

CONNECTING TO OPPORTUNITIES

Government of Northwest Territories

Oscar Creek Prospect #1

Quarry Development Plan v.1.1

November 2024

Plan Maintenance and Control

Plan Document History

Version #	Section(s) Revised	Description of Revision	Prepared by	Issue Date
0	n/a	Submitted to support applications to the SLWB	K'alo-Stantec	2024-05-14
1.1	1	Updated introductory text on regulatory requirements.	K'alo-Stantec	2024-11-01

Table of Contents

1	Introduction	1
1.1	Project Contacts	3
1.2	Roles and Responsibilities	4
1.3	Distribution List	5
1.4	Legislation, Guidelines and Policy	5
1.5	Regulatory Approvals	5
2	Description of the Borrow Source	
2.1	Geotechnical Report	6
2.2	Acid Rock Drainage and Metal Leaching Potential Assessment	
2.3	Material Quantities	7
3	Site Conditions	8
4	Site Preparation	
5	Pit Operation	
6	Closure and Reclamation	15
7	Monitoring and Reporting	16
8	References	17

List of Tables

Table 1-1	Roles and Responsibilities	
Table 1-2	Approvals / Authorizations Applicable to Prospect 1	
Table 2-1	Oscar Creek Bridge Relocation Project Material Requirements (m ³)	
	(K'alo-Stantec 2023)	7
Table 4-1	Mitigation Measures Applicable to Site Preparation	9
Table 5-1	Mitigation Measures Applicable to Borrow Source Operation	13
Table 6-1	Closure and Reclamation Commitments	15

List of Figures

Figure 1-1	Project Overview	2
Figure 5-1	General Borrow Source Development Plan1	2

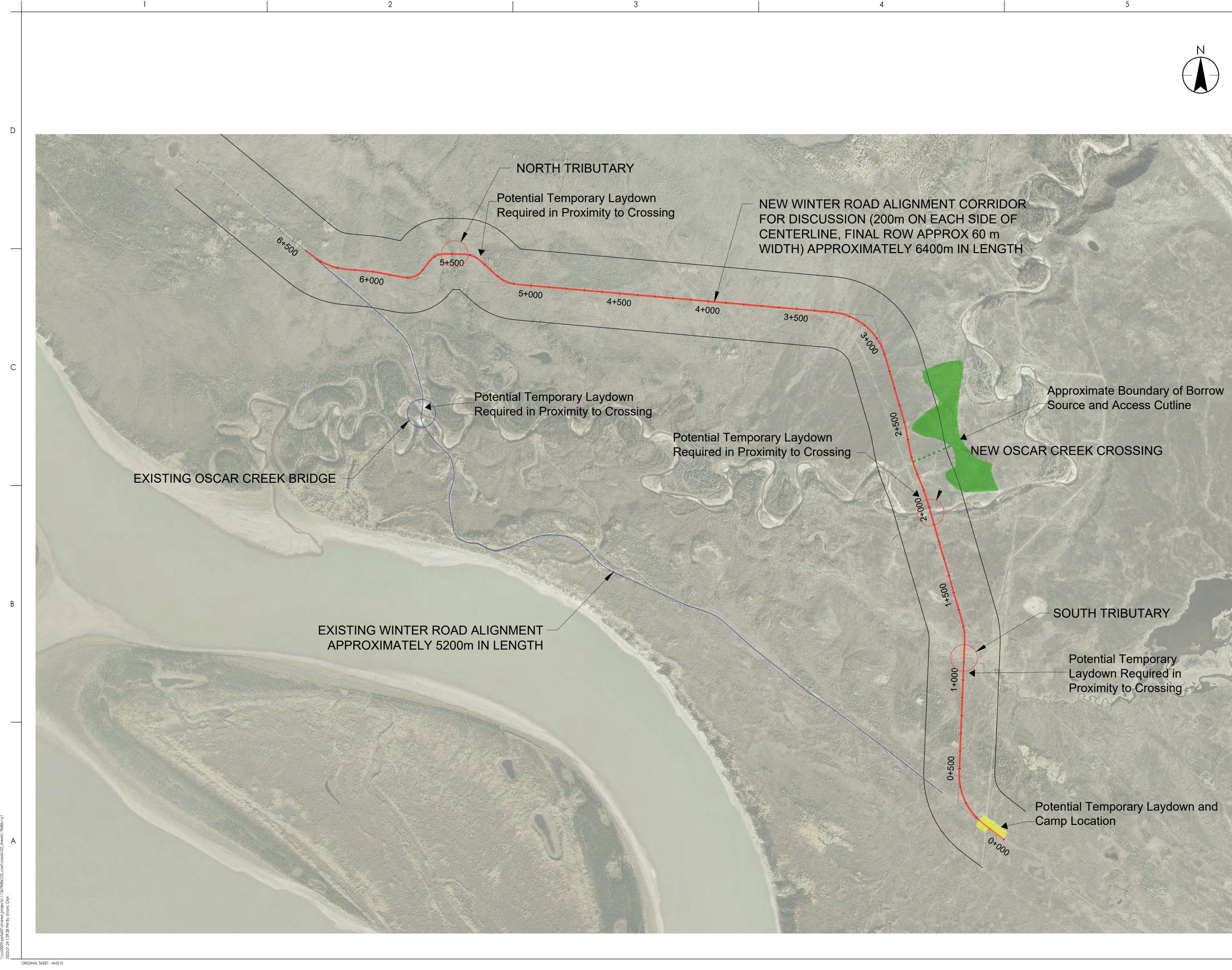
List of Appendices

Appendix A – Geotechnical Report

Abbreviations

ARD	acid rock drainage
DFO	Fisheries and Oceans Canada
ECC	Environment and Climate Change
GNWT	Government of the Northwest Territories
INF	Department of Infrastructure
kM	Kilometre marker
m	metre
ML	metal leaching
the Project	Mackenzie Valley Highway Project
QDP	Quarry Development Plan
SLWB	Sahtu Land and Water Board

1 Introduction


This Quarry Development Plan (QDP) for Oscar Creek Prospect 1 has been developed to support the proposed Oscar Creek Bridge Relocation Project (the Project) by the Government of the Northwest Territories (GNWT) Department of Infrastructure (INF). The Project is located in the Sahtu Region of the Northwest Territories.

The Project includes the relocation of the Oscar Creek Bridge located at KM1054.4 of the Mackenzie Valley Winter Road (MVWR) to a location 2.9 kilometres (km) to the east (upstream), and re-alignment of the MVWR from approximately KM1051 to KM1056 to connect with the new bridge location. The re-alignment requires construction of additional watercourse crossings of the North and South tributaries of Oscar Creek. The Project includes the development of the Prospect Borrow Source to obtain granular material (Figure 1-1). Prospect 1 is located on Sahtu Lands as defined in the Sahtu Dene and Métis Comprehensive Land Claim Agreement.

This QDP was developed in accordance with applicable guidelines and best practices in the Northwest Territories (NWT) and is one of several plans developed for the Project. This QDP is a requirement of, and is complementary to, terms and conditions contained in Land Use Permit S24E-006, Water Licence S24L8-003 issued to the GNWT, and terms as may be included in a Quarry Agreement with the Tulita District Land Corporation.

