference Station, Thompson Lake	Reference Station, north end of Contact Lake
Latitude (Decimal Degrees N)	65.97902°	66.00485°
Longitude (Decimal Degrees W)	118.01785°	117.89067°
Sample Type	Open Water	Open Water
Access	Float Plane	Float Plane
Method	Grab	Grab
Water Column Depth		
Sample Depth	Surface	Surface
Parameters	General, T. Metals, Rad., PHCs	General, T. Metals, Rads.
рН	7.86	7.82
Conductivity (mS/cm)	0.064	0.045
Temperature (°C)	11	11.7
Dissolved Oxygen (mg/L)	10.31	10.22
Turbidity (NTU)	3.5	3.4
QA/QC Samples	None	None
Notes	Calm water	Modeate winds/wave height, engines running

El Bonanza Mine - 2017 Water Quality Monitoring Field Notes

STATION	ELB-6-SL	ELB-7-SL	ELB-8-SL	ELB-SW-2	ELB-10-ML	ELB-4-ML	ELB-1G-GBL
Date	09-Sep-17	09-Sep-17	09-Sep-17	09-Sep-17	09-Sep-17	09-Sep-17	09-Sep-17
Personnel	RSH, CM, GK	RSH, CM, GK	RSH, CM, GK	RSH, CM, GK	RSH, CM, GK	RSH, CM, GK	RSH, CM, GK
Location Description	Silver Lake @ south end of culvert	Silver Lake, end of waste rock pile	Silver Lake @ outflow of lake on NW side of culvert	50m downstream of Silver Lake outlet, in creek	At mouth of bay on Mile Lake	Mile Lake, at east end of culvert between Mile Lake and Silver Lake (south shore)	Great Bear Lake - Bay with fuel tanks, north end
Latitude (Decimal Degrees N)	66.003617°	66.003683°	66.003967°	66.003967°	66.005050°	66.004067°	65.997867°
Longitude (Decimal Degrees W)	118.070833°	118.074500°	118.075833°	118.076333°	118.068333°	118.070167°	118.100000°
Sample Type	Shoreline (2m from shore)	Shoreline (2m from shore)	Shoreline (2m from shore)	Shoreline	Shoreline (2m from shore)	Shoreline (1m from shore)	Shoreline (2m from shore)
Access	Foot	Foot	Foot	Foot	Foot	Foot	Foot
Method	Grab-Pole	Grab-Pole	Grab-Pole	Grab	Grab-Pole	Grab-Pole	Grab-pole
Water Column Depth	1m	0.75m	0.5m	0.3m	0.5m	1m	1m
Sample Depth	Surface	Surface	Surface	Surface	Surface	Surface	Surface
Parameters	General, T.Metals	General, T. Metals, D. Metals, PHCs	General, T. Metals	General, T. Metals, D. Metals	General, T. Metals	General, T. Metals	General, T. Metals, D. Metals, PHCs
рН	8.85	8.71	8.92	8.58	8.3	8.29	8.42
Conductivity (mS/cm)	0.134	0.102	0.28	0.061	0.069	0.069	0.185
Temperature (°C)	8.9	10.05	9.65	8.91	9.57	9.62	6.27
Dissolved Oxygen (mg/L)	8.85	8.63	11.41	11.99	11.75	10.94	13.05
Turbidity (NTU)	8.5	3.7	3.9	11.4	3.7	3.9	3.6
QA/QC Samples	None	None	ELB-DUP-1	None	None	None	None
Notes	Calm water, no visible evidence of suspended sediments	Wave action (no white caps), at waste rock pile	Calm water, in- water debris (pallet, pipe)	Calm water	Intermittent rain, waves w small whitecaps	Calm water, intermittent rain	Calm water

STATION	ELB-2G-GBL	ELB-9-GBL	
Date	09-Sep-17	09-Sep-17	
Personnel	RSH, CM, GK	RSH, CM, GK	
Location Description	Great Bear Lake - Bay with fuel tanks, south end	Great Bear Lake, approx. 100m offshore of beach landing area	
Latitude (Decimal Degrees N)	65.996967°	65.996800°	
Longitude (Decimal Degrees W)	118.099000°	118.102617°	
Sample Type	Shoreline (2m from shore)	Offshore	
Access	Foot	Float plane	
Method	Grab-pole	Grab-pole	
Water Column Depth	1m	Unknown	
Sample Depth	Surface	Surface	
Parameters	General, T. Metals, PHC	General Metals, T. Metals, PHCs	
рН	8.42	8.32	
Conductivity (mS/cm)	0.185	0.185	
Temperature (°C)	6.3	6	
Dissolved Oxygen (mg/L)	12.63	12.57	
Turbidity (NTU)	3.4	4	
QA/QC Samples	None	None	
Notes	Minor wave action	30cm wave height, plane engines running due to high winds	

Sawmill Bay - 2017 Water Quality Monitoring Field Notes

STATION	A3-SW08-01	BG-SW08-04	SW07-5	A2-SW08-03	SW16-02		SW16-01	
Date	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17		11-Sep-17	
Personnel	CM, DT	CM, DT	CM, DT	CM, DT	CB, RSH, WM		CB, RSH, WM	
Location Description	Shoreline downgradient of fishing dock	Shoreline of unnamed lake (background)	Drainage channel/stream downgradient from dump	Drainage channel from camp area	Sawmill Bay, offshore ~100m of Arctic Enterprises Area		Sawmill Bay, ~150m offshore of beach landing area	
Latitude (Decimal Degrees N)	65.722667°	65.71463°	65.719688°	65.722974°	65.72191°		65.72190°	
Longitude (Decimal Degrees W)	118.911833°	118.93104°	118.926134°	118.919313°	118.88718°		118.89252°	
Sample Type	Shoreline	Shoreline			Open Water		Open Water	
Access	Foot	Foot			Boat		Boat	
Method	Grab	Grab			Van Dorn		Van Dorn	
Water Column Depth	1m	1m			6.8m		6.5m	
Sample Depth	Surface	Surface			2m	6m	2m	6m
Parameters	General, T. Metals	General, T. Metals, D. Metals			General, T. Metals	General, I. Metals PHCs	General, T. Metals, PHCs, Rads.	General, T. Metals
рН	7.14	7.89			8.18	8.15	8.14	8.12
Conductivity (mS/cm)	0.216	0.293			0.106	0.105	0.105	0.112
Temperature (°C)	9	11.6			7	6.9	7	6.9
Dissolved Oxygen (mg/L)	NA	NA			12.21	12.2	12.12	12.2
Turbidity (NTU)	NA	NA			4.6	4.6	4.6	4.6
QA/QC Samples	None	None			None	None	None	None
Notes	Light rain, visible turbidity	Light rain, calm water	DRY, no field measurements or sample collected. Coordinate represents ~ centre point of extended search for water.	DRY, no field measurements or sample collected. Coordinate represents ~ centre point of extended search for water.	Calm water, no visible suspended sediments		Calm water, clear water column	

Sawmill Bay - 2017 Water Quality Monitoring Field Notes

STATION	SW-B-2	SW07-3	A5-SW08-11	BG-SW08-01	A3-SW08-05
Date	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17
Personnel	CB, RSH, WM	CB, RSH, WM	CB, RSH, WM	CB, RSH, WM	CB, RSH, WM
Location Description	Sawmill Bay, ~5m from outer edge of sunken barge	Sawmill Bay, shoreline of Beach Landing	east of Beach Landing	Sawmill Bay, Reference Station on north shore of bay (~50m from shore)	Sawmill Bay, mouth of ravine, ~150m from shore
atitude (Decimal Degrees N) 65.72085°		65.72069°	65.72105°	65.72807°	65.72299°
Longitude (Decimal Degrees W)	118.89077°	118.89196°	118.88832°	118.87001°	118.90913°
Sample Type	Open Water	pen Water Shoreline		Open Water (too shallow to reach shore)	Open Water
Access	Boat	Foot	Boat	Boat	Boat
Method	Grab	Grab-Pole	Grab	Grab	Grab
Water Column Depth	5.9m	0.3m	3.1m	1.1m	3.2m
Sample Depth	Surface	Surface	Surface	Surface	Surface
Parameters	General, T. Metals, D. Metals, Rads., PHCs	General, T. Metals, PHCs	General, T. Metals, D. Metals, PHCs, Rads.	General, T. Metals, Rads.	General, T. Metals
рН	8.16	8.01	8.13	8.17	8.19
Conductivity (mS/cm)	0.107	0.118	0.111	0.108	0.107
Temperature (°C)	7	6.8	7.2	7.5	7.3
Dissolved Oxygen (mg/L)	12.06	11.95	12.02	12.02	12.08
Turbidity (NTU)	5	4.6	5.6	5.9	4.7
QA/QC Samples	SW-DUP-1	None	None	None	None
Notes	Calm water, clear water column	Small amount of wave action along shoreline	,	Raining, similar shoreline to site	Raining, water cloumn still appeared clear

APPENDIX D – Photo Log

2017 GBL Water Quality Monitoring Report – Photo Log

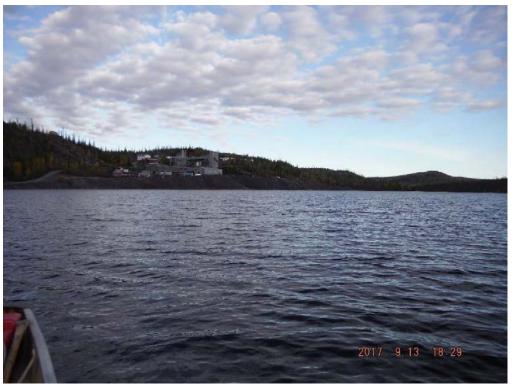

Photo 1 Terra Mine – Station T-2: Little Ho Hum Lake, shoreline sample at south end

Photo 2 Terra Mine- Station T-16: Ho Hum TCA, offshore of mill and tailings beach

Photo 3 Terra Mine – Station T-5: Ho Hum TCA, shoreline sample downstream of mill and adjacent to waste rock and former drum storage area

Photo 4 Terra Mine – Station T-8: Ho Hum TCA, mid lake downstream of mill and tailings beach

Photo 5 Terra Mine- Station T-3: Ho Hum TCA, shoreline sample at tailings beach below former mill

Photo 6 Terra Mine- Station T-9: Upper wetland, sample collected above concrete weir

Photo 7 Terra Mine – Station MB-1: Ho Hum Lower Wetland, near junction of airstrip with weir pad, visible flow into wetland from toe of airstrip waste rock

Photo 8 Terra Mine- Station MB-9: Ho Hum Lower Wetland, mid way between weir and Moose Bay, new station

Photo 9 Terra Mine- Station T-6: Looking toward station T-6, found at junction between Lower Wetland and Moose Bay

Photo 10 Terra Mine – Station T-10: Moose Bay station, mid-channel and mid way along airstrip

Photo 11 Terra Mine- Station T-31: Shoreline station in Moose Bay, mid way along airstrip

Photo 12 Terra Mine – Station T-12: Looking south toward station T-12 at end of airstrip (float plane at dock on right)

Photo 13 Terra Mine- Station T-30: Camsell River, open water station downstream of Moose Bay

Photo 14 Terra Mine – Station T-4: Camsell River dock, note visible turbidity and white caps in background

Photo 15 Terra Mine – Station T-1: Jackfish Bay of the Camsell River, sample collected as near to shore as vegetation permitted

Photo 16 Terra Mine- Station T-19: Adit northwest of Camsell River dock, water level near top of adit, pooled in front (no downstream migration observed)

Photo 17 Terra Mine – Station T-20: Adit directly southeast of Camsell River dock, water level near top of adit, pooled in front (no downstream migration observed)

Photo 18 Terra Mine- Station T-22: Adit near mill, evidence of former water flow, however no water present

Photo 19 Terra Mine- Station T-25: Pond near Jackfish Bay and landfill area (also known as "Scummy Pond")

Photo 20 Terra Mine – Station T-18 Wetland near Jackfish Bay, wetland vegetation; however no standing or flowing water present

Photo 21 Northrim Mine – Station NO-7: Hermandy Lake, west end, south shore, nearest to Leachate Pond

Photo 22 Northrim Mine- Station NO-11: Hermandy Lake, east end, south shore

Photo 23 Northrim Mine- Station NO-2: Leachate pond adjacent to Hermandy Lake (in background), northeast shore

Photo 24 Northrim Mine – Station NO-4/NO-8: Small discharge stream from Hermandy Lake and Leachate Pond, flowing southeast toward the Camsell River dock

Photo 25 Northrim Mine- Station NO-9: Water drainage from adit, too shallow to sample (<2 cm) in areas without rock overhang (downstream sample collected)

Photo 26 Northrim Mine – Station NO-1: Downstream of Northrim adit, high water levels of Camsell River influencing sample

Photo 27 Northrim Mine – Station NO-6: Camsell River, at discharge point of drainage from Hermandy Lake and Leachate Pond

Photo 28 Northrim Mine - Station NO-5: Camsell River at dock

Photo 29 Northrim Mine – Station NO-25: Camsell River, at suspected historic drainage point from Hermandy Lake to Camsell River, west of Hermandy Lake

Photo 30 Northrim Mine – Station NO-27: Camsell River, mid-channel and immediately downstream of Northrim and Norex mines

Photo 31 Norex Mine- Station NX-1: Sampled flowing water pooled in front of adit

Photo 32 Norex Mine - Station NX-3: Seep at southwest toe of waste rock pile

Photo 33 Norex Mine- Station NX-6: Small pond between Graham Vein workings and Xeron Pond

Photo 34 Norex Mine- Station NX-12: Discharge point of drainage from Norex Mine and Graham Vein to the Camsell River

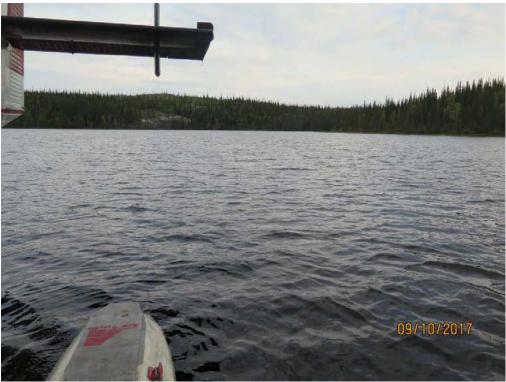

Photo 35 Norex Mine - Station NX-13: Station at Norex dock on the Camsell River

Photo 36 Smallwood Mine- Station SM-1: Shoreline of Smallwood Lake, at toe of waste rock pile at north end

Photo 37 Silver Bear Mines- Station R-2: Reference Station, Belachey Lake upstream of Camsell River rapids and Silver Bear

Photo 38 Silver Bear Mines- Station R-3: Reference Station, Tutcho Lake, small elevated lake approximately 1.5km west of Terra Mine

Photo 39 Silver Bear Mines – Station R-4: Reference Station, Camsell River, immediately below rapids, upstream of sites

Photo 40 Contact Lake Mine- Station CL-2: Pooled water at toe of waste rock slope

Photo 41 Contact Lake Mine- Station CL-15: Pooled water at base of mine area, upgradient of Tailings Pond

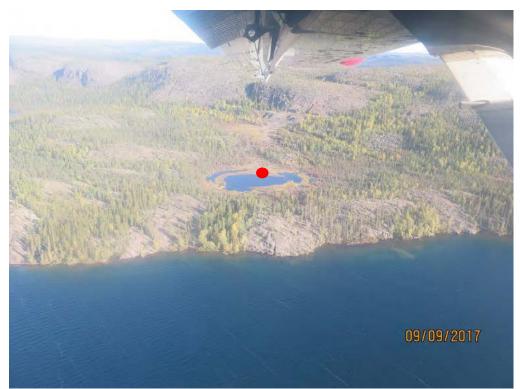


Photo 42 Contact Lake Mine- Station CL-29: Tailings Pond, north shore

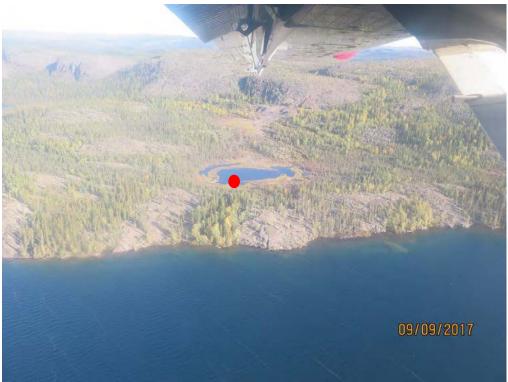


Photo 43 Contact Lake Mine- Station CL-3: Tailings Pond, south shore

Photo 44 Contact Lake Mine- Station CL-2B: Stream from Tailings Pond to Contact Lake

Photo 45 Contact Lake Mine- Station CL-5: Contact Lake, within Lake at discharge of stream from Tailings Pond

Photo 46 Contact Lake Mine- Station CL-26: Contact Lake, approximately 50m offshore of discharge point of stream from Tailings Pond (CL-5)

Photo 47 Contact Lake Mine- Station CL-6: Contact Lake, approximately 500m west of Camp Area

Photo 48 Contact Lake Mine- Station CL-9: Contact Lake, shoreline east of mine drainage

Photo 49 Contact Lake Mine- Station CL-24: Contact Lake, immediately north of Camp Area

Photo 50 Contact Lake Mine- Station CL-7: East Arm of Echo Bay (Great Bear Lake), at dock

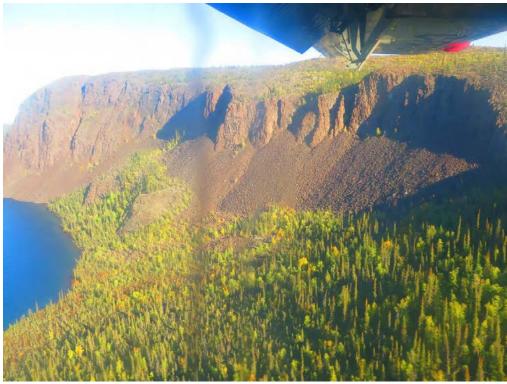

Photo 51 Contact Lake Mine- Station CL-20: East Arm of Echo Bay (Great Bear Lake), approximately 200m southeast of dock

Photo 52 Contact Lake Mine- Station CL-16: East Arm of Echo Bay (Great Bear Lake), approximately 200m northeast of dock

Photo 53 Contact Lake Mine- Station CL-RL-1B: Reference Station, Thompson Lake

Photo 54 Contact Lake Mine- Station CL-8: Reference Station, Contact Lake at northern tip, approximately 4.5km from mine site (station on left of image)

Photo 55 Sawmill Bay- Station SW-B-2: Sawmill Bay (Great Bear Lake), approximately 5m from outer edge of sunken barge

Photo 56 Sawmill Bay- Station A5-SW08-11: Sawmill Bay (Great Bear Lake), approximately 5m off shore and directly east of Beach Landing Area

Photo 57 Sawmill Bay- Station SW16-02: Sawmill Bay (Great Bear Lake), approximately 100m offshore of Arctic Enterprises Area (looking back at sampling location)

Photo 58 Sawmill Bay- Station A3-SW08-05: Sawmill Bay (Great Bear Lake), mouth of ravine, approximately 150m from shore (looking back at sampling location)

Photo 59 Sawmill Bay- Station BG-SW08-11: Reference Station, Sawmill Bay (Great Bear Lake), northern shore

APPENDIX E – Laboratory Certificates

PUBLIC WORKS/GOV'T SERV. CANADA ATTN: Rebecca Studer-Halbach Northern Contaminated Sites 10025 Jasper Avenue NW Edmonton AB T5J 1S6 Date Received: 12-SEP-17 Report Date: 06-NOV-17 17:57 (MT) Version: FINAL REV. 3

Client Phone: 780-497-3761

Certificate of Analysis

Lab Work Order #: L1989669 Project P.O. #: R.015211.049 Job Reference: C of C Numbers: Legal Site Desc:

Comments: 27-OCT-2017 F2-F4 with silca gel results attached to pdf report. 6-NOV-2017 Revised F2-F4 with silca gel results attached to pdf report.

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🕽

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1989669 CONTD.... PAGE 2 of 9 06-NOV-17 17:57 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1989669-1 water 10-SEP-17 NX-1	L1989669-2 water 10-SEP-17 NX-2	L1989669-3 water 10-SEP-17 NX-3	L1989669-4 water 10-SEP-17 NX-4A
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)	000		500	450
	Hardness (as CaCO3) (mg/L)	363	441 HTC	508 313	158 ^{нтс}
	рН (рН)	165	206		81.8
	Total Suspended Solids (mg/L)	8.28	8.39	7.66	7.22
	Total Dissolved Solids (mg/L)	<3.0	9.0 290	69.8 397	23.8 333
	Turbidity (NTU)	223			
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	3.39 174	0.30 157	23.4 77.4	5.15 51.3
	Ammonia, Total (as N) (mg/L)	0.197	0.0283	0.285	0.0354
	Bromide (Br) (mg/L)	<0.050	<0.050	< 0.050	oloco 1 DLDS <0.25
	Chloride (Cl) (mg/L)	1.36	1.25	<0.50	<2.5
	Fluoride (F) (mg/L)	0.716	0.751	0.496	0.37
	Nitrate (as N) (mg/L)	0.0055	0.304	< 0.0050	DLDS <0.025
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	DLDS <0.0050
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020	0.0196	0.0028	0.121
	Phosphorus (P)-Total (mg/L)	<0.0020	0.302	0.113	0.184
	Sulfate (SO4) (mg/L)	29.2	84.5	186	21.6
	Sulphide as S (mg/L)	<0.018	<0.018	0.432	0.146
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	5.29	4.96	22.7	120
	Total Organic Carbon (mg/L)	5.51	21.7	27.3	116
Total Metals	Aluminum (Al)-Total (mg/L)	0.0037	0.0055	0.0336	0.293
	Antimony (Sb)-Total (mg/L)	0.00048	0.00100	0.00099	0.00060
	Arsenic (As)-Total (mg/L)	0.0647	0.0520	0.0391	0.0133
	Barium (Ba)-Total (mg/L)	0.0554	0.0334	0.0258	0.0164
	Beryllium (Be)-Total (mg/L)	0.000021	<0.000020	<0.000020	0.000024
	Bismuth (Bi)-Total (mg/L)	0.000056	0.000112	0.000094	<0.000050
	Boron (B)-Total (mg/L)	0.089	0.083	0.055	0.041
	Cadmium (Cd)-Total (mg/L)	0.0000138	0.000882	0.000765	0.0000555
	Calcium (Ca)-Total (mg/L)	50.2	65.9	92.1	24.7
	Cesium (Cs)-Total (mg/L)	0.000073	0.000101	0.000040	0.000031
	Chromium (Cr)-Total (mg/L)	<0.00010	0.00022	0.00037	0.00168
	Cobalt (Co)-Total (mg/L)	0.00117	0.0212	0.0554	0.00441
	Copper (Cu)-Total (mg/L)	<0.00050	0.00988	0.00153	0.00351
	Iron (Fe)-Total (mg/L)	1.84	0.021	3.23	1.14
	Lead (Pb)-Total (mg/L)	0.0156	0.00977	0.0367	0.00232
	Lithium (Li)-Total (mg/L)	0.0110	0.0107	0.0069	0.0118
	Magnesium (Mg)-Total (mg/L)	9.62	10.1	10.9	4.87

L1989669 CONTD.... PAGE 3 of 9 06-NOV-17 17:57 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1989669-1 water 10-SEP-17 NX-1	L1989669-2 water 10-SEP-17 NX-2	L1989669-3 water 10-SEP-17 NX-3	L1989669-4 water 10-SEP-17 NX-4A
Grouping	Analyte				
WATER					
Total Metals	Manganese (Mn)-Total (mg/L)	0.345	0.0632	1.39	0.0390
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	DLM <0.00010
	Molybdenum (Mo)-Total (mg/L)	0.0140	0.0159	0.00511	0.00187
	Nickel (Ni)-Total (mg/L)	0.00096	0.00913	0.0109	0.00377
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	0.069	0.263
	Potassium (K)-Total (mg/L)	2.29	2.36	2.20	0.50
	Selenium (Se)-Total (mg/L)	<0.000050	0.000314	0.000252	0.000231
	Silicon (Si)-Total (mg/L)	4.61	4.34	4.42	3.97
	Silver (Ag)-Total (mg/L)	<0.000010	0.000016	0.000027	0.000022
	Sodium (Na)-Total (mg/L)	14.5	13.5	6.01	16.5
	Strontium (Sr)-Total (mg/L)	0.269	0.254	0.160	0.0841
	Sulfur (S)-Total (mg/L)	10.2	30.1	79.3	10.2
	Thallium (TI)-Total (mg/L)	<0.000010	0.000024	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	0.00017
	Titanium (Ti)-Total (mg/L)	0.00042	<0.00030	0.00137	<0.0063
	Uranium (U)-Total (mg/L)	0.00982	0.00863	0.000921	0.00169
	Vanadium (V)-Total (mg/L)	0.00074	<0.00050	0.00104	0.00063
	Zinc (Zn)-Total (mg/L)	0.0162	0.636	1.25	0.0315
	Zirconium (Zr)-Total (mg/L)	0.00081	<0.00030	0.00034	0.00113
Dissolved Metals	Dissolved Mercury Filtration Location			LAB	
	Dissolved Metals Filtration Location			LAB	
	Aluminum (Al)-Dissolved (mg/L)			0.0106	
	Antimony (Sb)-Dissolved (mg/L)			0.00127	
	Arsenic (As)-Dissolved (mg/L)			0.0117	
	Barium (Ba)-Dissolved (mg/L)			0.0265	
	Beryllium (Be)-Dissolved (mg/L)			<0.000020	
	Bismuth (Bi)-Dissolved (mg/L)			0.000085	
	Boron (B)-Dissolved (mg/L)			0.048	
	Cadmium (Cd)-Dissolved (mg/L)			0.000898	
	Calcium (Ca)-Dissolved (mg/L)			107	
	Cesium (Cs)-Dissolved (mg/L)			0.000053	
	Chromium (Cr)-Dissolved (mg/L)			0.00020	
	Cobalt (Co)-Dissolved (mg/L)			0.126	
	Copper (Cu)-Dissolved (mg/L)			0.00136	
	Iron (Fe)-Dissolved (mg/L)			0.570	
	Lead (Pb)-Dissolved (mg/L)			0.0274	
	Lithium (Li)-Dissolved (mg/L)			0.0082	

L1989669 CONTD.... PAGE 4 of 9 06-NOV-17 17:57 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1989669-1 water 10-SEP-17 NX-1	L1989669-2 water 10-SEP-17 NX-2	L1989669-3 water 10-SEP-17 NX-3	L1989669-4 water 10-SEP-17 NX-4A	
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)			11.4		
	Manganese (Mn)-Dissolved (mg/L)			1.83		
	Mercury (Hg)-Dissolved (mg/L)			<0.0000050		
	Molybdenum (Mo)-Dissolved (mg/L)			0.00762		
	Nickel (Ni)-Dissolved (mg/L)			0.0250		
	Phosphorus (P)-Dissolved (mg/L)			<0.050		
	Potassium (K)-Dissolved (mg/L)			2.83		
	Selenium (Se)-Dissolved (mg/L)			0.000459		
	Silicon (Si)-Dissolved (mg/L)			4.20		
	Silver (Ag)-Dissolved (mg/L)			0.000022		
	Sodium (Na)-Dissolved (mg/L)			5.06		
	Strontium (Sr)-Dissolved (mg/L)			0.158		
	Sulfur (S)-Dissolved (mg/L)			86.6		
	Thallium (TI)-Dissolved (mg/L)			0.000017		
	Tin (Sn)-Dissolved (mg/L)			<0.00010		
	Titanium (Ti)-Dissolved (mg/L)			0.00046		
	Uranium (U)-Dissolved (mg/L)			0.000844		
	Vanadium (V)-Dissolved (mg/L)			<0.00050		
	Zinc (Zn)-Dissolved (mg/L)			3.07		
	Zirconium (Zr)-Dissolved (mg/L)			<0.00030		
Volatile Organic Compounds	Benzene (mg/L)		<0.00050	<0.00050		
	Ethylbenzene (mg/L)		<0.00050	<0.00050		
	Methyl t-butyl ether (MTBE) (mg/L)		<0.00050	<0.00050		
	Styrene (mg/L)		<0.00050	<0.00050		
	Toluene (mg/L)		<0.00045	<0.00045		
	ortho-Xylene (mg/L)		<0.00050	<0.00050		
	meta- & para-Xylene (mg/L)		<0.00050	<0.00050		
	Xylenes (mg/L)		<0.00075	<0.00075		
	F1 (C6-C10) (mg/L)		<0.10	<0.30		
	Surrogate: 4-Bromofluorobenzene (SS) (%)		100.1	99.7		
	Surrogate: 1,4-Difluorobenzene (SS) (%)		98.0	87.3		
Hydrocarbons	F1-BTEX (mg/L)		<0.10	<0.30		
	F2 (C10-C16) (mg/L)		<0.30	1.43		
	F3 (C16-C34) (mg/L)		<0.30	1.03		
	F4 (C34-C50) (mg/L)		<0.30	<0.30		
	Volatile Hydrocarbons (VH6-10) (mg/L)		<0.10	<0.30		
	VPH (C6-C10) (mg/L)		<0.10	<0.30		

L1989669 CONTD.... PAGE 5 of 9 06-NOV-17 17:57 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time	L1989669-1 water 10-SEP-17 NX-1	L1989669-2 water 10-SEP-17 NX-2	L1989669-3 water 10-SEP-17 NX-3	L1989669-4 water 10-SEP-17 NX-4A	
	Client ID					
Grouping	Analyte					
WATER						
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)		92.7	95.2		
	Surrogate: 3,4-Dichlorotoluene (SS) (%)		91.2	46.5		

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Method Blank	Molybdenum (Mo)-Dissolved	MB-LOR	L1989669-3
Matrix Spike	Dissolved Organic Carbon	MS-B	L1989669-4
Matrix Spike	Total Organic Carbon	MS-B	L1989669-1, -2
Matrix Spike	Total Organic Carbon	MS-B	L1989669-4
Matrix Spike	Arsenic (As)-Total	MS-B	L1989669-1, -2, -4
Matrix Spike	Barium (Ba)-Total	MS-B	L1989669-1, -2, -4
Matrix Spike	Barium (Ba)-Total	MS-B	L1989669-3
Matrix Spike	Calcium (Ca)-Total	MS-B	L1989669-1, -2, -4
Matrix Spike	Calcium (Ca)-Total	MS-B	L1989669-3
Matrix Spike	Copper (Cu)-Total	MS-B	L1989669-3
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1989669-1, -2, -4
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1989669-3
Matrix Spike	Manganese (Mn)-Total	MS-B	L1989669-1, -2, -4
Matrix Spike	Manganese (Mn)-Total	MS-B	L1989669-3
Matrix Spike	Sodium (Na)-Total	MS-B	L1989669-1, -2, -4
Matrix Spike	Sodium (Na)-Total	MS-B	L1989669-3
Matrix Spike	Strontium (Sr)-Total	MS-B	L1989669-1, -2, -4
Matrix Spike	Strontium (Sr)-Total	MS-B	L1989669-3
Matrix Spike	Uranium (U)-Total	MS-B	L1989669-1, -2, -4

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
LSRA	Low surrogate recovery observed due to adsorptive material in sample (e.g. charcoal). Associated results represent solvent extractable concentrations.
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-TITR-VA	Water	Alkalinity Species by Titration	APHA 2320 Alkalinity
		edures adapted from APHA Method 2320 "Alkalinity ate and hydroxide alkalinity are calculated from phere	". Total alkalinity is determined by potentiometric titration to a nolphthalein alkalinity and total alkalinity values.
BE-D-L-CCMS-VA	Water	Diss. Be (low) in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filter	red (0.45 um),	preserved with nitric acid, and analyzed by CRC IC	PMS.
BE-T-L-CCMS-VA	Water	Total Be (Low) in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are dige	ested with nitric	and hydrochloric acids, and analyzed by CRC ICP	MS.
BR-L-IC-N-VA	Water	Bromide in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are an	alyzed by Ion (Chromatography with conductivity and/or UV detection	on.
CARBONS-DOC-VA	Water	Dissolved organic carbon by combustion	APHA 5310B TOTAL ORGANIC CARBON (TOC)
	0.	edures adapted from APHA Method 5310 "Total Orgough a 0.45 micron membrane filter prior to analysis	ganic Carbon (TOC)". Dissolved carbon (DOC) fractions are
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310B TOTAL ORGANIC CARBON (TOC)
This analysis is carried	out using proce	edures adapted from APHA Method 5310 "Total Org	ganic Carbon (TOC)".
CL-IC-N-VA	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are an	alyzed by Ion (Chromatography with conductivity and/or UV detection	on.
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode. **EC-SCREEN-VA** Water Conductivity Screen (Internal Use Only) APHA 2510 Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc. Water Fluoride in Water by IC EPA 300.1 (mod) F-IC-N-VA Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. F1-BTX-CALC-VA Water F1-Total BTX CCME CWS PHC TIER 1 (2001) This analysis is based on the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2000." For F1 (C6-C10), the sample undergoes a purge and trap extraction prior to analysis by GC/FID. The F1-BTEX result is calculated as follows: F1-BTEX: F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX). F1-HSFID-VA CCME F1 By Headspace with GCFID Water EPA 5021A/CCME CWS PHC (Pub# 1310) This analysis is based on the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2000." For F1 (C6-C10), the sample undergoes a headspace purge prior to analysis by GC/FID. F1 (C6-C10): Sum of all hydrocarbons that elute between nC6 and nC10. F2-F4-ME-FID-VA Water CCME F2-F4 Hydrocarbons in Water CCME CWS-PHC, Pub #1310, Dec 2001 F2-F4 is extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, Dec 2001. HARDNESS-CALC-VA Water Hardness APHA 2340B Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation. APHA 3030B/EPA 1631E (mod) **HG-D-CVAA-VA** Water Diss. Mercury in Water by CVAAS or CVAFS Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. Total Mercury in Water by CVAAS or CVAFS EPA 1631E (mod) HG-T-CVAA-VA Water Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. MET-D-CCMS-VA Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod) Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. **MET-T-CCMS-VA** Water Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod) Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. NH3-F-VA Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC Water This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al. NO2-L-IC-N-VA Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-L-IC-N-VA Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. P-T-PRES-COL-VA Water Total P in Water by Colour APHA 4500-P Phosphorus This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. P-TD-COL-VA Water Total Dissolved P in Water by Colour APHA 4500-P Phosphorous

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Dissolved Phosphorus is determined colourimetrically after persulphate digestion of a sample that has been lab or field filtered through a 0.45 micron membrane filter. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H pH Value This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode It is recommended that this analysis be conducted in the field. S2-T-COL-VA Water Total Sulphide by Colorimetric APHA 4500-S2 Sulphide This analysis is carried out using procedures adapted from APHA Method 4500-S2 "Sulphide". Sulphide is determined using the methlyene blue colourimetric method. SO4-IC-N-VA Water Sulfate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. TDS-VA Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. APHA 2540 D - GRAVIMETRIC **TSS-VA** Water Total Suspended Solids by Gravimetric This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples. **TURBIDITY-VA** Water Turbidity by Meter APHA 2130 Turbidity This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method. **VH-HSFID-VA** Water VH in Water by Headspace GCFID BC Env. Lab Manual (VH in Water) The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Compounds eluting between n-hexane and n-decane are measured and summed together using flame-ionization detection. **VH-SURR-FID-VA** Water VH Surrogates for Waters BC Env. Lab Manual (VH in Solids) VOC7-HSMS-VA Water BTEX/MTBE/Styrene by Headspace GCMS EPA 5021A/8260C The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7/VOC-SURR-MS-VA Water VOC7 and/or VOC Surrogates for Waters EPA 5035A/5021A/8260C VPH is VH minus select aromatics **VPH-CALC-VA** Water BC MOE LABORATORY MANUAL (2005) These results are determined according to the British Columbia Ministry of Environment Analytical Method for Contaminated Sites "Calculation of Volatile Petroleum Hydrocarbons in Solids or Water". The concentrations of specific Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene, Xylenes and, in solids, Styrene) are subtracted from the collective concentration of Volatile Hydrocarbons (VH) that elute between nhexane (nC6) and n-decane (nC10). **XYLENES-CALC-VA** Water Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L1989669)	Report Date: 06	6-NOV-17	Pa	ge 1 of 21
Northe	rn Contaminated	-		1				
Contact: Rebect	ca Studer-Halba	ch						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-TITR-VA	Water							
Batch R383561	10							
WG2620974-3 CRM Alkalinity, Total (as Ca		VA-ALK-TITR	R-CONTROL 99.1		%		85-115	22-SEP-17
WG2620974-1 MB Alkalinity, Total (as Ca	aCO3)		<1.0		mg/L		1	22-SEP-17
BE-D-L-CCMS-VA	Water							
Batch R383374	18							
WG2620123-2 LCS Beryllium (Be)-Dissolv			100.9		%		80-120	20-SEP-17
WG2620123-1 MB		LF					00 120	
Beryllium (Be)-Dissol	ved		<0.000020)	mg/L		0.00002	20-SEP-17
Batch R383764 WG2623233-2 LCS								
Beryllium (Be)-Dissol			97.4		%		80-120	23-SEP-17
WG2623233-1 MB Beryllium (Be)-Dissolv	ved	LF	<0.000020)	mg/L		0.00002	23-SEP-17
BE-T-L-CCMS-VA	Water							
Batch R383532	29							
WG2620295-2 LCS Beryllium (Be)-Total	5		107.8		%		80-120	20-SEP-17
WG2620295-1 MB								
Beryllium (Be)-Total			<0.000020)	mg/L		0.00002	20-SEP-17
Batch R38362	54							
WG2620295-4 MS Beryllium (Be)-Total		L1989669-1	95.8		%		70-130	21-SEP-17
Batch R383771	18							
WG2623288-2 LCS								
Beryllium (Be)-Total WG2623288-1 MB			91.2		%		80-120	23-SEP-17
Beryllium (Be)-Total			<0.000020)	mg/L		0.00002	23-SEP-17
BR-L-IC-N-VA	Water							
Batch R382959								
WG2616764-13 LCS Bromide (Br)	5		100.9		%		85-115	15-SEP-17
WG2616764-17 LCS Bromide (Br)	5		99.9		%		85-115	15-SEP-17
WG2616764-2 LCS	5		101.7		0/			
Bromide (Br)			101.7		%		85-115	15-SEP-17

		Workorder	: L198966	9	Report Date: 0	6-NOV-17	Pa	ge 2 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BR-L-IC-N-VA	Water							
Batch R3829596								
WG2616764-21 LCS Bromide (Br)			101.9		%		85-115	15-SEP-17
WG2616764-26 LCS Bromide (Br)			99.1		%		85-115	15-SEP-17
WG2616764-5 LCS Bromide (Br)			100.7		%		85-115	15-SEP-17
WG2616764-9 LCS Bromide (Br)			101.0		%		85-115	15-SEP-17
WG2616764-1 MB Bromide (Br)			<0.050		mg/L		0.05	15-SEP-17
WG2616764-12 MB Bromide (Br)			<0.050		mg/L		0.05	15-SEP-17
WG2616764-16 MB Bromide (Br)			<0.050		mg/L		0.05	15-SEP-17
WG2616764-20 MB Bromide (Br)			<0.050		mg/L		0.05	15-SEP-17
WG2616764-24 MB Bromide (Br)			<0.050		mg/L		0.05	15-SEP-17
WG2616764-4 MB Bromide (Br)			<0.050		mg/L		0.05	15-SEP-17
WG2616764-8 MB Bromide (Br)			<0.050		mg/L		0.05	15-SEP-17
ARBONS-DOC-VA	Water							
Batch R3831979								
WG2618879-4 LCS Dissolved Organic Carbon	n		101.5		%		80-120	18-SEP-17
WG2618879-3 MB Dissolved Organic Carbor	n		<0.50		mg/L		0.5	18-SEP-17
Batch R3835237								
WG2620436-12 LCS Dissolved Organic Carbon	n		106.9		%		80-120	20-SEP-17
WG2620436-4 LCS Dissolved Organic Carbo	n		105.5		%		80-120	20-SEP-17
WG2620436-8 LCS Dissolved Organic Carbo	n		105.6		%		80-120	20-SEP-17
WG2620436-11 MB Dissolved Organic Carbo	n		<0.50		mg/L		0.5	20-SEP-17
WG2620436-3 MB								

	_		-				
	Workorder:	L198966	9	Report Date: 06	6-NOV-17	Pa	ige 3 of 21
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CARBONS-DOC-VA Water							
BatchR3835237WG2620436-3MBDissolved Organic Carbon		<0.50		mg/L		0.5	20-SEP-17
WG2620436-7 MB Dissolved Organic Carbon		<0.50		mg/L		0.5	20-SEP-17
CARBONS-TOC-VA Water							
Batch R3831967 WG2618541-1 LCS							
Total Organic Carbon		97.7		%		80-120	18-SEP-17
WG2618541-13 LCS Total Organic Carbon		98.3		%		80-120	18-SEP-17
WG2618541-5 LCS Total Organic Carbon		97.0		%		80-120	18-SEP-17
WG2618541-9 LCS Total Organic Carbon		96.7		%		80-120	18-SEP-17
WG2618541-12 MB Total Organic Carbon		<0.50		mg/L		0.5	18-SEP-17
WG2618541-4 MB Total Organic Carbon		<0.50		mg/L		0.5	18-SEP-17
WG2618541-8 MB Total Organic Carbon		<0.50		mg/L		0.5	18-SEP-17
Batch R3833037							
WG2619032-2 DUP Total Organic Carbon	L1989669-4 116	114		mg/L	1.2	20	19-SEP-17
WG2619032-1 LCS Total Organic Carbon		104.0		%		80-120	19-SEP-17
WG2619032-13 LCS Total Organic Carbon		107.4		%		80-120	19-SEP-17
WG2619032-5 LCS Total Organic Carbon		111.4		%		80-120	19-SEP-17
WG2619032-9 LCS Total Organic Carbon		106.6		%		80-120	19-SEP-17
WG2619032-12 MB Total Organic Carbon		<0.50		mg/L		0.5	19-SEP-17
WG2619032-8 MB Total Organic Carbon		<0.50		mg/L		0.5	19-SEP-17

		•		•				
		Workorder: L1989669		Report Date: 06-NOV-17		Page 4 of 2		
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CARBONS-TOC-VA	Water							
Batch R3833584								
WG2619110-1 LCS Total Organic Carbon			96.5		%		80-120	19-SEP-17
WG2619110-5 LCS Total Organic Carbon			96.9		%		80-120	19-SEP-17
WG2619110-9 LCS Total Organic Carbon			100.3		%		80-120	19-SEP-17
WG2619110-4 MB Total Organic Carbon			<0.50		mg/L		0.5	19-SEP-17
WG2619110-8 MB Total Organic Carbon			<0.50		mg/L		0.5	19-SEP-17
CL-IC-N-VA	Water							
Batch R3829596								
WG2616764-13 LCS Chloride (Cl)			100.8		%		90-110	15-SEP-17
WG2616764-17 LCS Chloride (Cl)			100.9		%		90-110	15-SEP-17
WG2616764-2 LCS Chloride (Cl)			100.8		%		90-110	15-SEP-17
WG2616764-21 LCS Chloride (Cl)			101.1		%		90-110	15-SEP-17
WG2616764-26 LCS Chloride (Cl)			101.0		%		90-110	15-SEP-17
WG2616764-5 LCS Chloride (Cl)			100.8		%		90-110	15-SEP-17
WG2616764-9 LCS Chloride (Cl)			100.7		%		90-110	15-SEP-17
WG2616764-1 MB Chloride (Cl)			<0.50		mg/L		0.5	15-SEP-17
WG2616764-12 MB Chloride (Cl)			<0.50		mg/L		0.5	15-SEP-17
WG2616764-16 MB Chloride (Cl)			<0.50		mg/L		0.5	15-SEP-17
WG2616764-20 MB Chloride (Cl)			<0.50		mg/L		0.5	15-SEP-17
WG2616764-24 MB Chloride (Cl)			<0.50		mg/L		0.5	15-SEP-17
WG2616764-4 MB Chloride (Cl)			<0.50		mg/L		0.5	15-SEP-17
WG2616764-8 MB					U .		0.0	

			Workorder	: L198966	69	Report Date: 06	6-NOV-17	Pa	age 5 of 21
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CL-IC-N-VA		Water							
	829596								
WG2616764-8 Chloride (Cl)	MB			<0.50		mg/L		0.5	15-SEP-17
EC-PCT-VA		Water							
Batch R3	835610								
WG2620974-4 Conductivity	CRM		VA-EC-PCT	-CONTROL 99.9		%		90-110	22-SEP-17
WG2620974-1	MB					uS/cm			
Conductivity		Water		<2.0		uS/cm		2	22-SEP-17
-	829596	water							
WG2616764-13									
Fluoride (F)	200			100.4		%		90-110	15-SEP-17
WG2616764-17 Fluoride (F)	LCS			100.6		%		90-110	15-SEP-17
WG2616764-2 Fluoride (F)	LCS			100.0		%		90-110	15-SEP-17
WG2616764-21 Fluoride (F)	LCS			100.8		%		90-110	15-SEP-17
WG2616764-26 Fluoride (F)	LCS			100.8		%		90-110	15-SEP-17
WG2616764-5 Fluoride (F)	LCS			99.96		%		90-110	15-SEP-17
WG2616764-9 Fluoride (F)	LCS			100.2		%		90-110	15-SEP-17
WG2616764-1 Fluoride (F)	MB			<0.020		mg/L		0.02	15-SEP-17
WG2616764-12 Fluoride (F)	MB			<0.020		mg/L		0.02	15-SEP-17
WG2616764-16 Fluoride (F)	MB			<0.020		mg/L		0.02	15-SEP-17
WG2616764-20 Fluoride (F)	MB			<0.020		mg/L		0.02	15-SEP-17
WG2616764-24 Fluoride (F)	MB			<0.020		mg/L		0.02	15-SEP-17
WG2616764-4 Fluoride (F)	MB			<0.020		mg/L		0.02	15-SEP-17
WG2616764-8	мв					J –		0.02	

		Workorder:	L1989669	Re	eport Date: (06-NOV-17	Pag	ge 6 of 21
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F-IC-N-VA	Water							
Batch R3829596 WG2616764-8 MB Fluoride (F) Fluoride (F)			<0.020		mg/L		0.02	15-SEP-17
F1-HSFID-VA	Water							
Batch R3831285								
WG2621007-2 LCS F1 (C6-C10)			109.2		%		70-130	21-SEP-17
WG2621007-1 MB F1 (C6-C10)			<0.10		mg/L		0.1	21-SEP-17
F2-F4-ME-FID-VA	Water							
Batch R3833634								
WG2621934-2 LCS								
F2 (C10-C16)			83.9		%		70-130	21-SEP-17
F3 (C16-C34)			93.5		%		70-130	21-SEP-17
F4 (C34-C50)			97.4		%		70-130	21-SEP-17
WG2621934-1 MB F2 (C10-C16)			<0.30		mg/L		0.3	21-SEP-17
F3 (C16-C34)			<0.30		mg/L		0.3	21-SEP-17
F4 (C34-C50)			<0.30		mg/L		0.3	21-SEP-17
Surrogate: 2-Bromobenz	otrifluoride, F2	2-F4	87.7		%		60-140	21-SEP-17
HG-D-CVAA-VA	Water							
Batch R3835215								
WG2621806-3 DUP Mercury (Hg)-Dissolved		L1989669-3 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	21-SEP-17
WG2621806-2 LCS Mercury (Hg)-Dissolved			98.8		%		80-120	21-SEP-17
WG2621806-1 MB Mercury (Hg)-Dissolved		LF	<0.0000050	2	mg/L		0.000005	21-SEP-17
HG-T-CVAA-VA	Water				-			
Batch R3829878								
WG2617478-16 DUP Mercury (Hg)-Total		L1989669-3 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	15-SEP-17
WG2617478-2 LCS Mercury (Hg)-Total			96.4		%		80-120	15-SEP-17
WG2617478-1 MB Mercury (Hg)-Total			<0.0000050]	mg/L		0.000005	15-SEP-17

	Workorder: L1989669		69	Report Date: 0	6-NOV-17	Pa	ge 7 of 2	
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
IG-T-CVAA-VA	Water							
Batch R383026	6							
WG2617821-2 LCS Mercury (Hg)-Total			106.6		%		80-120	16-SEP-17
WG2617821-1 MB Mercury (Hg)-Total			<0.00000	050	mg/L		0.000005	16-SEP-17
MET-D-CCMS-VA	Water							
Batch R3837648	8							
WG2623233-2 LCS Aluminum (Al)-Dissolve	ed		103.6		%		80-120	23-SEP-17
Antimony (Sb)-Dissolv			99.4		%		80-120	23-SEP-17
Arsenic (As)-Dissolved			102.5		%		80-120	23-SEP-17 23-SEP-17
Barium (Ba)-Dissolved			102.5		%		80-120	23-SEP-17 23-SEP-17
Bismuth (Bi)-Dissolved			98.7		%		80-120	23-SEP-17 23-SEP-17
Boron (B)-Dissolved	~		93.5		%		80-120	23-SEP-17
Cadmium (Cd)-Dissolv	/ed		98.8		%		80-120	23-SEP-17
Calcium (Ca)-Dissolve			97.3		%		80-120	23-SEP-17
Cesium (Cs)-Dissolved			100.3		%		80-120	23-SEP-17
Chromium (Cr)-Dissolv			100.2		%		80-120	23-SEP-17
Cobalt (Co)-Dissolved			98.3		%		80-120	23-SEP-17
Copper (Cu)-Dissolved	Ł		97.8		%		80-120	23-SEP-17
Iron (Fe)-Dissolved			99.8		%		80-120	23-SEP-17
Lead (Pb)-Dissolved			100.1		%		80-120	23-SEP-17
Lithium (Li)-Dissolved			100.6		%		80-120	23-SEP-17
Magnesium (Mg)-Disso	olved		105.8		%		80-120	23-SEP-17
Manganese (Mn)-Disse	olved		97.7		%		80-120	23-SEP-17
Molybdenum (Mo)-Dise	solved		95.3		%		80-120	23-SEP-17
Nickel (Ni)-Dissolved			97.1		%		80-120	23-SEP-17
Phosphorus (P)-Dissol	lved		107.4		%		80-120	23-SEP-17
Potassium (K)-Dissolve	ed		101.8		%		80-120	23-SEP-17
Selenium (Se)-Dissolv	ed		100.9		%		80-120	23-SEP-17
Silicon (Si)-Dissolved			97.9		%		80-120	23-SEP-17
Silver (Ag)-Dissolved			97.4		%		80-120	23-SEP-17
Sodium (Na)-Dissolved	d		103.4		%		80-120	23-SEP-17
Strontium (Sr)-Dissolve	ed		95.2		%		80-120	23-SEP-17
Sulfur (S)-Dissolved			100.4		%		80-120	23-SEP-17
Thallium (TI)-Dissolved	d		99.0		%		80-120	23-SEP-17

		Workorder	: L198966	69	Report Date: 0	6-NOV-17	Pa	ge 8 of 2
lest .	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-VA	Water							
Batch R383764	18							
WG2623233-2 LCS	5							
Tin (Sn)-Dissolved			100.5		%		80-120	23-SEP-17
Titanium (Ti)-Dissolve			93.6		%		80-120	23-SEP-17
Uranium (U)-Dissolve			100.4		%		80-120	23-SEP-17
Vanadium (V)-Dissolv	red		101.8		%		80-120	23-SEP-17
Zinc (Zn)-Dissolved			96.4		%		80-120	23-SEP-17
Zirconium (Zr)-Dissolv	ved		99.0		%		80-120	23-SEP-17
WG2623233-1 MB Aluminum (Al)-Dissolv	ved	LF	<0.0010		mg/L		0.001	23-SEP-17
Antimony (Sb)-Dissolv	ved		<0.00010)	mg/L		0.0001	23-SEP-17
Arsenic (As)-Dissolve	d		<0.00010)	mg/L		0.0001	23-SEP-17
Barium (Ba)-Dissolve	d		<0.0000	50	mg/L		0.00005	23-SEP-17
Bismuth (Bi)-Dissolve	d		<0.0000	50	mg/L		0.00005	23-SEP-17
Boron (B)-Dissolved			<0.010		mg/L		0.01	23-SEP-17
Cadmium (Cd)-Dissol	ved		<0.0000	050	mg/L		0.000005	23-SEP-17
Calcium (Ca)-Dissolve	ed		<0.050		mg/L		0.05	23-SEP-17
Cesium (Cs)-Dissolve	ed		< 0.0000	10	mg/L		0.00001	23-SEP-17
Chromium (Cr)-Dissol	lved		<0.00010)	mg/L		0.0001	23-SEP-17
Cobalt (Co)-Dissolved	ł		<0.00010)	mg/L		0.0001	23-SEP-17
Copper (Cu)-Dissolve	d		<0.00020)	mg/L		0.0002	23-SEP-17
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	23-SEP-17
Lead (Pb)-Dissolved			<0.0000	50	mg/L		0.00005	23-SEP-17
Lithium (Li)-Dissolved			<0.0010		mg/L		0.001	23-SEP-17
Magnesium (Mg)-Diss	solved		<0.0050		mg/L		0.005	23-SEP-17
Manganese (Mn)-Diss	solved		<0.00010)	mg/L		0.0001	23-SEP-17
Nickel (Ni)-Dissolved			<0.00050)	mg/L		0.0005	23-SEP-17
Phosphorus (P)-Disso	olved		<0.050		mg/L		0.05	23-SEP-17
Potassium (K)-Dissolv	ved		<0.050		mg/L		0.05	23-SEP-17
Selenium (Se)-Dissolv	ved		<0.0000	50	mg/L		0.00005	23-SEP-17
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	23-SEP-17
Silver (Ag)-Dissolved			< 0.0000	10	mg/L		0.00001	23-SEP-17
Sodium (Na)-Dissolve	ed		<0.050		mg/L		0.05	23-SEP-17
Strontium (Sr)-Dissolv	ved		<0.00020)	mg/L		0.0002	23-SEP-17
Sulfur (S)-Dissolved			<0.50		mg/L		0.5	23-SEP-17
Thallium (TI)-Dissolve	ed		< 0.0000	10	mg/L		0.00001	23-SEP-17

		Workorder	: L1989669	Re	eport Date: (6-NOV-17	Pa	ge 9 of 2
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-VA	Water							
Batch R383764	3							
WG2623233-1 MB Tin (Sn)-Dissolved		LF	<0.00010		mg/L		0.0001	23-SEP-17
Titanium (Ti)-Dissolved	ł		<0.00030		mg/L		0.0003	23-SEP-17
Uranium (U)-Dissolved	I		<0.000010		mg/L		0.00001	23-SEP-17
Vanadium (V)-Dissolve	ed		<0.00050		mg/L		0.0005	23-SEP-17
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	23-SEP-17
Zirconium (Zr)-Dissolv	ed		<0.000060		mg/L		0.00006	23-SEP-17
Batch R383822	3							
WG2623233-1 MB		LF						
Molybdenum (Mo)-Dis	solved		0.000071	MB-LOR	mg/L		0.00005	25-SEP-17
MET-T-CCMS-VA	Water							
Batch R383532	Ð							
WG2620295-2 LCS			107.4		0/		00.400	
Aluminum (Al)-Total			107.4		%		80-120	20-SEP-17
Antimony (Sb)-Total			106.2		%		80-120	20-SEP-17
Arsenic (As)-Total			105.7		%		80-120	20-SEP-17
Barium (Ba)-Total			103.1 106.4		%		80-120	20-SEP-17
Bismuth (Bi)-Total					%		80-120	20-SEP-17
Boron (B)-Total			103.4		%		80-120	20-SEP-17
Cadmium (Cd)-Total			106.3		%		80-120	20-SEP-17
Calcium (Ca)-Total			103.3		%		80-120	20-SEP-17
Cesium (Cs)-Total			102.6		%		80-120	20-SEP-17
Chromium (Cr)-Total			105.5		%		80-120	20-SEP-17
Cobalt (Co)-Total			102.7		%		80-120	20-SEP-17
Copper (Cu)-Total			101.5		%		80-120	20-SEP-17
Iron (Fe)-Total			102.1		%		80-120	20-SEP-17
Lead (Pb)-Total			105.3		%		80-120	20-SEP-17
Lithium (Li)-Total			107.3		%		80-120	20-SEP-17
Magnesium (Mg)-Tota			103.1		%		80-120	20-SEP-17
Manganese (Mn)-Tota	l		100.7		%		80-120	20-SEP-17
Molybdenum (Mo)-Tota	al		103.7		%		80-120	20-SEP-17
Nickel (Ni)-Total			104.0		%		80-120	20-SEP-17
Phosphorus (P)-Total			118.7		%		80-120	20-SEP-17
Potassium (K)-Total			104.9		%		80-120	20-SEP-17
Selenium (Se)-Total			103.6					

		Workorder	: L198966	59	Report Date: 0	6-NOV-17	Pa	ge 10 of 2
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R3835329)							
WG2620295-2 LCS								
Silicon (Si)-Total			106.2		%		80-120	20-SEP-17
Silver (Ag)-Total			104.1		%		80-120	20-SEP-17
Sodium (Na)-Total			102.3		%		80-120	20-SEP-17
Strontium (Sr)-Total			103.8		%		80-120	20-SEP-17
Sulfur (S)-Total			111.3		%		80-120	20-SEP-17
Thallium (TI)-Total			104.7		%		80-120	20-SEP-17
Tin (Sn)-Total			105.4		%		80-120	20-SEP-17
Titanium (Ti)-Total			104.1		%		80-120	20-SEP-17
Uranium (U)-Total			104.3		%		80-120	20-SEP-17
Vanadium (V)-Total			105.4		%		80-120	20-SEP-17
Zinc (Zn)-Total			98.3		%		80-120	20-SEP-17
Zirconium (Zr)-Total			106.0		%		80-120	20-SEP-17
WG2620295-1 MB Aluminum (Al)-Total			<0.0030		mg/L		0.003	20-SEP-17
Antimony (Sb)-Total			<0.00010)	mg/L		0.0001	20-SEP-17
Arsenic (As)-Total			<0.00010		mg/L		0.0001	20-SEP-17
Barium (Ba)-Total			<0.00005		mg/L		0.00005	20 SEP-17
Bismuth (Bi)-Total			<0.00005		mg/L		0.00005	20-SEP-17
Boron (B)-Total			<0.010		mg/L		0.01	20-SEP-17
Cadmium (Cd)-Total			<0.00000)5(mg/L		0.000005	20 SEP-17
Calcium (Ca)-Total			< 0.050		mg/L		0.05	20-SEP-17
Cesium (Cs)-Total			< 0.0000	10	mg/L		0.00001	20-SEP-17
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	20-SEP-17
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	20-SEP-17
Copper (Cu)-Total			< 0.00050		mg/L		0.0005	20-SEP-17
Iron (Fe)-Total			<0.010	-	mg/L		0.00	20-SEP-17
Lead (Pb)-Total			<0.00005	50	mg/L		0.00005	20-SEP-17
Lithium (Li)-Total			<0.0010		mg/L		0.001	20-SEP-17
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	20-SEP-17 20-SEP-17
Manganese (Mn)-Total			<0.00010)	mg/L		0.0001	20-SEP-17 20-SEP-17
Molybdenum (Mo)-Tota			<0.00005		mg/L		0.00005	20-SEP-17 20-SEP-17
Nickel (Ni)-Total	. .		<0.00050		mg/L		0.0005	20-SEP-17 20-SEP-17
Phosphorus (P)-Total			<0.00030	,	mg/L		0.0005	
Potassium (K)-Total			<0.050		mg/L		0.05	20-SEP-17 20-SEP-17

		Workorder:	L1989669)	Report Date: 0	6-NOV-17	Pa	ge 11 of 2 [.]
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R3835329)							
WG2620295-1 MB								
Selenium (Se)-Total			<0.000050		mg/L		0.00005	20-SEP-17
Silicon (Si)-Total			<0.10		mg/L		0.1	20-SEP-17
Silver (Ag)-Total			<0.000010		mg/L		0.00001	20-SEP-17
Sodium (Na)-Total			<0.050		mg/L		0.05	20-SEP-17
Strontium (Sr)-Total			<0.00020		mg/L		0.0002	20-SEP-17
Sulfur (S)-Total			<0.50		mg/L		0.5	20-SEP-17
Thallium (TI)-Total			<0.000010		mg/L		0.00001	20-SEP-17
Tin (Sn)-Total			<0.00010		mg/L		0.0001	20-SEP-17
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	20-SEP-17
Uranium (U)-Total			<0.000010		mg/L		0.00001	20-SEP-17
Vanadium (V)-Total			<0.00050		mg/L		0.0005	20-SEP-17
Zinc (Zn)-Total			<0.0030		mg/L		0.003	20-SEP-17
Zirconium (Zr)-Total			<0.000060)	mg/L		0.00006	20-SEP-17
Batch R3836254								
WG2620295-4 MS Aluminum (Al)-Total		L1989669-1	94.6		%		70 420	
Antimony (Sb)-Total			94.0 104.0		%		70-130	21-SEP-17
Arsenic (As)-Total			N/A	MS-B	%		70-130	21-SEP-17
			N/A				-	21-SEP-17
Barium (Ba)-Total				MS-B	%		-	21-SEP-17
Bismuth (Bi)-Total			96.0		%		70-130	21-SEP-17
Boron (B)-Total			96.4		%		70-130	21-SEP-17
Cadmium (Cd)-Total			93.6		%		70-130	21-SEP-17
Calcium (Ca)-Total			N/A	MS-B	%		-	21-SEP-17
Cesium (Cs)-Total			102.3		%		70-130	21-SEP-17
Chromium (Cr)-Total			91.6		%		70-130	21-SEP-17
Cobalt (Co)-Total			91.0		%		70-130	21-SEP-17
Copper (Cu)-Total			90.9		%		70-130	21-SEP-17
Iron (Fe)-Total			93.2		%		70-130	21-SEP-17
Lead (Pb)-Total			88.0		%		70-130	21-SEP-17
Lithium (Li)-Total			94.4		%		70-130	21-SEP-17
Magnesium (Mg)-Total			N/A	MS-B	%		-	21-SEP-17
Manganese (Mn)-Total			N/A	MS-B	%		-	21-SEP-17
Molybdenum (Mo)-Tota	d		95.1		%		70-130	21-SEP-17
					70		10 100	

		Workorder:	L198966	9 R	Report Date: (6-NOV-17	Pa	Page 12 of 21		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
MET-T-CCMS-VA	Water									
Batch R3836254	Ļ									
WG2620295-4 MS		L1989669-1								
Phosphorus (P)-Total			101.4		%		70-130	21-SEP-17		
Potassium (K)-Total			94.2		%		70-130	21-SEP-17		
Selenium (Se)-Total			95.0		%		70-130	21-SEP-17		
Silicon (Si)-Total			86.7		%		70-130	21-SEP-17		
Silver (Ag)-Total			99.8		%		70-130	21-SEP-17		
Sodium (Na)-Total			N/A	MS-B	%		-	21-SEP-17		
Strontium (Sr)-Total			N/A	MS-B	%		-	21-SEP-17		
Sulfur (S)-Total			96.5		%		70-130	21-SEP-17		
Thallium (TI)-Total			96.6		%		70-130	21-SEP-17		
Tin (Sn)-Total			96.7		%		70-130	21-SEP-17		
Titanium (Ti)-Total			97.4		%		70-130	21-SEP-17		
Uranium (U)-Total			N/A	MS-B	%		-	21-SEP-17		
Vanadium (V)-Total			96.2		%		70-130	21-SEP-17		
Zinc (Zn)-Total			84.7		%		70-130	21-SEP-17		
Zirconium (Zr)-Total			98.1		%		70-130	21-SEP-17		
Batch R3837718	5									
WG2623288-2 LCS										
Aluminum (Al)-Total			84.4		%		80-120	23-SEP-17		
Antimony (Sb)-Total			90.8		%		80-120	23-SEP-17		
Arsenic (As)-Total			84.3		%		80-120	23-SEP-17		
Barium (Ba)-Total			84.1		%		80-120	23-SEP-17		
Bismuth (Bi)-Total			88.8		%		80-120	23-SEP-17		
Boron (B)-Total			85.3		%		80-120	23-SEP-17		
Cadmium (Cd)-Total			83.0		%		80-120	23-SEP-17		
Calcium (Ca)-Total			88.4		%		80-120	23-SEP-17		
Cesium (Cs)-Total			87.9		%		80-120	23-SEP-17		
Chromium (Cr)-Total			84.7		%		80-120	23-SEP-17		
Cobalt (Co)-Total			84.7		%		80-120	23-SEP-17		
Copper (Cu)-Total			83.8		%		80-120	23-SEP-17		
Iron (Fe)-Total			87.1		%		80-120	23-SEP-17		
Lead (Pb)-Total			89.9		%		80-120	23-SEP-17		
Lithium (Li)-Total			93.2		%		80-120	23-SEP-17		
Magnesium (Mg)-Total			84.5		%		80-120	23-SEP-17		
Manganese (Mn)-Total			81.2		%		80-120	23-SEP-17		

		Workorder	Workorder: L1989669		Report Date: 0	6-NOV-17	Pa	ge 13 of 2
lest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R383771	18							
WG2623288-2 LCS			05.7		0/			
Molybdenum (Mo)-To	ital		85.7		%		80-120	23-SEP-17
Nickel (Ni)-Total			86.5		%		80-120	23-SEP-17
Phosphorus (P)-Total			84.9		%		80-120	23-SEP-17
Potassium (K)-Total			83.5		%		80-120	23-SEP-17
Selenium (Se)-Total			91.7		%		80-120	23-SEP-17
Silicon (Si)-Total			86.8		%		80-120	23-SEP-17
Silver (Ag)-Total			87.8		%		80-120	23-SEP-17
Sodium (Na)-Total			85.4		%		80-120	23-SEP-17
Strontium (Sr)-Total			87.2		%		80-120	23-SEP-17
Sulfur (S)-Total			86.1		%		80-120	23-SEP-17
Thallium (TI)-Total			89.7		%		80-120	23-SEP-17
Tin (Sn)-Total			81.6		%		80-120	23-SEP-17
Uranium (U)-Total			92.9		%		80-120	23-SEP-17
Vanadium (V)-Total			84.7		%		80-120	23-SEP-17
Zirconium (Zr)-Total			89.4		%		80-120	23-SEP-17
WG2623288-1 MB								
Aluminum (Al)-Total			<0.0030	_	mg/L		0.003	23-SEP-17
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	23-SEP-17
Arsenic (As)-Total			<0.00010		mg/L		0.0001	23-SEP-17
Barium (Ba)-Total			<0.0000		mg/L		0.00005	23-SEP-17
Bismuth (Bi)-Total			<0.0000	50	mg/L		0.00005	23-SEP-17
Boron (B)-Total			<0.010		mg/L		0.01	23-SEP-17
Cadmium (Cd)-Total			<0.0000	050	mg/L		0.000005	23-SEP-17
Calcium (Ca)-Total			<0.050		mg/L		0.05	23-SEP-17
Cesium (Cs)-Total			<0.0000		mg/L		0.00001	23-SEP-17
Chromium (Cr)-Total			<0.00010)	mg/L		0.0001	23-SEP-17
Cobalt (Co)-Total			<0.00010)	mg/L		0.0001	23-SEP-17
Copper (Cu)-Total			<0.00050	0	mg/L		0.0005	23-SEP-17
Iron (Fe)-Total			<0.010		mg/L		0.01	23-SEP-17
Lead (Pb)-Total			<0.0000	50	mg/L		0.00005	23-SEP-17
Lithium (Li)-Total			<0.0010		mg/L		0.001	23-SEP-17
Magnesium (Mg)-Tota			<0.0050		mg/L		0.005	23-SEP-17
Manganese (Mn)-Tota	al		<0.00010	0	mg/L		0.0001	23-SEP-17
Molybdenum (Mo)-To	otal		< 0.0000	50	mg/L		0.00005	23-SEP-17

