Appendix F

Edie Lake Geotechnical Assessment Report

Wood Environment & Infrastructure Solutions, a Division of Wood Canada Limited #401, 1925 – 18th Avenue NE Calgary, Alberta, T2E 7T8 Canada T: 403-248-4331

Memo

To:	Joe Acorn, Manager – Mackenzie Valley Highway E	nvironmental Affairs
From:	Blake Brodland, P.Eng.	Reviewer: Kevin Spencer, P.Eng., M.Eng.
cc:	Patricia Coyne, Senior Environmental Analysist	Project No.: CG14367
Date:	31 March 2020	
Re:	Edie Lake Quarry Investigation	

1 Introduction

Wood Environment & Infrastructure Solutions (Wood), a Division of Wood Canada, is pleased to submit this memorandum to the Government of the Northwest Territories (GNWT) for materials testing at the existing Edie Lake Quarry. The Edie Lake Quarry is located approximately 12 km east of Norman Wells, NT. This work was done in response to discussion and email with Joe Acorn. The work was undertaken under contract SC-458837, issued 17 January 2020.

2 Background

It is understood that testing of the rock at the prospective quarry was intended to have been conducted on rock core recovered from the 2016 borehole investigation completed by others between 26 and 29 March 2016, however poor borehole recovery resulted in limited samples being recovered for testing. During the drilling program at the quarry the rock was identified as limestone, described as grey-brown, fine grained, crystalline and moderately strong. The samples which were recovered are understood to have been discarded. Subsequently, the quarry was developed, and the recovered rock was used to build the Canyon Creek All-Season Access Road, which was completed by 2018.

The Edie Lake Quarry was visited on 30 May 2019 by Wood representatives B. Brodland, P.Eng. and N. Khan, GIT and the GNWT representative B. An, P.Eng..

The number of samples which should be collected and tested for a quarry depends on the geology, however some rules of thumb are presented in Table 1, which is based on British Columbia Acid Rock Drainage Guidelines. The guidelines are to be used in conjunction with the understanding of the site conditions and geology to refine the testing requirements further.

Metric Tonnes (1,000 kg)	Recommended Number of Samples
<10,000	3
<100,000	8
<1,000,000	26
<100,000,000	80

Table 1: SAMPLES PER QUARRY SIZE (PRICE AND ERRINGTON 1997)

In addition to the number of samples, there are specific sampling techniques outlined by the American Society for Testing and Materials (ASTM) in document D75/D75M-14 for use when sampling from quarry stockpiles. The proper ASTM sampling procedures for the sample collected by Wood in May 2019 were not followed, since the sample was collected ad hoc and not under a specific scope or purpose. The collection methodology and number of samples do not meet standard practices.

3 Scope of Work

The analysis completed as part of the scope of work for this project included:

- Acid-Base Accounting (ABA) Analysis;
- Whole Rock Metals (ICP-MS) Analysis;
- Shake Flask Extraction (SFE) Analysis;
- Petrographic Analysis;
- Flakiness Index (ATT 49/94); and
- Los Angeles Abrasion (CSA A23.2-16A or 17A).

The GNWT requested to proceed with completing as many tests listed above as were practical based on the single bucket of rock sample (approximately 35kg) collected by Wood in May 2019.

Upon completion, this short summary memorandum was be prepared to present the results of the laboratory testing.

4 Site Visit

A sample was collected under the direction of the GNWT from what appeared to be a safety berm near the toe of the blasted cut as shown in Photograph 1. A single 5-gallon bucket of rock sample was collected (approximately 35 kg) as shown in Photograph 2 and was shipped to the Wood laboratory.

The sample was collected from what appeared to be a safety berm near the toe of the blasted cut. This sample may or may not be representative of the quarry. The sample was likely exposed to weathering, which may skew physical results to be less favourable and may influence chemical results to be more representative of weathered material instead of fresh material. Weathering can potentially result in some leaching of sulphide minerals, which in turn can alter the metal leaching behaviour of the material.

Photograph 1: Edie Lake Quarry, sample collected from berm in foreground

Photograph 2: Sample Collected from Edie Lake Quarry

5 Laboratory Results and Discussion

The following sections discuss the test purpose and the corresponding results.

5.1 Acid-Base Accounting (ABA) Analysis

Assessment of the potential for a sample to generate acidity is known as acid base accounting (ABA) and is primarily defined by the neutralization potential ratio (NPR), which is the ratio of the neutralization potential (NP) to acid potential (AP) (NPR=NP/AP). For sample screening purposes, the British Columbia MOTI circular T-04/13 identifies three different scenarios:

Scenario 1: NPR>2

Samples with NPR>2 indicate that the sample is non-potentially acid generating (non-PAG) with a low potential to generate ARD.

Scenario 2: NPR between 1 and 2

Samples with NPR between 1 and 2 indicate that the potential of the sample to produce ARD is uncertain (uncertain PAG). Further alternate testing and other methods of evaluation must be conducted to resolve the uncertainty in the evaluation.

Scenario 3: NPR<1

Samples with NPR<1 have a high potential to produce ARD and are potentially acid generating (PAG). These rocks are generally deemed unsuitable for aggregate sources, and the rock should not be further disturbed or exposed.

5.1.1 Results

The results of this testing are summarized below in Table 2. The full laboratory results are available in Appendix A.

Fizz Rating	Paste pH	Total Sulphur (wt%)	Sulphate Sulphur (wt%)	Sulphide Sulphur (wt%)	Maximum Potential Acidity (kg CaCO3 /tonne)	Neutralization Potential (kg CaCO3 /tonne)	Net Neutralization Potential (kg CaCO3 /tonne)	Neutralization Potential Ratio (kg CaCO3 /tonne)
Strong	10.0	0.05	<0.01	0.05	1.6	738.5	736.9	472.6

Table 2: ACID-BASE ACCOUNTING ANALYSIS SUMMARY

5.1.2 Discussion

The results of the testing indicate that this rock is non-potentially acid generating (non-PAG) with a low sulphide content and a low potential to generate ARD. The very high neutralization potential is consistent with carbonate rock.

5.2 Whole Rock Metals (ICP-MS) Analysis

Total solid phase elemental analysis quantifies the concentration of a range of elements of environmental interest in a sample. These results cannot be directly related to the potential for metal leaching for a given element, rather they support other characterization techniques and can be used as a screening tool to identify possible metal enrichment by comparison to average crustal abundance values (Price, 1997). For screening purposes, samples with more than ten-times the average crustal abundance for a given element are considered enriched.

5.2.1 Results

The results of this testing are summarized in Table 3, possible exceedances are highlighted yellow. The full laboratory results are available in Appendix A.

Parameter	Screening Concentration ¹ (ppm)	Sample Result (ppm)	<u>. (1</u> ,	CP-MS) ANALYSIS Parameter	Screening Concentration ¹ (ppm)	Sample Result (ppm)
Silver Ag	0.75	0.05		Molybdenum Mo	12	0.62
Aluminum Al	823,000	200 ²		Sodium Na	235,500	<100 ²
Arsenic As	18	0.3		Columbium Nb	200	0.06
Gold Au	0.04	0.008		Nickle Ni	840	1.7
Boron B	100	<5		Phosphorus P	10,500	30 ²
Barium Ba	4,250	46		Lead Pb	140	2.7
Beryllium Be	30	0.14		Rubidium Rb	900	0.8
Bismuth Bi	0.085	0.04		Rhenium Re	0.007	0.002
Calcium Ca	415,000	>250,000 ²		Sulfur S	3,500	600 ²
Cadmium Cd	30	0.09		Antimony Sb	2	0.16
Cerium Ce	665	1.24		Scandium Sc	220	<0.1
Cobalt Co	250	1.4		Selenium Se	0.5	0.7
Chromium Cr	1,020	0.8		Tin Sn	23	<0.2
Caesium Cs	96	0.06		Strontium Sr	3,700	323
Copper Cu	600	4.2		Tantalum Ta	20	<0.01
Iron Fe	563,000	700 ²		Tellurium Te	-	<0.01
Gallium Ga	190	0.5		Thorium Th	12	0.2
Germanium Ge	15	< 0.05		Titanium Ti	56,500	< 50 ²
Hafnium Hf	30	<0.02		Thallium Tl	8.5	<0.01
Mercury Hg	0.85	<0.01		Uranium U	27	0.61
Indium In	2.5	<0.005		Vanadium V	1,200	1.8
Potassium K	208,500	100 ²		Tungsten W	12.5	<0.5
Lanthanum La	390	0.5		Yttrium Y	330	0.67
Lithium Li	200	5.2		Zinc Zn	700	6
Magnesium Mg	233,000	2,100 ²		Zirconium Zr	1650	<0.5
Manganese Mn	9,500	<1		-	-	-

Table 3: WHOLE ROCK METAL (ICP-MS) ANALYSIS SUMMARY

<u>Notes</u>

- Screening Concentrations are from Appendix 3 Norman Trace Element Concentrations in Selected Rock Types of DRAFT Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Mine sites in British Columbia., published by Reclamation Section Energy and Mineral Division, authored by Dr. Willian A. Price, April 1997, using ten-times the continental crust concentrations
- 2. Values were reported in percentage (parts per hundred) and converted to parts per million (ppm)
- 3. Yellow colour indicates a possible exceedance

5.2.2 Discussion

With the exception of one parameter, all of the reported values fall below the ten-times continental crust concentration values identified in DRAFT Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Mine sites in British Columbia.

The Calcium content in the sample exceeded the test detection maximum of >250,000 ppm. The calcium content may or may not exceed the ten-times continental crust concentration value which is 415,000 ppm. Given that the rock is carbonate, this result is unsurprising and is likely not a concern. For comparison, the ten-times sedimentary carbonate rock concentration is 3,023,000 ppm.

5.3 Shake Flask Extraction (SFE) Analysis

Leachable metal tests are used to assess the presence of potentially soluble elements and their release during initial stages of weathering. The results of leachable metal testing are used as a geochemical screening tool to assess whether short-term metal leaching could potentially occur from a sample. They are not direct measures of the expected drainage chemistry but are used as a screening tool to identify potential metal/elements of concern for leaching.

For comparison purposes only, the leachable metal results were also reviewed in relation to the *Guidelines for Designing and Implementing Aquatic Effects Monitoring Programs for Development Project in the Northwest Territories, AEMP Technical Guidance Document Volume 3* (June 2009). These values are not directly comparable to leachate from source materials. This comparison is strictly for reference purposes and implies neither compliance nor non-compliance with specific guidelines but provides reference to potential impact related to metal leaching. The leachable metal results are considered elevated when concentrations are greater than the guideline values.

5.3.1 Results

The results of this testing are summarized below in Table 4. The full laboratory results are available in Appendix A.

) ANALYSIS SUM	
Parameter (dissolved)	AEMP Screening Threshold ¹ (mg/L)	CCME Long- Term Screening Threshold (mg/L)	Waste Discharge Screening Threshold (mg/L)	Sample Result (mg/L)
Silver	0.000098	0.00025	0.1	<0.00008
Aluminum	0.0884	-	1	0.084
Arsenic	0.154	0.005	1	<0.0002
Boron	-	1.5	_	<0.01
Barium	-	-	1	0.0398
Beryllium	-	-	_	<0.0001
Bismuth	-	-	-	<0.0001
Calcium	-	-	_	5.80
Cadmium	0.00039	-	0.1	<0.00001
Cobalt	-	-	-	<0.0001
Chromium	0.0108 ²	-	0.1	<0.0005
Copper	0.00417	-	1	<0.0005
Iron	0.887	0.3	1	<0.02
Mercury	0.000182	0.000026	0.0006	< 0.000003 ³
Potassium	-	-	-	0.44
Lithium	-	-	-	0.0011
Magnesium	-	-	-	0.59
Manganese	-	-	-	<0.0002
Molybdenum	0.395	0.073	-	0.0014
Sodium	-	-	-	0.53
Nickel	0.0605	-	1	<0.0005
Phosphorus	-	-	1	<0.05
Lead	-	-	0.05	< 0.0005
Sulphur	-	_	-	1.2
Antimony	-	_	-	<0.0001
Selenium	0.00496	0.001	_	< 0.0005

Table 4: SHAKE FLASK EXTRACTION (SFE) ANALYSIS SUMMARY

. . .