The primary goal of this QDP is to prevent or mitigate potential effects of quarry operations. It has been developed based on the GNWT's *Northern Land Use Guidelines - Pits and Quarries* (GNWT, 2015a).

The QDP will be reviewed and updated annually. Revisions will also be performed, as needed, to adapt and incorporate any changes related to environmental factors, pertinent project-specific changes during construction (e.g., site conditions and design modifications), the GNWT Department of Instructure (INF) and contractor practices, experiences, and policies, and include results from ongoing engagement with Indigenous Governments, Indigenous Organizations, and other affected parties, including regulatory agencies.

K'alo-Stantec Limited PO Box 176 Tulita, NT XOE OKO Tel: +1.867.588.3745 www.stantec.com

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Notes

Revision YYYY.MM.DC lssued File Name: 78486-R-P1.dwg 2021.09.24 YYYY.MM.DD Chkd.

Permit/Seal

Not for permits, pricing or other official purposes. This document has not been completed or checked and is for general information or comment only.

Client/Project Logo

Northwest Territories Gouvemement des Territoires du Nord-Ouest

Client/Project DEPARTMENT OF INFRASTRUCTURE GOVERNMENT OF NORTHWEST TERRITORIES

MACKENZIE VALLEY WINTER ROAD -- OSCAR CREEK BRIDGE RELOCATION Title

PROJECT OVERVIEW

Project No. 113678486 Revision Sheet

Scale 1:10,000 Drawing No.

1.1 Project Contacts

Key contacts include:

Primary [Contractor] contact:

[Insert Name] [Title] [Company name] [mailing address]

[Phone] [Fax] [Email]

Primary GNWT-INF contact:

Chaudary Murtaza Manager, Structures-Bridges Department of Infrastructure Government of the Northwest Territories PO BOX 1320, 5015 49th Street, Yellowknife, NT X1A 2L9 (867) 767-9086 Ext. 31127

Chaudary_Murtaza@gov.nt.ca

1.2 Roles and Responsibilities

The Contractor is responsible for implementing the QDP and complying with all permits and licences issued to the GNWT-INF. Roles and responsibilities are outlined in Table 1-1.

Table 1-1	Roles and Responsibilities
-----------	----------------------------

Entity	Responsibility
Contractor	• Implement this QDP under the direction of the Contractor Supervisor
	• Continue implementing the QDP until responsibility is transferred under the authority of the GNWT
Contractor Supervisor	Supervise the contractor team
	• Verify that this QDP and related plans are available onsite at all times
	• Verify that the measures in the QDP are adequately applied
	• Liaise with GNWT Inspector, GNWT Water Resources Officer and Engineer
Contractor Project Manager	• Maintain records of construction, mitigation, and worksite inspection activities
	• Report issues or deviations to the QDP to GNWT Project contacts and the Contract Supervisor
	Oversee completion of the Project
	Support the Contractor Supervisor, as required
Department of	• Support the Contractor with compliance to all permits and licences
Infrastructure, Government of the Northwest Territories	• Develop press releases and liaise with media directly (if required)
(GNWT INF)	 Liaise with GNWT Inspector, GNWT Water Resources Officer, government agencies, and public and Indigenous Governments and Indigenous Organizations (as required)
	• Confirm all spill reports and clean up are completed as required by authorizations

1.3 Distribution List

The QDP [will be] distributed to the following key Project contacts and regulators:

- Project Contactor and Personnel: Contractor Supervisor, Contractor Project Manager, Contractor Camp Manager, Contractor Lead Hands
- Water Resources Officer, Government of the Northwest Territories Environment and Climate Change (GNWT-ECC)
- Inspector, GNWT-ECC
- Sahtu Land and Water Board
- Norman Wells Renewable Resources Council
- Tulita District Land Corporation
- Applicable GNWT-INF staff

1.4 Legislation, Guidelines and Policy

This plan has been developed in consideration of the applicable legislation and guidelines, including:

- Northern Land Use Guidelines Pits and Quarries (GNWT, 2015a)
- Northern Land Use Guidelines Access Roads and Trails (GNWT, 2015b)

1.5 Regulatory Approvals

The approvals / authorizations expected to be required for Prospect 1 are identified in Table 1-2.

 Table 1-2
 Approvals / Authorizations Applicable to Prospect 1

Activity	Authority	Approval / Authorization
Use of equipment, excavation, clearing	Sahtu Land and Water Board	Type "A" Land Use Permit
Access to Sahtu Lands	Tulita District Land Corporation (TDLC)	Agreement with TDLC
Material extraction from Sahtu Lands	Tulita District Land Corporation	Quarry Agreement with TDLC

2 Description of the Borrow Source

2.1 Geotechnical Report

A geotechnical assessment of Prospect 1 was completed in 2020 by Tetra Tech Canada Inc. (Tetra Tech 2020). The report of this assessment is included in Appendix A to this QDP.

Eight test pits were excavated to a depth of between 3.0 and 4.0 metres below ground surface. Test pits were logged, sampled and photographed on site as described in Section 3.4 of Appendix A. Geotechnical laboratory testing was completed as described in Section 3.5 of Appendix A. Material properties are described in Sections 3.5.1 to 3.5.4 of Appendix A.

Material encountered is predominantly sand and gravel with a considerable amount (10 to 30%) of cobble and boulder sized materials (Tetra Tech 2020). Overburden thickness ranged from 0.1 to 0.6 m.

Based on the material characteristics, granular material encountered has been recommended to be suitable for use as common fill, backfill or aggregate, with material with higher fines content recommended to be used as common fill only (Tetra Tech 2020). A selected area within the borrow source (around TP03 to TP08) was identified as having material suitable for production of granular aggregate, requiring screening, crushing and/or washing (Tetra Tech 2020).

Moisture contents encountered in test pits in the Prospect 1 borrow source were low, indicating that material can be placed and compacted in winter. Ground ice content decreased with depth (Tetra Tech 2020).

2.2 Acid Rock Drainage and Metal Leaching Potential Assessment

Material was tested for acid rock drainage (ARD) and metal leaching (ML) potential. Results showed that neutralization potential is high and minor exceedance of fluoride only above applicable guidelines. The report concludes that the ARD/ML potential of material from Prospect 1 is low.

Though no further mitigation for ARD/ML is required, the following best practices should be applied to management of pit water:

- Borrow source development will not extend below the groundwater table
- Borrow source operations will be located a minimum of 100 m from the ordinary highwater mark of any waterbody.
- Excavated spoil material will be placed at least 30 m from a watercourse.
- Material stockpiles will be kept a minimum of 30 m from a watercourse or waterbody.
- Ponded water will be directed away from watercourses.
- The pit floor will be maintained to prevent formation of a pit lake.

2.3 Material Quantities

Based on the geotechnical assessment (Tetra Tech 2020), the volume available in Prospect 1 is estimated at 185,000 cubic metres (m³), based on developing an area of 50,000 square metres (m²) to a depth of granular material of 3.7 m (3.8 to 4.3 m below ground surface).

The design (K'alo-Stantec 2023) estimates the following material requirements for the Project, summarized in Table 2-1. The material requirements may be reduced through use of material obtained from a cut at the approach to the North Tributary crossing.