		Workorder:	L1989669)	Report Date: 06	-NOV-17	Pa	ge 14 of 2
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R3837718								
WG2623288-1 MB Nickel (Ni)-Total			<0.00050		mg/L		0.0005	23-SEP-17
Phosphorus (P)-Total			<0.050		mg/L		0.05	23-SEP-17
Potassium (K)-Total			<0.050		mg/L		0.05	23-SEP-17
Selenium (Se)-Total			<0.000050	1	mg/L		0.00005	23-SEP-17
Silicon (Si)-Total			<0.10		mg/L		0.1	23-SEP-17
Silver (Ag)-Total			<0.000010)	mg/L		0.00001	23-SEP-17
Sodium (Na)-Total			<0.050		mg/L		0.05	23-SEP-17
Strontium (Sr)-Total			<0.00020		mg/L		0.0002	23-SEP-17
Sulfur (S)-Total			<0.50		mg/L		0.5	23-SEP-17
Thallium (TI)-Total			<0.000010)	mg/L		0.00001	23-SEP-17
Tin (Sn)-Total			<0.00010		mg/L		0.0001	23-SEP-17
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	23-SEP-17
Uranium (U)-Total			<0.000010)	mg/L		0.00001	23-SEP-17
Vanadium (V)-Total			<0.00050		mg/L		0.0005	23-SEP-17
Zinc (Zn)-Total			<0.0030		mg/L		0.003	23-SEP-17
Zirconium (Zr)-Total			<0.000060	1	mg/L		0.00006	23-SEP-17
Batch R3838410								
WG2623288-2 LCS								
Titanium (Ti)-Total			104.6		%		80-120	25-SEP-17
Zinc (Zn)-Total			93.4		%		80-120	25-SEP-17
NH3-F-VA	Water							
Batch R3832525								
WG2619035-7 DUP Ammonia, Total (as N)		L1989669-2 0.0283	0.0286		mg/L	1.1	20	19-SEP-17
WG2619035-6 LCS					0		_0	10 021 11
Ammonia, Total (as N)			95.9		%		85-115	19-SEP-17
WG2619035-5 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	19-SEP-17
WG2619035-8 MS Ammonia, Total (as N)		L1989669-2	95.9		%		75-125	19-SEP-17
NO2-L-IC-N-VA	Water							
Batch R3829596								
WG2616764-13 LCS Nitrite (as N)			98.5		%		90-110	15-SEP-17
WG2616764-17 LCS								

					•	•			
			Workorder:	L198966	9	Report Date: 06	-NOV-17	Pa	ige 15 of 2
est	Ма	atrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO2-L-IC-N-VA	w	/ater							
Batch R3	829596								
WG2616764-17 Nitrite (as N)	LCS			99.7		%		90-110	15-SEP-17
WG2616764-2 Nitrite (as N)	LCS			99.1		%		90-110	15-SEP-17
WG2616764-21 Nitrite (as N)	LCS			100.2		%		90-110	15-SEP-17
WG2616764-26 Nitrite (as N)	LCS			99.1		%		90-110	15-SEP-17
WG2616764-5 Nitrite (as N)	LCS			99.2		%		90-110	15-SEP-17
WG2616764-9 Nitrite (as N)	LCS			99.9		%		90-110	15-SEP-17
WG2616764-1 Nitrite (as N)	МВ			<0.0010		mg/L		0.001	15-SEP-17
WG2616764-12 Nitrite (as N)	МВ			<0.0010		mg/L		0.001	15-SEP-17
WG2616764-16 Nitrite (as N)	МВ			<0.0010		mg/L			
WG2616764-20	МВ					-		0.001	15-SEP-17
Nitrite (as N) WG2616764-24	МВ			<0.0010		mg/L		0.001	15-SEP-17
Nitrite (as N)				<0.0010		mg/L		0.001	15-SEP-17
WG2616764-4 Nitrite (as N)	MB			<0.0010		mg/L		0.001	15-SEP-17
WG2616764-8 Nitrite (as N)	MB			<0.0010		mg/L		0.001	15-SEP-17
IO3-L-IC-N-VA	w	/ater							
Batch R3	829596								
WG2616764-13 Nitrate (as N)	LCS			101.4		%		90-110	15-SEP-17
WG2616764-17 Nitrate (as N)	LCS			101.6		%		90-110	15-SEP-17
WG2616764-2 Nitrate (as N)	LCS			101.5		%		90-110	15-SEP-17
WG2616764-21 Nitrate (as N)	LCS			101.6		%		90-110	15-SEP-17
WG2616764-26 Nitrate (as N)	LCS			101.6		%		90-110	15-SEP-17
WG2616764-5	LCS					<i>,</i> ,		50-110	10-0LF-17

		-				
	Workorder	: L1989669	Report Date	: 06-NOV-17	Pa	ge 16 of 2
est N	latrix Reference	Result	Qualifier Units	RPD	Limit	Analyzed
NO3-L-IC-N-VA	Water					
Batch R3829596						
WG2616764-5 LCS Nitrate (as N)		101.6	%		90-110	15-SEP-17
WG2616764-9 LCS						
Nitrate (as N)		101.5	%		90-110	15-SEP-17
WG2616764-1 MB Nitrate (as N)		<0.0050	mg/L		0.005	
WG2616764-12 MB		<0.0050	IIIg/L		0.005	15-SEP-17
Nitrate (as N)		<0.0050	mg/L		0.005	15-SEP-17
WG2616764-16 MB						
Nitrate (as N)		<0.0050	mg/L		0.005	15-SEP-17
WG2616764-20 MB Nitrate (as N)		<0.0050	mg/L		0.005	15-SEP-17
WG2616764-24 MB			-			
Nitrate (as N)		<0.0050	mg/L		0.005	15-SEP-17
WG2616764-4 MB Nitrate (as N)		<0.0050	mg/L		0.005	15-SEP-17
WG2616764-8 MB Nitrate (as N)		<0.0050	mg/L		0.005	15-SEP-17
P-T-PRES-COL-VA	Water					
Batch R3832584						
WG2619184-2 CRM Phosphorus (P)-Total	VA-ERA-PO4	4 105.1	%		80-120	19-SEP-17
WG2619184-1 MB		100.1	70		00-120	19-021-17
Phosphorus (P)-Total		<0.0020	mg/L		0.002	19-SEP-17
Batch R3833282						
WG2619976-6 CRM Phosphorus (P)-Total	VA-ERA-PO4	4 99.7	%		00 400	00 CED 47
WG2619976-5 MB		55.1	70		80-120	20-SEP-17
Phosphorus (P)-Total		<0.0020	mg/L		0.002	20-SEP-17
P-TD-COL-VA	Water					
Batch R3830484						
WG2617567-2 CRM Phosphorus (P)-Total Diss	VA-ERA-PO4 solved	4 96.4	%		80-120	16-SEP-17
WG2617567-1 MB Phosphorus (P)-Total Diss	solved	<0.0020	mg/L		0.002	16-SEP-17
PH-PCT-VA	Water					

PH-PCT-VA V

Water

				-	• •				
		Workorder:	L198966	69	Report Date: 06	6-NOV-17	Pa	age 17 of 21	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
РН-РСТ-VA Batch R383561 WG2620974-2 CRM рН		VA-PH7-BUF	7.00		рН		6.9-7.1	22-SEP-17	
S2-T-COL-VA	Water								
Batch R383526									
WG2617447-11 LCS Sulphide as S			106.4		%		75-135	15-SEP-17	
WG2617447-3 LCS Sulphide as S			109.5		%		75-135	15-SEP-17	
WG2617447-7 LCS Sulphide as S			108.6		%		75-135	15-SEP-17	
WG2617447-1 MB Sulphide as S			<0.018		mg/L		0.018	15-SEP-17	
WG2617447-5 MB Sulphide as S			<0.018		mg/L		0.018	15-SEP-17	
WG2617447-9 MB Sulphide as S			<0.018		mg/L		0.018	15-SEP-17	
SO4-IC-N-VA	Water								
Batch R382959	6								
WG2616764-13 LCS Sulfate (SO4)			101.6		%		90-110	15-SEP-17	
WG2616764-17 LCS Sulfate (SO4)			101.7		%		90-110	15-SEP-17	
WG2616764-2 LCS Sulfate (SO4)			101.5		%		90-110	15-SEP-17	
WG2616764-21 LCS Sulfate (SO4)			101.8		%		90-110	15-SEP-17	
WG2616764-26 LCS Sulfate (SO4)			101.8		%		90-110	15-SEP-17	
WG2616764-5 LCS Sulfate (SO4)			101.4		%		90-110	15-SEP-17	
WG2616764-9 LCS Sulfate (SO4)			101.5		%		90-110	15-SEP-17	
WG2616764-1 MB Sulfate (SO4)			<0.30		mg/L		0.3	15-SEP-17	
WG2616764-12 MB Sulfate (SO4)			<0.30		mg/L		0.3	15-SEP-17	
WG2616764-16 MB									

				-	•			
		Workorder:	L198966	9	Report Date: 06	S-NOV-17	Pa	ge 18 of 2
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
604-IC-N-VA	Water							
Batch R3829596								
WG2616764-16 MB Sulfate (SO4)			<0.30		mg/L		0.3	15-SEP-17
WG2616764-20 MB Sulfate (SO4)			<0.30		mg/L		0.3	15-SEP-17
WG2616764-24 MB Sulfate (SO4)			<0.30		mg/L		0.3	15-SEP-17
WG2616764-4 MB Sulfate (SO4)			<0.30		mg/L		0.3	15-SEP-17
WG2616764-8 MB Sulfate (SO4)			<0.30		mg/L		0.3	15-SEP-17
TDS-VA	Water							
Batch R3831176								
WG2617459-5 LCS Total Dissolved Solids			97.8		%		85-115	15-SEP-17
WG2617459-4 MB Total Dissolved Solids			<10		mg/L		10	15-SEP-17
rss-va	Water							
Batch R3831132								
WG2617745-5 LCS Total Suspended Solids			98.1		%		85-115	16-SEP-17
WG2617745-4 MB Total Suspended Solids			<3.0		mg/L		3	16-SEP-17
FURBIDITY-VA	Water							
Batch R3829244								
WG2616603-2 CRM Turbidity		VA-FORM-40	104.5		%		85-115	15-SEP-17
WG2616603-5 CRM Turbidity		VA-FORM-40	105.3		%		85-115	15-SEP-17
WG2616603-8 CRM Turbidity		VA-FORM-40	105.8		%		85-115	15-SEP-17
WG2616603-1 MB Turbidity			<0.10		NTU		0.1	15-SEP-17
WG2616603-4 MB Turbidity			<0.10		NTU		0.1	15-SEP-17
WG2616603-7 MB Turbidity			<0.10		NTU		0.1	15-SEP-17
/H-HSFID-VA	Water							

	Workorder: L198966	9 Report Date: 0	6-NOV-17	Pa	ge 19 of 21
Test Matrix	Reference Result	Qualifier Units	RPD	Limit	Analyzed
VH-HSFID-VA Water					
Batch R3831285					
WG2621007-2 LCS					
Volatile Hydrocarbons (VH6-10)	104.8	%		70-130	21-SEP-17
WG2621007-1 MB	0.40	<i>1</i>			
Volatile Hydrocarbons (VH6-10)	<0.10	mg/L		0.1	21-SEP-17
VOC7-HSMS-VA Water					
Batch R3833760					
WG2621007-2 LCS					
Benzene	98.9	%		70-130	20-SEP-17
Ethylbenzene	99.0	%		70-130	20-SEP-17
Methyl t-butyl ether (MTBE)	95.8	%		70-130	20-SEP-17
Styrene	107.6	%		70-130	20-SEP-17
Toluene	95.4	%		70-130	20-SEP-17
meta- & para-Xylene	100.6	%		70-130	20-SEP-17
ortho-Xylene	102.5	%		70-130	20-SEP-17
WG2621007-1 MB					
Benzene	<0.00050	mg/L		0.0005	20-SEP-17
Ethylbenzene	<0.00050	mg/L		0.0005	20-SEP-17
Methyl t-butyl ether (MTBE)	<0.00050	mg/L		0.0005	20-SEP-17
Styrene	<0.00050	mg/L		0.0005	20-SEP-17
Toluene	<0.00045	mg/L		0.00045	20-SEP-17
meta- & para-Xylene	<0.00050	mg/L		0.0005	20-SEP-17
ortho-Xylene	<0.00050	•		0.0005	20-SEP-17
,		5			

Workorder: L1989669

Report Date: 06-NOV-17

Legend:

_		
	Limit	ALS Control Limit (Data Quality Objectives)
	DUP	Duplicate
	RPD	Relative Percent Difference
	N/A	Not Available
	LCS	Laboratory Control Sample
	SRM	Standard Reference Material
	MS	Matrix Spike
	MSD	Matrix Spike Duplicate
	ADE	Average Desorption Efficiency
	MB	Method Blank
	IRM	Internal Reference Material
	CRM	Certified Reference Material
	CCV	Continuing Calibration Verification
	CVS	Calibration Verification Standard
	LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1989669

Report Date: 06-NOV-17

Page 21 of 21

Hold Time Exceedances:

	Sample	Compling Dot-				Unito	Qualifier
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
Turbidity by Meter							
	1	10-SEP-17	15-SEP-17 08:27	3	5	days	EHT
	2	10-SEP-17	15-SEP-17 08:27	3	5	days	EHT
	2 3	10-SEP-17	15-SEP-17 08:27	3	5	days	EHT
	4	10-SEP-17	15-SEP-17 08:27	3	5	days	EHT
pH by Meter (Automated)							
	1	10-SEP-17	22-SEP-17 08:28	0.25	284	hours	EHTR-FM
	2	10-SEP-17	22-SEP-17 08:28	0.25	284	hours	EHTR-FM
	2 3	10-SEP-17	22-SEP-17 08:28	0.25	284	hours	EHTR-FM
	4	10-SEP-17	22-SEP-17 08:28	0.25	284	hours	EHTR-FM
nions and Nutrients							
Nitrate in Water by IC (Low	Level)						
	1	10-SEP-17	15-SEP-17 07:21	3	5	days	EHT
	2	10-SEP-17	15-SEP-17 07:21	3	5	days	EHT
	2 3	10-SEP-17	15-SEP-17 07:21	3	5	days	EHT
	4	10-SEP-17	15-SEP-17 07:21	3	5	days	EHT
Nitrite in Water by IC (Low L	_evel)						
	1	10-SEP-17	15-SEP-17 07:21	3	5	days	EHT
	2	10-SEP-17	15-SEP-17 07:21	3	5	days	EHT
	3	10-SEP-17	15-SEP-17 07:21	3	5	days	EHT
	4	10-SEP-17	15-SEP-17 07:21	3	5	days	EHT
Total Dissolved P in Water	by Colour						
	1	10-SEP-17	15-SEP-17 23:00	3	5	days	EHT
	2	10-SEP-17	15-SEP-17 23:00	3	5	days	EHT
	3	10-SEP-17	15-SEP-17 23:00	3	5	days	EHT
	4	10-SEP-17	15-SEP-17 23:00	3	5	days	EHT

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

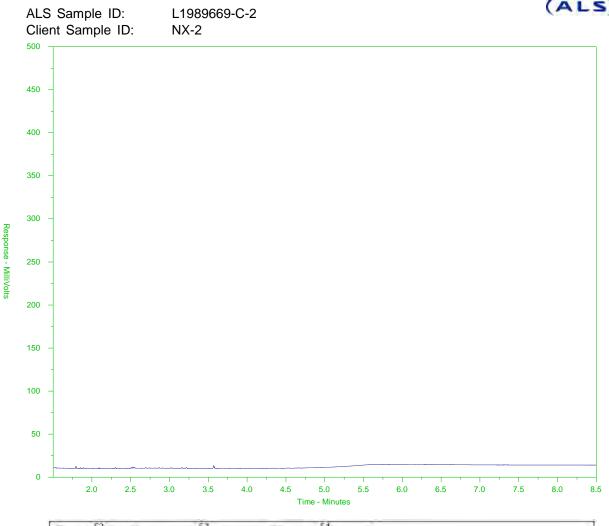
EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1989669 were received on 12-SEP-17 10:00.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.


The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

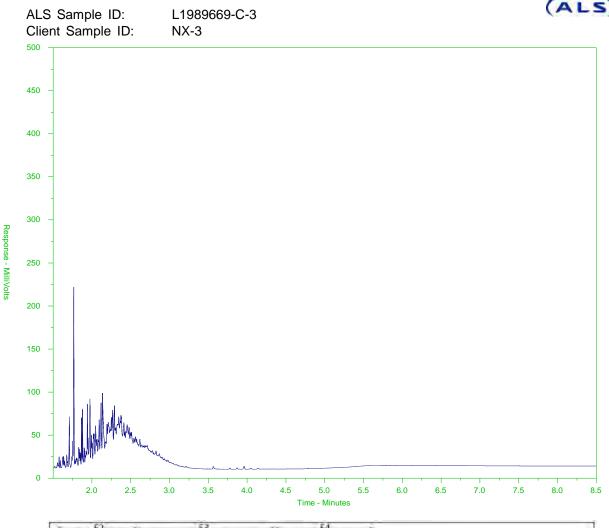
Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS LABORATORY GROUP ANALYTICAL REPORT

Sample ID	L1989669-3
Client ID	NX3
Matrix	WATER
Units	mg/L
Analyte	
F2(C10-16) SG	0.70
F3(C16-34) SG	<0.30
F4(C34-50) SG	<0.30
BBTF (%)	77

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		- Motor V	11/5/ Lube Oils/ Grease-	


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

nC10	nC16	nC34	nC50	
174°C	287°C	481°C.	575°C	
346'F	549'F	898'F	1067'F	
-Gasolim	8	- Motor V	lis/ Lube Olis/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 14 -

Page 1 of 1

www.alsglobal.com

Report To			1	Report Format	/ Distribution			Sele	ect Serv	ice Lev	el Belo	w (Rust	n Tuma	round	Time (TAT) is	not availa	ble for	all tests	5)
Company: Public Services and Procurement Canada			Select Report F			DD (DIGITAL)	R	⊡Regu	lar (Star	ndard T/	AT if rec	eived by	3 pm	- busin	less da	ys)				
Contact:	Rebecca Studer-Halbach		Quality Control	(QC) Report with R	eport FYes	∏ No	P DPriority (2-4 bus, days if received by 3pm) 50% surcharge - contact ALS to confirm TAT													
Address:	10025 Jasper Avenue		Criteria on Repor	t - provide details below	if box checked		E DEmergency (1-2 bus. days if received by 3pm) 100% surcharge - contact ALS to confirm TAT							TAT						
	Edmonton, AB T5J 1S6		Select Distribut	ion: DEMAI		DFAX	E2	E2 Same day or weekend emergency - contact ALS to confirm TAT and surcharge												
Phone:	(788) 497-3761		Email 1 or Fax	rebecca.studer-hal	lbach@pwgsc.ca		Speci	fy Dat	e Requ	uired fo	or E2,E		16.1							_
-			Email 2	claire.brown@dxbp	projects.ca								nalysi	-						
Invoice To	Same as Report To Ves	∏ No		Invoice Dis	stribution			Indi	cate Filt	ered (F)	, Preser	ved (P)	or Filte	red an	d Pres	erved (F/P) below	N I	_	
	Copy of Invoice with Report Ves	∏ No	Select Invoice I	Distribution:		DFAX						1							_	
Company:	Public Services and Procurement Cana	da	Email 1 or Fax	rebecca.studer-ha	lbach@pwgsc.ca									Q6406						
Contact:	Rebecca Studer-Halbach		Email 2								1.2									S
	Project Information e #: Q64064 Approv			I and Gas Require	d Fields (client	use)					110			6 p						aine
ALS Quote #:				Approver ID: Cost Center:							34			а-22						onta
Job #:				GL Account: Routing Code:					4	Q64064	Q64064			Id R		964				of C
PO/AFE:	AFE: R.015211.049 Ac			Activity Code:			1064	064	3406	06	per Q	964	4	0 ar		Q64064				ber
LSD:		Location:				per Q64064	Q64	per Q64064	s per	d V	2640	Q64064	b-21	94					Number of Containers	
ALS Lab Wo	rk Order # (lab use only)	789669	ALS Contact:	Joanne Lee and Rick Zolkiewski	Sampler:			Fotal Metals per Q64064	rcury pe	d Metals	d Mercu	F2-F4 per Q64064	F1 per Q(Radionuclides Pb-210 and Ra-226 per	per Q64064	Grease per				2
ALS Sample # (lab use only)		on and/or Coordinates		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Routine and	Total Me	Total Mercury	Dissolved Metals	Dissolved Mercury	PHC F2	BTEX, F	Radionu	NAPL p	Oil and				
	NX-1			10-Sep-17		Water	R	R	R									T		7
	NX-2			V 10-Sep-17	1	Water	R	R	R			R	R							11
	NX-3			10-Sep-17		Water	R	R	R	R	R	R	R		R				-	15
	NX-4A										-	-						-+-	+	7
	10-10			10-Sep-17		Water	R	R	R									-		'
e gan							-	-			-							+	-	
							-											_	_	
																E.	-			
									10.00											
							-	1	-	-			-		1			-		
							-						-		100				-	
							-	-	-	-	-	-		-		-			-	-
		1					-	1	-	0.4.145	1 5 00	L		0.00	CEN	150 /1				
Drinking	Water (DW) Samples ¹ (client use)	Special I	nstructions / Spec	ify Criteria to add o	on report (client l	Jse)	Free			SAMP	LECC	NDIT	-	-	rvatio		Yes	and the second se	No	
Are samples tak ┌─ Ƴe	en from a Regulated DW System? es 🔽 No	PLEASE NOTE: This p conductivity, alkalinity,	turbidity, TDS, TS	SS, Ammonia, Nitra	te/Nitrite, total pl	nosphorus,			Yes		No								No	
Are samples for	human drinking water use?	dissolved phosphorus, calcium, magnesium, p							and the second		RATUR	ES °C	T		FINAL	COOL	ER TEMP	ERAT	URES *	c
ΓYe		total and dissolved met						29			T					1		T		
	SHIPMENT RELEASE (client use)			SHIPMENT RECEP			- /	e l		FI	NAL SI	IPME	NTR	FCF	PTION	V (lab	use only	0		
Released by:	Date:	Time: Receiv	red by:		Date:	Time:	Rec	eived	by:		0 12 01			Dat			Time:	-	are a la	
010	Sep 11/17	Sam	AT	12-	Sec- Ft	16:00		0.00												
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPL	ING INFORMATION	4.1		ITE - LABORATO		LLOW	CLIE	NTCO	PY					NA-FM-	0325e v09 F	ront/04 January	2014		

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTN: Rebecca Studer-Halbach Northern Contaminated Sites 10025 Jasper Avenue NW Edmonton AB T5J 1S6 Date Received: 12-SEP-17 Report Date: 25-OCT-17 19:44 (MT) Version: FINAL REV. 3

Client Phone: 780-497-3761

Certificate of Analysis

Lab Work Order #: L1989801 Project P.O. #: R.015211.049 Job Reference: C of C Numbers: Legal Site Desc:

Comments: 18-OCT-2017 Cs data has been added. 25-OCT-2017 Dissolved Cs data has been added.

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🕽

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1989801 CONTD.... PAGE 2 of 8 25-OCT-17 19:44 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1989801-1 water 08-SEP-17 T-20	L1989801-2 water 08-SEP-17 T-19	L1989801-3 water 08-SEP-17 T-DUP-3	L1989801-4 water 08-SEP-17 T-4	L1989801-5 water 08-SEP-17 T-2
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	398	155	152	145	85.8
	Hardness (as CaCO3) (mg/L)	олого 1980 нтс 204	нтс 87.7	нтс 86.4	69.8	нтс 46.5
	рН (рН)	8.09	7.72	7.70	7.86	7.56
	Total Suspended Solids (mg/L)	4.4	3.0	10.0	7.0	3.2
	Total Dissolved Solids (mg/L)	298	159	156	94	90
	Turbidity (NTU)	1.49	2.04	2.37	2.43	1.69
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	122	61.1	61.0	57.7	36.1
	Ammonia, Total (as N) (mg/L)	<0.0050	0.0158	0.0159	<0.0050	0.0075
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	0.54	1.06	<0.50	2.36	<0.50
	Fluoride (F) (mg/L)	0.727	0.332	0.334	0.158	0.376
	Nitrate (as N) (mg/L)	<0.0050	0.0720	0.0676	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	0.0011	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	0.0148	0.0185	0.0259	0.0021	0.0086
	Phosphorus (P)-Total (mg/L)	0.0479	0.0159	0.0253	0.0037	0.0138
	Sulfate (SO4) (mg/L)	91.6	15.9	16.0	14.5	5.86
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	10.9	29.8	30.5	4.66	21.3
	Total Organic Carbon (mg/L)	12.6	29.1	29.4	5.42	20.6
Total Metals	Aluminum (Al)-Total (mg/L)	0.0044	0.197	0.201	0.0862	0.0573
	Antimony (Sb)-Total (mg/L)	0.00088	0.00520	0.00529	0.00011	0.00015
	Arsenic (As)-Total (mg/L)	0.0325	0.286	0.284	0.00130	0.00524
	Barium (Ba)-Total (mg/L)	0.0166	0.00945	0.00895	0.0114	0.00731
	Beryllium (Be)-Total (mg/L)	<0.000020	0.000049	0.000044	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	0.00162	0.00159	0.000247	<0.000050
	Boron (B)-Total (mg/L)	0.029	0.013	0.012	0.010	<0.010
	Cadmium (Cd)-Total (mg/L)	0.0000058	0.0000441	0.0000498	<0.0000050	<0.0000050
	Calcium (Ca)-Total (mg/L)	59.4	26.4	25.9	17.5	12.3
	Cesium (Cs)-Total (mg/L)	0.000027	0.000016	0.000015	0.000037	<0.000010
	Chromium (Cr)-Total (mg/L)	<0.00010	0.00058	0.00059	0.00018	0.00019
	Cobalt (Co)-Total (mg/L)	0.00099	0.0179	0.0178	0.00051	0.00014
	Copper (Cu)-Total (mg/L)	0.00469	0.0267	0.0267	0.00348	0.00657
	Iron (Fe)-Total (mg/L)	0.032	0.235	0.236	0.122	0.199
	Lead (Pb)-Total (mg/L)	<0.000050	0.000568	0.000566	0.000945	0.000075
	Lithium (Li)-Total (mg/L)	0.0036	0.0021	0.0021	0.0022	0.0016
	Magnesium (Mg)-Total (mg/L)	13.4	5.30	5.26	6.56	3.82

L1989801 CONTD.... PAGE 3 of 8 25-OCT-17 19:44 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1989801-1 water 08-SEP-17 T-20	L1989801-2 water 08-SEP-17 T-19	L1989801-3 water 08-SEP-17 T-DUP-3	L1989801-4 water 08-SEP-17 T-4	L1989801-5 water 08-SEP-17 T-2
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.0604	0.0688	0.0639	0.00531	0.0168
	Mercury (Hg)-Total (mg/L)	<0.0000050	0.0000179	0.0000178	0.0000057	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.00208	0.0152	0.0150	0.000262	0.000193
	Nickel (Ni)-Total (mg/L)	0.00175	0.0281	0.0280	0.00062	0.00118
	Phosphorus (P)-Total (mg/L)	0.077	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	5.73	1.49	1.16	0.97	1.08
	Selenium (Se)-Total (mg/L)	0.000073	0.000122	0.000110	<0.000050	0.000056
	Silicon (Si)-Total (mg/L)	2.66	3.63	3.58	0.92	1.08
	Silver (Ag)-Total (mg/L)	<0.000010	0.000104	0.000104	0.000170	<0.000010
	Sodium (Na)-Total (mg/L)	5.28	1.28	1.26	2.31	1.11
	Strontium (Sr)-Total (mg/L)	0.100	0.0337	0.0332	0.0547	0.0175
	Sulfur (S)-Total (mg/L)	34.1	5.95	6.02	4.91	2.13
	Thallium (TI)-Total (mg/L)	<0.000010	0.000027	0.000027	<0.000010	0.000016
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.00030	ol.0048	olum <0.0042	olum<0.0036	DLM <0.0012
	Uranium (U)-Total (mg/L)	0.00291	0.00239	0.00239	0.000532	0.000149
	Vanadium (V)-Total (mg/L)	<0.00050	0.00064	0.00063	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	0.0154	0.0141	0.0037	<0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	0.00190	0.00186	<0.00030	0.00031
Dissolved Metals	Dissolved Mercury Filtration Location				LAB	
	Dissolved Metals Filtration Location				LAB	
	Aluminum (Al)-Dissolved (mg/L)				0.0030	
	Antimony (Sb)-Dissolved (mg/L)				<0.00010	
	Arsenic (As)-Dissolved (mg/L)				0.00056	
	Barium (Ba)-Dissolved (mg/L)				0.0107	
	Beryllium (Be)-Dissolved (mg/L)				<0.000020	
	Bismuth (Bi)-Dissolved (mg/L)				<0.000050	
	Boron (B)-Dissolved (mg/L)				0.011	
	Cadmium (Cd)-Dissolved (mg/L)				<0.0000050	
	Calcium (Ca)-Dissolved (mg/L)				16.9	
	Cesium (Cs)-Dissolved (mg/L)				<0.000010	
	Chromium (Cr)-Dissolved (mg/L)				<0.00010	
	Cobalt (Co)-Dissolved (mg/L)				<0.00010	
	Copper (Cu)-Dissolved (mg/L)				0.00136	
	Iron (Fe)-Dissolved (mg/L)				<0.010	
	Lead (Pb)-Dissolved (mg/L)				<0.000050	
	Lithium (Li)-Dissolved (mg/L)				0.0024	

L1989801 CONTD.... PAGE 4 of 8 25-OCT-17 19:44 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1989801-1 water 08-SEP-17 T-20	L1989801-2 water 08-SEP-17 T-19	L1989801-3 water 08-SEP-17 T-DUP-3	L1989801-4 water 08-SEP-17 T-4	L1989801-5 water 08-SEP-17 T-2
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)				6.72	
	Manganese (Mn)-Dissolved (mg/L)				<0.00010	
	Mercury (Hg)-Dissolved (mg/L)				<0.000050	
	Molybdenum (Mo)-Dissolved (mg/L)				0.000266	
	Nickel (Ni)-Dissolved (mg/L)				<0.000200	
	Phosphorus (P)-Dissolved (mg/L)				<0.0000	
	Potassium (K)-Dissolved (mg/L)				1.02	
	Selenium (Se)-Dissolved (mg/L)				<0.000050	
	Silicon (Si)-Dissolved (mg/L)				0.749	
	Silver (Ag)-Dissolved (mg/L)				<0.000010	
	Sodium (Na)-Dissolved (mg/L)				2.44	
	Strontium (Sr)-Dissolved (mg/L)				0.0538	
	Sulfur (S)-Dissolved (mg/L)				4.84	
	Thallium (TI)-Dissolved (mg/L)				<0.000010	
	Tin (Sn)-Dissolved (mg/L)				<0.00010	
	Titanium (Ti)-Dissolved (mg/L)				<0.00030	
	Uranium (U)-Dissolved (mg/L)				0.000503	
	Vanadium (V)-Dissolved (mg/L)				<0.00050	
	Zinc (Zn)-Dissolved (mg/L)				<0.0010	
	Zirconium (Zr)-Dissolved (mg/L)				<0.00030	
Volatile Organic Compounds	Benzene (mg/L)				<0.00050	
	Ethylbenzene (mg/L)				<0.00050	
	Methyl t-butyl ether (MTBE) (mg/L)				<0.00050	
	Styrene (mg/L)				<0.00050	
	Toluene (mg/L)				<0.00045	
	ortho-Xylene (mg/L)				<0.00050	
	meta- & para-Xylene (mg/L)				<0.00050	
	Xylenes (mg/L)				<0.00075	
	F1 (C6-C10) (mg/L)				<0.10	
	Surrogate: 4-Bromofluorobenzene (SS) (%)				102.3	
	Surrogate: 1,4-Difluorobenzene (SS) (%)				88.2	
Hydrocarbons	F1-BTEX (mg/L)				<0.10	
	F2 (C10-C16) (mg/L)				<0.30	
	F3 (C16-C34) (mg/L)				<0.30	
	F4 (C34-C50) (mg/L)				<0.30	
	Volatile Hydrocarbons (VH6-10) (mg/L)				<0.10	
	VPH (C6-C10) (mg/L)				<0.10	

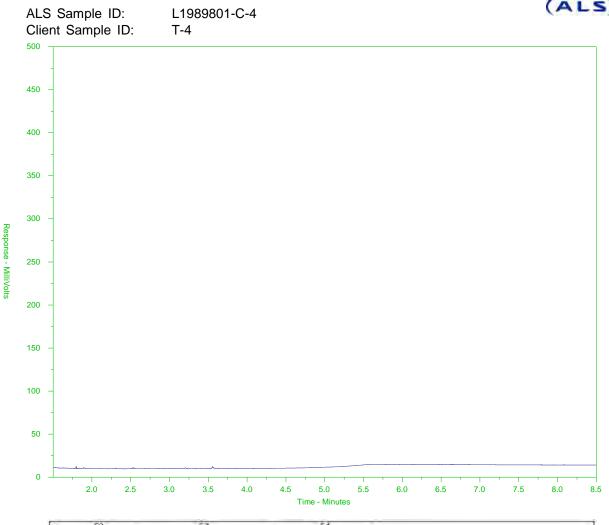
L1989801 CONTD.... PAGE 5 of 8 25-OCT-17 19:44 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time	L1989801-1 water 08-SEP-17	L1989801-2 water 08-SEP-17	L1989801-3 water 08-SEP-17	L1989801-4 water 08-SEP-17	L1989801-5 water 08-SEP-17
	Client ID	T-20	T-19	T-DUP-3	T-4	T-2
Grouping	Analyte					
WATER						
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)				92.1	
	Surrogate: 3,4-Dichlorotoluene (SS) (%)				89.0	

QC Samples with Qualifiers & Comments:

QC Type Descri	ption	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike		Dissolved Organic Carbon	MS-B	L1989801-1, -2, -3, -4
Matrix Spike		Total Organic Carbon	MS-B	L1989801-1, -4, -5
Matrix Spike		Total Organic Carbon	MS-B	L1989801-2, -3
Matrix Spike		Calcium (Ca)-Total	MS-B	L1989801-1, -2, -3, -4, -5
Matrix Spike		Magnesium (Mg)-Total	MS-B	L1989801-1, -2, -3, -4, -5
	ndividual Parameters	Listed:		
Qualifier	Description			
DLM	Detection Limit Adjust	ed due to sample matrix effects (e.g.	chemical interfere	ence, colour, turbidity).
HTC	Hardness was calcula	ted from Total Ca and/or Mg concentr	ations and may b	e biased high (dissolved Ca/Mg results unavailable).
MS-B	Matrix Spike recovery	could not be accurately calculated du	e to high analyte	background in sample.
est Method Re	eferences:			
ALS Test Code	Matrix	Test Description		Method Reference**
ALK-TITR-VA	Water	Alkalinity Species by Titration		APHA 2320 Alkalinity
				otal alkalinity is determined by potentiometric titration to anthalein alkalinity and total alkalinity values.
BE-D-L-CCMS-V	VA Water	Diss. Be (low) in Water by CRC IC	PMS	APHA 3030B/6020A (mod)
Water samples	are filtered (0.45 um), p	preserved with nitric acid, and analyze	d by CRC ICPMS	5.
BE-T-L-CCMS-V	A Water	Total Be (Low) in Water by CRC IC	CPMS	EPA 200.2/6020A (mod)
Water samples	are digested with nitric	and hydrochloric acids, and analyzed	by CRC ICPMS.	
BR-L-IC-N-VA	Water	Bromide in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anion	s are analyzed by Ion C	hromatography with conductivity and/	or UV detection.	
CARBONS-DOC	-VA Water	Dissolved organic carbon by combi	ustion	APHA 5310B TOTAL ORGANIC CARBON (TOC)
		dures adapted from APHA Method 53 ugh a 0.45 micron membrane filter priv		c Carbon (TOC)". Dissolved carbon (DOC) fractions are
CARBONS-TOC-		Total organic carbon by combustion		APHA 5310B TOTAL ORGANIC CARBON (TOC)
This analysis is	carried out using proce	dures adapted from APHA Method 53		
CL-IC-N-VA	Water	Chloride in Water by IC		EPA 300.1 (mod)
		chromatography with conductivity and/	or UV detection.	
-				ADHA 2510 Auto Conduo
EC-PCT-VA	Water	Conductivity (Automated)	10 "Conductivity"	APHA 2510 Auto. Conduc. . Conductivity is determined using a conductivity
electrode.	carried out doing proce		lie conductivity	
EC-SCREEN-VA	Water	Conductivity Screen (Internal Use C	Only)	APHA 2510
Qualitative anal	ysis of conductivity whe	ere required during preparation of othe	r tests - e.g. TDS	, metals, etc.
F-IC-N-VA	Water	Fluoride in Water by IC		EPA 300.1 (mod)
Inorganic anion	s are analyzed by Ion C	hromatography with conductivity and/	or UV detection.	
F1-BTX-CALC-V	A Water	F1-Total BTX		CCME CWS PHC TIER 1 (2001)
This analysis is			dard for Petroleun	n Hydrocarbons in Soil - Tier 1 Method, Canadian
Council of Minis		t, December 2000." For F1 (C6-C10),		ergoes a purge and trap extraction prior to analysis by
F1-BTEX: F1 (C	C6-C10) minus benzene	, toluene, ethylbenzene and xylenes (BTEX).	
F1-HSFID-VA	Water	CCME F1 By Headspace with GCF	,	EPA 5021A/CCME CWS PHC (Pub# 1310)
				n Hydrocarbons in Soil - Tier 1 Method, Canadian Proces a headspace purge prior to analysis by GC/FID.
F1 (C6-C10): Si	um of all hydrocarbons	that elute between nC6 and nC10.		
· · · ·		CCME E2-E4 Hydrocarbons in Wat		COME OWS-PHC Pub #1310 Dec 2001

		exane micro-extraction technique. Instrumental analysi lydrocarbons in Soil Tier 1 Method, CCME, Dec 2001	
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
		ss) is calculated from the sum of Calcium and Magnesic centrations are preferentially used for the hardness cal	
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
Water samples are filtered with stannous chloride, and		reserved with hydrochloric acid, then undergo a cold-ox / CVAAS or CVAFS.	idation using bromine monochloride prior to reduction
HG-T-CVAA-VA	Water	Total Mercury in Water by CVAAS or CVAFS	EPA 1631E (mod)
Water samples undergo a	cold-oxidatio	n using bromine monochloride prior to reduction with sta	annous chloride, and analyzed by CVAAS or CVAFS.
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	(0.45 um), p	reserved with nitric acid, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulf	ur): Sulfide a	nd volatile sulfur species may not be recovered by this	method.
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are digeste	ed with nitric a	and hydrochloric acids, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulf	ur): Sulfide a	nd volatile sulfur species may not be recovered by this	method.
NH3-F-VA	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			m J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society e levels of ammonium in seawater", Roslyn J. Waston et
NO2-L-IC-N-VA	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion Cl	hromatography with conductivity and/or UV detection.	
NO3-L-IC-N-VA	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)
	zed by Ion Cl	hromatography with conductivity and/or UV detection.	
P-T-PRES-COL-VA	Water	Total P in Water by Colour	APHA 4500-P Phosphorus
after persulphate digestion	of the samples of the	dures adapted from APHA Method 4500-P "Phosphorus le. 5 (i.e. seawaters, brackish waters) may produce a negat	
Arsenic (5+), at elevated le	evels, is a pos	sitive interference on colourimetric phosphate analysis.	
P-TD-COL-VA	Water	Total Dissolved P in Water by Colour	APHA 4500-P Phosphorous
colourimetrically after pers	ulphate diges solved solids	dures adapted from APHA Method 4500-P "Phosphorus stion of a sample that has been lab or field filtered throu s (i.e. seawaters, brackish waters) may produce a negat	gh a 0.45 micron membrane filter.
Arsenic (5+), at elevated le	evels, is a pos	sitive interference on colourimetric phosphate analysis.	
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried out electrode	using proce	dures adapted from APHA Method 4500-H "pH Value".	The pH is determined in the laboratory using a pH
It is recommended that this	s analysis be	conducted in the field.	
S2-T-COL-VA	Water	Total Sulphide by Colorimetric	APHA 4500-S2 Sulphide
This analysis is carried out colourimetric method.	t using proce	dures adapted from APHA Method 4500-S2 "Sulphide".	Sulphide is determined using the methlyene blue
SO4-IC-N-VA	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion Cl	hromatography with conductivity and/or UV detection.	
TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC
	using proce	-	s are determined gravimetrically. Total Dissolved Solids


This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

L1989801 CONTD.... PAGE 8 of 8 25-OCT-17 19:44 (MT) Version: FINAL REV. 3

TSS-VA	Water	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC
Solids (TSS) are determine	ed by filterin high dissolve	ng a sample through a glass fibre filter, TSS is deter ed solid content (i.e. seawaters, brackish waters) ma	Solids are determined gravimetrically. Total Suspended mined by drying the filter at 104 degrees celsius. ay produce a positive bias by this method. Alternate analysi
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 Turbidity
This analysis is carried our	t using proc	edures adapted from APHA Method 2130 "Turbidity	". Turbidity is determined by the nephelometric method.
VH-HSFID-VA	Water	VH in Water by Headspace GCFID	BC Env. Lab Manual (VH in Water)
		ts, is heated in a sealed vial to equilibrium. The hea e and n-decane are measured and summed togethe	Idspace from the vial is transfered into a gas chromatographer using flame-ionization detection.
VH-SURR-FID-VA	Water	VH Surrogates for Waters	BC Env. Lab Manual (VH in Solids)
VOC7-HSMS-VA	Water	BTEX/MTBE/Styrene by Headspace GCMS	EPA 5021A/8260C
		ts, is heated in a sealed vial to equilibrium. The hea measured using mass spectrometry detection.	dspace from the vial is transfered into a gas chromatograph
VOC7/VOC-SURR-MS-VA	Water	VOC7 and/or VOC Surrogates for Waters	EPA 5035A/5021A/8260C
VPH-CALC-VA	Water	VPH is VH minus select aromatics	BC MOE LABORATORY MANUAL (2005)
Volatile Petroleum Hydroc	arbons in S d, in solids,	olids or Water". The concentrations of specific Mon	Analytical Method for Contaminated Sites "Calculation of ocyclic Aromatic Hydrocarbons (Benzene, Toluene, rration of Volatile Hydrocarbons (VH) that elute between n-
XYLENES-CALC-VA	Water	Sum of Xylene Isomer Concentrations	CALCULATION
Calculation of Total Xylene	es		
		ntrations of the ortho, meta, and para Xylene isome alue no less than the square root of the sum of the s	ers. Results below detection limit (DL) are treated as zero. squares of the DLs of the individual Xylenes.
* ALS test methods may inc	orporate m	odifications from specified reference methods to imp	prove performance.
The last two letters of the a	bove test co	ode(s) indicate the laboratory that performed analytic	cal analysis for that test. Refer to the list below:
Laboratory Definition Cod	le Labo	ratory Location	
VA	ALS	ENVIRONMENTAL - VANCOUVER, BRITISH COLU	JMBIA, CANADA
Chain of Custody Numbers			
applicable tests, surrogates mg/kg - milligrams per kilog mg/kg wwt - milligrams per mg/kg lwt - milligrams per k mg/L - milligrams per litre.	at is similar are added ram based kilogram ba	in behaviour to target analyte(s), but that does not o to samples prior to analysis as a check on recovery on dry weight of sample. sed on wet weight of sample. ed on lipid-adjusted weight of sample.	
		o known as the Limit of Reporting (LOR).	

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		- Motor V	lils/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 14 -

Page 1 of 1

www.alsglobal.com

Report To			Report Format / Distribution Select Service Level Below (Rush Turnaround Time (TAT) is not available for all tes				all tests)												
Company:	Public Services and Procurement Canada	а	Select Report I	Format: IPDF	EXCEL 5	EDD (DIGITAL)	R				AT if rec									
Contact:	Rebecca Studer-Halbach		Quality Control	(QC) Report with F							s if rece						act ALS	to confi	rm TAT	
Address:	10025 Jasper Avenue		Criteria on Repo	rt - provide details below	w if box checked						days if									TAT
	Edmonton, AB T5J 1S6		Select Distribut	tion: DEMA		DFAX	1.00	□Sam	e day or	weeker	nd emerg	ency -	contact	ALS to	confin	m TAT	and surd	harge		
Phone:	(788) 497-3761		Email 1 or Fax	rebecca.studer-ha	lbach@pwgsc.c	a	-		-		or E2,E									
			Email 2	claire.brown@dxb	projects.ca							A	nalysi	s Red	quest	2				
Invoice To	Same as Report To Ves	∏ No		Invoice Di	stribution			Indi	cate Fil	tered (F)	, Preser	ved (P)	or Filte	red an	d Pres	erved (F/P) bel	w		
	Copy of Invoice with Report FYes	∏ No	Select Invoice	Distribution: DEM	AIL DMAIL	DFAX	1													
Company:	Public Services and Procurement Canada	a	Email 1 or Fax	rebecca.studer-ha	lbach@pwgsc.c	a								406					_	
Contact:	Rebecca Studer-Halbach		Email 2				1							- Q640						50
	Project Information		Oi	I and Gas Require	d Fields (client	use)								ber						iner
ALS Quote #:	Q64064		Approver ID:		Cost Center:						4			Ra-226						ontai
Job #:			GL Account:		Routing Code:					064	406			I Ra		4				fCo
PO/AFE:	R.015211.049		Activity Code:				064	964	4064	Q64	r Q6	34		and		Q64064				ero
LSD:	1.1018	sent	Location:				Q64064	264(per Q64064	per	y pe	6406	Q64064	-210	4	per Q(Number of Containers
ALS Lab Work Order # (lab use only)			ALS Contact:	Joanne Lee and Rick Zolkiewski	Sampler:		and per	als per		I Metals	d Mercur	4 per Q64064	F1 per Q6	lides Pb	- Q64064	Grease p				z
ALS Sample # (lab use only)	Sample Identification (This description will						Routine a	Total Metals per Q64064	Total Mercury	Dissolved Metals per Q64064	Dissolved Mercury per Q64064	PHC F2-F4	BTEX, F1	Radionuclides Pb-210 and	NAPL per	Oil and G				
	T-20			08-Sep-17		Water	R	R	R			ш.	<u> </u>	ш.	2	0		-		7
	T-19			√08-Sep-17		Water	R	R	R				-			-	-			7
	T-DUP-3			V 08-Sep-17		Water	R	R	R				-	-		-		-	-	7
	T-4			08-Sep-17		Water	R	R	R			R	R						-	11
	T-2			08-Sep-17	1		R					K	I.			-	-	-		7
				0 00-0cp-17		Water	R	R	R											
																-				
				1															_	
				(1.1		~ 1				
															-	-			-	1
		· · · · · · · · · · · · · · · · · · ·												-	-	-				
					-	1				ANADI	E CO	NIDITI	ONLA	S PF	CEN	ED /	aburg	only		
Drinking	Water (DW) Samples ¹ (client use)	Special	Instructions / Speci	fy Criteria to add or	report (client U	se)	Froze	0			200		_	Obse			Yes		No	
⊂ Ye	s 🔽 No	PLEASE NOTE: This conductivity, alkalinity, dissolved phosphorus,	turbidity, TDS, TSS	S, Ammonia, Nitrate	/Nitrite, total ph	osphorus,	Ice pa		Yes		No						Yes	Ξ	No	
	human drinking water use?	calcium, magnesium, j	potassium, sodium,	sulphate, sulphide	chloride. ALS		INIIT	IAL CO	OLER	EMPER	RATURE	S °C	1		FINAL	COOL	ER TEN	IPERA	TURES	C
∏ Ye	s 🔽 No	total and dissolved me	etals parameters mu	ust meet detection li	mits of Q64064		1-	2												
	SHIPMENT RELEASE (client use)		INITIAL S	HIPMENT RECEPT			15			FIN	AL SH	IPME	NTR	ECEF	OIT	V (lab	use or	nly)		
Released by:	Date: Sep 16/2017	Time: Recei	ived by:	17	Date:	Time: 10:0	Rece	ived by	y:					Dat	e:		Time			

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

NA-FM-0325e v09 Front/04 January 2014

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTN: Rebecca Studer-Halbach Northern Contaminated Sites 10025 Jasper Avenue NW Edmonton AB T5J 1S6 Date Received:12-SEP-17Report Date:13-OCT-17 18:08 (MT)Version:FINAL REV. 2

Client Phone: 780-497-3761

Certificate of Analysis

Lab Work Order #: L1989851 Project P.O. #: R.015211.049 Job Reference: C of C Numbers: Legal Site Desc:

Comments: New Version Report

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🕽

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1989851 CONTD.... PAGE 2 of 16 13-OCT-17 18:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1989851-1 water 09-SEP-17 ELB-9-GLB	L1989851-2 water 09-SEP-17 ELB-DUP-1	L1989851-3 water 09-SEP-17 ELB-10-ML	L1989851-4 water 09-SEP-17 ELB-7-SL	L1989851-5 water 09-SEP-17 ELB-4-ML
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	158	64.0	63.2	64.2	59.2
,	Hardness (as CaCO3) (mg/L)	нтс 71.6	оч.0 _{нтс} 31.4	оз.2 нтс 29.8	32.3	59.2 нтс 29.9
	рН (рН)	7.98	7.70	7.54	7.67	7.68
	Total Suspended Solids (mg/L)	3.4	4.2	<3.0	<3.0	3.2
	Total Dissolved Solids (mg/L)	83	4.2	35	39	33
	Turbidity (NTU)	0.25	0.46	0.46	0.47	0.39
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	58.6	32.2	29.1	32.0	29.7
	Ammonia, Total (as N) (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	0.0059
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	4.82	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.079	0.091	0.057	0.091	0.055
	Nitrate (as N) (mg/L)	0.139	<0.0050	0.0595	<0.0050	0.0548
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	Phosphorus (P)-Total (mg/L)	<0.0020	0.0025	<0.0020	<0.0020	<0.0020
	Sulfate (SO4) (mg/L)	15.0	1.27	1.45	1.27	1.45
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	2.35	4.07	3.60	3.86	3.57
	Total Organic Carbon (mg/L)	2.12	4.02	3.65	3.88	3.87
Total Metals	Aluminum (Al)-Total (mg/L)	0.0074	0.0072	0.0121	0.0049	0.0106
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)-Total (mg/L)	0.00020	0.00017	0.00018	0.00021	0.00017
	Barium (Ba)-Total (mg/L)	0.0222	0.00713	0.00517	0.00740	0.00503
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.010	0.012	0.011	0.012	0.011
	Cadmium (Cd)-Total (mg/L)	0.0000058	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Calcium (Ca)-Total (mg/L)	17.1	8.76	8.04	8.80	8.08
	Cesium (Cs)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Chromium (Cr)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Cobalt (Co)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)-Total (mg/L)	<0.00050	0.00110	0.00123	0.00113	0.00125
	Iron (Fe)-Total (mg/L)	<0.010	0.082	0.025	0.086	0.019
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Total (mg/L)	0.0031	<0.0010	<0.0010	<0.0010	<0.0010
	Magnesium (Mg)-Total (mg/L)	7.04	2.32	2.37	2.36	2.36

L1989851 CONTD.... PAGE 3 of 16 13-OCT-17 18:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1989851-6 water 09-SEP-17 ELB-SW-2	L1989851-7 water 09-SEP-17 ELB-2G-GBL	L1989851-8 water 09-SEP-17 ELB-6-SL	L1989851-9 water 09-SEP-17 ELB-1G-GBL	L1989851-10 water 09-SEP-17 ELB-8-SL
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	62.8	157	63.3	158	63.5
	Hardness (as CaCO3) (mg/L)	32.0	нтс 72.8	нтс 32.5	74.5	асто 32.4
	рН (рН)	7.70	7.99	7.69	7.99	7.71
	Total Suspended Solids (mg/L)	3.4	3.4	3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	37	84	40	83	39
	Turbidity (NTU)	0.49	0.25	0.45	0.23	0.50
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	32.2	59.9	32.6	59.6	32.5
	Ammonia, Total (as N) (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	<0.50	4.80	<0.50	4.81	<0.50
	Fluoride (F) (mg/L)	0.089	0.083	0.090	0.082	0.089
	Nitrate (as N) (mg/L)	<0.0050	0.138	<0.0050	0.138	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	Phosphorus (P)-Total (mg/L)	0.0022	<0.0020	<0.0020	<0.0020	<0.0020
	Sulfate (SO4) (mg/L)	1.26	14.9	1.25	14.9	1.27
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	3.74	2.09	3.58	1.97	3.83
	Total Organic Carbon (mg/L)	4.22	2.03	3.81	2.04	3.83
Total Metals	Aluminum (Al)-Total (mg/L)	0.0064	0.0083	0.0059	0.0057	0.0066
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010	0.00036	<0.00010	<0.00010
	Arsenic (As)-Total (mg/L)	0.00017	0.00020	0.00018	0.00017	0.00020
	Barium (Ba)-Total (mg/L)	0.00752	0.0229	0.00800	0.0228	0.00768
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.012	0.011	0.012	0.011	0.012
	Cadmium (Cd)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000005
	Calcium (Ca)-Total (mg/L)	8.89	17.5	8.97	17.4	8.95
	Cesium (Cs)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Chromium (Cr)-Total (mg/L)	0.00012	<0.00010	<0.00010	<0.00010	<0.00010
	Cobalt (Co)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)-Total (mg/L)	0.00110	<0.00050	0.00114	<0.00050	0.00115
	Iron (Fe)-Total (mg/L)	0.106	<0.010	0.099	<0.010	0.087
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Total (mg/L)	<0.0010	0.0031	<0.0010	0.0032	<0.0010
	Magnesium (Mg)-Total (mg/L)	2.39	7.09	2.44	7.08	2.44

L1989851 CONTD.... PAGE 4 of 16 13-OCT-17 18:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1989851-11 water 09-SEP-17 ELB-FIELD BLANK		
Grouping	Analyte			
WATER				
Physical Tests	Conductivity (uS/cm)	<2.0		
	Hardness (as CaCO3) (mg/L)	<0.50		
	рН (рН)	5.40		
	Total Suspended Solids (mg/L)	<3.0		
	Total Dissolved Solids (mg/L)	<10		
	Turbidity (NTU)	<0.10		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	<1.0		
	Ammonia, Total (as N) (mg/L)	<0.0050		
	Bromide (Br) (mg/L)	<0.050		
	Chloride (Cl) (mg/L)	<0.50		
	Fluoride (F) (mg/L)	<0.020		
	Nitrate (as N) (mg/L)	<0.0050		
	Nitrite (as N) (mg/L)	<0.0010		
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020		
	Phosphorus (P)-Total (mg/L)	<0.0020		
	Sulfate (SO4) (mg/L)	<0.30		
	Sulphide as S (mg/L)	<0.018		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	<0.50		
	Total Organic Carbon (mg/L)	<0.50		
Total Metals	Aluminum (Al)-Total (mg/L)	<0.0030		
	Antimony (Sb)-Total (mg/L)	<0.00010		
	Arsenic (As)-Total (mg/L)	<0.00010		
	Barium (Ba)-Total (mg/L)	<0.000050		
	Beryllium (Be)-Total (mg/L)	<0.000020		
	Bismuth (Bi)-Total (mg/L)	<0.000050		
	Boron (B)-Total (mg/L)	<0.010		
	Cadmium (Cd)-Total (mg/L)	<0.0000050		
	Calcium (Ca)-Total (mg/L)	<0.050		
	Cesium (Cs)-Total (mg/L)	<0.000010		
	Chromium (Cr)-Total (mg/L)	<0.00010		
	Cobalt (Co)-Total (mg/L)	<0.00010		
	Copper (Cu)-Total (mg/L)	<0.00050		
	Iron (Fe)-Total (mg/L)	<0.010		
	Lead (Pb)-Total (mg/L)	<0.000050		
	Lithium (Li)-Total (mg/L)	<0.0010		
	Magnesium (Mg)-Total (mg/L)	<0.10		

L1989851 CONTD.... PAGE 5 of 16 13-OCT-17 18:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1989851-1 water 09-SEP-17 ELB-9-GLB	L1989851-2 water 09-SEP-17 ELB-DUP-1	L1989851-3 water 09-SEP-17 ELB-10-ML	L1989851-4 water 09-SEP-17 ELB-7-SL	L1989851-5 water 09-SEP-17 ELB-4-ML
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.00073	0.0124	0.00288	0.0138	0.00284
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.000310	0.000183	0.000179	0.000189	0.000194
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	0.71	0.40	0.42	0.41	0.42
	Selenium (Se)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)-Total (mg/L)	1.16	1.00	0.52	1.02	0.52
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	4.04	0.939	0.897	0.963	0.906
	Strontium (Sr)-Total (mg/L)	0.102	0.0130	0.0123	0.0132	0.0123
	Sulfur (S)-Total (mg/L)	5.37	<0.50	0.58	<0.50	0.52
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Uranium (U)-Total (mg/L)	0.000327	0.000132	0.000069	0.000141	0.000068
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	0.0043	<0.0030	<0.0030	<0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location				FIELD	
	Dissolved Metals Filtration Location				LAB	
	Aluminum (AI)-Dissolved (mg/L)				0.0018	
	Antimony (Sb)-Dissolved (mg/L)				<0.00010	
	Arsenic (As)-Dissolved (mg/L)				0.00017	
	Barium (Ba)-Dissolved (mg/L)				0.00750	
	Beryllium (Be)-Dissolved (mg/L)				<0.000020	
	Bismuth (Bi)-Dissolved (mg/L)				<0.000050	
	Boron (B)-Dissolved (mg/L)				0.012	
	Cadmium (Cd)-Dissolved (mg/L)				<0.0000050	
	Calcium (Ca)-Dissolved (mg/L)				8.90	
	Cesium (Cs)-Dissolved (mg/L)				<0.000010	
	Chromium (Cr)-Dissolved (mg/L)				<0.00010	
	Cobalt (Co)-Dissolved (mg/L)				<0.00010	
	Copper (Cu)-Dissolved (mg/L)				0.00093	
	Iron (Fe)-Dissolved (mg/L)				0.010	
	Lead (Pb)-Dissolved (mg/L)				<0.000050	
	Lithium (Li)-Dissolved (mg/L)				<0.0010	

L1989851 CONTD.... PAGE 6 of 16 13-OCT-17 18:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1989851-6 water 09-SEP-17 ELB-SW-2	L1989851-7 water 09-SEP-17 ELB-2G-GBL	L1989851-8 water 09-SEP-17 ELB-6-SL	L1989851-9 water 09-SEP-17 ELB-1G-GBL	L1989851-10 water 09-SEP-17 ELB-8-SL
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.0258	0.00093	0.0166	0.00073	0.0127
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.000176	0.000324	0.000180	0.000316	0.000199
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	0.41	0.73	0.43	0.72	0.42
	Selenium (Se)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)-Total (mg/L)	1.00	1.17	1.06	1.17	1.06
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	0.962	4.12	0.978	4.15	0.996
	Strontium (Sr)-Total (mg/L)	0.0130	0.104	0.0133	0.103	0.0133
	Sulfur (S)-Total (mg/L)	<0.50	5.49	<0.50	5.60	0.61
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Uranium (U)-Total (mg/L)	0.000119	0.000369	0.000130	0.000345	0.000135
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030	0.0042	<0.0030	<0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location	LAB			LAB	
	Dissolved Metals Filtration Location	LAB			LAB	
	Aluminum (Al)-Dissolved (mg/L)	0.0025			<0.0010	
	Antimony (Sb)-Dissolved (mg/L)	<0.00010			<0.00010	
	Arsenic (As)-Dissolved (mg/L)	0.00017			0.00019	
	Barium (Ba)-Dissolved (mg/L)	0.00735			0.0232	
	Beryllium (Be)-Dissolved (mg/L)	<0.000020			<0.000020	
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050			<0.000050	
	Boron (B)-Dissolved (mg/L)	0.012			0.011	
	Cadmium (Cd)-Dissolved (mg/L)	<0.0000050			<0.0000050	
	Calcium (Ca)-Dissolved (mg/L)	8.76			17.6	
	Cesium (Cs)-Dissolved (mg/L)	<0.000010				
	Chromium (Cr)-Dissolved (mg/L)	<0.00010			<0.00010	
	Cobalt (Co)-Dissolved (mg/L)	<0.00010			<0.00010	
	Copper (Cu)-Dissolved (mg/L)	0.00088			0.00027	
	Iron (Fe)-Dissolved (mg/L)	0.015			<0.010	
	Lead (Pb)-Dissolved (mg/L)	<0.000050			<0.000050	
	Lithium (Li)-Dissolved (mg/L)	<0.0010			0.0034	

L1989851 CONTD.... PAGE 7 of 16 13-OCT-17 18:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1989851-11 water 09-SEP-17 ELB-FIELD BLANK		
Grouping	Analyte			
WATER				
Total Metals	Manganese (Mn)-Total (mg/L)	<0.00010		
	Mercury (Hg)-Total (mg/L)	<0.0000050		
	Molybdenum (Mo)-Total (mg/L)	<0.000050		
	Nickel (Ni)-Total (mg/L)	<0.00050		
	Phosphorus (P)-Total (mg/L)	<0.050		
	Potassium (K)-Total (mg/L)	<0.10		
	Selenium (Se)-Total (mg/L)	<0.000050		
	Silicon (Si)-Total (mg/L)	<0.10		
	Silver (Ag)-Total (mg/L)	<0.000010		
	Sodium (Na)-Total (mg/L)	<0.050		
	Strontium (Sr)-Total (mg/L)	<0.00020		
	Sulfur (S)-Total (mg/L)	<0.50		
	Thallium (TI)-Total (mg/L)	<0.000010		
	Tin (Sn)-Total (mg/L)	<0.00010		
	Titanium (Ti)-Total (mg/L)	<0.00030		
	Uranium (U)-Total (mg/L)	<0.000010		
	Vanadium (V)-Total (mg/L)	<0.00050		
	Zinc (Zn)-Total (mg/L)	<0.0030		
	Zirconium (Zr)-Total (mg/L)	<0.00030		
Dissolved Metals	Dissolved Mercury Filtration Location	LAB		
	Dissolved Metals Filtration Location	LAB		
	Aluminum (Al)-Dissolved (mg/L)	<0.0010		
	Antimony (Sb)-Dissolved (mg/L)	<0.00010		
	Arsenic (As)-Dissolved (mg/L)	<0.00010		
	Barium (Ba)-Dissolved (mg/L)	<0.000050		
	Beryllium (Be)-Dissolved (mg/L)	<0.000020		
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050		
	Boron (B)-Dissolved (mg/L)	<0.010		
	Cadmium (Cd)-Dissolved (mg/L)	<0.0000050		
	Calcium (Ca)-Dissolved (mg/L)	<0.050		
	Cesium (Cs)-Dissolved (mg/L)			
	Chromium (Cr)-Dissolved (mg/L)	<0.00010		
	Cobalt (Co)-Dissolved (mg/L)	<0.00010		
	Copper (Cu)-Dissolved (mg/L)	<0.00020		
	Iron (Fe)-Dissolved (mg/L)	<0.010		
	Lead (Pb)-Dissolved (mg/L)	<0.000050		
	Lithium (Li)-Dissolved (mg/L)	<0.0010		

L1989851 CONTD.... PAGE 8 of 16 13-OCT-17 18:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1989851-1 water 09-SEP-17 ELB-9-GLB	L1989851-2 water 09-SEP-17 ELB-DUP-1	L1989851-3 water 09-SEP-17 ELB-10-ML	L1989851-4 water 09-SEP-17 ELB-7-SL	L1989851-5 water 09-SEP-17 ELB-4-ML
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)				2.45	
	Manganese (Mn)-Dissolved (mg/L)				<0.00010	
	Mercury (Hg)-Dissolved (mg/L)				<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)				0.000172	
	Nickel (Ni)-Dissolved (mg/L)				<0.00050	
	Phosphorus (P)-Dissolved (mg/L)				<0.050	
	Potassium (K)-Dissolved (mg/L)				0.42	
	Selenium (Se)-Dissolved (mg/L)				<0.000050	
	Silicon (Si)-Dissolved (mg/L)				1.01	
	Silver (Ag)-Dissolved (mg/L)				<0.000010	
	Sodium (Na)-Dissolved (mg/L)				0.992	
	Strontium (Sr)-Dissolved (mg/L)				0.0132	
	Sulfur (S)-Dissolved (mg/L)				<0.50	
	Thallium (TI)-Dissolved (mg/L)				<0.000010	
	Tin (Sn)-Dissolved (mg/L)				<0.00010	
	Titanium (Ti)-Dissolved (mg/L)				<0.00030	
	Uranium (U)-Dissolved (mg/L)				0.000112	
	Vanadium (V)-Dissolved (mg/L)				<0.00050	
	Zinc (Zn)-Dissolved (mg/L)				<0.0010	
	Zirconium (Zr)-Dissolved (mg/L)				<0.00030	
Volatile Organic Compounds	Benzene (mg/L)	<0.00050			<0.00050	
	Ethylbenzene (mg/L)	<0.00050			<0.00050	
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050			<0.00050	
	Styrene (mg/L)	<0.00050			<0.00050	
	Toluene (mg/L)	<0.00045			<0.00045	
	ortho-Xylene (mg/L)	<0.00050			<0.00050	
	meta- & para-Xylene (mg/L)	<0.00050			<0.00050	
	Xylenes (mg/L)	<0.00075			<0.00075	
	F1 (C6-C10) (mg/L)	<0.10			<0.10	
	Surrogate: 4-Bromofluorobenzene (SS) (%)	94.3			100.2	
	Surrogate: 1,4-Difluorobenzene (SS) (%)	99.4			95.0	
Hydrocarbons	F1-BTEX (mg/L)	<0.10			<0.10	
	F2 (C10-C16) (mg/L)	<0.30			<0.30	
	F3 (C16-C34) (mg/L)	<0.30			<0.30	
	F4 (C34-C50) (mg/L)	<0.30			<0.30	
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10			<0.10	
	VPH (C6-C10) (mg/L)	<0.10			<0.10	

L1989851 CONTD.... PAGE 9 of 16 13-OCT-17 18:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1989851-6 water 09-SEP-17 ELB-SW-2	L1989851-7 water 09-SEP-17 ELB-2G-GBL	L1989851-8 water 09-SEP-17 ELB-6-SL	L1989851-9 water 09-SEP-17 ELB-1G-GBL	L1989851-10 water 09-SEP-17 ELB-8-SL
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)	2.47			7.43	
	Manganese (Mn)-Dissolved (mg/L)	0.00014			<0.00010	
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050			<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.000162			0.000289	
	Nickel (Ni)-Dissolved (mg/L)	<0.00050			<0.00050	
	Phosphorus (P)-Dissolved (mg/L)	<0.050			<0.050	
	Potassium (K)-Dissolved (mg/L)	0.44			0.77	
	Selenium (Se)-Dissolved (mg/L)	<0.000050			<0.000050	
	Silicon (Si)-Dissolved (mg/L)	0.974			1.13	
	Silver (Ag)-Dissolved (mg/L)	<0.000010			<0.000010	
	Sodium (Na)-Dissolved (mg/L)	0.988			4.24	
	Strontium (Sr)-Dissolved (mg/L)	0.0126			0.104	
	Sulfur (S)-Dissolved (mg/L)	<0.50			5.06	
	Thallium (TI)-Dissolved (mg/L)	<0.000010			<0.000010	
	Tin (Sn)-Dissolved (mg/L)	<0.00010			<0.00010	
	Titanium (Ti)-Dissolved (mg/L)	<0.00030			<0.00030	
	Uranium (U)-Dissolved (mg/L)	0.000093			0.000340	
	Vanadium (V)-Dissolved (mg/L)	<0.00050			<0.00050	
	Zinc (Zn)-Dissolved (mg/L)	<0.0010			<0.0010	
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030			<0.00030	
Volatile Organic Compounds	Benzene (mg/L)		<0.00050		<0.00050	
	Ethylbenzene (mg/L)		<0.00050		<0.00050	
	Methyl t-butyl ether (MTBE) (mg/L)		<0.00050		<0.00050	
	Styrene (mg/L)		<0.00050		<0.00050	
	Toluene (mg/L)		<0.00045		<0.00045	
	ortho-Xylene (mg/L)		<0.00050		<0.00050	
	meta- & para-Xylene (mg/L)		<0.00050		<0.00050	
	Xylenes (mg/L)		<0.00075		<0.00075	
	F1 (C6-C10) (mg/L)		<0.10		<0.10	
	Surrogate: 4-Bromofluorobenzene (SS) (%)		94.6		93.7	
	Surrogate: 1,4-Difluorobenzene (SS) (%)		97.1		94.8	
Hydrocarbons	F1-BTEX (mg/L)		<0.10		<0.10	
	F2 (C10-C16) (mg/L)		<0.30		<0.30	
	F3 (C16-C34) (mg/L)		<0.30		<0.30	
	F4 (C34-C50) (mg/L)		<0.30		<0.30	
	Volatile Hydrocarbons (VH6-10) (mg/L)		<0.10		<0.10	
	VPH (C6-C10) (mg/L)		<0.10		<0.10	