Parameter (dissolved)	AEMP Screening Threshold ¹ (mg/L)	CCME Long- Term Screening Threshold (mg/L)	Waste Discharge Screening Threshold (mg/L)	Sample Result (mg/L)
Silicon	-	-	-	0.25
Tin	0.0848	-	1	<0.0005
Strontium	-	-	-	0.0340
Tellurium	-	-	-	<0.0002
Thorium	-	-	-	<0.0001
Titanium	_	-	-	<0.0005
Thallium	0.00985	0.0008	-	<0.00005
Uranium	0.0026	0.015	-	0.00011
Vanadium	0.0177	-	-	<0.001
Tungsten	-	-	_	<0.0001
Zinc	0.0608	-	0.5	<0.001
Zirconium	-	-	-	<0.0001

<u>Notes</u>

- AEMP Screening Thresholds are from Appendix A, Table A.1.2: Toxicity thresholds for surface water and pore water (freshwater) of Guidelines for Designing and Implementing Aquatic Effects Monitoring Programs for Development Projects in the Northwest Territories, Recommended Procedures for Developing Data Quality Objectives and a Conceptual Study Design, AEMP Technical Guidance Document Volume 3, published by Indian and Northern Affairs Canada, June 2009
- 2. Values for Chromium III and Chromium IV given in reference, the low (i.e. more conservative value is presented herein)
- 3. The original value reported was <0.0005, which was above the toxicity threshold. The result of a more detailed re-test is provided.
- 4. Where no screening threshold is presented, a specific threshold was not given in the reference document.
- 5. CCME Long-Term Screening Thresholds are from Canadian Council of Ministers of the Environment, Chapter Water Quality Guidelines for the Protection of Aquatic Life
- 6. Waste Discharge Screening Thresholds are from Guideline for Industrial Waste Discharged in the NWT, Schedule II: Standard for Non-Point Sources Discharges, Concentrations not to be Exceeded, April 2004

5.3.2 Discussion

All of the reported values fall below the three screening thresholds.

5.4 Petrographic Analysis

Petrographic analysis was conducted to determine the physical and chemical characteristics of the aggregate, classify and determine relative amounts of the constituents, and to determine the presence of any deleterious substances in the aggregate. Petrographic analysis was also used to provide a petrographic number (PN) which is an appraisal of the physical-mechanical quality of the coarse aggregate. The petrographic number may be used for different purposes including providing a preliminary assessment for the quality of aggregate and monitoring the quality of aggregate produced.

. . .

5.4.1 Results

The constituents that made up more than 5% of the sample are summarized below in Table 5. The full laboratory results are available in Appendix A.

Constituent	Constituent Percentage in Entire Sample (%)	Petrographic Number
Carbonate - grey; micritic to fine grained; calcite content less than 1%; angular - irregular; hard to medium hard	29.3	
Carbonate - grey; micritic to fine grained; calcite content less than 5%; angular - irregular; hard to medium hard	16.7	
Carbonate - grey; micritic to fine grained; calcite content less than 1%; occasional stylolites; angular - irregular; hard to medium hard	14.0	110
Carbonate - grey; micritic to fine grained; calcite content less than 5%; occasional stylolites; angular - irregular; hard to medium hard	9.5	
Carbonate - grey; micritic to fine grained; calcite content less than 1%; with sphalerite; angular - irregular; hard to medium hard	9.3	

Table 5: PETROGRAPHIC ANALYSIS SUMMARY

5.4.2 Discussion

The petrographic analysis and PN indicate that the rock is of good quality for use as aggregate. The closer the PN is to 100, the better the quality of the rock. Table 6 below shows the suggested PN limits for aggregate quality classifications as indicated on Table A3.1 from Concrete Materials and Methods of Concrete Construction / Test Methods and Standard Practices for concrete, published by Canadian Standards Association Group in June 2019.

Product type	Maximum PN Limit
Concrete class C1, C2, F1, C-XL, A-XL, A-1, A-2	125
Other concrete classes	140
Shotcrete	125
Railroad ballast	125
Granular base	150
Select granular sub-base	160

Table 6: SUGGESTED PN LIMITS FOR AGGREGATE QUALITY CLASSIFICATIONS¹

<u>Note</u>

1. Table taken from Concrete Materials and Methods of Concrete Construction / Test Methods and Standard Practices for Concrete published by Canadian Standards Association Group in June 2019; Table A3.1.

5.5 Flakiness Index (ATT 49/94)

The flakiness index is determined using a series of sieves with rectangular slots instead of square mesh. The weights of aggregate passing and retained on various sieves is measured in an effort to determine the flakiness of a particular aggregate. A flaky particle generally has a thickness less than 0.6 of their nominal size. A lower flakiness index corresponds to higher aggregate sphericity.

5.5.1 Results

The results of this testing are summarized below in Table 7. The full laboratory results are available in Appendix A.

Sieve Fraction (mm)	Flakiness Index (%)
14-20	15.6
10-14	18.3
6.3-10	24.9
Total Flakiness Index	18.1

Table 7: FLAKINESS INDEX SUMMARY

5.5.2 Discussion

The result of the test indicated a total flakiness index of 18.1%, which is considered acceptable. The finer aggregates seem to have a higher degree of flakiness. A flakiness index of 30% or higher is generally considered undesirable.

5.6 Los Angeles Abrasion

The Los Angeles Abrasion test is a test used to estimate the durability of a sample. The test is performed by turning a steel drum containing the rock sample and 12 steel balls, each weighing approximately 0.415 kg. The steel balls impact and abrade the rock giving an indication of how durable the rock might be over a long period of time under in-situ conditions. After 500 revolutions the test is ended and the loss (i.e. fines) are screened and weighed.

5.6.1 Results

The results of this testing are summarized below in Table 8. The full laboratory results are available in Appendix A.

Maximum Aggregate Size Used	Percent Loss
(mm)	(%)
14	27

5.6.2 Discussion

The result of this test indicates that the rock is resistant to abrasion and falls within the typical range for limestone or dolostone of between 18 and 30% loss.

6 Recommendations

Wood has the following recommendations for the Edie Quarry Site:

- Additional samples should be collected from the quarry stockpile(s) in order to have samples from multiple locations in the quarry. Table 1 of this memorandum provided rules of thumb for testing based on volume. Additional testing would allow for more representative testing from the entire quarry, instead on just one location (which may or may not be representative). Care should be given to collecting unbiased samples from stockpiles following appropriate methodology.
- If additional testing is completed and the entire rock quarry is carbonate rock, further ARD and ML testing should focus on risks from neutral metal leaching (ICP metals analysis and Shake Flask Extraction).

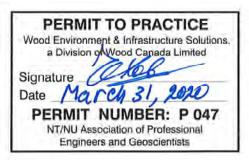
Memorandum on Laboratory Testing Results CG14367 - Edie Lake Quarry

7 Closure

This document was prepared for the exclusive use of the Government of the Northwest Territories for the specific application described within. It was prepared in accordance with generally accepted engineering practices in the geotechnical consulting industry. No other warranty, express or implied is made. Please also refer to the limitations in Section 9 of this memorandum.

Sincerely,

Wood Environment & Infrastructure Solutions a Division of Wood Canada Limited


Per:

Blake Brodland, P.Eng. Senior Geological Engineer Tel: 403-387-1981 Email: blake.brodland@woodplc.com

Overall Reviewed by:

Kevin Spencer, P.Eng., M.Eng. Associate Geotechnical Engineer Tel: 403-387-1775 Email: kevin.spencer@woodplc.com

BB/rm

Attachment: Appendix A Laboratory Testing Chemical Section Reviewed by:

Steve Walker, P.Geo., Ph.D. Associate Geochemist Tel: 905-568-2929 Email: steve.walker3@woodplc.com

Page 11 of 16 WOOD.

8 References

American Society for Testing and Materials. Standard Practice for Sampling Aggregates, Designation: D75/D75M-14

British Columbia Ministry of Transportation and Infrastructure (MOTI)., Technical Circular: Evaluating the Potential for Acid Rock Drainage and Metal Leaching at Quarries, Rock Cuts Sites and from Stockpiled Rock or Talus Materials used by the MOTI. September 15, 2013

Canadian Council of Ministers of the Environment (CCME) Long-Term Screening Thresholds, Chapter: Water Quality Guidelines for the Protection of Aquatic Life, accessed online at <u>http://st-ts.ccme.ca/en/index.html</u>, March 2020

Canadian Standards Association Group. Concrete Materials and Methods of Concrete Construction / Test Methods and Standard Practices for Concrete. June 2019.

Guideline for Industrial Waste Discharged in the NWT, Schedule II: Standard for Non-Point Sources Discharges, Concentrations not to be Exceeded, April 2004

Indian and Northern Affairs Canada. Guidelines for Designing and Implementing Aquatic Effects Monitoring Programs for Development Project in the Northwest Territories, Recommended Procedures for Developing Data Quality Objectives and a Conceptual Study Design, AEMP Technical Guidance Document Volume 3. June 2009

Price, Dr. William A., Errington, J.C., The B.C. MEMPR Acid Rock Drainage Guidelines. 1997

Price, Dr. William A., DRAFT Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Mine sites in British Columbia., published by Reclamation Section Energy and Mineral Division, April 1997

9 Limitations to Geotechnical Reports

- 1. The work performed in the preparation of this report and the conclusions presented herein are subject to the following:
 - a) The contract between Wood and the Client, including any subsequent written amendment or Change Order dully signed by the parties (hereinafter together referred as the "Contract");
 - b) Any and all time, budgetary, access and/or site disturbance, risk management preferences, constraints or restrictions as described in the contract, in this report, or in any subsequent communication sent by Wood to the Client in connection to the Contract; and
 - c) The limitations stated herein.
- 2. **Standard of care:** Wood has prepared this report in a manner consistent with the level of skill and are ordinarily exercised by reputable members of Wood's profession, practicing in the same or similar locality at the time of performance, and subject to the time limits and physical constraints applicable to the scope of work, and terms and conditions for this assignment. No other warranty, guarantee, or representation, expressed or implied, is made or intended in this report, or in any other communication (oral or written) related to this project. The same are specifically disclaimed, including the implied warranties of merchantability and fitness for a particular purpose.
- 3. **Limited locations:** The information contained in this report is restricted to the site and structures evaluated by Wood and to the topics specifically discussed in it, and is not applicable to any other aspects, areas or locations.
- 4. **Information utilized:** The information, conclusions and estimates contained in this report are based exclusively on: i) information available at the time of preparation, ii) the accuracy and completeness of data supplied by the Client or by third parties as instructed by the Client, and iii) the assumptions, conditions and qualifications/limitations set forth in this report.
- 5. Accuracy of information: No attempt has been made to verify the accuracy of any information provided by the Client or third parties, except as specifically stated in this report (hereinafter "Supplied Data"). Wood cannot be held responsible for any loss or damage, of either contractual or extra-contractual nature, resulting from conclusions that are based upon reliance on the Supplied Data.
- 6. **Report interpretation:** This report must be read and interpreted in its entirety, as some sections could be inaccurately interpreted when taken individually or out-of-context. The contents of this report are based upon the conditions known and information provided as of the date of preparation. The text of the final version of this report supersedes any other previous versions produced by Wood.
- 7. **No legal representations:** Wood makes no representations whatsoever concerning the legal significance of its findings, or as to other legal matters touched on in this report, including but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and change. Such interpretations and regulatory changes should be reviewed with legal counsel.
- 8. **Decrease in property value:** Wood shall not be responsible for any decrease, real or perceived, of the property or site's value or failure to complete a transaction, as a consequence of the information contained in this report.
- 9. No third-party reliance: This report is for the sole use of the party to whom it is addressed unless expressly stated otherwise in the report or Contract. Any use or reproduction which any third party makes of the report, in whole or in part, or any reliance thereon or decisions made based on any information or conclusions in the report is the sole responsibility of such third party. Wood does not represent or warrant the accuracy, completeness, merchantability, fitness for purpose or usefulness of this document, or any information contained in this document, for use or consideration by any third party. Wood accepts no responsibility whatsoever for damages or loss of any nature or kind suffered by any such third party as a result of actions taken or not taken or decisions made in reliance on this report or anything set out therein. including without limitation, any indirect, special, incidental, punitive or consequential loss, liability or damage of any kind.
- 10. **Assumptions:** Where design recommendations are given in this report, they apply only if the project contemplated by the Client is constructed substantially in accordance with the details stated in this report. It is the sole responsibility of the Client to provide to Wood changes made in the project, including but not limited to, details in

. . .

the design, conditions, engineering or construction that could in any manner whatsoever impact the validity of the recommendations made in the report. Wood shall be entitled to additional compensation from Client to review and assess the effect of such changes to the project.