Table 2-1Oscar Creek Bridge Relocation Project Material Requirements (m³) (K'alo-Stantec2023)

	South Tributary Crossing	Oscar Creek Crossing	North Tributary Crossing	Total
Embankment Fill	7,579	17,411	7,579	32,569
Granular Base	521	687	520	1,728
Total	8,100	18,097	8,100	34,297

3 Site Conditions

The borrow source is located near a meander of Oscar Creek, on a glaciofluvial terrace. Areas of the borrow source have moderate to dense tree cover dominated by white spruce (*Picea glauca*) or black spruce (*Picea mariana*), and shrubs composed of dwarf birch (Betula nana), and Labrador tea (Rhododendron tomentosum, Rhododendron groenlandicum). Dwarf birch and mixed spruce stands are common in areas regenerating from recent burns. Most of the area has burned in the last 20 years. Burned areas in the LSA have shrublands or young regenerating forest and are vegetated with dwarf birch, green alder and Alaska paper birch, or regenerating mixed black and white spruce and Alaska paper birch communities.

There are <u>no</u> plant species listed under the *Species at Risk Act*, COSEWIC, or the *Species at Risk (NWT) Act* as At Risk, May Be at Risk or Special Concern with potential to be present in the borrow source. There are five invasive alien species with potential to be present in the borrow source: common dandelion (Plantago major), common plantain (Plantago major), timothy (Phleum pratense), lamb's quarters (Chenopodium album) and maple leaf goosefoot (Chenopodiastrum simplex).

The borrow source provides winter habitat for moose, boreal caribou, wolf, wolverine, grizzly bear, and muskox. A mammal den survey was completed by GNWT ENR Environment and Natural Resources ([ENR], now Environment and Climate Change [ECC]) on November 5, 2019. One potential den was identified more than 800 m from the borrow source. Numerous bird species have potential to use the borrow source development area during the migratory bird season. Mitigation measures for protection of wildlife and wildlife habitat are identified in Table 4-1.

Based on archaeological overview assessment (AOA) and review of previous archaeological impact assessments (AIA), there are <u>no</u> heritage resources within 100 m of the borrow source development area.

A traditional trail is located east of Oscar Creek and outside of the borrow source development area. Local land users may be present in the area during the winter.

4 Site Preparation

The borrow source will be accessed by an approximately 220 m access trail, which will connect to a project winter road being constructed to support the relocation of the Oscar Creek Bridge, and which will become the new right-of-way for the Mackenzie Valley Winter Road. The access trail will be cleared to 10 m width. The areas of the borrow source to be developed will be stripped for development.

Clearing must be completed during the period between September 1 and April 30 only, to protect migratory birds and bats. Any clearing completed in April must confirm no presence of raptor stick nests, as determined by a qualified person.

Trees more than 12 cm diameter at breast height should be limbed and cut to 2 m lengths, and stacked for community salvage in a safe area accessible by the Mackenzie Valley Winter Road. Other brush and trees are to be windrowed at the edge of the clearing. Organic soil and unusable overburden will be stockpiled for future reclamation.

A topographic survey is to be completed once stripping has been completed.

Mitigation measures to protect the environment during site preparation are identified in Table 4-1.

Potential Effect	Mitigation Measure
Clearing and equipment operation causes permafrost degradation, rutting, ponding and soil compaction	• Activities will be restricted to workspaces and access roads. Prior to the start of construction, the boundaries of the work area, staging areas and access roads will be staked and/or flagged.
	• Clearing of new areas will be completed when the ground is frozen to limit disturbance to soils and permafrost.
	• Clearing will not be conducted during high rainfall or runoff events.
	• Trees will be felled toward the cleared areas wherever possible.
	• Postpone soil salvage during wet weather or high winds to prevent erosion and/or damage to the soil structure.
	• A minimum of 10 cm of packed snow will be maintained on winter travel surfaces.
	• Construction equipment will be operated on designated winter roads or constructed embankment. Construction will be avoided on highly saturated soil (primarily during freshet) where practical or suitable ground equipment will be utilized to prevent unnecessary soil damage through rutting, etc.
	• Surface disturbance to undisturbed terrain will be minimized as much as possible. Project work will be confined to the Project Area.

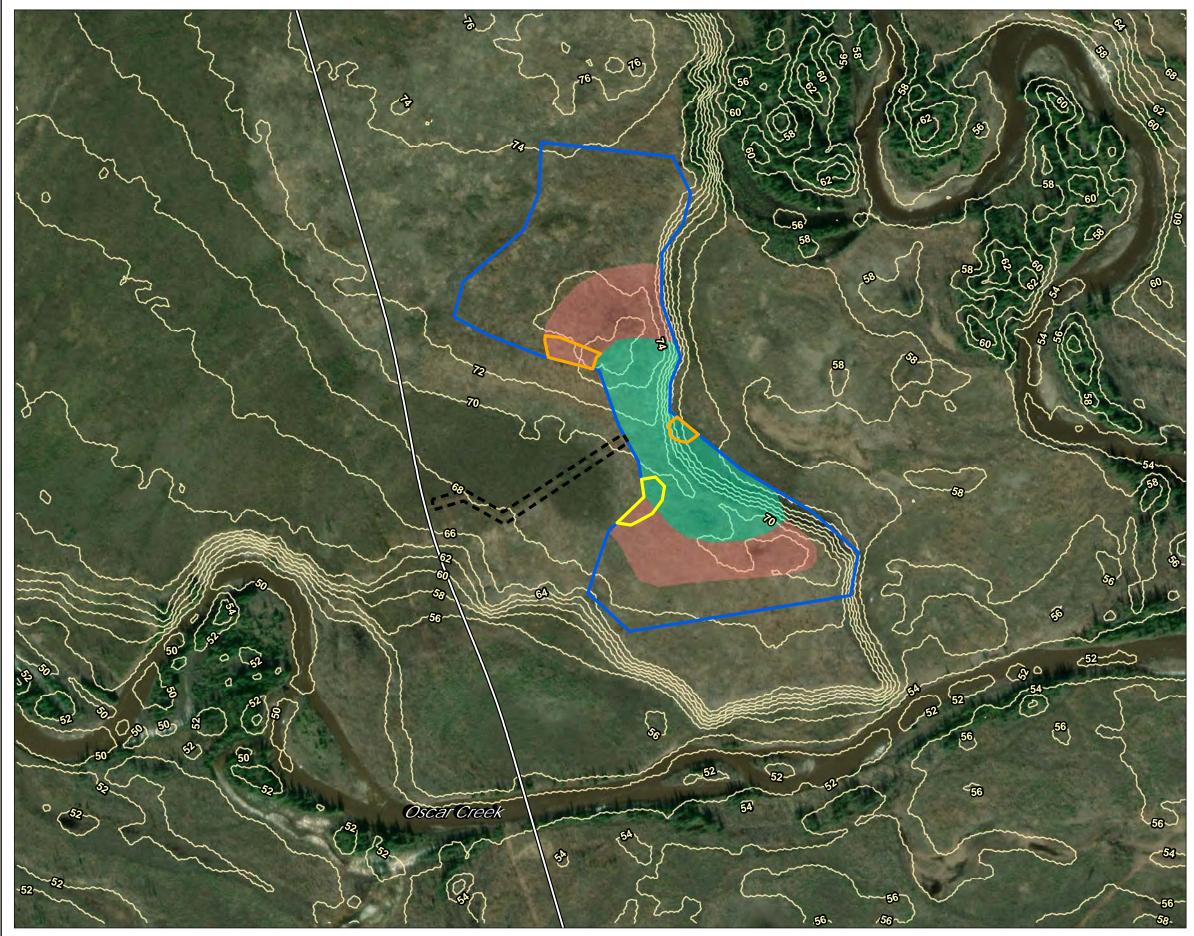
Table 4-1 Mitigation Measures Applicable to Site Preparation