L1989851 CONTD.... PAGE 10 of 16 13-OCT-17 18:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1989851-11 water 09-SEP-17 ELB-FIELD BLANK		
Grouping	Analyte			
WATER				
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)	<0.10		
	Manganese (Mn)-Dissolved (mg/L)	<0.00010		
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050		
	Molybdenum (Mo)-Dissolved (mg/L)	<0.000050		
	Nickel (Ni)-Dissolved (mg/L)	<0.00050		
	Phosphorus (P)-Dissolved (mg/L)	<0.050		
	Potassium (K)-Dissolved (mg/L)	<0.10		
	Selenium (Se)-Dissolved (mg/L)	<0.000050		
	Silicon (Si)-Dissolved (mg/L)	<0.050		
	Silver (Ag)-Dissolved (mg/L)	<0.000010		
	Sodium (Na)-Dissolved (mg/L)	<0.050		
	Strontium (Sr)-Dissolved (mg/L)	<0.00020		
	Sulfur (S)-Dissolved (mg/L)	<0.50		
	Thallium (TI)-Dissolved (mg/L)	<0.000010		
	Tin (Sn)-Dissolved (mg/L)	<0.00010		
	Titanium (Ti)-Dissolved (mg/L)	<0.00030		
	Uranium (U)-Dissolved (mg/L)	<0.000010		
	Vanadium (V)-Dissolved (mg/L)	<0.00050		
	Zinc (Zn)-Dissolved (mg/L)	<0.0010		
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030		
Volatile Organic Compounds	Benzene (mg/L)			
	Ethylbenzene (mg/L)			
	Methyl t-butyl ether (MTBE) (mg/L)			
	Styrene (mg/L)			
	Toluene (mg/L)			
	ortho-Xylene (mg/L)			
	meta- & para-Xylene (mg/L)			
	Xylenes (mg/L)			
	F1 (C6-C10) (mg/L)			
	Surrogate: 4-Bromofluorobenzene (SS) (%)			
	Surrogate: 1,4-Difluorobenzene (SS) (%)			
Hydrocarbons	F1-BTEX (mg/L)			
	F2 (C10-C16) (mg/L)			
	F3 (C16-C34) (mg/L)			
	F4 (C34-C50) (mg/L)			
	Volatile Hydrocarbons (VH6-10) (mg/L)			
	VPH (C6-C10) (mg/L)			

L1989851 CONTD.... PAGE 11 of 16 13-OCT-17 18:08 (MT) Version: FINAL REV. 2

Sample ID Description Sampled Date Sampled Time Client ID	L1989851-1 water 09-SEP-17 ELB-9-GLB	L1989851-2 water 09-SEP-17	L1989851-3 water 09-SEP-17	L1989851-4 water 09-SEP-17	L1989851-5 water 09-SEP-17
Client ID	ELB-9-GLB				i -
		ELB-DUP-1	ELB-10-ML	ELB-7-SL	ELB-4-ML
oride, F2-F4	90.4			95.6	
e (SS) (%)	90.1			129.6	
	e (SS) (%)	90.1 90.1	90.1 90.1	90.1 (SS) (%) 90.1	(SS) (%) 90.1 129.6

L1989851 CONTD.... PAGE 12 of 16 13-OCT-17 18:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1989851-6 water 09-SEP-17 ELB-SW-2	L1989851-7 water 09-SEP-17 ELB-2G-GBL	L1989851-8 water 09-SEP-17 ELB-6-SL	L1989851-9 water 09-SEP-17 ELB-1G-GBL	L1989851-1 water 09-SEP-17 ELB-8-SL
Grouping	Analyte					
WATER						
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)		92.7		99.2	
	Surrogate: 3,4-Dichlorotoluene (SS) (%)		110.8		82.5	

L1989851 CONTD.... PAGE 13 of 16 13-OCT-17 18:08 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	09-SEP-17		
Grouping	Analyte			
WATER				
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%) Surrogate: 3,4-Dichlorotoluene (SS) (%)			

Qualifier

MS-B

Applies to Sample Number(s)

L1989851-8

L1989851 CONTD.... PAGE 14 of 16 13-OCT-17 18:08 (MT) Version: FINAL REV. 2

QC Samples with Qualifiers & Comments:

Parameter

Dissolved Organic Carbon

QC Type Description

Matrix Spike

Matrix Spike				
		Total Organic Carbon	MS-B	L1989851-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Calcium (Ca)-Total	MS-B	L1989851-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Calcium (Ca)-Total	MS-B	L1989851-11
Matrix Spike		Magnesium (Mg)-Total	MS-B	L1989851-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Manganese (Mn)-Total	MS-B	L1989851-11
Matrix Spike		Sodium (Na)-Total	MS-B	L1989851-11
Matrix Spike		Strontium (Sr)-Total	MS-B	L1989851-11
Matrix Spike		Ammonia, Total (as N)	MS-B	L1989851-10, -11, -8, -9
Qualifiers for Indi	vidual Parameters I	Listed:		
Qualifier D	escription			
HTC H	ardness was calculat	ted from Total Ca and/or Mg concent	trations and may	be biased high (dissolved Ca/Mg results unavailable).
MS-B M	atrix Spike recovery	could not be accurately calculated d	ue to high analyte	background in sample.
est Method Refe	rences:			
ALS Test Code	Matrix	Test Description		Method Reference**
ALK-TITR-VA	Water	Alkalinity Species by Titration		APHA 2320 Alkalinity
				otal alkalinity is determined by potentiometric titration to a hthalein alkalinity and total alkalinity values.
BE-D-L-CCMS-VA	Water	Diss. Be (low) in Water by CRC I	CPMS	APHA 3030B/6020A (mod)
Water samples are	e filtered (0.45 um), p	reserved with nitric acid, and analyze	ed by CRC ICPM	5.
BE-T-L-CCMS-VA	Water	Total Be (Low) in Water by CRC I	CPMS	EPA 200.2/6020A (mod)
	e digested with nitric a	and hydrochloric acids, and analyzed		
	-			
BR-L-IC-N-VA	Water	Bromide in Water by IC (Low Leve	91)	EPA 300.1 (mod)
		Bromide in Water by IC (Low Leve hromatography with conductivity and	,	EPA 300.1 (mod)
	re analyzed by Ion Cl	, (/or UV detection.	EPA 300.1 (mod) APHA 5310B TOTAL ORGANIC CARBON (TOC)
Inorganic anions a CARBONS-DOC-VA This analysis is cal	re analyzed by Ion Cl Water rried out using procee	hromatography with conductivity and Dissolved organic carbon by comb	l/or UV detection. pustion 310 "Total Organi	
Inorganic anions a CARBONS-DOC-VA This analysis is cal	re analyzed by Ion Cl Water rried out using procee ring the sample throu	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5	/or UV detection. Dustion 310 "Total Organi rior to analysis.	APHA 5310B TOTAL ORGANIC CARBON (TOC)
Inorganic anions a CARBONS-DOC-VA This analysis is ca determined by filte CARBONS-TOC-VA	water water rried out using proceed ring the sample throug Water	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter p	/or UV detection. bustion 310 "Total Organ rior to analysis. on	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC)
Inorganic anions a CARBONS-DOC-VA This analysis is ca determined by filte CARBONS-TOC-VA	water water rried out using proceed ring the sample throug Water	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter pu Total organic carbon by combustic dures adapted from APHA Method 5	/or UV detection. bustion 310 "Total Organ rior to analysis. on	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)".
Inorganic anions a CARBONS-DOC-VA This analysis is can determined by filter CARBONS-TOC-VA This analysis is can CL-IC-N-VA	re analyzed by Ion Cl Water rried out using proceed ring the sample throu Water rried out using proceed Water	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter pu Total organic carbon by combustic	d/or UV detection. 500 310 "Total Organ rior to analysis. 500 310 "Total Organ	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC)
Inorganic anions a CARBONS-DOC-VA This analysis is can determined by filter CARBONS-TOC-VA This analysis is can CL-IC-N-VA Inorganic anions an	re analyzed by Ion Cl Water rried out using proceed ring the sample throu Water rried out using proceed Water re analyzed by Ion Cl	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter pu Total organic carbon by combustic dures adapted from APHA Method 5 Chloride in Water by IC hromatography with conductivity and	d/or UV detection. 500 310 "Total Organ rior to analysis. 500 310 "Total Organ	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". EPA 300.1 (mod)
Inorganic anions an CARBONS-DOC-VA This analysis is can determined by filte CARBONS-TOC-VA This analysis is can CL-IC-N-VA Inorganic anions an EC-PCT-VA	re analyzed by Ion Cl Water rried out using proceed rring the sample throu Water rried out using proceed Water re analyzed by Ion Cl Water	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter pu Total organic carbon by combustic dures adapted from APHA Method 5 Chloride in Water by IC hromatography with conductivity and Conductivity (Automated)	d/or UV detection. bustion 310 "Total Organi rior to analysis. on 310 "Total Organ d/or UV detection.	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". EPA 300.1 (mod) APHA 2510 Auto. Conduc.
Inorganic anions an CARBONS-DOC-VA This analysis is can determined by filte CARBONS-TOC-VA This analysis is can CL-IC-N-VA Inorganic anions an EC-PCT-VA	re analyzed by Ion Cl Water rried out using proceed rring the sample throu Water rried out using proceed Water re analyzed by Ion Cl Water	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter pu Total organic carbon by combustic dures adapted from APHA Method 5 Chloride in Water by IC hromatography with conductivity and Conductivity (Automated)	d/or UV detection. bustion 310 "Total Organi rior to analysis. on 310 "Total Organ d/or UV detection.	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". EPA 300.1 (mod)
Inorganic anions an CARBONS-DOC-VA This analysis is can determined by filte CARBONS-TOC-VA This analysis is can CL-IC-N-VA Inorganic anions an EC-PCT-VA This analysis is can	re analyzed by Ion Cl Water rried out using proceed rring the sample throu Water rried out using proceed Water re analyzed by Ion Cl Water	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter pu Total organic carbon by combustic dures adapted from APHA Method 5 Chloride in Water by IC hromatography with conductivity and Conductivity (Automated)	Jor UV detection. bustion 310 "Total Organi rior to analysis. on 310 "Total Organi Jor UV detection. 510 "Conductivity	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". EPA 300.1 (mod) APHA 2510 Auto. Conduc.
Inorganic anions a CARBONS-DOC-VA This analysis is can determined by filter CARBONS-TOC-VA This analysis is can CL-IC-N-VA Inorganic anions an EC-PCT-VA This analysis is can electrode. EC-SCREEN-VA	re analyzed by Ion Cl Water rried out using proceer rried out using proceer water rried out using proceer Water re analyzed by Ion Cl Water rried out using proceer Water	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter pr Total organic carbon by combustic dures adapted from APHA Method 5 Chloride in Water by IC hromatography with conductivity and Conductivity (Automated) dures adapted from APHA Method 2	Jor UV detection. bustion 310 "Total Organi rior to analysis. on 310 "Total Organi Jor UV detection. 510 "Conductivity Only)	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". EPA 300.1 (mod) APHA 2510 Auto. Conduc. ". Conductivity is determined using a conductivity APHA 2510
Inorganic anions an CARBONS-DOC-VA This analysis is can determined by filter CARBONS-TOC-VA This analysis is can CL-IC-N-VA Inorganic anions an EC-PCT-VA This analysis is can electrode. EC-SCREEN-VA Qualitative analysis	re analyzed by Ion Cl Water rried out using proceer rried out using proceer Water rried out using proceer Water rried out using proceer Water rried out using proceer Water s of conductivity when	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter pr Total organic carbon by combustic dures adapted from APHA Method 5 Chloride in Water by IC hromatography with conductivity and Conductivity (Automated) dures adapted from APHA Method 2 Conductivity Screen (Internal Use re required during preparation of oth	Jor UV detection. bustion 310 "Total Organi rior to analysis. on 310 "Total Organi Jor UV detection. 510 "Conductivity Only)	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". EPA 300.1 (mod) APHA 2510 Auto. Conduc. ". Conductivity is determined using a conductivity APHA 2510 S, metals, etc.
Inorganic anions an CARBONS-DOC-VA This analysis is can determined by filter CARBONS-TOC-VA This analysis is can CL-IC-N-VA Inorganic anions an EC-PCT-VA This analysis is can electrode. EC-SCREEN-VA Qualitative analysis F-IC-N-VA	re analyzed by Ion Cl Water rried out using proceed ing the sample throu Water rried out using proceed Water re analyzed by Ion Cl Water rried out using proceed Water s of conductivity when Water	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter pu Total organic carbon by combustic dures adapted from APHA Method 5 Chloride in Water by IC hromatography with conductivity and Conductivity (Automated) dures adapted from APHA Method 2 Conductivity Screen (Internal Use	d/or UV detection. bustion 310 "Total Organi rior to analysis. on 310 "Total Organi d/or UV detection. 510 "Conductivity Only) er tests - e.g. TDS	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". EPA 300.1 (mod) APHA 2510 Auto. Conduc. ". Conductivity is determined using a conductivity APHA 2510
Inorganic anions at CARBONS-DOC-VA This analysis is can determined by filter CARBONS-TOC-VA This analysis is can CL-IC-N-VA Inorganic anions at EC-PCT-VA This analysis is can electrode. EC-SCREEN-VA Qualitative analysis F-IC-N-VA Inorganic anions at	re analyzed by lon Cl Water rried out using proceer rried out using proceer water rried out using proceer water re analyzed by lon Cl	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter pu Total organic carbon by combustic dures adapted from APHA Method 5 Chloride in Water by IC hromatography with conductivity and Conductivity (Automated) dures adapted from APHA Method 2 Conductivity Screen (Internal Use re required during preparation of oth Fluoride in Water by IC hromatography with conductivity and	d/or UV detection. bustion 310 "Total Organi rior to analysis. on 310 "Total Organi d/or UV detection. 510 "Conductivity Only) er tests - e.g. TDS	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". EPA 300.1 (mod) APHA 2510 Auto. Conduc. ". Conductivity is determined using a conductivity APHA 2510 S, metals, etc. EPA 300.1 (mod)
Inorganic anions an CARBONS-DOC-VA This analysis is can determined by filter CARBONS-TOC-VA This analysis is can CL-IC-N-VA Inorganic anions an electrode. EC-PCT-VA This analysis is can electrode. EC-SCREEN-VA Qualitative analysis F-IC-N-VA Inorganic anions an E1-BTX-CALC-VA	re analyzed by lon Cl Water rried out using procee- ring the sample throu Water rried out using procee- Water re analyzed by lon Cl Water s of conductivity when Water re analyzed by lon Cl Water re analyzed by lon Cl Water	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter pu Total organic carbon by combustic dures adapted from APHA Method 5 Chloride in Water by IC hromatography with conductivity and Conductivity (Automated) dures adapted from APHA Method 2 Conductivity Screen (Internal Use re required during preparation of oth Fluoride in Water by IC hromatography with conductivity and F1-Total BTX	Jor UV detection. bustion 310 "Total Organi rior to analysis. on 310 "Total Organi Jor UV detection. 510 "Conductivity Only) er tests - e.g. TDS Jor UV detection.	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". EPA 300.1 (mod) APHA 2510 Auto. Conduc. ". Conductivity is determined using a conductivity APHA 2510 S, metals, etc. EPA 300.1 (mod) CCME CWS PHC TIER 1 (2001)
Inorganic anions an CARBONS-DOC-VA This analysis is can determined by filter CARBONS-TOC-VA This analysis is can CL-IC-N-VA Inorganic anions an EC-PCT-VA This analysis is can electrode. EC-SCREEN-VA Qualitative analysis F-IC-N-VA Inorganic anions an F1-BTX-CALC-VA This analysis is bar Council of Minister	re analyzed by Ion Cl Water rried out using proceer ring the sample throu Water rried out using proceer Water re analyzed by Ion Cl Water rried out using proceer Water s of conductivity when Water re analyzed by Ion Cl Water sed on the "Reference	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter pu Total organic carbon by combustic dures adapted from APHA Method 5 Chloride in Water by IC hromatography with conductivity and Conductivity (Automated) dures adapted from APHA Method 2 Conductivity Screen (Internal Use re required during preparation of oth Fluoride in Water by IC hromatography with conductivity and F1-Total BTX ce Method for the Canada-Wide Star c, December 2000." For F1 (C6-C10	d/or UV detection. bustion 310 "Total Organi- rior to analysis. on 310 "Total Organi 310 "Total Organi d/or UV detection. 510 "Conductivity Only) er tests - e.g. TDS d/or UV detection.	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". EPA 300.1 (mod) APHA 2510 Auto. Conduc. ". Conductivity is determined using a conductivity APHA 2510 S, metals, etc. EPA 300.1 (mod)
Inorganic anions an CARBONS-DOC-VA This analysis is can determined by filter CARBONS-TOC-VA This analysis is can CL-IC-N-VA Inorganic anions an EC-PCT-VA This analysis is can electrode. EC-SCREEN-VA Qualitative analysis F-IC-N-VA Inorganic anions an E1-BTX-CALC-VA This analysis is ban Council of Minister GC/FID. The F1-B	re analyzed by Ion Cl Water rried out using proceer ring the sample throu Water rried out using proceer Water re analyzed by Ion Cl Water rried out using proceer Water rried out using proceer Water re analyzed by Ion Cl Water re analyzed by Ion Cl Water so f conductivity when Sed on the "Reference s of the Environment TEX result is calculat	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter pu Total organic carbon by combustic dures adapted from APHA Method 5 Chloride in Water by IC hromatography with conductivity and Conductivity (Automated) dures adapted from APHA Method 2 Conductivity Screen (Internal Use re required during preparation of oth Fluoride in Water by IC hromatography with conductivity and F1-Total BTX ce Method for the Canada-Wide Star c, December 2000." For F1 (C6-C10	A/or UV detection. bustion 310 "Total Organi- rior to analysis. on 310 "Total Organi 310 "Total Organi 4/or UV detection. 510 "Conductivity Only) er tests - e.g. TDS A/or UV detection.	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". EPA 300.1 (mod) APHA 2510 Auto. Conduc. ". Conductivity is determined using a conductivity APHA 2510 S, metals, etc. EPA 300.1 (mod) CCME CWS PHC TIER 1 (2001) m Hydrocarbons in Soil - Tier 1 Method, Canadian
Inorganic anions an CARBONS-DOC-VA This analysis is can determined by filter CARBONS-TOC-VA This analysis is can CL-IC-N-VA Inorganic anions an EC-PCT-VA This analysis is can electrode. EC-SCREEN-VA Qualitative analysis F-IC-N-VA Inorganic anions an E1-BTX-CALC-VA This analysis is ban Council of Minister GC/FID. The F1-B	re analyzed by Ion Cl Water rried out using proceer ring the sample throu Water rried out using proceer Water re analyzed by Ion Cl Water rried out using proceer Water rried out using proceer Water re analyzed by Ion Cl Water re analyzed by Ion Cl Water so f conductivity when Sed on the "Reference s of the Environment TEX result is calculat	hromatography with conductivity and Dissolved organic carbon by comb dures adapted from APHA Method 5 ugh a 0.45 micron membrane filter pr Total organic carbon by combustic dures adapted from APHA Method 5 Chloride in Water by IC hromatography with conductivity and Conductivity (Automated) dures adapted from APHA Method 2 Conductivity Screen (Internal Use re required during preparation of oth Fluoride in Water by IC hromatography with conductivity and F1-Total BTX ce Method for the Canada-Wide Star c, December 2000." For F1 (C6-C10 ted as follows:	d/or UV detection. bustion 310 "Total Organi- rior to analysis. on 310 "Total Organi 310 "Total Organi d/or UV detection. 510 "Conductivity Only) er tests - e.g. TDS d/or UV detection. hdard for Petroleu), the sample und (BTEX).	APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". Dissolved carbon (DOC) fractions are APHA 5310B TOTAL ORGANIC CARBON (TOC) ic Carbon (TOC)". EPA 300.1 (mod) APHA 2510 Auto. Conduc. ". Conductivity is determined using a conductivity APHA 2510 S, metals, etc. EPA 300.1 (mod) CCME CWS PHC TIER 1 (2001) m Hydrocarbons in Soil - Tier 1 Method, Canadian

This analysis is based on the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2000." For F1 (C6-C10), the sample undergoes a headspace purge prior to analysis by GC/FID.

F1 (C6-C10): Sum of all hydrocarbons that elute between nC6 and nC10.

F2-F4-ME-FID-VA Water CCME F2-F4 Hydrocarbons in Water CCME CWS-PHC, Pub #1310, Dec 2001 F2-F4 is extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, Dec 2001. HARDNESS-CALC-VA Water Hardness APHA 2340B Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation. **HG-D-CVAA-VA** Water Diss. Mercury in Water by CVAAS or CVAFS APHA 3030B/EPA 1631E (mod) Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. Water Total Mercury in Water by CVAAS or CVAFS HG-T-CVAA-VA EPA 1631E (mod) Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. **MET-D-CCMS-VA** Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod) Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. **MET-T-CCMS-VA** Water Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod) Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. NH3-F-VA Water Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et aL NO2-L-IC-N-VA Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-L-IC-N-VA Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. P-T-PRES-COL-VA Water Total P in Water by Colour APHA 4500-P Phosphorus This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. P-TD-COL-VA Water Total Dissolved P in Water by Colour APHA 4500-P Phosphorous This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Dissolved Phosphorus is determined colourimetrically after persulphate digestion of a sample that has been lab or field filtered through a 0.45 micron membrane filter. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. PH-PCT-VA pH by Meter (Automated) APHA 4500-H pH Value Water This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode It is recommended that this analysis be conducted in the field. S2-T-COL-VA APHA 4500-S2 Sulphide Water Total Sulphide by Colorimetric This analysis is carried out using procedures adapted from APHA Method 4500-S2 "Sulphide". Sulphide is determined using the methlyene blue colourimetric method. SO4-IC-N-VA Water Sulfate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. TDS-VA APHA 2540 C - GRAVIMETRIC Water Total Dissolved Solids by Gravimetric

			Solids are determined gravimetrically. Total Dissolved Solids by evaporating the filtrate to dryness at 180 degrees celsius.
TSS-VA	Water	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC
Solids (TSS) are determine	ed by filterin igh dissolve	g a sample through a glass fibre filter, TSS is deten d solid content (i.e. seawaters, brackish waters) ma	Solids are determined gravimetrically. Total Suspended mined by drying the filter at 104 degrees celsius. ay produce a positive bias by this method. Alternate analysis
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 Turbidity
This analysis is carried out	using proc	edures adapted from APHA Method 2130 "Turbidity	". Turbidity is determined by the nephelometric method.
/H-HSFID-VA	Water	VH in Water by Headspace GCFID	BC Env. Lab Manual (VH in Water)
		s, is heated in a sealed vial to equilibrium. The head and n-decane are measured and summed togethe	dspace from the vial is transfered into a gas chromatograph. r using flame-ionization detection.
/H-SURR-FID-VA	Water	VH Surrogates for Waters	BC Env. Lab Manual (VH in Solids)
OC7-HSMS-VA	Water	BTEX/MTBE/Styrene by Headspace GCMS	EPA 5021A/8260C
		s, is heated in a sealed vial to equilibrium. The hear neasured using mass spectrometry detection.	dspace from the vial is transfered into a gas chromatograph.
OC7/VOC-SURR-MS-VA	Water	VOC7 and/or VOC Surrogates for Waters	EPA 5035A/5021A/8260C
PH-CALC-VA	Water	VPH is VH minus select aromatics	BC MOE LABORATORY MANUAL (2005)
Volatile Petroleum Hydroca	arbons in So d, in solids,	olids or Water". The concentrations of specific Mono	Analytical Method for Contaminated Sites "Calculation of ocyclic Aromatic Hydrocarbons (Benzene, Toluene, ration of Volatile Hydrocarbons (VH) that elute between n-
YLENES-CALC-VA	Water	Sum of Xylene Isomer Concentrations	CALCULATION
Calculation of Total Xylene	S		
		ntrations of the ortho, meta, and para Xylene isome lue no less than the square root of the sum of the s	rs. Results below detection limit (DL) are treated as zero. quares of the DLs of the individual Xylenes.
ALS test methods may inco	orporate mo	difications from specified reference methods to imp	rove performance.
The last two letters of the al	oove test co	de(s) indicate the laboratory that performed analytic	cal analysis for that test. Refer to the list below:
aboratory Definition Cod	e Labo	ratory Location	
/A	ALS E	NVIRONMENTAL - VANCOUVER, BRITISH COLL	JMBIA, CANADA
hain of Custody Numbers	:		
GLOSSARY OF REPORT T		n behaviour to target analyte(s), but that does not o	occur naturally in environmental samples For

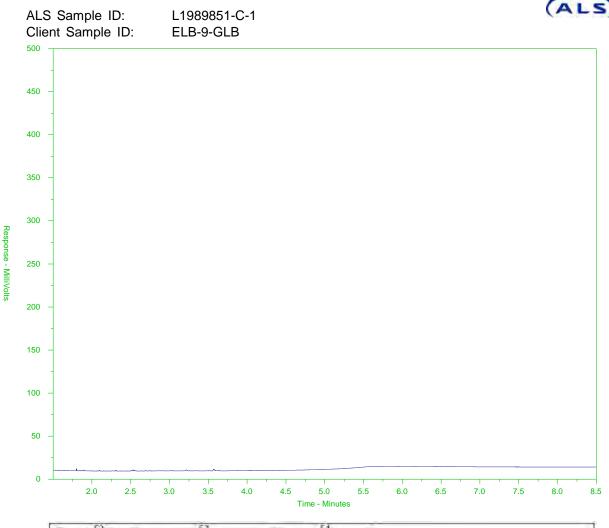
applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample. mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

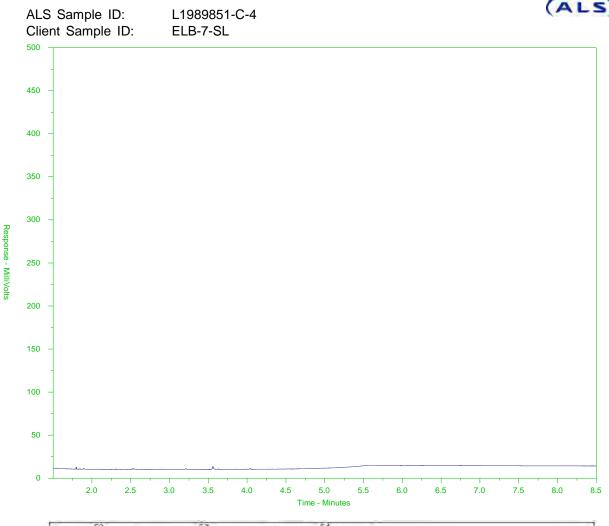

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

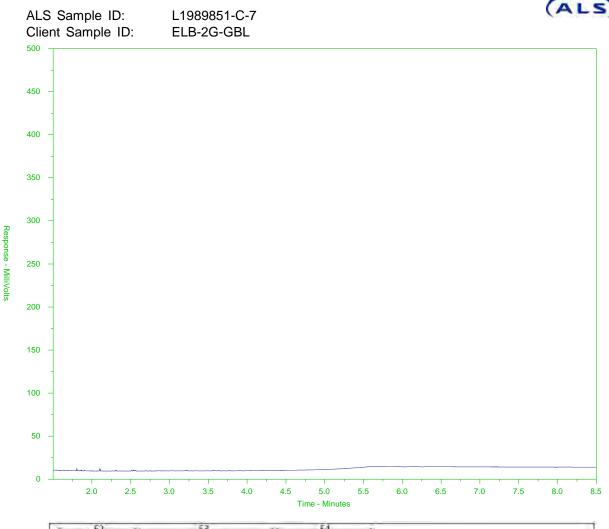


nC10	IIC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasolim	3-≫ +	Motor	lis/ Lube Olis/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

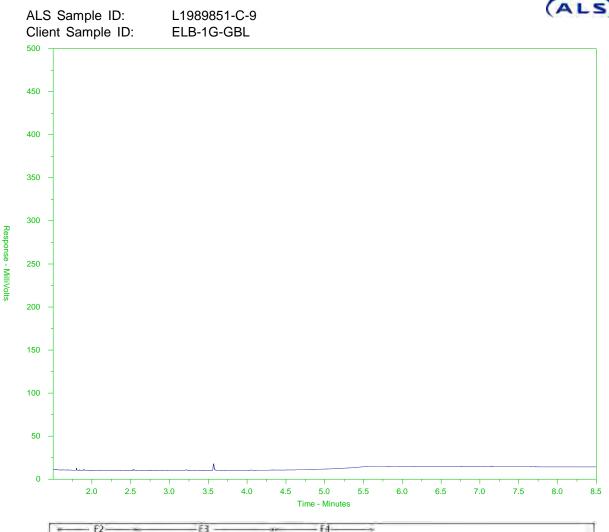


nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		- Motor V	18/ Lube Olls/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.



nC10	NC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		Motor	lis/ Lube Olis/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

nC10	IIC16	nC34	nC50	
174°C	287°C	481°C.	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim	3-≫ + ~	Motor (18/ Lube Olis/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 14 -

Page 1 of 1

www.alsglobal.com

Report To	То				Report Format / Distribution Select Service Level Below (Rush Turnaround Time (TAT) is not available					e for all t	ests)									
Company:	Public Services and Procurement Canada Select Report F			ormat: IPDF	mat: IPDF IEXCEL IEDD (DIGITAL) R IRegular (Standard TAT if received by 3 pm - business days)															
Contact:	Rebecca Studer-Halbach			Quality Control	Quality Control (QC) Report with Report FYes No			P DPriority (2-4 bus. days if received by 3pm) 50% surcharge - contact ALS to confirm TAT												
Address:	10025 Jasper Avenue			Criteria on Repo	Criteria on Report - provide details below if box checked			E Emergency (1-2 bus. days if received by 3pm) 100% surcharge - contact ALS to confirm TAT							firm TAT					
	Edmonton, AB T5J 1S6			Select Distribut			JFAX	E2 Same day or weekend emergency - contact ALS to confirm TAT and surcharge												
Phone:	(788) 497-3761				rebecca.studer-hal			Speci	fy Dat	e Requ	uired fo	or E2,E								
				Email 2	claire.brown@dxbj			-								quest				
Invoice To	Same as Report To	Ves Yes	□ No		Invoice Di			Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below							-	-				
	Copy of Invoice with Report	✓ Yes	∏ No	Select Invoice	Distribution: DEM		DFAX													
Company:	Public Services and Procure	ment Canada	a		rebecca.studer-ha	bach@pwgsc.ca									Q6400					
Contact:	Rebecca Studer-Halbach			Email 2											per C					S
	Project Inform	mation			I and Gas Require		se)					1.2			26 p					aine
ALS Quote #:	Q64064			Approver ID:		Cost Center:			1.1		4	064			Ra-226					Cont
Job #:				GL Account:		Routing Code:		7	4	964	Q64064	Q64064			pue		Q64064			of
PO/AFE:	R.015211.049			Activity Code:				Q64064	Q64064	Q64064	per Q	per	Q64064	964	10 8	1	06			Number of Containers
LSD:				Location:				per Q		per (als p	Sury	QG	Q64064	Pb-2	064	a per			Nun
ALS Lab Wo	rk Order # (lab use only)	21980	7851	ALS Contact:	Joanne Lee and Rick Zolkiewski	Sampler:			etals pe	ercury p	ed Meta	ed Mero	-F4 per	F1 per (uclides	per Q64064	Grease			
ALS Sample # (lab use only)			n and/or Coordir appear on the rep		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Routine and	Total Metals per	Total Mercury	Dissolved Metals	Dissolved Mercury	PHC F2-F4	BTEX, F	Radionuclides Pb-210 and	NAPL p	Oil and Grease			
i	ELB-9-GBL		V 09-Sep-17		Water	R	R	R			R	R						11		
2	C ELB-DUP-1			√ 09-Sep-17	1	Water	R	R	R										7	
3				√ 09-Sep-17		Water	R	R	R										7	
Ч	ELB-7-SL				09-Sep-17	1.1	Water	R	R	R	R	R	R	R						13
5	ELB-4-ML				09-Sep-17		Water	R	R	R										7
6	ELB-SW-2				09-Sep-17		Water	R	R	R	R	R								9
7	ELB-2G-GBL				09-Sep-17		Water	R	R	R			R	R						11
8	ELB-6-SL				09-Sep-17		Water	R	R	R										7
9	ELB-1G-GBL				V 09-Sep-17		Water	R	R	R	R	R	R	R						13
(0)	ELB-8-SL				✓ 09-Sep-17		Water	R	R	R										7
11	ELB-Field Blank				1 09-Sep-17		Water	R	R	R	R	R								9
IV	ELB-Trip Blank		7		09-Sep-17	HOLD for analysi	Water							-	1					11
Drinking	Water (DW) Samples ¹ (clip)	nt uso)	s	pecial Instructions / Spe	cify Criteria to add o	n report (client Us	(e)			:	and and	E CO	_		-		-	use only		
Are samples taken from a Regulated DW System? PLEASE NOTE: This project references " CYES VO No.			oject references "routine" parameters as presented in Q64064: pH, rbidity, TDS, TSS, Ammonia, Nitrate/Nitrite, total phosphorus, ssolved organic carbon, total organic carbon, total Hardness,			Cooli	acks ng Init	2.48	ted						act Ye	t Yes 🗌 No				
Are samples for human drinking water use? calcium, magnesium, potassium, sodiu					D, please note					00		F	INAL C	OULER	EMPERA	IURES	U III			
		lient uso)			SHIPMENT RECEP		lv)	, ,	1		FIN	AL SH	PMEN	IT RE	CEP	FION (lab use	only)		
Released by:	SHIPMENT RELEASE (c		Time:	Received by: AT	12	Date:	Time:	FINAL SHIPMENT RECEPTION (lab use only) Received by: Date: Time:												
REFER TO BAC	K PAGE FOR ALS LOCATIONS	AND SAMPLI	ING INFORMATION	1	WH	ITE LABORATOR		LOW -	CLIEN	IT COP	Y			_		A-FM-0326	e v09 Front/04	January 2014		

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTN: Rebecca Studer-Halbach Northern Contaminated Sites 10025 Jasper Avenue NW Edmonton AB T5J 1S6 Date Received: 12-SEP-17 Report Date: 25-OCT-17 19:46 (MT) Version: FINAL REV. 3

Client Phone: 780-497-3761

Certificate of Analysis

Lab Work Order #: L1989938 Project P.O. #: R.015211.049 Job Reference: C of C Numbers: Legal Site Desc:

Comments: 25-OCT-2017 Dissolved Cs has been added.

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🕽

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1989938 CONTD.... PAGE 2 of 8 25-OCT-17 19:46 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1989938-1 water 10-SEP-17 SM-1	L1989938-2 water 10-SEP-17 SM-2	L1989938-3 water 10-SEP-17 SM-6-1M	L1989938-4 water 10-SEP-17 SM-6-4M
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)	119	112	113	114
	Hardness (as CaCO3) (mg/L)	56.0	нтс 54.8	нтс 53.5	нтс 56.6
	рН (рН)	7.83	7.83	7.86	7.82
	Total Suspended Solids (mg/L)	<3.0	3.2	<3.0	<3.0
	Total Dissolved Solids (mg/L)	76	70	75	83
	Turbidity (NTU)	0.61	0.50	0.57	0.52
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	42.4	42.6	43.1	42.8
	Ammonia, Total (as N) (mg/L)	<0.0050	0.0160	<0.0050	<0.0050
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.261	0.260	0.259	0.263
	Nitrate (as N) (mg/L)	0.0073	<0.0050	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	0.0026	0.0023	0.0025	0.0024
	Phosphorus (P)-Total (mg/L)	0.0026	0.0084	0.0030	0.0022
	Sulfate (SO4) (mg/L)	17.7	13.2	13.1	15.0
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	6.49	6.65	6.62	6.53
	Total Organic Carbon (mg/L)	6.62	6.81	6.64	6.68
Total Metals	Aluminum (Al)-Total (mg/L)	0.0143	0.0158	0.0181	0.0179
	Antimony (Sb)-Total (mg/L)	0.00012	0.00016	0.00010	0.00011
	Arsenic (As)-Total (mg/L)	0.00049	0.00054	0.00048	0.00057
	Barium (Ba)-Total (mg/L)	0.00648	0.00711	0.00671	0.00780
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	0.000060	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.010	0.011	0.011	0.011
	Cadmium (Cd)-Total (mg/L)	0.000102	0.0000192	0.0000125	0.0000435
	Calcium (Ca)-Total (mg/L)	16.3	15.1	14.9	15.6
	Cesium (Cs)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010
	Chromium (Cr)-Total (mg/L)	<0.00010	<0.00010	0.00011	<0.00010
	Cobalt (Co)-Total (mg/L)	<0.00010	<0.00010	<0.00010	0.00012
	Copper (Cu)-Total (mg/L)	0.00154	0.00168	0.00157	0.00174
	Iron (Fe)-Total (mg/L)	0.020	0.023	0.023	0.027
	Lead (Pb)-Total (mg/L)	<0.000050	0.000062	<0.000050	0.000061
	Lithium (Li)-Total (mg/L)	0.0011	<0.0010	0.0011	0.0011
	Magnesium (Mg)-Total (mg/L)	4.09	4.13	3.96	4.31

L1989938 CONTD.... PAGE 3 of 8 25-OCT-17 19:46 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1989938-1 water 10-SEP-17 SM-1	L1989938-2 water 10-SEP-17 SM-2	L1989938-3 water 10-SEP-17 SM-6-1M	L1989938-4 water 10-SEP-17 SM-6-4M	
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.0105	0.0112	0.0111	0.0144	
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.000050	
	Molybdenum (Mo)-Total (mg/L)	0.00110	0.00109	0.00107	0.00110	
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	
	Potassium (K)-Total (mg/L)	0.64	0.68	0.66	0.68	
	Selenium (Se)-Total (mg/L)	0.000064	0.000116	0.000073	0.000087	
	Silicon (Si)-Total (mg/L)	0.62	0.58	0.57	0.58	
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Sodium (Na)-Total (mg/L)	2.52	2.62	2.51	2.71	
	Strontium (Sr)-Total (mg/L)	0.0285	0.0272	0.0267	0.0275	
	Sulfur (S)-Total (mg/L)	6.57	4.66	4.69	5.62	
	Thallium (TI)-Total (mg/L)	<0.000010	0.000054	<0.000010	<0.000010	
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Titanium (Ti)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	
	Uranium (U)-Total (mg/L)	0.000321	0.000300	0.000305	0.000316	
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Zinc (Zn)-Total (mg/L)	0.0827	0.0146	0.0170	0.0381	
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	
Dissolved Metals	Dissolved Mercury Filtration Location	LAB				
	Dissolved Metals Filtration Location	LAB				
	Aluminum (Al)-Dissolved (mg/L)	0.0052				
	Antimony (Sb)-Dissolved (mg/L)	<0.00010				
	Arsenic (As)-Dissolved (mg/L)	0.00045				
	Barium (Ba)-Dissolved (mg/L)	0.00627				
	Beryllium (Be)-Dissolved (mg/L)	<0.000020				
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050				
	Boron (B)-Dissolved (mg/L)	0.011				
	Cadmium (Cd)-Dissolved (mg/L)	0.0000724				
	Calcium (Ca)-Dissolved (mg/L)	15.5				
	Cesium (Cs)-Dissolved (mg/L)	<0.000010				
	Chromium (Cr)-Dissolved (mg/L)	<0.00010				
	Cobalt (Co)-Dissolved (mg/L)	<0.00010				
	Copper (Cu)-Dissolved (mg/L)	0.00139				
	Iron (Fe)-Dissolved (mg/L)	<0.010				
	Lead (Pb)-Dissolved (mg/L)	<0.000050				
	Lithium (Li)-Dissolved (mg/L)	0.0015				

L1989938 CONTD.... PAGE 4 of 8 25-OCT-17 19:46 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1989938-1 water 10-SEP-17 SM-1	L1989938-2 water 10-SEP-17 SM-2	L1989938-3 water 10-SEP-17 SM-6-1M	L1989938-4 water 10-SEP-17 SM-6-4M	
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)	4.17				
	Manganese (Mn)-Dissolved (mg/L)	0.00013				
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050				
	Molybdenum (Mo)-Dissolved (mg/L)	0.00107				
	Nickel (Ni)-Dissolved (mg/L)	<0.00050				
	Phosphorus (P)-Dissolved (mg/L)	<0.050				
	Potassium (K)-Dissolved (mg/L)	0.72				
	Selenium (Se)-Dissolved (mg/L)	0.000051				
	Silicon (Si)-Dissolved (mg/L)	0.545				
	Silver (Ag)-Dissolved (mg/L)	<0.000010				
	Sodium (Na)-Dissolved (mg/L)	2.68				
	Strontium (Sr)-Dissolved (mg/L)	0.0277				
	Sulfur (S)-Dissolved (mg/L)	5.62				
	Thallium (TI)-Dissolved (mg/L)	<0.000010				
	Tin (Sn)-Dissolved (mg/L)	<0.00010				
	Titanium (Ti)-Dissolved (mg/L)	<0.00030				
	Uranium (U)-Dissolved (mg/L)	0.000305				
	Vanadium (V)-Dissolved (mg/L)	<0.00050				
	Zinc (Zn)-Dissolved (mg/L)	0.0612				
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030				
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050			
	Ethylbenzene (mg/L)	<0.00050	<0.00050			
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050			
	Styrene (mg/L)	<0.00050	<0.00050			
	Toluene (mg/L)	<0.00045	<0.00045			
	ortho-Xylene (mg/L)	<0.00050	<0.00050			
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050			
	Xylenes (mg/L)	<0.00075	<0.00075			
	F1 (C6-C10) (mg/L)	<0.10	<0.10			
	Surrogate: 4-Bromofluorobenzene (SS) (%)	97.0	101.5			
	Surrogate: 1,4-Difluorobenzene (SS) (%)	91.9	93.4			
Hydrocarbons	F1-BTEX (mg/L)	<0.10	<0.10			
	F2 (C10-C16) (mg/L)	<0.30	<0.30			
	F3 (C16-C34) (mg/L)	<0.30	<0.30			
	F4 (C34-C50) (mg/L)	<0.30	<0.30			
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10			
	VPH (C6-C10) (mg/L)	<0.10	<0.10			

L1989938 CONTD.... PAGE 5 of 8 25-OCT-17 19:46 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1989938-1 water 10-SEP-17 SM-1	L1989938-2 water 10-SEP-17 SM-2	L1989938-3 water 10-SEP-17 SM-6-1M	L1989938-4 water 10-SEP-17 SM-6-4M	
Grouping	Analyte					
WATER						
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)	94.8	91.9			
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	113.1	90.2			

QC Samples with Qualifiers & Comments:

QC Type Descr	iption	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike		Total Organic Carbon	MS-B	L1989938-1, -2, -3, -4
Matrix Spike		Calcium (Ca)-Total	MS-B	L1989938-1, -2, -3, -4
Matrix Spike		Magnesium (Mg)-Total	MS-B	L1989938-1, -2, -3, -4
Matrix Spike		Ammonia, Total (as N)	MS-B	L1989938-1, -2, -3, -4
Qualifiers for I	ndividual Parameters	s Listed:		
Qualifier	Description			
HTC	Hardness was calcu	lated from Total Ca and/or Mg concentr	ations and may b	be biased high (dissolved Ca/Mg results unavailable).
MS-B	Matrix Spike recover	ry could not be accurately calculated du	e to high analyte	background in sample.
est Method R	eferences:			
ALS Test Code	Matrix	Test Description		Method Reference**
ALK-TITR-VA	Water	Alkalinity Species by Titration		APHA 2320 Alkalinity
		, , ,	20 "Alkalinity". To	otal alkalinity is determined by potentiometric titration t

BE-D-L-CCMS-VA Water Diss. Be (low) in Water by CRC ICPMS APHA 3030B/6020A (mod) Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS. **BE-T-L-CCMS-VA** Total Be (Low) in Water by CRC ICPMS Water EPA 200.2/6020A (mod) Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS. Water Bromide in Water by IC (Low Level) EPA 300.1 (mod) **BR-L-IC-N-VA** Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. APHA 5310B TOTAL ORGANIC CARBON (TOC) **CARBONS-DOC-VA** Water Dissolved organic carbon by combustion This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are determined by filtering the sample through a 0.45 micron membrane filter prior to analysis. CARBONS-TOC-VA Water Total organic carbon by combustion APHA 5310B TOTAL ORGANIC CARBON (TOC) This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". **CL-IC-N-VA** Water Chloride in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. EC-PCT-VA Water Conductivity (Automated) APHA 2510 Auto. Conduc. This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode. **EC-SCREEN-VA** Conductivity Screen (Internal Use Only) APHA 2510 Water Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc. F-IC-N-VA Water Fluoride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

F1-BTX-CALC-VA Water F1-Total BTX

This analysis is based on the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2000." For F1 (C6-C10), the sample undergoes a purge and trap extraction prior to analysis by GC/FID. The F1-BTEX result is calculated as follows:

F1-BTEX: F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).

F1-HSFID-VA

CCME F1 By Headspace with GCFID

This analysis is based on the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2000." For F1 (C6-C10), the sample undergoes a headspace purge prior to analysis by GC/FID.

F1 (C6-C10): Sum of all hydrocarbons that elute between nC6 and nC10.

Water

F2-F4-ME-FID-VA Water CCME F2-F4 Hydrocarbons in Water

CCME CWS-PHC, Pub #1310, Dec 2001

EPA 5021A/CCME CWS PHC (Pub# 1310)

CCME CWS PHC TIER 1 (2001)

F2-F4 is extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, Dec 2001.

HARDNESS-CALC-VA Water

		ess) is calculated from the sum of Calcium and Mag oncentrations are preferentially used for the hardnes	gnesium concentrations, expressed in CaCO3 equivalents.
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
Water samples are filtere with stannous chloride, a			old-oxidation using bromine monochloride prior to reduction
HG-T-CVAA-VA	Water	Total Mercury in Water by CVAAS or CVAFS	EPA 1631E (mod)
Water samples undergo	a cold-oxidat	ion using bromine monochloride prior to reduction w	ith stannous chloride, and analyzed by CVAAS or CVAFS.
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtere	ed (0.45 um),	preserved with nitric acid, and analyzed by CRC IC	PMS.
Method Limitation (re: Su	ulfur): Sulfide	and volatile sulfur species may not be recovered by	r this method.
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are diges	sted with nitrie	c and hydrochloric acids, and analyzed by CRC ICP	MS.
Method Limitation (re: Su	ulfur): Sulfide	and volatile sulfur species may not be recovered by	this method.
NH3-F-VA	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			ed from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society trace levels of ammonium in seawater", Roslyn J. Waston et
NO2-L-IC-N-VA	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are ana	lyzed by lon	Chromatography with conductivity and/or UV detection	ion.
NO3-L-IC-N-VA	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are ana	lyzed by lon	Chromatography with conductivity and/or UV detection	ion.
P-T-PRES-COL-VA	Water	Total P in Water by Colour	APHA 4500-P Phosphorus
after persulphate digestic	on of the sam lissolved soli	iple.	horus". Total Phosphorus is determined colourimetrically negative bias by this method. Alternate methods are
. ,		ositive interference on colourimetric phosphate anal	-
P-TD-COL-VA	Water	Total Dissolved P in Water by Colour	APHA 4500-P Phosphorous
colourimetrically after per	rsulphate dig lissolved soli	edures adapted from APHA Method 4500-P "Phosp estion of a sample that has been lab or field filtered ds (i.e. seawaters, brackish waters) may produce a	
Arsenic (5+), at elevated	levels, is a p	ositive interference on colourimetric phosphate anal	lysis.
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried o electrode	ut using proc	edures adapted from APHA Method 4500-H "pH Va	lue". The pH is determined in the laboratory using a pH
It is recommended that the	his analysis b	be conducted in the field.	
S2-T-COL-VA	Water	Total Sulphide by Colorimetric	APHA 4500-S2 Sulphide
This analysis is carried o colourimetric method.	ut using proc	redures adapted from APHA Method 4500-S2 "Sulph	nide". Sulphide is determined using the methlyene blue
SO4-IC-N-VA	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are ana	lyzed by Ion	Chromatography with conductivity and/or UV detecti	ion.
TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC
			Solids are determined gravimetrically. Total Dissolved Solids by evaporating the filtrate to dryness at 180 degrees celsius.
TSS-VA	Water	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC
		edures adapted from APHA Method 2540 "Solids". 3 ng a sample through a glass fibre filter, TSS is deter	Solids are determined gravimetrically. Total Suspended mined by drying the filter at 104 degrees celsius.

Samples containing very h methods are available for t	0		produce a positive bias by this method. Alternate analysis					
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 Turbidity					
This analysis is carried out	t using proce	dures adapted from APHA Method 2130 "Turbidity".	Turbidity is determined by the nephelometric method.					
VH-HSFID-VA	Water	VH in Water by Headspace GCFID	BC Env. Lab Manual (VH in Water)					
The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Compounds eluting between n-hexane and n-decane are measured and summed together using flame-ionization detection.								
VH-SURR-FID-VA	Water	VH Surrogates for Waters	BC Env. Lab Manual (VH in Solids)					
VOC7-HSMS-VA	Water	BTEX/MTBE/Styrene by Headspace GCMS	EPA 5021A/8260C					
The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.								
VOC7/VOC-SURR-MS-VA	Water	VOC7 and/or VOC Surrogates for Waters	EPA 5035A/5021A/8260C					
VPH-CALC-VA	Water	VPH is VH minus select aromatics	BC MOE LABORATORY MANUAL (2005)					
These results are determined according to the British Columbia Ministry of Environment Analytical Method for Contaminated Sites "Calculation of Volatile Petroleum Hydrocarbons in Solids or Water". The concentrations of specific Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene, Xylenes and, in solids, Styrene) are subtracted from the collective concentration of Volatile Hydrocarbons (VH) that elute between n-hexane (nC6) and n-decane (nC10).								
XYLENES-CALC-VA	Water	Sum of Xylene Isomer Concentrations	CALCULATION					
Calculation of Total Xylene	es							
Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.								
** ALS test methods may incorporate modifications from specified reference methods to improve performance.								
The last two letters of the al	bove test cod	le(s) indicate the laboratory that performed analytical	analysis for that test. Refer to the list below:					

Laboratory Definition Code Laboratory Location

VA

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For

applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

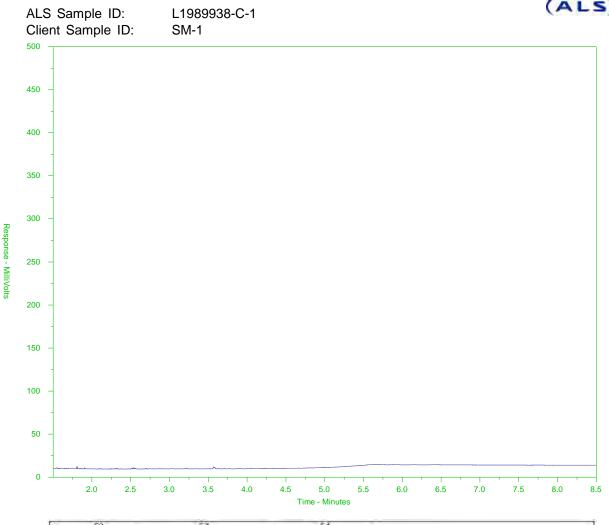
mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).


N/A - Result not available. Refer to qualifier code and definition for explanation.

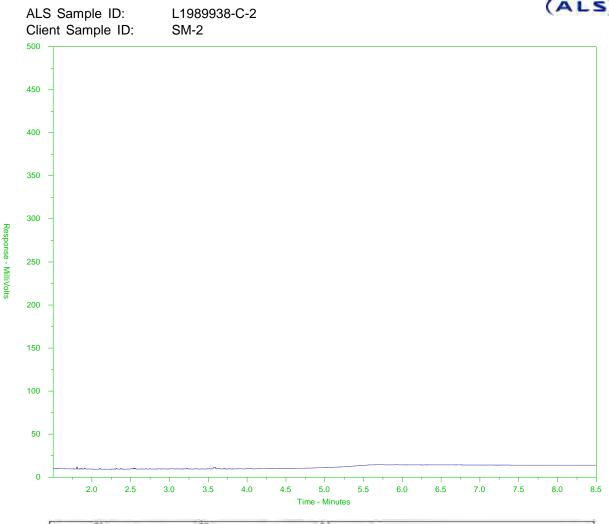
Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

nC10	nC16	nC34	nC50	
174°C	287°C	481°C.	575°C	
346'F	549'F	898'F	1067'F	
-Gasolim	8	- Motor V	18/ Lube Oils/ Grease-	


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasolim		Motor	lils/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 14 -

Page 1 of 1

www.alsglobal.com

Report To					Report Format	/ Distribution		1	Sel	ect Ser	vice Le	vel Belo	w (Rus	h Turni	around	i Time	(TAT) i	s not ava	ilable f	or all te	sts)
Company:	Public Services and Procur	ement Canada	а	Select Report F	ormat: IPDF	DEXCEL D	EDD (DIGITAL)	R	⊡Reg	ular (Sta	ndard T	AT if rec	eived b	y 3 pm	- busi	iness di	ays)				
Contact:	Rebecca Studer-Halbach	1		Quality Control	(QC) Report with R	eport 🔽 Ye	s ⊏No	Р		ity (2-4	bus. day	ys if rece	eived by	(3pm)	50% s	urchar	ge - co	ntact ALS	to cor	nfirm TA	т
Address:	10025 Jasper Avenue			Criteria on Repo	t - provide details below	v if box checked		E	DEme	rgency (1-2 bus	. days if	receive	d by 3p	om) 10	0% su	rcharge	e - contac	t ALS t	to confir	m TAT
	Edmonton, AB T5J 1S6			Select Distribut	ion: DEMAI		DFAX	E2	□Sam	e day or	weeker	nd emerg	gency -	contact	t ALS t	to confi	im TAT	and sur	charge	-	
Phone:	(788) 497-3761			Email 1 or Fax	rebecca.studer-hal	lbach@pwgsc.ca	1	Spec	ify Dat	e Req	uired f	or E2,E	or P:					_			
				Email 2	claire.brown@dxbj	projects.ca		1				Analysis Request									
Invoice To	Same as Report To	✓ Yes	∏ No		Invoice Di	stribution			Ind	icate Filt	tered (F), Preser	ved (P) or Filte	ered a	nd Pre	served	(F/P) be	low	_	
	Copy of Invoice with Report	I Yes	∏ No	Select Invoice	Distribution: DEM	AIL DMAIL	DFAX														
Company:	Public Services and Procur	ement Canada	а	Email 1 or Fax	rebecca.studer-hal	lbach@pwgsc.ca	1								Q6406						
Contact:	Rebecca Studer-Halbach			Email 2											a o	90			μ		
	Project Info	rmation		0	l and Gas Require	d Fields (client	use)							6 per						iner	
ALS Quote #:	Q64064			Approver ID:		Cost Center:						7			a-22						onta
Job #:				GL Account:		Routing Code:		les.		4	Q64064	Q64064			d R		64				of C
PO/AFE:	R.015211.049			Activity Code:				1064	064	Q64064	06	per Q	164	4	0 an		Q64064				Der o
LSD:				Location:				per Q64064	Q64	roe	per	y p	Q64064	Q64064	0-21	4	per C				Number of Containers
ALS Lab Wo	rk Order # (lab use only)	498	9938	ALS Contact:	Joanne Lee and Rick Zolkiewski	Sampler:		and per	tals per	rcury per	d Metals	d Mercu	per	per	clides PI	per Q64064	Grease p				z
ALS Sample # (lab use only)			n and/or Coordinates appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Routine	Total Metals per Q64064	Total Mercury	Dissolved Metals	Dissolved Mercury	PHC F2-F4	BTEX, F1	Radionuclides Pb-210 and Ra-226	NAPL pe	Oil and (
	SM-1				V 10-Sep-17		Water	R	R	R	R	R	R	R							13
	SM-2				√ 10-Sep-17		Water	R	R	R		-	R	R			-		-		11
	SM-6-1m				10-Sep-17		Water	R	R	R						-					7
	SM-6-4m				10-Sep-17		Water	R	R	R				-		-					7
	010-0-4111				10-060-17	-	vvaler	K	K	IN .				-	-	-					
Received	· · · · · · · · · · · · · · · · · · ·				-			1						1		-	-				
						Section and the second															
						1	1														
							1														
													-	-			-			-	
												-	-							-	
														-		-	-				
			(-	-												
Drinking	Water (DW) Samples ¹ (clie	ent use)	Special	Instructions / Spec	ify Criteria to add o	n report (client U	se)		-		SAMP	LE CO	NDITI	-	_	-		ab use	-		
	en from a Regulated DW Sys		PLEASE NOTE: This conductivity, alkalinity,	project references turbidity, TDS, TS	"routine" paramete S, Ammonia, Nitrat	ers as presented te/Nitrite, total ph	in Q64064: pH, osphorus,		en acks ng Init	Yes		No		SIF (Yes Yes		No No	
Are samples for	human drinking water use?		dissolved phosphorus, calcium, magnesium, r					INII	TIAL CO	OOLER	TEMPE	RATUR	ES °C			FINAL.	COOL	ER TEM	PERAT	URES	С
ΓY	es 🔽 No		total and dissolved me					5	Sis	Pic						-					
	SHIPMENT RELEASE (client use)		INITIAL	HIPMENT RECEP	TION (lab use or	nlv)		0		FIN	IAL SH	IPME	NTR	ECEP	TION	I (lab	use onl	y)	-	
Released by:	Da		Time: Recei	ved by: AT	10	Date: Sep. 17	Time:		eived I	ру:					Date	-		Time:			
	K PAGE FOR ALS LOCATIONS	SAND SAMPLI			WHI	ITE - LABORATO			CLIEN	IT COF	Y		-			NA-FM-0	3264 V09 F	cont/04 Januar	y 2014		

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTN: Rebecca Studer-Halbach Northern Contaminated Sites 10025 Jasper Avenue NW Edmonton AB T5J 1S6 Date Received:12-SEP-17Report Date:13-NOV-17 15:09 (MT)Version:FINAL

Client Phone: 780-497-3761

Certificate of Analysis

Lab Work Order #: L1989985 Project P.O. #: R.015211.049 Job Reference: C of C Numbers: Legal Site Desc:

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🕽

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1989985 CONTD.... PAGE 2 of 28 13-NOV-17 15:09 (MT) Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L1989985-1 water 09-SEP-17 CL-26	L1989985-2 water 09-SEP-17 CL-DUP-1	L1989985-3 water 09-SEP-17 CL-6-2M	L1989985-4 water 09-SEP-17 CL-6-10M	L1989985-6 water 09-SEP-17 CL-2
Grouping	Analyte						
MISC.							
Radiological Parameters	Pb-210 (Bq/L)		<0.023	<0.027	<0.024	<0.024	0.35
	Ra-226 (Bq/L)		<0.0076	0.029	<0.0068	<0.0060	0.29

L1989985 CONTD.... PAGE 3 of 28 13-NOV-17 15:09 (MT) Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L1989985-7 water 09-SEP-17 CL-15	L1989985-8 water 09-SEP-17 CL-5	L1989985-10 water 09-SEP-17 CL-2B	L1989985-11 water 10-SEP-17 CL-RL-1B	L1989985-13 water 10-SEP-17 CL-8
Grouping	Analyte						
MISC.							
Radiological Parameters	Pb-210 (Bq/L)		<0.028	<0.024	<0.025	<0.023	<0.026
	Ra-226 (Bq/L)		0.049	<0.0073	0.030	0.0052	<0.0063

L1989985 CONTD.... PAGE 4 of 28 13-NOV-17 15:09 (MT) Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L1989985-14 water 10-SEP-17 CL-7-1M	L1989985-18 water 10-SEP-17 CL-3	L1989985-19 water 10-SEP-17 CL-DUP-2	L1989985-22 water 10-SEP-17 CL-FIELD BLANK	
Grouping	Analyte						
MISC.							
Radiological Parameters	Pb-210 (Bq/L)		<0.031	<0.026	<0.025	<0.024	
	Ra-226 (Bq/L)		<0.0080	0.077	0.086	<0.0049	

L1989985 CONTD.... PAGE 5 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-1 water 09-SEP-17 CL-26	L1989985-2 water 09-SEP-17 CL-DUP-1	L1989985-3 water 09-SEP-17 CL-6-2M	L1989985-4 water 09-SEP-17 CL-6-10M	L1989985-5 water 09-SEP-17 CL-24
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	48.0	221	44.9	43.7	44.3
	Hardness (as CaCO3) (mg/L)	22.9	126	22.3	21.8	нтс 20.3
	рН (рН)	7.23	8.19	7.55	7.56	7.58
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	28	142	23	27	26
	Turbidity (NTU)	0.24	0.31	0.26	0.25	0.31
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	24.3	122	23.1	22.7	22.7
	Ammonia, Total (as N) (mg/L)	<0.0050	0.0076	<0.0050	<0.0050	0.0066
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.097	0.262	0.097	0.094	0.096
	Nitrate (as N) (mg/L)	0.0272	0.0304	0.0278	0.0471	0.0269
	Nitrite (as N) (mg/L)	0.0011	<0.0010	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020	0.0024	<0.0020	<0.0020	<0.0020
	Phosphorus (P)-Total (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	Sulfate (SO4) (mg/L)	1.08	5.88	1.08	1.09	1.09
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	нтр 2.23	8.02	2.28	2.16	2.30 ^{HTD}
	Total Organic Carbon (mg/L)	2.65	8.34	2.51	2.26	2.33
Total Metals	Aluminum (Al)-Total (mg/L)	0.0033	0.0059	0.0042	0.0031	0.0054
	Antimony (Sb)-Total (mg/L)	<0.00010	0.00028	<0.00010	<0.00010	<0.00010
	Arsenic (As)-Total (mg/L)	0.00015	0.00966	0.00014	0.00014	0.00014
	Barium (Ba)-Total (mg/L)	0.00354	0.0188	0.00357	0.00359	0.00344
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	<0.010	0.028	<0.010	<0.010	<0.010
	Cadmium (Cd)-Total (mg/L)	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.0000050
	Calcium (Ca)-Total (mg/L)	4.85	28.2	4.81	4.82	4.78
	Cesium (Cs)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Chromium (Cr)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Cobalt (Co)-Total (mg/L)	<0.00010	0.00025	<0.00010	<0.00010	<0.00010
	Copper (Cu)-Total (mg/L)	0.00069	0.00520	0.00076	0.00068	0.00073
	Iron (Fe)-Total (mg/L)	<0.010	0.036	<0.010	<0.010	<0.010
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Total (mg/L)	<0.0010	0.0029	<0.0010	<0.0010	<0.0010
	Magnesium (Mg)-Total (mg/L)	2.01	10.0	1.99	2.02	2.02

L1989985 CONTD.... PAGE 6 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-6 water 09-SEP-17 CL-2	L1989985-7 water 09-SEP-17 CL-15	L1989985-8 water 09-SEP-17 CL-5	L1989985-9 water 09-SEP-17 CL-9	L1989985-10 water 09-SEP-17 CL-2B
Grouping	Analyte	-				
WATER						
Physical Tests	Conductivity (uS/cm)	213	244	47.4	47.4	223
	Hardness (as CaCO3) (mg/L)	нтс 106	нтс 125	24.5	нтс 22.9	122
	рН (рН)	8.17	8.28	7.60	7.61	8.19
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	3.1
	Total Dissolved Solids (mg/L)	132	144	31	29	144
	Turbidity (NTU)	1.26	0.16	0.31	0.28	0.35
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	105	129	24.2	24.6	123
	Ammonia, Total (as N) (mg/L)	0.0073	<0.0050	<0.0050	0.0078	0.0092
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.300	0.339	0.098	0.099	0.262
	Nitrate (as N) (mg/L)	0.103	<0.0050	0.0267	0.0271	0.0296
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	0.0075	0.0029	<0.0020	<0.0020	0.0023
	Phosphorus (P)-Total (mg/L)	0.0053	0.0150	<0.0020	<0.0020	<0.0020
	Sulfate (SO4) (mg/L)	14.7	8.97	1.15	1.43	5.88
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	5.58	4.71	2.24	нтр 2.20	7.64 HTD
	Total Organic Carbon (mg/L)	5.45	5.16	2.64	2.46	7.80
Total Metals	Aluminum (Al)-Total (mg/L)	0.0199	0.0048	0.0053	0.0040	0.0061
	Antimony (Sb)-Total (mg/L)	0.00356	0.00159	<0.00010	<0.00010	0.00027
	Arsenic (As)-Total (mg/L)	0.0956	0.0424	0.00025	0.00014	0.00958
	Barium (Ba)-Total (mg/L)	0.0537	0.0117	0.00403	0.00369	0.0187
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	0.00159	0.000131	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.051	0.038	<0.010	<0.010	0.027
	Cadmium (Cd)-Total (mg/L)	0.000066	<0.000050	<0.0000050	<0.0000050	<0.0000050
	Calcium (Ca)-Total (mg/L)	29.2	33.3	5.37	5.40	28.9
	Cesium (Cs)-Total (mg/L)	0.000023	0.000013	<0.000010	<0.000010	<0.000010
	Chromium (Cr)-Total (mg/L)	<0.00010	0.00012	<0.00010	<0.00010	<0.00010
	Cobalt (Co)-Total (mg/L)	0.00230	<0.00010	<0.00010	<0.00010	0.00024
	Copper (Cu)-Total (mg/L)	0.122	0.0431	0.00079	0.00071	0.00575
	Iron (Fe)-Total (mg/L)	0.168	<0.010	<0.010	<0.010	0.036
	Lead (Pb)-Total (mg/L)	0.000685	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Total (mg/L)	0.0043	0.0028	<0.0010	<0.0010	0.0029
	Magnesium (Mg)-Total (mg/L)	7.94	10.1	2.19	2.28	10.4

L1989985 CONTD.... PAGE 7 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-11 water 10-SEP-17 CL-RL-1B	L1989985-12 water 10-SEP-17 R-3	L1989985-13 water 10-SEP-17 CL-8	L1989985-14 water 10-SEP-17 CL-7-1M	L1989985-15 water 10-SEP-17 CL-20
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	64.5	75.0	43.6	155	157
	Hardness (as CaCO3) (mg/L)	нтс 30.1	38.8	нтс 20.2	74.6	нтс 68.4
	рН (рН)	7.69	7.75	7.56	7.99	8.00
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	42	61	28	88	90
	Turbidity (NTU)	0.23	0.64	0.27	0.28	0.38
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	30.3	36.8	22.8	59.7	60.4
	Ammonia, Total (as N) (mg/L)	0.0098	0.0057	<0.0050	<0.0050	<0.0050
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	<0.50	0.53	<0.50	4.83	4.82
	Fluoride (F) (mg/L)	0.209	0.131	0.097	0.080	0.080
	Nitrate (as N) (mg/L)	0.172	<0.0050	0.0311	0.125	0.125
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	0.0021	0.0026	<0.0020	<0.0020	<0.0020
	Phosphorus (P)-Total (mg/L)	0.0022	0.0048	<0.0020	<0.0020	<0.0020
	Sulfate (SO4) (mg/L)	1.84	2.41	1.09	14.9	14.9
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	нтр 4.40	7.31	2.23	1.96 ^{HTD}	1.96
	Total Organic Carbon (mg/L)	4.55	7.77	2.12	2.02	1.93
Total Metals	Aluminum (Al)-Total (mg/L)	0.0090	0.0077	0.0030	0.0127	0.0141
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)-Total (mg/L)	0.00017	0.00067	0.00015	0.00024	0.00020
	Barium (Ba)-Total (mg/L)	0.00492	0.00565	0.00365	0.0219	0.0217
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	<0.010	0.010	<0.010	0.010	0.010
	Cadmium (Cd)-Total (mg/L)	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.0000050
	Calcium (Ca)-Total (mg/L)	7.00	9.57	4.79	16.0	15.9
	Cesium (Cs)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Chromium (Cr)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Cobalt (Co)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)-Total (mg/L)	0.00149	0.00119	0.00072	<0.00050	<0.00050
	Iron (Fe)-Total (mg/L)	<0.010	0.012	<0.010	0.014	0.015
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	<0.000050	0.000050	<0.000050
	Lithium (Li)-Total (mg/L)	<0.0010	0.0013	<0.0010	0.0031	0.0031
	Magnesium (Mg)-Total (mg/L)	3.07	2.73	2.01	6.99	7.00

L1989985 CONTD.... PAGE 8 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-16 water 10-SEP-17 CL-16-2M	L1989985-17 water 10-SEP-17 CL-16-10M	L1989985-18 water 10-SEP-17 CL-3	L1989985-19 water 10-SEP-17 CL-DUP-2	L1989985-20 water 10-SEP-17 CL-29
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	157	155	238	238	239
	Hardness (as CaCO3) (mg/L)	нтс 68.6	нтс 69.3	128	128	нтс 122
	рН (рН)	7.99	7.99	8.25	8.26	8.26
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	100	92	150	151	165
	Turbidity (NTU)	0.29	0.30	0.45	0.40	0.41
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	61.2	60.3	134	133	130
	Ammonia, Total (as N) (mg/L)	0.0067	<0.0050	0.0119	0.0137	0.0163
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	4.83	4.83	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.080	0.079	0.297	0.295	0.299
	Nitrate (as N) (mg/L)	0.126	0.136	<0.0050	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020	<0.0020	0.0032	0.0031	0.0029
	Phosphorus (P)-Total (mg/L)	<0.0020	0.0022	0.0024	0.0029	0.0028
	Sulfate (SO4) (mg/L)	14.9	14.9	6.28	6.27	6.29
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	нтр 1.86	2.15	9.17	8.84	8.91
	Total Organic Carbon (mg/L)	2.47	2.09	8.98	9.02	9.16
Total Metals	Aluminum (Al)-Total (mg/L)	0.0131	0.0102	0.0033	0.0038	0.0032
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010	0.00047	0.00048	0.00049
	Arsenic (As)-Total (mg/L)	0.00019	0.00018	0.0115	0.0115	0.0113
	Barium (Ba)-Total (mg/L)	0.0217	0.0218	0.0284	0.0279	0.0281
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.010	0.011	0.034	0.035	0.036
	Cadmium (Cd)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Calcium (Ca)-Total (mg/L)	16.0	16.4	30.6	30.7	30.8
	Cesium (Cs)-Total (mg/L)	<0.000010	<0.000010	0.000013	0.000014	0.000013
	Chromium (Cr)-Total (mg/L)	<0.00010	0.00011	<0.00010	<0.00010	<0.00010
	Cobalt (Co)-Total (mg/L)	<0.00010	<0.00010	0.00012	0.00011	0.00012
	Copper (Cu)-Total (mg/L)	<0.00050	<0.00050	0.00813	0.00796	0.00765
	Iron (Fe)-Total (mg/L)	0.013	0.011	0.041	0.041	0.031
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Total (mg/L)	0.0032	0.0032	0.0031	0.0032	0.0032
	Magnesium (Mg)-Total (mg/L)	6.95	6.87	10.9	10.6	10.9