11. **Time dependence:** If the project contemplated by the Client is not undertaken within a period of 18 months following the submission of this report, or within the time frame understood by Wood to be contemplated by the Client at the commencement of Wood's assignment, and/or, if any changes are made, for example, to the elevation, design or nature of any development on the site, its size and configuration, the location of any development on the site and its orientation, the use of the site, performance criteria and the location of any physical infrastructure, the conclusions and recommendations presented herein should not be considered valid unless the impact of the said changes is evaluated by Wood, and the conclusions of the report are amended or are validated in writing accordingly.

Advancements in the practice of geotechnical engineering, engineering geology and hydrogeology and changes in applicable regulations, standards, codes or criteria could impact the contents of the report, in which case, a supplementary report may be required. The requirements for such a review remain the sole responsibility of the Client or their agents.

Wood will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

- 12. **Limitations of visual inspections:** Where conclusions and recommendations are given based on a visual inspection conducted by Wood, they relate only to the natural or man-made structures, slopes, etc. inspected at the time the site visit was performed. These conclusions cannot and are not extended to include those portions of the site or structures, which were not reasonably available, in Wood's opinion, for direct observation.
- 13. **Limitations of site investigations:** Site exploration identifies specific subsurface conditions only at those points from which samples have been taken and only at the time of the site investigation. Site investigation programs are a professional estimate of the scope of investigation required to provide a general profile of subsurface conditions.

The data derived from the site investigation program and subsequent laboratory testing are interpreted by trained personnel and extrapolated across the site to form an inferred geological representation and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Despite this investigation, conditions between and beyond the borehole/test hole locations may differ from those encountered at the borehole/test hole locations and the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies.

Final sub-surface/bore/profile logs are developed by geotechnical engineers based upon their interpretation of field logs and laboratory evaluation of field samples. Customarily, only the final bore/profile logs are included in geotechnical engineering reports.

Bedrock, soil properties and groundwater conditions can be significantly altered by environmental remediation and/or construction activities such as the use of heavy equipment or machinery, excavation, blasting, pile-driving or draining or other activities conducted either directly on site or on adjacent terrain. These properties can also be indirectly affected by exposure to unfavorable natural events or weather conditions, including freezing, drought, precipitation and snowmelt.

During construction, excavation is frequently undertaken which exposes the actual subsurface and groundwater conditions between and beyond the test locations, which may differ from those encountered at the test locations. It is recommended practice that Wood be retained during construction to confirm that the subsurface conditions throughout the site do not deviate materially from those encountered at the test locations, that construction work has no negative impact on the geotechnical aspects of the design, to adjust recommendations in accordance with conditions as additional site information is gained and to deal quickly with geotechnical considerations if they arise.

Interpretations and recommendations presented herein may not be valid if an adequate level of review or inspection by Wood is not provided during construction.

14. **Factors that may affect construction methods, costs and scheduling:** The performance of rock and soil materials during construction is greatly influenced by the means and methods of construction. Where comments are made relating to possible methods of construction, construction costs, construction techniques, sequencing, equipment or

. . .

scheduling, they are intended only for the guidance of the project design professionals, and those responsible for construction monitoring. The number of test holes may not be sufficient to determine the local underground conditions between test locations that may affect construction costs, construction techniques, sequencing, equipment, scheduling, operational planning, etc.

Any contractors bidding on or undertaking the works should draw their own conclusions as to how the subsurface and groundwater conditions may affect their work, based on their own investigations and interpretations of the factual soil data, groundwater observations, and other factual information.

- 15. **Groundwater and Dewatering:** Wood will accept no responsibility for the effects of drainage and/or dewatering measures if Wood has not been specifically consulted and involved in the design and monitoring of the drainage and/or dewatering system.
- 16. **Environmental and Hazardous Materials Aspects:** Unless otherwise stated, the information contained in this report in no way reflects on the environmental aspects of this project, since this aspect is beyond the Scope of Work and the Contract. Unless expressly included in the Scope of Work, this report specifically excludes the identification or interpretation of environmental conditions such as contamination, hazardous materials, wildlife conditions, rare plants or archeology conditions that may affect use or design at the site. This report specifically excludes the investigation, detection, prevention or assessment of conditions that can contribute to moisture, mold or other microbial contaminant growth and/or other moisture related deterioration, such as corrosion, decay, rot in buildings or their surroundings. Any statements in this report or on the boring logs regarding odours, colours, and unusual or suspicious items or conditions are strictly for informational purposes
- 17. **Sample Disposal:** Wood will dispose of all uncontaminated soil and rock samples after 30 days following the release of the final geotechnical report. Should the Client request that the samples be retained for a longer time, the Client will be billed for such storage at an agreed upon rate. Contaminated samples of soil, rock or groundwater are the property of the Client, and the Client will be responsible for the proper disposal of these samples, unless previously arranged for with Wood or a third party.

Appendix A

Laboratory Testing

Clent: WOOD ENVIRONMENT & INFRASTRUCTU Mailing Address: WOOD ENVIRONMENT & INFRASTRUCTU Mailing Address: 3450 Harvester Road Suite 100 Burdington, ON L7N 3W5 Burdington, ON L7N 3W5 Attention To: Conina Aldea E-mail Address: contra Aldea Contact No: (905) 741-5710 Fax No: (905) 741-5710 Fax No: Cotina Aldea Clent Project Name: Cotina Aldea Clent Project Name: Cotina Aldea Results: Cotina Aldea Reported To: 1 Corina Aldea Cotina Aldea	Laboratori CERTIFICATE OF ANALYS Rep Pag Rep Rep Rep Rep	T: 778.452.4000 • F. 778.452.4074 www.agatlabs.com 20/571389 1 2 1 4 Vivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator Vivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator Vivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator
Address: Address: Address: in To: in to: int	CERTIFICATE OF ANALY RE SOLUTIONS AGA Rep Rep Rep Sign	0V571389 (NV571389 Invian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coord fivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coord
Address: Address: Address: Address: roject Name: roject Name: ad To: d To: 2 2	CERTIFICATE OF ANALYS RE SOLUTIONS AGA Page Rep Rep Rep Rep Rep Rep	0V571389 Minian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator Avian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator
Address: n To: No: No: No: No: roject Number: d To: d To: d To: d To: d To: d To: d To: d To: d d To: d d d d d d d d d d d d d d d d d d d	RE SOLUTIONS Rep Rep Sign Page	201571389
Address: Address: Address: roject Name: roject Number: d To: d d To: d d to: d d d to: d d d to: d d d d d d d d d d d d d d d d d d d	Report Version: 1 Pages (Including Cover): 4 Analysis Reviewed By: V Report Certified By: V Signature: Signature:	Ivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator Ivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator
n To: ddfress: No: roject Number: d To: d To: 2 2	Pages (Including Cover): 4 Analysis Reviewed By: Vi Report Certified By: Vi Signature: Signature:	rivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator Ivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator
In To: Address: No: roject Name: roject Name: d To: d To: 2 2	Analysis Reviewed By: V Report Certified By: V Signature: Signature suny fu	Ivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator Ivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator
Addresss: No: roject Name: roject Number: d To: d To: 2 2	Analysis Reviewed By: V	Ivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator Ivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator
No: roject Name: roject Number: d To: 2 2	Analysis Reviewed By: V Report Certified By: V Signature: Signature:	Ivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator Ivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator
roject Name: roject Number:	Report Certified By: V Signature: Signature:	fivian Ferrera Leon, MSc., PGeo.Acid Rock Drainage Lab Coordinator
- 0 6 4	Signature: Signature:	Nover of
- 0 6 4	Signature: Signature:	later of
- 0 6 4	Should you require any fu	2
- 0 6 4	Should you require any fu	
- N 0 4	Should you require any fu	
- 0 6 4		Should you require any further information regarding this analysis please contact your client
Ν Μ 4		services representative at (/ / o) 432 4000
ω 4		
4	Notes:	
Invoice: Corina Aldea		
Submitted To:		
Note: All samples are store	Note: All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.	additional sample storage time.
AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian	Idian Association for Laboratory Accreditation Inc. (CALA) and/or Stan	AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of

necessarily be included in the scope of accreditation. Results relate only to the items tested and all the items tested

Unit 120 • 8600 Glenlyon Parkway Burnaby, BC V5J 086 Canada T: 778.452.4000 • F: 778.452.4074 www.agatlabs.com

REGUT Laboratories

CERTIFICATE OF ANALYSIS - SAMPLE DETAILS

AGAT WORK ORDER: 20\571389 REPORT VERSION: 1

CLIENT NAME: WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS PROJECT NO: CG14367 Corina Aldea

3-Feb-20

3-Feb-20

R. Littke

13-Feb-20 13-Feb-20

A N N N

21-Feb-20 21-Feb-20 19-Feb-20

Sample Receipt Info:	Date Samples Received:	No. of Samples Received:	Samples Received By:		Analytical Instructions:	From:	Date:		Date of Analysis:	Paste pH:	Fizz Rating:	Rinse pH:	Carbonate Carbon (CO2):	Total Carbon:	Total Inorganic Carbon:	Total Sulphur:	Sulphate Sulphur:	Neutralization Potential (NP):					
Dry Sample Wt. (kg)																							
Received Sample Dry Sample Wt. Wt (kg) (kg)																							0
Condition	Dry																						t Received (kg):
Sample Type	Crushed rock and pulp																						Total Sample Weight Received (kg):
Client Sample ID	S019-20																						
AGAT Sample ID	918551																						
S. No.	1																						