Potential Effect	Mitigation Measure
Clearing causes direct loss of wildlife habitat or mortality to	• Removal of vegetation will be limited to the width of the ROW and workspaces.
wildlife	• Vegetation clearing will be completed outside the migratory bird nesting period of May 4 to August 22 (Zone B8; ECCC 2023, GNWT 2020) and will consider the Critical Breeding Periods for Raptor Species of the Northwest Territories (Shank and Poole 2016) to avoid disturbing species that breed prior to the migratory bird nesting periods.
	• Vegetation clearing will be completed outside the core maternity roosting period for bats of May 1 to August 31. If habitat tree removal or general tree clearing is required during the maternity roosting period, a qualified biologist will review the trees to make a determination on bat occupancy before removal.
	• Breaks of approximately 10 m in width should be left in the windrow at approximately 300 m intervals to reduce blockage of wildlife movement.
	• Travel of construction vehicles will be confined to existing infrastructure roads and trails as much as possible to avoid disturbing vegetated areas.
	• Pre-construction raptor stick nest surveys and bear den surveys will be completed, if necessary, pending consultation with GNWT- ECC.
	• Organic material will be stockpiled for use during reclamation.
Clearing causes erosion and	• The Erosion and Sedimentation Control Plan will be followed.
sedimentation, leading to degradation of water quality	• Clearing will not occur within 30 m of any waterbody.
acgradation of water quality	• Excavated spoil material will be placed at least 30 m from a watercourse.
	• Soil stripping will be conducted under the guidance of a qualified environmental or engineering professional.
	• Soils stripping will be postponed on borrow areas on coarse textured soil during windy conditions to reduce deterioration of soil conditions.
Use of equipment introduces invasive alien plant species	• Equipment originating from outside of the Northwest Territories will be cleaned prior to mobilization to avoid introduction of invasive species.
Public and Worker Safety	• Signage and physical barriers will be used to identify areas of active construction and to provide separation between workspaces and the public use areas.
	• Access to construction areas will be limited to Project personnel only for safety reasons.

5 Pit Operation

The borrow source development plan is illustrated in Figure 5-1. Borrow source development is to adhere to the following objectives:

- Reduce development disturbance
- Reduce direct and indirect (sensory) disturbance to wildlife
- Manage adverse effects of permafrost degradation
- Protect water quality in Oscar Creek
- Protect public and worker safety


The central areas of the borrow source are likely to be developed first, in accordance with the test pit results reported in Tetra Tech (2020). Additional areas to the north and south may be developed if the need arises.

Material is expected to be able to be excavated using mechanical means (i.e., without use of explosives), due to its low moisture content. **Use of explosives is discouraged**. Should use of explosives be needed, mitigation measures applicable to wildlife and fish and fish habitat protection will be followed, and the appropriate permits will be obtained from NWT regulators.

Material will be excavated to a depth of up to approximately 4.0 m and screened on site. Sorted material will be stockpiled at identified locations for removal and use at the construction sites. Material suitable for crushing (if applicable), will be set aside.

During winter operations, water management is not applicable. Prior to closure of the borrow source at the end of the construction season (April 1), the pit floor will be graded and sloped to prevent ponding within the pit floor, and to direct passive drainage towards the west, away from Oscar Creek.

Mitigation measures for environmental protection during borrow source operation are identified in Table 5-1.

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and/or completeness of the data.

K'alo-Stantec

Legend

_	MVWR	re-alignment
---	-------------	--------------

- Access
- Devleopment Extent
 - Potential Organic Stockpile Area
- Potential Stockpile Area
- First Stage Development
- Additional Development Area
 - Ground surface elevation contours (masl)

Note: Interpretation of this Figure is dependent on coloured symbols. View in colour.

40 80 Metres (At original document size of 11x17) 1:4,000

1. Coordinate System: NAD 1983 UTM Zone 9N 2. Base Data Sources: Government of NWT, Government of Canada 3. Imagery Source: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Project Location Northwest of Norman Wells, NWT Prepared by ACampigotto on 2023-10-24 Technical Review by EB on 2023-10-24

113678486

Client/Project

Government of Northwest Territories Oscar River Bridge Relocation Project Prepared by: K'alo-Stantec Limited

Figure No. **5-1** Title

Prospect 1 Development Plan

Potential Effect	Mitigation Measure		
Excavation causes ponding and permafrost degradation	Borrow source development will not occur below the groundwater table		
	• If ice-rich permafrost is identified during excavation activities, suitable measures will be taken to protect permafrost and ground ice encountered during material extraction activities.		
Borrow source development leads to erosion	• Best management practices for erosion control will be implemented according to the Erosion and Sedimentation Control Plan.		
	• Erosion and sedimentation control measures will be maintained until disturbed areas are revegetated or until such areas have been permanently stabilized by other effective measure.		
	• Borrow source floors will be sloped to reduce ponding of water.		
Erosion and sedimentation causes degradation of water quality	• Only material with low acid rock drainage (ARD) and metal leaching (ML) potential will be used for the Project.		
	• Borrow source operations will be located a minimum of 100 m from the ordinary high-water mark of any waterbody.		
	• Excavated spoil material will be placed at least 30 m from a watercourse.		
	Ponded water and runoff will be directed away from watercourses.		
	• Material stockpiles will be kept a minimum of 30 m from a watercourse or waterbody with the appropriate erosion control mitigation in place to prevent sediment from entering a watercourse or waterbody.		
Borrow source operations cause	Blast mats will be used when/if blasting		
sensory disturbance to wildlife and increase mortality risk	• Caribou and moose will have the right of way in all project areas.		
	• Borrow development activities will adhere to the applicable recommended setbacks and timing restrictions outlined in the WMMP.		
Blasting causes death of fish	• Blasting will not occur within 100 m of fish-bearing waterbodies such that instantaneous pressure will be less than 50 kilopascals (kPa) where fish may be present and particle velocity will be less than 13 mm/s (millimetres/second) near a spawning bed where eggs or larval fish may be present.		