L1989985 CONTD.... PAGE 9 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-21 water 10-SEP-17 CL-TRIP BLANK	L1989985-22 water 10-SEP-17 CL-FIELD BLANK		
Grouping	Analyte				
WATER	-				
Physical Tests	Conductivity (uS/cm)		<2.0		
	Hardness (as CaCO3) (mg/L)		<0.50		
	рН (рН)		5.44		
	Total Suspended Solids (mg/L)		<3.0		
	Total Dissolved Solids (mg/L)		<10		
	Turbidity (NTU)		<0.10		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)		<1.0		
	Ammonia, Total (as N) (mg/L)		<0.0050		
	Bromide (Br) (mg/L)		<0.050		
	Chloride (Cl) (mg/L)		<0.50		
	Fluoride (F) (mg/L)		<0.020		
	Nitrate (as N) (mg/L)		<0.0050		
	Nitrite (as N) (mg/L)		<0.0010		
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020	<0.0020		
	Phosphorus (P)-Total (mg/L)		<0.0020		
	Sulfate (SO4) (mg/L)		<0.30		
	Sulphide as S (mg/L)		<0.018		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L) Total Organic Carbon (mg/L)		<0.50		
Total Metals	Aluminum (Al)-Total (mg/L)		<0.50		
	Antimony (Sb)-Total (mg/L)		<0.0030		
	Arsenic (As)-Total (mg/L)		<0.00010		
	Barium (Ba)-Total (mg/L)		<0.00010		
	Beryllium (Be)-Total (mg/L)		<0.000050		
	Bismuth (Bi)-Total (mg/L)		<0.000020 <0.000050		
	Boron (B)-Total (mg/L)		<0.010		
	Cadmium (Cd)-Total (mg/L)		<0.000050		
	Calcium (Ca)-Total (mg/L)		<0.000050		
	Cesium (Cs)-Total (mg/L)		<0.00010		
	Chromium (Cr)-Total (mg/L)		0.00036		
	Cobalt (Co)-Total (mg/L)		<0.00010		
	Copper (Cu)-Total (mg/L)		<0.00050		
	Iron (Fe)-Total (mg/L)		<0.010		
	Lead (Pb)-Total (mg/L)		<0.00050		
	Lithium (Li)-Total (mg/L)		<0.0010		
	Magnesium (Mg)-Total (mg/L)		<0.10		

L1989985 CONTD.... PAGE 10 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-1 water 09-SEP-17 CL-26	L1989985-2 water 09-SEP-17 CL-DUP-1	L1989985-3 water 09-SEP-17 CL-6-2M	L1989985-4 water 09-SEP-17 CL-6-10M	L1989985-5 water 09-SEP-17 CL-24
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.00102	0.100	0.00112	0.00082	0.00159
	Mercury (Hg)-Total (mg/L)	<0.0000050	0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.000170	0.000426	0.000182	0.000168	0.000160
	Nickel (Ni)-Total (mg/L)	<0.00050	0.00114	<0.00050	<0.00050	<0.00050
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	0.49	1.36	0.47	0.48	0.48
	Selenium (Se)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)-Total (mg/L)	0.31	2.35	0.32	0.34	0.32
	Silver (Ag)-Total (mg/L)	<0.000010	0.000024	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	0.910	4.55	0.887	0.907	0.893
	Strontium (Sr)-Total (mg/L)	0.0100	0.0687	0.0103	0.0101	0.0101
	Sulfur (S)-Total (mg/L)	0.53	2.27	0.54	<0.50	<0.50
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Uranium (U)-Total (mg/L)	0.000151	0.0472	0.000176	0.000150	0.000165
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	0.0036	<0.0030	<0.0030	<0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location	LAB	LAB	LAB	LAB	
	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	
	Aluminum (Al)-Dissolved (mg/L)	0.0013	0.0027	0.0014	<0.0010	
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	0.00026	<0.00010	<0.00010	
	Arsenic (As)-Dissolved (mg/L)	0.00016	0.00935	0.00015	0.00012	
	Barium (Ba)-Dissolved (mg/L)	0.00366	0.0185	0.00369	0.00362	
	Beryllium (Be)-Dissolved (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Boron (B)-Dissolved (mg/L)	<0.010	0.029	<0.010	<0.010	
	Cadmium (Cd)-Dissolved (mg/L)	<0.0000050	<0.000050	<0.0000050	<0.0000050	
	Calcium (Ca)-Dissolved (mg/L)	5.35	31.4	5.27	5.15	
	Cesium (Cs)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Chromium (Cr)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Cobalt (Co)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Copper (Cu)-Dissolved (mg/L)	0.00060	0.00494	0.00058	0.00053	
	Iron (Fe)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Lead (Pb)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Lithium (Li)-Dissolved (mg/L)	<0.0010	0.0029	<0.0010	<0.0010	

L1989985 CONTD.... PAGE 11 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-6 water 09-SEP-17 CL-2	L1989985-7 water 09-SEP-17 CL-15	L1989985-8 water 09-SEP-17 CL-5	L1989985-9 water 09-SEP-17 CL-9	L1989985-10 water 09-SEP-17 CL-2B
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.0136	0.00303	0.00372	0.00143	0.0885
	Mercury (Hg)-Total (mg/L)	0.000700	0.000355	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.00298	0.00114	0.000186	0.000194	0.000435
	Nickel (Ni)-Total (mg/L)	0.0124	0.00196	<0.00050	<0.00050	0.00104
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	2.32	1.87	0.50	0.49	1.38
	Selenium (Se)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)-Total (mg/L)	2.82	3.53	0.37	0.38	2.46
	Silver (Ag)-Total (mg/L)	0.00424	0.000289	0.000033	0.000011	0.000031
	Sodium (Na)-Total (mg/L)	4.36	4.45	0.981	0.966	4.72
	Strontium (Sr)-Total (mg/L)	0.110	0.0805	0.0112	0.0113	0.0703
	Sulfur (S)-Total (mg/L)	5.98	3.37	0.60	0.58	2.41
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Uranium (U)-Total (mg/L)	0.187	0.137	0.000639	0.000191	0.0480
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	0.0048	<0.0030	<0.0030	<0.0030	<0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location			LAB		LAB
	Dissolved Metals Filtration Location			LAB		LAB
	Aluminum (Al)-Dissolved (mg/L)			0.0016		0.0023
	Antimony (Sb)-Dissolved (mg/L)			<0.00010		0.00025
	Arsenic (As)-Dissolved (mg/L)			0.00024		0.00914
	Barium (Ba)-Dissolved (mg/L)			0.00414		0.0182
	Beryllium (Be)-Dissolved (mg/L)			<0.000020		<0.000020
	Bismuth (Bi)-Dissolved (mg/L)			<0.000050		<0.000050
	Boron (B)-Dissolved (mg/L)			<0.010		0.027
	Cadmium (Cd)-Dissolved (mg/L)			<0.0000050		<0.0000050
	Calcium (Ca)-Dissolved (mg/L)			5.80		30.3
	Cesium (Cs)-Dissolved (mg/L)			<0.000010		<0.000010
	Chromium (Cr)-Dissolved (mg/L)			<0.00010		<0.00010
	Cobalt (Co)-Dissolved (mg/L)			<0.00010		<0.00010
	Copper (Cu)-Dissolved (mg/L)			0.00065		0.00479
	Iron (Fe)-Dissolved (mg/L)			<0.010		<0.010
	Lead (Pb)-Dissolved (mg/L)			<0.000050		<0.000050
	Lithium (Li)-Dissolved (mg/L)			<0.0010		0.0027

L1989985 CONTD.... PAGE 12 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-11 water 10-SEP-17 CL-RL-1B	L1989985-12 water 10-SEP-17 R-3	L1989985-13 water 10-SEP-17 CL-8	L1989985-14 water 10-SEP-17 CL-7-1M	L1989985-15 water 10-SEP-17 CL-20
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.00052	0.00113	0.00086	0.00109	0.00105
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.000370	0.000221	0.000166	0.000315	0.000308
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	0.57	0.72	0.48	0.72	0.72
	Selenium (Se)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)-Total (mg/L)	0.91	1.00	0.32	1.16	1.17
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	1.36	1.61	0.890	3.97	3.97
	Strontium (Sr)-Total (mg/L)	0.0155	0.0210	0.0102	0.101	0.100
	Sulfur (S)-Total (mg/L)	0.79	0.95	<0.50	5.32	5.31
	Thallium (TI)-Total (mg/L)	<0.000010	<0.00010	<0.00010	<0.00010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00060
	Uranium (U)-Total (mg/L)	0.00128	0.000162	0.000155	0.000292	0.000280
	Vanadium (V)-Total (mg/L)	< 0.00050	<0.00050	< 0.00050	< 0.00050	< 0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	< 0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location	<0.00000	LAB	<0.00000	LAB	20.00000
	Dissolved Metals Filtration Location		LAB		LAB	
	Aluminum (AI)-Dissolved (mg/L)		0.0026		0.0012	
	Antimony (Sb)-Dissolved (mg/L)		<0.0020		<0.0012	
	Arsenic (As)-Dissolved (mg/L)		0.00061		0.00021	
	Barium (Ba)-Dissolved (mg/L)		0.00560		0.0227	
	Beryllium (Be)-Dissolved (mg/L)		<0.000020		<0.000221	
	Bismuth (Bi)-Dissolved (mg/L)		<0.000050		<0.000050	
	Boron (B)-Dissolved (mg/L)		0.010		<0.010	
	Cadmium (Cd)-Dissolved (mg/L)		<0.000050		<0.000050	
	Calcium (Ca)-Dissolved (mg/L)		10.4		17.4	
	Cesium (Cs)-Dissolved (mg/L)		<0.000010		<0.000010	
	Chromium (Cr)-Dissolved (mg/L)		<0.00010		<0.00010	
	Cobalt (Co)-Dissolved (mg/L)		<0.00010		<0.00010	
	Copper (Cu)-Dissolved (mg/L)		0.00104		0.00032	
	Iron (Fe)-Dissolved (mg/L)		<0.0104		<0.00032	
	Lead (Pb)-Dissolved (mg/L)					
	Lithium (Li)-Dissolved (mg/L)		<0.000050		<0.000050	
			0.0011		0.0031	

L1989985 CONTD.... PAGE 13 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-16 water 10-SEP-17 CL-16-2M	L1989985-17 water 10-SEP-17 CL-16-10M	L1989985-18 water 10-SEP-17 CL-3	L1989985-19 water 10-SEP-17 CL-DUP-2	L1989985-20 water 10-SEP-17 CL-29
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.00101	0.00080	0.0973	0.0970	0.0940
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.000323	0.000329	0.000435	0.000402	0.000403
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050	0.00125	0.00125	0.00122
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	0.73	0.71	1.55	1.55	1.55
	Selenium (Se)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)-Total (mg/L)	1.17	1.16	2.29	2.31	2.32
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	0.000035	0.000040	0.000026
	Sodium (Na)-Total (mg/L)	4.00	3.90	4.84	4.77	4.80
	Strontium (Sr)-Total (mg/L)	0.102	0.104	0.0782	0.0783	0.0793
	Sulfur (S)-Total (mg/L)	5.12	5.29	2.52	2.52	2.45
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	DLM <0.00060	<0.00030	<0.00030	<0.00030	<0.00030
	Uranium (U)-Total (mg/L)	0.000279	0.000293	0.0490	0.0482	0.0494
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030	<0.0030	0.0055	<0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location			LAB	LAB	
	Dissolved Metals Filtration Location			LAB	LAB	
	Aluminum (Al)-Dissolved (mg/L)			0.0018	0.0019	
	Antimony (Sb)-Dissolved (mg/L)			0.00047	0.00047	
	Arsenic (As)-Dissolved (mg/L)			0.0106	0.0109	
	Barium (Ba)-Dissolved (mg/L)			0.0274	0.0275	
	Beryllium (Be)-Dissolved (mg/L)			<0.000020	<0.000020	
	Bismuth (Bi)-Dissolved (mg/L)			<0.000050	<0.000050	
	Boron (B)-Dissolved (mg/L)			0.035	0.035	
	Cadmium (Cd)-Dissolved (mg/L)			<0.0000050	<0.0000050	
	Calcium (Ca)-Dissolved (mg/L)			32.5	32.2	
	Cesium (Cs)-Dissolved (mg/L)			0.000014	0.000014	
	Chromium (Cr)-Dissolved (mg/L)			<0.00010	<0.00010	
	Cobalt (Co)-Dissolved (mg/L)			<0.00010	<0.00010	
	Copper (Cu)-Dissolved (mg/L)			0.00651	0.00669	
	Iron (Fe)-Dissolved (mg/L)			<0.010	<0.010	
	Lead (Pb)-Dissolved (mg/L)			<0.000050	<0.000050	
	Lithium (Li)-Dissolved (mg/L)			0.0031	0.0031	

L1989985 CONTD.... PAGE 14 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-21 water 10-SEP-17 CL-TRIP BLANK	L1989985-22 water 10-SEP-17 CL-FIELD BLANK		
Grouping	Analyte				
WATER					
Total Metals	Manganese (Mn)-Total (mg/L)		<0.00010		
	Mercury (Hg)-Total (mg/L)		<0.0000050		
	Molybdenum (Mo)-Total (mg/L)		<0.000050		
	Nickel (Ni)-Total (mg/L)		<0.00050		
	Phosphorus (P)-Total (mg/L)		<0.050		
	Potassium (K)-Total (mg/L)		<0.10		
	Selenium (Se)-Total (mg/L)		<0.000050		
	Silicon (Si)-Total (mg/L)		<0.10		
	Silver (Ag)-Total (mg/L)		<0.000010		
	Sodium (Na)-Total (mg/L)		<0.050		
	Strontium (Sr)-Total (mg/L)		<0.00020		
	Sulfur (S)-Total (mg/L)		<0.50		
	Thallium (TI)-Total (mg/L)		<0.000010		
	Tin (Sn)-Total (mg/L)		<0.00010		
	Titanium (Ti)-Total (mg/L)		<0.00030		
	Uranium (U)-Total (mg/L)		<0.000010		
	Vanadium (V)-Total (mg/L)		<0.00050		
	Zinc (Zn)-Total (mg/L)		<0.0030		
	Zirconium (Zr)-Total (mg/L)		<0.00030		
Dissolved Metals	Dissolved Mercury Filtration Location		LAB		
	Dissolved Metals Filtration Location		LAB		
	Aluminum (Al)-Dissolved (mg/L)		<0.0010		
	Antimony (Sb)-Dissolved (mg/L)		<0.00010		
	Arsenic (As)-Dissolved (mg/L)		<0.00010		
	Barium (Ba)-Dissolved (mg/L)		<0.000050		
	Beryllium (Be)-Dissolved (mg/L)		<0.000020		
	Bismuth (Bi)-Dissolved (mg/L)		<0.000050		
	Boron (B)-Dissolved (mg/L)		<0.010		
	Cadmium (Cd)-Dissolved (mg/L)		<0.0000050		
	Calcium (Ca)-Dissolved (mg/L)		<0.050		
	Cesium (Cs)-Dissolved (mg/L)		<0.000010		
	Chromium (Cr)-Dissolved (mg/L)		<0.00010		
	Cobalt (Co)-Dissolved (mg/L)		<0.00010		
	Copper (Cu)-Dissolved (mg/L)		<0.00020		
	Iron (Fe)-Dissolved (mg/L)		<0.010		
	Lead (Pb)-Dissolved (mg/L)		<0.000050		
	Lithium (Li)-Dissolved (mg/L)		<0.0010		

L1989985 CONTD.... PAGE 15 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-1 water 09-SEP-17 CL-26	L1989985-2 water 09-SEP-17 CL-DUP-1	L1989985-3 water 09-SEP-17 CL-6-2M	L1989985-4 water 09-SEP-17 CL-6-10M	L1989985-5 water 09-SEP-17 CL-24
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)	2.31	11.6	2.22	2.16	
	Manganese (Mn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.0000050	<0.0000050	<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.000144	0.000397	0.000136	0.000126	
	Nickel (Ni)-Dissolved (mg/L)	<0.00050	0.00072	<0.00050	<0.00050	
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	
	Potassium (K)-Dissolved (mg/L)	0.53	1.55	0.52	0.51	
	Selenium (Se)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Silicon (Si)-Dissolved (mg/L)	0.295	2.45	0.293	0.318	
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Sodium (Na)-Dissolved (mg/L)	0.994	5.23	0.977	0.953	
	Strontium (Sr)-Dissolved (mg/L)	0.0106	0.0723	0.0107	0.0104	
	Sulfur (S)-Dissolved (mg/L)	<0.50	1.96	<0.50	<0.50	
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Titanium (Ti)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	
	Uranium (U)-Dissolved (mg/L)	0.000138	0.0503	0.000210	0.000140	
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Zinc (Zn)-Dissolved (mg/L)	<0.0010	<0.0010	0.0014	<0.0010	
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	
Volatile Organic Compounds	Benzene (mg/L)	<0.00050				
	Ethylbenzene (mg/L)	<0.00050				
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050				
	Styrene (mg/L)	<0.00050				
	Toluene (mg/L)	<0.00045				
	ortho-Xylene (mg/L)	<0.00050				
	meta- & para-Xylene (mg/L)	<0.00050				
	Xylenes (mg/L)	<0.00075				
	F1 (C6-C10) (mg/L)	<0.10				
	Surrogate: 4-Bromofluorobenzene (SS) (%)	106.9				
	Surrogate: 1,4-Difluorobenzene (SS) (%)	97.7				
Hydrocarbons	F1-BTEX (mg/L)	<0.10				
	F2 (C10-C16) (mg/L)	<0.30				
	F3 (C16-C34) (mg/L)	<0.30				
	F4 (C34-C50) (mg/L)	<0.30				
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10				
	VPH (C6-C10) (mg/L)	<0.10				

L1989985 CONTD.... PAGE 16 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-6 water 09-SEP-17 CL-2	L1989985-7 water 09-SEP-17 CL-15	L1989985-8 water 09-SEP-17 CL-5	L1989985-9 water 09-SEP-17 CL-9	L1989985-10 water 09-SEP-17 CL-2B
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)			2.44		11.4
	Manganese (Mn)-Dissolved (mg/L)			<0.00010		<0.00010
	Mercury (Hg)-Dissolved (mg/L)			<0.0000050		<0.0000050
	Molybdenum (Mo)-Dissolved (mg/L)			0.000146		0.000422
	Nickel (Ni)-Dissolved (mg/L)			<0.00050		0.00074
	Phosphorus (P)-Dissolved (mg/L)			<0.050		<0.050
	Potassium (K)-Dissolved (mg/L)			0.54		1.49
	Selenium (Se)-Dissolved (mg/L)			<0.000050		<0.000050
	Silicon (Si)-Dissolved (mg/L)			0.341		2.38
	Silver (Ag)-Dissolved (mg/L)			<0.000010		<0.000010
	Sodium (Na)-Dissolved (mg/L)			1.07		5.14
	Strontium (Sr)-Dissolved (mg/L)			0.0121		0.0716
	Sulfur (S)-Dissolved (mg/L)			<0.50		2.06
	Thallium (TI)-Dissolved (mg/L)			<0.000010		<0.000010
	Tin (Sn)-Dissolved (mg/L)			<0.00010		<0.00010
	Titanium (Ti)-Dissolved (mg/L)			<0.00030		<0.00030
	Uranium (U)-Dissolved (mg/L)			0.000606		0.0477
	Vanadium (V)-Dissolved (mg/L)			<0.00050		<0.00050
	Zinc (Zn)-Dissolved (mg/L)			<0.0010		<0.0010
	Zirconium (Zr)-Dissolved (mg/L)			<0.00030		<0.00030
Volatile Organic Compounds	Benzene (mg/L)					
	Ethylbenzene (mg/L)					
	Methyl t-butyl ether (MTBE) (mg/L)					
	Styrene (mg/L)					
	Toluene (mg/L)					
	ortho-Xylene (mg/L)					
	meta- & para-Xylene (mg/L)					
	Xylenes (mg/L)					
	F1 (C6-C10) (mg/L)					
	Surrogate: 4-Bromofluorobenzene (SS) (%)					
	Surrogate: 1,4-Difluorobenzene (SS) (%)					
Hydrocarbons	F1-BTEX (mg/L)					
	F2 (C10-C16) (mg/L)					
	F3 (C16-C34) (mg/L)					
	F4 (C34-C50) (mg/L)					
	Volatile Hydrocarbons (VH6-10) (mg/L)					
	VPH (C6-C10) (mg/L)					

L1989985 CONTD.... PAGE 17 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-11 water 10-SEP-17 CL-RL-1B	L1989985-12 water 10-SEP-17 R-3	L1989985-13 water 10-SEP-17 CL-8	L1989985-14 water 10-SEP-17 CL-7-1M	L1989985-15 water 10-SEP-17 CL-20
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)		3.11		7.59	
	Manganese (Mn)-Dissolved (mg/L)		<0.00010		<0.00010	
	Mercury (Hg)-Dissolved (mg/L)		<0.0000050		<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)		0.000201		0.000288	
	Nickel (Ni)-Dissolved (mg/L)		<0.00050		< 0.00050	
	Phosphorus (P)-Dissolved (mg/L)		< 0.050		<0.050	
	Potassium (K)-Dissolved (mg/L)		0.81		0.78	
	Selenium (Se)-Dissolved (mg/L)		<0.000050		<0.000050	
	Silicon (Si)-Dissolved (mg/L)		0.990		1.13	
	Silver (Ag)-Dissolved (mg/L)		<0.00010		<0.000010	
	Sodium (Na)-Dissolved (mg/L)		1.81		4.38	
	Strontium (Sr)-Dissolved (mg/L)		0.0216		0.104	
	Sulfur (S)-Dissolved (mg/L)		0.80		4.91	
	Thallium (TI)-Dissolved (mg/L)		<0.00010		<0.000010	
	Tin (Sn)-Dissolved (mg/L)		<0.00010		<0.00010	
	Titanium (Ti)-Dissolved (mg/L)		<0.00030		<0.00030	
	Uranium (U)-Dissolved (mg/L)		0.000208		0.000299	
	Vanadium (V)-Dissolved (mg/L)		<0.00050		<0.00050	
	Zinc (Zn)-Dissolved (mg/L)		<0.0010		<0.0010	
	Zirconium (Zr)-Dissolved (mg/L)		<0.00030		<0.00030	
Volatile Organic Compounds	Benzene (mg/L)	<0.00050			<0.00050	
	Ethylbenzene (mg/L)	<0.00050			<0.00050	
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050			<0.00050	
	Styrene (mg/L)	<0.00050			<0.00050	
	Toluene (mg/L)	<0.00045			<0.00045	
	ortho-Xylene (mg/L)	<0.00050			<0.00050	
	meta- & para-Xylene (mg/L)	<0.00050			<0.00050	
	Xylenes (mg/L)	<0.00075			<0.00075	
	F1 (C6-C10) (mg/L)	<0.10			<0.10	
	Surrogate: 4-Bromofluorobenzene (SS) (%)	98.7			106.0	
	Surrogate: 1,4-Difluorobenzene (SS) (%)	97.1			97.2	
Hydrocarbons	F1-BTEX (mg/L)	<0.10			<0.10	
	F2 (C10-C16) (mg/L)	<0.30			<0.30	
	F3 (C16-C34) (mg/L)	<0.30			<0.30	
	F4 (C34-C50) (mg/L)	<0.30			<0.30	
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10			<0.10	
	VPH (C6-C10) (mg/L)	<0.10			<0.10	

L1989985 CONTD.... PAGE 18 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-16 water 10-SEP-17 CL-16-2M	L1989985-17 water 10-SEP-17 CL-16-10M	L1989985-18 water 10-SEP-17 CL-3	L1989985-19 water 10-SEP-17 CL-DUP-2	L1989985-20 water 10-SEP-17 CL-29
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)			11.3	11.4	
	Manganese (Mn)-Dissolved (mg/L)			0.00013	<0.00010	
	Mercury (Hg)-Dissolved (mg/L)			<0.0000050	<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)			0.000388	0.000371	
	Nickel (Ni)-Dissolved (mg/L)			0.00081	0.00077	
	Phosphorus (P)-Dissolved (mg/L)			< 0.050	< 0.050	
	Potassium (K)-Dissolved (mg/L)			1.63	1.65	
	Selenium (Se)-Dissolved (mg/L)			<0.000050	<0.000050	
	Silicon (Si)-Dissolved (mg/L)			2.31	2.23	
	Silver (Ag)-Dissolved (mg/L)			<0.000010	<0.000010	
	Sodium (Na)-Dissolved (mg/L)			5.12	5.26	
	Strontium (Sr)-Dissolved (mg/L)			0.0789	0.0797	
	Sulfur (S)-Dissolved (mg/L)			2.21	2.18	
	Thallium (TI)-Dissolved (mg/L)			<0.000010	<0.000010	
	Tin (Sn)-Dissolved (mg/L)			< 0.00010	<0.00010	
	Titanium (Ti)-Dissolved (mg/L)			<0.00030	<0.00030	
	Uranium (U)-Dissolved (mg/L)			0.0500	0.0501	
	Vanadium (V)-Dissolved (mg/L)			< 0.00050	<0.00050	
	Zinc (Zn)-Dissolved (mg/L)			<0.0010	<0.0010	
	Zirconium (Zr)-Dissolved (mg/L)			< 0.00030	<0.00030	
Volatile Organic Compounds	Benzene (mg/L)		<0.00050	<0.00050	<0.00050	
	Ethylbenzene (mg/L)		<0.00050	<0.00050	<0.00050	
	Methyl t-butyl ether (MTBE) (mg/L)		<0.00050	<0.00050	<0.00050	
	Styrene (mg/L)		<0.00050	<0.00050	<0.00050	
	Toluene (mg/L)		<0.00045	<0.00045	<0.00045	
	ortho-Xylene (mg/L)		<0.00050	<0.00050	<0.00050	
	meta- & para-Xylene (mg/L)		<0.00050	<0.00050	<0.00050	
	Xylenes (mg/L)		<0.00075	<0.00075	<0.00075	
	F1 (C6-C10) (mg/L)		<0.10	<0.10	<0.10	
	Surrogate: 4-Bromofluorobenzene (SS) (%)		95.5	98.8	100.1	
	Surrogate: 1,4-Difluorobenzene (SS) (%)		93.5	96.2	97.5	
Hydrocarbons	F1-BTEX (mg/L)		<0.10	<0.10	<0.10	
	F2 (C10-C16) (mg/L)		<0.30	<0.30	<0.30	
	F3 (C16-C34) (mg/L)		<0.30	<0.30	<0.30	
	F4 (C34-C50) (mg/L)		<0.30	<0.30	<0.30	
	Volatile Hydrocarbons (VH6-10) (mg/L)		<0.10	<0.10	<0.10	
	VPH (C6-C10) (mg/L)		<0.10	<0.10	<0.10	

L1989985 CONTD.... PAGE 19 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-21 water 10-SEP-17 CL-TRIP BLANK	L1989985-22 water 10-SEP-17 CL-FIELD BLANK		
Grouping	Analyte				
WATER					
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)		<0.10		
	Manganese (Mn)-Dissolved (mg/L)		<0.00010		
	Mercury (Hg)-Dissolved (mg/L)		<0.0000050		
	Molybdenum (Mo)-Dissolved (mg/L)		<0.000050		
	Nickel (Ni)-Dissolved (mg/L)		<0.00050		
	Phosphorus (P)-Dissolved (mg/L)		<0.050		
	Potassium (K)-Dissolved (mg/L)		<0.10		
	Selenium (Se)-Dissolved (mg/L)		<0.000050		
	Silicon (Si)-Dissolved (mg/L)		<0.050		
	Silver (Ag)-Dissolved (mg/L)		<0.000010		
	Sodium (Na)-Dissolved (mg/L)		<0.050		
	Strontium (Sr)-Dissolved (mg/L)		<0.00020		
	Sulfur (S)-Dissolved (mg/L)		<0.50		
	Thallium (TI)-Dissolved (mg/L)		<0.000010		
	Tin (Sn)-Dissolved (mg/L)		<0.00010		
	Titanium (Ti)-Dissolved (mg/L)		<0.00030		
	Uranium (U)-Dissolved (mg/L)		<0.000010		
	Vanadium (V)-Dissolved (mg/L)		<0.00050		
	Zinc (Zn)-Dissolved (mg/L)		<0.0010		
	Zirconium (Zr)-Dissolved (mg/L)		<0.00030		
Volatile Organic Compounds	Benzene (mg/L)		<0.00050		
	Ethylbenzene (mg/L)		<0.00050		
	Methyl t-butyl ether (MTBE) (mg/L)		<0.00050		
	Styrene (mg/L)		<0.00050		
	Toluene (mg/L)		<0.00045		
	ortho-Xylene (mg/L)		<0.00050		
	meta- & para-Xylene (mg/L)		<0.00050		
	Xylenes (mg/L)		<0.00075		
	F1 (C6-C10) (mg/L)		<0.10		
	Surrogate: 4-Bromofluorobenzene (SS) (%)		99.9		
	Surrogate: 1,4-Difluorobenzene (SS) (%)		97.8		
Hydrocarbons	F1-BTEX (mg/L)		<0.10		
	F2 (C10-C16) (mg/L)		<0.30		
	F3 (C16-C34) (mg/L)		<0.30		
	F4 (C34-C50) (mg/L)		<0.30		
	Volatile Hydrocarbons (VH6-10) (mg/L)		<0.10		
	VPH (C6-C10) (mg/L)		<0.10		

L1989985 CONTD.... PAGE 20 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-1 water 09-SEP-17 CL-26	L1989985-2 water 09-SEP-17 CL-DUP-1	L1989985-3 water 09-SEP-17 CL-6-2M	L1989985-4 water 09-SEP-17 CL-6-10M	L1989985-5 water 09-SEP-17 CL-24
Grouping	Analyte					
WATER	, unary co					
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)	74.7				
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	117.4				

L1989985 CONTD.... PAGE 21 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-6 water 09-SEP-17 CL-2	L1989985-7 water 09-SEP-17 CL-15	L1989985-8 water 09-SEP-17 CL-5	L1989985-9 water 09-SEP-17 CL-9	L1989985-10 water 09-SEP-17 CL-2B
Grouping	Analyte					
WATER						
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%) Surrogate: 3,4-Dichlorotoluene (SS) (%)					

L1989985 CONTD.... PAGE 22 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	2 · · · -	1 1000005 44	L1989985-12	L1989985-13	L1989985-14	L1989985-15
	Sample ID Description	L1989985-11 water	L1989985-12 water	L1989985-13 water	L1989985-14 water	L1989985-15 water
	Sampled Date	10-SEP-17	10-SEP-17	10-SEP-17	10-SEP-17	10-SEP-17
	Sampled Time Client ID	CL-RL-1B	R-3	CL-8	CL-7-1M	CL-20
	Client ID					
Grouping	Analyte					
WATER						
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)	75.9			80.2	
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	115.3			110.5	

L1989985 CONTD.... PAGE 23 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time	L1989985-16 water 10-SEP-17 CL-16-2M	L1989985-17 water 10-SEP-17 CL-16-10M	L1989985-18 water 10-SEP-17 CL-3	L1989985-19 water 10-SEP-17 CL-DUP-2	L1989985-2 water 10-SEP-17 CL-29
	Client ID	CL-16-2M	CL-16-10M	CL-3	CL-DUP-2	CL-29
Grouping	Analyte					
WATER						
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)		76.3	81.2	84.8	
	Surrogate: 3,4-Dichlorotoluene (SS) (%)		99.8	119.8	111.0	

L1989985 CONTD.... PAGE 24 of 28 13-NOV-17 15:09 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1989985-21 water 10-SEP-17 CL-TRIP BLANK	L1989985-22 water 10-SEP-17 CL-FIELD BLANK		
Grouping	Analyte				
WATER					
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)		88.4		
	Surrogate: 3,4-Dichlorotoluene (SS) (%)		113.5		

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Method Blank	Chromium (Cr)-Total	MB-LOR	L1989985-22
Method Blank	Nickel (Ni)-Total	MB-LOR	L1989985-22
Matrix Spike	Dissolved Organic Carbon	MS-B	L1989985-17, -18, -19, -20, -22
Matrix Spike	Dissolved Organic Carbon	MS-B	L1989985-1, -10, -11, -12, -13, -14, -15, -16, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Dissolved Organic Carbon	MS-B	L1989985-1, -10, -11, -12, -13, -14, -15, -16, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Total Organic Carbon	MS-B	L1989985-17, -18, -19, -20, -22
Matrix Spike	Total Organic Carbon	MS-B	L1989985-17, -18, -19, -20, -22
Matrix Spike	Total Organic Carbon	MS-B	L1989985-17, -18, -19, -20, -22
Matrix Spike	Total Organic Carbon	MS-B	L1989985-1, -10, -11, -12, -13, -14, -15, -16, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Total Organic Carbon	MS-B	L1989985-1, -10, -11, -12, -13, -14, -15, -16, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1989985-18, -19
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1989985-22
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1989985-1, -10, -12, -14, -2, -3, -4, -8
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1989985-18, -19
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1989985-22
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1989985-1, -10, -12, -14, -2, -3, -4, -8
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1989985-18, -19
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1989985-22
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1989985-18, -19
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1989985-1, -10, -12, -14, -2, -3, -4, -8
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1989985-18, -19
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1989985-22
Matrix Spike	Barium (Ba)-Total	MS-B	L1989985-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Barium (Ba)-Total	MS-B	L1989985-22
Matrix Spike	Boron (B)-Total	MS-B	L1989985-22
Matrix Spike	Calcium (Ca)-Total	MS-B	L1989985-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Calcium (Ca)-Total	MS-B	L1989985-22
Matrix Spike	Iron (Fe)-Total	MS-B	L1989985-22
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1989985-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1989985-22
Matrix Spike	Manganese (Mn)-Total	MS-B	L1989985-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Manganese (Mn)-Total	MS-B	L1989985-22
Matrix Spike	Potassium (K)-Total	MS-B	L1989985-22
Matrix Spike	Silicon (Si)-Total	MS-B	L1989985-22
Matrix Spike	Sodium (Na)-Total	MS-B	L1989985-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Sodium (Na)-Total	MS-B	L1989985-22
Matrix Spike	Strontium (Sr)-Total	MS-B	L1989985-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Strontium (Sr)-Total	MS-B	L1989985-22
Matrix Spike	Uranium (U)-Total	MS-B	L1989985-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Phosphorus (P)-Total Dissolved	MS-B	L1989985-22

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).

Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.

HTD

MS-B RRV		could not be accurately calculated due to high a ied By Repeat Analysis	
	•		
est Method Re	eferences: Matrix	Test Description	Method Reference**
	Water	Alkalinity Species by Titration	APHA 2320 Alkalinity
	carried out using proce	edures adapted from APHA Method 2320 "Alkali	nity". Total alkalinity is determined by potentiometric titration to a henolphthalein alkalinity and total alkalinity values.
BE-D-L-CCMS-V	A Water	Diss. Be (low) in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples	are filtered (0.45 um), p	preserved with nitric acid, and analyzed by CRC	ICPMS.
BE-T-L-CCMS-V Water samples		Total Be (Low) in Water by CRC ICPMS and hydrochloric acids, and analyzed by CRC IC	EPA 200.2/6020A (mod) CPMS.
BR-L-IC-N-VA	Water s are analyzed by Ion C	Bromide in Water by IC (Low Level) Chromatography with conductivity and/or UV dete	EPA 300.1 (mod) ection.
CARBONS-DOC	, ,	Dissolved organic carbon by combustion	APHA 5310B TOTAL ORGANIC CARBON (TOC)
This analysis is	carried out using proce	o <i>i</i>	Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are
CARBONS-TOC	-VA Water	Total organic carbon by combustion	APHA 5310B TOTAL ORGANIC CARBON (TOC)
This analysis is	carried out using proce	edures adapted from APHA Method 5310 "Total	Organic Carbon (TOC)".
CL-IC-N-VA	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anion	s are analyzed by Ion C	Chromatography with conductivity and/or UV dete	ection.
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is electrode.	carried out using proce	edures adapted from APHA Method 2510 "Cond	uctivity". Conductivity is determined using a conductivity
EC-SCREEN-VA	Water	Conductivity Screen (Internal Use Only)	APHA 2510
Qualitative anal	ysis of conductivity whe	ere required during preparation of other tests - e.	.g. TDS, metals, etc.
F-IC-N-VA	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anion	s are analyzed by Ion C	Chromatography with conductivity and/or UV dete	ection.
F1-BTX-CALC-V	A Water	F1-Total BTX	CCME CWS PHC TIER 1 (2001)
Council of Minis		t, December 2000." For F1 (C6-C10), the samp	etroleum Hydrocarbons in Soil - Tier 1 Method, Canadian le undergoes a purge and trap extraction prior to analysis by
F1-BTEX: F1 (C	C6-C10) minus benzene	e, toluene, ethylbenzene and xylenes (BTEX).	
F1-HSFID-VA	Water	CCME F1 By Headspace with GCFID	EPA 5021A/CCME CWS PHC (Pub# 1310)
			etroleum Hydrocarbons in Soil - Tier 1 Method, Canadian ole undergoes a headspace purge prior to analysis by GC/FID.
F1 (C6-C10): Sr	um of all hydrocarbons	that elute between nC6 and nC10.	
F2-F4-ME-FID-V		CCME F2-F4 Hydrocarbons in Water	CCME CWS-PHC, Pub #1310, Dec 2001
		nexane micro-extraction technique. Instrumenta Hydrocarbons in Soil Tier 1 Method, CCME, D	I analysis is by GC-FID, as per the Reference Method for the Dec 2001.
HARDNESS-CAL	-C-VA Water	Hardness	APHA 2340B
		ess) is calculated from the sum of Calcium and M ncentrations are preferentially used for the hardr	Magnesium concentrations, expressed in CaCO3 equivalents. ness calculation.

with stannous chloride, and analyzed by CVAAS or CVAFS. **HG-T-CVAA-VA** Water Total Mercury in Water by CVAAS or CVAFS EPA 1631E (mod) Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. MET-D-CCMS-VA Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod) Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. **MET-T-CCMS-VA** Water Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod) Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. NH3-F-VA Water Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ, Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et aL EPA 300.1 (mod) NO2-L-IC-N-VA Water Nitrite in Water by IC (Low Level) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-L-IC-N-VA Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. P-T-PRES-COL-VA Total P in Water by Colour APHA 4500-P Phosphorus Water This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. Total Dissolved P in Water by Colour P-TD-COL-VA Water APHA 4500-P Phosphorous This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Dissolved Phosphorus is determined colourimetrically after persulphate digestion of a sample that has been lab or field filtered through a 0.45 micron membrane filter. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H pH Value This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode It is recommended that this analysis be conducted in the field. EPA 903.0 RA226-GFPC-FC Misc. Radium-226 by Gas Flow Prop. S2-T-COL-VA Water Total Sulphide by Colorimetric APHA 4500-S2 Sulphide This analysis is carried out using procedures adapted from APHA Method 4500-S2 "Sulphide". Sulphide is determined using the methlyene blue colourimetric method. SO4-IC-N-VA Water Sulfate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. TDS-VA APHA 2540 C - GRAVIMETRIC Water Total Dissolved Solids by Gravimetric This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. TSS-VA Water Total Suspended Solids by Gravimetric APHA 2540 D - GRAVIMETRIC This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.

TURBIDITY-VA

Water

This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method.

VH-HSFID-VA	Water	VH in Water by Headspace GCFID	BC Env. Lab Manual (VH in Water)
		, is heated in a sealed vial to equilibrium. The headspa and n-decane are measured and summed together usi	ace from the vial is transfered into a gas chromatograph. ng flame-ionization detection.
VH-SURR-FID-VA	Water	VH Surrogates for Waters	BC Env. Lab Manual (VH in Solids)
VOC7-HSMS-VA	Water	BTEX/MTBE/Styrene by Headspace GCMS	EPA 5021A/8260C
• •	•	, is heated in a sealed vial to equilibrium. The headspa easured using mass spectrometry detection.	ace from the vial is transfered into a gas chromatograph.
VOC7/VOC-SURR-MS-VA	Water	VOC7 and/or VOC Surrogates for Waters	EPA 5035A/5021A/8260C
VPH-CALC-VA	Water	VPH is VH minus select aromatics	BC MOE LABORATORY MANUAL (2005)
Volatile Petroleum Hydroca	arbons in Sol d, in solids, S	to the British Columbia Ministry of Environment Analy ids or Water". The concentrations of specific Monocycl tyrene) are subtracted from the collective concentratio	lic Aromatic Hydrocarbons (Benzene, Toluene,
XYLENES-CALC-VA	Water	Sum of Xylene Isomer Concentrations	CALCULATION
Calculation of Total Xylene	s		
The DL for Total Xylenes is	s set to a valu	rations of the ortho, meta, and para Xylene isomers. Fue no less than the square root of the sum of the square	res of the DLs of the individual Xylenes.
** ALS test methods may inco	orporate mod	ifications from specified reference methods to improve	performance.
The last two letters of the al	bove test cod	e(s) indicate the laboratory that performed analytical a	nalysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
FC	ALS ENVIRONMENTAL - FORT COLLINS, COLORADO, USA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For

applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

LIMS Version: 6.846

Monday, October 02, 2017

Rick Zolkiewski ALS Environmental 314 Old Airport Road Unit 116 Yellowknife, NT X1A 3T3

Re: ALS Workorder: 1709366 Project Name: Project Number: L1989985

Dear Mr. Zolkiewski:

Fifteen water samples were received from ALS Environmental, on 9/19/2017. The samples were scheduled for the following analyses:

Lead-210	
Radium-226	

The results for these analyses are contained in the enclosed reports.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Thank you for your confidence in ALS Environmental. Should you have any questions, please call.

Sincerely, Jenny

ALS Environmental Shiloh J. Summy Project Manager

ADDRESS 225 Commerce Drive, Fort Collins, Colorado, USA 80524 | PHONE +1 970 490 1511 | FAX +1 970 490 1522 ALS GROUP USA, CORP. Part of the ALS Laboratory Group An ALS Limited Company ALS Environmental – Fort Collins is accredited by the following accreditation bodies for various testing scopes in accordance with requirements of each accreditation body. All testing is performed under the laboratory management system, which is maintained to meet these requirement and regulations. Please contact the laboratory or accreditation body for the current scope testing parameters.

ALS Environmental – Fort Collins			
Accreditation Body	License or Certification Number		
AIHA	214884		
Alaska (AK)	UST-086		
Alaska (AK)	CO01099		
Arizona (AZ)	AZ0742		
California (CA)	06251CA		
Colorado (CO)	CO01099		
Connecticut (CT)	PH-0232		
Florida (FL)	E87914		
Idaho (ID)	CO01099		
Kansas (KS)	E-10381		
Kentucky (KY)	90137		
L-A-B (DoD ELAP/ISO 170250)	L2257		
Louisiana (LA)	05057		
Maryland (MD)	285		
Missouri (MO)	175		
Nebraska(NE)	NE-OS-24-13		
Nevada (NV)	CO000782008A		
New York (NY)	12036		
North Dakota (ND)	R-057		
Oklahoma (OK)	1301		
Pennsylvania (PA)	68-03116		
Tennessee (TN)	2976		
Texas (TX)	T104704241		
Utah (UT)	CO01099		
Washington (WA)	C1280		

1709366

Radium-226:

The samples were prepared and analyzed according to the current revision of SOP 783.

All acceptance criteria were met.

Lead-210:

The samples were analyzed for the presence of ²¹⁰Pb according to the current revisions of SOP 704.

All acceptance criteria were met.

ALS -- Fort Collins

Sample Number(s) Cross-Reference Table

OrderNum: 1709366 Client Name: ALS Environmental Client Project Name: Client Project Number: L1989985 Client PO Number: L1989985

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
L1989985-1	1709366-1		WATER	09-Sep-17	
L1989985-2	1709366-2		WATER	09-Sep-17	
L1989985-3	1709366-3		WATER	09-Sep-17	
L1989985-4	1709366-4		WATER	09-Sep-17	
L1989985-6	1709366-5		WATER	09-Sep-17	
L1989985-7	1709366-6		WATER	09-Sep-17	
L1989985-8	1709366-7		WATER	09-Sep-17	
L1989985-10	1709366-8		WATER	09-Sep-17	
L1989985-11	1709366-9		WATER	10-Sep-17	
L1989985-13	1709366-10		WATER	10-Sep-17	
L1989985-14	1709366-11		WATER	10-Sep-17	
L1989985-18	1709366-12		WATER	10-Sep-17	
L1989985-19	1709366-13		WATER	10-Sep-17	
L1989985-22	1709366-14		WATER	10-Sep-17	
L1989985-21	1709366-15		WATER	10-Sep-17	

L1989985

YELLOWKNIFE

Subcontract Request Form

1709366

Subcontract To:

ALS ENVIRONMENTAL - FORT COLLINS, COLORADO, USA

225 COMMERCE DRIVE FORT COLLINS,CO 80524

NOTES:Please reference on final report and invoice: PO#L1989985ALS requires QC data to be provided with your final results.

Please see enclosed 14 sample(s) in 28 Container(s)

SAMPLE NUMBER			
	ANALYTICAL REQUIRED	DATE SAMPLED DUE DATE	Priority Flag
L1989985-1 CL-26		9/9/2017	
1	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/13/2017	
	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)	10/13/2017	
L1989985-2 CL-DUP-1		9/9/2017	
0	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/13/2017	
2	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)	10/13/2017	
L1989985-3 CL-6-2M		9/9/2017	
Σ	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/13/2017	
	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)	10/13/2017	
L1989985-4 CL-6-10M		9/9/2017	
(4	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/13/2017	
٩	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)	10/13/2017	
L1989985-6 CL-2		9/9/2017	
-	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/13/2017	
2	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)	10/13/2017	
L1989985-7 CL-15		9/9/2017	
(Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/13/2017	
6	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)	10/13/2017	
L1989985-8 CL-5		9/9/2017	
$\overline{}$	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/13/2017	
/	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)	10/13/2017	

L1989985

YELLOWKNIFE

Subcontract Request Form

Subcontract To:

ALS ENVIRONMENTAL - FORT COLLINS, COLORADO, USA

225 COMMERCE DRIVE FORT COLLINS, CO 80524

Subcontract Info Contact:

Analysis and reporting info contact:

Rick Zolkiewski (867) 873-5593 Rick Zolkiewski **314 OLD AIRPORT ROAD** Unit 116 YELLOWKNIFE, NT X1A 3T3 Phone: (867) 873-5593

Email: Rick.Zolkiewski@alsglobal.com

1709366

Please email confirmation of receipt to:

Rick.Zolkiewski@alsglobal.com

Shipped By:	_Date Shipped:	
Received By: Oncupan	Date Received:	Sept.14 12:00
Verified By:	Date Verified:	
	Temperature:	3 C AVG OF 14 COOLERS
Sample Integrity Issues:		

Received: MM 9/19/17 0910

1709366

YELLOWKNIFE

Subcontract Request Form

Subcontract To:

ALS ENVIRONMENTAL - FORT COLLINS, COLORADO, USA

225 COMMERCE DRIVE FORT COLLINS, CO 80524

SAMPLE NUMBER		DATE SAMPLED	
	ANALYTICAL REQUIRED	DUE DATE	Priority Flag
L1989985-10 CL-2B		9/9/2017	
XR	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/13/2017	
× 0	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)	10/13/2017	
L1989985-11 CL-RL-1B		9/10/2017	
X G	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/13/2017	
	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)	10/13/2017	
L1989985-13 CL-8		9/10/2017	
× 101	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/13/2017	
P. W	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)	10/13/2017	
L1989985-14 CL-7-1M		9/10/2017	
	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/13/2017	
2 21 11	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)	10/13/2017	
L1989985-18 CL-3		9/10/2017	
× 10	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/13/2017	
8 12	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)	10/13/2017	
L1989985-19 CL-DUP-2		9/10/2017	
1 13	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/13/2017	
1 10 10	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)	10/13/2017	
L1989985-22 CL-FIELD B	SLANK	9/10/2017	
1 7 14	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/13 / 2017	
$\times / (1)$	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)	10/13/2017	

L1	9	8	9	9	8	5
----	---	---	---	---	---	---

YELLOWKNIFE

1709366

Subcontract Request Form

Subcontract To:

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

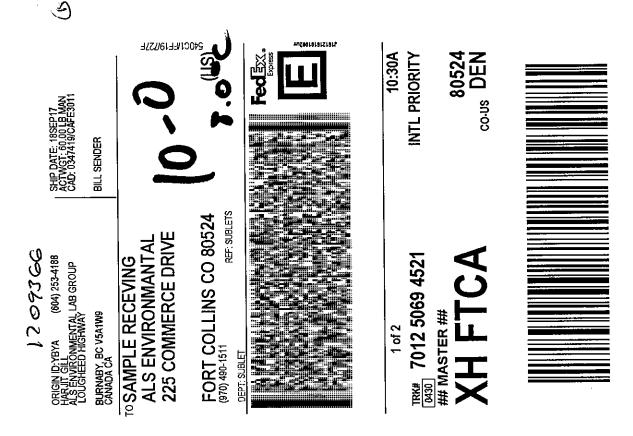
8081 LOUGHEED HWY SUITE 100 BURNABY,BC V5A 1W9

Subcontract Info Contact: Analysis and reporting info contact: Rick Zolkiewski (867) 873-5593 Rick Zolkiewski 314 OLD AIRPORT ROAD Unit 116 YELLOWKNIFE,NT X1A 3T3 Phone: (867) 873-5593

Email: Rick.Zolkiewski@alsglobal.com

Please email confirmation of receipt to:

Rick.Zolkiewski@alsglobal.com


Shipped By:	Date Shipped:		
Received By: Shauph	Date Received:	Septiu	12:00
Verified By:	Date Verified:		
	Temperature:	3C AVE OF	14 COOLTERS
Sample Integrity Issues:			
Received: MM 9/19	117 091	0	

ALS Environmental - Fort Collins CONDITION OF SAMPLE UPON RECEIPT FORM

.

Client: ALS Vancouver	Workorder No: 1709	366		
Project Manager: SJPS	Initials: BAS		9/19/17	
1. Does this project require any special handling in addition to standard	d ALS procedures?		YES	NO
2. Are custody seals on shipping containers intact?		NOND	YES	NO
3. Are Custody seals on sample containers intact?		NONE	YES	NO
4. Is there a COC (Chain-of-Custody) present or other represent	ative documents?	1	YES	NO
5. Are the COC and bottle labels complete and legible?			YES	NO
 Is the COC in agreement with samples received? (IDs, dates, t containers, matrix, requested analyses, etc.) 	times, no. of samples, no. of		YES	NO
7. Were airbills / shipping documents present and/or removable	?	DROP OFF	(YES	NO
 Are all aqueous samples requiring preservation preserved correctly? 	(excluding volatiles)	N/A	TES	NO
9. Are all aqueous non-preserved samples pH 4-9?		(N/A)	YES	NO
^{10.} Is there sufficient sample for the requested analyses?			(YE)	NO
11. Were all samples placed in the proper containers for the requ	ested analyses?		(TES)	NO
¹² . Are all samples within holding times for the requested analys	÷		(YES)	NO
13. Were all sample containers received intact? (not broken or le			YES	NO
^{14.} Are all samples requiring no headspace (VOC, GRO, RSK/M headspace free? Size of bubble: < green pea		(N/A)	YES	NO
 Do any water samples contain sediment? Amount of sediment: dusting moderate 	Amount _heavy	N/A	YES	(0)
16. Were the samples shipped on ice?		~~~	YES	(NO)
^{17.} Were cooler temperatures measured at 0.1-6.0°C?	R gun used*: #2 #4	RAD	YES	(NO)
$\begin{array}{c c} Cooler \#: 1 & 2 \\ \hline Temperature (^{\circ}C): & 8.0 & 8.0 \\ \hline No. of custody seals on cooler: & 0 & 0 \\ \hline No. of custody seals on cooler: & 0 & 0 \\ \hline DOT Survey, Acceptance & External µR/hr reading: 10 \\ \hline Acceptance & Background µR/hr reading: 10 \\ \hline Were external µR/hr readings \leq two times background and within DOT acceptance \\ \hline Mold the second secon$	NSE TO ANY QUESTION ABOVE, E	XCEPT #1 A	ND #16. 24 9/19/1/ 15	
If applicable, was the client contacted? YES / NO (A) fontact: Project Manager Signature / Date: Form 201r24.xls (06/04/2012) *IR Gun #2: Oakton, SN 22 *IR Gun #4: Oakton, SN 22		Date/Ti	me:	

2. Place label in shipping pouch and affix it to your shipment.

1. Fold the printed page atong the horizontal line.

CONSIGNEE COPY - PLEASE PLACE IN FRONT OF POUCH

After printing this label:

When the event of the structure of the s

DEFINITIONS: On the Ak Waypili wate, 'Dur', 'us' and 'FedEx refer to Federal Express Corporation, its subsidiances and branches and branches and branches and preferences. You' and you' refer to the scheded to express the same of the scheded to express the start of the schedes and branches and branches and preferences. You' and you' refer to the scheded to express the start of the scheded to schede to wate the scheded to express the start of the scheded to schede t

O - O

2. Place label in shipping pouch and affix it to your shipment.

.Fold the printed page stong the horizontal line.

After printing this label: CONSIGNEE COPY - PLEASE PLACE IN FRONT OF POUCH

Calced by the serve in the serve of the serve of the serve softward on the serve softward of the serve softward on the serve softward of the serve softward softward of the serve

Mecurits Ways and the state of the state of

Vectoriates of the analysis of

Provide an agents. Thou who who who we have not on the CMR as described and the respective employees, agents and independent contractors. You' and You' restand You structure is a contract of temperation of the Submernian present and the p

Client:	ALS Environmental					Date: 02-0	Oct-17
Project:	L1989985				V	Work Order: 1709	9366
Sample ID:	L1989985-1					Lab ID: 1709	9366-1
Legal Location	1:					Matrix: WA	TER
Collection Date	e: 9/9/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by L	iquid Scintilation		PAI	704	Prep	Date: 9/25/2017	PrepBy: HCJ
Pb-210	•	-0.0098 (+/- 0.013)	U	0.023	BQ/I	NA	9/28/2017 02:42
Carr: LEAD		92.4		40-110	%REC	DL = NA	9/28/2017 02:42
Radium-226 b	y Radon Emanation - N	ethod 903.1	PAI	783	Prep	Date: 9/21/2017	PrepBy: HCJ
Ra-226	-	0.0026 (+/- 0.0045)	U	0.0076	BQ/I	NA	10/2/2017 14:04
Carr: BARIUN	1	94.5		40-110	%REC	DL = NA	10/2/2017 14:04

Client:	ALS Environmental					Date: 02-0	Dct-17
Project:	L1989985				V	Work Order: 1709	9366
Sample ID:	L1989985-2					Lab ID: 1709	9366-2
Legal Location:						Matrix: WA	TER
Collection Date:	9/9/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by Liq	uid Scintilation		PAL	704	Prep	Date: 9/25/2017	PrepBy: HCJ
Pb-210		0.0011 (+/- 0.016)	U	0.027	BQ/I	NA	9/28/2017 04:44
Carr: LEAD		79.8		40-110	%REC	DL = NA	9/28/2017 04:44
Radium-226 by I	Radon Emanation - M	ethod 903.1	PAL	783	Prep	Date: 9/21/2017	PrepBy: HCJ
Ra-226		0.029 (+/- 0.011)		0.005	BQ/I	NA	10/2/2017 14:04
Ra-220		· · ·					

Client:	ALS Environmental					Date: 02-0	Dct-17
Project:	L1989985				V	Work Order: 1709	9366
Sample ID:	L1989985-3					Lab ID: 1709	9366-3
Legal Location	n:					Matrix: WA	TER
Collection Dat	e: 9/9/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by L	iquid Scintilation		PAI	704	Prep	Date: 9/25/2017	PrepBy: HCJ
Pb-210	•	-0.0092 (+/- 0.014)	U	0.024	BQ/I	NA	9/28/2017 06:47
Carr: LEAD		88		40-110	%REC	DL = NA	9/28/2017 06:47
Radium-226 b	y Radon Emanation - M	ethod 903.1	PAI	783	Prep	Date: 9/21/2017	PrepBy: HCJ
Ra-226	-	0.0049 (+/- 0.0046)	U	0.0068	BQ/I	NA	10/2/2017 14:04
Carr: BARIUN	Λ	93.9		40-110	%REC	DL = NA	10/2/2017 14:04

Client:	ALS Environmental					Date: 02-0	Dct-17
Project:	L1989985				,	Work Order: 1709	9366
Sample ID:	L1989985-4					Lab ID: 1709	9366-4
Legal Location	n:					Matrix: WA	TER
Collection Dat	te: 9/9/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by L	iquid Scintilation		PAI	704	Prep	Date: 9/25/2017	PrepBy: HCJ
Pb-210	•	-0.012 (+/- 0.014)	U	0.024	BQ/I	NA	9/28/2017 08:50
Carr: LEAD		89.7		40-110	%REC	DL = NA	9/28/2017 08:50
Radium-226 b	y Radon Emanation - M	ethod 903.1	PAI	783	Prep	Date: 9/21/2017	PrepBy: HCJ
Ra-226		0.0030 (+/- 0.0038)	U	0.006	BQ/I	NA	10/2/2017 14:04
Carr: BARIUN	1	95.6		40-110	%REC	DL = NA	10/2/2017 14:04

Client:	ALS Environmental					Date: 02-0	Oct-17
Project:	L1989985				Ţ	Work Order: 170	9366
Sample ID:	L1989985-6					Lab ID: 170	9366-5
Legal Location	:					Matrix: WA	TER
Collection Date	e: 9/9/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by Li	quid Scintilation		PAI	704	Prep	Date: 9/25/2017	PrepBy: HCJ
Pb-210	•	0.35 (+/- 0.089)		0.033	-	NA	9/28/2017 10:52
Carr: LEAD		65.3		40-110	%REC	DL = NA	9/28/2017 10:52
Radium-226 by	Radon Emanation - M	ethod 903.1	PAI	783	Prep	Date: 9/21/2017	PrepBy: HCJ
Ra-226		0.29 (+/- 0.075)		0.0065	BQ/I	NA	10/2/2017 14:04
Carr: BARIUM		95		40-110	%REC	DL = NA	10/2/2017 14:04

Client:	ALS Environmental					Date: 02-0	Dct-17
Project:	L1989985				,	Work Order: 1709	9366
Sample ID:	L1989985-7					Lab ID: 1709	9366-6
Legal Location	:					Matrix: WA	TER
Collection Date	: 9/9/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by Li	quid Scintilation		PAL	704	Prep	Date: 9/25/2017	PrepBy: HCJ
Pb-210	•	0.021 (+/- 0.018)	U	0.028	BQ/I	NA	9/28/2017 12:55
Carr: LEAD		75.8		40-110	%REC	DL = NA	9/28/2017 12:55
Radium-226 by	Radon Emanation - M	ethod 903.1	PAL	783	Prep	Date: 9/21/2017	PrepBy: HCJ
Ra-226		0.049 (+/- 0.016)		0.0049	BQ/I	NA	10/2/2017 14:04

Client:	ALS Environmental					Date: 02-0	Oct-17
Project:	L1989985				Ţ	Work Order: 1709	9366
Sample ID:	L1989985-8					Lab ID: 1709	9366-7
Legal Location	n:					Matrix: WA	TER
Collection Dat	e: 9/9/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by L	iquid Scintilation		PAI	704	Prep	Date: 9/25/2017	PrepBy: HCJ
Pb-210	•	-0.00079 (+/- 0.014)	U	0.024	-	NA	9/28/2017 15:42
Carr: LEAD		89.2		40-110	%REC	DL = NA	9/28/2017 15:42
Radium-226 b	y Radon Emanation - M	lethod 903.1	PAI	783	Prep	Date: 9/21/2017	PrepBy: HCJ
Ra-226	-	0.0041 (+/- 0.0047)	U	0.0073	BQ/I	NA	10/2/2017 14:04
Carr: BARIUN	Λ	93.4		40-110	%REC	DL = NA	10/2/2017 14:04

Client:	ALS Environmental					Date: 02-0	Oct-17
Project:	L1989985				1	Work Order: 170	9366
Sample ID:	L1989985-10					Lab ID: 170	9366-8
Legal Location	:					Matrix: WA	TER
Collection Date	e: 9/9/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by Li	iquid Scintilation		PAI	704	Prep	Date: 9/25/2017	PrepBy: HCJ
Pb-210	•	-0.0024 (+/- 0.015)	U	0.025	-	NA	9/28/2017 17:44
Carr: LEAD		84.1		40-110	%REC	DL = NA	9/28/2017 17:44
Radium-226 by	y Radon Emanation - M	lethod 903.1	PAI	783	Prep	Date: 9/21/2017	PrepBy: HCJ
Ra-226		0.030 (+/- 0.011)		0.0057	BQ/I	NA	10/2/2017 14:04
Carr: BARIUM							

Client:	ALS Environmental					Date: 02-0	Dct-17
Project:	L1989985				,	Work Order: 1709	9366
Sample ID:	L1989985-11					Lab ID: 1709	9366-9
Legal Location	n:					Matrix: WA	TER
Collection Dat	e: 9/10/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by L	iquid Scintilation		PAI	704	Prep	Date: 9/25/2017	PrepBy: HCJ
Pb-210	•	-0.0096 (+/- 0.013)	U	0.023		NA	9/28/2017 19:47
Carr: LEAD		92.4		40-110	%REC	DL = NA	9/28/2017 19:47
Radium-226 b	y Radon Emanation - M	lethod 903.1	PAI	783	Prep	Date: 9/21/2017	PrepBy: HCJ
Ra-226	-	0.0052 (+/- 0.0041)	LT	0.0048	BQ/I	NA	10/2/2017 14:04
Carr: BARIUN	Λ	95.5		40-110	%REC	DL = NA	10/2/2017 14:04

Client:	ALS Environmental					Date: 02-0	Oct-17
Project:	L1989985				V	Work Order: 170	9366
Sample ID:	L1989985-13					Lab ID: 170	9366-10
Legal Location	n:					Matrix: WA	TER
Collection Dat	e: 9/10/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by L	iquid Scintilation		PAI	704	Prep	Date: 9/25/2017	PrepBy: HCJ
Pb-210	•	0.024 (+/- 0.017)	U	0.026	BQ/I	NA	9/28/2017 21:49
Carr: LEAD		83.4		40-110	%REC	DL = NA	9/28/2017 21:49
Radium-226 b	y Radon Emanation - N	lethod 903.1	PAI	783	Prep	Date: 9/21/2017	PrepBy: HCJ
Ra-226		0.0018 (+/- 0.0036)	U	0.0063	BQ/I	NA	10/2/2017 14:37
Carr: BARIUN	Λ	92.2		40-110	%REC	DL = NA	10/2/2017 14:37

Client:	ALS Environmental					Date: 02-0	Oct-17
Project:	L1989985				V	Work Order: 170	9366
Sample ID:	L1989985-14					Lab ID: 170	9366-11
Legal Location	n:					Matrix: WA	TER
Collection Dat	te: 9/10/2017				Perce	nt Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by L	iquid Scintilation		PAI	704	Prep	Date: 9/25/2017	PrepBy: HCJ
Pb-210	•	0.00011 (+/- 0.018)	U	0.031	BQ/I	NA	9/28/2017 23:52
Carr: LEAD		69		40-110	%REC	DL = NA	9/28/2017 23:52
Radium-226 b	y Radon Emanation - M	lethod 903.1	PAI	783	Prep	Date: 9/21/2017	PrepBy: HCJ
Ra-226		0.0063 (+/- 0.0057)	U	0.008	BQ/I	NA	10/2/2017 14:37
Carr: BARIUN	1	92.3		40-110	%REC	DL = NA	10/2/2017 14:37

Client:	ALS Environmental					Date: 02-0	Oct-17
Project:	L1989985				Ţ	Work Order: 170	9366
Sample ID:	L1989985-18					Lab ID: 170	9366-12
Legal Location	:					Matrix: WA	TER
Collection Date	e: 9/10/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by Li	iquid Scintilation		PAI	704	Prep	Date: 9/25/2017	PrepBy: HCJ
Pb-210	•	0.00042 (+/- 0.015)	U	0.026	BQ/I	NA	9/29/2017 01:55
Carr: LEAD		81.8		40-110	%REC	DL = NA	9/29/2017 01:55
Radium-226 by	y Radon Emanation - M	lethod 903.1	PAI	783	Prep	Date: 9/21/2017	PrepBy: HCJ
Ra-226	-	0.077 (+/- 0.022)		0.0069	BQ/I	NA	10/2/2017 14:37
Carr: BARIUM	1	87.9		40-110	%REC	DL = NA	10/2/2017 14:37

Client:	ALS Environmental					Date: 02-0	Oct-17
Project:	L1989985				Ţ	Work Order: 170	9366
Sample ID:	L1989985-19					Lab ID: 170	9366-13
Legal Location	1:					Matrix: WA	TER
Collection Date	e: 9/10/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by L	iquid Scintilation		PAI	704	Prep	Date: 9/25/2017	PrepBy: HCJ
Pb-210	•	0.0042 (+/- 0.015)	U	0.025	BQ/I	NA	9/29/2017 03:58
Carr: LEAD		83.8		40-110	%REC	DL = NA	9/29/2017 03:58
Radium-226 by	y Radon Emanation - M	lethod 903.1	PAI	783	Prep	Date: 9/21/2017	PrepBy: HCJ
Ra-226	-	0.086 (+/- 0.026)		0.0062	BQ/I	NA	10/2/2017 14:37
Carr: BARIUM	1	87.1		40-110	%REC	DL = NA	10/2/2017 14:37

Client:	ALS Environmental					Date: 02-0	Oct-17
Project:	L1989985				V	Work Order: 170	9366
Sample ID:	L1989985-22					Lab ID: 170	9366-14
Legal Location	n:					Matrix: WA	TER
Collection Dat	e: 9/10/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by L	iquid Scintilation		PAI	704	Prep	Date: 9/25/2017	PrepBy: HCJ
Pb-210	•	-0.0068 (+/- 0.014)	U	0.024	BQ/I	NA	9/29/2017 06:01
Carr: LEAD		87.6		40-110	%REC	DL = NA	9/29/2017 06:01
Radium-226 b	y Radon Emanation - N	ethod 903.1	PAI	783	Prep	Date: 9/21/2017	PrepBy: HCJ
Ra-226		0.0036 (+/- 0.0035)	U	0.0049	BQ/I	NA	10/2/2017 14:37
Carr: BARIUN	1	95.9		40-110	%REC	DL = NA	10/2/2017 14:37

Client:	ALS Environmental					Date:	02-Oct-17
Project:	L1989985					Work Order:	1709366
Sample ID:	L1989985-21					Lab ID:	1709366-15
Legal Location:						Matrix:	WATER
Collection Date:	9/10/2017				Perc	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Explanation of Q	Qualifiers						
Radiochemistry:							
Y1 - Chemical Yield is	ss than the sample specific MD0 s in control at 100-110%. Quant			activity is g		not met, but the reported MDC.	orted
Y2 - Chemical Yield o W - DER is greater the	outside default limits. Ian Warning Limit of 1.42		Н	- LCS Recover	y above upper		,

MDC.

N - Matrix Spike Recovery outside control limits

B - Analyte concentration greater than MDC.

NC - Not Calculated for duplicate results less than 5 times MDC

B3 - Analyte concentration greater than MDC but less than Requested

* - Aliquot Basis is 'As Received' while the Report Basis is 'Dry Weight'.

- Aliquot Basis is 'Dry Weight' while the Report Basis is 'As Received'.

G - Sample density differs by more than 15% of LCS density. D - DER is greater than Control Limit

M - Requested MDC not met.

ALS -- Fort Collins

LT - Result is less than requested MDC but greater than achieved MDC.

Inorganics:

B - Result is less than the requested reporting limit but greater than the instrument method detection limit (MDL).

U or ND - Indicates that the compound was analyzed for but not detected.

E - The reported value is estimated because of the presence of interference. An explanatory note may be included in the narrative.