Results relate only to the items tested and all the items tested

	LAN -									Unit 120 • 8600 Glenlyon Parkway	lenlyon Parkway
				٦	•					Burna	iby, BC V5J 0B6 Canada
	ĥ	らわこ			Labo	orato	Laboratories			T: 778.452.4000 • F: 778.452.4074 www.agattabs.com	 F: 778,452.4074 www.agatlabs.com
			U U U U	RTIFIC	ATE OF	ANALY	SIS = AB	CERTIFICATE OF ANALYSIS - ABA RESULTS			
		AGAT WORK ORDER: 20V571389	20V57138	6				CLIENT NAME: \	VOOD ENVIRONME	CLIENT NAME: WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS	JRE SOLUTIONS
		REPORT VERSION:						PROJECT NO: CG14367	CG14367		
									Mod. ABA NP		
S. No.	AGAT	Client	Paste	Fizz	Total	Sulphate	Sulphide	Maximum Potential	Neutralization	Net Neutralization	Neutralization
	Sample ID	Sample ID	рН	Rating	Sulphur	Sulphur	Sulphur	Acidity (MPA)	Potential (NP)	Potential (NNP)	Potential Ratio (NPR)
Units:			pH Units		(wt %)	(wt %)	(wt %)	(kg CaCO3/tonne)	(kg CaCO3/tonne)	(kg CaCO3/tonne)	
Reported	Reported Detection Limit (RDL)	KDT):	0.1		0.01	0.01	0.02	0.6			
-	918551	S019-20	10.0	Strong	0.05	<0.01	0.05	1.6	738.5	736.9	472.6
					QUA	QUALITY ASSURANCE	JRANCE				
Replicate	Replicate Analysis:						-				
-	918551	S019-20	10 <u>.</u> 0	Strong	0.05	<0.01	0.05	1.6	738.5	736.9	472.6
1 R	918551	S019-20	10 <u>.</u> 0	Strong		<0.01	•		750.7	•	
10	933556		-	•	0.4	-	•		-	-	-
10 R	933556		•	•	0.4	•	•	•	•	•	•
Referenc	Reference Material Analysis:	sis:									
			Ľ								
Referenc	Reference Material		HOUSE REF 1		KZK-1	Ref.2016- 2			KZK-1		
Ref. Mate	Ref. Material Certified/Informational Value	rmational Value	8.8		0.80	0.10			58.9		
Referenci	Reference Material Results		8.8		0.72	0.10			48.9		
Method I	Method Blank Analysis:										
Method B	Method Blank Results					<0.01					
Method B	Method Blank Spike Recovery (%)	rery (%)				104%					
Notes:											
pH of DI v	pH of DI water used: 6.38										
EC of DI v	EC of DI water used: <2										
R = Replic	R = Replicate; D = Duplicate										
NA = A re.	sult is not calculate	NA = A result is not calculated when the MPA is <0.6									

Results relate only to the items tested and all the items tested

CERTIFICATE OF ANALYSIS • METHOD SUMMARY

AGAT WORK ORDER: 20V571389 REPORT VERSION: 1 CLIENT NAME: WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS PROJECT NO: CG14367

Parameter	AGAT S.O.P	Literature Reference	Analytical Technique
Sample Preparation	ARD-181-18007	ASTM E877-08; MEND Report 1.20.1, Version 0 (2009)	Crusher/Pulverizer
Paste pH (Near Saturation)	ARD-181-18003	Sobek, A.A., Schuller, W.A., Freeman, J.R. and Smith, R.M.; EPA-600/2-78-054 (1978)	pH Meter
Fizz Rating	ARD-181-18000	Lawrence, R. W., Poling, G.P. and Marchant, P.B., MEND Project 1.16.1a (1989); MEND Acid Rock Drainage Prediction Manual, MEND Project 1.16.1b, Section 6.2.3 (March 1991)	Observation
Total Sulphur	INOR-181-6027	modified from ASTM E1915-11	Combustion TC
Sulphate Sulphur	ARD-181-18009;	modified from MEND Report 1.20.1, Version 0 (2009);	HCI Extraction
	INOR-181-6028	modified from SM 4500-SO ₄ ²⁻ E	UV-Vis Spectrophotometer
Sulphide Sulphur			Calculation
Maximum Potential Acidity			Calculation
Neutralization Potential (Modified ABA NP)	ARD-181-18000	Lawrence, R. W., Poling, G.P. and Marchant, P.B., MEND Project 1.16.1a (1989); MEND Acid Rock Drainage Prediction Manual, MEND Project 1.16.1b, Section 6.2.3 (March 1991)	Titration
Net Neutralization Potential			Calculation
Neutralization Potential Ratio			Calculation

CALCULATIONS:

Sulphide Sulphur: difference between total sulphur and sulphate sulphur

Maximum Potential Acidity (MPA): is based on sulphide sulphur

Net Neutralization Potential (NNP): difference between NP and MPA

Neutralization Potential Ratio (NPR): NP/MPA

METHOD DESCRIPTIONS:

Sample Preparation

ABA: Air-dried or oven dried at 55 ± 5 °C (if samples arrive wet), crushed (if necessary), split by riffling, and pulverized to 85% passing 200 mesh (75 µm).

Analytical

Paste pH: DDI water is added to the prepared sample to form a paste at near saturation. The volume of water added varies depending on the sample's tendency to absorb water. A pH probe is placed in the paste slurry and the pH is read directly from the meter.

Fizz Rating: One to two drops of 25% HCI is added to a sample aliquot and the degree of reaction observed and rated. The presence of CaCO₃ is indicated by a bubbling or audible "fizz" sound.

Total Sulphur: The sample is combusted in an induction furnace in the presence of oxygen. The sulfur in the sample is converted to sulfur dioxide (SO2) and subsequently measured by an TC detector.

Sulphate Sulphur: Pulp samples are treated with dilute HCI and boiled for 30 minutes at ~80 °C. The digested sample is then re-constituted with DI water and filtered. Filtered extracts are then analyzed by the turbidimetric method using a UV-Vis spectrophotometer. The analytical results are back-calculated to the initial pulp sample weight and expressed in weight % Sulphate Sulphur.

Modified ABA NP: A pulp sample is digested with a known excess of standardized HCI at room temperature for a period of 24 hours in order to determine the amount of neutralizing bases present in the sample. The residual acid solution is titrated to pH 8.3 with standardized NaOH in order to determine the amount of acid consumed by the original sample.

Results relate only to the items tested and all the items tested

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS 3450 HARVESTER ROAD, SUITE 100 BURLINGTON, ON L7N 3W5 (905) 335-2353

ATTENTION TO: Corina Aldea

PROJECT: CG14367*V

AGAT WORK ORDER: 20T567177

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, Data Review Supervisor

DATE REPORTED: Feb 28, 2020

PAGES (INCLUDING COVER): 10

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

VERSION 1:Revised Report Issued with additional analysis 201074 on February 28, 2020

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.contabe.com			SAMPLE TYPE: Other										Jonur
lalysis 67177	ATTENTION TO: Corina Aldea	I C, Total S	DATE REPORTED: Feb 28, 2020										By:
Certificate of Analysis AGAT WORK ORDER: 20T567177 PROJECT: CG14367*V	TIONS	LECO (Combustion IR) - Total C, Total S	D: Jan 24, 2020 DATE F										Certified By:
Laboratories	INT & INFRASTRUCTURE SOLUT	(201-043) L	DATE RECEIVED:	6 N	0.0	12.1 0.016	nit ., Mississauga, ON (unless marked by *)						
	CLIENT NAME: WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS		DATE SAMPLED: Jan 23, 2020	Analyte:	Sample ID (AGAT ID) RDL: (Comments: RDL - Reported Detection Limit Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)						

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 2 of 10

		C				Certifi	icate	Certificate of Analysis	alysis				MIS	5623 McADAM ROAD MISSISSAUGA, ONTARIO	M ROAD NTARIO
	ちり		Laboratories	atorie		AGAT WC	AGAT WORK ORDER: PROJECT: CG14367*V	AGAT WORK ORDER: 20T567177 PROJECT: CG14367*V	37177				2	CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589	L4Z 1N9 501-9998 501-0589
CLIENT NAME: WOOD ENVIRONMENT & INFRASTRUCTURE SOLU	OD ENVIRON	MENT & I	NFRASTRL	JCTURE S			,)		ATTEN	FION TO: C	ATTENTION TO: Corina Aldea	68	C	nttp://www.agauabs.com	laps.com
			(201-0	74) Aquí	a Regia I	Digest - I	Metals P	(201-074) Aqua Regia Digest - Metals Package, ICP/ICP-MS finish	CP/ICP-I	MS finisl	Ę				
DATE SAMPLED: Jan 23, 2020	ו 23, 2020			DATE RECEIVED:		Jan 24, 2020		DATE R	DATE REPORTED: Feb 28, 2020	Feb 28, 20	20	SAMP	SAMPLE TYPE: Other	Other	
	Analyte:	Ag	AI	As	Au	в	Ba	Be	Bi	Са	Cd	Ce	ပိ	ບັ	Cs
	Unit:	mdd	%	mdd	bpm	bpm	mdd	mdd	mdd	%	bpm	mdd	mdd	mdd	mdd
Sample ID (AGAT ID)	RDL:	0.01	0.01	0.1	0.005	5	-	0.05	0.01	0.01	0.01	0.01	0.1	0.5	0.05
5019-20 (886790)		0.05	0.02	0.3	0.008	<5	46	0.14	0.04	>25	0.09	1.24	1.4	0.8	0.06
	Analyte:	Cu	Fe	Ga	Ge	H	Hg	Ľ	¥	La		Mg	ЧМ	Mo	Na
	Unit:	bpm	%	mqq	mdd	mdd	mdd	mdd	%	bpm	mdd	%	mdd	bpm	%
Sample ID (AGAT ID)	RDL:	0.5	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.1	0.1	0.01	-	0.05	0.01
5019-20 (886790)		4.2	0.07	0.50	<0.05	<0.02	<0.01	<0.005	0.01	0.5	5.2	0.21	۸ ۲	0.62	<0.01
	Analyte:	qN	ÏZ	٩	Pb	Rb	Re	S	Sb	Sc	Se	Sn	S	Та	Те
	Unit:	mdd	mdd	%	mdd	mdd	bpm	%	mdd	mdd	mdd	bpm	mdd	mdd	bpm
Sample ID (AGAT ID)	RDL:	0.05	0.5	0.001	0.1	0.1	0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	0.01
5019-20 (886790)		0.06	1.7	0.003	2.7	0.8	0.002	0.06	0.16	<0.1	0.7	<0.2	323	<0.01	<0.01
	Analyte:	Ļ	F	F	Л	>	Ν	≻	Zn	Zr					
	Unit:	bpm	%	mdd	mdd	mdd	mdd	mdd	bpm	bpm					
Sample ID (AGAT ID)	RDL:	0.1	0.005	0.01	0.05	0.5	0.05	0.05	0.5	0.5					
5019-20 (886790)		0.2	<0.005	<0.01	0.61	1.8	<0.05	0.67	6.0	<0.5					
Comments: RDL - F	RDL - Reported Detection Limit	ר Limit													

886790 Au determination by this method is semi-quantitative due to small sample size. Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Certified By:

Jamme 2

Page 3 of 10

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested. Results apply to samples as received.

Results relate only to the items tested. Results apply to samples as received.