Table 5-1 Mitigation Measures Applicable to Borrow Source Operation

Potential Effect	Mitigation Measure
Contamination due to accidental releases / spills	• Spill contingency measures will be implemented in accordance with the Spill Contingency Plan.
	• Mobile equipment will be refueled more than 100 m away from the bank ordinary highwater mark of a watercourse or waterbody.
	• Emergency spill response kits will be kept in vehicles and at fuel storage locations.
	• Fuel handling and refueling will be in accordance with an Operating Procedure to be included in the Spill Contingency Plan.
	• Fuel will be stored in containers with secondary containment capable of containing 110% of the largest container.
	• Equipment such as vehicles, generators and pumps will have secondary containment installed capable of containing fuel drips or leaks during operations and refueling.
	• All equipment stationary for more than 2 hours will have appropriately placed drip trays.
	• Machinery will be maintained and regularly inspected for fuel, oil, or other fluid leaks. Machinery found to be leaking will be withdrawn from service until repaired.
Public and worker safety	• Quarry design, development and closure will take into account public safety.
	• Public access to the active borrow source and associated access roads will be restricted.
	• Access to construction areas will be limited to Project personnel only for safety reasons.

6 Closure and Reclamation

The borrow source will be progressively reclaimed at the end of each construction season. Areas not needed for in the subsequent year for additional material or workspace within the borrow source will be reclaimed by replacing organic material.

The objective of **progressive site closure** will be to reduce risks to wildlife and people, and to mitigate for permafrost degradation and erosion.

The objective of **final site closure** will be to approximate pre-development conditions to the extent possible, and to reduce risks to the environment from permafrost degradation and erosion.

Closure Phase	Closure and Reclamation Commitment		
Progressive site closure: at the end of each construction season	• Equipment, wastes and contaminated soils will be removed at the end of each construction season.		
	• Stockpiles will be left at slope of no steeper than 1:1, and shall be located in an area of positive drainage.		
	• Excavations will be contoured at the end of each construction season to reduce steep slopes.		
	• Ice-rich soils or materials that are susceptible to physical erosion encountered during excavation will be covered to reduce permafrost degradation.		
	• Organic material stockpiled during stripping will be re-applied to areas not needed for ongoing borrow source operations, where possible.		
Final site closure: at the end of the project	• Equipment, wastes and contaminated soils will be removed once construction is completed.		
	Stockpiles will be removed / graded		
	• All temporary erosion protection measures will be removed.		
	• Temporary access roads, quarries and workspaces not needed after construction will be closed and allowed to revegetate naturally.		
	• Equipment, wastes and contaminated soils will be removed once construction is completed.		
	• Organic material will be stockpiled and re-applied where possible.		
	• A final survey will be completed.		

Table 6-1Closure and Reclamation Commitments

7 Monitoring and Reporting

During operation of the borrow source, all material quantities removed shall be recorded. At the end of the project, a final survey will be completed to confirm material quantities removed.

The site will be visited once during the summer following each construction season to observe performance of environmental protection measures and overall site stability.

A final inspection of the site to confirm that all materials have been removed and the site is acceptable to the Inspector.

A final plan will be submitted in accordance with the Land Use Permit.

8 References

- GNWT (Government of Northwest Territories). 2015a. Northern Land Use Guidelines: Pits and Quarries. GNWT. Yellowknife, NT. Available at: <u>https://www.lands.gov.nt.ca/sites/lands/files/resources/nlug - pits and quarries -</u> <u>16 september 2015.pdf</u>. Accessed August 2020.
- GNWT. 2015b. Northern Land Use Guidelines: Roads and Trails. GNWT. Yellowknife, NT. Available at: <u>https://www.gov.nt.ca/sites/ecc/files/resources/nlug_roadstrails_2015_english_16_sept_2_015.pdf</u> Accessed August 2021.
- K'alo-Stantec. 2023. Project Description Report for the Oscar Creek Bridge Relocation Project. Submitted to the Sahtu Land and Water Board.
- Tetra Tech 2020. Oscar Creek Granular Prospects Geotechnical Assessment Report Oscar Creek, Northwest Territories. Submitted to Government of the Northwest Territories Department of Infrastructure, October 19, 2020. 137 pp.

Appendix A – Geotechnical Report

Oscar Creek Granular Prospects Geotechnical Assessment Report Oscar Creek, Northwest Territories

PRESENTED TO

Government of the Northwest Territories Department of Infrastructure

OCTOBER 19, 2020 ISSUED FOR USE FILE: 704-ENG.YARC03255-01

> Tetra Tech Canada Inc. Box 2244, 201, 4916 - 49 Street Yellowknife, NT X1A 2P7 CANADA Tel 867.920.2287 Fax 867.873.3324

This page intentionally left blank.

EXECUTIVE SUMMARY

Tetra Tech Canada Inc. (Tetra Tech) was retained by the Government of the Northwest Territories, Department of Infrastructure (GNWT) to conduct a granular investigation and assessment of three selected granular prospects in support of the Oscar Creek Bridge (OCB) Relocation project, approximately 28 km northwest of Norman Wells, Northwest Territories (NT). The project involves relocating the existing OCB at km 1054 of the Mackenzie Valley Winter Road (MVWR) and constructing two new associated tributary crossings (Tributary 1 and Tributary 2) along a realignment of the winter road between km 1051 and km 1056. The objective of the granular investigation program was to assess three undeveloped granular prospects to ensure suitable granular materials and aggregate are available to the project for crossings and highway construction. This report presents data collected during the investigation including a summary of the subsurface conditions, testpit logs, laboratory test results, estimated material quantities, and assessments of each potential granular source.

The granular investigation program was completed between January 11 to 13, 2020. Testpit logging, sampling, and onsite supervision was completed by Atif Rafiq, from Tetra Tech's Yellowknife office. Construction of site access and excavation of the testpits was completed by HRN Contracting Ltd. of Norman Wells, NT, as a subcontractor to Tetra Tech. Initial site layout and survey support for the project was provided by Sub-Arctic Geomatics Ltd. from Yellowknife, NT. Onsite environmental and wildlife monitoring was provided throughout the project by the Norman Wells Renewable Resource Council. All work was carried out in accordance with the project's Land Use Permit S18X-004, obtained by the GNWT.

Three granular prospects were investigated and a total of 22 testpits were excavated using a John Deere 270D LC excavator. Locations of each testpit were staked by the survey team prior mobilizing to site. Testpits were excavated to the base of the target deposits or to the maximum reach of the excavator (approximately 4.5 m below grade). Excavations were then measured with a graduated metric rod and photographed. Testpits were logged, sampled, and photographed at each excavation location to ensure accurate classification of the granular materials and ground ice encountered. As each testpit was excavated, representative soil samples were obtained from each stratigraphic layer for offsite geotechnical and geochemical laboratory testing. Samples were typically collected from the backwall of the testpit, using the excavator's bucket, and were retrieved once brought to the surface.

Ground conditions at all three prospects generally consist of glaciofluvial and fluvial deposits of sand and gravel underlain by sedimentary bedrock and overlain by organic topsoils. Glaciofluvial materials are sediments deposited by the meltwater from the front of a glacier (outwash), usually in patterns similar to that of braided streams. Fluvial materials are those deposited by flowing water in modern channels such as Oscar Creek. Sedimentary bedrock, expected to be underlying the overburden materials, was not encountered in any of the testpits excavated. Surface organics generally comprised of topsoil and are not suitable materials for construction but could be used in non-engineering applications (i.e., landscaping). Organic layer thicknesses were relatively thin at all three prospect sites ranging from 0.1 m to 0.4 m thick.