- M Duplicate injection precision was not met.
- N Spiked sample recovery not within control limits. A post spike is analyzed for all ICP analyses when the matrix spike and or spike
- duplicate fail and the native sample concentration is less than four times the spike added concentration.
- Z Spiked recovery not within control limits. An explanatory note may be included in the narrative.
- * Duplicate analysis (relative percent difference) not within control limits.
- S SAR value is estimated as one or more analytes used in the calculation were not detected above the detection limit.

Organics:

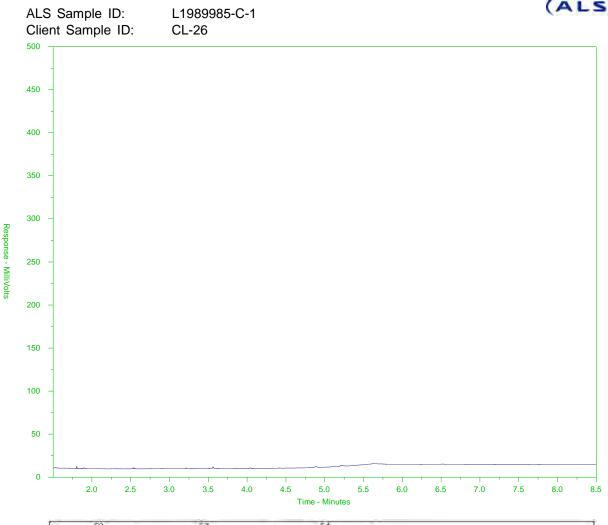
U or ND - Indicates that the compound was analyzed for but not detected.

- B Analyte is detected in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user.
- E Analyte concentration exceeds the upper level of the calibration range.
- J Estimated value. The result is less than the reporting limit but greater than the instrument method detection limit (MDL).
- A A tentatively identified compound is a suspected aldol-condensation product.
- X The analyte was diluted below an accurate quantitation level.
- * The spike recovery is equal to or outside the control criteria used.
- + The relative percent difference (RPD) equals or exceeds the control criteria.
- G A pattern resembling gasoline was detected in this sample.
- D A pattern resembling diesel was detected in this sample.
- M A pattern resembling motor oil was detected in this sample.
- C A pattern resembling crude oil was detected in this sample.
- 4 A pattern resembling JP-4 was detected in this sample.
- 5 A pattern resembling JP-5 was detected in this sample.
- H Indicates that the fuel pattern was in the heavier end of the retention time window for the analyte of interest.
- L Indicates that the fuel pattern was in the lighter end of the retention time window for the analyte of interest.

Z - This flag indicates that a significant fraction of the reported result did not resemble the patterns of any of the following petroleum hydrocarbon products: - gasoline

- JP-8
- diesel
- mineral spirits - motor oil
- Stoddard solvent
- bunker C

Client:	ALS Environmental
Work Order:	1709366
Project:	L1989985

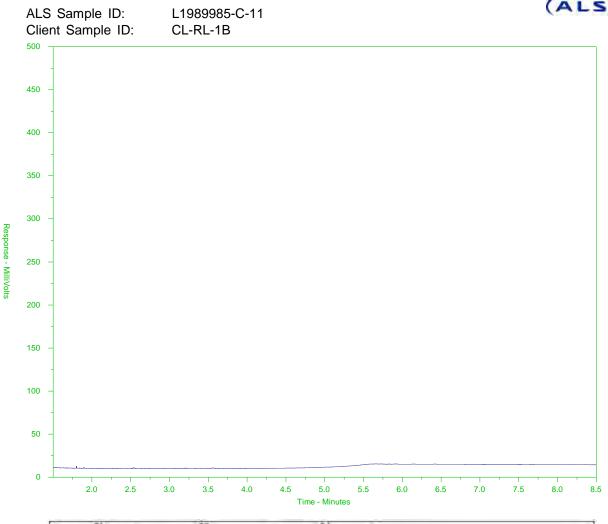

QC BATCH REPORT

Batch ID:	RE170921-2-1	Instrument ID Alp	oha Scin		Method: F	Radium-226	by Rado	n Emanation				
LCS	Sample ID: RE1	70921-2			ι	Jnits: BQ/I		Analys	s Date:	10/2/201	17 14:37	
Client ID:		Run II	D: RE170921-	2A			F	Prep Date: 9/21	/2017	DF	NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Ra-226		1.61 (+/- 0.399)	0.00697	1.715		94	67-120					P,Y1
Carr: BAF	RIUM	16500		16390		100	40-110					Y1
LCSD	Sample ID: RE1	70921-2			ι	Jnits: BQ/I		Analys	s Date:	10/2/201	17 14:37	
Client ID:		Run II	D: RE170921-	2A			F	Prep Date: 9/21	/2017	DF	: NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Ra-226		1.69 (+/- 0.418)	0.00572	1.715		98.3	67-120		1.6	1 0.1	2.1	P,Y1
Carr: BAF	RIUM	16300		16270		100	40-110		1650	0		Y1
МВ	Sample ID: RE1	70921-2			ι	Jnits: BQ/I		Analys	s Date:	10/2/201	7 14:37	
Client ID:		Run II	D: RE170921-	2A			F	Prep Date: 9/21	/2017	DF	: NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Ra-226		0.00088 (+/- 0.0022)	0.0032									U
Carr: BAF	RIUM	16200		16230		99.8	40-110					
The follo	owing samples were	analyzed in this batch:		366-4		366-5	1709 1709	9366-3 9366-6 9366-9 9366-12				

QC BATCH REPORT

Project: L1989985

LCS	Sample ID:	PB170925-1				U	nits: ug		Analys	is Date:	9/29/201	7 10:06	
Client ID:	·		Run II): PB170925- 1	IB		U	P	rep Date: 9/25			NA	
Analyte			Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Carr: LEAD			899		920.2		97.7	40-110					
Pb-210			1.48 (+/- 0.365)	0.0448	1.567		94.6	75-125					P,M3
LCSD	Sample ID:	PB170925-1				U	nits: ug		Analys	is Date:	9/29/201	7 10:38	
Client ID:			Run II): PB170925- 1	IB			P	rep Date: 9/25	/2017	DF:	NA	
Analyte			Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Carr: LEAD			879		941.1		93.4	40-110		89	9		
Pb-210			1.57 (+/- 0.385)	0.0468	1.567		99.9	75-125		1.4	8 0.2	2.1	P,M3
MB	Sample ID:	PB170925-1				U	nits: ug		Analys	is Date:	9/29/201	7 08:03	
Client ID:			Run II): PB170925- 1	IB			P	rep Date: 9/25	/2017	DF:	NA	
Analyte			Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Carr: LEAD			985		962.7		102	40-110					Y1
Pb-210			-0.0075 (+/- 0.012)	0.021									Y1,U
The followi	ng samples	were analyzec	l in this batch:	17093 17093 17093 17093 17093	866-4 866-7 866-10	17093 17093 17093 17093 17093 17093	66-5 66-8 66-11	1709 1709	1366-3 1366-6 1366-9 1366-12				

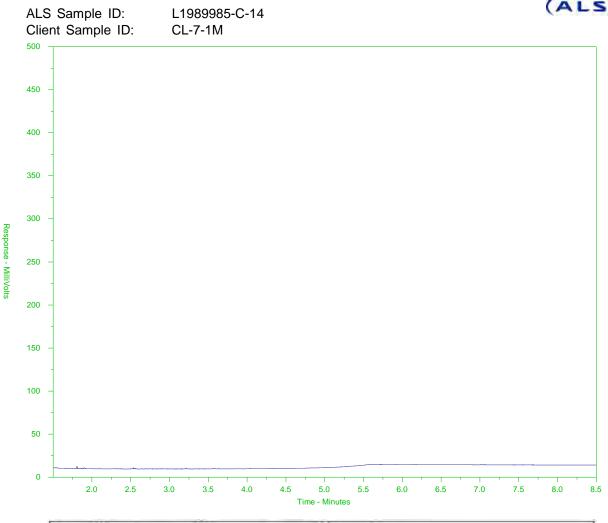


nC10	nC16	nC34	nC50	
174°C	287°C	481°C.	575°C	
346'F	549'F	898'F	1067'F	
-Gasolim	3> +	- Motor (lils/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

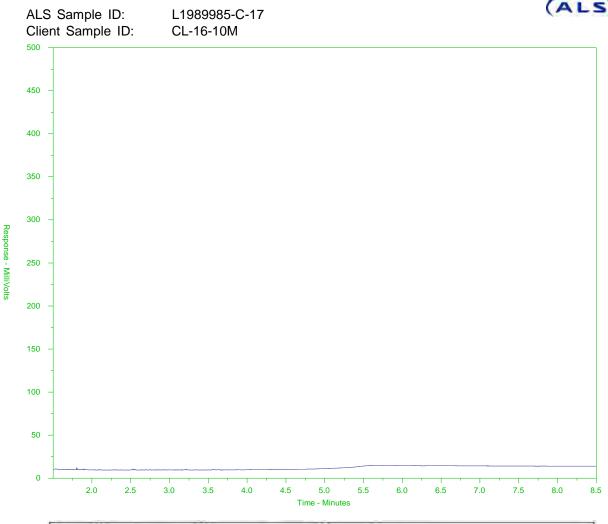


nC10	NC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasoline		Motor	lils/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

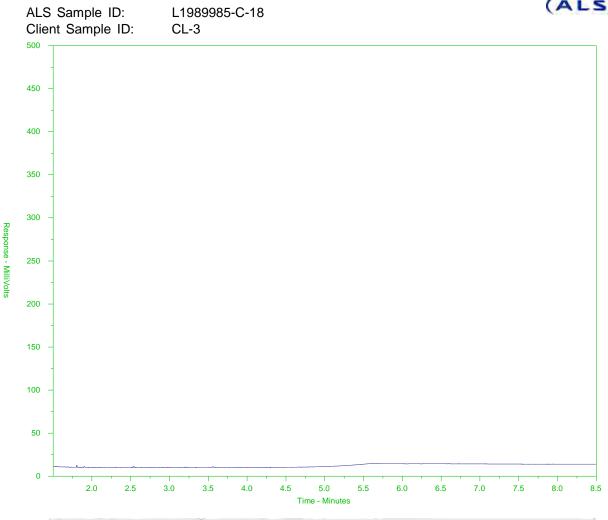


nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		Motor	lis/ Lube Olis/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

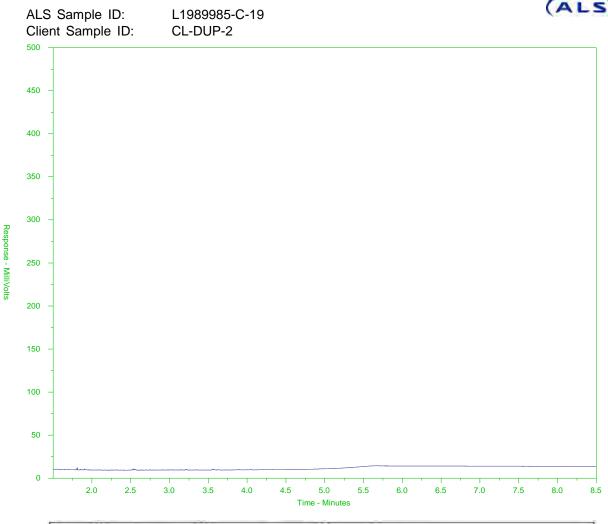


nC10	NC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasoline		Motor	lils/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

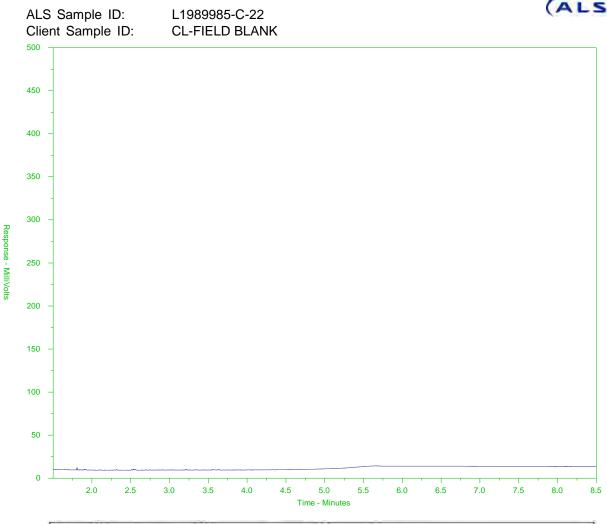


nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasolim		- Motor (lis/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.



nC10	NC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasoline		Motor	lis/ Lube Olis/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		Motor	lis/ Lube Olis/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 14 -

Page <u>1 of 2</u>

www.alsglobal.com

Report To	mmulaidigeocartoani				Report Format	/Distribution		1	Sel	lect Ser	vice Le	vel Belo	w (Ru	sh Turr	naroun	d Time	e (TAT)	is not ava	ilable for a	all tests)
Company:	Public Services and Procurem	nent Canada		Select Report	Format: ØPDF	DEXCEL D	EDD (DIGITAL)	R	⊡Regu	ular (Sta	andard T	AT if re	ceived t	oy 3 pn	n - bus	iness	days)			
Contact:	Rebecca Studer-Halbach			Quality Contro	(QC) Report with Re	eport 🔽 Yes	s 「No												to confirm	
Address:	10025 Jasper Avenue			Criteria on Repo	ort - provide details below	if box checked		-												onfirm TAT
	Edmonton, AB T5J 1S6			Select Distribu			DFAX							_	t ALS	to con	firm TA	T and sur	charge	
Phone:	(788) 497-3761			Email 1 or Fax	rebecca.studer-hall	bach@pwgsc.ca	1	Spec	ify Dat	te Rec	uired f	or E2,							-	
				Email 2	claire.brown@dxbp	projects.ca		-						Analys						
Invoice To	Same as Report To	I Yes ∏	∏ No		Invoice Dis	stribution		-	Indi	icate Fil	tered (F), Prese	rved (P) or Filt	ered a	nd Pre	eserved	(F/P) bel	w	_
	Copy of Invoice with Report	Ves 1	□ No	Select Invoice	Distribution: DEM.		DFAX			_			-	-	-	-				
Company:	Public Services and Procurem	nent Canada		Email 1 or Fax	rebecca.studer-hall	bach@pwgsc.ca	a							10.1	Q6406					
Contact:	Rebecca Studer-Halbach			Email 2											per C					2
	Project Inform	nation		0	il and Gas Required		use)								26 p					Number of Containers
ALS Quote #:	Q64064			Approver ID:		Cost Center:				1.00	7	964			2-e5					onts
Job #:				GL Account:		Routing Code:		4	4	64	3406	264(pu		064			ofo
PO / AFE:	R.015211.049			Activity Code:				Q64064	406	Q64064	er Q6	per (1064	64	10 a		Q64064			ber
LSD:				Location:				er Q6	r Q6	per C	ls pe	hun	064	0640	^{ob-2}	964	per			m
	ork Order # (lab use only)	1 198	9985	ALS Contact	Joanne Lee and Rick Zolkiewski	Sampler:		and per	Total Metals per Q64064		Dissolved Metals per Q64064	Dissolved Mercury per Q64064	PHC F2-F4 per Q64064	BTEX, F1 per Q64064	Radionuclides Pb-210 and Ra-226	NAPL per Q64064	Grease per			
ALS Sample #			and/or Coordinat		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Routine	Fotal Me	Total Mercury	Dissolve	Dissolve	PHC F2	BTEX, F	Radion	NAPL p	Oil and			
(lab use only)	1	scription will a	appear on the repor	10	09-Sep-17	(Water	R	R	R	R	R	R	R	R	R	-		-	17
1	CL-26				09-Sep-17		Water	R	R	R	R	R			R	-			-	11
2	CL-DUP-1						Water	R	R	R	R	R			R					-
3	CL-6-2m				09-Sep-17			-											-	11
4	CL-6-10m				✓ 09-Sep-17		Water	R	R	R	R	R			R					11
<	CL-24				09-Sep-17		Water	R	R	R									-	7
	CL-2				✓ 09-Sep-17		Water	R	R	R		1	1		R					9
1	CL-15				√ 09-Sep-17		Water	R	R	R	Ĩ.				R					9
	CL-5				√ 09-Sep-17		Water	R	R	R	R	R			R					11
8					V 09-Sep-17	1	Water	R	R	R	1									7
٩	CL-9				09-Sep-17	-	Water	R	R	R	R	R	1		R	-	-			11
10	CL-2B						Water	R	R	R			R	R	R	-	-+			
11	CL-RL-1B				10-Sep-17			-		R	R	R								13
12	R-3				V 10-Sep-17		Water	R	R			and the second	NDITIC		DEC	EIVE	D /Ich	use on		9
	g Water (DW) Samples ¹ (clier	nt use)	Spe	ecial Instructions / Sp	ecify Criteria to add o	on report (client	Use)	Froze	en				_	SIF O	_	_		es	No	-
Are samples ta	ken from a Regulated DW Syste	Section Company	PLEASE NOTE:	This project reference	es "routine" paramete TSS, Ammonia, Nitra	ers as presente te/Nitrite, total p	d in Q64064: pH, phosphorus,	Ice pa		Yes		No	-	Custo				res	1000	
	or human drinking water use?		dissolved phospho	orus, dissolved organ	nic carbon, total organium, sulphate, sulphid	nic carbon, total le. chloride. AL	SO, please note	INIT	TIAL CO	OOLER	TEMPER	RATURE	S°C		F	NAL C	OOLER	TEMPER	ATURES %	С
Are samples to		+ 1	total and dissolve	d metals parameters	must meet detection	limits of Q6406	64.	10	3											
		liont upo)			SHIPMENT RECEP					-	FIN	AL SH	IPMEN	IT RE	CEPT	ION ((lab use	e only)	-	
Released by:	SHIPMENT RELEASE (c		Time: F	Received by:	- 12 (Date: 1.1	Time: 10500	Rece	eived b	oy:					Date:		Ti	me:		

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

Affix ALS barcode label here (lab use only)

COC Number: 14 -

Page 2 of 2

www.alsglobal.com

Report To	in the second second				Report Format	/ Distribution			Sel	ect Ser	ice Lev	el Belo	w (Rus	h Turna	around	Time	(TAT) is	not availabl	e for all t	tests)
Company:	Public Services and Procure	ment Canada	а	Select Report F	ormat: IPDF	ØEXCEL ØE	DD (DIGITAL)	R	⊡Regu	ılar (Sta	ndard T	AT if rec	eived b	y 3 pm	- busi	ness da	ays)			
Contact:	Rebecca Studer-Halbach			Quality Control	(QC) Report with R	eport FYes	∏ No			1.1.1								act ALS to a		
Address:	10025 Jasper Avenue			Criteria on Repor	t - provide details below			E	□Eme	rgency (1-2 bus.	days if	receive	d by 3p	om) 10	0% su	rcharge	- contact AL	S to con	firm TAT
<u>n</u>	Edmonton, AB T5J 1S6			Select Distributi	2170	and a state	∃FAX			100 C				contac	t ALS t	o confi	m TAT	and surchar	ge	
Phone:	(788) 497-3761			Email 1 or Fax	rebecca.studer-ha			Spec	ify Dat	e Req	uired fo	or E2,E	_	_						
				- Email 2	claire.brown@dxb								_	nalys		-				-
Invoice To	Same as Report To	Ves Yes	∏ No		Invoice Di			_	Indi	cate Filt	ered (F)	, Preser	ved (P)	or Filt	ered an	nd Pres	served (F/P) below	-	
	Copy of Invoice with Report	Yes	∏ No	Select Invoice [Charles and the second	□FAX					_	-		-				-	
Company:	Public Services and Procure	ment Canada	а		rebecca.studer-ha	bach@pwgsc.ca									Q6406					
Contact:	Rebecca Studer-Halbach			Email 2		A PERSONAL AND AND AND A									per 0					Sis
	Project Infor	mation			l and Gas Require		ise)								26					tain
ALS Quote #:	Q64064			Approver ID:							84	064			Ra-226					Con
Job #:	D ALCOLL ALC			GL Account:		Routing Code.		64	7	064	Q64064	Q64064			and		Q64064			rof
PO/AFE:	R.015211.049			Activity Code:				1640	Q64064	Q64064	er O	per	Q64064	064	210		00		1.0	Number of Containers
LSD: ALS Lab Wo	rk Order # (lab use only)			ALS Contact:	Joanne Lee and Rick Zolkiewski	Sampler:		and per Q64064	als per Q	per	Metals p	Mercury	per	per Q64064	lides Pb-	per Q64064	Grease per			N
ALS Sample # (lab use only)			n and/or Coordina		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Routine a	Fotal Metals per	Total Mercury	Dissolved Metals per	Dissolved Mercury	PHC F2-F4	BTEX, F1	Radionuclides Pb-210 and	NAPL per	Oil and G			
	CL-8		appear on the rep-		/ 10-Sep-17		Water	R	R	R				-	R	-			1	9
13	CL-7-1m				10-Sep-17		Water	R	R	R	R	R	R	R	R					15
	CL-20				10-Sep-17	12201-0-1	Water	R	R	R						-				7
5															-					
- 16-	CL-16-2m				10-Sep-17		Water	R	R	R	_								-	7
F	CL-16-10m				10-Sep-17		Water	R	R	R	-		R	R				-	-	9
18	CL-3				🛩 10-Sep-17		Water	R	R	R	R	R	R	R	R	R				17
101	CL-DUP-2				10-Sep-17		Water	R	R	R	R	R	R	R	R	R				17
20	CL-29				V 10-Sep-17		Water	R	R	R					1					7
21	CL-Trip Blank				10-Sep-17	HOLD for analysi	Water													11
27	CL-Field Blank				10-Sep-17		Water	R	R	R	R	R	R	R	R					11
								-	-	-		-	-	-				-	-	-
	1							-	1.5.1	L	AMO	ECO	NDIT	ONA	SPE	CEN	ED (In	o use onl		
Drinking	Water (DW) Samples ¹ (clie	nt use)	Sp	ecial Instructions / Spec	ify Criteria to add o	n report (client Us	e)	Froze	n			LE CO	NDIT		-	vatio		les	y) No	
Are samples tak ┌─ Y	ten from a Regulated DW Syst es ☑ No	em?	conductivity, alka	This project references linity, turbidity, TDS, TS	S, Ammonia, Nitra	te/Nitrite, total pho	osphorus,	Ice p		Yes		No						Yes	No	E
Are samples for ┌─ Y	human drinking water use? es 🔽 No		calcium, magnes	norus, dissolved organic ilum, potassium, sodium ed metals parameters m	n, sulphate, sulphide	e, chloride. ALSO				DOLER	_	RATURE	ES °C	-	3	FINAL	COOLE	R TEMPER	ATURES	S°C
	SHIPMENT RELEASE (client use)			SHIPMENT RECEP		ly)	-			FIN	AL SH	IPME	NTR	ECEF	TION	l (lab u	se only)	1	
Released by:	Dat		Time: 8-'000 m	Received by:		Date:	Time:	Rec	eived b	oy:					Date	_		Fime:		

re to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

vater samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTN: Rebecca Studer-Halbach Northern Contaminated Sites 10025 Jasper Avenue NW Edmonton AB T5J 1S6 Date Received: 14-SEP-17 Report Date: 12-DEC-17 16:57 (MT) Version: FINAL REV. 4

Client Phone: 780-497-3761

Certificate of Analysis

Lab Work Order #: L1991573 Project P.O. #: R.015211.049 Job Reference: C of C Numbers: Legal Site Desc:

Comments:

25-OCT-2017 Cesium data has been added to metals results. 12-DEC-2017 Parameter name for all samples has been updated from Total Dissolved P to Total P for appropriate data.

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1991573 CONTD.... PAGE 2 of 9 12-DEC-17 16:57 (MT) Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time	L1991573-1 Water 12-SEP-17 NX-12	L1991573-2 Water 12-SEP-17 NX-6	L1991573-3 Water 12-SEP-17 NX-DUP-1	L1991573-4 Water 12-SEP-17 NX-13	
	Client ID	107.12				
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	152	53.0 _{HTC}	49.9 _{нтс}	155 _{нтс}	
	Hardness (as CaCO3) (mg/L)	70.8	21.7	22.0	65.2	
	рН (рН)	7.97	7.32	7.33	7.90	
	Total Suspended Solids (mg/L)	<3.0	9.7	<3.0	3.1	
	Total Dissolved Solids (mg/L)	92	44	64	94	
	Turbidity (NTU)	0.42	1.02	1.14	0.37	
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	58.6	21.4	21.0	56.4	
	Ammonia, Total (as N) (mg/L)	<0.0050	0.0090	0.0064	0.0073	
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	
	Chloride (Cl) (mg/L)	2.39	<0.50	<0.50	2.36	
	Fluoride (F) (mg/L)	0.144	0.173	0.167	0.142	
	Nitrate (as N) (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020	0.0077	0.0064	<0.0020	
	Phosphorus (P)-Total (mg/L)	0.0038	0.0227	0.0261	0.0039	
	Sulfate (SO4) (mg/L)	14.8	2.16	2.15	14.4	
	Sulphide as S (mg/L)	<0.018	0.022	0.021	<0.018	
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	5.06	18.3	18.7	4.88	
	Total Organic Carbon (mg/L)	4.94	19.5	19.4	4.78	
Total Metals	Aluminum (Al)-Total (mg/L)	0.0269	0.0561	0.0573	0.0261	
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Arsenic (As)-Total (mg/L)	0.00020	0.00056	0.00058	0.00022	
	Barium (Ba)-Total (mg/L)	0.0110	0.00571	0.00578	0.0114	
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Boron (B)-Total (mg/L)	0.011	<0.010	<0.010	0.011	
	Cadmium (Cd)-Total (mg/L)	<0.0000050	<0.000050	<0.0000050	<0.000050	
	Calcium (Ca)-Total (mg/L)	15.0	5.23	5.29	14.9	
	Cesium (Cs)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Chromium (Cr)-Total (mg/L)	<0.00010	0.00018	0.00038	<0.00010	
	Cobalt (Co)-Total (mg/L)	<0.00010	0.00022	0.00022	<0.00010	
	Copper (Cu)-Total (mg/L)	0.00078	<0.00050	<0.00050	0.00079	
	Iron (Fe)-Total (mg/L)	0.028	0.142	0.147	0.027	
	Lead (Pb)-Total (mg/L)	<0.000050	0.000160	0.000120	<0.000050	
	Lithium (Li)-Total (mg/L)	0.0022	<0.0010	0.0010	0.0022	
	Magnesium (Mg)-Total (mg/L)	6.59	2.10	2.13	6.79	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1991573 CONTD.... PAGE 3 of 9 12-DEC-17 16:57 (MT) Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L1991573-1 Water 12-SEP-17 NX-12	L1991573-2 Water 12-SEP-17 NX-6	L1991573-3 Water 12-SEP-17 NX-DUP-1	L1991573-4 Water 12-SEP-17 NX-13
Grouping	Analyte				
WATER					
Total Metals	Manganese (Mn)-Total (mg/L)	0.00131	0.0168	0.0176	0.00144
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.000247	0.000056	0.000075	0.000243
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	1.00	0.41	0.41	1.03
	Selenium (Se)-Total (mg/L)	<0.000050	0.000052	<0.000050	<0.000050
	Silicon (Si)-Total (mg/L)	0.85	1.91	1.93	0.86
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	2.53	2.18	2.26	2.57
	Strontium (Sr)-Total (mg/L)	0.0522	0.0101	0.0103	0.0514
	Sulfur (S)-Total (mg/L)	5.07	1.07	1.13	4.85
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	0.00077	0.00040	<0.00030	DLM <0.00090
	Uranium (U)-Total (mg/L)	0.000505	0.000074	0.000077	0.000529
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	0.0039	0.0037	<0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location	LAB			
	Dissolved Metals Filtration Location	LAB			
	Aluminum (Al)-Dissolved (mg/L)	0.0031			
	Antimony (Sb)-Dissolved (mg/L)	<0.00010			
	Arsenic (As)-Dissolved (mg/L)	0.00020			
	Barium (Ba)-Dissolved (mg/L)	0.0115			
	Beryllium (Be)-Dissolved (mg/L)	<0.000020			
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050			
	Boron (B)-Dissolved (mg/L)	0.011			
	Cadmium (Cd)-Dissolved (mg/L)	<0.0000050			
	Calcium (Ca)-Dissolved (mg/L)	16.6			
	Cesium (Cs)-Dissolved (mg/L)	<0.000010			
	Chromium (Cr)-Dissolved (mg/L)	<0.00010			
	Cobalt (Co)-Dissolved (mg/L)	<0.00010			
	Copper (Cu)-Dissolved (mg/L)	0.00063			
	Iron (Fe)-Dissolved (mg/L)	<0.010			
	Lead (Pb)-Dissolved (mg/L)	<0.000050			
	Lithium (Li)-Dissolved (mg/L)	0.0025			

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1991573 CONTD.... PAGE 4 of 9 12-DEC-17 16:57 (MT) Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L1991573-1 Water 12-SEP-17 NX-12	L1991573-2 Water 12-SEP-17 NX-6	L1991573-3 Water 12-SEP-17 NX-DUP-1	L1991573-4 Water 12-SEP-17 NX-13	
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)	7.15				
	Manganese (Mn)-Dissolved (mg/L)	<0.00010				
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050				
	Molybdenum (Mo)-Dissolved (mg/L)	0.000238				
	Nickel (Ni)-Dissolved (mg/L)	< 0.000250				
	Phosphorus (P)-Dissolved (mg/L)	<0.050				
	Potassium (K)-Dissolved (mg/L)	1.12				
	Selenium (Se)-Dissolved (mg/L)	<0.000050				
	Silicon (Si)-Dissolved (mg/L)	<0.000050				
	Silver (Ag)-Dissolved (mg/L)	<0.000010				
	Sodium (Na)-Dissolved (mg/L)	2.62				
	Strontium (Sr)-Dissolved (mg/L)	0.0590				
	Sulfur (S)-Dissolved (mg/L)	4.71				
	Thallium (TI)-Dissolved (mg/L)	<0.000010				
	Tin (Sn)-Dissolved (mg/L)	<0.00010				
	Titanium (Ti)-Dissolved (mg/L)	<0.00010				
	Uranium (U)-Dissolved (mg/L)	<0.000564				
	Vanadium (V)-Dissolved (mg/L)	<0.000504				
	Zinc (Zn)-Dissolved (mg/L)	<0.00050				
	Zirconium (Zr)-Dissolved (mg/L)	<0.0010				
Volatile Organic Compounds	Benzene (mg/L)	<0.00050			<0.00050	
	Ethylbenzene (mg/L)	<0.00050			<0.00050	
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050			<0.00050	
	Styrene (mg/L)	<0.00050			<0.00050	
	Toluene (mg/L)	<0.00045			<0.00045	
	ortho-Xylene (mg/L)	< 0.00050			<0.00050	
	meta- & para-Xylene (mg/L)	< 0.00050			<0.00050	
	Xylenes (mg/L)	<0.00075			<0.00075	
	F1 (C6-C10) (mg/L)	<0.10			<0.10	
	Surrogate: 4-Bromofluorobenzene (SS) (%)	97.2			95.1	
	Surrogate: 1,4-Difluorobenzene (SS) (%)	98.9			95.7	
Hydrocarbons	F1-BTEX (mg/L)	<0.10			<0.10	
	F2 (C10-C16) (mg/L)	<0.30			<0.30	
	F3 (C16-C34) (mg/L)	<0.30			<0.30	
	F4 (C34-C50) (mg/L)	<0.30			<0.30	
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10			<0.10	
	VPH (C6-C10) (mg/L)	<0.10			<0.10	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1991573 CONTD.... PAGE 5 of 9 12-DEC-17 16:57 (MT) Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time	L1991573-1 Water 12-SEP-17	L1991573-2 Water 12-SEP-17	L1991573-3 Water 12-SEP-17	L1991573-4 Water 12-SEP-17	
	Client ID	NX-12	NX-6	NX-DUP-1	NX-13	
Grouping	Analyte					
WATER						
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)	97.5			99.9	
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	111.5			108.2	

Qualifier

Applies to Sample Number(s)

PAGE 6 of 9 12-DEC-17 16:57 (MT) Version: FINAL REV. 4

L1991573 CONTD

QC Samples with Qualifiers & Comments:

Parameter

QC Type Description

ac Type Beeen	iption	raiancici	Quanner	Applied to Cample Number(0)
Matrix Spike		Dissolved Organic Carbon	MS-B	L1991573-1, -2, -3, -4
Matrix Spike		Total Organic Carbon	MS-B	L1991573-1, -2, -3, -4
Matrix Spike		Calcium (Ca)-Dissolved	MS-B	L1991573-1
Matrix Spike		Magnesium (Mg)-Dissolved	MS-B	L1991573-1
Matrix Spike		Sodium (Na)-Dissolved	MS-B	L1991573-1
Matrix Spike		Strontium (Sr)-Dissolved	MS-B	L1991573-1
Matrix Spike		Barium (Ba)-Total	MS-B	L1991573-1, -2, -3, -4
Matrix Spike		Calcium (Ca)-Total	MS-B	L1991573-1, -2, -3, -4
Matrix Spike		Magnesium (Mg)-Total	MS-B	L1991573-1, -2, -3, -4
Matrix Spike		Sodium (Na)-Total	MS-B	L1991573-1, -2, -3, -4
Matrix Spike		Strontium (Sr)-Total	MS-B	L1991573-1, -2, -3, -4
Matrix Spike		Uranium (U)-Total	MS-B	L1991573-1, -2, -3, -4
Matrix Spike		Nitrate (as N)	MS-B	L1991573-1, -2, -3, -4
Qualifiers for I	ndividual Parameters I	Listed:		
Qualifier	Description			
DLM	Detection Limit Adjust	ed due to sample matrix effects (e.g. c	chemical interfere	ance colour turbidity)
HTC	,	1 (8		e biased high (dissolved Ca/Mg results unavailable).
MS-B		could not be accurately calculated due	-	
NO D				
est Method Re	eferences:			
ALS Test Code	Matrix	Test Description		Method Reference**
ALK-TITR-VA	Water	Alkalinity Species by Titration		APHA 2320 Alkalinity
This analysis is pH 4.5 endpoin	carried out using proce t. Bicarbonate, carbonat	dures adapted from APHA Method 23 te and hydroxide alkalinity are calculat	20 "Alkalinity". To ed from phenolph	btal alkalinity is determined by potentiometric titration to nthalein alkalinity and total alkalinity values.
BE-D-L-CCMS-V	/A Water	Diss. Be (low) in Water by CRC ICI	PMS	APHA 3030B/6020A (mod)
Water samples	are filtered (0.45 um), p	preserved with nitric acid, and analyzed	by CRC ICPMS	
BE-T-L-CCMS-V		Total Be (Low) in Water by CRC IC		EPA 200.2/6020A (mod)
Water samples	are digested with nitric	and hydrochloric acids, and analyzed	by CRC ICPMS.	
BR-L-IC-N-VA	Water	Bromide in Water by IC (Low Level)		EPA 300.1 (mod)
Inorganic anion	is are analyzed by Ion C	hromatography with conductivity and/o	or UV detection.	
CARBONS-DOC	-VA Water	Dissolved organic carbon by combu	stion	APHA 5310B TOTAL ORGANIC CARBON (TOC)
		• •		c Carbon (TOC)". Dissolved carbon (DOC) fractions are
		ugh a 0.45 micron membrane filter pric		
CARBONS-TOC	-VA Water	Total organic carbon by combustion	I	APHA 5310B TOTAL ORGANIC CARBON (TOC)
This analysis is	carried out using proce	dures adapted from APHA Method 53	10 "Total Organic	c Carbon (TOC)".
	Water	Chlorido in Water by IC		EDA 200 1 (mod)
CL-IC-N-VA	Water	Chloride in Water by IC	v LIV datastics	EPA 300.1 (mod)
morganic anion	is are analyzed by 1011 C	hromatography with conductivity and/o	or ov detection.	
EC-PCT-VA	Water	Conductivity (Automated)		APHA 2510 Auto. Conduc.
This analysis is electrode.	carried out using proce	dures adapted from APHA Method 25	10 "Conductivity"	. Conductivity is determined using a conductivity
EC-SCREEN-VA	Water	Conductivity Screen (Internal Use C) nly)	APHA 2510
Qualitative anal		re required during preparation of other	.,	, metals, etc.
			c	
F-IC-N-VA	Water	Fluoride in Water by IC		EPA 300.1 (mod)
Inorganic anion				
	is are analyzed by Ion C	hromatography with conductivity and/o	or UV detection.	
F1-BTX-CALC-V		hromatography with conductivity and/o	or UV detection.	CCME CWS PHC TIER 1 (2001)

This analysis is based on the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2000." For F1 (C6-C10), the sample undergoes a purge and trap extraction prior to analysis by

GC/FID. The F1-BTEX result is calculated as follows: F1-BTEX: F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX). F1-HSFID-VA CCME F1 By Headspace with GCFID EPA 5021A/CCME CWS PHC (Pub# 1310) Water This analysis is based on the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method. Canadian Council of Ministers of the Environment, December 2000." For F1 (C6-C10), the sample undergoes a headspace purge prior to analysis by GC/FID. F1 (C6-C10): Sum of all hydrocarbons that elute between nC6 and nC10. F2-F4-ME-FID-VA CCME F2-F4 Hydrocarbons in Water CCME CWS-PHC, Pub #1310, Dec 2001 Water F2-F4 is extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method. CCME, Dec 2001. HARDNESS-CALC-VA APHA 2340B Water Hardness Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation. APHA 3030B/EPA 1631E (mod) Diss. Mercury in Water by CVAAS or CVAFS **HG-D-CVAA-VA** Water Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. HG-T-CVAA-VA Water Total Mercury in Water by CVAAS or CVAFS EPA 1631E (mod) Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. MET-D-CCMS-VA Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod) Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. **MET-T-CCMS-VA** Water Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod) Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. NH3-F-VA Water Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Roval Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al. Nitrite in Water by IC (Low Level) NO2-L-IC-N-VA Water EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-L-IC-N-VA Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. P-T-COL-VA Water Total P in Water by Colour APHA 4500-P Phosphorus This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. Water Total Dissolved P in Water by Colour APHA 4500-P Phosphorous P-TD-COL-VA This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Dissolved Phosphorus is determined colourimetrically after persulphate digestion of a sample that has been lab or field filtered through a 0.45 micron membrane filter. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. P-TD-PRES-COL-VA Water Total Dissolved P in Water by Colour APHA 4500-P Phosphorous

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Dissolved Phosphorus is determined colourimetrically after persulphate digestion of a sample that has been lab or field filtered through a 0.45 micron membrane filter. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples.

L1991573 CONTD.... PAGE 8 of 9 12-DEC-17 16:57 (MT) Version: FINAL REV. 4

Arsenic (5+), at elevated lev	vels, is a pos	itive interference on colourimetric phosphate analysis.	
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried out electrode	using proced	lures adapted from APHA Method 4500-H "pH Value". 1	Γhe pH is determined in the laboratory using a pH
It is recommended that this	analysis be	conducted in the field.	
S2-T-COL-VA	Water	Total Sulphide by Colorimetric	APHA 4500-S2 Sulphide
This analysis is carried out colourimetric method.	using proced	lures adapted from APHA Method 4500-S2 "Sulphide".	Sulphide is determined using the methlyene blue
SO4-IC-N-VA	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	ed by Ion Ch	romatography with conductivity and/or UV detection.	
TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC
		lures adapted from APHA Method 2540 "Solids". Solids ole through a glass fibre filter, TDS is determined by eva	
TSS-VA	Water	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC
Solids (TSS) are determine	d by filtering gh dissolved	ures adapted from APHA Method 2540 "Solids". Solids a sample through a glass fibre filter, TSS is determined solid content (i.e. seawaters, brackish waters) may pro- samples.	by drying the filter at 104 degrees celsius.
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 Turbidity
This analysis is carried out	using proced	lures adapted from APHA Method 2130 "Turbidity". Tur	bidity is determined by the nephelometric method.
VH-HSFID-VA	Water	VH in Water by Headspace GCFID	BC Env. Lab Manual (VH in Water)
		is heated in a sealed vial to equilibrium. The headspac and n-decane are measured and summed together using	
VH-SURR-FID-VA	Water	VH Surrogates for Waters	BC Env. Lab Manual (VH in Solids)
VOC7-HSMS-VA	Water	BTEX/MTBE/Styrene by Headspace GCMS	EPA 5021A/8260C
		is heated in a sealed vial to equilibrium. The headspac easured using mass spectrometry detection.	e from the vial is transfered into a gas chromatograph.
VOC7/VOC-SURR-MS-VA	Water	VOC7 and/or VOC Surrogates for Waters	EPA 5035A/5021A/8260C
VPH-CALC-VA	Water	VPH is VH minus select aromatics	BC MOE LABORATORY MANUAL (2005)
Volatile Petroleum Hydroca	rbons in Soli , in solids, St	to the British Columbia Ministry of Environment Analyti ds or Water". The concentrations of specific Monocyclic yrene) are subtracted from the collective concentration	c Aromatic Hydrocarbons (Benzene, Toluene,
XYLENES-CALC-VA	Water	Sum of Xylene Isomer Concentrations	CALCULATION
Calculation of Total Xylenes	6		
		ations of the ortho, meta, and para Xylene isomers. Re e no less than the square root of the sum of the square	
* ALS test methods may inco	rporate modi	fications from specified reference methods to improve p	performance.
The last two letters of the ab	ove test code	e(s) indicate the laboratory that performed analytical and	alysis for that test. Refer to the list below:
Laboratory Definition Code	Labora	tory Location	
VA	ALS EN	VIRONMENTAL - VANCOUVER, BRITISH COLUMBIA	A, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

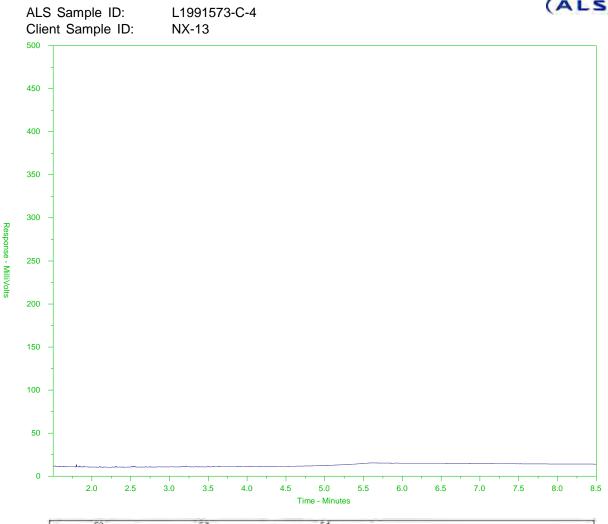
Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. *mg/kg* - *milligrams per kilogram based on dry weight of sample.*

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.


D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		- Motor V	18/ Lube Olls/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

Affix ALS barcode label here (lab use only)

COC Number: 14 -

Page 1 of 1

www.alsglobal.com

Report To				Report Format / Distribution			Select Service Level Below (Rush Turnaround Time (TAT) is not available for all tests)														
Company:	Public Services and Procure	ement Canada	1	Select Report F	Format: IPDF	EXCEL 2	EDD (DIGITAL)	R	⊡Reg	ular (Sta	ndard T	AT if rea	ceived b	y 3 pm	- busi	ness da	ays)			1	
Contact:	Rebecca Studer-Halbach			Quality Control	(QC) Report with R	eport 🔽 Ye	s 🗆 No	P	Prior	ity (2-4	bus. da	ys if rec	eived by	(3pm)	50% s	urchar	ge - cor	tact ALS	to con	firm TA	
Address:	10025 Jasper Avenue			Criteria on Repo	rt - provide details below	v if box checked		E	DEme	rgency (1-2 bus	. days if	receive	d by 3	pm) 10	0% su	rcharge	- contac	t ALS t	o confirm	n TAT
	Edmonton, AB T5J 1S6			Select Distribut	ion: DEMAI		DFAX	E2	□Sam	e day or	weeke	nd emer	gency -	contac	t ALS t	o confi	m TAT	and sur	charge		
Phone:	(788) 497-3761			Email 1 or Fax	rebecca.studer-ha	lbach@pwgsc.ca	a	Spec	ify Da	te Req	uired f	or E2,8	E or P								
				Email 2	claire.brown@dxb	projects.ca							A	nalys	is Re	ques	t				
Invoice To	Same as Report To	✓ Yes	∏ No	1.1.1	Invoice Di	stribution			Ind	icate Fil	tered (F), Prese	rved (P	or Filt	ered ar	nd Pres	served	(F/P) bel	low		
	Copy of Invoice with Report	✓ Yes	∏ No	Select Invoice	Distribution: DEM		□FAX		Р	Р			Р	Ρ	P	Р	P				
Company:	Public Services and Procure	ement Canada	1	Email 1 or Fax	rebecca.studer-hal	lbach@pwgsc.ca	а		_						Q6406						
Contact:	Rebecca Studer-Halbach			Email 2		-									er Q						ŝ
	Project Infor	mation		OI	I and Gas Require	d Fields (client	use)								19 per						Number of Containers
ALS Quote #:	Q64064			Approver ID:		Cost Center:					-	34			a-22						onta
Job #:				GL Account:		Routing Code:		_		7	Q64064	Q64064			A P		64				of C
PO / AFE:	R.015211.049			Activity Code:				4064	1064	Q64064	06	per Q	964	4	0 ar		Q64064				per o
LSD:				Location:				per Q64064	Q64	er Q6	s per	J D	Q64064	Q64064	b-21	4	Der C				Imu
ALS Lab Wor	rk Order # (lab use only)	119	91573	ALS Contact:	Joanne Lee and Rick Zolkiewski	Sampler:			tals per	rcury per	d Metal	d Mercu	per	per	clides P	er Q64064	Grease per				2
ALS Sample # (lab use only)			appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Routine and	Total Metals per Q64064	Total Mercury	Dissolved Metals	Dissolved Mercury	PHC F2-F4	BTEX, F1	Radionuclides Pb-210 and Ra-226	NAPL per	Oil and (
	NX-12				12-Sep-17		Water	R	R	R	R	R	R	R	-	R					15
	NX-6				12-Sep-17		Water	R	R	R											7
	NX-DUP-1				12-Sep-17		Water	R	R	R				-		-	-		-	-	7
	NX-13				12-Sep-17		Water	R	R	R			R	R	-	-	-				11
				-	12-060-17		Vvalei	N	K	<u> </u>										-	
				-				1		-					-		-		-		
												_							_	_	
				14. T					1					1							
									1000					-						-	
			73-COFC													-				\rightarrow	
		2,00,10	10 001 0											-				-	-		
																			_		
Drinking	Water (DW) Samples ¹ (clie	nt use)	Special	Instructions / Spec	ify Criteria to add o	n report (client U	lse)	-			SAMP	LE CO	NDITI	-		-		b use			-
Are samples tak	en from a Regulated DW Syst	am2	PLEASE NOTE: This	project references	"routine" paramete	re as presented	in 064064: pH	Froze			H		-		Obser					No	H
TYE		entr	conductivity, alkalinity					Ice pa	acks ng Init	Yes		No	Ц	Cust	ody s	eal in	tact	Yes	ш	No	Ц
5	human drinking water use?		dissolved phosphorus					1.000	0	1.0.0	TEMPE	RATUR	59.2	-		FINAL	000	ER TEM	DEDAT	IIDEC 9	-
Are samples for	•		calcium, magnesium, total and dissolved me							JULER	CAIFE		10 0			THE			LIMI	UNES "	
		light			A		and the second	3		-			IDIAT	NTD	COFF	TION	1 (leb	100 001		_	
Released by:	SHIPMENT RELEASE (Time: Rece	ived by:	SHIPMENT RECEP	Date:	Time:	Rec	eived I	21/2	FIN	AL SH	IPME	NIR	ECEP Date		(lab	use onl Time:	iy)		
Released by.	S S	p 13/17	9:00m	EN		14-90017	9:20	Rece	sived i	. Y.					Date			rine.			
REFER TO BACK	A PAGE FOR ALS LOCATIONS	AND SAMPLI		1219	WHI	TE - LABORATO		LOW -	CLIEN	IT COF	Y		-		-	NA-FM-0	326e v09 Fr	ont/04 Januar	y 2014		

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTN: Rebecca Studer-Halbach Northern Contaminated Sites 10025 Jasper Avenue NW Edmonton AB T5J 1S6 Date Received: 14-SEP-17 Report Date: 03-NOV-17 17:15 (MT) Version: FINAL REV. 3

Client Phone: 780-497-3761

Certificate of Analysis

Lab Work Order #: L1991623 Project P.O. #: R.015211.049 Job Reference: C of C Numbers: Legal Site Desc:

Comments: Total/Dissolved Metals Data has been added. OCT-20-2017. 3-NOV-2017 Cesium data has been added to total and dissolved metals scans.

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 314 Old Airport Road, Unit 116, Yellowknife, NT X1A 3T3 Canada | Phone: +1 867 873 5593 | ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🕽

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1991623 CONTD.... PAGE 2 of 17 03-NOV-17 17:15 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1991623-1 water 12-SEP-17 NO-25	L1991623-2 water 12-SEP-17 NO-1	L1991623-3 water 12-SEP-17 NO-2	L1991623-4 water 12-SEP-17 NO-DUP-1	L1991623-5 water 12-SEP-17 NO-11
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	152	149	150	153	138
	Hardness (as CaCO3) (mg/L)	68.5	нтс 70.6	79.5	79.1	нтс 70.9
	рН (рН)	7.87	7.92	7.95	7.94	7.91
	Total Suspended Solids (mg/L)	3.0	<3.0	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	96	93	116	121	115
	Turbidity (NTU)	0.48	0.76	0.43	0.45	0.53
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	54.5	60.0	69.5	71.5	62.3
	Ammonia, Total (as N) (mg/L)	0.0087	<0.0050	0.0122	0.0083	0.0127
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	2.35	2.39	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.142	0.149	0.169	0.166	0.128
	Nitrate (as N) (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020	<0.0020	0.0063	0.0065	0.0047
	Phosphorus (P)-Total (mg/L)	<0.0020	0.0037	0.0086	0.0072	0.0058
	Sulfate (SO4) (mg/L)	14.5	15.2	8.52	8.51	8.94
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	4.84	4.66	13.6	13.8	14.1
	Total Organic Carbon (mg/L)	4.72	4.67	13.9	14.0	14.4
Total Metals	Aluminum (Al)-Total (mg/L)	0.0329	0.0637	0.0058	0.0051	0.0164
	Antimony (Sb)-Total (mg/L)	<0.00010	0.00016	0.00019	0.00018	0.00018
	Arsenic (As)-Total (mg/L)	0.00024	0.00799	0.0132	0.0125	0.00606
	Barium (Ba)-Total (mg/L)	0.0106	0.0102	0.00561	0.00536	0.00702
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	0.000161	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.010	0.013	<0.010	<0.010	<0.010
	Cadmium (Cd)-Total (mg/L)	<0.0000050	0.0000572	<0.0000050	<0.0000050	<0.0000050
	Calcium (Ca)-Total (mg/L)	15.8	16.7	23.1	22.9	20.8
	Cesium (Cs)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Chromium (Cr)-Total (mg/L)	0.00013	0.00020	0.00014	<0.00010	<0.00010
	Cobalt (Co)-Total (mg/L)	<0.00010	0.00178	0.00069	0.00065	0.00018
	Copper (Cu)-Total (mg/L)	0.00078	0.00677	0.00210	0.00197	0.00259
	Iron (Fe)-Total (mg/L)	0.032	0.104	0.096	0.089	0.045
	Lead (Pb)-Total (mg/L)	<0.000050	0.0120	0.00223	0.00218	0.000272
	Lithium (Li)-Total (mg/L)	0.0025	0.0025	0.0017	0.0017	0.0016
	Magnesium (Mg)-Total (mg/L)	6.75	7.05	4.84	4.43	4.58

L1991623 CONTD.... PAGE 3 of 17 03-NOV-17 17:15 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1991623-6 water 12-SEP-17 NO-7	L1991623-7 water 12-SEP-17 NO-5	L1991623-8 water 12-SEP-17 NO-27	L1991623-9 water 12-SEP-17 NO-4/NO-8	L1991623-10 water 12-SEP-17 NO-6
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	139	148	144	214	148
	Hardness (as CaCO3) (mg/L)	72.3	нтс 70.2	нтс 66.2	нтс 116	70.6
	рН (рН)	7.91	7.92	7.91	8.17	7.90
	Total Suspended Solids (mg/L)	3.0	3.0	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	111	94	96	158	93
	Turbidity (NTU)	0.51	0.47	0.52	0.65	0.48
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	62.8	55.9	57.8	122	59.2
	Ammonia, Total (as N) (mg/L)	0.0114	0.0054	<0.0050	0.0105	<0.0050
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	<0.50	2.39	2.34	<0.50	2.38
	Fluoride (F) (mg/L)	0.129	0.143	0.141	0.185	0.143
	Nitrate (as N) (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	0.0012	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	0.0045	<0.0020	<0.0020	0.0021	<0.0020
	Phosphorus (P)-Total (mg/L)	0.0043	0.0024	<0.0020	<0.0020	0.0026
	Sulfate (SO4) (mg/L)	8.95	14.8	14.5	<0.30	14.8
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	13.9	4.78	5.26	12.2 м	4.92
	Total Organic Carbon (mg/L)	14.3	4.60	4.82	14.0	4.77
Total Metals	Aluminum (Al)-Total (mg/L)	0.0184	0.0157	0.0254	0.0051	0.0262
	Antimony (Sb)-Total (mg/L)	0.00019	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)-Total (mg/L)	0.00605	0.00032	0.00019	0.00958	0.00027
	Barium (Ba)-Total (mg/L)	0.00725	0.0107	0.0101	0.00731	0.0108
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	<0.010	0.011	0.011	<0.010	0.011
	Cadmium (Cd)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	0.0000107	<0.0000050
	Calcium (Ca)-Total (mg/L)	21.3	16.2	15.6	34.5	16.1
	Cesium (Cs)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Chromium (Cr)-Total (mg/L)	0.00013	<0.00010	<0.00010	0.00017	0.00015
	Cobalt (Co)-Total (mg/L)	0.00019	<0.00010	<0.00010	0.00082	<0.00010
	Copper (Cu)-Total (mg/L)	0.00262	0.00090	0.00075	0.00677	0.00090
	Iron (Fe)-Total (mg/L)	0.046	0.015	0.023	0.071	0.030
	Lead (Pb)-Total (mg/L)	0.000297	0.000311	<0.000050	0.000737	0.000092
	Lithium (Li)-Total (mg/L)	0.0017	0.0027	0.0026	0.0013	0.0027
	Magnesium (Mg)-Total (mg/L)	4.71	7.19	6.58	7.36	6.99

L1991623 CONTD.... PAGE 4 of 17 03-NOV-17 17:15 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1991623-11 water 12-SEP-17 R-4		
Grouping	Analyte			
WATER	-			
Physical Tests	Conductivity (uS/cm)	147		
-	Hardness (as CaCO3) (mg/L)	69.3		
	рН (рН)	7.91		
	Total Suspended Solids (mg/L)	<3.0		
	Total Dissolved Solids (mg/L)	98		
	Turbidity (NTU)	0.44		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	56.4		
	Ammonia, Total (as N) (mg/L)	0.0084		
	Bromide (Br) (mg/L)	<0.050		
	Chloride (Cl) (mg/L)	2.41		
	Fluoride (F) (mg/L)	0.150		
	Nitrate (as N) (mg/L)	<0.0050		
	Nitrite (as N) (mg/L)	<0.0010		
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020		
	Phosphorus (P)-Total (mg/L)	<0.0020		
	Sulfate (SO4) (mg/L)	14.9		
	Sulphide as S (mg/L)	<0.018		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	5.31		
	Total Organic Carbon (mg/L)	4.63		
Total Metals	Aluminum (Al)-Total (mg/L)	0.0234		
	Antimony (Sb)-Total (mg/L) Arsenic (As)-Total (mg/L)	<0.00010		
	Barium (Ba)-Total (mg/L)	0.00020		
	Beryllium (Be)-Total (mg/L)	0.0104		
	Bismuth (Bi)-Total (mg/L)	<0.000020		
	Boron (B)-Total (mg/L)	<0.000050		
	Cadmium (Cd)-Total (mg/L)	0.011		
	Calcium (Ca)-Total (mg/L)	<0.0000050 15.7		
	Cesium (Cs)-Total (mg/L)	<0.000010		
	Chromium (Cr)-Total (mg/L)	<0.00010		
	Cobalt (Co)-Total (mg/L)	<0.00010		
	Copper (Cu)-Total (mg/L)	<0.00010		
	Iron (Fe)-Total (mg/L)	0.022		
	Lead (Pb)-Total (mg/L)	<0.00050		
	Lithium (Li)-Total (mg/L)	0.0026		
	Magnesium (Mg)-Total (mg/L)	6.97		

L1991623 CONTD.... PAGE 5 of 17 03-NOV-17 17:15 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1991623-1 water 12-SEP-17 NO-25	L1991623-2 water 12-SEP-17 NO-1	L1991623-3 water 12-SEP-17 NO-2	L1991623-4 water 12-SEP-17 NO-DUP-1	L1991623-5 water 12-SEP-17 NO-11
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.00183	0.00569	0.0148	0.0132	0.0129
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.000271	0.000423	0.000543	0.000555	0.000668
	Nickel (Ni)-Total (mg/L)	< 0.00050	0.00186	0.00103	0.00092	0.00086
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	< 0.050	< 0.050	<0.050
	Potassium (K)-Total (mg/L)	0.90	0.97	0.75	0.69	0.61
	Selenium (Se)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)-Total (mg/L)	0.83	0.82	0.89	0.83	0.84
	Silver (Ag)-Total (mg/L)	<0.00010	0.000065	<0.00010	<0.00010	<0.00010
	Sodium (Na)-Total (mg/L)	2.42	2.54	2.22	2.06	1.49
	Strontium (Sr)-Total (mg/L)	0.0551	0.0559	0.0268	0.0264	0.0259
	Sulfur (S)-Total (mg/L)	4.72	4.96	3.10	2.92	3.09
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	0.00120	0.00195	<0.00030	<0.00030	<0.00030
	Uranium (U)-Total (mg/L)	0.000521	0.000654	0.000120	0.000111	0.000191
	Vanadium (V)-Total (mg/L)	< 0.00050	< 0.00050	< 0.00050	<0.00050	< 0.00050
	Zinc (Zn)-Total (mg/L)	0.0045	0.0276	0.0075	0.0060	0.0031
	Zirconium (Zr)-Total (mg/L)	< 0.00030	< 0.00030	<0.00030	<0.00030	< 0.00030
Dissolved Metals	Dissolved Mercury Filtration Location	LAB	<0.00000	LAB	LAB	<0.00030
	Dissolved Metals Filtration Location	LAB		LAB	LAB	
	Aluminum (AI)-Dissolved (mg/L)	0.0026		0.0037	0.0054	
	Antimony (Sb)-Dissolved (mg/L)	<0.0020		0.00019	0.00019	
	Arsenic (As)-Dissolved (mg/L)	0.00010		0.0127	0.0128	
	Barium (Ba)-Dissolved (mg/L)	0.00113		0.00593	0.00619	
	Beryllium (Be)-Dissolved (mg/L)	<0.000020		<0.000020	<0.000019	
	Bismuth (Bi)-Dissolved (mg/L)	<0.000020		<0.000020	<0.000020	
	Boron (B)-Dissolved (mg/L)	0.011		<0.010	<0.010	
	Cadmium (Cd)-Dissolved (mg/L)	<0.0000050		<0.000050	<0.000050	
	Calcium (Ca)-Dissolved (mg/L)	15.9		23.6	23.5	
	Cesium (Cs)-Dissolved (mg/L)	<0.000010		<0.000010	<0.000010	
	Chromium (Cr)-Dissolved (mg/L)	<0.00010		<0.00010	<0.00010	
	Cobalt (Co)-Dissolved (mg/L)	<0.00010		<0.00010	<0.00010	
	Copper (Cu)-Dissolved (mg/L)	<0.00010		0.00172	0.00174	
	Iron (Fe)-Dissolved (mg/L)	<0.010		0.00172	0.00174	
	Lead (Pb)-Dissolved (mg/L)					
	Lithium (Li)-Dissolved (mg/L)	<0.000050 0.0024		0.000607	0.000588 0.0015	

L1991623 CONTD.... PAGE 6 of 17 03-NOV-17 17:15 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1991623-6 water 12-SEP-17 NO-7	L1991623-7 water 12-SEP-17 NO-5	L1991623-8 water 12-SEP-17 NO-27	L1991623-9 water 12-SEP-17 NO-4/NO-8	L1991623-10 water 12-SEP-17 NO-6
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.0127	0.00093	0.00128	0.0923	0.00146
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.000717	0.000276	0.000265	0.00156	0.000287
	Nickel (Ni)-Total (mg/L)	0.00085	<0.00050	<0.00050	0.00157	0.00052
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	0.63	0.94	0.89	1.34	0.94
	Selenium (Se)-Total (mg/L)	0.000056	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)-Total (mg/L)	0.86	0.81	0.79	1.73	0.82
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	0.000014	<0.000010
	Sodium (Na)-Total (mg/L)	1.54	2.58	2.38	2.63	2.52
	Strontium (Sr)-Total (mg/L)	0.0271	0.0578	0.0546	0.0406	0.0567
	Sulfur (S)-Total (mg/L)	3.06	4.71	4.57	<0.50	4.82
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	0.00033	0.00040	0.00095	<0.00030	0.00078
	Uranium (U)-Total (mg/L)	0.000200	0.000559	0.000534	0.000175	0.000520
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	0.0057	<0.0030	0.0032	0.0102	<0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location	LAB				LAB
	Dissolved Metals Filtration Location	LAB				LAB
	Aluminum (Al)-Dissolved (mg/L)	0.0101				0.0026
	Antimony (Sb)-Dissolved (mg/L)	0.00018				<0.00010
	Arsenic (As)-Dissolved (mg/L)	0.00603				0.00026
	Barium (Ba)-Dissolved (mg/L)	0.00743				0.0116
	Beryllium (Be)-Dissolved (mg/L)	<0.000020				<0.000020
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050				<0.000050
	Boron (B)-Dissolved (mg/L)	<0.010				0.011
	Cadmium (Cd)-Dissolved (mg/L)	<0.0000050				<0.0000050
	Calcium (Ca)-Dissolved (mg/L)	21.0				16.4
	Cesium (Cs)-Dissolved (mg/L)	<0.000010				<0.000010
	Chromium (Cr)-Dissolved (mg/L)	<0.00010				<0.00010
	Cobalt (Co)-Dissolved (mg/L)	<0.00010				<0.00010
	Copper (Cu)-Dissolved (mg/L)	0.00239				0.00075
	Iron (Fe)-Dissolved (mg/L)	0.025				<0.010
	Lead (Pb)-Dissolved (mg/L)	0.000067				<0.000050
	Lithium (Li)-Dissolved (mg/L)	0.0013				0.0025

L1991623 CONTD.... PAGE 7 of 17 03-NOV-17 17:15 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1991623-11 water 12-SEP-17 R-4		
Grouping	Analyte			
WATER				
Total Metals	Manganese (Mn)-Total (mg/L)	0.00116		
	Mercury (Hg)-Total (mg/L)	<0.0000050		
	Molybdenum (Mo)-Total (mg/L)	0.000245		
	Nickel (Ni)-Total (mg/L)	<0.00050		
	Phosphorus (P)-Total (mg/L)	<0.050		
	Potassium (K)-Total (mg/L)	0.92		
	Selenium (Se)-Total (mg/L)	<0.000050		
	Silicon (Si)-Total (mg/L)	0.78		
	Silver (Ag)-Total (mg/L)	<0.000010		
	Sodium (Na)-Total (mg/L)	2.51		
	Strontium (Sr)-Total (mg/L)	0.0553		
	Sulfur (S)-Total (mg/L)	4.71		
	Thallium (TI)-Total (mg/L)	<0.000010		
	Tin (Sn)-Total (mg/L)	<0.00010		
	Titanium (Ti)-Total (mg/L)	0.00086		
	Uranium (U)-Total (mg/L)	0.000528		
	Vanadium (V)-Total (mg/L)	<0.00050		
	Zinc (Zn)-Total (mg/L)	<0.0030		
	Zirconium (Zr)-Total (mg/L)	<0.00030		
Dissolved Metals	Dissolved Mercury Filtration Location	LAB		
	Dissolved Metals Filtration Location	LAB		
	Aluminum (Al)-Dissolved (mg/L)	0.0021		
	Antimony (Sb)-Dissolved (mg/L)	<0.00010		
	Arsenic (As)-Dissolved (mg/L)	0.00019		
	Barium (Ba)-Dissolved (mg/L)	0.0113		
	Beryllium (Be)-Dissolved (mg/L)	<0.000020		
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050		
	Boron (B)-Dissolved (mg/L)	0.011		
	Cadmium (Cd)-Dissolved (mg/L)	<0.0000050		
	Calcium (Ca)-Dissolved (mg/L)	16.5		
	Cesium (Cs)-Dissolved (mg/L)	<0.000010		
	Chromium (Cr)-Dissolved (mg/L)	<0.00010		
	Cobalt (Co)-Dissolved (mg/L)	<0.00010		
	Copper (Cu)-Dissolved (mg/L)	0.00060		
	Iron (Fe)-Dissolved (mg/L)	<0.010		
	Lead (Pb)-Dissolved (mg/L)	<0.000050		
	Lithium (Li)-Dissolved (mg/L)	0.0025		

L1991623 CONTD.... PAGE 8 of 17 03-NOV-17 17:15 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1991623-1 water 12-SEP-17 NO-25	L1991623-2 water 12-SEP-17 NO-1	L1991623-3 water 12-SEP-17 NO-2	L1991623-4 water 12-SEP-17 NO-DUP-1	L1991623-5 water 12-SEP-17 NO-11
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)	7.03		4.98	4.99	
	Manganese (Mn)-Dissolved (mg/L)	<0.00010		0.00033	0.00028	
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050		<0.0000050	<0.000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.000254		0.000534	0.000532	
	Nickel (Ni)-Dissolved (mg/L)	<0.00050		0.00084	0.00086	
	Phosphorus (P)-Dissolved (mg/L)	<0.050		<0.050	<0.050	
	Potassium (K)-Dissolved (mg/L)	1.03		0.88	0.82	
	Selenium (Se)-Dissolved (mg/L)	<0.000050		0.000051	<0.000050	
	Silicon (Si)-Dissolved (mg/L)	0.755		0.853	0.873	
	Silver (Ag)-Dissolved (mg/L)	<0.000010		<0.000010	<0.000010	
	Sodium (Na)-Dissolved (mg/L)	2.59		2.31	2.34	
	Strontium (Sr)-Dissolved (mg/L)	0.0562		0.0272	0.0276	
	Sulfur (S)-Dissolved (mg/L)	4.71		3.04	3.03	
	Thallium (TI)-Dissolved (mg/L)	<0.000010		<0.000010	<0.000010	
	Tin (Sn)-Dissolved (mg/L)	<0.00010		<0.00010	<0.00010	
	Titanium (Ti)-Dissolved (mg/L)	<0.00030		<0.00030	<0.00030	
	Uranium (U)-Dissolved (mg/L)	0.000543		0.000113	0.000113	
	Vanadium (V)-Dissolved (mg/L)	<0.00050		<0.00050	<0.00050	
	Zinc (Zn)-Dissolved (mg/L)	<0.0010		0.0036	0.0039	
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030		<0.00030	<0.00030	
Volatile Organic Compounds	Benzene (mg/L)		<0.00050	<0.00050	<0.00050	
	Ethylbenzene (mg/L)		<0.00050	<0.00050	<0.00050	
	Methyl t-butyl ether (MTBE) (mg/L)		<0.00050	<0.00050	<0.00050	
	Styrene (mg/L)		<0.00050	<0.00050	<0.00050	
	Toluene (mg/L)		<0.00045	<0.00045	<0.00045	
	ortho-Xylene (mg/L)		<0.00050	<0.00050	<0.00050	
	meta- & para-Xylene (mg/L)		<0.00050	<0.00050	<0.00050	
	Xylenes (mg/L)		<0.00075	<0.00075	<0.00075	
	F1 (C6-C10) (mg/L)		<0.10	<0.10	<0.10	
	Surrogate: 4-Bromofluorobenzene (SS) (%)		94.5	94.7	93.5	
	Surrogate: 1,4-Difluorobenzene (SS) (%)		94.5	99.4	101.4	
Hydrocarbons	F1-BTEX (mg/L)		<0.10	<0.10	<0.10	
	F2 (C10-C16) (mg/L)		<0.30	<0.30	<0.30	
	F3 (C16-C34) (mg/L)		<0.30	<0.30	<0.30	
	F4 (C34-C50) (mg/L)		<0.30	<0.30	<0.30	
	Volatile Hydrocarbons (VH6-10) (mg/L)		<0.10	<0.10	<0.10	
	VPH (C6-C10) (mg/L)		<0.10	<0.10	<0.10	

L1991623 CONTD.... PAGE 9 of 17 03-NOV-17 17:15 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1991623-6 water 12-SEP-17 NO-7	L1991623-7 water 12-SEP-17 NO-5	L1991623-8 water 12-SEP-17 NO-27	L1991623-9 water 12-SEP-17 NO-4/NO-8	L1991623-10 water 12-SEP-17 NO-6
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)	4.83				7.19
	Manganese (Mn)-Dissolved (mg/L)	0.00051				<0.00010
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050				<0.0000050
	Molybdenum (Mo)-Dissolved (mg/L)	0.000639				0.000260
	Nickel (Ni)-Dissolved (mg/L)	0.00069				< 0.00050
	Phosphorus (P)-Dissolved (mg/L)	<0.050				<0.050
	Potassium (K)-Dissolved (mg/L)	0.72				1.13
	Selenium (Se)-Dissolved (mg/L)	<0.000050				<0.000050
	Silicon (Si)-Dissolved (mg/L)	0.814				0.777
	Silver (Ag)-Dissolved (mg/L)	<0.00014				<0.000010
	Sodium (Na)-Dissolved (mg/L)	1.61				2.67
	Strontium (Sr)-Dissolved (mg/L)	0.0264				0.0580
	Sulfur (S)-Dissolved (mg/L)	3.20				4.89
	Thallium (TI)-Dissolved (mg/L)	<0.000010				<0.000010
	Tin (Sn)-Dissolved (mg/L)	<0.00010				<0.00010
	Titanium (Ti)-Dissolved (mg/L)	<0.00030				<0.00030
	Uranium (U)-Dissolved (mg/L)	0.000192				0.000549
	Vanadium (V)-Dissolved (mg/L)	< 0.000192				<0.000549
	Zinc (Zn)-Dissolved (mg/L)	0.0013				<0.00050
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030				<0.00030
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050		<0.00050	<0.00050
•	Ethylbenzene (mg/L)	<0.00050	<0.00050		<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050		<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050		<0.00050	<0.00050
	Toluene (mg/L)	<0.00045	<0.00045		<0.00045	<0.00045
	ortho-Xylene (mg/L)	<0.00050	<0.00050		<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050		<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075		<0.00075	<0.00075
	F1 (C6-C10) (mg/L)	<0.10	<0.10		<0.10	<0.10
	Surrogate: 4-Bromofluorobenzene (SS) (%)	101.1	94.8		101.9	103.1
	Surrogate: 1,4-Difluorobenzene (SS) (%)	101.7	102.0		100.3	99.7
Hydrocarbons	F1-BTEX (mg/L)	<0.10	<0.10		<0.10	<0.10
	F2 (C10-C16) (mg/L)	<0.30	<0.30		<0.30	<0.30
	F3 (C16-C34) (mg/L)	<0.30	<0.30		<0.30	<0.30
	F4 (C34-C50) (mg/L)	<0.30	<0.30		<0.30	<0.30
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10		<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10		<0.10	<0.10

L1991623 CONTD.... PAGE 10 of 17 03-NOV-17 17:15 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1991623-11 water 12-SEP-17 R-4		
Grouping	Analyte			
WATER				
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)	6.80		
	Manganese (Mn)-Dissolved (mg/L)	<0.00010		
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050		
	Molybdenum (Mo)-Dissolved (mg/L)	0.000243		
	Nickel (Ni)-Dissolved (mg/L)	<0.00050		
	Phosphorus (P)-Dissolved (mg/L)	<0.050		
	Potassium (K)-Dissolved (mg/L)	1.07		
	Selenium (Se)-Dissolved (mg/L)	<0.000050		
	Silicon (Si)-Dissolved (mg/L)	0.744		
	Silver (Ag)-Dissolved (mg/L)	<0.000010		
	Sodium (Na)-Dissolved (mg/L)	2.51		
	Strontium (Sr)-Dissolved (mg/L)	0.0582		
	Sulfur (S)-Dissolved (mg/L)	4.60		
	Thallium (TI)-Dissolved (mg/L)	<0.000010		
	Tin (Sn)-Dissolved (mg/L)	<0.00010		
	Titanium (Ti)-Dissolved (mg/L)	<0.00030		
	Uranium (U)-Dissolved (mg/L)	0.000556		
	Vanadium (V)-Dissolved (mg/L)	<0.00050		
	Zinc (Zn)-Dissolved (mg/L)	<0.0010		
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030		
Volatile Organic Compounds	Benzene (mg/L)			
	Ethylbenzene (mg/L)			
	Methyl t-butyl ether (MTBE) (mg/L)			
	Styrene (mg/L)			
	Toluene (mg/L)			
	ortho-Xylene (mg/L)			
	meta- & para-Xylene (mg/L)			
	Xylenes (mg/L)			
	F1 (C6-C10) (mg/L)			
	Surrogate: 4-Bromofluorobenzene (SS) (%)			
	Surrogate: 1,4-Difluorobenzene (SS) (%)			
Hydrocarbons	F1-BTEX (mg/L)			
	F2 (C10-C16) (mg/L)			
	F3 (C16-C34) (mg/L)			
	F4 (C34-C50) (mg/L)			
	Volatile Hydrocarbons (VH6-10) (mg/L)			
	VPH (C6-C10) (mg/L)			

L1991623 CONTD.... PAGE 11 of 17 03-NOV-17 17:15 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time	L1991623-1 water 12-SEP-17	L1991623-2 water 12-SEP-17	L1991623-3 water 12-SEP-17	L1991623-4 water 12-SEP-17	L1991623-5 water 12-SEP-17
	Client ID	NO-25	NO-1	NO-2	NO-DUP-1	NO-11
Grouping	Analyte					
WATER						
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)		94.8	100.7	98.7	
	Surrogate: 3,4-Dichlorotoluene (SS) (%)		91.2	93.1	85.4	

L1991623 CONTD.... PAGE 12 of 17 03-NOV-17 17:15 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time	L1991623-6 water 12-SEP-17	L1991623-7 water 12-SEP-17	L1991623-8 water 12-SEP-17	L1991623-9 water 12-SEP-17	L1991623-10 water 12-SEP-17
	Client ID	NO-7	NO-5	NO-27	NO-4/NO-8	NO-6
Grouping	Analyte					
WATER						
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)	95.4	97.1		91.2	90.8
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	surr- ND 136.8	90.5		surr- ND 132.2	SURF ND 148.6

	Sample ID Description Sampled Date Sampled Time Client ID	L1991623-11 water 12-SEP-17 R-4		
Grouping	Analyte			
WATER				
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%) Surrogate: 3,4-Dichlorotoluene (SS) (%)			

Description

Qualifiers for Individual Samples Listed:

Sample Number Client Sample ID Qualifier

L1991623-4 NO-DUP-1

VC:RHS Volatile Analysis Compromised; Samples Received With Headspace

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Dissolved Organic Carbon	MS-B	L1991623-1, -2, -3, -4, -5
Matrix Spike	Dissolved Organic Carbon	MS-B	L1991623-10, -11, -6, -7, -8, -9
Matrix Spike	Total Organic Carbon	MS-B	L1991623-1, -2, -3, -4, -5
Matrix Spike	Total Organic Carbon	MS-B	L1991623-10, -11, -6, -7, -8, -9
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1991623-1, -10, -11, -3, -4, -6
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1991623-1, -4
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1991623-1, -10, -11, -3, -4, -6
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1991623-1, -4
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1991623-1, -10, -11, -3, -4, -6
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1991623-1, -10, -11, -3, -4, -6
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1991623-1, -4
Matrix Spike	Aluminum (Al)-Total	MS-B	L1991623-2
Matrix Spike	Arsenic (As)-Total	MS-B	L1991623-2
Matrix Spike	Calcium (Ca)-Total	MS-B	L1991623-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Calcium (Ca)-Total	MS-B	L1991623-2
Matrix Spike	Iron (Fe)-Total	MS-B	L1991623-2
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1991623-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1991623-2
Matrix Spike	Manganese (Mn)-Total	MS-B	L1991623-2
Matrix Spike	Sodium (Na)-Total	MS-B	L1991623-2
Matrix Spike	Strontium (Sr)-Total	MS-B	L1991623-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Strontium (Sr)-Total	MS-B	L1991623-2
	$O_{\rm el}(\omega, \langle O \rangle) = 1$	MS-B	L1991623-2
Matrix Spike	Sulfur (S)-Total	NIC B	210010202

 Qualifier
 Description

 HTC
 Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).