AGAT CERTIFICATE OF ANALYSIS (V1)

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9998 FAX (905)501-9589 FAX (905)501-0589	IIIIp.//www.agallabs.colli																																			Page 5 of 10
	ATTENTION TO: Corina Aldea						6 finish																													
e - Replicate 20T567177 /	ATTENTION T	- Total C, Total S					Package, ICP/ICP-MS																													
Quality Assurance - Replicate AGAT WORK ORDER: 20T567177 PROJECT: CG14367*V	0	(201-043) LECO (Combustion IR)					Digest - Metals Pac																													
Laboratories	JCTURE SOLUTIONS	201-043) LECO					(201-074) Aqua Regia D																													
abor	FRASTRL)		RPD	0.8%	19.2%	201-074		RPD	21.8%	0.0%			%0.0	4.4%	%0.0	10.5%	2.3%	0.0%	3.2%	9.3%		0.0%	4.7%	1.3%	9.5%	%0.0	0.0%	0.0%	0.0%	0.0%	1.8%	14.4%	3.3%	0.0%	
1 1	1ENT & IN		ATE #1	Replicate	12.2	0.0132		ATE #1	Replicate	0.066	0.02	0.5	0.010	< 5	44	0.14	0.036	39.8	0.09	1.28	1.57	< 0.5	0.06	4.4	0.075	0.55	< 0.05	< 0.02	< 0.01	< 0.005	0.01	0.56	4.5	0.217	< 1	DRT
E	NVIRONN		REPLICATE #1	Original	12.1	0.016		REPLICATE #1	Original	0.053	0.02	0.3	0.008	< 5	46	0.14	0.040	38.9	0.09	1.24	1.43	0.8	0.06	4.2	0.074	0.50	< 0.05	< 0.02	< 0.01	< 0.005	0.01	0.55	5.2	0.210	< 1	ANCE REPO
	: WOOD E			Sample ID	886790	886790			Sample ID	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	ILITY ASSUR
	CLIENT NAME: WOOD ENVIRONMENT & INFRASTRUCTURE SOL			Parameter	С	S			Parameter	Ag	AI	As	Au	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Ċ	Cs	Cu	Ъе	Ga	Ge	H	Hg	Ē	×	La		Mg	Mn	GGGT QUALITY ASSURANCE REPORT

Results relate only to the items tested. Results apply to samples as received.

AGAT QUALITY ASSURANCE REPORT

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589	nup://www.agauaps.com																																			Page 6 of 10
	ATTENTION TO: Corina Aldea																										es, XRF finish									
Quality Assurance - Replicate AGAT WORK ORDER: 20T567177 PROJECT: CG14367*V	TIONS ATTER																										ate Fusion - Summation of Oxides,									
Laboratories	CLIENT NAME: WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIO	12.0%	0.0%		0.0%			0.0%		7.6%	13.3%	0.0%	0.0%	0.0%	1.5%	0.0%	0.0%	0.0%	0.0%	0.0%	1.7%	1.1%	0.0%	12.7%	1.0%	0.0%	(201-676) Lithium Borate		RPD	2.4%	0.0%	0.0%	0.0%	6.9%	6.1%	
1 L	ENT & INF	0.55	< 0.01	< 0.05	1.7	0.002	2.0	0.8	< 0.001	0.068	0.14	< 0.1	0.7	< 0.2	328	< 0.01	< 0.01	0.2	< 0.005	< 0.01	0.60	1.73	< 0.05	0.59	6.10	< 0.5	(20	TE #1	Replicate	0.338	< 0.01	55.3	< 0.01	0.135	0.064	RT
E E	INVIRONM	0.62	< 0.01	90.0	1.7	0.003	2.7	0.8	0.002	0.063	0.16	< 0.1	0.7	< 0.2	323	< 0.01	< 0.01	0.2	< 0.005	< 0.01	0.61	1.75	< 0.05	0.67	6.04	< 0.5		REPLICATE #1	Original	0.330	< 0.01	55.3	< 0.01	0.126	0.068	ANCE REPO
	E: WOOD E	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790	886790			Sample ID	886790	886790	886790	886790	886790	886790	ALITY ASSUR
	CLIENT NAM	Mo	Na	qN	ī	٩	Ъb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Te	ЧT	Ē	Π	р	~	M	۲	Zn	Zr			Parameter	AI2O3	BaO	CaO	Cr2O3	Fe2O3	К2О	AGAT QUALITY ASSURANCE REPORT

Results relate only to the items tested. Results apply to samples as received.

Quality Assurance - Replicate 5623 McADAM ROAD MISSISSAUGA, ONTARIO Laboratories PROJECT: CG14367*V	CLIENT NAME: WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS ATTENTION TO: Corina Aldea	0.40 0.0%	< 0.01	< 0.01 0.0%	< 0.01				
boratori	ASTRUCTURE	0.0%		0.0%	%0.0	1.5%		6.9%	6.9%
1 La	IENT & INFR		< 0.01			0.67	< 0.01		
E I	INVIRONMI	0.40	0.01	< 0.01	< 0.01	0.68	0.01	0.01 0.045	0.01 0.045 < 0.01
	E: WOOD E	886790	886790	886790	886790	886790	886790	886790 886790	886790 886790 886790
	CLIENT NAM	MgO	MnO	Na2O	P205	SiO2	TiO2	TiO2 SrO	TiO2 SrO V205

0.0% 0.2%

< 0.01 42.9

43.0

886790

LOI

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L42 1N9 TEL (905)501-9998 tEL (905)501-9998	IIIIh //www.agalabs.coll																												
Quality Assurance - Certified Reference materials AGAT WORK ORDER: 20T567177 PROJECT: CG14367*V	ATTENTION TO: Corina Aldea	CO (Combustion IR) - Total C, Total S					Package, ICP/ICP-MS finish							Summation of Oxides, XRF finish															
Quality Assurance - Certifie AGAT WORK ORDER: 20T567177 PROJECT: CG14367*V		ion IR) - T		ts			tals Packa		ts					Summatio		ts													110%
ty Ass work ECT: C(nbust		/ Limits			t - Metals		/ Limits							/ Limits													90% - 110%
Quali AGAT PROJE	SNO	O (Cor	CRM #2	Recovery			a Digest	CRM #2	Recovery					ate Fusion	CRM #2	Recovery													95%
) LEC(CR	Actual			Regia	CR	Actual					Bor	CR	Actual													4.36
tories	CTURE S	(201-043) LE		Expect					Expect					ithium		Expect													4.56
Laboratories	NFRASTRUC	(2)		Limits	90% - 110%	90% - 110%	(201-074) Aqua		Limits	90% - 110%	90% - 110%	90% - 110%	90% - 110%	(201-676) Lithium		Limits	90% - 110%	90% - 110%	90% - 110%	90% - 110%	90% - 110%	90% - 110%	90% - 110%	90% - 110%	90% - 110%	90% - 110%	90% - 110%	90% - 110%	
	MENT & I		1 # 1	Recovery	100%	100%		f.ME-1303)	Recovery	103%	100%	%66	103%		ref.SY-4)	Recovery	101%	111%	%66	100%	%66	%66	102%	105%	92%	100%	104%	96%	
	NVIRON		CRM #1	Actual	0.95	0.8		CRM #1 (ref.ME-1303)	Actual F	157	3454	12000	9590		CRM #1 (ref.SY-4)	Actual F	20.8	0.042	7.99	6.21	1.65	0.54	0.11	7.4	0.121	50.1	0.299	0.136	
	: WOOD E			Expect	0.95	0.8			Expect	152	3440	12200	9310			Expect	20.7	0.038	8.05	6.21	1.66	0.54	0.108	7.1	0.131	49.9	0.287	0.141	
	CLIENT NAME: WOOD ENVIRONMENT & INFRASTRUCTURE SOLUT			Parameter	υ	S			Parameter	Ag	Cu	Pb	Zn			Parameter	AI2O3	BaO	CaO	Fe2O3	K20	MgO	MnO	Na2O	P205	SiO2	TiO2	SrO	ΓΟΙ

AGAT QUALITY ASSURANCE REPORT

Results relate only to the items tested. Results apply to samples as received.

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS PROJECT: CG14367*V

AGAT WORK ORDER: 20T567177

SAMPLING SITE:

ATTENTION TO: Corina Aldea

SAMPLED BY:

SAMPLING SITE:	1	SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis		•	
C	MIN-200-12000	ASTM E1915-07a	LECO
S	MIN-200-12000	ASTM E1915-07a	LECO
Ag	MIN-200-12018		ICP-MS
AI	MIN-200-12020		ICP/OES
As	MIN-200-12018		ICP-MS
Au	MIN-200-12018		ICP-MS
В	MIN-200-12020		ICP/OES
Ва	MIN-200-12018		ICP-MS
Be	MIN-200-12018		ICP-MS
Bi	MIN-200-12018		ICP-MS
Са	MIN-200-12020		ICP/OES
Cd	MIN-200-12018		ICP-MS
Се	MIN-200-12018		ICP-MS
Со	MIN-200-12018		ICP-MS
Cr	MIN-200-12020		ICP/OES
Cs	MIN-200-12018		ICP-MS
Cu	MIN-200-12018		ICP-MS
Fe	MIN-200-12020		ICP/OES
Ga	MIN-200-12018		ICP-MS
Ge	MIN-200-12018		ICP-MS
Hf	MIN-200-12018		ICP-MS
Hg	MIN-200-12018		ICP-MS
In	MIN-200-12018		ICP-MS
к	MIN-200-12020		ICP/OES
La	MIN-200-12018		ICP-MS
Li	MIN-200-12018		ICP-MS
Mg	MIN-200-12020		ICP/OES
Mn	MIN-200-12020		ICP/OES
Мо	MIN-200-12018		ICP-MS
Na	MIN-200-12020		ICP/OES
Nb	MIN-200-12018		ICP-MS
Ni	MIN-200-12018		ICP-MS
Р	MIN-200-12020		ICP/OES
Pb	MIN-200-12018		ICP-MS
Rb	MIN-200-12018		ICP-MS
Re	MIN-200-12018		ICP-MS
S	MIN-200-12020		ICP/OES
Sb	MIN-200-12018		ICP-MS
Sc	MIN-200-12018		ICP-MS
Se	MIN-200-12018		ICP-MS
Sn	MIN-200-12018		ICP-MS
Sr	MIN-200-12018		ICP-MS
Та	MIN-200-12018		ICP-MS
Te	MIN-200-12018		ICP-MS
Th	MIN-200-12018		ICP-MS
Ti	MIN-200-12020		ICP/OES
TI	MIN-200-12018		ICP-MS
U	MIN-200-12018		ICP-MS
V	MIN-200-12010		ICP/OES
*			

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS PROJECT: CG14367*V

SAMPLING SITE:

AGAT WORK ORDER: 20T567177

ATTENTION TO: Corina Aldea

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
W	MIN-200-12018	L	ICP-MS
Y	MIN-200-12018		ICP-MS
Zn	MIN-200-12018		ICP-MS
Zr	MIN-200-12018		ICP-MS
AI2O3	MIN-200-12027	Sulcek Z. Methods of Decomposition & ASTM-D7343	XRF
BaO	MIN-200-12027	Sulcek Z. Methods of Decomposition & ASTM-D7343	XRF
CaO	MIN-200-12027	Sulcek Z. Methods of Decomposition & ASTM-D7343	XRF
Cr2O3	MIN-200-12027	Sulcek Z. Methods of Decomposition & ASTM-D7343	XRF
Fe2O3	MIN-200-12027	Sulcek Z. Methods of Decomposition & ASTM-D7343	XRF
к20	MIN-200-12027	Sulcek Z. Methods of Decomposition & ASTM-D7343	XRF
MgO	MIN-200-12027	Sulcek Z. Methods of Decomposition & ASTM-D7343	XRF
MnO	MIN-200-12027	Sulcek Z. Methods of Decomposition & ASTM-D7343	XRF
Na2O	MIN-200-12027	Sulcek Z. Methods of Decomposition & ASTM-D7343	XRF
P2O5	MIN-200-12027	Sulcek Z. Methods of Decomposition & ASTM-D7343	XRF
SiO2	MIN-200-12027	Sulcek Z. Methods of Decomposition & ASTM-D7343	XRF
TiO2	MIN-200-12027	Sulcek Z. Methods of Decomposition & ASTM-D7343	XRF
SrO	MIN-200-12027	Sulcek Z. Methods of Decomposition & ASTM-D7343	XRF
V2O5	MIN-200-12027	Sulcek Z. Methods of Decomposition & ASTM-D7343	XRF
LOI	MIN-200-12021	Sulcek Z. Methods of Decomposition in Inorganic	FURNACE
Total Oxides	MIN-200-12015	-	CALCULATION

CLIENT NAME: MISC AGAT CLIENT BC, BC V5J0B6 ATTENTION TO: Corina Aldea PROJECT: CG14367 AGAT WORK ORDER: 20V571389 WATER ANALYSIS REVIEWED BY: Jacky Takeuchi, BScH(Chem Eng), BSc (Biology), P.Chem Organics Technical Manager DATE REPORTED: Mar 05, 2020 PAGES (INCLUDING COVER): 12 VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

*Notes

VERSION 2:As per clients request low level Mercury analysis was done.