The three types of granular materials sought for the project and their criteria were presented in the request for proposal: common fill, granular backfill, and granular aggregates. Overburden materials suitable for common (borrow) fill were identified in all three granular prospects. All material layers investigated would be acceptable for use as common fill, excluding the surface organics. The well-graded glaciofluvial sands and gravels would be better utilized for engineered materials such as granular backfill or aggregate, where required.

Glaciofluvial sands and gravels, suitable for granular backfill, were encountered in all three prospect locations. The deposits in Prospects 2 and 3 generally consist of well-graded gravels with components of coarse-grained sands up to depths of 4.5 m. Prospect 1 predominantly consists of well-graded gravels and sands up to depths of 4.0 m.

Prospect 3 is recommended as the best source for granular backfill due to having the lowest estimated proportions of fines and oversized materials.

Findings from the investigation program show select areas in each prospect suitable for extracting and processing granular aggregates. All three prospects yielded Los Angeles abrasion losses below 50%, meeting the material criteria; however, crush (fracture) count results showed several areas within each prospect that did not meet the minimum requirement of 50%. Based on this, a select area within Prospect 1 is the only recommended material source for granular aggregate. Material extraction should focus around testpits PR1-TP03 to PR1-TP08 as these locations had favourable crush counts.

Granular material quantities were estimated by delineating boundaries for each granular prospect based on a desktop review of air photos, historical borehole logs, and satellite imagery of the Oscar Creek area. Combining this information with results from the testpitting program, volumes were calculated based on a 50 m radius limit from each suitable testpit. Testpit findings are assumed to be representative of the subsurface within this radius and in areas may extend well beyond the 50 m radius. It is estimated that the total quantity of available granular materials from the sites investigated is approximately 465,000 m³, including 185,000 m³ in Prospect 1, 60,000 m³ in Prospect 2, and 220,000 m³ in Prospect 3. The development of granular prospects should follow recommendations provided in the GNWT's *Northern Land Use Guidelines: Pits and Quarries* (GNWT 2015).

TABLE OF CONTENTS

EXE	CUTI	VE SUN	MMARY	II
1.0	INT	RODUC	CTION	1
	1.1	Gener	ral	1
	1.2		t Description	
	1.3	•	e of Work	
2.0	SITE		CRIPTION	2
2.0	2.1		nal Geology	
	2.2	•	afrost Conditions	
	2.2		te	
3.0	GR/	NULA	R PROSPECTS INVESTIGATION	3
	3.1		ccess	
	3.2		it Locations	
	3.3	•	itting Methodology	
	3.4	•	chnical Logging and Sampling	
	3.5		chnical Laboratory Testing	
		3.5.1	Moisture Contents	
		3.5.2	Particle Size Analyses with Crush Counts	6
		3.5.3	Los Angeles Abrasion	7
		3.5.4	Petrographic Analyses	7
	3.6	Geoch	nemical Characterization Testing	8
4.0	GR /	NULA	R PROSPECT CONDITIONS	9
	4.1		ect 1	
		4.1.1	Surface Conditions	
		4.1.2	Subsurface Conditions	9
	4.2	Prosp	ect 2	
		4.2.1	Surface Conditions	
		4.2.2	Subsurface Conditions	10
	4.3	Prosp	ect 3	11
		4.3.1	Surface Conditions	11
		4.3.2	Subsurface Conditions	11
5.0	GR/	NULA	R PROSPECTS ASSESSMENT	12
	5.1	Materi	ial Criteria	12
	5.2	Materi	ial Availability	13
		5.2.1	Common Fill	13
		5.2.2	Granular Backfill	13
		5.2.3	Granular Aggregates	13
	5.3	Estima	ated Material Quantities	
6.0	DEV	ELOP	MENT CONSIDERATIONS	14

6.0	DEVELOPMENT CONSIDERATIONS
-----	----------------------------

7.0	CLOSURE	16
REFE	ERENCES	17

LIST OF TABLES IN TEXT

Table 3-1: Testpit Information Summary	4
Table 3-2: Particle Size Analyses Test Results	
Table 3-3: Los Angeles Abrasion Test Results	7
Table 3-4: Petrographic Analyses Test Results	8
Table 4-1: Prospect 1 Estimated Granular Properties	10
Table 4-2: Prospect 2 Estimated Granular Properties	11
Table 4-3: Prospect 3 Estimated Granular Properties	12
Table 5-1: Estimated Granular Material Quantities	14

LIST OF FIGURES IN TEXT

Figure A: Proposed Oscar	Creek Bridge Relocation	
i igule A. i ioposeu Oscal	CIEER Druge Relocation.	

APPENDIX SECTIONS

TABLES

- Table A Testpit Information Summary
- Table B Geotechnical Laboratory Test Results Summary

FIGURES

- Figure 1 Project Location
- Figure 2 Prospect 1 Testpit Location Plan
- Figure 3 Prospect 2 Testpit Location Plan
- Figure 4 Prospect 3 Testpit Location Plan

PHOTOGRAPHS

- Photo 1 Cutline access from proposed Oscar Creek Bridge to Prospect 1
- Photo 2 Prospect 1 viewed from cutline access
- Photo 3 Excavating Testpit 6 at Prospect 1
- Photo 4 John Deere 270D LC excavator used for testpitting
- Photo 5 Prospect 1, Testpit 1
- Photo 6 Prospect 1, Testpit 2
- Photo 7 Prospect 1, Testpit 3
- Photo 8 Prospect 1, Testpit 4

Photo 9 Prospect 1, Testpit 5 Photo 10 Prospect 1, Testpit 6 Photo 11 Prospect 1, Testpit 7 Photo 12 Prospect 1, Testpit 8 Photo 13 Prospect 2, Testpit 1 Photo 14 Prospect 2, Testpit 2 Photo 15 Prospect 2, Testpit 2 Photo 16 Prospect 2, Testpit 3 Photo 17 Prospect 2, Testpit 3 Photo 18 Prospect 2, Testpit 4 Photo 19 Prospect 2, Testpit 4 Photo 20 Prospect 3, Testpit 1 Photo 21 Prospect 3, Testpit 1 Photo 22 Prospect 3, Testpit 2 Photo 23 Prospect 3, Testpit 2 Photo 24 Prospect 3, Testpit 3 Photo 25 Prospect 3, Testpit 4 Photo 26 Prospect 3, Testpit 5 Photo 27 Prospect 3, Testpit 6 Photo 28 Prospect 3, Testpit 7 Photo 29 Prospect 3, Testpit 8 Photo 30 Prospect 3, Testpit 9

APPENDICES

- Appendix A Tetra Tech's Limitations on Use of this Document
- Appendix B Testpit Logs
- Appendix C Geotechnical Laboratory Test Results
- Appendix D Geochemical Laboratory Test Results

ACRONYMS & ABBREVIATIONS

Acronyms/Abbreviations	Definition
ABA	Acid-Base Accounting
ARD	Acid Rock Drainage
ASTM	American Society for Testing and Materials
CCME	Canadian Council of Ministers of the Environment
CSA	Canadian Standards Association
GNWT	Government of the Northwest Territories, Department of Infrastructure
HRN	HRN Contracting Ltd.
ha	Hectare
km	Kilometres
m	Metre
mm	Millimetre
ML	Metal Leaching
MVWR	Mackenzie Valley Winter Road
NAD83	North American Datum 1983
NAG	Non-Acid Generating
NPR	Neutralization Potential Ratios
NT	Northwest Territories
OCB	Oscar Creek Bridge
SFE	Shake Flask Extraction
Tetra Tech	Tetra Tech Canada Inc.
UTM	Universal Transverse Mercator

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of the Government of the Northwest Territories and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than the Government of the Northwest Territories, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on Use of this Document attached in Appendix A.