 M
 A peak has been manually integrated.

 MS-B
 Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

 SURR-ND
 Surrogate recovery marginally exceeded ALS DQO. Reported non-detect results for associated samples were deemed to be unaffected.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-TITR-VA	Water	Alkalinity Species by Titration	APHA 2320 Alkalinity
,	01	edures adapted from APHA Method 2320 "Alkalinity te and hydroxide alkalinity are calculated from phe	y". Total alkalinity is determined by potentiometric titration to a nolphthalein alkalinity and total alkalinity values.
BE-D-L-CCMS-VA	Water	Diss. Be (low) in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filter	red (0.45 um),	preserved with nitric acid, and analyzed by CRC IC	PMS.
BE-T-L-CCMS-VA	Water	Total Be (Low) in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are dige	ested with nitric	and hydrochloric acids, and analyzed by CRC ICP	MS.
BR-L-IC-N-VA	Water	Bromide in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are an	alyzed by Ion (Chromatography with conductivity and/or UV detect	ion.
CARBONS-DOC-VA	Water	Dissolved organic carbon by combustion	APHA 5310B TOTAL ORGANIC CARBON (TOC)

		dures adapted from APHA Method 5310 "Total Organio ugh a 0.45 micron membrane filter prior to analysis.	c Carbon (TOC)". Dissolved carbon (DOC) fractions are
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310B TOTAL ORGANIC CARBON (TOC)
This analysis is carried ou	it using proce	dures adapted from APHA Method 5310 "Total Organic	c Carbon (TOC)".
CL-IC-N-VA	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	yzed by Ion C	Chromatography with conductivity and/or UV detection.	
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried ou electrode.	it using proce	edures adapted from APHA Method 2510 "Conductivity"	. Conductivity is determined using a conductivity
EC-SCREEN-VA	Water	Conductivity Screen (Internal Use Only)	APHA 2510
Qualitative analysis of cor	nductivity whe	ere required during preparation of other tests - e.g. TDS	, metals, etc.
F-IC-N-VA	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	yzed by Ion C	Chromatography with conductivity and/or UV detection.	
F1-BTX-CALC-VA	Water	F1-Total BTX	CCME CWS PHC TIER 1 (2001)
	Environmen	ce Method for the Canada-Wide Standard for Petroleun t, December 2000." For F1 (C6-C10), the sample under ted as follows:	
F1-BTEX: F1 (C6-C10) m	inus benzene	e, toluene, ethylbenzene and xylenes (BTEX).	
F1-HSFID-VA	Water	CCME F1 By Headspace with GCFID	EPA 5021A/CCME CWS PHC (Pub# 1310)
		ce Method for the Canada-Wide Standard for Petroleun t, December 2000." For F1 (C6-C10), the sample unde	
F1 (C6-C10): Sum of all h	ydrocarbons	that elute between nC6 and nC10.	
F2-F4-ME-FID-VA	Water	CCME F2-F4 Hydrocarbons in Water	CCME CWS-PHC, Pub #1310, Dec 2001
		nexane micro-extraction technique. Instrumental analys Hydrocarbons in Soil Tier 1 Method, CCME, Dec 200	
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
		ess) is calculated from the sum of Calcium and Magnes incentrations are preferentially used for the hardness ca	
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
Water samples are filtered with stannous chloride, ar		preserved with hydrochloric acid, then undergo a cold-o y CVAAS or CVAFS.	xidation using bromine monochloride prior to reduction
HG-T-CVAA-VA	Water	Total Mercury in Water by CVAAS or CVAFS	EPA 1631E (mod)
Water samples undergo a	cold-oxidatio	on using bromine monochloride prior to reduction with s	tannous chloride, and analyzed by CVAAS or CVAFS.
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	d (0.45 um), p	preserved with nitric acid, and analyzed by CRC ICPMS	i.
Method Limitation (re: Sul	fur): Sulfide a	and volatile sulfur species may not be recovered by this	method.
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)
	ed with nitric	and hydrochloric acids, and analyzed by CRC ICPMS.	
Method Limitation (re: Sul	fur): Sulfide a	and volatile sulfur species may not be recovered by this	method.
NH3-F-VA	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
This analysis is carried ou	it, on sulfuric	acid preserved samples, using procedures modified fro	m J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society e levels of ammonium in seawater", Roslyn J. Waston et
NO2-L-IC-N-VA	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)
		Chromatography with conductivity and/or UV detection.	,
NO3-L-IC-N-VA	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)

Inorganic anions are analyz	ed by Ion Cl	nromatography with conductivity and/or UV detection.	
P-T-PRES-COL-VA	Water	Total P in Water by Colour	APHA 4500-P Phosphorus
after persulphate digestion	of the sampl solved solids	dures adapted from APHA Method 4500-P "Phosphoru: e. (i.e. seawaters, brackish waters) may produce a nega	
Arsenic (5+), at elevated le	vels, is a pos	sitive interference on colourimetric phosphate analysis.	
P-TD-COL-VA	Water	Total Dissolved P in Water by Colour	APHA 4500-P Phosphorous
colourimetrically after persu	Iphate diges solved solids	dures adapted from APHA Method 4500-P "Phosphoru: tion of a sample that has been lab or field filtered throus (i.e. seawaters, brackish waters) may produce a nega	ugh a 0.45 micron membrane filter.
Arsenic (5+), at elevated le	vels, is a pos	sitive interference on colourimetric phosphate analysis.	
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried out electrode	using proced	dures adapted from APHA Method 4500-H "pH Value".	The pH is determined in the laboratory using a pH
It is recommended that this	analysis be	conducted in the field.	
S2-T-COL-VA	Water	Total Sulphide by Colorimetric	APHA 4500-S2 Sulphide
This analysis is carried out colourimetric method.	using proced	dures adapted from APHA Method 4500-S2 "Sulphide"	. Sulphide is determined using the methlyene blue
SO4-IC-N-VA	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	ed by Ion Cl	nromatography with conductivity and/or UV detection.	
TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC
			s are determined gravimetrically. Total Dissolved Solids vaporating the filtrate to dryness at 180 degrees celsius.
TSS-VA	Water	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC
Solids (TSS) are determine	d by filtering gh dissolved		
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 Turbidity
This analysis is carried out	using proced	dures adapted from APHA Method 2130 "Turbidity". Tu	rbidity is determined by the nephelometric method.
VH-HSFID-VA	Water	VH in Water by Headspace GCFID	BC Env. Lab Manual (VH in Water)
		, is heated in a sealed vial to equilibrium. The headspa and n-decane are measured and summed together usi	ce from the vial is transfered into a gas chromatograph. ng flame-ionization detection.
VH-SURR-FID-VA	Water	VH Surrogates for Waters	BC Env. Lab Manual (VH in Solids)
VOC7-HSMS-VA	Water	BTEX/MTBE/Styrene by Headspace GCMS	EPA 5021A/8260C
		, is heated in a sealed vial to equilibrium. The headspa easured using mass spectrometry detection.	ce from the vial is transfered into a gas chromatograph.
VOC7/VOC-SURR-MS-VA	Water	VOC7 and/or VOC Surrogates for Waters	EPA 5035A/5021A/8260C
VPH-CALC-VA	Water	VPH is VH minus select aromatics	BC MOE LABORATORY MANUAL (2005)
Volatile Petroleum Hydroca	rbons in Soli , in solids, S	to the British Columbia Ministry of Environment Analy ids or Water". The concentrations of specific Monocycl tyrene) are subtracted from the collective concentration	ic Aromatic Hydrocarbons (Benzene, Toluene,
XYLENES-CALC-VA	Water	Sum of Xylene Isomer Concentrations	CALCULATION
Calculation of Total Xylenes	\$		
		rations of the ortho, meta, and para Xylene isomers. Rule no less than the square root of the sum of the square	
* ALS test methods may inco	rporate mod	ifications from specified reference methods to improve	performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

VA

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

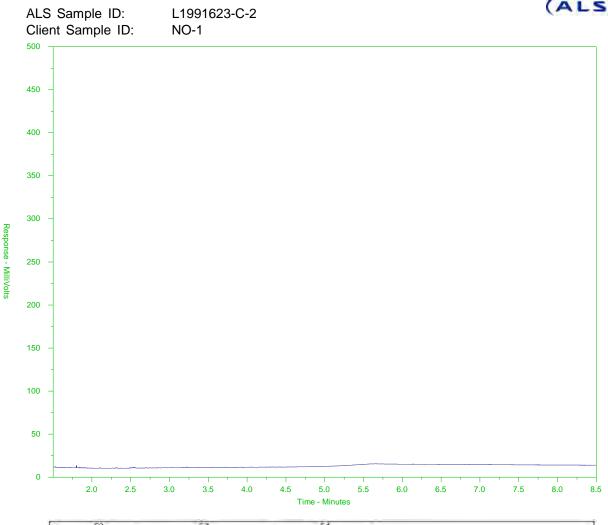
GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

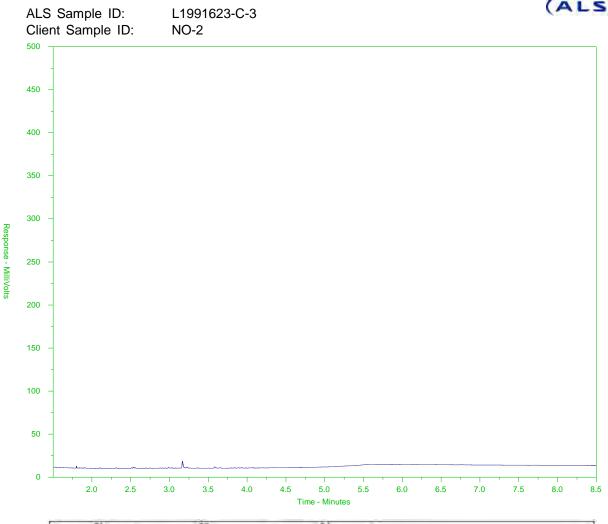

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

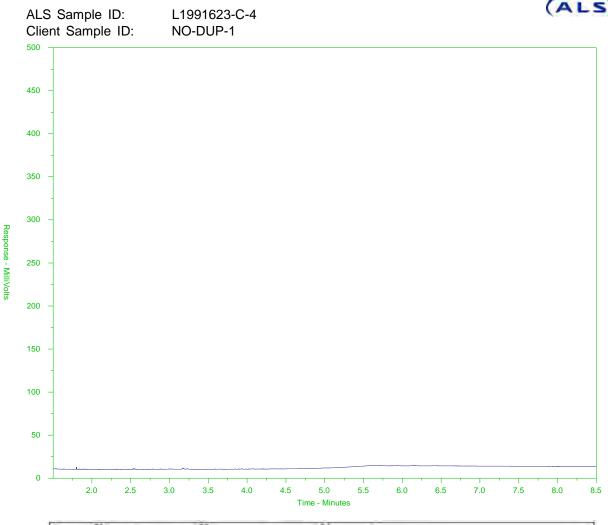


nCIQ	NC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasolim		- Motor V	lis/ Lube Olis/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

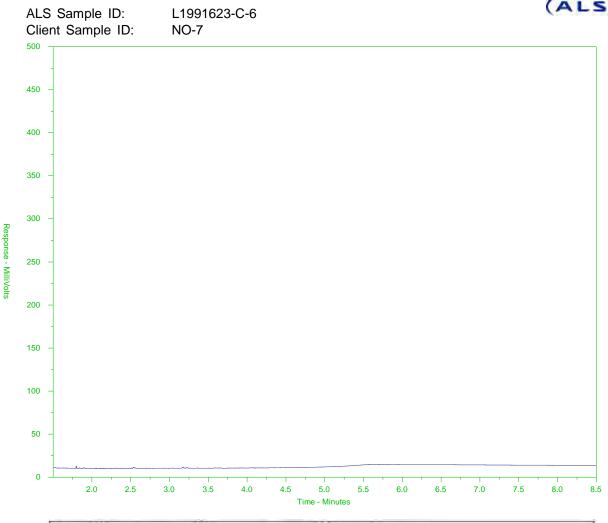


nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasolim	8	Motor	liis/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

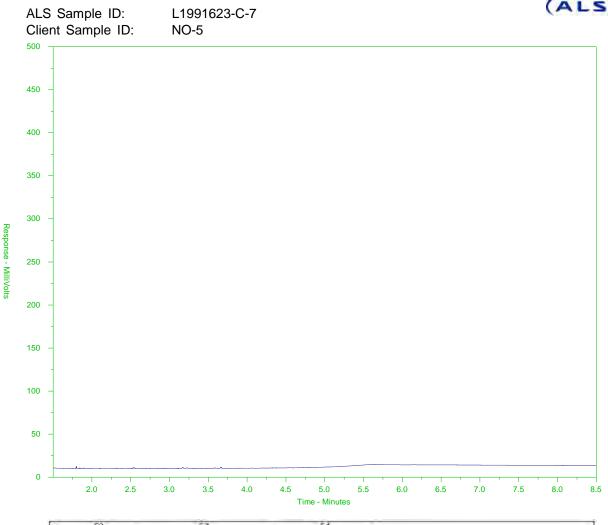


nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		Motor	lis/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

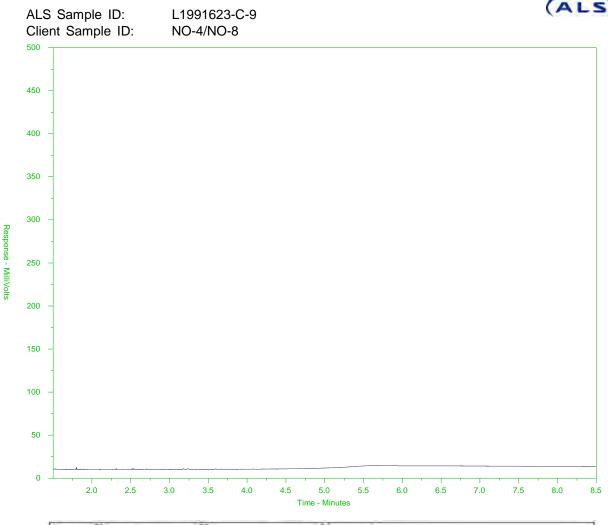


nC10	NC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		Motor	lils/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

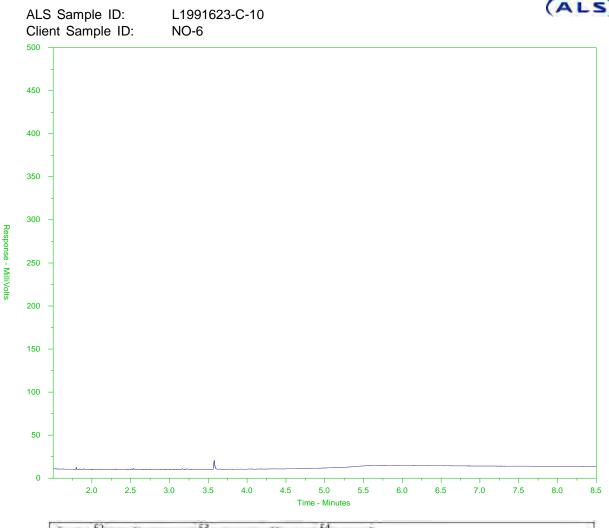


nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		- Motor V	lils/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.



nC10	NC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasoline		Motor	lils/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		- Motor V	1/15/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Chain of Custody (COC) / Analytical **Request Form**

Canada Toll Free: 1 800 668 9878

Affix ALS barcode label here (lab use only)

20

WHITE - LABORATORY COP

YELLOW - CLIENT COPY

COC Number: 14 -

Page 1 of 1

NA-FM-0326e v09 Front/04 January 2014

www.alsolobal.com

Report To	www.alogioba.com			Report Format / Distribution			Select Service Level Below (Rush Turnaround Time (TAT) is not available for all tests)									sts)				
Company:	Public Services and Procurement Canad	da	Select Report F	Format: @PDF	ØEXCEL Ø	EDD (DIGITAL)	R @Regular (Standard TAT if received by 3 pm - business days)													
Contact:	Rebecca Studer-Halbach		Quality Control	(QC) Report with R	eport 🔽 Ye	s ⊏No									AT .					
Address:	10025 Jasper Avenue		Criteria on Repor	rt - provide details below	v if box checked		E Emergency (1-2 bus. days if received by 3pm) 100% surcharge - contact ALS to confirm TAT								m TAT					
· · · · · · · · · · · · · · · · · · ·	Edmonton, AB T5J 1S6		Select Distribut			□FAX	E2 Same day or weekend emergency - contact ALS to confirm TAT and surcharge													
Phone:	(788) 497-3761		Email 1 or Fax	rebecca.studer-ha	lbach@pwgsc.ca	a	Spec	cify Da	te Req	uired t	for E2,	E or P	:							
			Email 2	claire.brown@dxb	projects.ca			_			1	-	-		eques					
Invoice To	Same as Report To Ves	[[−] No		Invoice Di	stribution			Inc	dicate Fil	tered (F), Prese	erved (F) or Fil	tered a	nd Pre	served	(F/P) be	low	1	
	Copy of Invoice with Report Ves	∏ No	Select Invoice	Distribution: DEM		DFAX		P	P			Р	Ρ	Ρ	Р	Р				
Company:	Public Services and Procurement Canad	da	Email 1 or Fax	rebecca.studer-ha	lbach@pwgsc.ca	3								Q6406						
Contact:	Rebecca Studer-Halbach		Email 2											per Q						Ś
	Project Information		Oi	Il and Gas Require		use)								56 p						aine
ALS Quote #:	Q64064		Approver ID:		Cost Center:					4	64			Ra-226						Number of Containers
Job #:			GL Account:		Routing Code:		4	-	64	3406	0640			nd B		064				of C
PO/AFE:	R.015211.049		Activity Code:				per Q64064	406-	per Q64064	r Qe	Der C	064	8	10 a		Q64064				ber
LSD:			Location:				er Q	r 06	er O	Is pe	1 Kin	Q64	640	⁵ b-2	64	per				Mum
ALS Lab Wo	ork Order # (lab use only)	91423	ALS Contact:	Joanne Lee and Rick Zolkiewski	Sampler:		pue	etals pe	ercury p	d Meta	d Merc	F4 per	F1 per Q64064	clides F	er 0640	Grease				-
ALS Sample # (lab use only)	Sample Identificati (This description wi			Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Routine a	Total Metals per Q64064	Total Mercury	Dissolved Metals per Q64064	Dissolved Mercury per Q64064	PHC F2-F4 per Q64064	BTEX, F	Radionuclides Pb-210 and	NAPL per Q64064	Oil and (
)	NO-25			12-Sep-17		Water	R	R	R	R	R									9
2	NO-1			12-Sep-17	1000	Water	R	R	R			R	R							11
3	NO-2		1	12-Sep-17		Water	R	R	R	R	R	R	R							13
Ч	NO-DUP-1			12-Sep-17	1	Water	R	R	R	R	R	R	R							13
5	NO-D07-1 A NO-11 09 NO-7 05 NO-5 05 NO-27 05 NO-4/NO-8 07			12-Sep-17		Water	R	R	R	1										7
ÿ	NO-7			12-Sep-17	1	Water	R	R	R	R	R	R	R		R					15
7	NO-5			12-Sep-17		Water	R	R	R			R	R		0					11
8	NO-27			12-Sep-17		Water	R	R	R											7
9	NO-4/NO-8			12-Sep-17		Water	R	R	R			R	R							11
10	NO-6			12-Sep-17		Water	R	R	R	R	R	R	R		R					15
11	R-4			04-Sep-17		Water	R	R	R	R		T								9
12									-											
Drinkin	g Water (DW) Samples ¹ (client use		s / Spec	cify Criteria to add o	n report (client L	lse)	Froze	00		SAMP	LE CO	NDITI	10.000	-	CEIVE		Ab use Yes		No	-
Γı		conductivity, alk dissolved phosp	alinity, turbidity, TDS, TS borus, dissolved organic	SS, Ammonia, Nitra c carbon, total organ	te/Nitrite, total ph nic carbon, total I	osphorus, Hardness,	lce p Cool	acks ing Ini	Yes tiated					ody se	eal int	tact	Yes	ō	No	
Are samples fo	r human drinking water use? ′es		esium, potassium, sodium ved metals parameters m				SI		OULER	EMPE		.0.0	-		INAL	COOLE	ER TEMP	ERAIL	JRES "	
	SHIPMENT RELEASE (client use)		INITIAL S	SHIPMENT RECEP	TION (lab use o	nly)	0			FIN	AL SH	IPME	NTR	ECEP	TION	(lab ı	use only	y)		
Released by:	Date:	Time:	Received by:		Date:	Time:	Rec	eived	by:					Date	_		Time:		-	

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY, By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

FA

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Bay 13/17

9:00a

PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTN: Rebecca Studer-Halbach Northern Contaminated Sites 10025 Jasper Avenue NW Edmonton AB T5J 1S6 Date Received: 14-SEP-17 Report Date: 03-NOV-17 19:12 (MT) Version: FINAL

Client Phone: 780-497-3761

Certificate of Analysis

Lab Work Order #: L1991686 Project P.O. #: NOT SUBMITTED Job Reference: R.015211.049 C of C Numbers: Legal Site Desc:

Comments: ADDITIONAL 03-NOV-17 19:02

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🕽

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1991686 CONTD.... PAGE 2 of 18 03-NOV-17 19:12 (MT) Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L1991686-5 Water 11-SEP-17 A5-SW08-11	L1991686-6 Water 11-SEP-17 SW-DUP-1	L1991686-7 Water 11-SEP-17 SW-B-2	L1991686-9 Water 11-SEP-17 BG-SW08-01	L1991686-12 Water 11-SEP-17 SW16-02-2M
Grouping	Analyte						
MISC.							
Radiological Parameters	Pb-210 (Bq/L)		<0.024	<0.023	<0.029	<0.023	<0.025
	Ra-226 (Bq/L)		<0.0079	<0.0063	<0.0077	0.0066	<0.0086

L1991686 CONTD.... PAGE 3 of 18 03-NOV-17 19:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1991686-1 Water 11-SEP-17 BG-SW08-04	L1991686-2 Water 11-SEP-17 A3-SW08-01	L1991686-3 Water 11-SEP-17 SW07-3	L1991686-4 Water 11-SEP-17 SW16-01-2M	L1991686-5 Water 11-SEP-17 A5-SW08-11
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	262	185	159	160	166
	Hardness (as CaCO3) (mg/L)	153	нтс 86.8	нтс 79.0	нтс 77.3	80.8
	рН (рН)	8.33	8.00	7.95	7.96	7.96
	Total Suspended Solids (mg/L)	4.4	14.0	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	174	112	98	99	102
	Turbidity (NTU)	0.83	2.36	0.19	0.19	0.19
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	149	68.6	57.2	56.3	60.0
	Ammonia, Total (as N) (mg/L)	0.0148	0.0154	<0.0050	0.0061	<0.0050
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	<0.50	4.67	4.97	4.99	4.91
	Fluoride (F) (mg/L)	0.042	0.085	0.081	0.080	0.081
	Nitrate (as N) (mg/L)	<0.0050	0.108	0.139	0.140	0.138
	Nitrite (as N) (mg/L)	<0.0010	0.0013	<0.0010	<0.0010	0.0012
	Phosphorus (P)-Total Dissolved (mg/L)	0.0022	<0.0020	<0.0020	<0.0020	<0.0020
	Phosphorus (P)-Total (mg/L)	0.0099	0.0130	<0.0020	<0.0020	<0.0020
	Sulfate (SO4) (mg/L)	3.70	21.3	16.5	15.7	17.7
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	10.1	2.25	1.78	1.82	1.60
	Total Organic Carbon (mg/L)	9.74	2.71	1.80	1.69	1.62
Total Metals	Aluminum (Al)-Total (mg/L)	0.0076	0.201	0.0048	0.0043	0.0054
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)-Total (mg/L)	0.00012	0.00034	0.00022	0.00019	0.00019
	Barium (Ba)-Total (mg/L)	0.0901	0.0281	0.0239	0.0231	0.0236
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.073	0.017	0.012	0.013	0.013
	Cadmium (Cd)-Total (mg/L)	<0.0000050	0.0000081	<0.0000050	<0.000050	<0.0000050
	Calcium (Ca)-Total (mg/L)	22.7	19.4	19.0	18.3	19.0
	Cesium (Cs)-Total (mg/L)	<0.000010	0.000056	<0.000010	<0.000010	<0.000010
	Chromium (Cr)-Total (mg/L)	<0.00010	0.00061	<0.00010	<0.00010	<0.00010
	Cobalt (Co)-Total (mg/L)	<0.00010	0.00016	<0.00010	<0.00010	<0.00010
	Copper (Cu)-Total (mg/L)	<0.00050	0.00082	<0.00050	<0.00050	<0.00050
	Iron (Fe)-Total (mg/L)	0.011	0.698	<0.010	<0.010	<0.010
	Lead (Pb)-Total (mg/L)	<0.000050	0.000251	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Total (mg/L)	0.0030	0.0032	0.0031	0.0032	0.0031
	Magnesium (Mg)-Total (mg/L)	22.7	9.30	7.68	7.65	7.74

L1991686 CONTD.... PAGE 4 of 18 03-NOV-17 19:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1991686-6 Water 11-SEP-17 SW-DUP-1	L1991686-7 Water 11-SEP-17 SW-B-2	L1991686-8 Water 11-SEP-17 A3-SW08-05	L1991686-9 Water 11-SEP-17 BG-SW08-01	L1991686-10 Water 11-SEP-17 SW16-01-6M
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	160	166	160	160	157
-	Hardness (as CaCO3) (mg/L)	74.0	77.9	нтс 76.9	нтс 71.2	нтс 71.6
	рН (рН)	7.97	7.99	7.97	7.99	7.95
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	96	98	94	96	96
	Turbidity (NTU)	0.20	0.19	0.23	0.24	0.19
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	56.8	60.0	58.8	59.2	58.1
	Ammonia, Total (as N) (mg/L)	<0.0050	<0.0050	0.0084	<0.0050	<0.0050
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	4.98	4.96	4.98	4.98	4.98
	Fluoride (F) (mg/L)	0.079	0.080	0.079	0.080	0.079
	Nitrate (as N) (mg/L)	0.141	0.139	0.137	0.135	0.141
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	Phosphorus (P)-Total (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	Sulfate (SO4) (mg/L)	16.0	16.8	15.9	15.8	15.7
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	2.72 RRV	1.74	1.72	1.60	1.68
	Total Organic Carbon (mg/L)	2.21	1.67	1.65	1.65	1.87
Total Metals	Aluminum (Al)-Total (mg/L)	0.0050	0.0046	0.0055	0.0118	0.0044
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)-Total (mg/L)	0.00019	0.00020	0.00021	0.00020	0.00023
	Barium (Ba)-Total (mg/L)	0.0232	0.0236	0.0230	0.0224	0.0227
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.013	0.013	0.013	0.012	0.011
	Cadmium (Cd)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Calcium (Ca)-Total (mg/L)	18.6	18.7	18.5	16.6	16.7
	Cesium (Cs)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Chromium (Cr)-Total (mg/L)	0.00015	<0.00010	<0.00010	0.00011	0.00015
	Cobalt (Co)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Iron (Fe)-Total (mg/L)	<0.010	<0.010	0.011	0.017	<0.010
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Total (mg/L)	0.0031	0.0033	0.0034	0.0030	0.0030
	Magnesium (Mg)-Total (mg/L)	7.54	7.55	7.45	7.20	7.24

L1991686 CONTD.... PAGE 5 of 18 03-NOV-17 19:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1991686-11 Water 11-SEP-17 SW16-02-6M	L1991686-12 Water 11-SEP-17 SW16-02-2M	
Grouping	Analyte			
WATER				
Physical Tests	Conductivity (uS/cm)	157	161	
	Hardness (as CaCO3) (mg/L)	нтс 70.8	нтс 72.8	
	рН (рН)	7.97	7.98	
	Total Suspended Solids (mg/L)	<3.0	<3.0	
	Total Dissolved Solids (mg/L)	97	95	
	Turbidity (NTU)	0.21	0.19	
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	58.1	58.7	
	Ammonia, Total (as N) (mg/L)	<0.0050	0.0083	
	Bromide (Br) (mg/L)	<0.050	<0.050	
	Chloride (Cl) (mg/L)	4.99	4.98	
	Fluoride (F) (mg/L)	0.079	0.079	
	Nitrate (as N) (mg/L)	0.141	0.140	
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020	<0.0020	
	Phosphorus (P)-Total (mg/L)	<0.0020	<0.0020	
	Sulfate (SO4) (mg/L)	15.7	16.0	
	Sulphide as S (mg/L)	<0.018	<0.018	
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	1.92	2.95 RRV	
	Total Organic Carbon (mg/L)	1.96	2.09	
Total Metals	Aluminum (Al)-Total (mg/L)	0.0045	0.0049	
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010	
	Arsenic (As)-Total (mg/L)	0.00021	0.00024	
	Barium (Ba)-Total (mg/L)	0.0227	0.0232	
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	
	Boron (B)-Total (mg/L)	0.011	0.011	
	Cadmium (Cd)-Total (mg/L)	<0.0000050	<0.000050	
	Calcium (Ca)-Total (mg/L)	16.6	17.2	
	Cesium (Cs)-Total (mg/L)	<0.000010	<0.000010	
	Chromium (Cr)-Total (mg/L)	<0.00010	<0.00010	
	Cobalt (Co)-Total (mg/L)	<0.00010	<0.00010	
	Copper (Cu)-Total (mg/L)	<0.00050	<0.00050	
	Iron (Fe)-Total (mg/L)	<0.010	<0.010	
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	
	Lithium (Li)-Total (mg/L)	0.0030	0.0031	
	Magnesium (Mg)-Total (mg/L)	7.14	7.22	

L1991686 CONTD.... PAGE 6 of 18 03-NOV-17 19:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1991686-1 Water 11-SEP-17 BG-SW08-04	L1991686-2 Water 11-SEP-17 A3-SW08-01	L1991686-3 Water 11-SEP-17 SW07-3	L1991686-4 Water 11-SEP-17 SW16-01-2M	L1991686-5 Water 11-SEP-17 A5-SW08-11
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.00394	0.0244	0.00077	0.00067	0.00082
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	<0.000050	0.000339	0.000335	0.000342	0.000357
	Nickel (Ni)-Total (mg/L)	<0.00050	0.00057	<0.00050	<0.00050	<0.00050
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	1.70	0.96	0.78	0.76	0.78
	Selenium (Se)-Total (mg/L)	<0.000050	0.000052	<0.000050	<0.000050	<0.000050
	Silicon (Si)-Total (mg/L)	0.57	1.61	1.14	1.12	1.16
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	1.02	4.29	4.17	4.19	4.21
	Strontium (Sr)-Total (mg/L)	0.0596	0.132	0.120	0.115	0.123
	Sulfur (S)-Total (mg/L)	1.69	7.55	6.01	5.32	6.00
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.00030	0.00849	<0.00030	<0.00030	<0.00030
	Uranium (U)-Total (mg/L)	0.000214	0.000369	0.000310	0.000303	0.000319
	Vanadium (V)-Total (mg/L)	<0.00050	0.00083	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	0.0039	<0.0030	0.0035	<0.0030	<0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location	LAB				LAB
	Dissolved Metals Filtration Location	LAB				LAB
	Aluminum (Al)-Dissolved (mg/L)	0.0022				0.0015
	Antimony (Sb)-Dissolved (mg/L)	<0.00010				<0.00010
	Arsenic (As)-Dissolved (mg/L)	<0.00010				0.00018
	Barium (Ba)-Dissolved (mg/L)	0.0883				0.0237
	Beryllium (Be)-Dissolved (mg/L)	<0.000020				<0.000020
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050				<0.000050
	Boron (B)-Dissolved (mg/L)	0.067				0.013
	Cadmium (Cd)-Dissolved (mg/L)	<0.0000050				<0.0000050
	Calcium (Ca)-Dissolved (mg/L)	23.0				19.5
	Cesium (Cs)-Dissolved (mg/L)	<0.000010				<0.000010
	Chromium (Cr)-Dissolved (mg/L)	<0.00010				<0.00010
	Cobalt (Co)-Dissolved (mg/L)	<0.00010				<0.00010
	Copper (Cu)-Dissolved (mg/L)	<0.00020				0.00033
	Iron (Fe)-Dissolved (mg/L)	<0.010				<0.010
	Lead (Pb)-Dissolved (mg/L)	<0.000050				<0.000050
	Lithium (Li)-Dissolved (mg/L)	0.0026				0.0034

L1991686 CONTD.... PAGE 7 of 18 03-NOV-17 19:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1991686-6 Water 11-SEP-17 SW-DUP-1	L1991686-7 Water 11-SEP-17 SW-B-2	L1991686-8 Water 11-SEP-17 A3-SW08-05	L1991686-9 Water 11-SEP-17 BG-SW08-01	L1991686-10 Water 11-SEP-17 SW16-01-6M
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.00068	0.00084	0.00087	0.00079	0.00068
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.000339	0.000339	0.000352	0.000306	0.000301
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	0.76	0.76	0.76	0.78	0.77
	Selenium (Se)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)-Total (mg/L)	1.12	1.14	1.12	1.15	1.16
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	4.22	4.26	4.18	4.39	4.39
	Strontium (Sr)-Total (mg/L)	0.115	0.119	0.117	0.105	0.106
	Sulfur (S)-Total (mg/L)	5.47	5.95	5.57	5.97	5.72
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.00030	<0.00030	<0.00030	0.00055	<0.00030
	Uranium (U)-Total (mg/L)	0.000308	0.000321	0.000306	0.000287	0.000261
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	0.0039	<0.0030	0.0036	<0.0030	<0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location	LAB	LAB			
	Dissolved Metals Filtration Location	LAB	LAB			
	Aluminum (Al)-Dissolved (mg/L)	<0.0010	<0.0010			
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	<0.00010			
	Arsenic (As)-Dissolved (mg/L)	0.00018	0.00018			
	Barium (Ba)-Dissolved (mg/L)	0.0230	0.0232			
	Beryllium (Be)-Dissolved (mg/L)	<0.000020	<0.00020			
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050			
	Boron (B)-Dissolved (mg/L)	0.012	0.012			
	Cadmium (Cd)-Dissolved (mg/L)	<0.0000050	<0.0000050			
	Calcium (Ca)-Dissolved (mg/L)	17.6	18.8			
	Cesium (Cs)-Dissolved (mg/L)	<0.000010	<0.000010			
	Chromium (Cr)-Dissolved (mg/L)	<0.00010	<0.00010			
	Cobalt (Co)-Dissolved (mg/L)	<0.00010	<0.00010			
	Copper (Cu)-Dissolved (mg/L)	0.00024	0.00027			
	Iron (Fe)-Dissolved (mg/L)	<0.010	<0.010			
	Lead (Pb)-Dissolved (mg/L)	<0.000050	<0.000050			
	Lithium (Li)-Dissolved (mg/L)	0.0030	0.0033			

L1991686 CONTD.... PAGE 8 of 18 03-NOV-17 19:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1991686-11 Water 11-SEP-17 SW16-02-6M	L1991686-12 Water 11-SEP-17 SW16-02-2M		
Grouping	Analyte				
WATER					
Total Metals	Manganese (Mn)-Total (mg/L)	0.00058	0.00071		
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.000050		
	Molybdenum (Mo)-Total (mg/L)	0.000314	0.000314		
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050		
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050		
	Potassium (K)-Total (mg/L)	0.77	0.78		
	Selenium (Se)-Total (mg/L)	<0.000050	<0.000050		
	Silicon (Si)-Total (mg/L)	1.17	1.18		
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010		
	Sodium (Na)-Total (mg/L)	4.35	4.27		
	Strontium (Sr)-Total (mg/L)	0.106	0.108		
	Sulfur (S)-Total (mg/L)	5.53	5.82		
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010		
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010		
	Titanium (Ti)-Total (mg/L)	<0.00030	<0.00030		
	Uranium (U)-Total (mg/L)	0.000260	0.000266		
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050		
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030		
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030		
Dissolved Metals	Dissolved Mercury Filtration Location				
	Dissolved Metals Filtration Location				
	Aluminum (Al)-Dissolved (mg/L)				
	Antimony (Sb)-Dissolved (mg/L)				
	Arsenic (As)-Dissolved (mg/L)				
	Barium (Ba)-Dissolved (mg/L)				
	Beryllium (Be)-Dissolved (mg/L)				
	Bismuth (Bi)-Dissolved (mg/L)				
	Boron (B)-Dissolved (mg/L)				
	Cadmium (Cd)-Dissolved (mg/L)				
	Calcium (Ca)-Dissolved (mg/L)				
	Cesium (Cs)-Dissolved (mg/L)				
	Chromium (Cr)-Dissolved (mg/L)				
	Cobalt (Co)-Dissolved (mg/L)				
	Copper (Cu)-Dissolved (mg/L)				
	Iron (Fe)-Dissolved (mg/L)				
	Lead (Pb)-Dissolved (mg/L)				
	Lithium (Li)-Dissolved (mg/L)				

L1991686 CONTD.... PAGE 9 of 18 03-NOV-17 19:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1991686-1 Water 11-SEP-17 BG-SW08-04	L1991686-2 Water 11-SEP-17 A3-SW08-01	L1991686-3 Water 11-SEP-17 SW07-3	L1991686-4 Water 11-SEP-17 SW16-01-2M	L1991686-5 Water 11-SEP-17 A5-SW08-11
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)	23.2				7.82
	Manganese (Mn)-Dissolved (mg/L)	<0.00010				<0.00010
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050				<0.0000050
	Molybdenum (Mo)-Dissolved (mg/L)	<0.000050				0.000368
	Nickel (Ni)-Dissolved (mg/L)	<0.00050				<0.00050
	Phosphorus (P)-Dissolved (mg/L)	<0.050				<0.050
	Potassium (K)-Dissolved (mg/L)	1.69				0.77
	Selenium (Se)-Dissolved (mg/L)	<0.000050				<0.000050
	Silicon (Si)-Dissolved (mg/L)	0.517				1.14
	Silver (Ag)-Dissolved (mg/L)	<0.000010				<0.000010
	Sodium (Na)-Dissolved (mg/L)	1.00				4.18
	Strontium (Sr)-Dissolved (mg/L)	0.0575				0.121
	Sulfur (S)-Dissolved (mg/L)	1.54				5.80
	Thallium (TI)-Dissolved (mg/L)	<0.000010				<0.000010
	Tin (Sn)-Dissolved (mg/L)	<0.00010				<0.00010
	Titanium (Ti)-Dissolved (mg/L)	<0.00030				<0.00030
	Uranium (U)-Dissolved (mg/L)	0.000212				0.000326
	Vanadium (V)-Dissolved (mg/L)	<0.00050				<0.00050
	Zinc (Zn)-Dissolved (mg/L)	<0.0010				<0.0010
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030				<0.00030
Volatile Organic Compounds	Benzene (mg/L)			<0.00050	<0.00050	<0.00050
	Ethylbenzene (mg/L)			<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)			<0.00050	<0.00050	<0.00050
	Styrene (mg/L)			<0.00050	<0.00050	<0.00050
	Toluene (mg/L)			<0.00045	<0.00045	<0.00045
	ortho-Xylene (mg/L)			<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)			<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)			<0.00075	<0.00075	<0.00075
	F1 (C6-C10) (mg/L)			<0.10	<0.10	<0.10
	Surrogate: 4-Bromofluorobenzene (SS) (%)			94.9	99.8	98.0
	Surrogate: 1,4-Difluorobenzene (SS) (%)			97.4	92.5	96.1
Hydrocarbons	F1-BTEX (mg/L)			<0.10	<0.10	<0.10
	F2 (C10-C16) (mg/L)			<0.30	<0.30	<0.30
	F3 (C16-C34) (mg/L)			<0.30	<0.30	<0.30
	F4 (C34-C50) (mg/L)			<0.30	<0.30	<0.30
	Volatile Hydrocarbons (VH6-10) (mg/L)			<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)			<0.10	<0.10	<0.10

L1991686 CONTD.... PAGE 10 of 18 03-NOV-17 19:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1991686-6 Water 11-SEP-17 SW-DUP-1	L1991686-7 Water 11-SEP-17 SW-B-2	L1991686-8 Water 11-SEP-17 A3-SW08-05	L1991686-9 Water 11-SEP-17 BG-SW08-01	L1991686-10 Water 11-SEP-17 SW16-01-6M
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)	7.30	7.49			
	Manganese (Mn)-Dissolved (mg/L)	<0.00010	<0.00010			
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.000050			
	Molybdenum (Mo)-Dissolved (mg/L)	0.000336	0.000361			
	Nickel (Ni)-Dissolved (mg/L)	<0.00050	< 0.00050			
	Phosphorus (P)-Dissolved (mg/L)	<0.00050	<0.00050			
	Potassium (K)-Dissolved (mg/L)					
	Selenium (Se)-Dissolved (mg/L)	0.74	0.75			
	Silicon (Si)-Dissolved (mg/L)	<0.000050	<0.000050			
	Silver (Ag)-Dissolved (mg/L)	1.11	1.11			
	Sodium (Na)-Dissolved (mg/L)	<0.000010	<0.000010			
	Strontium (Sr)-Dissolved (mg/L)	4.06	4.10			
	Sulfur (S)-Dissolved (mg/L)	0.112	0.121			
	Thallium (TI)-Dissolved (mg/L)	5.51	5.81			
	Tin (Sn)-Dissolved (mg/L)	<0.000010	<0.000010			
	Titanium (Ti)-Dissolved (mg/L)	<0.00010	<0.00010			
	Uranium (U)-Dissolved (mg/L)	<0.00030	<0.00030			
	Vanadium (V)-Dissolved (mg/L)	0.000301	0.000317			
	Zinc (Zn)-Dissolved (mg/L)	<0.00050	<0.00050			
	Zirconium (Zr)-Dissolved (mg/L)	<0.0010	<0.0010			
Volatile Organic Compounds	Benzene (mg/L)	<0.00030 <0.00050	<0.00030 <0.00050			
Compoundo	Ethylbenzene (mg/L)	<0.00050	<0.00050			
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050			
	Styrene (mg/L)	<0.00050	<0.00050			
	Toluene (mg/L)	<0.00045	<0.00045			
	ortho-Xylene (mg/L)	<0.00050	<0.00050			
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050			
	Xylenes (mg/L)	<0.00075	<0.00075			
	F1 (C6-C10) (mg/L)	<0.10	<0.10			
	Surrogate: 4-Bromofluorobenzene (SS) (%)	94.5	95.4			
	Surrogate: 1,4-Difluorobenzene (SS) (%)	95.7	90.8			
Hydrocarbons	F1-BTEX (mg/L)	<0.10	<0.10			
	F2 (C10-C16) (mg/L)	<0.30	<0.30			
	F3 (C16-C34) (mg/L)	<0.30	<0.30			
	F4 (C34-C50) (mg/L)	<0.30	<0.30			
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10			
	VPH (C6-C10) (mg/L)	<0.10	<0.10			

L1991686 CONTD.... PAGE 11 of 18 03-NOV-17 19:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1991686-11 Water 11-SEP-17 SW16-02-6M	L1991686-12 Water 11-SEP-17 SW16-02-2M		
Grouping	Analyte				
WATER					
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)				
	Manganese (Mn)-Dissolved (mg/L)				
	Mercury (Hg)-Dissolved (mg/L)				
	Molybdenum (Mo)-Dissolved (mg/L)				
	Nickel (Ni)-Dissolved (mg/L)				
	Phosphorus (P)-Dissolved (mg/L)				
	Potassium (K)-Dissolved (mg/L)				
	Selenium (Se)-Dissolved (mg/L)				
	Silicon (Si)-Dissolved (mg/L)				
	Silver (Ag)-Dissolved (mg/L)				
	Sodium (Na)-Dissolved (mg/L)				
	Strontium (Sr)-Dissolved (mg/L)				
	Sulfur (S)-Dissolved (mg/L)				
	Thallium (TI)-Dissolved (mg/L)				
	Tin (Sn)-Dissolved (mg/L)				
	Titanium (Ti)-Dissolved (mg/L)				
	Uranium (U)-Dissolved (mg/L)				
	Vanadium (V)-Dissolved (mg/L)				
	Zinc (Zn)-Dissolved (mg/L)				
	Zirconium (Zr)-Dissolved (mg/L)				
Volatile Organic Compounds	Benzene (mg/L)	<0.00050			
	Ethylbenzene (mg/L)	<0.00050			
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050			
	Styrene (mg/L)	<0.00050			
	Toluene (mg/L)	<0.00045			
	ortho-Xylene (mg/L)	<0.00050			
	meta- & para-Xylene (mg/L)	<0.00050			
	Xylenes (mg/L)	<0.00075			
	F1 (C6-C10) (mg/L)	<0.10			
	Surrogate: 4-Bromofluorobenzene (SS) (%)	100.5			
	Surrogate: 1,4-Difluorobenzene (SS) (%)	95.3			
Hydrocarbons	F1-BTEX (mg/L)	<0.10			
	F2 (C10-C16) (mg/L)	<0.30			
	F3 (C16-C34) (mg/L)	<0.30			
	F4 (C34-C50) (mg/L)	<0.30			
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10			
	VPH (C6-C10) (mg/L)	<0.10			

L1991686 CONTD.... PAGE 12 of 18 03-NOV-17 19:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1991686-1 Water 11-SEP-17 BG-SW08-04	L1991686-2 Water 11-SEP-17 A3-SW08-01	L1991686-3 Water 11-SEP-17 SW07-3	L1991686-4 Water 11-SEP-17 SW16-01-2M	L1991686-5 Water 11-SEP-17 A5-SW08-11
Grouping	Analyte					
WATER	Analyte					
	Surragata: 2 Bromohonzatrifluorida, 52 54					
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)			89.8	87.5	88.5
	Surrogate: 3,4-Dichlorotoluene (SS) (%)			85.2	119.2	119.8

L1991686 CONTD.... PAGE 13 of 18 03-NOV-17 19:12 (MT) Version: FINAL

Sample ID	L1991686-6	L1991686-7	L1991686-8	L1991686-9	1 14004000 40
Description Sampled Date	Water 11-SEP-17	Water 11-SEP-17	Water 11-SEP-17	Water 11-SEP-17	L1991686-10 Water 11-SEP-17
Sampled Time					SW16-01-6M
Client ID	000-001-1	000-0-2	A3-0000-03	00-0000-01	00010-01-000
Analyte					
Surrogate: 2-Bromobenzotrifluoride, F2-F4	92.2	90.6			
Surrogate: 3,4-Dichlorotoluene (SS) (%)	80.2	81.1			
	Sampled Time Client ID Analyte Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)	Sampled Time Client ID SW-DUP-1 Analyte	Sampled Time Client ID SW-DUP-1 SW-B-2 Analyte	Sampled Time Client ID SW-DUP-1 SW-B-2 A3-SW08-05 Analyte	Sampled Time Client ID SW-DUP-1 SW-B-2 A3-SW08-05 BG-SW08-01 Analyte

L1991686 CONTD.... PAGE 14 of 18 03-NOV-17 19:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1991686-11 Water 11-SEP-17 SW16-02-6M	L1991686-12 Water 11-SEP-17 SW16-02-2M		
Grouping	Analyte				
WATER					
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)	87.2			
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	110.0			

L1991686 CONTD.... PAGE 15 of 18 03-NOV-17 19:12 (MT) Version: FINAL

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Method Blank	Nickel (Ni)-Dissolved	MB-LOR	L1991686-1, -5, -6, -7
Matrix Spike	Dissolved Organic Carbon	MS-B	L1991686-1, -2, -3
Matrix Spike	Dissolved Organic Carbon	MS-B	L1991686-10, -11, -4, -5, -7, -8, -9
Matrix Spike	Total Organic Carbon	MS-B	L1991686-1, -2, -3
Matrix Spike	Total Organic Carbon	MS-B	L1991686-1, -2, -3
Matrix Spike	Total Organic Carbon	MS-B	L1991686-1, -2, -3
Matrix Spike	Total Organic Carbon	MS-B	L1991686-10, -11, -4, -5, -7, -8, -9
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1991686-1, -5, -6, -7
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1991686-1, -5, -6, -7
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1991686-1, -5, -6, -7
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1991686-1, -5, -6, -7
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1991686-1, -5, -6, -7
Matrix Spike	Barium (Ba)-Total	MS-B	L1991686-1, -10, -11, -12, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Calcium (Ca)-Total	MS-B	L1991686-1, -10, -11, -12, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Calcium (Ca)-Total	MS-B	L1991686-2
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1991686-1, -10, -11, -12, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1991686-2
Matrix Spike	Manganese (Mn)-Total	MS-B	L1991686-2
Matrix Spike	Sodium (Na)-Total	MS-B	L1991686-1, -10, -11, -12, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Sodium (Na)-Total	MS-B	L1991686-2
Matrix Spike	Strontium (Sr)-Total	MS-B	L1991686-1, -10, -11, -12, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Strontium (Sr)-Total	MS-B	L1991686-2
Matrix Spike	Sulfur (S)-Total	MS-B	L1991686-2
Matrix Spike	Zinc (Zn)-Total	MS-B	L1991686-2
Matrix Spike	Nitrate (as N)	MS-B	L1991686-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9

Qualifiers for Individual Parameters Listed:

Qualifier	Description
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RRV	Reported Result Verified By Repeat Analysis

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-TITR-VA	Water	Alkalinity Species by Titration	APHA 2320 Alkalinity
		edures adapted from APHA Method 2320 "Alkalinit te and hydroxide alkalinity are calculated from phe	y". Total alkalinity is determined by potentiometric titration to a nolphthalein alkalinity and total alkalinity values.
BE-D-L-CCMS-VA	Water	Diss. Be (low) in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtere	d (0.45 um),	preserved with nitric acid, and analyzed by CRC IC	PMS.
BE-T-L-CCMS-VA	Water	Total Be (Low) in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are diges	ted with nitric	and hydrochloric acids, and analyzed by CRC ICF	PMS.
BR-L-IC-N-VA	Water	Bromide in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are anal	yzed by Ion C	Chromatography with conductivity and/or UV detection	tion.
CARBONS-DOC-VA	Water	Dissolved organic carbon by combustion	APHA 5310B TOTAL ORGANIC CARBON (TOC)
,	01	edures adapted from APHA Method 5310 "Total Or ugh a 0.45 micron membrane filter prior to analysi	ganic Carbon (TOC)". Dissolved carbon (DOC) fractions are s.
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310B TOTAL ORGANIC CARBON (TOC)
This analysis is carried or	ut using proce	edures adapted from APHA Method 5310 "Total Or	ganic Carbon (TOC)".

L1991686 CONTD.... PAGE 16 of 18 03-NOV-17 19:12 (MT) Version: FINAL

CL-IC-N-VA	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Ch	romatography with conductivity and/or UV detection.	
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried out electrode.	using proced	lures adapted from APHA Method 2510 "Conductivity".	Conductivity is determined using a conductivity
EC-SCREEN-VA	Water	Conductivity Screen (Internal Use Only)	APHA 2510
Qualitative analysis of conc	ductivity wher	e required during preparation of other tests - e.g. TDS,	metals, etc.
F-IC-N-VA	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Ch	rromatography with conductivity and/or UV detection.	
F1-BTX-CALC-VA	Water	F1-Total BTX	CCME CWS PHC TIER 1 (2001)
	Environment,	e Method for the Canada-Wide Standard for Petroleum December 2000." For F1 (C6-C10), the sample under ed as follows:	
F1-BTEX: F1 (C6-C10) min	nus benzene,	toluene, ethylbenzene and xylenes (BTEX).	
F1-HSFID-VA	Water	CCME F1 By Headspace with GCFID	EPA 5021A/CCME CWS PHC (Pub# 1310)
		e Method for the Canada-Wide Standard for Petroleum December 2000." For F1 (C6-C10), the sample under	
F1 (C6-C10): Sum of all hy	drocarbons th	nat elute between nC6 and nC10.	
F2-F4-ME-FID-VA	Water	CCME F2-F4 Hydrocarbons in Water	CCME CWS-PHC, Pub #1310, Dec 2001
		exane micro-extraction technique. Instrumental analysis ydrocarbons in Soil Tier 1 Method, CCME, Dec 2001.	
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
		s) is calculated from the sum of Calcium and Magnesiu centrations are preferentially used for the hardness calc	
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
Water samples are filtered with stannous chloride, and	(0.45 um), pr analyzed by	eserved with hydrochloric acid, then undergo a cold-oxi CVAAS or CVAFS.	dation using bromine monochloride prior to reduction
HG-T-CVAA-VA	Water	Total Mercury in Water by CVAAS or CVAFS	EPA 1631E (mod)
Water samples undergo a o	cold-oxidatior	n using bromine monochloride prior to reduction with sta	annous chloride, and analyzed by CVAAS or CVAFS.
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	(0.45 um), pr	eserved with nitric acid, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	ur): Sulfide ar	nd volatile sulfur species may not be recovered by this r	nethod.
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)
		and hydrochloric acids, and analyzed by CRC ICPMS.)
Method Limitation (re: Sulfu	ur): Sulfide ar	nd volatile sulfur species may not be recovered by this r	nethod.
NH3-F-VA	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			n J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society levels of ammonium in seawater", Roslyn J. Waston et
NO2-L-IC-N-VA	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Ch	romatography with conductivity and/or UV detection.	
NO3-L-IC-N-VA	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)
		promatography with conductivity and/or UV detection.	× ,
P-T-PRES-COL-VA	Water	Total P in Water by Colour	APHA 4500-P Phosphorus
after persulphate digestion	of the sample solved solids	lures adapted from APHA Method 4500-P "Phosphorus e. (i.e. seawaters, brackish waters) may produce a negati	

Arsenic (5+), at elevated levels	s, is a posi	tive interference on colourimetric phosphate analysis.	
P-TD-COL-VA W	/ater	Total Dissolved P in Water by Colour	APHA 4500-P Phosphorous
colourimetrically after persulph	nate digest ved solids	ures adapted from APHA Method 4500-P "Phosphorus ion of a sample that has been lab or field filtered throu (i.e. seawaters, brackish waters) may produce a negat	gh a 0.45 micron membrane filter.
Arsenic (5+), at elevated levels	s, is a posi	tive interference on colourimetric phosphate analysis.	
PH-PCT-VA W	/ater	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried out usi electrode	ng proced	ures adapted from APHA Method 4500-H "pH Value".	The pH is determined in the laboratory using a pH
It is recommended that this an	alysis be o	conducted in the field.	
RA226-GFPC-FC M	isc.	Radium-226 by Gas Flow Prop.	EPA 903.0
S2-T-COL-VA W	/ater	Total Sulphide by Colorimetric	APHA 4500-S2 Sulphide
This analysis is carried out usi colourimetric method.	ng proced	ures adapted from APHA Method 4500-S2 "Sulphide".	Sulphide is determined using the methlyene blue
SO4-IC-N-VA W	/ater	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyzed	by Ion Ch	romatography with conductivity and/or UV detection.	
TDS-VA W	/ater	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC
			s are determined gravimetrically. Total Dissolved Solids aporating the filtrate to dryness at 180 degrees celsius.
TSS-VA W	/ater	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC
Solids (TSS) are determined b	oy filtering a dissolved		
TURBIDITY-VA W	/ater	Turbidity by Meter	APHA 2130 Turbidity
This analysis is carried out usi	ng proced	ures adapted from APHA Method 2130 "Turbidity". Tur	bidity is determined by the nephelometric method.
VH-HSFID-VA W	/ater	VH in Water by Headspace GCFID	BC Env. Lab Manual (VH in Water)
		is heated in a sealed vial to equilibrium. The headspace nd n-decane are measured and summed together usin	ce from the vial is transfered into a gas chromatograph. ng flame-ionization detection.
VH-SURR-FID-VA W	/ater	VH Surrogates for Waters	BC Env. Lab Manual (VH in Solids)
VOC7-HSMS-VA W	/ater	BTEX/MTBE/Styrene by Headspace GCMS	EPA 5021A/8260C
		is heated in a sealed vial to equilibrium. The headspace asured using mass spectrometry detection.	ce from the vial is transfered into a gas chromatograph.
VOC7/VOC-SURR-MS-VA W	/ater	VOC7 and/or VOC Surrogates for Waters	EPA 5035A/5021A/8260C
	/ater	VPH is VH minus select aromatics	BC MOE LABORATORY MANUAL (2005)
Volatile Petroleum Hydrocarbo	ons in Solid solids, St	to the British Columbia Ministry of Environment Analyt ds or Water". The concentrations of specific Monocyclic yrene) are subtracted from the collective concentration	c Aromatic Hydrocarbons (Benzene, Toluene,
XYLENES-CALC-VA W			
	/ater	Sum of Xylene Isomer Concentrations	CALCULATION
Calculation of Total Xylenes	/ater	Sum of Xylene Isomer Concentrations	CALCULATION
Total Xylenes is the sum of the	e concentr	Sum of Xylene Isomer Concentrations ations of the ortho, meta, and para Xylene isomers. R e no less than the square root of the sum of the square	esults below detection limit (DL) are treated as zero.
Total Xylenes is the sum of the The DL for Total Xylenes is se	e concentr t to a value	ations of the ortho, meta, and para Xylene isomers. R	esults below detection limit (DL) are treated as zero. es of the DLs of the individual Xylenes.
Total Xylenes is the sum of the The DL for Total Xylenes is se ** ALS test methods may incorpo	e concentr t to a value prate modif	ations of the ortho, meta, and para Xylene isomers. R e no less than the square root of the sum of the square	esults below detection limit (DL) are treated as zero. es of the DLs of the individual Xylenes. performance.
Total Xylenes is the sum of the The DL for Total Xylenes is se ** ALS test methods may incorpo	e concentr t to a value prate modif e test code	ations of the ortho, meta, and para Xylene isomers. R e no less than the square root of the sum of the square fications from specified reference methods to improve	esults below detection limit (DL) are treated as zero. es of the DLs of the individual Xylenes. performance.
Total Xylenes is the sum of the The DL for Total Xylenes is se ** ALS test methods may incorpor The last two letters of the above	e concentr t to a value orate modif e test code Laborat	ations of the ortho, meta, and para Xylene isomers. R e no less than the square root of the sum of the square fications from specified reference methods to improve (s) indicate the laboratory that performed analytical an	esults below detection limit (DL) are treated as zero. es of the DLs of the individual Xylenes. performance. alysis for that test. Refer to the list below:

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

Ft. Collins, Colorado

LIMS Version: 6.847

Thursday, October 12, 2017

Dean Watt ALS Environmental 8081 Lougheed Hwy, Suite 100 Burnaby, BC V5A 1W9

Re: ALS Workorder: 1709437 Project Name: Project Number: L1991686

Dear Mr. Watt:

Five water samples were received from ALS Environmental, on 9/22/2017. The samples were scheduled for the following analyses:

Lead-210	
Radium-226	

The results for these analyses are contained in the enclosed reports.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Thank you for your confidence in ALS Environmental. Should you have any questions, please call.

Sincerely, Long

ALS Environmental Shiloh J. Summy Project Manager

ADDRESS 225 Commerce Drive, Fort Collins, Colorado, USA 80524 | PHONE +1 970 490 1511 | FAX +1 970 490 1522 ALS GROUP USA, CORP. Part of the ALS Laboratory Group An ALS Limited Company ALS Environmental – Fort Collins is accredited by the following accreditation bodies for various testing scopes in accordance with requirements of each accreditation body. All testing is performed under the laboratory management system, which is maintained to meet these requirement and regulations. Please contact the laboratory or accreditation body for the current scope testing parameters.

ALS Environme	ntal – Fort Collins
Accreditation Body	License or Certification Number
AIHA	214884
Alaska (AK)	UST-086
Alaska (AK)	CO01099
Arizona (AZ)	AZ0742
California (CA)	06251CA
Colorado (CO)	CO01099
Connecticut (CT)	PH-0232
Florida (FL)	E87914
Idaho (ID)	CO01099
Kansas (KS)	E-10381
Kentucky (KY)	90137
L-A-B (DoD ELAP/ISO 170250)	L2257
Louisiana (LA)	05057
Maryland (MD)	285
Missouri (MO)	175
Nebraska(NE)	NE-OS-24-13
Nevada (NV)	CO000782008A
New York (NY)	12036
North Dakota (ND)	R-057
Oklahoma (OK)	1301
Pennsylvania (PA)	68-03116
Tennessee (TN)	2976
Texas (TX)	T104704241
Utah (UT)	CO01099
Washington (WA)	C1280

1709437

Radium-226:

The samples were prepared and analyzed according to the current revision of SOP 783.

All acceptance criteria were met.

Lead-210:

The samples were analyzed for the presence of ²¹⁰Pb according to the current revisions of SOP 704.

All acceptance criteria were met.

Sample Number(s) Cross-Reference Table

OrderNum: 1709437 Client Name: ALS Environmental Client Project Name: Client Project Number: L1991686 Client PO Number: L1991686

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
L1991686-5	1709437-1		WATER	11-Sep-17	
L1991686-6	1709437-2		WATER	11-Sep-17	
L1991686-7	1709437-3		WATER	11-Sep-17	
L1991686-9	1709437-4		WATER	11-Sep-17	
L1991686-12	1709437-5		WATER	11-Sep-17	

1709437

Subcontract Request Form

Subcontract To:

ALS ENVIRONMENTAL - FORT COLLINS, COLORADO, USA

225 COMMERCE DRIVE FORT COLLINS,CO 80524

NOTES: Please reference on final report and invoice: PO# <u>L1991686</u> ALS requires QC data to be provided with your final results.