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the information
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V2)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 12

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

	ļ	Laboratories		Certificate o	Certificate of Analysis	Unit 120, 8600 Gleniyon Parkway Burnaby, British Columbia CANADA V5.0 B6 TEL (778)452-4000 FAX (778)452-4074
CLIENT NAME: MISC AGAT CLIENT BC SAMPLING SITE:	ENT BC				ATTENTION TO: Corina Aldea SAMPLED BY:	http://www.agatlabs.com
		She	ake Flask	Shake Flask Extraction -	- Dissolved Metals	
DATE RECEIVED: 2020-02-03					DATE REPORTED: 2020-03-05	D: 2020-03-05
		W	Method Blank			
	Ś	SAMPLE DESCRIPTION:	-SFE		S019-20	
		SAMPLE TYPE: DATE SAMPLED:	SFE		SFE	
Parameter	Unit	G/S RDL	919171	RDL	919174	
Weight of Dry Sample	b		0		250	
Volume of DI Water	шĻ		750		750	
Silver Dissolved	mg/L	0.00008	<0.00008	0.00008	<0.0008	
Aluminum Dissolved	mg/L	0.001	<0.001	0.001	0.084	
Arsenic Dissolved	mg/L	0.0002	<0.0002	0.0002	<0.0002	
Boron Dissolved	mg/L	0.01	0.01	0.01	<0.01	
Barium Dissolved	mg/L	0.0002	<0.0002	0.0002	0.0398	
Beryllium Dissolved	mg/L	0.0001	<0.0001	0.0001	<0.0001	
Bismuth Dissolved	mg/L	0.0001	<0.0001	0.0001	<0.0001	
Calcium Dissolved	mg/L	0.05	<0.05	0.05	5.80	
Cadmium Dissolved	mg/L	0.00001	<0.00001	0.00001	<0.00001	
Cobalt Dissolved	mg/L	0.0001	<0.0001	0.0001	<0.0001	
Chromium Dissolved	mg/L	0.0005	<0.0005	0.0005	<0.0005	
Copper Dissolved	mg/L	0.0005	<0.0005	0.0005	<0.0005	
Iron Dissolved	mg/L	0.02	<0.02	0.02	<0.02	
Potassium Dissolved	mg/L	0.05	<0.05	0.05	0.44	
Lithium Dissolved	mg/L	0.0005	<0.0005	0.0005	0.0011	
Magnesium Dissolved	mg/L	0.005	<0.005	0.05	0.59	
Manganese Dissolved	mg/L	0.0002	<0.0002	0.0002	<0.0002	
Molybdenum Dissolved	mg/L	0.0001	<0.0001	0.0001	0.0014	
Sodium Dissolved	mg/L	0.02	<0.02	0.02	0.53	
Nickel Dissolved	mg/L	0.0005	<0.0005	0.0005	<0.0005	
Phosphorus Dissolved	mg/L	0.05	<0.05	0.05	<0.05	
Lead Dissolved	mg/L	0.0005	<0.0005	0.0005	<0.0005	
Sulphur Dissolved	mg/L	0.5	<0.5	0.5	1.2	
Antimony Dissolved	mg/L	0.0001	<0.0001	0.0001	<0.0001	
Selenium Dissolved	mg/L	0.0005	<0.0005	0.0005	<0.0005	
Silicon Dissolved	mg/L	0.05	<0.05	0.05	0.25	
Tin Dissolved	mg/L	0.0005	<0.0005	0.0005	<0.0005	
					A A A A A A A A A A A A A A A A A A A	A manufacture of the second se
					Cortifica Dur	S AT WARD

Certified By:

Page 2 of 12

AGAT CERTIFICATE OF ANALYSIS (V2)

U U U U U U U	1	Labor	Laboratories		Certificate C AGAT WORK ORDE PROJECT: CG14367	Certificate of Analysis AGAT WORK ORDER: 20V571389 PROJECT: CG14367	S	Unit 120, 8600 Glenlyon Parkway Burnaby, Brittsh Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074
CLIENT NAME: MISC AGAT CLIENT BC SAMPLING SITE:	ENT BC)) -))		ATTENTION TO: Corina Aldea SAMPLED BY:	http://www.agauabs.com
			Sh	Shake Flask	Extraction -	Flask Extraction - Dissolved Metals		
DATE RECEIVED: 2020-02-03							DATE REPORTED: 2020-03-05	D: 2020-03-05
			2	Method Blank				
	SAI	SAMPLE DESCRIPTION:	RIPTION:	-SFE		S019-20		
		SAMP	SAMPLE TYPE:	SFE		SFE		
		DATE S	DATE SAMPLED:					
Parameter	Unit	G / S	RDL	919171	RDL	919174		
Strontium Dissolved	mg/L		0.0002	0.0003	0.0002	0.0340		
Tellurium Dissolved	mg/L		0.0002	<0.0002	0.0002	<0.0002		
Thorium Dissolved	mg/L		0.0001	<0.0001	0.0001	<0.0001		
Titanium Dissolved	mg/L		0.0005	<0.0005	0.0005	<0.0005		
Thallium Dissolved	mg/L		0.00005	<0.00005	0.00005	<0.00005		
Uranium Dissolved	mg/L		0.00005	<0.00005	0.00005	0.00011		
Vanadium Dissolved	mg/L		0.001	<0.001	0.001	<0.001		
Tungsten Dissolved	mg/L		0.0001	<0.0001	0.0001	<0.0001		
Zinc Dissolved	mg/L		0.001	<0.001	0.001	<0.001		
Zirconium Dissolved	mg/L		0.0001	<0.0001	0.0001	<0.0001		
Mercury Dissolved	mg/L		0.000003	<0.000003	0.000003	<0.000003		
Comments: RDL - Reported Detection Limit;	on Limit; G	/ S - Guidelir	G / S - Guideline / Standard					
Analysis performed at AOAT vancouver (unless marked by ")	ness markeu	(Aa						

Certified By:

Contractor

AGAT CERTIFICATE OF ANALYSIS (V2)

Results relate only to the items tested. Results apply to samples as received.

Quality Assurance

CLIENT NAME: MISC AGAT CLIENT BC

PROJECT: CG14367

SAMPLING SITE:

AGAT WORK ORDER: 20V571389

ATTENTION TO: Corina Aldea

SAMPLED BY:

				Soi	l Ana	alysis	5								
RPT Date:			[UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
ABA Package															
Sulphur - Total	933556		0.38	0.39	2.6%	< 0.01	89%	80%	120%						
Sulphate Sulphur	918551		<0.01	<0.01	NA	< 0.01	96%	80%	120%	104%	85%	115%			

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V2)

Page 4 of 12

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: MISC AGAT CLIENT BC

PROJECT: CG14367

SAMPLING SITE:

AGAT WORK ORDER: 20V571389 ATTENTION TO: Corina Aldea

SAMPLED BY:

				Wate	er Ar	nalysi	S							
RPT Date:			C	UPLICATE			REFERE	NCE M	ATERIAL	METHOD	BLAN		MAT	RIX SPIKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measure		eptable imits	Recovery	1.11	eptable nits	Recovery	Acceptable Limits
		ld	1	1			Value	Lowe	r Upper	,	Lower	Upper		Lower Upper
Shake Flask Extraction - Dissolve	d Metals													
Silver Dissolved	931555		<0.00008	<0.00008	NA	< 0.00008	3			100%	90%	110%		
Aluminum Dissolved	931555		0.093	0.079	16.1%	< 0.001				98%	90%	110%		
Arsenic Dissolved	931555		0.0005	0.0005	NA	< 0.0002				100%	90%	110%		
Boron Dissolved	931555		<0.01	<0.01	NA	< 0.01				97%	90%	110%		
Barium Dissolved	931555		0.0278	0.0278	0.1%	< 0.0002				99%	90%	110%		
Beryllium Dissolved	931555		<0.0001	<0.0001	NA	< 0.0001				99%	90%	110%		
Bismuth Dissolved	931555		<0.0001	<0.0001	NA	< 0.0001				109%	90%	110%		
Calcium Dissolved	931555		11.2	11.8	5.2%	< 0.05				95%	90%	110%		
Cadmium Dissolved	931555		<0.00001	< 0.00001	NA	< 0.0000	1			100%	90%	110%		
Cobalt Dissolved	931555		<0.0001	<0.0001	NA	< 0.0001				107%	90%	110%		
Chromium Dissolved	931555		<0.0005	<0.0005	NA	< 0.0005				99%	90%	110%		
Copper Dissolved	931555		0.0008	<0.0005	NA	< 0.0005				106%	90%	110%		
Iron Dissolved	931555		0.02	0.02	NA	< 0.02				94%	90%	110%		
Potassium Dissolved	931555		1.26	1.27	0.8%	< 0.05				96%	90%	110%		
Lithium Dissolved	931555		0.0012	0.0016	NA	< 0.0005				103%	90%	110%		
Magnesium Dissolved	931555		1.41	1.40	0.7%	< 0.005				94%	90%	110%		
Manganese Dissolved	931555		0.0019	0.0019	0.0%	< 0.0002				95%	90%	110%		
Molybdenum Dissolved	931555		0.0034	0.0032	6.1%	< 0.0001				105%	90%	110%		
Sodium Dissolved	931555		0.46	0.47	2.2%	< 0.02				98%	90%	110%		
Nickel Dissolved	931555		<0.0005	<0.0005	NA	< 0.0005				103%	90%	110%		
Phosphorus Dissolved	931555		<0.05	<0.05	NA	< 0.05				99%	90%	110%		
Lead Dissolved	931555		<0.0005	<0.0005	NA	< 0.0005				106%	90%	110%		
Sulphur Dissolved	931555		4.3	4.0	7.2%	< 0.5				98%	90%	110%		
Antimony Dissolved	931555		0.0004	0.0003	NA	< 0.0001				104%	90%	110%		
Selenium Dissolved	931555		<0.0005	<0.0005	NA	<0.0005				97%	90%	110%		
Silicon Dissolved	931555		0.64	0.67	4.6%	< 0.05				90%	90%	110%		
Tin Dissolved	931555		<0.0005	<0.0005	NA	< 0.0005				101%	90%	110%		
Strontium Dissolved	931555		0.0486	0.0519	6.6%	< 0.0002				93%	90%	110%		
Tellurium Dissolved	931555		<0.0002	<0.0002	NA	< 0.0002				104%	90%	110%		
Thorium Dissolved	931555		<0.0001	<0.0001	NA	< 0.0001				104%	90%	110%		
Titanium Dissolved	931555		0.0009	0.0011	NA	< 0.0005				93%	90%	110%		
Thallium Dissolved	931555		<0.00005	<0.00005	NA	< 0.00005	5			106%	90%	110%		
Uranium Dissolved	931555		0.00053	0.00054	1.0%	< 0.00005	5			107%	90%	110%		
Vanadium Dissolved	931555		<0.001	<0.001	NA	< 0.001				106%	90%	110%		
Tungsten Dissolved	931555		0.0002	0.0001	NA	< 0.0001				104%	90%	110%		
Zinc Dissolved	931555		0.001	<0.001	NA	< 0.001				108%	90%	110%		
Zirconium Dissolved	931555		<0.0001	<0.0001	NA	< 0.0001				106%	90%	110%		
Mercury Dissolved	919174		<0.	<0.	NA	< 0.00000	3 111%	70%	130%	99%	90%	110%		