1.0 INTRODUCTION

1.1 General

Tetra Tech Canada Inc. (Tetra Tech) was retained by the Government of the Northwest Territories, Department of Infrastructure (GNWT) to conduct a granular investigation and assessment of three selected granular prospects in support of the Oscar Creek Bridge (OCB) Relocation project, approximately 28 km northwest of Norman Wells, Northwest Territories (NT). The project involves relocating the existing OCB at km 1054 of the Mackenzie Valley Winter Road (MVWR) and constructing two new associated tributary crossings (Tributary 1 and Tributary 2) along a realignment of the winter road between km 1051 and km 1056.

The objective of the granular investigation program was to assess three undeveloped granular prospects to ensure suitable granular materials and aggregate are available to the project for crossings and highway construction. This report presents data collected during the investigation including a summary of subsurface conditions, testpit logs, geotechnical and geochemical laboratory test results, estimated quantities, and assessments of each potential source.

Tetra Tech also completed a geotechnical investigation program for the project's three potential watercourse crossings: Oscar Creek, Tributary 1, and Tributary 2. The results and findings from this program are presented in a separate Tetra Tech data report titled Oscar Creek Bridge Relocation Geotechnical Investigation Data Report (Tetra Tech 2020a). Geotechnical recommendations for the OCB and its two associated crossings are presented in Tetra Tech's recommendations report titled Oscar Creek Bridge Relocation and Tributary Crossings Geotechnical Recommendations Report (Tetra Tech 2020b).

1.2 Project Description

The MVWR is a 483 km long public winter road that connects the Sahtu Region of the Northwest Territories. It extends from Wrigley (km 690) to Fort Good Hope (km 1173). The winter road is constructed and maintained by the GNWT on an annual basis and typically operates from late January to mid-March. One of the major crossings along the MVWR between Norman Wells (km 1026) and Fort Good Hope (km 1173) is at Oscar Creek near km 1054. The project involves potentially relocating the existing OCB upstream of the current location and realigning a section of the MVWR between km 1051 and km 1056.

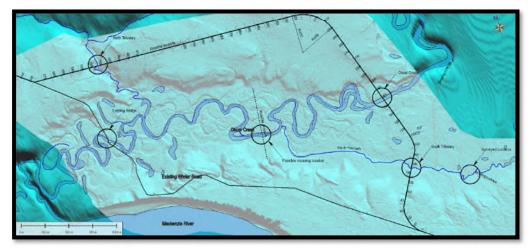


Figure A: Proposed Oscar Creek Bridge Relocation.

The project area is located northeast of the existing Oscar Creek crossing, at approximate coordinates of 575,400 m Easting and 7,258,600 m Northing in Zone 9 of the Universal Transverse Mercator (UTM) Grid. The horizontal datum for the project is the North American Datum 1983 (NAD83), CSRS (2010). The project location is shown in Figure 1.

The granular investigation program was completed between January 11 to 13, 2020. Testpit logging, sampling, and onsite supervision was completed by Atif Rafiq, from Tetra Tech's Yellowknife office. Construction of site access and excavation of the testpits was completed by HRN Contracting Ltd. (HRN) of Norman Wells, NT, as a subcontractor to Tetra Tech. Initial site layout and survey support for the project was provided by Sub-Arctic Geomatics Ltd. from Yellowknife, NT. Onsite environmental and wildlife monitoring was provided throughout the project by the Norman Wells Renewable Resource Council. All work was carried out in accordance with the project's Land Use Permit S18X-004, obtained by the GNWT.

1.3 Scope of Work

Tetra Tech's scope of work involved conducting a granular investigation to assess and quantify granular resources at each granular prospect. Based on Tetra Tech's proposal (dated February 21, 2019) the following tasks were undertaken for each prospect site:

- Review available background information including historical borehole logs, air photos, and other imagery;
- Subcontract a team to provide site access, testpitting, and survey support during the project;
- Undertake testpitting at three prospective granular sources to assess the availability of granular material for the project, including 33,000 m³ of Common Fill and 700 m³ each of Granular Class 1 and Class 3 materials;
- Describe surficial and subsurface conditions encountered during the granular investigation and prepare testpit logs;
- Complete geotechnical and geochemical laboratory testing on samples collected from the investigation program including moisture contents, particle size distributions, petrographic analyses, and Los Angeles abrasion testing as well as metal leaching (ML) and acid rock drainage (ARD) testing; and
- Prepare a geotechnical assessment report summarizing the investigation results, including testpit locations, logs, laboratory results, site stratigraphy, volume estimations, aggregate assessments, and prospect development recommendations.

2.0 SITE DESCRIPTION

Oscar Creek drains a large catchment area that extends from the Discovery Ridge mountain range. The large watershed results in substantial stream flows through the summer and fall, particularly during spring freshet. In winter, there is continuous (perennial) flow of water under the ice. The creek features numerous active flood plains along the inner bends of its meanders that are composed of alluvial sands and gravels. Exposed bars of alluvial materials are also scattered throughout the stream channel. The surrounding terrain consists of densely vegetated lowlands with occasional swampy areas. All three prospects were within an area previously impacted by forest fires.

2.1 Regional Geology

Oscar Creek lies within the Mackenzie Plain, an accessible mid-section within the Mackenzie Valley that extends north and south of Norman Wells. Mackenzie Plain overlies the southern peel trough between the arc of the Cordillera (Mackenzie Mountains) to the west and the flank of the Keele Arch (Franklin Mountains) to the east. A

westward thickening wedge of Cretaceous-Tertiary strata overlies a broad Lower Paleozoic syncline with a gently dipping eastern limb and a more steeply dipping western limb rising to outcrop as the front ranges of the Mackenzie Mountains. Lower Paleozoic strata outcropping in the Franklin Mountains border the peel trough to the east.

The trough widens to the northwest where the Mackenzie Mountains swing westwards. The Mackenzie Foldbelt in this northern area extends beneath Mackenzie Plain. To the south, the trough becomes increasingly constricted as the Franklin Mountains reach a terminus close to the Mackenzie Mountain front at about 64°N. The entire region has been affected by compressional tectonics, expressed as long wavelength folds (especially in the north), bedding-parallel detachments (beneath Mackenzie Plain), and thrust faults outcropping in the Franklin Mountains.

2.2 Permafrost Conditions

The project area is located within the extensive discontinuous permafrost zone (NRC 2009). The extensive discontinuous zone indicates that permafrost is commonly present over 50% to 90% of the area. Permafrost in this zone is only expected in undisturbed, poorly drained areas with organic cover. Where present, the average temperature of the permafrost is expected to be very close to 0°C. The seasonal active layer in the area is estimated to be up to 3.0 m thick (EBA 1974).