Please see enclosed	5	sample(s) in	<u>10</u>	Container(s)
---------------------	---	--------------	-----------	--------------

SAMPLE				
NUMBER	ANALYTICAL REQUIRED	DATE SAMPLED DUE DATE	Priority Flag	
L1991686-5 A5-SW08-11		9/11/2017		
	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/17/2017		
	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)) 10/17/2017		
L1991686-6 SW-DUP-1		9/11/2017		
7	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/17/2017		
	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)) 10/17/2017		
L1991686-7 SW-B-2		9/11/2017		
	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/17/2017		
	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)) 10/17/2017		
) L1991686-9 BG-SW08-01		9/11/2017		
	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/17/2017		
	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)) 10/17/2017		
L1991686-12SW16-02-2M		9/11/2017		
	Lead-210 by Liquid Scintillation (PB210L-FC 14)	10/17/2017		
	Radium-226 by Gas Flow Prop. (RA226-GFPC-FC 14)) 10/17/2017		

1709437

Subcontract Request Form

Subcontract To:

ALS ENVIRONMENTAL - FORT COLLINS, COLORADO, USA

225 COMMERCE DRIVE FORT COLLINS, CO 80524

Subcontract Info Contact:	Rick Zolkiewski	(867) 873-5593	
Analysis and reporting info contact:	Dean Watt, B.S		
	314 OLD AIRPO Unit 116	ORT ROAD	
	YELLOWKNIFE,	NT X1A 3T3	
	Phone: (867)	873-5593	Email:dean.watt@alsglobal.com
Please email confirmation of rece	ipt to:	dean.watt@alsgl	obal.com
Shipped By:		Date Shipped:	
Received By:		Date Received:	9122/17 1030
Verified By:		Date Verified:	

Temperature:

Sample Integrity Issues:

-

ALS Environmental - Fort Collins CONDITION OF SAMPLE UPON RECEIPT FORM

Client: ALS CA YellowKnife Workorder No: 17094	137		
Project Manager: <u>55</u> Initials: <u>19</u>		1/22/	-
1. Does this project require any special handling in addition to standard ALS procedures?		YES	(IO)
2. Are custody seals on shipping containers intact?	KONE	YES	NO
3. Are Custody seals on sample containers intact?	NONE	YĘS	NO
4. Is there a COC (Chain-of-Custody) present or other representative documents?		TES	NO
5. Are the COC and bottle labels complete and legible?		(ES)	NO
 ⁶ Is the COC in agreement with samples received? (IDs, dates, times, no. of samples, no. of containers, matrix, requested analyses, etc.) 		YES	NO
7. Were airbills / shipping documents present and/or removable?	DROP OFF	VES	NO
8. Are all aqueous samples requiring preservation preserved correctly? (excluding volatiles)	N/A	YES	NO
9. Are all aqueous non-preserved samples pH 4-9?	(N/A)	YES	NO
10. Is there sufficient sample for the requested analyses?		(YES)	NO
11. Were all samples placed in the proper containers for the requested analyses?		(ES)	NO
^{12.} Are all samples within holding times for the requested analyses?		(ES)	NO
13. Were all sample containers received intact? (not broken or leaking, etc.)		(YES)	NO
^{14.} Are all samples requiring no headspace (VOC, GRO, RSK/MEE, Rx CN/S, radon) headspace free? Size of bubble: < green pea> green pea	K A	YES	NO
15. Do any water samples contain sediment? Amount Amount of sediment:	N/A	YES	NÒ
16. Were the samples shipped on ice?	1	(TES)	NO
^{17.} Were cooler temperatures measured at 0.1-6.0°C? IR gun used*: #2 #4	RAD ONLY	YES	NO
Cooler #:		·	
Temperature (°C): <u>G. 6</u>			
No. of custody seals on cooler:			
DOT Survey/ Acceptance External uR/hr reading: 10			
$\begin{bmatrix} Information \\ Background \mu R/hr reading: \\ 0 \end{bmatrix}$		·	
Were external μ R/hr readings \leq two times background and within DOT acceptance criteria? YES / NO / NA (If no, see	: Form 008.)	l .	
Additional Information: PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EX			

If applicable, was the client contacted? YES / NO Date/Time: C ntact: Project Manager Signature / Date: _____ M 1

*IR Gun #2: Oakton, SN 29922500201-0066 *IR Gun #4: Oakton, SN 2372220101-0002

<u>م</u>اً

2. Place label in shipping pouch and affix it to your shipment. 1. Fold the printed page along the honzontal line. CONSIGNEE COPY - PLEASE PLACE IN FRONT OF POUCH After printing this label:

MANDA DRAY is a set yrgoriad o rollardeu a fererad fu far fer and yrgoriad a fer and yrgo

MAND TORY LAW instance of periods of include the repleted of include to increase the representation, and representation repret

NecUJOEVCE. NecUJ

Provide and advice the work of the work of the work of the second and the key work of the strengthere and brank of the strengthere and th

Client:	ALS Environmental					Date: 12-0	Oct-17
Project:	L1991686				V	Work Order: 170	9437
Sample ID:	L1991686-5					Lab ID: 170	9437-1
Legal Location	:					Matrix: WA	TER
Collection Date	: 9/11/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by Li	quid Scintilation		PAI	704	Prep	Date: 10/2/2017	PrepBy: HCJ
Pb-210	•	0.0061 (+/- 0.014)	U	0.024	BQ/I	NA	10/11/2017 11:06
Carr: LEAD		81.9		40-110	%REC	DL = NA	10/11/2017 11:06
Dissolved Radi	ium-226 by Radon Ema	anation - Method 9	903. PAI	783	Prep	Date: 9/23/2017	PrepBy: HCJ
Ra-226		0.0010 (+/- 0.0042)	U	0.0079	BQ/I	NA	10/3/2017 12:47
Carr: BARIUM		89.3		40-110	%REC	DL = NA	10/3/2017 12:47

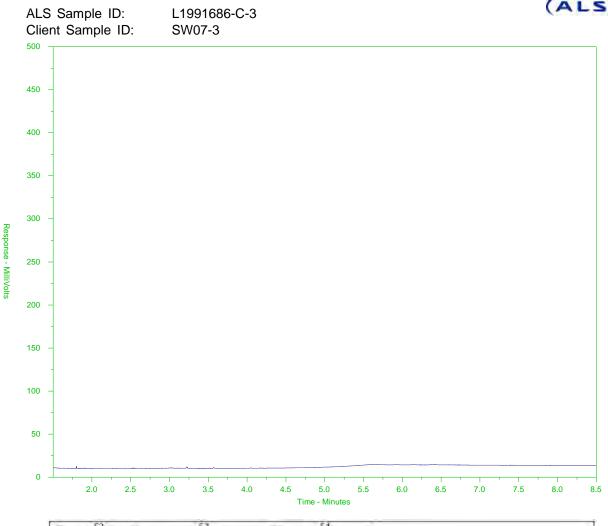
Client:	ALS Environmental					Date: 12-0	Oct-17
Project:	L1991686				V	Vork Order: 170	9437
Sample ID:	L1991686-6					Lab ID: 170	9437-2
Legal Location:	:					Matrix: WA	TER
Collection Date	: 9/11/2017				Perce	nt Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by Lie	quid Scintilation		PAI	704	Prep	Date: 10/2/2017	PrepBy: HCJ
Pb-210	•	0.0059 (+/- 0.014)	U	0.023	BQ/I	NA	10/11/2017 13:09
Carr: LEAD		84.8		40-110	%REC	DL = NA	10/11/2017 13:09
Dissolved Radi	ium-226 by Radon Ema	anation - Method 9	003. PAI	783	Prep	Date: 9/23/2017	PrepBy: HCJ
Ra-226		0.0037 (+/- 0.0042)	U	0.0063	BQ/I	NA	10/3/2017 12:47
Carr: BARIUM		91		40-110	%REC	DL = NA	10/3/2017 12:47

Client:	ALS Environmental					Date: 12-	Oct-17
Project:	L1991686				V	Work Order: 170	9437
Sample ID:	L1991686-7					Lab ID: 170)9437-3
Legal Location:						Matrix: WA	ATER
Collection Date	9/11/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by Lic	quid Scintilation		PAI	704	Prep	Date: 10/2/2017	PrepBy: HCJ
Pb-210	•	0.0031 (+/- 0.017)	U	0.029	BQ/I	NA	10/11/2017 15:12
Carr: LEAD		67.5		40-110	%REC	DL = NA	10/11/2017 15:12
Dissolved Radi	um-226 by Radon Ema	anation - Method 9	03. PAI	783	Prep	Date: 9/23/2017	PrepBy: HCJ
Ra-226		0.0032 (+/- 0.0047)	U	0.0077	BQ/I	NA	10/3/2017 12:47
Carr: BARIUM		86.3		40-110	%REC	DL = NA	10/3/2017 12:47

Client:	ALS Environmental					Date: 12-	-Oct-17
Project:	L1991686				V	Work Order: 17	09437
Sample ID:	L1991686-9					Lab ID: 17	09437-4
Legal Location:						Matrix: W	ATER
Collection Date	9/11/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by Lie	quid Scintilation		PAI	704	Prep	Date: 10/2/2017	PrepBy: HCJ
Pb-210	•	0.0090 (+/- 0.014)	U	0.023	BQ/I	NA	10/11/2017 17:15
Carr: LEAD		85		40-110	%REC	DL = NA	10/11/2017 17:15
Dissolved Radi	um-226 by Radon Ema	anation - Method 9	003. PAI	783	Prep	Date: 9/23/2017	PrepBy: HCJ
Ra-226		0.0066 (+/- 0.0049)	LT	0.0056	BQ/I	NA	10/3/2017 12:47
Carr: BARIUM		91.1		40-110	%REC	DL = NA	10/3/2017 12:47

Client:	ALS Environmental					Date: 12-	Oct-17
Project:	L1991686				Ţ	Work Order: 170	9437
Sample ID:	L1991686-12					Lab ID: 170	9437-5
Legal Location:						Matrix: WA	ATER
Collection Date	9/11/2017				Perce	ent Moisture:	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Lead-210 by Lic	quid Scintilation		PAI	704	Prep	Date: 10/2/2017	PrepBy: HCJ
Pb-210	•	0.011 (+/- 0.015)	U	0.025	BQ/I	NA	10/11/2017 19:18
Carr: LEAD		78.6		40-110	%REC	DL = NA	10/11/2017 19:18
Dissolved Radi	um-226 by Radon Ema	anation - Method 9	03. PAI	783	Prep	Date: 9/23/2017	PrepBy: HCJ
Ra-226		0.0020 (+/- 0.0049)	U	0.0086	BQ/I	NA	10/3/2017 13:20
Carr: BARIUM		90.5		40-110	%REC	DL = NA	10/3/2017 13:20

Client:	ALS Environmental					Date:	12-Oct-17	
Project:	L1991686				,	Work Order:	1709437	
Sample ID:	L1991686-12					Lab ID:	1709437-5	i
Legal Location:							WATER	
0	0/11/2017				Dono			
Collection Date:	9/11/2017				Perco	ent Moisture:		
Analyses		Result	Qual	Report Limit	Units	Dilution Factor		Date Analyzed
Explanation of (Qualifiers							
Radiochemistry:								
U or ND - Result is le	ess than the sample specific ME	DC.	M3			not met, but the rep	orted	
Y1 - Chemical Yield is	s in control at 100-110%. Quai	ntitative yield is assumed.	1.	, ,	below lower o	reported MDC.		
Y2 - Chemical Yield c					y above upper			
•	han Warning Limit of 1.42					within control limit	S.	
	s Received' while the Report Ba bry Weight' while the Report Ba					de control limits		
G - Sample density di	iffers by more than 15% of LCS			-		te results less than	5 times MDC	
D - DER is greater the			В-	Analyte conce	entration greate	er than MDC.		
M - Requested MDC			B3 MD		entration grea	ter than MDC but le	ess than Reque	sted
LT - Result is less that	an requested MDC but greater	nan achieved MDC.		.				
-	a the requested reporting limit k	out graatar than the instrum	ont mothod	dotoction limit				
B - Result is less than	n the requested reporting limit b nat the compound was analyzed	-	nent method	detection limit	(MDL).			
B - Result is less thar U or ND - Indicates th	nat the compound was analyzed	for but not detected.				e narrative.		
B - Result is less thar U or ND - Indicates th E - The reported value		for but not detected.				e narrative.		
B - Result is less thar U or ND - Indicates th E - The reported value M - Duplicate injectio N - Spiked sample ree	nat the compound was analyzed e is estimated because of the p	d for but not detected. bresence of interference. A A post spike is analyzed f	n explanator or all ICP and	y note may be alyses when th	included in the			
B - Result is less thar U or ND - Indicates th E - The reported valu M - Duplicate injectio N - Spiked sample re duplicate fail and the Z - Spiked recovery n	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla	d for but not detected. aresence of interference. A A post spike is analyzed f less than four times the sp anatory note may be includ	on explanator or all ICP and bike added co	y note may be alyses when th oncentration.	included in the			
 B - Result is less thar U or ND - Indicates the E - The reported value M - Duplicate injection N - Spiked sample reduplicate fail and the Z - Spiked recovery net * - Duplicate analysis 	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla (relative percent difference) no	d for but not detected. oresence of interference. A A post spike is analyzed f less than four times the sp anatory note may be includ of within control limits.	on explanator or all ICP and bike added co ed in the nar	y note may be alyses when th oncentration. rative.	included in the			
 B - Result is less than U or ND - Indicates the E - The reported value M - Duplicate injection N - Spiked sample readuplicate fail and the Z - Spiked recovery not solve analysis S - SAR value is estimation 	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla	d for but not detected. oresence of interference. A A post spike is analyzed f less than four times the sp anatory note may be includ of within control limits.	on explanator or all ICP and bike added co ed in the nar	y note may be alyses when th oncentration. rative.	included in the			
 B - Result is less than U or ND - Indicates the E - The reported value M - Duplicate injection N - Spiked sample readuplicate fail and the Z - Spiked recovery mails * - Duplicate analysis S - SAR value is estime 	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla (relative percent difference) no nated as one or more analytes	d for but not detected. oresence of interference. A A post spike is analyzed f less than four times the sp anatory note may be includ ot within control limits. used in the calculation we	on explanator or all ICP and bike added co ed in the nar	y note may be alyses when th oncentration. rative.	included in the			
 B - Result is less thar U or ND - Indicates the E - The reported value M - Duplicate injection N - Spiked sample readuplicate fail and the Z - Spiked recovery metric analysis S - SAR value is estimedire Organics: U or ND - Indicates the 	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla (relative percent difference) no nated as one or more analytes hat the compound was analyzed	d for but not detected. resence of interference. A A post spike is analyzed f less than four times the sp anatory note may be includ ot within control limits. used in the calculation we d for but not detected.	on explanator or all ICP and ike added co ed in the nar re not detecte	y note may be alyses when th ncentration. rative. ed above the c	included in the	and or spike		
 B - Result is less thar U or ND - Indicates the E - The reported value M - Duplicate injection N - Spiked sample readuplicate fail and the Z - Spiked recovery metric analysis S - SAR value is estimedire Organics: U or ND - Indicates the B - Analyte is detected 	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla (relative percent difference) no mated as one or more analytes hat the compound was analyzed d in the associated method bla	d for but not detected. resence of interference. A A post spike is analyzed f less than four times the sp anatory note may be includ ot within control limits. used in the calculation we d for but not detected. nk as well as in the sample	on explanator or all ICP and ike added co ed in the nar re not detecte	y note may be alyses when th ncentration. rative. ed above the c	included in the	and or spike		
 B - Result is less thar U or ND - Indicates the E - The reported value M - Duplicate injection N - Spiked sample reduplicate fail and the Z - Spiked recovery network * - Duplicate analysis S - SAR value is estim Organics: U or ND - Indicates the B - Analyte is detected E - Analyte concentration 	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla (relative percent difference) no nated as one or more analytes hat the compound was analyzed	d for but not detected. resence of interference. A A post spike is analyzed f less than four times the sp anatory note may be includ ot within control limits. used in the calculation we d for but not detected. nk as well as in the sample the calibration range.	on explanator or all ICP and ike added co ed in the nar re not detecte e. It indicates	y note may be alyses when th ncentration. rative. ed above the c s probable bla	included in the ne matrix spike letection limit. nk contaminati	and or spike		
 B - Result is less than U or ND - Indicates the E - The reported value M - Duplicate injection N - Spiked sample reduplicate fail and the Z - Spiked recovery network * - Duplicate analysis S - SAR value is estim Organics: U or ND - Indicates the B - Analyte is detected E - Analyte concentration J - Estimated value. 	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla- (relative percent difference) no mated as one or more analytes hat the compound was analyzed d in the associated method bla ation exceeds the upper level of	d for but not detected. resence of interference. A A post spike is analyzed f less than four times the sp anatory note may be includ ot within control limits. used in the calculation we d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than	on explanator or all ICP and ike added co ed in the nar re not detecte e. It indicates the instrume	y note may be alyses when th ncentration. rative. ed above the c s probable bla	included in the ne matrix spike letection limit. nk contaminati	and or spike	data user.	
 B - Result is less than U or ND - Indicates the E - The reported value M - Duplicate injection N - Spiked sample reduplicate fail and the Z - Spiked recovery network * - Duplicate analysis S - SAR value is estim Organics: U or ND - Indicates the B - Analyte is detected E - Analyte is detected J - Estimated value. A - A tentatively idention X - The analyte was compared 	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An explain (relative percent difference) no mated as one or more analytes that the compound was analyzed d in the associated method blain tion exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quanti-	d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ it within control limits. used in the calculation we for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation production itation level.	on explanator or all ICP and ike added co ed in the nar re not detecte e. It indicates the instrume	y note may be alyses when th ncentration. rative. ed above the c s probable bla	included in the ne matrix spike letection limit. nk contaminati	and or spike	lata user.	
 B - Result is less than U or ND - Indicates the The reported value M - Duplicate injection N - Spiked sample reduplicate fail and the Z - Spiked recovery mails S - SAR value is estime Organics: U or ND - Indicates the B - Analyte is detected E - Analyte concentra J - Estimated value. A - A tentatively idention X - The analyte recovery 	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An explain (relative percent difference) no mated as one or more analytes hat the compound was analyzed d in the associated method blain tion exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quanti- y is equal to or outside the cont	d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ t within control limits. used in the calculation we d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation product titation level. rol criteria used.	on explanator or all ICP and oike added co ed in the nar re not detecte e. It indicates the instrume ct.	y note may be alyses when th ncentration. rative. ed above the c s probable bla	included in the ne matrix spike letection limit. nk contaminati	and or spike	data user.	
 B - Result is less than U or ND - Indicates the The reported value M - Duplicate injection N - Spiked sample reduplicate fail and the Z - Spiked recovery mails S - SAR value is estime Organics: U or ND - Indicates the B - Analyte is detected E - Analyte concentra J - Estimated value. A - A tentatively identified X - The analyte reactively identified X - The analyte reactively + - The relative perced 	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An explain (relative percent difference) no mated as one or more analytes hat the compound was analyzed d in the associated method blain tion exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quantity y is equal to or outside the conti- ent difference (RPD) equals or e	d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ it within control limits. used in the calculation we d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation product titation level. rol criteria used. exceeds the control criteria	on explanator or all ICP and oike added co ed in the nar re not detecte e. It indicates the instrume ct.	y note may be alyses when th ncentration. rative. ed above the c s probable bla	included in the ne matrix spike letection limit. nk contaminati	and or spike	data user.	
 B - Result is less than U or ND - Indicates the The reported value M - Duplicate injection M - Spiked sample readuplicate fail and the Z - Spiked recovery new Duplicate analysis S - SAR value is estime Organics: U or ND - Indicates the B - Analyte is detected E - Analyte concentra J - Estimated value. A - A tentatively identified analyte was compared to a spike recovery The analyte recovery + The relative perce G - A pattern resembla 	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An explain (relative percent difference) not mated as one or more analytes that the compound was analyzed d in the associated method blain tion exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quantity is equal to or outside the cont ent difference (RPD) equals or e- ling gasoline was detected in the	d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ it within control limits. used in the calculation we d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation product titation level. rol criteria used. exceeds the control criteria his sample.	on explanator or all ICP and oike added co ed in the nar re not detecte e. It indicates the instrume ct.	y note may be alyses when th ncentration. rative. ed above the c s probable bla	included in the ne matrix spike letection limit. nk contaminati	and or spike	data user.	
 B - Result is less than U or ND - Indicates the The reported value M - Duplicate injection M - Spiked sample reduplicate fail and the Z - Spiked recovery network Duplicate analysis S - SAR value is estime Organics: U or ND - Indicates the B - Analyte is detected E - Analyte concentrational detected A - A tentatively identified analyte was contrased and the spike recovery The analyte recovery The relative perce G - A pattern resemble D - A pattern resemble 	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla- (relative percent difference) no mated as one or more analytes that the compound was analyzed d in the associated method bla- tion exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quant y is equal to or outside the cont ent difference (RPD) equals or e- ling gasoline was detected in this	d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ t within control limits. used in the calculation we d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation product titation level. rol criteria used. exceeds the control criteria his sample. sample.	on explanator or all ICP and oike added co ed in the nar re not detecte e. It indicates the instrume ct.	y note may be alyses when th ncentration. rative. ed above the c s probable bla	included in the ne matrix spike letection limit. nk contaminati	and or spike	data user.	
 B - Result is less than U or ND - Indicates the The reported value M - Duplicate injection M - Spiked sample reduplicate fail and the Z - Spiked recovery not a spiked recovery to a spike recovery the spi	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An explain (relative percent difference) not mated as one or more analytes that the compound was analyzed d in the associated method blain tion exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quantity is equal to or outside the cont ent difference (RPD) equals or e- ling gasoline was detected in the	d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ t within control limits. used in the calculation we d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation produc titation level. rol criteria used. exceeds the control criteria his sample. sample. his sample.	on explanator or all ICP and oike added co ed in the nar re not detecte e. It indicates the instrume ct.	y note may be alyses when th ncentration. rative. ed above the c s probable bla	included in the ne matrix spike letection limit. nk contaminati	and or spike	data user.	
 B - Result is less than U or ND - Indicates the The reported value M - Duplicate injection N - Spiked sample reduplicate fail and the Z - Spiked recovery not a spiked recovery the spike recovery the spi	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla- (relative percent difference) no mated as one or more analytes that the compound was analyzed d in the associated method bla tion exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quant y is equal to or outside the cont ent difference (RPD) equals or e- ling gasoline was detected in this ling motor oil was detected in this	d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ t within control limits. used in the calculation we d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation produc titation level. rol criteria used. exceeds the control criteria his sample. his sample. his sample.	on explanator or all ICP and oike added co ed in the nar re not detecte e. It indicates the instrume ct.	y note may be alyses when th ncentration. rative. ed above the c s probable bla	included in the ne matrix spike letection limit. nk contaminati	and or spike	lata user.	
 B - Result is less than U or ND - Indicates the The reported value M - Duplicate injection N - Spiked sample readuplicate fail and the Z - Spiked recovery not a spiked recovery the spike recovery the spike	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla- (relative percent difference) no mated as one or more analytes that the compound was analyzed d in the associated method bla ation exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quant y is equal to or outside the cont ent difference (RPD) equals or e- ling gasoline was detected in this ling motor oil was detected in this ling motor oil was detected in the ling crude oil was detected in the ling crude oil was detected in the ling crude oil was detected in the	d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ t within control limits. used in the calculation we d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation produc titation level. rol criteria used. exceeds the control criteria his sample. sample. his sample. ample.	on explanator or all ICP and oike added co ed in the nar re not detecte e. It indicates the instrume ct.	y note may be alyses when th ncentration. rative. ed above the c s probable bla	included in the ne matrix spike letection limit. nk contaminati	and or spike	data user.	
 B - Result is less than U or ND - Indicates the The reported value M - Duplicate injection N - Spiked sample readuplicate fail and the Z - Spiked recovery metric analysis S - SAR value is estimed U or ND - Indicates the B - Analyte is detected E - Analyte concentration J - Estimated value. A - A tentatively identition X - The analyte was constructed and the pattern resembliced of a pattern resembliced	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla- (relative percent difference) no mated as one or more analytes that the compound was analyzed d in the associated method bla ation exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quant y is equal to or outside the cont ent difference (RPD) equals or e- ling gasoline was detected in this ling motor oil was detected in this sing JP-4 was detected in this s- fuel pattern was in the heavier	d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ t within control limits. used in the calculation were d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation product titation level. rol criteria used. exceeds the control criteria his sample. his sample. his sample. ample. ample. end of the retention time w	indow for the	y note may be alyses when th incentration. rative. ed above the o probable bla nt method det analyte of int	included in the ne matrix spike letection limit. nk contaminati ection limit (MI	and or spike	data user.	
 B - Result is less than U or ND - Indicates the The reported value M - Duplicate injection N - Spiked sample readuplicate fail and the Z - Spiked recovery magnetic strain and the Duplicate analysis S - SAR value is estim Organics: U or ND - Indicates the B - Analyte is detected and the strain and the	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla- (relative percent difference) no mated as one or more analytes that the compound was analyzed d in the associated method bla ation exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quant y is equal to or outside the cont ent difference (RPD) equals or e- ling gasoline was detected in this ling motor oil was detected in this sing JP-5 was detected in this si- fuel pattern was in the lighter e-	d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ t within control limits. used in the calculation were d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation product titation level. rol criteria used. exceeds the control criteria his sample. his sample. ample. ample. end of the retention time win nd of the retention time win	indow for the added for the added to be ad	y note may be alyses when th incentration. rative. ed above the o probable bla nt method det analyte of int analyte of int	included in the ne matrix spike letection limit. nk contaminati ection limit (MI ection limit (MI	e and or spike on and warns the c DL).		
 B - Result is less than U or ND - Indicates the The reported value M - Duplicate injection N - Spiked sample reduplicate fail and the Z - Spiked recovery network Duplicate analysis S - SAR value is estime Organics: U or ND - Indicates the B - Analyte is detected E - Analyte concentration J - Estimated value. A - A tentatively identified an experience G - A pattern resemblied D - A pattern resemblied A - A pattern resemblied A - A pattern resemblied A - A pattern resemblies A - A pattern resemblies<td>hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla- (relative percent difference) no mated as one or more analytes that the compound was analyzed d in the associated method bla ation exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quant y is equal to or outside the cont ent difference (RPD) equals or e- ling gasoline was detected in this ling motor oil was detected in this sing JP-4 was detected in this s- fuel pattern was in the heavier</td><td>d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ t within control limits. used in the calculation were d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation product titation level. rol criteria used. exceeds the control criteria his sample. his sample. ample. ample. end of the retention time win nd of the retention time win</td><td>indow for the added for the added to be ad</td><td>y note may be alyses when th incentration. rative. ed above the o probable bla nt method det analyte of int analyte of int</td><td>included in the ne matrix spike letection limit. nk contaminati ection limit (MI ection limit (MI</td><td>e and or spike on and warns the c DL).</td><td></td><td></td>	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla- (relative percent difference) no mated as one or more analytes that the compound was analyzed d in the associated method bla ation exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quant y is equal to or outside the cont ent difference (RPD) equals or e- ling gasoline was detected in this ling motor oil was detected in this sing JP-4 was detected in this s- fuel pattern was in the heavier	d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ t within control limits. used in the calculation were d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation product titation level. rol criteria used. exceeds the control criteria his sample. his sample. ample. ample. end of the retention time win nd of the retention time win	indow for the added for the added to be ad	y note may be alyses when th incentration. rative. ed above the o probable bla nt method det analyte of int analyte of int	included in the ne matrix spike letection limit. nk contaminati ection limit (MI ection limit (MI	e and or spike on and warns the c DL).		
 B - Result is less than U or ND - Indicates that The reported value M - Duplicate injection N - Spiked sample reduplicate fail and the Z - Spiked recovery network The upplicate analysis S - SAR value is estimed to a setting the setting of the settin	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla- (relative percent difference) no mated as one or more analytes that the compound was analyzed d in the associated method bla ation exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quant y is equal to or outside the cont ent difference (RPD) equals or e- ling gasoline was detected in this ling motor oil was detected in this sing JP-5 was detected in this si- fuel pattern was in the lighter e-	d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ t within control limits. used in the calculation were d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation product titation level. rol criteria used. exceeds the control criteria his sample. his sample. ample. ample. end of the retention time win nd of the retention time win	indow for the added for the added to be ad	y note may be alyses when th incentration. rative. ed above the o probable bla nt method det analyte of int analyte of int	included in the ne matrix spike letection limit. nk contaminati ection limit (MI ection limit (MI	e and or spike on and warns the c DL).		:
 B - Result is less than U or ND - Indicates the The reported value M - Duplicate injection N - Spiked sample reduplicate fail and the Z - Spiked recovery network The upplicate analysis S - SAR value is estimed Our ND - Indicates the B - Analyte is detected C - Analyte concentration J - Estimated value. A - A tentatively idention X - The spike recovery + - The relative percee G - A pattern resemblion D - A pattern resemblion A pattern resemb	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla (relative percent difference) no mated as one or more analytes that the compound was analyzed d in the associated method bla ation exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quant y is equal to or outside the cont ent difference (RPD) equals or e- ling gasoline was detected in this ling motor oil was detected in this sing JP-5 was detected in this si- fuel pattern was in the lighter e-	d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ t within control limits. used in the calculation were d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation product titation level. rol criteria used. exceeds the control criteria his sample. his sample. ample. ample. end of the retention time win nd of the retention time win	indow for the added for the added to be ad	y note may be alyses when th incentration. rative. ed above the o probable bla nt method det analyte of int analyte of int	included in the ne matrix spike letection limit. nk contaminati ection limit (MI ection limit (MI	e and or spike on and warns the c DL).		
 B - Result is less than U or ND - Indicates that The reported value M - Duplicate injection N - Spiked sample reduplicate fail and the Z - Spiked recovery network The upplicate analysis S - SAR value is estimed to a second the second to a second	hat the compound was analyzed e is estimated because of the p on precision was not met. covery not within control limits. native sample concentration is ot within control limits. An expla (relative percent difference) no mated as one or more analytes that the compound was analyzed d in the associated method bla ation exceeds the upper level of The result is less than the repo- ified compound is a suspected diluted below an accurate quant y is equal to or outside the cont ent difference (RPD) equals or e- ling gasoline was detected in this ling motor oil was detected in this sing JP-5 was detected in this si- fuel pattern was in the lighter e-	d for but not detected. A post spike is analyzed f less than four times the sp anatory note may be includ t within control limits. used in the calculation were d for but not detected. Ink as well as in the sample the calibration range. rting limit but greater than aldol-condensation product titation level. rol criteria used. exceeds the control criteria his sample. his sample. ample. ample. end of the retention time win nd of the retention time win	indow for the added for the added to be ad	y note may be alyses when th incentration. rative. ed above the o probable bla nt method det analyte of int analyte of int	included in the ne matrix spike letection limit. nk contaminati ection limit (MI ection limit (MI	e and or spike on and warns the c DL).		

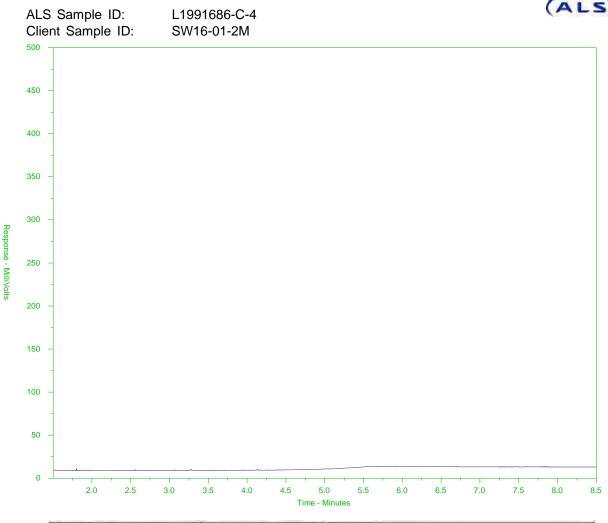

Client:ALS EnvironmentalWork Order:1709437Project:L1991686

QC BATCH REPORT

Batch ID: R	E170923-2-1	Instrument ID Alp	oha Scin		Method:	Radium-226	6 by Rado	on Emanation				
LCS	Sample ID: RE170923-	2			ι	Jnits: BQ/I		Analys	is Date:	10/3/201	7 13:20	
Client ID:		Run II	D: RE170923-	2A			F	Prep Date: 9/23	/2017	DF:	NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Ra-226		1.79 (+/- 0.443)	0.0114	1.715		105	67-120					P,M3
Carr: BARI	JM	16000		16910		94.7	40-110					
LCSD	Sample ID: RE170923-	2			l	Jnits: BQ/I		Analys	is Date:	10/3/201	7 13:20	
Client ID:		Run II	D: RE170923-	2A			F	Prep Date: 9/23	/2017	DF:	NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Ra-226		1.81 (+/- 0.446)	0.00672	1.715		105	67-120		1.7	9 0.02	2.1	Р
Carr: BARI	JM	16000		16910		94.9	40-110		1600	0		
МВ	Sample ID: RE170923-	2			ι	Jnits: BQ/I		Analys	is Date:	10/3/201	7 13:20	
Client ID:		Run II	D: RE170923-	2A			F	Prep Date: 9/23	/2017	DF:	NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Ra-226		0.0010 (+/- 0.0029)	0.0055									U
Carr: BARI	JM	16300		16910		96.3	40-110					
The follow	ving samples were analyz	ed in this batch:	17094 17094	-	1709- 1709-	437-2 437-5	170	9437-3				

Batch ID: PE	3171002-1-1	Instrument ID LIC	SCINT		Method: L	.ead-210 by	y Liquid S	cintilatio				
LCS	Sample ID: PB171002-	1			L	Inits: ug		Analys	is Date:	10/11/20)17 23:23	5
Client ID:		Run II	D: PB171002-	1B			F	Prep Date: 10/2	/2017	DF	NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Carr: LEAD		790		892.6		88.5	40-110					
Pb-210		1.64 (+/- 0.403)	0.0457	1.566		105	75-125					P,M3
LCSD	Sample ID: PB171002-	1			L	Inits: ug		Analys	is Date:	10/11/20	17 23:55	;
Client ID:		Run II	D: PB171002-	1B			F	Prep Date: 10/2	/2017	DF	NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Carr: LEAD		787		930.7		84.6	40-110		79	0		
Pb-210		1.71 (+/- 0.421)	0.0478	1.566		110	75-125		1.6	4 0.1	2.1	P,M3
МВ	Sample ID: PB171002-	1			L	Inits: ug		Analys	is Date:	10/11/20)17 21:20)
Client ID:		Run II	D: PB171002-	1B			F	Prep Date: 10/2	/2017	DF	NA	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	DER Ref	DER	DER Limit	Qual
Carr: LEAD		808		911.7		88.6	40-110					
Pb-210		0.0036 (+/- 0.013)	0.022									U
The followi	ing samples were analyz	zed in this batch:	17094	137-1	17094	37-2	1709	9437-3				

1709437-1 1709437-4 1709437-5

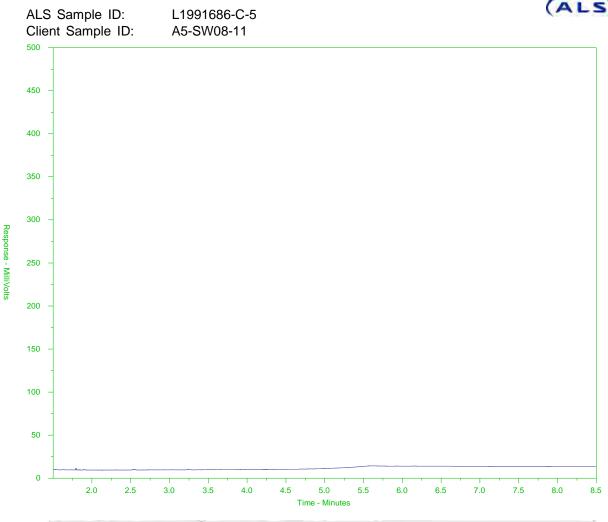


nC10	NC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		Motor	lils/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

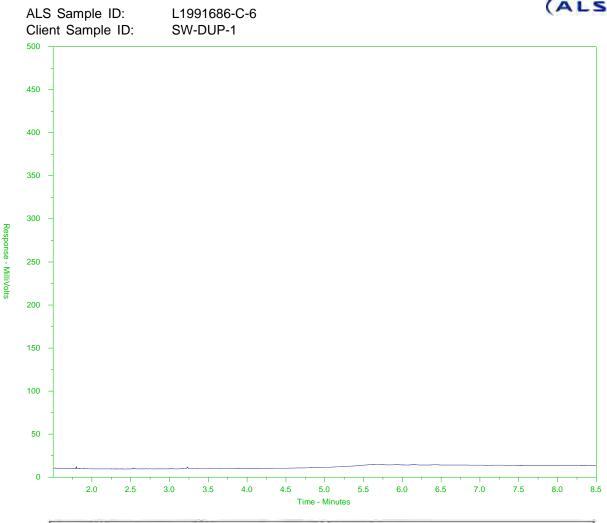


nCIQ	NC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasolim		- Motor V	lis/ Lube Olis/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

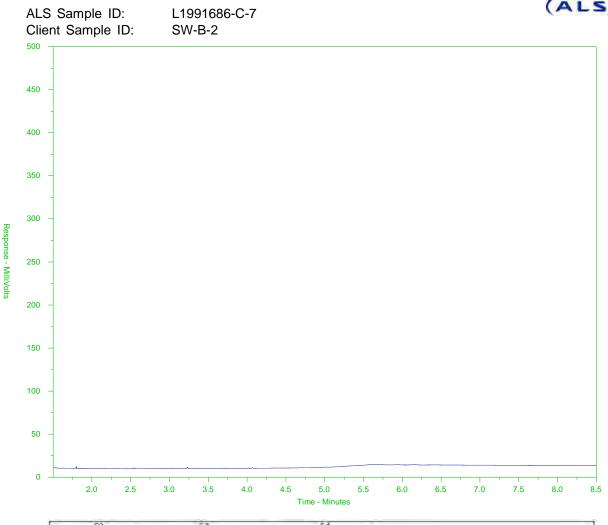


nC10	NC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasoline	3	Motor	Dils/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

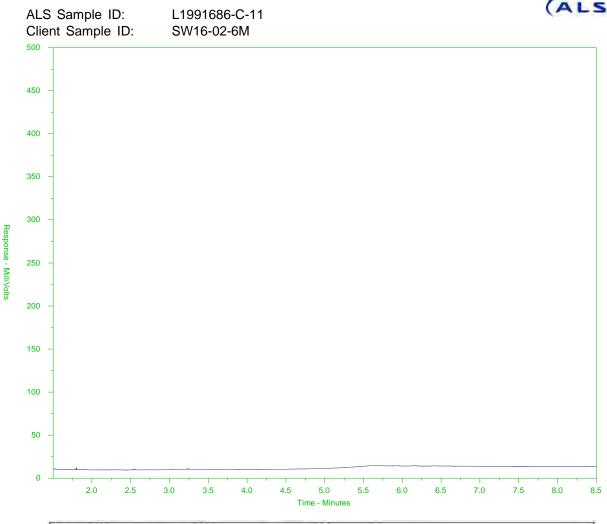


nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		Motor	lis/ Lube Olis/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.



nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		- Motor V	18/ Lube Olls/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim		Motor	lis/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Chain of Custody (COC) / Analytical **Request Form**

Canada Toll Free: 1 800 668 9878

COC Number: 14 -

Page 1 of 1

w.alsglobal.com				
	w a	ISCI	lobal	com

	www.alsglobal.com			1.2.2.4.4.4								_							
Report To			Report Format	/ Distribution			Sel	ect Ser	vice Lev	vel Belo	w (Rus	h Tum	around	Time	(TAT) is	not avail	lable fr	or all tes	ts)
Company:	Public Services and Procurement Canada	Select Report F	Format: ☑PDF	@EXCEL @	EDD (DIGITAL)	R @Regular (Standard TAT if received by 3 pm - business days) DPriority (2-4 bus. days if received by 3pm) 50% surcharge - contact ALS to confirm TAT													
Contact:	Rebecca Studer-Halbach	Quality Control	(QC) Report with R	eport 🔽 Ye	s ⊏No	Р	DPrior	ity (2-4	bus. day	ys if rece	eived by	3pm)	50% s	urchar	ge - con	tact ALS I	to con	firm TAT	
Address:	10025 Jasper Avenue	Criteria on Repo	rt - provide details below	v if box checked		E Emergency (1-2 bus. days if received by 3pm) 100% surcharge - contact ALS to confirm TAT								1 TAT					
	Edmonton, AB T5J 1S6	Select Distribut	lion: Demai		DFAX	E2	□Same	e day or	weeker	eekend emergency - contact ALS to confirm TAT and surcharge									
Phone:	(788) 497-3761	Email 1 or Fax	rebecca.studer-ha	lbach@pwgsc.ca	a	Spec	ify Dat	e Req	uired fo	or E2,E	or P:								
		Email 2	claire.brown@dxbj	projects.ca							A	nalys	is Re	ques	t				
Invoice To	Same as Report To 🔽 Yes 🔽 No		Invoice Di	stribution			Indi	cate Fill	ered (F)), Preser	ved (P)	or Filt	ered an	nd Pres	served (F/P) belo	w		
	Copy of Invoice with Report FYes TNo	Select Invoice I	Distribution: DEM		DFAX														
Company:	Public Services and Procurement Canada	Email 1 or Fax	rebecca.studer-hal	lbach@pwgsc.ca	a								Q640(
Contact:	Rebecca Studer-Halbach	Email 2											per Q						б
	Project Information	OI	I and Gas Require		use)														aine
ALS Quote #:	Q64064	Approver ID:		Cost Center:					4	64			a-2	1					onta
Job #:	Contraction of the second s	GL Account:		Routing Code:		4	064 064 4064 064064 r 064064 64					nd F		064				of C	
PO/AFE:	R.015211.049	Activity Code:				3406	r 064064 r 064064 er 064064 is per 0640 ury per 064 064064				64	10 a		Q64064				Number of Containers	
LSD:		Location:					r Q6	per Q	s per	1 Aun	Q64	Q64064	b-2	64	per				Mum
ALS Lab Wo	rk Order # (lab use only) L1991686	ALS Contact:	Joanne Lee and Rick Zolkiewski	Sampler:		and pe stals pe srcury p d Meta			per	F1 per Q	Radionuclides Pb-210 and Ra-226	per Q64064	Grease				-		
ALS Sample # (lab use only)	Sample Identification and/or Coordina (This description will appear on the repo		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Routine	otal Me	Fotal Mercury	issolve	issolve	PHC F2-F4	BTEX, F	adionu	NAPL pe	Oil and				
(BG-SW08-04	л <i>т</i>)	11-Sep-17	(m.m.)	Water	R	R	R	R	R	۵.	m	R	Z	0		-	\rightarrow	9
1	A3-SW08-01		11-Sep-17 11-Sep-17		Water	R	R	R	<u> </u>	N			-	-			-	+	7
3	SW07-3		11-Sep-17		Water	R	R	R	12.5		R	R					+		11
Ц	SW16-01-2m		11-Sep-17		Water	R	R	R			R	R	R				-	-	13
5	A5-SW08-11		11-Sep-17		Water	R	R	R	R	R	R	R	R				-	-	15
6	SW-DUP-1		11-Sep-17		Water	R	R	R	R	R	R	R	R						15
7	SW-B-2		11-Sep-17		Water	R	R	R	R	R	R	R	R			270		1	15
4	A3-SW08-05		11-Sep-17		Water	R	R	R		1	1								7
9	BG-SW08-01		11-Sep-17	1	Water	R	R	R					R						9
10	SW16-01-6m		11-Sep-17		Water	R	R	R											-7
11	SW16-02-6m		11-Sep-17		Water	R	R	R			R	R							11
12	SW16-02-2m		11-Sep-17		Water	R	R	R											7
Drinking	Water (DW) Samples ¹ (client use) Sp	ecial Instructions / Spec	ify Criteria to add o	n report (client U	se)			:	SAMP	LE CO	NDITI			2000		b use o	11		
					Sec. Sec. Sec.	Froze					-		Obser					No	
Are samples tak	es 🔽 No conductivity, alka	This project references inity, turbidity, TDS, TS	S, Ammonia, Nitrat	e/Nitrite, total ph	osphorus,		acks ng Initi			No		Cust	ody s	eal in	tact	Yes		No	
Are samples for		orus, dissolved organic um, potassium, sodium				INIT	TIAL CO	OLER	TEMPER	RATURE	S °C	1		FINAL	COOLE	R TEMPI	ERAT	URES %	5
ΓYe		d metals parameters m				4	17					-							
	SHIPMENT RELEASE (client use)	INITIAL S	SHIPMENT RECEP	TION (lab use o	nly)				FIN	AL SH	IPME	NTR	ECEP	TION	(lab u	se only	1)		
Released by:	Date: Time: F Sty 12/17 Sicca	Received by:		Date:	Time: 9:30	Rece	eived b	y:					Date	9:		Time:			
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	- Frid	WHI	TE - LABORATO	RY COPY YEL	LOW -	CLIEN	T COP	Y					NA-FM-0	326e v09 Fro	ont/04 January :	2014		

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTN: Rebecca Studer-Halbach Northern Contaminated Sites 10025 Jasper Avenue NW Edmonton AB T5J 1S6 Date Received: 16-SEP-17 Report Date: 06-OCT-17 19:16 (MT) Version: FINAL

Client Phone: 780-497-3761

Certificate of Analysis

Lab Work Order #: L1993043 Project P.O. #: R.015211.049 Job Reference: C of C Numbers: Legal Site Desc:

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 314 Old Airport Road, Unit 116, Yellowknife, NT X1A 3T3 Canada | Phone: +1 867 873 5593 | ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🕽

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1993043 CONTD.... PAGE 2 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-1 WATER 13-SEP-17 T-16-A	L1993043-2 WATER 13-SEP-17 T-16-B	L1993043-3 WATER 13-SEP-17 T-8-A	L1993043-4 WATER 13-SEP-17 T-DUP-1	L1993043-5 WATER 13-SEP-17 T-8-B
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	197	195	196	196	197
	Hardness (as CaCO3) (mg/L)	нтс 77.0	нтс 76.5	78.3	78.7	79.1
	рН (рН)	7.93	7.94	7.93	7.92	7.93
	Total Suspended Solids (mg/L)	<3.0	5.5	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	140	132	134	137	129
	Turbidity (NTU)	0.79	0.73	0.69	0.86	0.83
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	61.9	62.7	62.9	62.3	63.2
	Ammonia, Total (as N) (mg/L)	0.0117	0.0057	0.0118	<0.0050	0.0082
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	11.5	11.6	11.5	11.5	11.5
	Fluoride (F) (mg/L)	0.683	0.685	0.683	0.682	0.681
	Nitrate (as N) (mg/L)	<0.0050	0.0064	0.0051	0.0051	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	0.0040	0.0041	0.0039	0.0040	0.0042
	Phosphorus (P)-Total (mg/L)	0.0050	0.0054	0.0051	0.0059	0.0041
	Sulfate (SO4) (mg/L)	16.1	16.1	16.1	16.1	16.1
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	11.9	12.0	12.5	12.5	12.1
	Total Organic Carbon (mg/L)	12.1	12.2	12.3	12.3	12.6
Total Metals	Aluminum (Al)-Total (mg/L)	0.0338	0.0357	0.0339	0.0327	0.0339
	Antimony (Sb)-Total (mg/L)	0.00132	0.00129	0.00129	0.00131	0.00129
	Arsenic (As)-Total (mg/L)	0.0605	0.0607	0.0607	0.0608	0.0602
	Barium (Ba)-Total (mg/L)	0.0162	0.0159	0.0157	0.0159	0.0161
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.027	0.027	0.027	0.028	0.028
	Cadmium (Cd)-Total (mg/L)	0.0000077	0.0000057	0.0000066	0.0000076	0.0000070
	Calcium (Ca)-Total (mg/L)	23.2	23.2	22.9	23.0	23.4
	Cesium (Cs)-Total (mg/L)	0.000048	0.000048	0.000047	0.000048	0.000047
	Chromium (Cr)-Total (mg/L)	0.00017	0.00015	0.00015	0.00019	0.00015
	Cobalt (Co)-Total (mg/L)	0.00014	0.00013	0.00013	0.00013	0.00013
	Copper (Cu)-Total (mg/L)	0.00797	0.00797	0.00797	0.00812	0.00808
	Iron (Fe)-Total (mg/L)	0.038	0.037	0.035	0.037	0.038
	Lead (Pb)-Total (mg/L)	0.000146	0.000147	0.000131	0.000137	0.000136
	Lithium (Li)-Total (mg/L)	0.0073	0.0074	0.0075	0.0075	0.0077
	Magnesium (Mg)-Total (mg/L)	4.67	4.51	4.67	4.68	4.55

L1993043 CONTD.... PAGE 3 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-6 WATER 13-SEP-17 T-8-C	L1993043-7 WATER 13-SEP-17 T-5	L1993043-8 WATER 13-SEP-17 T-3	L1993043-9 WATER 13-SEP-17 T-9	L1993043-10 WATER 13-SEP-17 T-1
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	235	197	196	190	134
	Hardness (as CaCO3) (mg/L)	92.6	нтс 76.3	78.9	77.3	нтс 62.7
	рН (рН)	7.90	7.94	7.92	7.93	7.87
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	160	136	133	124	93
	Turbidity (NTU)	0.45	0.68	1.11	0.84	3.33
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	75.8	62.9	61.1	62.6	56.2
	Ammonia, Total (as N) (mg/L)	<0.0050	0.0059	0.0073	0.0125	0.0121
	Bromide (Br) (mg/L)	0.054	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	14.6	11.5	11.5	11.3	1.71
	Fluoride (F) (mg/L)	0.765	0.685	0.685	0.682	0.211
	Nitrate (as N) (mg/L)	0.0843	<0.0050	0.0072	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	0.0044	0.0040	0.0039	0.0057	0.0036
	Phosphorus (P)-Total (mg/L)	0.0037	0.0050	0.0166	0.0075	0.0097
	Sulfate (SO4) (mg/L)	18.6	16.1	16.1	15.5	10.6
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	12.7	11.6	11.8	11.8	6.81
	Total Organic Carbon (mg/L)	12.6	11.7	11.5	11.7	6.90
Total Metals	Aluminum (Al)-Total (mg/L)	0.0190	0.0329	0.0580	0.0299	0.152
	Antimony (Sb)-Total (mg/L)	0.00138	0.00124	0.00127	0.00116	0.00011
	Arsenic (As)-Total (mg/L)	0.0769	0.0596	0.0652	0.0472	0.00180
	Barium (Ba)-Total (mg/L)	0.0183	0.0159	0.0162	0.0108	0.0128
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	0.000222	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.033	0.027	0.027	0.024	0.012
	Cadmium (Cd)-Total (mg/L)	0.0000080	0.0000069	0.0000116	<0.0000050	0.0000055
	Calcium (Ca)-Total (mg/L)	28.1	23.0	23.1	22.6	15.7
	Cesium (Cs)-Total (mg/L)	0.000044	0.000044	0.000079	0.000024	0.000027
	Chromium (Cr)-Total (mg/L)	0.00010	0.00015	0.00018	0.00010	0.00037
	Cobalt (Co)-Total (mg/L)	0.00011	0.00014	0.00103	0.00015	<0.00010
	Copper (Cu)-Total (mg/L)	0.00882	0.00797	0.00859	0.00535	0.00421
	Iron (Fe)-Total (mg/L)	0.027	0.039	0.085	0.065	0.208
	Lead (Pb)-Total (mg/L)	0.000080	0.000152	0.00128	0.000085	0.000219
	Lithium (Li)-Total (mg/L)	0.0092	0.0076	0.0075	0.0072	0.0023
	Magnesium (Mg)-Total (mg/L)	5.36	4.55	4.53	4.54	5.72

L1993043 CONTD.... PAGE 4 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-11 WATER 13-SEP-17 T-31	L1993043-12 WATER 13-SEP-17 T-6	L1993043-13 WATER 13-SEP-17 T-30	L1993043-14 WATER 13-SEP-17 T-12	L1993043-15 WATER 13-SEP-17 T-10
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	147	254	146	147	148
	Hardness (as CaCO3) (mg/L)	67.8	108	нтс 67.5	нтс 68.0	67.9
	рН (рН)	7.95	8.02	7.92	7.96	7.95
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	<3.0
	Total Dissolved Solids (mg/L)	97	168	92	91	95
	Turbidity (NTU)	0.57	1.12	0.51	0.65	0.83
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	57.8	89.9	57.9	58.0	57.9
	Ammonia, Total (as N) (mg/L)	<0.0050	<0.0050	0.0088	0.0072	<0.0050
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	2.34	9.52	2.33	2.34	2.34
	Fluoride (F) (mg/L)	0.146	0.641	0.144	0.144	0.147
	Nitrate (as N) (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020	0.0048	<0.0020	<0.0020	<0.0020
	Phosphorus (P)-Total (mg/L)	0.0029	0.0057	0.0024	0.0020	0.0025
	Sulfate (SO4) (mg/L)	14.2	25.6	14.2	14.2	14.2
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	4.98	9.03	4.53	4.83	4.77
	Total Organic Carbon (mg/L)	4.82	9.10	4.74	4.82	4.69
Total Metals	Aluminum (Al)-Total (mg/L)	0.0232	0.0549	0.0239	0.0243	0.0276
	Antimony (Sb)-Total (mg/L)	<0.00010	0.00092	<0.00010	<0.00010	<0.00010
	Arsenic (As)-Total (mg/L)	0.00035	0.0287	0.00024	0.00024	0.00036
	Barium (Ba)-Total (mg/L)	0.0107	0.0243	0.0106	0.0104	0.0108
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.011	0.027	0.012	0.011	0.012
	Cadmium (Cd)-Total (mg/L)	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.0000050
	Calcium (Ca)-Total (mg/L)	16.1	30.9	15.7	16.0	16.0
	Cesium (Cs)-Total (mg/L)	<0.000010	0.000048	<0.000010	<0.000010	<0.000010
	Chromium (Cr)-Total (mg/L)	0.00011	0.00015	0.00145	0.00011	0.00013
	Cobalt (Co)-Total (mg/L)	<0.00010	0.00014	<0.00010	<0.00010	<0.00010
	Copper (Cu)-Total (mg/L)	0.00089	0.00739	0.00084	0.00078	0.00088
	Iron (Fe)-Total (mg/L)	0.023	0.072	0.029	0.024	0.026
	Lead (Pb)-Total (mg/L)	<0.000050	0.000055	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Total (mg/L)	0.0022	0.0073	0.0023	0.0023	0.0024
	Magnesium (Mg)-Total (mg/L)	6.67	7.30	6.88	6.84	6.84

L1993043 CONTD.... PAGE 5 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-16 WATER 13-SEP-17 T-DUP-2	L1993043-17 WATER 13-SEP-17 R-2	L1993043-18 WATER 14-SEP-17 MB-9	L1993043-19 WATER 14-SEP-17 MB-1	L1993043-20 WATER 14-SEP-17 T-25
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	147	152	237	244	191
	Hardness (as CaCO3) (mg/L)	нтс 67.8	нтс 70.0	нтс 97.9	96.3	нтс 89.8
	рН (рН)	7.96	7.96	7.96	7.93	7.92
	Total Suspended Solids (mg/L)	<3.0	<3.0	<3.0	<3.0	3.7
	Total Dissolved Solids (mg/L)	92	89	154	161	150
	Turbidity (NTU)	0.89	0.90	0.69	0.81	1.14
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	57.6	58.8	78.9	79.3	80.7
	Ammonia, Total (as N) (mg/L)	0.0106	0.0132	0.0110	0.0076	0.0103
	Bromide (Br) (mg/L)	<0.050	<0.050	0.052	0.053	<0.050
	Chloride (Cl) (mg/L)	2.33	2.45	11.1	10.9	2.46
	Fluoride (F) (mg/L)	0.144	0.148	0.786	0.795	0.281
	Nitrate (as N) (mg/L)	<0.0050	<0.0050	0.0401	0.0797	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020	<0.0020	0.0059	0.0095	0.0094
	Phosphorus (P)-Total (mg/L)	0.0023	0.0028	0.0065	0.0080	0.0140
	Sulfate (SO4) (mg/L)	14.2	15.1	24.7	27.7	15.6
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	4.77	4.81	9.49	9.58	7.86
	Total Organic Carbon (mg/L)	4.56	4.73	9.53	9.54	8.65
Total Metals	Aluminum (Al)-Total (mg/L)	0.0231	0.0194	0.0261	0.0285	0.0258
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010	0.00123	0.00142	<0.00010
	Arsenic (As)-Total (mg/L)	0.00032	0.00017	0.0522	0.0544	0.00237
	Barium (Ba)-Total (mg/L)	0.0154	0.0106	0.0208	0.0207	0.0131
	Beryllium (Be)-Total (mg/L)	<0.000020	<0.000020	0.000040	0.000041	<0.000020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	0.000051	0.000064	<0.000050
	Boron (B)-Total (mg/L)	0.011	0.012	0.024	0.024	0.105
	Cadmium (Cd)-Total (mg/L)	<0.000050	<0.000050	0.0000572	0.0000648	<0.0000050
	Calcium (Ca)-Total (mg/L)	15.6	16.3	29.9	30.1	22.6
	Cesium (Cs)-Total (mg/L)	<0.000010	<0.000010	0.000266	0.000287	0.000015
	Chromium (Cr)-Total (mg/L)	<0.00010	0.00010	0.00014	0.00015	0.00021
	Cobalt (Co)-Total (mg/L)	<0.00010	<0.00010	0.00406	0.00348	0.00019
	Copper (Cu)-Total (mg/L)	0.00077	0.00071	0.0412	0.0492	0.00135
	Iron (Fe)-Total (mg/L)	0.022	0.019	0.088	0.036	0.402
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	0.000134	0.000161	0.000114
	Lithium (Li)-Total (mg/L)	0.0023	0.0026	0.0073	0.0075	0.0039
	Magnesium (Mg)-Total (mg/L)	7.02	7.10	5.68	5.52	8.10

L1993043 CONTD.... PAGE 6 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-21 WATER 14-SEP-17 T-TRIP BLANK	L1993043-22 WATER 14-SEP-17 T-FIELD BLANK		
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)		<2.0		
	Hardness (as CaCO3) (mg/L)		<0.50		
	рН (рН)		5.43		
	Total Suspended Solids (mg/L)		<3.0		
	Total Dissolved Solids (mg/L)		<10		
	Turbidity (NTU)		<0.10		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)		<1.0		
	Ammonia, Total (as N) (mg/L)		<0.0050		
	Bromide (Br) (mg/L)		<0.050		
	Chloride (Cl) (mg/L)		<0.50		
	Fluoride (F) (mg/L)		<0.020		
	Nitrate (as N) (mg/L)		<0.0050		
	Nitrite (as N) (mg/L)		<0.0010		
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020	<0.0020		
	Phosphorus (P)-Total (mg/L)		<0.0020		
	Sulfate (SO4) (mg/L)		<0.30		
	Sulphide as S (mg/L)		<0.018 HTD		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L) Total Organic Carbon (mg/L)		<0.50		
Total Metals	Aluminum (Al)-Total (mg/L)		<0.50		
I Otal Metals	Antimony (Sb)-Total (mg/L)		<0.0030		
	Arsenic (As)-Total (mg/L)		<0.00010		
	Barium (Ba)-Total (mg/L)		<0.00010		
	Beryllium (Be)-Total (mg/L)		<0.000050		
	Bismuth (Bi)-Total (mg/L)		<0.000020		
	Boron (B)-Total (mg/L)		<0.000050 <0.010		
	Cadmium (Cd)-Total (mg/L)		<0.000050		
	Calcium (Ca)-Total (mg/L)		<0.050		
	Cesium (Cs)-Total (mg/L)		<0.00010		
	Chromium (Cr)-Total (mg/L)		<0.00010		
	Cobalt (Co)-Total (mg/L)		<0.00010		
	Copper (Cu)-Total (mg/L)		<0.00050		
	Iron (Fe)-Total (mg/L)		<0.010		
	Lead (Pb)-Total (mg/L)		<0.00050		
	Lithium (Li)-Total (mg/L)		<0.0010		
	Magnesium (Mg)-Total (mg/L)		<0.10		

L1993043 CONTD.... PAGE 7 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-1 WATER 13-SEP-17 T-16-A	L1993043-2 WATER 13-SEP-17 T-16-B	L1993043-3 WATER 13-SEP-17 T-8-A	L1993043-4 WATER 13-SEP-17 T-DUP-1	L1993043-5 WATER 13-SEP-17 T-8-B
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.00306	0.00312	0.00299	0.00304	0.00303
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.00255	0.00258	0.00254	0.00250	0.00255
	Nickel (Ni)-Total (mg/L)	0.00374	0.00375	0.00377	0.00385	0.00380
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	1.94	1.96	1.95	1.97	1.96
	Selenium (Se)-Total (mg/L)	0.000065	0.000062	0.000051	<0.000050	0.000051
	Silicon (Si)-Total (mg/L)	0.73	0.74	0.73	0.73	0.73
	Silver (Ag)-Total (mg/L)	0.000018	0.000017	0.000015	0.000017	0.000026
	Sodium (Na)-Total (mg/L)	7.63	7.55	7.60	7.77	7.55
	Strontium (Sr)-Total (mg/L)	0.0736	0.0730	0.0742	0.0736	0.0745
	Sulfur (S)-Total (mg/L)	5.48	5.40	5.36	5.53	5.60
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	0.00062	DLM <0.00090	DLM <0.00090	0.00090	0.00067
	Uranium (U)-Total (mg/L)	0.00250	0.00255	0.00245	0.00251	0.00253
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030	0.0032	0.0040	0.0042
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location			LAB	LAB	LAB
	Dissolved Metals Filtration Location			LAB	LAB	LAB
	Aluminum (AI)-Dissolved (mg/L)			0.0093	0.0100	0.0102
	Antimony (Sb)-Dissolved (mg/L)			0.00129	0.00127	0.00128
	Arsenic (As)-Dissolved (mg/L)			0.0614	0.0612	0.0610
	Barium (Ba)-Dissolved (mg/L)			0.0165	0.0164	0.0167
	Beryllium (Be)-Dissolved (mg/L)			<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Dissolved (mg/L)			<0.000050	<0.000050	<0.000050
	Boron (B)-Dissolved (mg/L)			0.026	0.026	0.026
	Cadmium (Cd)-Dissolved (mg/L)			0.0000063	0.0000055	<0.0000050
	Calcium (Ca)-Dissolved (mg/L)			23.6	23.9	23.9
	Cesium (Cs)-Dissolved (mg/L)			0.000043	0.000040	0.000041
	Chromium (Cr)-Dissolved (mg/L)			<0.00010	<0.00010	<0.00010
	Cobalt (Co)-Dissolved (mg/L)			<0.00010	<0.00010	<0.00010
	Copper (Cu)-Dissolved (mg/L)			0.00742	0.00741	0.00746
	Iron (Fe)-Dissolved (mg/L)			<0.010	<0.010	<0.010
	Lead (Pb)-Dissolved (mg/L)			<0.000050	<0.000050	<0.000050
	Lithium (Li)-Dissolved (mg/L)			0.0078	0.0080	0.0080

L1993043 CONTD.... PAGE 8 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-6 WATER 13-SEP-17 T-8-C	L1993043-7 WATER 13-SEP-17 T-5	L1993043-8 WATER 13-SEP-17 T-3	L1993043-9 WATER 13-SEP-17 T-9	L1993043-10 WATER 13-SEP-17 T-1
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.00533	0.00313	0.00673	0.00737	0.00638
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.00287	0.00256	0.00258	0.00238	0.000221
	Nickel (Ni)-Total (mg/L)	0.00438	0.00376	0.00406	0.00348	0.00055
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	2.34	1.94	1.96	1.97	0.94
	Selenium (Se)-Total (mg/L)	0.000055	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)-Total (mg/L)	1.43	0.71	0.74	0.34	1.10
	Silver (Ag)-Total (mg/L)	0.000013	0.000017	0.000063	0.000014	<0.000010
	Sodium (Na)-Total (mg/L)	9.40	7.48	7.63	7.31	2.37
	Strontium (Sr)-Total (mg/L)	0.0904	0.0752	0.0740	0.0738	0.0414
	Sulfur (S)-Total (mg/L)	6.29	5.44	5.32	5.07	3.36
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	0.00039	DLM <0.00090	olum <0.0012	olimet 20.00060	0.00546
	Uranium (U)-Total (mg/L)	0.00324	0.00247	0.00258	0.00218	0.000377
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	0.0048	0.0036	0.0040	<0.0030	<0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location	LAB		LAB	LAB	
	Dissolved Metals Filtration Location	LAB		LAB	LAB	
	Aluminum (Al)-Dissolved (mg/L)	0.0082		0.0075	0.0071	
	Antimony (Sb)-Dissolved (mg/L)	0.00139		0.00136	0.00114	
	Arsenic (As)-Dissolved (mg/L)	0.0796		0.0683	0.0460	
	Barium (Ba)-Dissolved (mg/L)	0.0192		0.0169	0.0110	
	Beryllium (Be)-Dissolved (mg/L)	<0.000020		<0.000020	<0.000020	
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050		<0.000050	<0.000050	
	Boron (B)-Dissolved (mg/L)	0.031		0.026	0.023	
	Cadmium (Cd)-Dissolved (mg/L)	0.0000082		0.0000085	<0.0000050	
	Calcium (Ca)-Dissolved (mg/L)	28.2		24.3	23.3	
	Cesium (Cs)-Dissolved (mg/L)	0.000039		0.000046	0.000022	
	Chromium (Cr)-Dissolved (mg/L)	<0.00010		<0.00010	<0.00010	
	Cobalt (Co)-Dissolved (mg/L)	<0.00010		0.00038	<0.00010	
	Copper (Cu)-Dissolved (mg/L)	0.00839		0.00759	0.00473	
	Iron (Fe)-Dissolved (mg/L)	0.010		<0.010	0.013	
	Lead (Pb)-Dissolved (mg/L)	<0.000050		0.000151	<0.000050	
	Lithium (Li)-Dissolved (mg/L)	0.0095		0.0079	0.0078	

L1993043 CONTD.... PAGE 9 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-11 WATER 13-SEP-17 T-31	L1993043-12 WATER 13-SEP-17 T-6	L1993043-13 WATER 13-SEP-17 T-30	L1993043-14 WATER 13-SEP-17 T-12	L1993043-15 WATER 13-SEP-17 T-10
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.00171	0.00752	0.00160	0.00155	0.00189
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.000262	0.00232	0.000428	0.000263	0.000262
	Nickel (Ni)-Total (mg/L)	<0.00050	0.00227	<0.00050	<0.00050	<0.00050
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	1.01	1.70	1.01	0.98	1.00
	Selenium (Se)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)-Total (mg/L)	0.80	1.25	0.81	0.81	0.82
	Silver (Ag)-Total (mg/L)	<0.000010	0.000018	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	2.48	7.14	2.46	2.48	2.54
	Strontium (Sr)-Total (mg/L)	0.0541	0.105	0.0531	0.0530	0.0541
	Sulfur (S)-Total (mg/L)	4.60	8.36	4.60	4.61	4.63
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	0.00103	DLM <0.00060	DLM <0.00090	0.00077	0.00108
	Uranium (U)-Total (mg/L)	0.000539	0.00194	0.000547	0.000534	0.000545
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location	LAB	LAB			LAB
	Dissolved Metals Filtration Location	LAB	LAB			LAB
	Aluminum (AI)-Dissolved (mg/L)	0.0026	0.0051			0.0028
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	0.00092			<0.00010
	Arsenic (As)-Dissolved (mg/L)	0.00031	0.0277			0.00034
	Barium (Ba)-Dissolved (mg/L)	0.0106	0.0245			0.0110
	Beryllium (Be)-Dissolved (mg/L)	<0.000020	<0.000020			<0.000020
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050			<0.000050
	Boron (B)-Dissolved (mg/L)	0.011	0.026			0.011
	Cadmium (Cd)-Dissolved (mg/L)	<0.0000050	<0.0000050			<0.0000050
	Calcium (Ca)-Dissolved (mg/L)	16.3	31.2			16.2
	Cesium (Cs)-Dissolved (mg/L)	<0.000010	0.000043			<0.000010
	Chromium (Cr)-Dissolved (mg/L)	<0.00010	<0.00010			<0.00010
	Cobalt (Co)-Dissolved (mg/L)	<0.00010	<0.00010			<0.00010
	Copper (Cu)-Dissolved (mg/L)	0.00073	0.00615			0.00071
	Iron (Fe)-Dissolved (mg/L)	<0.010	<0.010			<0.010
	Lead (Pb)-Dissolved (mg/L)	<0.000050	<0.000050			<0.000050
	Lithium (Li)-Dissolved (mg/L)	0.0025	0.0077			0.0025