AGAT QUALITY ASSURANCE REPORT (V2)

Page 5 of 12

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: MISC AGAT CLIENT BC

PROJECT: CG14367

SAMPLING SITE:

AGAT WORK ORDER: 20V571389

ATTENTION TO: Corina Aldea

SAMPLED BY:

Water Analysis (Continued)

F	RPT Date:			D	UPLICAT	E		REFEREN	ICE MAT	FERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPII	KE
	PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Accep Lim	ite	Recoverv	Lir	ptable nits	Recoverv	Lin	ptable nits
			ld	• *				Value	Lower	Upper	,	Lower	Upper		Lower	Upper

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V2)

Page 6 of 12

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: MISC AGAT CLIENT BC

PROJECT: CG14367

AGAT WORK ORDER: 20V571389

ATTENTION TO: Corina Aldea

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Paste pH	ARD-181-18003	Sobek A.A. et al; Report EPA-600/2-78-054 (1978)	PH METER
Fizz Rating	ARD-181-18000	MEND Project 1.16.1b (Sect. 6.2.3) (March 1991)	
Sulphur - Total	INOR-181-6027	Modified from ASTM E1915-11	COMBUSTION
Sulphate Sulphur	ARD-181-18009; INOR-181-6028	MEND Report 1.20.1 (09); mod from SM 4500-SO4 E	SPECTROPHOTOMETER
Modified ABA NP	ARD-181-18000	MEND Project 1.16.1b (Sect. 6.2.3) (March 1991)	TITRATION

Method Summary

CLIENT NAME: MISC AGAT CLIENT BC

PROJECT: CG14367

AGAT WORK ORDER: 20V571389

ATTENTION TO: Corina Aldea

FROJECT. CO14307		ATTENTION TO: C	
SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			1
Weight of Dry Sample			ICP-MS
Volume of DI Water			PH METER
Silver Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Aluminum Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Arsenic Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Boron Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Barium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Beryllium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Bismuth Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Calcium Dissolved	ARD-181-18006, MET-181-6108	MEND Report 1.20.1 (2009), Modified from SM 3120 B	ICP/OES
Cadmium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Cobalt Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Chromium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Copper Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Iron Dissolved	ARD-181-18006, MET-181-6108	MEND Report 1.20.1 (2009), Modified from SM 3120 B	ICP/OES
Potassium Dissolved	ARD-181-18006, MET-181-6108	MEND Report 1.20.1 (2009), Modified from SM 3120 B	ICP/OES
Lithium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Magnesium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Manganese Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Molybdenum Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Sodium Dissolved	ARD-181-18006, MET-181-6108	MEND Report 1.20.1 (2009), Modified from SM 3120 B	ICP/OES
Nickel Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Phosphorus Dissolved	ARD-181-18006, MET-181-6108	MEND Report 1.20.1 (2009), Modified from SM 3120 B	ICP/OES
Lead Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Sulphur Dissolved	ARD-181-18006, MET-181-6108	MEND Report 1.20.1 (2009), Modified from SM 3120 B	ICP/OES
Antimony Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Selenium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Silicon Dissolved	ARD-181-18006, MET-181-6108	MEND Report 1.20.1 (2009), Modified from SM 3120 B	ICP/OES

Method Summary

CLIENT NAME: MISC AGAT CLIENT BC

PROJECT: CG14367

SAMPLING SITE:

AGAT WORK ORDER: 20V571389

ATTENTION TO: Corina Aldea

SAMPLED BY:

-			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Tin Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Strontium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Tellurium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Thorium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Titanium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Thallium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Uranium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Vanadium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Tungsten Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Zinc Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Zirconium Dissolved	ARD-181-18006, MET-181-6107	MEND Report 1.20.1 (2009), Modified from SM 3125 B	ICP-MS
Mercury Dissolved	MET-181-6103, LAB-181-4015	Modified from EPA 245.7	CV/AA

Model Secure (Constraint) Se	E	Company:	Contract Domestic	act Person:	Address:		Telephone:	Client Project Name:	Client Project #:	AGAT ARD Project #:	AGAT ARD Quote #:			S. No. Client Sample ID (Solids Matrix)			1 S019-20	S. No. Extract & Leachate		1 Method Blank-SFE	z S019-20
Monte (10: 0000000000000000000000000000000000	FG	Wo		Cor	3450 Harves	Burlingtor	74		Ö					AGAT Sample ID	_		155016	Analyses Request	by Code	0119111	1101
Monte (10: 0000000000000000000000000000000000	oratoi	00		ina Aldea	ter Road Su.	1, ON L7N 3	Fax:		G14367					V inch, spill 120 and pulvariz ((mu 75) Asom 005 paissod (1ed ABA Package (96-97 Method)	IDoM %98	-	-		1		
Monte (10: 0000000000000000000000000000000000	ries				ite 100	W5						-	_	ie pH, Fizz test, NP & Total S) datd Sobek ABA Package	lean)					-	+
Action 100: 100: 100: 100: 100: 100: 100: 100														(S letoT & 9N, tee) S letoT & 9N, tee)	(Past					-	
Clip Control Disperving Disperving Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statis Statistic Stati	Phc Cor	H				E-N	-	+	+		H		_		dius	-		אויחואא) אויחואא	-	-	
10000000000000000000000000	dress: 12 one: 778.4 stact Pers	C	~	0	4	lail:	_					ł			_		_		-		
Image: Source of the second provide the second providence of the second	0 - 8600 (152.4000; son: Andr	nina Ald		1			ina.alde						_		-						
Observedung 181-701 Stranding Material by Actual Register Math Control Math Con	Slenlyon F Fax: 778 sw Garra	ea					ow@e							S0-S645 MTSA ; 8-9Idet5ettx3-r	S Not	807-181	_	Chemical Oxygen Demand (COD)			
Observedungen Control	arkway. 452 407. rd; E-Mai						odale.c	101200							11110-01	607-181		Biochemical Oxygen			1
Observedungen Control	Burnaby, 4 1: garrard						om	HID						Огдаліс Сагрол	lsto1	017-181		801			1
Outcome Manuality Construction Standard philo Construction	BC V5J I @agatlat													(borthern IOH ;200) nothed bland	Carbo	200-102		SSJ,			Ĵ
American (Source) X Constraint Constra	0B6. Wei %,com															102-191		atertiV	8/U		Ī
American (Source) X Source) Source) X Source)	b E-Mail: 1													od) ⊡<1/4" Iraction	oyjaw	207.181		0.itrito	e/u		1
Ministrict Solution	webearth,	Report				Client N	COC NO			Ω		An	por	method (161-712) 🗅 MEND meth	163 D	617/217-191			869-181		1
Minist Condition X Status St	agatlabs	Format F			×	otor.	10162			UE DA'		alysis Re						TKN			
Arrival Coordition: X Description: Description: <thdescription:< th=""></thdescription:<>	Heg	Request:	Excel F	DDE FO	Both	-	1 26	1 of		ш		quest			· · · ·	\$201-02	×	listoT ,nagovitiV			
Arrival Condition: X Standard Standard Standard Poor Actival Condition: TAT Arrival Condition: X Standard Standard Poor Actival Condition: Actival Condition: X Standard Standard Poor Actival Condition: Actival Condition: X Standard Standard Poor Actival Condition: Notes: Notes: Notes: Standard Activation Standard Poor Note: Motion Counting taxaition Counting taxaition Education Education<			ormat	te un									(1.			120-102		letoT ,sinommA	B/U		
Arrival Condition: X Standard Standard Standard Poor Actival Condition: TAT Arrival Condition: X Standard Standard Poor Actival Condition: Actival Condition: X Standard Standard Poor Actival Condition: Actival Condition: X Standard Standard Poor Actival Condition: Notes: Notes: Notes: Standard Activation Standard Poor Note: Motion Counting taxaition Counting taxaition Education Education<										Febru						304-076/676		-louride	Ø/U		
Arrival Condition. X Sepect Decention Actival Condition. X Sepect Actival Condition. X Actival Condition. X Sepect Det Sample. Rec dr. Actival Condition. Actival Condition. X Sepect Actival Condition. X Actival Condition. X Sepect Actival Condition. X Notes: Notes: Notes: Activate Provident Sections Activate Provident Sections Note: Counting red Jan 24 Notes: Activate Provident Sections Activate Provident Sections Note: Counting red Jan 24 Activation Receiver Method Sections Provident Sections Activate Provident Sections Note: Total Cyanide (SAD) Testing by Recondure exit) Provident Sections Activation Received Activation Receiver Activation Receiver Sections Not Dissolved Metals by Testing Sections Testing Sections Testing Sections Activation Receiver Activation Re		TATR		×	<		l			ary 17						\$17-181	×	Chloride	e/u		
Artival Condition: X String Londition: String Londition: <td></td> <td>aquest:</td> <td>Regula</td> <td>40.0</td> <td>Lisny.</td> <td></td> <td></td> <td></td> <td></td> <td>, 2020</td> <td></td> <td></td> <td>() ()</td> <td>pite Precipitation Leaching Proced</td> <td>odtave) 9.198)</td> <td>917-181</td> <td></td> <td></td> <td></td> <td></td> <td></td>		aquest:	Regula	40.0	Lisny.					, 2020			() ()	pite Precipitation Leaching Proced	odtave) 9.198)	917-181					
			TAT	τ	ī								()	ia Water Mobility Procedure P; EP 1990/STD Method; water ext	iooleM IMWW)	914/181		(DA2) sbinsyO IstoT			
	Arrival AGAT V	Date Sa Notes:	Two we	One sa	W 0 20		Courier	Print Na	Date:	days an	discarde	1		no γαοσεοτοία Μιστοσεοργ οπ Mistores Mistores of the sections	ananiM artailoq	666-181		9binsγጋ CAM			-
	Condition Jork Ord	mples Re	eks TAT	nple at A	T567177		informa		Delian	d all extr	is requin			СЯХ ЫеvtelЯ : уве	leroniM	186-99B	T	(l610T) 926910 & IIC		1	-
	La	:c'd:	No prep	IGAT Mir			ttion(if a	Purolator	- 11 11	All solid acts in co	ed. A sto			IN Cell Tesing by MEND Melhod	ibimuH	0\$7-181	T		1	1	i
		E	aration re	ina rec'd	2		vailable)			samples	tents mus	a.		borlieM MTSA yd gnizesT lleS y b	ibimuH	147-181		scans CP-MS/ICP-OES	1 292-181		-
	poor	bruary	quired	Jan 24	17				1	will be sto or 60 day	4 inform		F	(9AT-OA gnizu borlfeM eve	ns Ara)			can CP-MS/ICP-OES	e/u		>
	22	3, 2020								rs and the	AGAT If Ic		-	i Size Distribution eve Method using Hydrometer)	elaine9	079-89	1				ľ
(OAS) Insolysid subound Sub-paramotic and Sub-	Poor					T				for 90	onger	Ι	T				T	negyxO bevlozzi	3	-	-