L1993043 CONTD.... PAGE 10 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-16 WATER 13-SEP-17 T-DUP-2	L1993043-17 WATER 13-SEP-17 R-2	L1993043-18 WATER 14-SEP-17 MB-9	L1993043-19 WATER 14-SEP-17 MB-1	L1993043-20 WATER 14-SEP-17 T-25
Grouping	Analyte					
WATER						
Total Metals	Manganese (Mn)-Total (mg/L)	0.00157	0.00106	0.105	0.0539	0.0203
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	0.0000051	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.000259	0.000269	0.00327	0.00371	0.000218
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050	0.00601	0.00614	0.00085
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	1.00	0.97	1.91	1.93	1.72
	Selenium (Se)-Total (mg/L)	<0.000050	<0.000050	0.000069	0.000066	<0.000050
	Silicon (Si)-Total (mg/L)	0.80	0.83	1.41	1.43	0.90
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	0.000143	0.000115	<0.000010
	Sodium (Na)-Total (mg/L)	2.48	2.56	7.32	7.18	3.53
	Strontium (Sr)-Total (mg/L)	0.0525	0.0571	0.0827	0.0827	0.0627
	Sulfur (S)-Total (mg/L)	4.76	5.41	8.23	9.12	5.29
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	0.000021	0.000020	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	0.00081	DLM <0.00060	<0.00030	0.00035	0.00067
	Uranium (U)-Total (mg/L)	0.000240	0.000486	0.00124	0.00142	0.000252
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030	0.0215	0.0265	<0.0030
	Zirconium (Zr)-Total (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved Metals	Dissolved Mercury Filtration Location				LAB	
	Dissolved Metals Filtration Location				LAB	
	Aluminum (Al)-Dissolved (mg/L)				0.0155	
	Antimony (Sb)-Dissolved (mg/L)				0.00144	
	Arsenic (As)-Dissolved (mg/L)				0.0552	
	Barium (Ba)-Dissolved (mg/L)				0.0227	
	Beryllium (Be)-Dissolved (mg/L)				0.000039	
	Bismuth (Bi)-Dissolved (mg/L)				<0.000050	
	Boron (B)-Dissolved (mg/L)				0.023	
	Cadmium (Cd)-Dissolved (mg/L)				0.0000683	
	Calcium (Ca)-Dissolved (mg/L)				29.4	
	Cesium (Cs)-Dissolved (mg/L)				0.000272	
	Chromium (Cr)-Dissolved (mg/L)				<0.00010	
	Cobalt (Co)-Dissolved (mg/L)				0.00285	
	Copper (Cu)-Dissolved (mg/L)				0.0454	
	Iron (Fe)-Dissolved (mg/L)				0.016	
	Lead (Pb)-Dissolved (mg/L)				<0.000050	
	Lithium (Li)-Dissolved (mg/L)				0.0074	

L1993043 CONTD.... PAGE 11 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-21 WATER 14-SEP-17 T-TRIP BLANK	L1993043-22 WATER 14-SEP-17 T-FIELD BLANK		
Grouping	Analyte				
WATER					
Total Metals	Manganese (Mn)-Total (mg/L)		<0.00010		
	Mercury (Hg)-Total (mg/L)		<0.0000050		
	Molybdenum (Mo)-Total (mg/L)		<0.000050		
	Nickel (Ni)-Total (mg/L)		<0.00050		
	Phosphorus (P)-Total (mg/L)		<0.050		
	Potassium (K)-Total (mg/L)		<0.10		
	Selenium (Se)-Total (mg/L)		<0.000050		
	Silicon (Si)-Total (mg/L)		<0.10		
	Silver (Ag)-Total (mg/L)		<0.000010		
	Sodium (Na)-Total (mg/L)		<0.050		
	Strontium (Sr)-Total (mg/L)		<0.00020		
	Sulfur (S)-Total (mg/L)		<0.50		
	Thallium (TI)-Total (mg/L)		<0.000010		
	Tin (Sn)-Total (mg/L)		<0.00010		
	Titanium (Ti)-Total (mg/L)		<0.00030		
	Uranium (U)-Total (mg/L)		<0.000010		
	Vanadium (V)-Total (mg/L)		<0.00050		
	Zinc (Zn)-Total (mg/L)		<0.0030		
	Zirconium (Zr)-Total (mg/L)		<0.00030		
Dissolved Metals	Dissolved Mercury Filtration Location		LAB		
	Dissolved Metals Filtration Location		LAB		
	Aluminum (Al)-Dissolved (mg/L)		<0.0010		
	Antimony (Sb)-Dissolved (mg/L)		<0.00010		
	Arsenic (As)-Dissolved (mg/L)		<0.00010		
	Barium (Ba)-Dissolved (mg/L)		<0.000050		
	Beryllium (Be)-Dissolved (mg/L)		<0.000020		
	Bismuth (Bi)-Dissolved (mg/L)		<0.000050		
	Boron (B)-Dissolved (mg/L)		<0.010		
	Cadmium (Cd)-Dissolved (mg/L)		<0.0000050		
	Calcium (Ca)-Dissolved (mg/L)		<0.050		
	Cesium (Cs)-Dissolved (mg/L)		<0.000010		
	Chromium (Cr)-Dissolved (mg/L)		<0.00010		
	Cobalt (Co)-Dissolved (mg/L)		<0.00010		
	Copper (Cu)-Dissolved (mg/L)		<0.00020		
	Iron (Fe)-Dissolved (mg/L)		<0.010		
	Lead (Pb)-Dissolved (mg/L)		<0.000050		
	Lithium (Li)-Dissolved (mg/L)		<0.0010		

L1993043 CONTD.... PAGE 12 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-1 WATER 13-SEP-17 T-16-A	L1993043-2 WATER 13-SEP-17 T-16-B	L1993043-3 WATER 13-SEP-17 T-8-A	L1993043-4 WATER 13-SEP-17 T-DUP-1	L1993043-5 WATER 13-SEP-17 T-8-B
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)			4.73	4.64	4.72
	Manganese (Mn)-Dissolved (mg/L)			0.00012	0.00012	0.00016
	Mercury (Hg)-Dissolved (mg/L)			<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Dissolved (mg/L)			0.00253	0.00255	0.00255
	Nickel (Ni)-Dissolved (mg/L)			0.00375	0.00374	0.00375
	Phosphorus (P)-Dissolved (mg/L)			<0.050	<0.050	<0.050
	Potassium (K)-Dissolved (mg/L)			1.99	1.98	2.03
	Selenium (Se)-Dissolved (mg/L)			<0.000050	<0.000050	<0.000050
	Silicon (Si)-Dissolved (mg/L)			0.646	0.659	0.668
	Silver (Ag)-Dissolved (mg/L)			<0.000010	<0.000010	<0.000010
	Sodium (Na)-Dissolved (mg/L)			7.78	7.53	7.72
	Strontium (Sr)-Dissolved (mg/L)			0.0755	0.0754	0.0756
	Sulfur (S)-Dissolved (mg/L)			5.15	5.24	5.28
	Thallium (TI)-Dissolved (mg/L)			<0.000010	<0.000010	<0.000010
	Tin (Sn)-Dissolved (mg/L)			<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Dissolved (mg/L)			<0.00030	<0.00030	<0.00030
	Uranium (U)-Dissolved (mg/L)			0.00251	0.00248	0.00260
	Vanadium (V)-Dissolved (mg/L)			<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Dissolved (mg/L)			0.0027	0.0027	0.0023
	Zirconium (Zr)-Dissolved (mg/L)			<0.00030	<0.00030	<0.00030
Aggregate Organics	Oil and Grease (mg/L)			<5.0	<5.0	<5.0
Volatile Organic Compounds	Benzene (mg/L)			<0.00050	<0.00050	<0.00050
·	Ethylbenzene (mg/L)			<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)			<0.00050	<0.00050	<0.00050
	Styrene (mg/L)			<0.00050	<0.00050	<0.00050
	Toluene (mg/L)			<0.00045	<0.00045	<0.00045
	ortho-Xylene (mg/L)			<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)			<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)			<0.00075	<0.00075	<0.00075
	F1 (C6-C10) (mg/L)			<0.10	<0.10	<0.10
	Surrogate: 4-Bromofluorobenzene (SS) (%)			95.4	92.0	99.8
	Surrogate: 1,4-Difluorobenzene (SS) (%)			98.5	96.4	97.5
Hydrocarbons	F1-BTEX (mg/L)			<0.10	<0.10	<0.10
	F2 (C10-C16) (mg/L)			<0.30	<0.30	< 0.30
	F3 (C16-C34) (mg/L)			<0.30	<0.30	<0.30
	F4 (C34-C50) (mg/L)			<0.30	<0.30	<0.30

L1993043 CONTD.... PAGE 13 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-6 WATER 13-SEP-17 T-8-C	L1993043-7 WATER 13-SEP-17 T-5	L1993043-8 WATER 13-SEP-17 T-3	L1993043-9 WATER 13-SEP-17 T-9	L1993043-10 WATER 13-SEP-17 T-1
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)	5.41		4.39	4.64	
	Manganese (Mn)-Dissolved (mg/L)	0.00141		0.00010	0.00023	
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050		<0.0000050	<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.00285		0.00259	0.00241	
	Nickel (Ni)-Dissolved (mg/L)	0.00437		0.00400	0.00326	
	Phosphorus (P)-Dissolved (mg/L)	<0.050		<0.050	<0.050	
	Potassium (K)-Dissolved (mg/L)	2.40		1.99	1.99	
	Selenium (Se)-Dissolved (mg/L)	<0.000050		<0.000050	<0.000050	
	Silicon (Si)-Dissolved (mg/L)	1.39		0.579	0.261	
	Silver (Ag)-Dissolved (mg/L)	<0.000010		<0.000010	<0.000010	
	Sodium (Na)-Dissolved (mg/L)	9.47		7.55	7.48	
	Strontium (Sr)-Dissolved (mg/L)	0.0916		0.0744	0.0753	
	Sulfur (S)-Dissolved (mg/L)	6.10		5.05	5.05	
	Thallium (TI)-Dissolved (mg/L)	<0.000010		<0.000010	<0.000010	
	Tin (Sn)-Dissolved (mg/L)	<0.00010		<0.00010	0.00010	
	Titanium (Ti)-Dissolved (mg/L)	<0.00030		<0.00030	<0.00030	
	Uranium (U)-Dissolved (mg/L)	0.00319		0.00227	0.00220	
	Vanadium (V)-Dissolved (mg/L)	<0.00050		<0.00050	<0.00050	
	Zinc (Zn)-Dissolved (mg/L)	0.0047		0.0029	<0.0010	
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030		<0.00030	<0.00030	
Aggregate Organics	Oil and Grease (mg/L)	<5.0				
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050		
	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050		
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050		
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050		
	Toluene (mg/L)	<0.00045	<0.00045	<0.00045		
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050		
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050		
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075		
	F1 (C6-C10) (mg/L)	<0.10	<0.10	<0.10		
	Surrogate: 4-Bromofluorobenzene (SS) (%)	97.5	92.8	97.0		
	Surrogate: 1,4-Difluorobenzene (SS) (%)	93.9	99.1	98.3		
Hydrocarbons	F1-BTEX (mg/L)	<0.10	<0.10	<0.10		
	F2 (C10-C16) (mg/L)	<0.30	<0.30	<0.30		
	F3 (C16-C34) (mg/L)	<0.30	<0.30	<0.30		
	F4 (C34-C50) (mg/L)	<0.30	<0.30	<0.30		

L1993043 CONTD.... PAGE 14 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-11 WATER 13-SEP-17 T-31	L1993043-12 WATER 13-SEP-17 T-6	L1993043-13 WATER 13-SEP-17 T-30	L1993043-14 WATER 13-SEP-17 T-12	L1993043-15 WATER 13-SEP-17 T-10
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)	6.61	7.22			6.65
	Manganese (Mn)-Dissolved (mg/L)	<0.00010	0.00014			<0.00010
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050	<0.0000050			<0.0000050
	Molybdenum (Mo)-Dissolved (mg/L)	0.000259	0.00233			0.000256
	Nickel (Ni)-Dissolved (mg/L)	<0.00050	0.00211			<0.00050
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050			<0.050
	Potassium (K)-Dissolved (mg/L)	0.96	1.73			1.00
	Selenium (Se)-Dissolved (mg/L)	<0.000050	<0.000050			<0.000050
	Silicon (Si)-Dissolved (mg/L)	0.751	1.15			0.759
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010			<0.000010
	Sodium (Na)-Dissolved (mg/L)	2.40	7.15			2.43
	Strontium (Sr)-Dissolved (mg/L)	0.0546	0.104			0.0537
	Sulfur (S)-Dissolved (mg/L)	4.59	8.43			4.58
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.000010			<0.000010
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010			<0.00010
	Titanium (Ti)-Dissolved (mg/L)	<0.00030	<0.00030			<0.00030
	Uranium (U)-Dissolved (mg/L)	0.000552	0.00196			0.000551
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050			<0.00050
	Zinc (Zn)-Dissolved (mg/L)	<0.0010	0.0012			<0.0010
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030	<0.00030			<0.00030
Aggregate Organics	Oil and Grease (mg/L)					<5.0
Volatile Organic Compounds	Benzene (mg/L)					<0.00050
	Ethylbenzene (mg/L)					<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)					<0.00050
	Styrene (mg/L)					<0.00050
	Toluene (mg/L)					<0.00045
	ortho-Xylene (mg/L)					<0.00050
	meta- & para-Xylene (mg/L)					<0.00050
	Xylenes (mg/L)					<0.00075
	F1 (C6-C10) (mg/L)					<0.10
	Surrogate: 4-Bromofluorobenzene (SS) (%)					100.1
	Surrogate: 1,4-Difluorobenzene (SS) (%)					99.9
Hydrocarbons	F1-BTEX (mg/L)					<0.10
	F2 (C10-C16) (mg/L)					<0.30
	F3 (C16-C34) (mg/L)					<0.30
	F4 (C34-C50) (mg/L)					<0.30

L1993043 CONTD.... PAGE 15 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-16 WATER 13-SEP-17 T-DUP-2	L1993043-17 WATER 13-SEP-17 R-2	L1993043-18 WATER 14-SEP-17 MB-9	L1993043-19 WATER 14-SEP-17 MB-1	L1993043-20 WATER 14-SEP-17 T-25
Grouping	Analyte					
WATER						
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)				5.57	
	Manganese (Mn)-Dissolved (mg/L)				0.0490	
	Mercury (Hg)-Dissolved (mg/L)				<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)				0.00352	
	Nickel (Ni)-Dissolved (mg/L)				0.00597	
	Phosphorus (P)-Dissolved (mg/L)				< 0.050	
	Potassium (K)-Dissolved (mg/L)				1.88	
	Selenium (Se)-Dissolved (mg/L)				0.000060	
	Silicon (Si)-Dissolved (mg/L)				1.39	
	Silver (Ag)-Dissolved (mg/L)				0.000070	
	Sodium (Na)-Dissolved (mg/L)				7.07	
	Strontium (Sr)-Dissolved (mg/L)				0.0802	
	Sulfur (S)-Dissolved (mg/L)				9.12	
	Thallium (TI)-Dissolved (mg/L)				0.000022	
	Tin (Sn)-Dissolved (mg/L)				<0.00010	
	Titanium (Ti)-Dissolved (mg/L)				<0.00030	
	Uranium (U)-Dissolved (mg/L)				0.00139	
	Vanadium (V)-Dissolved (mg/L)				<0.00050	
	Zinc (Zn)-Dissolved (mg/L)				0.0266	
	Zirconium (Zr)-Dissolved (mg/L)				<0.00030	
Aggregate Organics	Oil and Grease (mg/L)					
Volatile Organic Compounds	Benzene (mg/L)					<0.00050
	Ethylbenzene (mg/L)					<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)					<0.00050
	Styrene (mg/L)					<0.00050
	Toluene (mg/L)					<0.00045
	ortho-Xylene (mg/L)					<0.00050
	meta- & para-Xylene (mg/L)					<0.00050
	Xylenes (mg/L)					<0.00075
	F1 (C6-C10) (mg/L)					<0.10
	Surrogate: 4-Bromofluorobenzene (SS) (%)					93.6
	Surrogate: 1,4-Difluorobenzene (SS) (%)					94.0
Hydrocarbons	F1-BTEX (mg/L)					<0.10
	F2 (C10-C16) (mg/L)					<0.30
	F3 (C16-C34) (mg/L)					<0.30
	F4 (C34-C50) (mg/L)					<0.30

L1993043 CONTD.... PAGE 16 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-21 WATER 14-SEP-17 T-TRIP BLANK	L1993043-22 WATER 14-SEP-17 T-FIELD BLANK		
Grouping	Analyte				
WATER					
Dissolved Metals	Magnesium (Mg)-Dissolved (mg/L)		<0.10		
	Manganese (Mn)-Dissolved (mg/L)		<0.00010		
	Mercury (Hg)-Dissolved (mg/L)		<0.0000050		
	Molybdenum (Mo)-Dissolved (mg/L)		<0.000050		
	Nickel (Ni)-Dissolved (mg/L)		<0.00050		
	Phosphorus (P)-Dissolved (mg/L)		<0.050		
	Potassium (K)-Dissolved (mg/L)		<0.10		
	Selenium (Se)-Dissolved (mg/L)		<0.000050		
	Silicon (Si)-Dissolved (mg/L)		<0.050		
	Silver (Ag)-Dissolved (mg/L)		<0.000010		
	Sodium (Na)-Dissolved (mg/L)		<0.050		
	Strontium (Sr)-Dissolved (mg/L)		<0.00020		
	Sulfur (S)-Dissolved (mg/L)		<0.50		
	Thallium (TI)-Dissolved (mg/L)		<0.000010		
	Tin (Sn)-Dissolved (mg/L)		<0.00010		
	Titanium (Ti)-Dissolved (mg/L)		<0.00030		
	Uranium (U)-Dissolved (mg/L)		<0.000010		
	Vanadium (V)-Dissolved (mg/L)		<0.00050		
	Zinc (Zn)-Dissolved (mg/L)		<0.0010		
	Zirconium (Zr)-Dissolved (mg/L)		<0.00030		
Aggregate Organics	Oil and Grease (mg/L)				
Volatile Organic Compounds	Benzene (mg/L)		<0.00050		
	Ethylbenzene (mg/L)		<0.00050		
	Methyl t-butyl ether (MTBE) (mg/L)		<0.00050		
	Styrene (mg/L)		<0.00050		
	Toluene (mg/L)		<0.00045		
	ortho-Xylene (mg/L)		<0.00050		
	meta- & para-Xylene (mg/L)		<0.00050		
	Xylenes (mg/L)		<0.00075		
	F1 (C6-C10) (mg/L)		<0.10		
	Surrogate: 4-Bromofluorobenzene (SS) (%)		97.6		
	Surrogate: 1,4-Difluorobenzene (SS) (%)		100.4		
Hydrocarbons	F1-BTEX (mg/L)		<0.10		
	F2 (C10-C16) (mg/L)		<0.30		
	F3 (C16-C34) (mg/L)		<0.30		
	F4 (C34-C50) (mg/L)		<0.30		

L1993043 CONTD.... PAGE 17 of 25 06-OCT-17 19:16 (MT) Version: FINAL

Sample ID Description Sampled Date Sampled Time	L1993043-1 WATER 13-SEP-17 T-16-A	L1993043-2 WATER 13-SEP-17 T-16-B	L1993043-3 WATER 13-SEP-17 T-8-A	L1993043-4 WATER 13-SEP-17 T-DUP-1	L1993043-5 WATER 13-SEP-17 T-8-B
Analyte					
			<0.10	<0.10	<0.10
			<0.10	<0.10	<0.10
Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)			92.8	92.9	96.4
Surrogate: 3,4-Dichlorotoluene (SS) (%)			89.4	96.0	suri ND 135.3
	Description Sampled Date Sampled Time Client ID Analyte Volatile Hydrocarbons (VH6-10) (mg/L) VPH (C6-C10) (mg/L) Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)	Description WATER Sampled Date 13-SEP-17 Sampled Time T-16-A Client ID T-16-A Volatile Hydrocarbons (VH6-10) (mg/L) VPH (C6-C10) (mg/L) VPH (C6-C10) (mg/L) Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)	Description Sampled Date Sampled Time Client IDWATER 13-SEP-17WATER 13-SEP-17AnalyteT-16-AT-16-BVolatile Hydrocarbons (VH6-10) (mg/L) VPH (C6-C10) (mg/L)Vent (C6-C10) (mg/L) Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)WATER 13-SEP-17WATER 13-SEP-17	Description Sampled Date Sampled Time Client IDWATER 13-SEP-17WATER 13-SEP-17WATER 13-SEP-17T-16-AT-16-BT-16-BT-8-AAnalyte	Description Sampled Date Sampled Time Client IDWATER 13-SEP-17WATER 13-SEP-17WATER 13-SEP-17WATER 13-SEP-17T-16-AT-16-BT-16-BT-8-AT-DUP-1Analyte

L1993043 CONTD.... PAGE 18 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time	L1993043-6 WATER 13-SEP-17 T-8-C	L1993043-7 WATER 13-SEP-17 T-5	L1993043-8 WATER 13-SEP-17 T-3	L1993043-9 WATER 13-SEP-17 T-9	L1993043-10 WATER 13-SEP-17 T-1
	Client ID	1-0-0	1-5	1-5	1-5	1-1
Grouping	Analyte					
WATER						
Hydrocarbons	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10		
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10		
	Surrogate: 2-Bromobenzotrifluoride, F2-F4	90.4	96.2	90.2		
	(%) Surrogate: 3,4-Dichlorotoluene (SS) (%)	SURR- ND	00.0	100.0		
		130.6	98.3	123.3		

L1993043 CONTD.... PAGE 19 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-11 WATER 13-SEP-17 T-31	L1993043-12 WATER 13-SEP-17 T-6	L1993043-13 WATER 13-SEP-17 T-30	L1993043-14 WATER 13-SEP-17 T-12	L1993043-15 WATER 13-SEP-17 T-10
0						
Grouping WATER	Analyte					
	Volatile Hydrocarbons (VH6-10) (mg/L)					
Hydrocarbons	VPH (C6-C10) (mg/L)					<0.10
	Surrogate: 2-Bromobenzotrifluoride, F2-F4					<0.10
	(%)					90.8
	Surrogate: 3,4-Dichlorotoluene (SS) (%)					SUR ND 135.2

L1993043 CONTD.... PAGE 20 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-16 WATER 13-SEP-17 T-DUP-2	L1993043-17 WATER 13-SEP-17 R-2	L1993043-18 WATER 14-SEP-17 MB-9	L1993043-19 WATER 14-SEP-17 MB-1	L1993043-20 WATER 14-SEP-17 T-25
Grouping	Analyte					
WATER						
Hydrocarbons	Volatile Hydrocarbons (VH6-10) (mg/L) VPH (C6-C10) (mg/L)					<0.10 <0.10
	Surrogate: 2-Bromobenzotrifluoride, F2-F4					92.4
	(%) Surrogate: 3,4-Dichlorotoluene (SS) (%)					SURI ND 69.9

L1993043 CONTD.... PAGE 21 of 25 06-OCT-17 19:16 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993043-21 WATER 14-SEP-17 T-TRIP BLANK	L1993043-22 WATER 14-SEP-17 T-FIELD BLANK		
Grouping	Analyte				
WATER					
Hydrocarbons	Volatile Hydrocarbons (VH6-10) (mg/L) VPH (C6-C10) (mg/L) Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%) Surrogate: 3,4-Dichlorotoluene (SS) (%)		<0.10 <0.10 91.8 ^{SURR-} ND 138.7		
			130.7		

L1993043 CONTD.... PAGE 22 of 25 06-OCT-17 19:16 (MT) Version: FINAL

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Dissolved Organic Carbon	MS-B	L1993043-1, -2, -3, -4, -5, -6
Matrix Spike	Dissolved Organic Carbon	MS-B	L1993043-1, -2, -3, -4, -5, -6
Matrix Spike	Dissolved Organic Carbon	MS-B	L1993043-10, -11, -12, -13, -14, -15, -16, -17, -7, -8, -9
Matrix Spike	Dissolved Organic Carbon	MS-B	L1993043-10, -11, -12, -13, -14, -15, -16, -17, -7, -8, -9
Matrix Spike	Dissolved Organic Carbon	MS-B	L1993043-18, -19, -20
Matrix Spike	Dissolved Organic Carbon	MS-B	L1993043-22
Matrix Spike	Total Organic Carbon	MS-B	L1993043-1, -2, -3, -4, -5, -6
Matrix Spike	Total Organic Carbon	MS-B	L1993043-1, -2, -3, -4, -5, -6
Matrix Spike	Total Organic Carbon	MS-B	L1993043-10, -11, -12, -13, -14, -15, -16, -17, -7, -9
Matrix Spike	Total Organic Carbon	MS-B	L1993043-18, -19, -20, -22, -8
Matrix Spike	Arsenic (As)-Dissolved	MS-B	L1993043-3, -4, -5, -6
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1993043-3, -4, -5, -6
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1993043-3, -4, -5, -6
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1993043-3, -4, -5, -6
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1993043-3, -4, -5, -6
Matrix Spike	Sulfur (S)-Dissolved	MS-B	L1993043-3, -4, -5, -6
Matrix Spike	Arsenic (As)-Total	MS-B	L1993043-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Calcium (Ca)-Total	MS-B	L1993043-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1993043-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Sodium (Na)-Total	MS-B	L1993043-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Strontium (Sr)-Total	MS-B	L1993043-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Nitrate (as N)	MS-B	L1993043-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -22, -3, -4, -5, -6, -7, -8, -9

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.
Μ	A peak has been manually integrated.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
SURR-ND	Surrogate recovery marginally exceeded ALS DQO. Reported non-detect results for associated samples were deemed to be unaffected.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-TITR-VA	Water	Alkalinity Species by Titration	APHA 2320 Alkalinity
,	01	edures adapted from APHA Method 2320 "Alkalinity ate and hydroxide alkalinity are calculated from pher	". Total alkalinity is determined by potentiometric titration to a nolphthalein alkalinity and total alkalinity values.
BE-D-L-CCMS-VA	Water	Diss. Be (low) in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filter	ed (0.45 um),	preserved with nitric acid, and analyzed by CRC ICF	PMS.
BE-T-L-CCMS-VA	Water	Total Be (Low) in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are dige	sted with nitric	and hydrochloric acids, and analyzed by CRC ICPN	MS.
BR-L-IC-N-VA	Water	Bromide in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are and	alyzed by Ion (Chromatography with conductivity and/or UV detection	on.
CARBONS-DOC-VA	Water	Dissolved organic carbon by combustion	APHA 5310B TOTAL ORGANIC CARBON (TOC)

		dures adapted from APHA Method 5310 "Total Organic ugh a 0.45 micron membrane filter prior to analysis.	Carbon (TOC)". Dissolved carbon (DOC) fractions are
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310B TOTAL ORGANIC CARBON (TOC)
This analysis is carried out	using proce	dures adapted from APHA Method 5310 "Total Organic	Carbon (TOC)".
CL-IC-N-VA	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy:	zed by lon C	hromatography with conductivity and/or UV detection.	
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried out electrode.	using proce	dures adapted from APHA Method 2510 "Conductivity"	. Conductivity is determined using a conductivity
EC-SCREEN-VA	Water	Conductivity Screen (Internal Use Only)	APHA 2510
Qualitative analysis of cond	ductivity whe	re required during preparation of other tests - e.g. TDS	metals, etc.
F-IC-N-VA	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by lon C	hromatography with conductivity and/or UV detection.	
F1-BTX-CALC-VA	Water	F1-Total BTX	CCME CWS PHC TIER 1 (2001)
	Environment	ce Method for the Canada-Wide Standard for Petroleum t, December 2000." For F1 (C6-C10), the sample unde ted as follows:	
F1-BTEX: F1 (C6-C10) mir	nus benzene	, toluene, ethylbenzene and xylenes (BTEX).	
F1-HSFID-VA	Water	CCME F1 By Headspace with GCFID	EPA 5021A/CCME CWS PHC (Pub# 1310)
		ce Method for the Canada-Wide Standard for Petroleum t, December 2000." For F1 (C6-C10), the sample unde	
F1 (C6-C10): Sum of all hy	drocarbons	that elute between nC6 and nC10.	
F2-F4-ME-FID-VA	Water	CCME F2-F4 Hydrocarbons in Water	CCME CWS-PHC, Pub #1310, Dec 2001
		exane micro-extraction technique. Instrumental analys Hydrocarbons in Soil Tier 1 Method, CCME, Dec 2001	
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
		ss) is calculated from the sum of Calcium and Magnesi ncentrations are preferentially used for the hardness cal	
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
Water samples are filtered with stannous chloride, and		preserved with hydrochloric acid, then undergo a cold-ox y CVAAS or CVAFS.	kidation using bromine monochloride prior to reduction
HG-T-CVAA-VA	Water	Total Mercury in Water by CVAAS or CVAFS	EPA 1631E (mod)
Water samples undergo a	cold-oxidatic	n using bromine monochloride prior to reduction with st	annous chloride, and analyzed by CVAAS or CVAFS.
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	(0.45 um), p	preserved with nitric acid, and analyzed by CRC ICPMS	
Method Limitation (re: Sulf	ur): Sulfide a	nd volatile sulfur species may not be recovered by this	method.
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are digeste	ed with nitric	and hydrochloric acids, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulf	ur): Sulfide a	nd volatile sulfur species may not be recovered by this	method.
NH3-F-VA	Water	Ammonia in Water by Fluorescence	APHA 4500 NH3-NITROGEN (AMMONIA)
			m J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society e levels of ammonium in seawater", Roslyn J. Waston et
NH3-F-VA	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
This analysis is carried out	t, on sulfuric	acid preserved samples, using procedures modified fro	m J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society e levels of ammonium in seawater", Roslyn J. Waston et
	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)

NO2-L-IC-N-VA

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-L-IC-N-VA Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. OGG-SF-VA Water Oil & Grease by Gravimetric BCMOE (2010), EPA1664A The procedure involves an extraction of the entire water sample with hexane. This extract is then evaporated to dryness, and the residue weighed to determine Oil and Grease. P-T-PRES-COL-VA Water Total P in Water by Colour APHA 4500-P Phosphorus This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. P-TD-COL-VA Water Total Dissolved P in Water by Colour APHA 4500-P Phosphorous This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Dissolved Phosphorus is determined colourimetrically after persulphate digestion of a sample that has been lab or field filtered through a 0.45 micron membrane filter. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. **PH-PCT-VA** Water pH by Meter (Automated) APHA 4500-H pH Value This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode It is recommended that this analysis be conducted in the field. S2-T-COL-VA Water Total Sulphide by Colorimetric APHA 4500-S2 Sulphide This analysis is carried out using procedures adapted from APHA Method 4500-S2 "Sulphide". Sulphide is determined using the methlyene blue colourimetric method. SO4-IC-N-VA Water Sulfate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. APHA 2540 C - GRAVIMETRIC **TDS-VA** Water Total Dissolved Solids by Gravimetric This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. Water Total Suspended Solids by Gravimetric APHA 2540 D - GRAVIMETRIC TSS-VA This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples. Water Turbidity by Meter APHA 2130 Turbidity **TURBIDITY-VA** This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method. **VH-HSFID-VA** Water VH in Water by Headspace GCFID BC Env. Lab Manual (VH in Water) The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Compounds eluting between n-hexane and n-decane are measured and summed together using flame-ionization detection. **VH-SURR-FID-VA** Water VH Surrogates for Waters BC Env. Lab Manual (VH in Solids) VOC7-HSMS-VA Water BTEX/MTBE/Styrene by Headspace GCMS EPA 5021A/8260C The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7/VOC-SURR-MS-VA Water VOC7 and/or VOC Surrogates for Waters EPA 5035A/5021A/8260C **VPH-CALC-VA** Water VPH is VH minus select aromatics BC MOE LABORATORY MANUAL (2005) These results are determined according to the British Columbia Ministry of Environment Analytical Method for Contaminated Sites "Calculation of Volatile Petroleum Hydrocarbons in Solids or Water". The concentrations of specific Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene, Xylenes and, in solids, Styrene) are subtracted from the collective concentration of Volatile Hydrocarbons (VH) that elute between nhexane (nC6) and n-decane (nC10).

XYLENES-CALC-VA Water

CALCULATION

Calculation of Total Xylenes

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory	Definition	Code	Laboratory	l ocation
Laborator		ooue		Location

VA

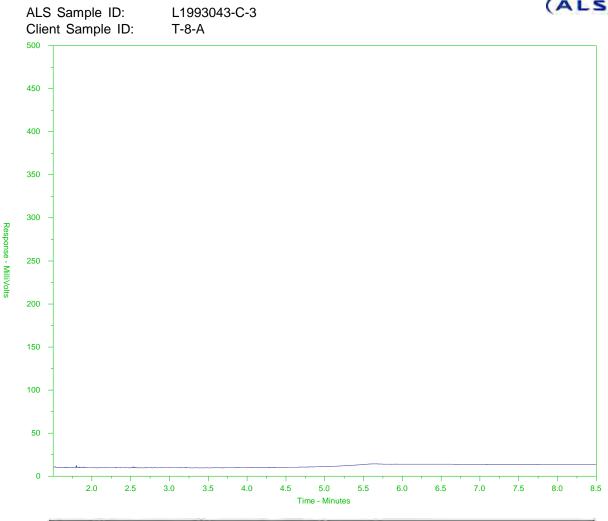
ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample. mg/kg wwt - milligrams per kilogram based on wet weight of sample. mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre.

< - Less than.

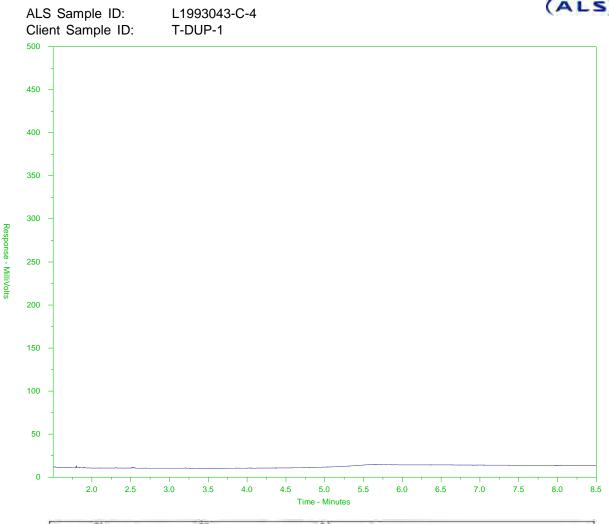

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

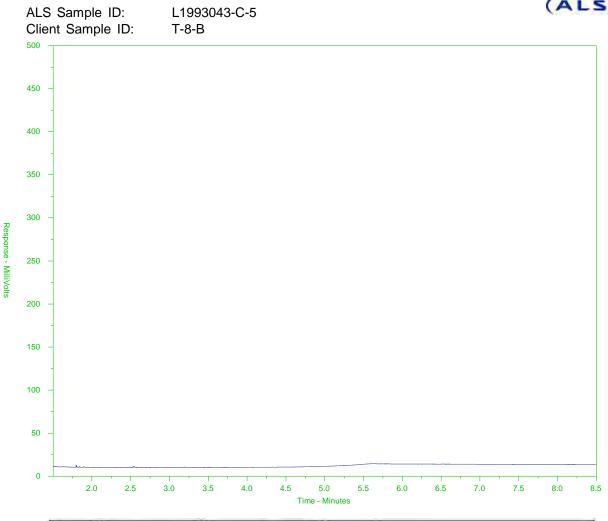


nC10	NC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasoline		Motor	lis/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

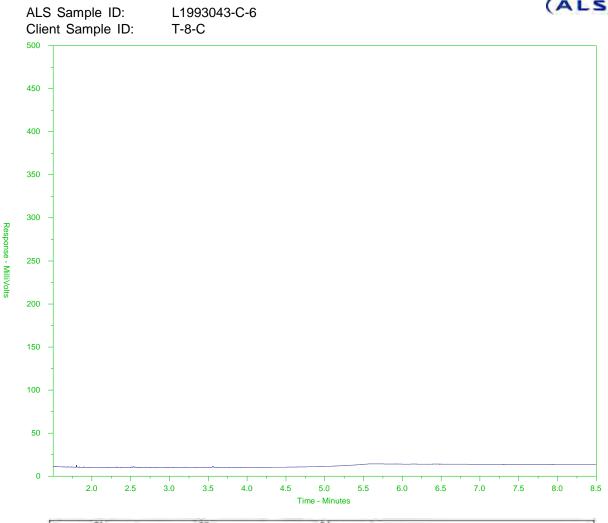


nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
+- Gasolim	3->	- Motor V	lils/ Lube Olls/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

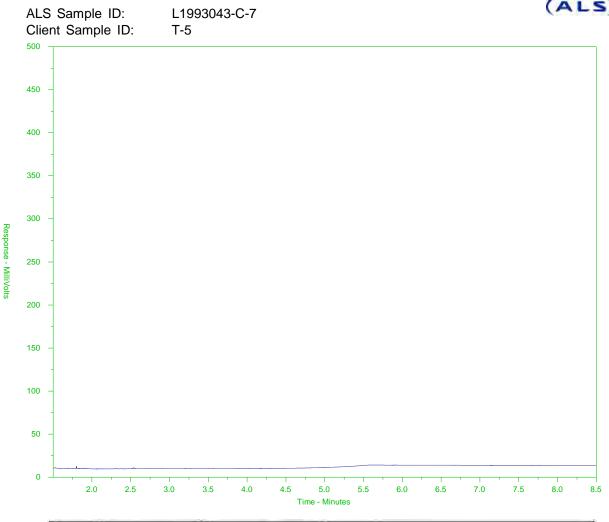


nC10	NC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasoline		Motor	lis/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

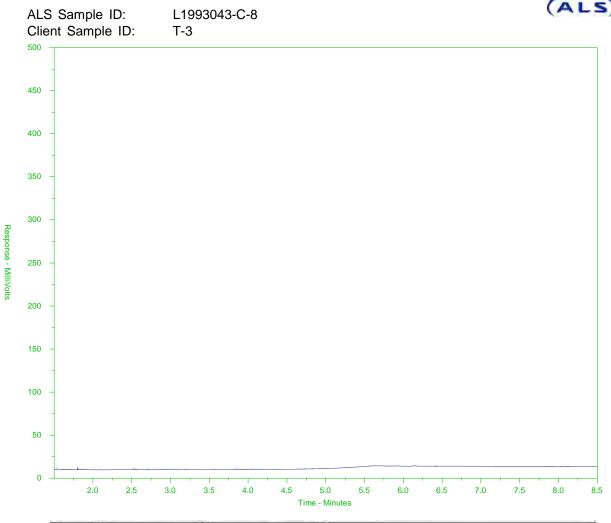


nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
+- Gasolim	3->	- Motor V	lils/ Lube Olls/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

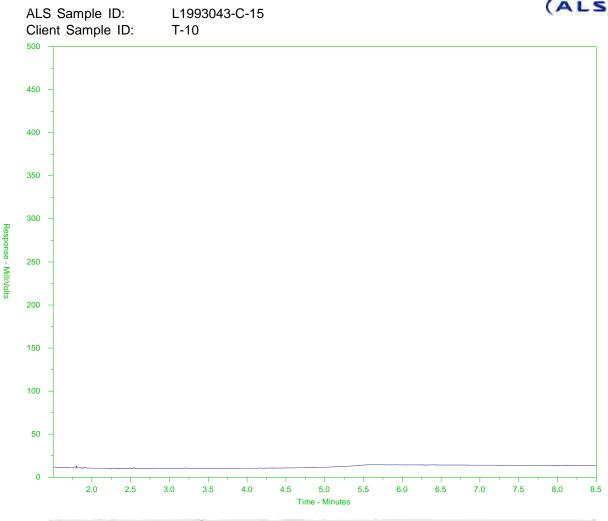


nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasolim	3-≫ +	Motor	lis/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

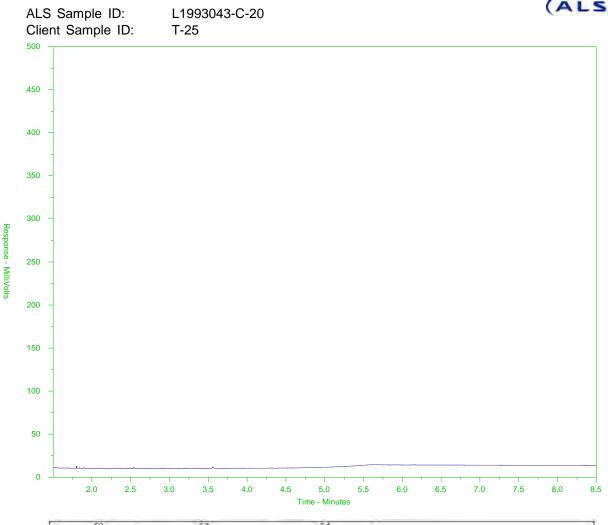


nCIQ	NC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasolim		- Motor V	lis/ Lube Olis/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

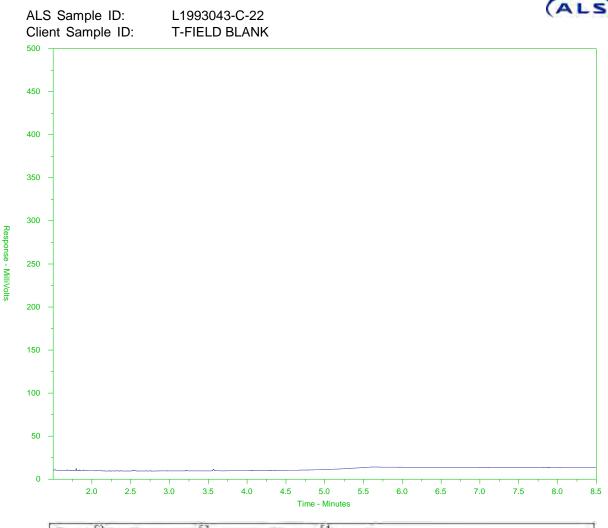


nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasolim	3-≫ +	Motor	lis/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.



nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
- Gasolim	8	- Motor V	lis/ Lube Olis/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasolim	8	Motor	lils/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

		-
		-
		100
		-
		and the second s
		1 A A
		15.5
		w
		-
		-
		grant.
		-
		Aug.
		-
		-
		-
		10.1
		111
		90.0
		-
		1.0
	1	
	10	
~	-	
	-	
	-	
		~

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number 14 -

Page 1 of

N

				Report Forma	Report Format / Distribution			Select	Service L	evel Bel	ow (Rus	Turnaro	and Time	(TAT) is	not avail	Select Service Level Below (Rush Turnaround Time (TAT) is not available for all tests)	tests)
Company:	Public Services and Procurement Canada	ada	Select Report F	Format: GPDF	DEXCEL D	GEDD (DIGITAL)	R	Regular	GRegular (Standard TAT if received by 3 pm - business days)	TAT If re	ceived by	3 pm - 1	usiness d	(SAP)			
Contact:	Rebecca Studer-Halbach		Quality Control	Quality Control (QC) Report with Report	Report FYes	s 7 No	d.	Priority (2-4 bus, o	ays if re-	eived by	3pm) 50	6 surchai	rge - con	tact ALS	Dhiority (2-4 bus, days if received by 3pm) 50% surcharge - contact ALS to confirm TAT	TAT
Address	10025 Jasper Avenue		Criteria on Repo	Critteria on Report - provide details below if box checked	will box checked		m	Emerger	cy (1-2 b	is. days	received	by 3pm	100% 54	urcharge	- contact	ALS to co	DEmergency (1-2 bus. days if received by 3pm) 100% surcharge - contact ALS to confirm TAT
	Edmonton, AB T5J 1S6		Select Distribution:	Jon: GEMAIL	VIL CIMAIL	DFAX	E2	Same da	Same day or weekend emergency - contact ALS to confirm TAT and surcharge	end errie	- Jouab	ontact A	S to cont	Im TAT	and surc	arge	
Phone:	(788) 497-3761		Email 1 or Fax	rebecca.studer-halbach@pwgsc.ca	albach@pwgsc.c:		Specify	Date R	Specify Date Required for E2,E or P.	for E2.	E or P.	-					
			Email 2	claire.brown@dxbprojects.ca	oprojects.ca						A	Analysis Request	Seques	st			
Invoice To	Same as Report To	s 「No		Invoice D	Invoice Distribution			Indicate	Indicate Filtered (F),	F), Presi	(P)	Preserved (P) or Filtered and Preserved (F/P) below	and Pre	perved	F/P) belo	w	
	Copy of Invoice with Report F Yes	s 7 No	Select Invoice [Distribution: DE	GEMAIL DMAIL	DFAX	٩	٩	-		a	d d	a	d		-	_
Company.	Public Services and Procurement Canada	ada	1.000	rebecca.studer-halbach@pwgsc.ca	albach@pwgsc.cc		1	┝	-				0.0			-	-
Contact	Rebecca Studer-Halbach		Email 2				-	-	-			-	001			-	S
	Project Information		IO I	Oil and Gas Required Fields (client use)	ed Fields (client	use)		-	_				ad e				neni
ALS Quote #	t Q64064		Approver ID:		Cost Center.		-		-	14			77-1		-		etuc
Job #			GL Account:		Routing Code:			-	-	9014			21.0	19	-		at Co
PO / AFE:	R.015211.049		Activity Code:				\$901			N Of	19	-	ine a	079		-	9.190
LSD:			Location:				90		-	iA be	5640			D 190			quint
ALS Lab	ALS Lab Work Order # (lab use only)	L1993043	ALS Contact:	Joanne Lee and Rick Zolkiewski	Sampler:		and pue	tals per		d Mercu	F4 per (Srease			1
ALS Sample # (lab use only)		Sample Identification and/or Coordinates (This description will appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	anituoA	em isto i em isto i	evlossiQ	evlossiQ	PHC F2	BTEX, F	unoibeЯ MAPL pe	bns liO			
-	T-16-A			13-Sep-17		Water	R	R	-				-			-	-
7	T-16-B			13-Sep-17		Water	R	a a	-				-				7
3	T-8-A			13-Sep-17		Water	α	R	8	æ	α	œ	_	ď		_	15
4	T-DUP-1			13-Sep-17		Water	æ	a a	8	œ	æ	ĸ		æ		-	15
5	T-8-B			13-Sep-17		Water	œ	8	CL .	æ	ж	Ľ	-	ж		-	15
g	T-8-C			13-Sep-17		Water	œ	8	R.	æ	æ	æ	_	æ		_	15
14	T-5			13-Sep-17		Water	α	R			۳	œ	_			-	ŧ
8	T-3			13-Sep-17		Water	ĸ	R	R.	×	×	æ				-	13
5	T-9			13-Sep-17		Water	œ	R	œ	æ			_			_	6
01	11			13-Sep-17		Water	æ	R								-	7
11	T-31			13-Sep-17		Water	œ	R	œ	œ			_				6
2	T-6			13-Sep-17		Water	n:	8	R	æ			-			-	6
Drink	Drinking Water (DW) Samples ¹ (client use)	Special In	nstructions / Speci	Special Instructions / Specify Criteria to add on report (client Use)	on report (client U				SAM	STE C	INDITI	SAMPLE CONDITION AS RECEIVED (lab use only)	RECEN	/ED (18	b use		
re samples	from a R	PLEASE NOTE: This project references "routine" parameters as presented in Q64064. pH	project references	"routine" paramete	ers as presented	, pH,	loe packs	s Yes		No		Custody seal intact	Custody seal intac	ntact	Yes	2 2	
-	TYes No	conouccuvity, alkalinity, turbidity, 1.DS, 1.SS, Ammonia, Nitrate/Nitrite, total prosphorus, dissolved phosphorus, dissolved organic carbon, total organic carbon, total Hardness,	dissolved organic	s, Ammonia, Nitra carbon, total organ	te/Nitrite, total pho nic carbon, total H	ardness,	Cooling Initiated	Initiate									
re samples	Are samples for human drinking water use?	calcium, magnesium, potassium, sodium, sulphate, sulphide, chloride. ALSO, please Itotal and dissolved metals parameters must meet detection limits of 064064	otassium, sodium, als parameters mi	sulphate, sulphid	e, chloride. ALS	ALSO, please note	INITIA	INITIAL COOLER		TEMPERATURES %C	ES *C		FINAL	. 0001	ER TEMP	FINAL COOLER TEMPERATURES	S C
	- 1						3	t								-	
	SHIPMENT RELEASE (client use)			INITIAL SHIPMENT RECEPTION (Iab use only)	TION (lab use on	(A)			E	NAL S	IIPMEI	FINAL SHIPMENT RECEPTION (lab use only)	EPTIO	N (lab	ino est		

Time:

Date:

Received by:

Time:

Date:

0

Received by.

Time:

Date:

105thes Released by:

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy YELLOW - CLIENT COPY REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form

WHITE - LABORATORY COPY

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 14 -

Affix ALS barcode label here (lab use only)

Page 2 of 2

www.alsglobal.com

Report To					Report Forma	t / Distribution		T	Se	lect Se	vice Le	vel Belo	w (Rus	h Tum	around	Time	(TAT) is	not ava	ailable f	for all test	ts)
Company:	Public Services and Procur	ement Canad	ía	Select Report F	Format: @PDF	E EXCEL I	EDD (DIGITAL)	R	⊡Reg	ular (St	indard T	AT if rec	eived b	y 3 pm	- busi	ness da	ays)	1			
Contact	Rebecca Studer-Halbach			Quality Control	(QC) Report with F	Report FY	es TNo	P		rity (2-4	bus. da	ys if reci	eived by	3pm)	50% s	urchar	ge - con	tact AL	S to cor	nfirm TAT	r.
Address:	10025 Jasper Avenue			Criteria on Repo	rt - provide details belo	w If box checked		E	DEme	ergency	(1-2 bus	. days if	receive	d by 3p	pm) 10	0% su	rcharge	- conta	t ALS I	to confirm	n TAT
11.53	Edmonton, AB T5J 1S6	-		Select Distribut	tion: DEMA		DFAX	E2	□San	e day o	weeker	nd emer	gency -	contac	t ALS t	o confi	m TAT	and su	rcharge	ſ	
Phone:	(788) 497-3761			Email 1 or Fax	rebecca studer-ha	lbach@pwgsc.c	a	Spec	cify Da	te Rec	uired f	or E2,E	E or P:								
1		_		Email 2	claire.brown@dxb	projects.ca							A	nalys	is Re	ques	t				
Invoice To	Same as Report To	✓ Yes	∏ No		Invoice Di	stribution		1	Ind	icate Fil	tered (F), Prese	rved (P)	or Filt	ered ar	nd Pres	served ((F/P) be	wole		
in the second	Copy of Invoice with Report	I Yes	∏ No	Select Invoice I			DFAX		P	Р	1		Р	P	P	Р	Р				
Company:	Public Services and Procur	ement Canad	a	Email 1 or Fax	rebecca.studer-ha	lbach@pwgsc.c	а								Q640			- 1			
Contact:	Rebecca Studer-Halbach			Email 2											L O						ŝ
	Project Info	rmation		01	l and Gas Require	d Fields (client	use)								6 per						Number of Containers
ALS Quote #:	Q64064			Approver ID:		Cost Center:						94			a-22						onta
Job #:				GL Account:		Routing Code:				T	4064	064064			d R		84				of C
PO/AFE:	R.015211.049			Activity Code:				Q64064	Q64064	3406	06	er 0	964	4	0 au		Q64064				Der (
LSD:		_		Location:						per Q64064	iad s	N P	Q64064	Q64064	b-21	*	per C				Im
ALS Lab Wo	rk Order # (lab use only)			ALS Contact:	Joanne Lee and Rick Zolkiewski	Sampler:		and per	tals per		d Metab	d Mercu	per	per	clides P	r 064064	Grease p				z
ALS Sample # (lab use only)	1. m.		n and/or Coordin appear on the re		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Routine a	Fotal Metals	Total Mercury	Dissolved Metals per Q64064	Dissolved Mercury per	PHC F2-F4	BTEX, F1	Radionuclides Pb-210 and Ra-226	NAPL per	Oil and G				
15	T-30				13-Sep-17		Water	R	R	R	-			ш	L.	2	-	-	-	+	7
lip	T-12				13-Sep-17		Water	R	R	R					-	-			-	-	7
15	T-10				13-Sep-17		Water	R	R	R	R	R		-		1	R	-	-	-+	15
lu	G T-DUP-2			13-Sep-17	1	Water	R	R	R			R	R	-			-	-	-+	11	
17	R-2				13-Sep-17		Water	R	R	R					-	-		-	-	+	7
18	MB-9				14-Sep-17	1	Water	R	R	R				-				-	-	-	7
10	MB-1				14-Sep-17		Water	R	R	R	R	R		-	-	-		-	-	-+	9
20	T-25				14-Sep-17		Water	R	R	R			R	R	-			-	-	-	11
21	T-Trip Blank				14-Sep-17		Water	R	R	R	R	R	R	R	-			-	-	-	9
11	T-Field Blank				14-Sep-17		Water	R	R	R	R	R	R	R	-	-		-	-	-	13
						1.5									-	-				-	10
																			-		
Drinking	Water (DW) Samples ¹ (clie	nt use)	s	pecial Instructions / Spec	ify Criteria to add or	report (client II	se)		-		AMPL	E CO	NDITI	ON A	S RE	CEIV	ED (la	b use	only)		
Are samples tak	en from a Regulated DW Syst		PLEASE NOTE	This project references alinity, turbidity, TDS, TS	"routine" paramete	rs as presented	n Q64064: pH	Froze Ice pa		Yes		No		SIF C			ns tact	Yes Yes		No No	
ΓY.	Contraction in the second second		dissolved phosp	horus, dissolved organic	carbon, total organi	c carbon, total H	lardness.	2.8.9.43	ng Initi	1.			-	_							
Are samples for	human drinking water use? es IV No		calcium, magne	sium, potassium, sodium ved metals parameters mi	, sulphate, sulphide	, chloride, ALS	O, please note	INIIT	TIAL CO	OLER	EMPER	RATURE	S *C			FINAL	COOLE	R TEM	IPERAT	TURES 9	0
	SHIPMENT RELEASE (client use)	l		HIPMENT RECEPT		ha	-	-	-	CINI	AL CU	DAC	ITO	-055	TION	lah		1.0		
Released by:	S Dat	e:	Time: 5 cop	Received by:	MART NEVER	Date:	Time:	Rece	ived b	Y:	FIN	AL SH	PME	TRE	Date	_		ise on Time:			
REFER TO BACK	K PAGE FOR ALS LOCATIONS			N	WHI		Y COPY YELL	OW	CLIEN	TCOP	~		_		-		28e 000 Fro		-		

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW). System, please submit using an Authorized DW COC form.

PUBLIC WORKS AND GOVERNMENT SERVICES CANADA ATTN: Rebecca Studer-Halbach Northern Contaminated Sites 10025 Jasper Avenue NW Edmonton AB T5J 1S6 Date Received: 27-SEP-17 Report Date: 12-OCT-17 08:37 (MT) Version: FINAL

Client Phone: 780-497-3761

Certificate of Analysis

Lab Work Order #: L1998184 Project P.O. #: R.015211.049 Job Reference: C of C Numbers: Legal Site Desc:

Selhensh

Rick Zolkiewski General Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 314 Old Airport Road, Unit 116, Yellowknife, NT X1A 3T3 Canada | Phone: +1 867 873 5593 | ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🕽

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1998184 CONTD.... PAGE 2 of 7 12-OCT-17 08:37 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1998184-1 WATER 22-SEP-17 11:00 T-4		
Grouping	Analyte			
WATER				
Physical Tests	Conductivity (uS/cm)	144		
	Hardness (as CaCO3) (mg/L)	нтс 70.9		
	рН (рН)	7.91		
	Total Suspended Solids (mg/L)	<3.0		
	Total Dissolved Solids (mg/L)	99		
	Turbidity (NTU)	0.53		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	58.1		
	Ammonia, Total (as N) (mg/L)	<0.0050		
	Bromide (Br) (mg/L)	<0.050		
	Chloride (Cl) (mg/L)	2.43		
	Fluoride (F) (mg/L)	0.152		
	Nitrate (as N) (mg/L)	<0.0050		
	Nitrite (as N) (mg/L)	<0.0010		
	Phosphorus (P)-Total (mg/L)	0.0021		
	Phosphorus (P)-Total Dissolved (mg/L)	<0.0020		
	Sulfate (SO4) (mg/L)	14.9		
	Sulphide as S (mg/L)	<0.018		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	нтр 4.74		
	Total Organic Carbon (mg/L)	4.65		
Total Metals	Aluminum (Al)-Total (mg/L)	0.0213		
	Antimony (Sb)-Total (mg/L)	<0.00010 _{MB-}		
	Arsenic (As)-Total (mg/L)	LOR <0.00030		
	Barium (Ba)-Total (mg/L)	0.0120		
	Beryllium (Be)-Total (mg/L)	<0.000020		
	Bismuth (Bi)-Total (mg/L)	<0.000050		
	Boron (B)-Total (mg/L)	0.013		
	Cadmium (Cd)-Total (mg/L)	<0.0000050		
	Calcium (Ca)-Total (mg/L)	16.8		
	Cesium (Cs)-Total (mg/L)	<0.000010		
	Chromium (Cr)-Total (mg/L)	<0.00010		
	Cobalt (Co)-Total (mg/L)	<0.00010		
	Copper (Cu)-Total (mg/L)	0.00081		
	Iron (Fe)-Total (mg/L)	0.023		
	Lead (Pb)-Total (mg/L)	<0.000050		
	Lithium (Li)-Total (mg/L)	0.0026		
	Magnesium (Mg)-Total (mg/L)	7.04		

L1998184 CONTD.... PAGE 3 of 7 12-OCT-17 08:37 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1998184-1 WATER 22-SEP-17 11:00 T-4		
Grouping	Analyte			
WATER				
Total Metals	Manganese (Mn)-Total (mg/L)	0.00125		
	Mercury (Hg)-Total (mg/L)	<0.0000050		
	Molybdenum (Mo)-Total (mg/L)	0.000275		
	Nickel (Ni)-Total (mg/L)	<0.00050		
	Phosphorus (P)-Total (mg/L)	<0.050		
	Potassium (K)-Total (mg/L)	1.02		
	Selenium (Se)-Total (mg/L)	<0.000050		
	Silicon (Si)-Total (mg/L)	0.81		
	Silver (Ag)-Total (mg/L)	<0.000010		
	Sodium (Na)-Total (mg/L)	2.68		
	Strontium (Sr)-Total (mg/L)	0.0606		
	Sulfur (S)-Total (mg/L)	4.94		
	Thallium (TI)-Total (mg/L)	<0.000010		
	Tin (Sn)-Total (mg/L)	<0.00010		
	Titanium (Ti)-Total (mg/L)	0.00077		
	Uranium (U)-Total (mg/L)	0.000586		
	Vanadium (V)-Total (mg/L)	<0.00050		
	Zinc (Zn)-Total (mg/L)	<0.0030		
	Zirconium (Zr)-Total (mg/L)	<0.00030		
Volatile Organic Compounds	Benzene (mg/L)	<0.00050		
	Ethylbenzene (mg/L)	<0.00050		
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050		
	Styrene (mg/L)	<0.00050		
	Toluene (mg/L)	<0.00045		
	ortho-Xylene (mg/L)	<0.00050		
	meta- & para-Xylene (mg/L)	<0.00050		
	Xylenes (mg/L)	<0.00075		
	F1 (C6-C10) (mg/L)	<0.10		
	Surrogate: 4-Bromofluorobenzene (SS) (%)	92.0		
	Surrogate: 1,4-Difluorobenzene (SS) (%)	91.7		
Hydrocarbons	F1-BTEX (mg/L)	<0.10		
	F2 (C10-C16) (mg/L)	<0.30		
	F3 (C16-C34) (mg/L)	<0.30		
	F4 (C34-C50) (mg/L)	<0.30		
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10		
	VPH (C6-C10) (mg/L)	<0.10		

L1998184 CONTD.... PAGE 4 of 7 12-OCT-17 08:37 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1998184-1 WATER 22-SEP-17 11:00 T-4		
Grouping	Analyte			
WATER				
Hydrocarbons	Surrogate: 2-Bromobenzotrifluoride, F2-F4 (%)	85.2		
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	119.7		

Qualifier

MS-B

Applies to Sample Number(s)

L1998184-1

QC Samples with Qualifiers & Comments:

Parameter

Dissolved Organic Carbon

QC Type Description

Matrix Spike

Matrix Spike		Dissolved Organic Carbon	MS-B	L1998184-1
Matrix Spike		Total Organic Carbon	MS-B	L1998184-1
Matrix Spike		Strontium (Sr)-Total	MS-B	L1998184-1
Matrix Spike		Sulphide as S	MS-B	L1998184-1
Qualifiers for Ind	lividual Parameters	Listed:		
Qualifier [Description			
HTC F	Hardness was calcula	ted from Total Ca and/or Mg concentr	ations and may b	be biased high (dissolved Ca/Mg results unavailable).
HTP S	Sample preparation o	r preservation hold time was exceeded	1.	
MB-LOR	Method Blank exceed	s ALS DQO. Limits of Reporting have	been adjusted fo	or samples with positive hits below 5x blank level.
MS-B	Matrix Spike recovery	could not be accurately calculated du	e to high analyte	background in sample.
Fest Method Refe	erences:			
ALS Test Code	Matrix	Test Description		Method Reference**
ALK-TITR-VA	Water	Alkalinity Species by Titration		APHA 2320 Alkalinity
				otal alkalinity is determined by potentiometric titration to a hthalein alkalinity and total alkalinity values.
BE-T-L-CCMS-VA	Water	Total Be (Low) in Water by CRC IC	PMS	EPA 200.2/6020A (mod)
Water samples ar	re digested with nitric	and hydrochloric acids, and analyzed	by CRC ICPMS.	
BR-L-IC-N-VA	Water	Bromide in Water by IC (Low Level))	EPA 300.1 (mod)
Inorganic anions a	are analyzed by Ion C	chromatography with conductivity and/	or UV detection.	
CARBONS-DOC-V	A Water	Dissolved organic carbon by combu	ustion	APHA 5310B TOTAL ORGANIC CARBON (TOC)
		dures adapted from APHA Method 53 ugh a 0.45 micron membrane filter price		c Carbon (TOC)". Dissolved carbon (DOC) fractions are
CARBONS-TOC-V	A Water	Total organic carbon by combustion	ı	APHA 5310B TOTAL ORGANIC CARBON (TOC)
This analysis is ca	arried out using proce	edures adapted from APHA Method 53	10 "Total Organi	c Carbon (TOC)".
CL-IC-N-VA	Water	Chloride in Water by IC		EPA 300.1 (mod)
Inorganic anions a	are analyzed by Ion C	Chromatography with conductivity and/	or UV detection.	
EC-PCT-VA	Water	Conductivity (Automated)		APHA 2510 Auto. Conduc.
This analysis is ca electrode.	arried out using proce	edures adapted from APHA Method 25	10 "Conductivity"	". Conductivity is determined using a conductivity
EC-SCREEN-VA	Water	Conductivity Screen (Internal Use C	Only)	APHA 2510
Qualitative analys	sis of conductivity whe	ere required during preparation of othe	r tests - e.g. TDS	S, metals, etc.
F-IC-N-VA	Water	Fluoride in Water by IC		EPA 300.1 (mod)
-		Chromatography with conductivity and/	or UV detection.	()
F1-BTX-CALC-VA	Water	F1-Total BTX		CCME CWS PHC TIER 1 (2001)
This analysis is ba Council of Ministe	ased on the "Referen	ce Method for the Canada-Wide Stand t, December 2000." For F1 (C6-C10),		m Hydrocarbons in Soil - Tier 1 Method, Canadian ergoes a purge and trap extraction prior to analysis by
F1-BTEX: F1 (C6-	-C10) minus benzene	e, toluene, ethylbenzene and xylenes (I	BTEX).	
F1-HSFID-VA	Water	CCME F1 By Headspace with GCF	ID	EPA 5021A/CCME CWS PHC (Pub# 1310)
				m Hydrocarbons in Soil - Tier 1 Method, Canadian ergoes a headspace purge prior to analysis by GC/FID.
F1 (C6-C10): Sun	n of all hydrocarbons	that elute between nC6 and nC10.		
F2-F4-ME-FID-VA	Water	CCME F2-F4 Hydrocarbons in Wat	er	CCME CWS-PHC, Pub #1310, Dec 2001
		nexane micro-extraction technique. In: Hydrocarbons in Soil Tier 1 Method,		sis is by GC-FID, as per the Reference Method for the 1.
	-VA Water	Hardness		APHA 2340B

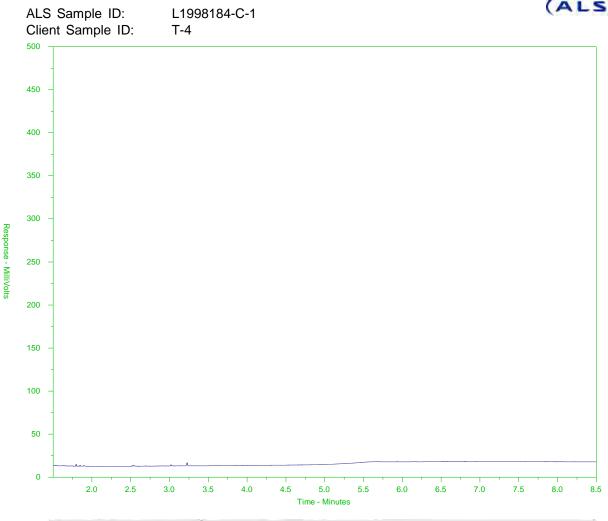
Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation. HG-T-CVAA-VA Water Total Mercury in Water by CVAAS or CVAFS EPA 1631E (mod) Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod) **MET-T-CCMS-VA** Water Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. NH3-F-VA Water Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al. NO2-L-IC-N-VA Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-L-IC-N-VA Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. P-T-PRES-COL-VA Water Total P in Water by Colour APHA 4500-P Phosphorus This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. P-TD-PRES-COL-VA Water Total Dissolved P in Water by Colour APHA 4500-P Phosphorous This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Dissolved Phosphorus is determined colourimetrically after persulphate digestion of a sample that has been lab or field filtered through a 0.45 micron membrane filter. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. APHA 4500-H pH Value PH-PCT-VA Water pH by Meter (Automated) This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode It is recommended that this analysis be conducted in the field. S2-T-COL-VA Water Total Sulphide by Colorimetric APHA 4500-S2 Sulphide This analysis is carried out using procedures adapted from APHA Method 4500-S2 "Sulphide". Sulphide is determined using the methlyene blue colourimetric method. SO4-IC-N-VA Water Sulfate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. **TDS-VA** Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. TSS-VA Total Suspended Solids by Gravimetric APHA 2540 D - GRAVIMETRIC Water This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples. TURBIDITY-VA Water Turbidity by Meter APHA 2130 Turbidity This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method. **VH-HSFID-VA** Water VH in Water by Headspace GCFID BC Env. Lab Manual (VH in Water) The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Compounds eluting between n-hexane and n-decane are measured and summed together using flame-ionization detection. **VH-SURR-FID-VA** Water VH Surrogates for Waters BC Env. Lab Manual (VH in Solids)

L1998184 CONTD PAGE 7 of 7 12-OCT-17 08:37 (MT) Version: FINAL

VOC7-HSMS-VA	Water	BTEX/MTBE/Styrene by Headspace GCMS	EPA 5021A/8260C
		ts, is heated in a sealed vial to equilibrium. The head measured using mass spectrometry detection.	dspace from the vial is transfered into a gas chromatograph
VOC7/VOC-SURR-MS-VA	Water	VOC7 and/or VOC Surrogates for Waters	EPA 5035A/5021A/8260C
VPH-CALC-VA	Water	VPH is VH minus select aromatics	BC MOE LABORATORY MANUAL (2005)
Volatile Petroleum Hydro	carbons in So nd, in solids,	olids or Water". The concentrations of specific Mono	nalytical Method for Contaminated Sites "Calculation of ocyclic Aromatic Hydrocarbons (Benzene, Toluene, ration of Volatile Hydrocarbons (VH) that elute between n-
XYLENES-CALC-VA	Water	Sum of Xylene Isomer Concentrations	CALCULATION
Calculation of Total Xyler	ies		
,	•	difications from specified reference methods to imp de(s) indicate the laboratory that performed analytic	•
Laboratory Definition Co	de Labo	ratory Location	
VA	ALS E	ENVIRONMENTAL - VANCOUVER, BRITISH COLU	IMBIA, CANADA
Chain of Custody Number	s:		
	nat is similar s are added i	in behaviour to target analyte(s), but that does not or to samples prior to analysis as a check on recovery. on dru weight of sample	

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.


< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346'F	549'F	898'F	1067'F	
-Gasolim	3-≫ +	Motor	lis/ Lube Oils/ Grease-	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Canada Toll Free: 1 800 668 9878		Request Form	Chain of Custody (COC) / Analytical
	(tab use only)	Affix ALS barcode label here	
	4 	Pane 1 d	COC Number: 14 -

COC Number:
14 -

|_

(