V123475

Jerria V

AGAT	Laboratories	AGAT	P: 90
------	--------------	------	-------

5623 McAdam Road Mississauga, ON L4Z 1N9 905.501.9998 • F: 905.501.0589

Chain of Custody = Mining

webmining.agatlabs.com · www.agatlabs.com

LABORATORY USE ONLY				
Arrival Condition:	AGAT WO#:	201571389	F	2)
Notes:			使:ENA E B34	0
Phone: 01-TA -STLO AGAT Quot	ute 100, built	Invoice To Company: Name: Address: Phone: PO#:		SY No□
Email:	Turnaround Time Required (TAT) Regular TAT	Material Matter Drill Core Pulp Rock Water Till/Soil/Silt Speerly Below Concentrate	Other	eceived
Analysis				
SAMPLE SEQUENCE NUMBER	R QUAÑTI	TY AGAT N	INING ANALYSIS METHOD	
5019-20	λ	Acil-base (Iccountry (ABK)	
5019-20	1		vetals quality's; carbo	m+iswell
5019-20		L 181752 K	hefsish tritigetion P-MS scan humid Le Extraction (NA-	itycell
Special Instructions;		Samples Relinguished by icon	name and lagerst Elate/Fires	
Gonemed by terms and MSSA + MISO16	conditions of	Samples Received by (print rear	Coller 23 Ja	4.2020
Sample Storage: (Pulp and Reject Material Handlin		Cour	ier Ottomilie	
Return to Client Store Reject for 90 days Discard Material Store Pulp for 90 days (an	Stor	re beyond 90 days (Storage fees apply)	phn Cygra	
ocument ID: MIN-208-1513.002	V123476	evised: August 5, 2014	Page Page	of

SAMPLE INTEGRITY RECEIPT FORM - BURNABY

RECEIVING BASICS: PURDIATOR Waybill #: SAMPLE QUANTITIES: Containers: I Coolers: I BAS Containers: I TIME SENSITIVE ISSUES: Earliest Date Sampled: Inst publicated ALREADY EXCEEDED? Yes No MON-CONFORMANCES: 3 temperatures of samples* and average of each cooler: (record differing temperatures on the CoC next to sample ID's) *use Jars when available (1)+++=°C (3)++_+=°C (4)+++=°C Was ice or ice pack present: Yes No	Work Or	der #201571339
Earliest Date Sampled: Not Not Cate All READY EXCEEDED? Yes No MON-CONFORMANCES: 3 temperatures of samples* and average of each cooler: (record differing temperatures on the CoC next to sample ID's) *use Jars when available (1)++=°C (2)++_=°C (3)++_=°C (4)+_+_=°C Mas ice or ice pack present: Yes No ntegrity Issues:	RECEIVING BASICS: Received From: PURDIATOR SAMPLE QUANTITIES:	Waybill #;
3 temperatures of samples* and average of each cooler: (record differing temperatures on the CoC next to sample ID's) *use jars when available (1)++=°C(2)++=°C(3)++_=°C(4)++_=°C Was ice or ice pack present: Yes No Integrity Issues:		ALREADY EXCEEDED? Yes No
Vhom spoken to: Date and Time:	(1)++=°C (2)++	°C (3)++ =°C (4)++ =°C No
	/hom spoken to:	

Document #: SR-186-9504.001 Revision Date: July 9, 2014

用的

Page 1 of 1

PETROGRAPHIC EXAMINATION OF COARSE AGGREGATE CSA A23.2-15A

wood.

Project: Client:	CG14367 Government of Northwest Territories							
Lab No.: Source: Sample Type:	S019-20 Edie Lake Quarry Grab sample	Date Sampled: Sampled By:	30 May 2019 B. Brodland & N. Khan of Wood		Date of Analysis: Analyst: Reviewer:		26 February 2020 Graeme Lowry Amy McCulloch	
Sample Co	Sample Constituents			<u>Percen</u> t 51.9% <u>Percent</u> (-20 +14mm	Percent on Sieves (Gradation) % 24.8% 2: Percent on Sieves (Constituents) 4mm -14 +10mm -10	<u>tion)</u> 23.3% <u>uents)</u> -10 +5mm	Percent in Entire Sample Good Fair Poor Del	Totals
Carbonato arour	forbonneto o construiteis en fino orainadi unantine discontine accordiana data data interiore na data madium have	4 million of ba		â	d	d	2	ā
Carbonate - grey, Carbonate - grey:	carbonate - grey, inicitie to fine grained, angular - inegular, occasional denomine somming, nard to medium nar Carbonate - grey: micritie to fine grained: calcite content less than 1%: angular - irregular: hard to medium hard	d to medium h	ard	17.2	36.2	48.9	29.3	29.3
Carbonate - grey;	Carbonate - grey; micritic to fine grained; calcite content less than 5%; angular - irregular, hard to medium hard	d to medium h	ard	20.7	15.7	8.9	16.7	16.7
Carbonate - grey;	Carbonate - grey; micritic to fine grained; calcite content less than 10%; angular - irregular; hard to medium hard	ird to medium h	hard	5.3	4.5	2.9	4.6	4.6
Carbonate - grey;	Carbonate - grey; micritic to tine grained; calcite content less than 20%; angular - irregular; hard to medium hard Carbonato - محمد micritic to fine aminod: occasional eddlifee: anoular - irregular: hard to medium hard	dine based	Dard	4.6 7	5.0 F 0	0.5	3.2	3.2
Carbonate - grey;	carbonate - grey, micrute to me gramed, occasional sylonies, angular - megular, maru to medulum nau Carbonate - grey; micritic to fine grained; calcite content less than 1%; occasional stylolites; angular - irregular, hard to medium hard	ululii ilaiu ngular - irregula	ar, hard to medium hard	14.9	13.0	13.1	14.0	14.0
Carbonate - grey;	Carbonate - grey; micritic to fine grained; calcite content less than 5%, occasional stylolites; angular - irregular; hard to medium hard	ngular - irregula	ar; hard to medium hard	14.7	3.2	4.7	9.5	9.5
Carbonate - grey;	Carbonate - grey; micritic to fine grained; calcite content less than 10%; occasional stylolites; angular - irregular; hard to medium hard	angular - irregu	lar; hard to medium hard	1.7	1.4	0.5	1.3	1.3
Carbonate - grey;	Carbonate - grey; micritic to fine grained; calcite content less than 20%; occasional stylolites; angular - irregular; hard to medium hard	angular - irregu	lar; hard to medium hard	0.7	0.5	0.0	0.5	0.5
Carbonate - grey; Carbonate - grev;	carbonate - grey; micritic to fine grained; occasional stylolites; angular - irregular; sont. Carbonate - grey: micritic to fine grained: calcite content less than 10%; occasional stylolites; iron staining: angular - irregular: hard to medium hard	iron staining; ar	naular - irregular: hard to medium hard	0.6	6.1 0.0	6.0 0.0	0.3 L.U	0.3 0.3
Carbonate - grey;	Carbonate - grey; micritic to fine grained; calcite content less than 20%; occasional stylolites; iron staining; angular - irregular, hard to medium hard	iron staining; ar	igular - irregular; hard to medium hard	1.7	1.4	0.0	12	1.2
Carbonate - grey;	Carbonate - grey; micritic to fine grained; calcite content less than 1%; iron staining; angular - irregular, hard to medium hard	irregular; hard	to medium hard	0.0	1.3	1.8	0.7	0.7
Carbonate - grey;	Carbonate - grey; micritic to fine grained; calcite content less than 5%; iron staining; angular - irregular; hard to medium hard	· irregular; hard	to medium hard	0.0	1.6	0.6	0.5	0.5
Carbonate - grey;	Carbonate - grey; micritic to fine grained; calcite content less than 20%; iron staining; angular - irregular; hard to medium hard	- irregular; han	d to medium hard	0.0	8. v	0.0	1.0	1.0
Carbonate - grey, Carbonate - grey;	carbonate - grey, micritic to time gramed, calcue content less trian ±%, with spiratente, angular - megular, naru to medulim naru Carbonate - drev: micritic to fine drained: black organic mud: angular - irregular: medium hard.	r - irregular, ria d.		0.7	0.7	0.5	6.e 7.0	c.e 7.0
Carbonate - grey;	Carbonate - grey; micritic to fine grained; calcite content more than 50%; angular - irregular; soft	soft		0.0	1.3	2.5	0.9	0.9
Carbonate - grey;	Carbonate - grey; micritic to fine grained; calcite content more than 50%; iron staining; angular - irregular; soft	ar - irregular; so	ft	0.0	0.3	0.0	0.1	0.1
Carbonate - grey;	Carbonate - grey; micritic to fine grained; occasional dendritic staining; surface weathered; angular - irregular; medium hard	gular - irregula	r, medium hard	0.6	0.0	0.0	0.3	0.3
Carbonate - grey;	Carbonate - grey; micritic to fine grained; calcite encrustation less than 20% of particular surface; angular - irregular; medium hard	ace; angular - iri	regular; medium hard	0.7	1.5	0.0	0.7	0.7
Carbonate - grey;	Carbonate - grey; micritic to fine grained; iron staining; calcite encrustation less than 20% of particular surface; angular - irregular; medium hard	oarticular surfac	e; angular - irregular; medium hard.	1.0	0.0	0.0	0.5	0.5
Carbonate - grey;	Carbonate - grey; micritic to fine grained; iron staining; calcite content more than 20 % angular - irregular; medium hard.	ar - irregular; m	edium hard.	0.0	0.8	0.0	0.2	0.2
Carbonate - grey;	Carbonate - grey; micruto to nine grained, carotte content more than 20 %, angular - irregular; medium hard.	meaium nara.	4	0.0	0.0	0.0	0.0	0 C
Carbonate - grey,	caroonate - grey, micritic to fine granied, non stalimity, carote content more trian 20 %, angular - megurar, sont Carbonate - arow micritic to fine arrinod: calcite content more than 20%- another - irroutlar coft	iai - irregulai, : coft	50IL	0.0	0.0		0.0	<u>, , , , , , , , , , , , , , , , , , , </u>
Calcite - white: fin	carbonate - grey, interior to mile granied, carcite content more man 30 %, angurar - megurar, Calcite - white: fine grained: irregular: soft	1000		0.0	0.0	2.6	9.0	6.0 9.0
Chert - white; very	Chert - white; very fine grained; compact; leached; rounded - irregular; hard			0.0	0.0	2.7	0.6	9.0

(entire sample) Wood Environment & Infrastructure Solutions, a Division of Wood Canada Limited, 3450 Harvester Road, Suite 100, Burlington, Ontario, L7N 3W5 T: +1 905 335 Z353 F: +1 905 335 2414 (per fraction)

110

Petrographic Number

107

103

Petrographic Number

Weighted average, Deleterious

Weighted average, Poor Weighted average, Fair

Weighted average, Good

Total

0.0

0.6

3.2

96.1

100

100

100

100.0

Table 1: Determination of flakiness of aggregates

Sieve Fraction	Weight Retained	Weight Passing	Total Weight	Flakiness Index
(mm)	(g)	(g)	(g)	(%)
14 - 20	1463.9	269.9	1733.8	15.6
10 - 14	739.5	165.7	905.2	18.3
6.3 - 10	444.2	147.6	591.8	24.9
Sum of Weights		583.2	3230.8	
Total Flakiness Index	18.1			
Tested By: J. Calderon Date Tested: 28 January 2020				

Notes:

Table 2: Determination of the degradation using the los angeles abrasion machine

CSA A23.2-16A Resistance to Degradation of small-sized Coarse Aggregate by Abrasion and Impact in the Los Angeles Abrasion Machine

Maximum Aggregate Size Used	Start Weight	Grading Designation	Percent Loss
(mm)	(g)	gg	(%)
14	5004.3	В	27
Tested By:	J. Wood	Date Tested:	26 February 2020

Notes: sample ran to 500 revolutions at 33 revolutions/minute

Project # CG14367 - Government of Northwest Territories - Edie Lake Quarry | 28 February 2020 | S019-20