Frozen ground conditions, below the depth of seasonal freezing, was identified in several testpits during the granular prospects investigation. Other recent geotechnical investigations by Tetra Tech at the proposed Oscar Creek and Tributary 2 crossings, found frozen conditions in four out of the five boreholes drilled. Measured ground temperatures at both of these locations indicate that the permafrost is warm with temperatures just below freezing between -0.1°C and -0.9°C (Tetra Tech 2020a).

2.3 Climate

Environment Canada operates a meteorological station at Norman Wells with records available from 1944 to today. The mean annual air temperature for the period of record is -5.6°C, which has been gradually increasing since first recorded. The temperature warming trend was analyzed using linear interpolation of the average annual temperature data between 1944 to 2019. The average rate of increase has been 0.03°C/year over the period of record, with the biggest increase occurring between the months of October to April. Over the past 30 years, the mean annual air temperature has been -4.8°C.

For the period of record, the freezing index has decreased by about 12.8°C-days/year, while the thawing index has increased by about 2.6°C-days/year. Using the published data from Environment Canada, it is determined that Norman Wells has an average freezing index of 3,542°C-days/year and an average thawing index of 1,816°C-days/year over the past 30 years (1990 to 2019). The freezing index has decreased by about 31°C-days/year and the thawing index has increased by about 4°C-days/year over the past 30 years, though there is a lot of variability in the data. The mean annual total precipitation over the period of record (1944 to 2019) is about 313 mm/year.

3.0 GRANULAR PROSPECTS INVESTIGATION

3.1 Site Access

The project area, northeast of the proposed OCB, has many existing cutlines that were established for past seismic and granular resource investigations. Older cutlines were used, where possible, to access each prospect. The main south-north trail from the MVWR splits in two directions near the Tributary 1 crossing. The west cutline leads to the proposed OCB crossing location and Prospect 1 while the other cutline continues north to Prospects 2 and 3.

HRN provided slashing crews to establish cutline access to each prospect. Cutlines were leveled and compacted with a tracked bulldozer to allow access for testpitting equipment and pickup trucks.

3.2 Testpit Locations

Three granular prospects were investigated and a total of 22 testpits were excavated. Testpit locations are shown on plan views for each prospect in Figures 2, 3, and 4. Testpit coordinates and elevations are shown in the Tables section and summarized in Table 3-1 below.

	Testait Ne	Coordinates [UTM NAD83 Z9, CSRS (2010)]		Ground Surface	Excavated Depth
Prospect No.	Testpit No.	Northing (m)	Easting (m)	Elevation (m)	(m)
	PR1-TP01	7,258,088	575,262	71	4.0
	PR1-TP02	7,258,111	575,333	66	4.0
-	PR1-TP03	7,258,131	575,395	67	3.0
4	PR1-TP04	7,258,164	575,325	65	4.0
1	PR1-TP05	7,258,409	575,189	71	4.0
-	PR1-TP06	7,258,218	575,218	72	4.0
-	PR1-TP07	7,258,370	575,152	74	4.0
-	PR1-TP08	7,258,321	575,197	72	4.0
	PR2-TP01	7,259,615	576,659	101	4.0
-	PR2-TP02	7,259,603	576,601	99	4.0
2	PR2-TP03	7,259,639	576,578	102	4.2
-	PR2-TP04	7,259,602	576,527	104	4.5
-	PR2-TP05	7,259,636	576,502	104	4.2
	PR3-TP01	7,259,927	575,127	111	4.2
-	PR3-TP02	7,259,947	575,055	107	4.0
-	PR3-TP03	7,260,013	575,172	109	4.0
-	PR3-TP04	7,260,023	575,071	105	4.5
3	PR3-TP05	7,260,844	575,345	116	4.0
	PR3-TP06	7,260,908	575,336	117	4.5
	PR3-TP07	7,260,890	575,309	117	3.5
	PR3-TP08	7,260,947	575,291	114	4.5
	PR3-TP09	7,260,981	575,247	112	4.0

Table 3-1: Testpit Information Summary

Following the completion of excavating, the testpit locations were recorded with a handheld Garmin global positioning system (GPS) receiver. The testpit coordinates as well as ground surface and completion elevations are presented on the testpit logs in Appendix B.

3.3 **Testpitting Methodology**

Testpitting was completed using a John Deere 270D LC excavator, owned and operated by HRN, at all three granular prospects. Locations of each testpit were staked by the survey team prior mobilizing to site. Testpits

were excavated to the base of the target deposits or to the maximum reach of the excavator (approximately 4.5 m below grade). Excavations were then measured with a graduated metric rod and photographed.

Following completion, each testpit was backfilled with the excavated material and nominally compacted and shaped by bucket to match the original ground surface. In locations where topsoil or other organics were present, the organic material was stockpiled separately during testpitting was replaced over the backfilled excavation. Backfill was mounded over the areas of the excavation to compensate for settling of the replaced soil.

3.4 Geotechnical Logging and Sampling

Testpits were logged, sampled, and photographed at each excavation location to ensure accurate classification of the granular materials and ground ice encountered. The thickness of each stratigraphic layer was measured and recorded during the excavation of each testpit.

Granular materials were logged according to the Modified Unified Soil Classification system and Tetra Tech's Work Method *WM4400 – Geotechnical Soil Classification*. Frozen state of the soils were described according to the NRCC Ground Ice Classification system and Tetra Tech's Work Method *WM4102 – Logging of Perennially Frozen Soils and Ground Ice for Engineering Purposes*. Geotechnical logging consisted of identifying the following parameters:

- Soil Composition;
- Particle Size;
- Angularity/Shape;
- Moisture;
- Consistency;

- Plasticity;
- Colour;
- Odour;
- Frozen/Unfrozen State; and
- Ground Ice Description.

Testpit logs and a summary of the classification systems are included in Appendix B. Select photographs of recovered samples are included in the Photographs section of this report.

As each testpit was excavated, representative soil samples were obtained from each stratigraphic layer for offsite laboratory analysis. A minimum of five samples per 100,000 m³ of estimated borrow fill were collected for testing. Samples were typically collected from the backwall of the testpit, using the excavator's bucket, and were retrieved once brought to the surface. The disturbed bulk samples were then placed in plastic bags, double-bagged for moisture preservation, and transported to Tetra Tech's materials laboratory in Yellowknife for geotechnical laboratory testing.

3.5 Geotechnical Laboratory Testing

Geotechnical laboratory testing was completed in Tetra Tech's Yellowknife and Edmonton laboratories to gauge the material's suitability for use as granular fill and aggregate. The geotechnical laboratory testing program included the following:

- Moisture Contents;
- Particle Size Analyses (Sieves) with Crush (Fracture) Counts;
- Los Angeles Abrasion of Small-Size Coarse Aggregates; and
- Petrographic Analyses of Coarse Aggregates.

A summary of all geotechnical laboratory testing completed for the program is presented in the Tables section of this report and shown on the testpit logs in Appendix B. Detailed laboratory results for all geotechnical testing are available in Appendix C.

3.5.1 Moisture Contents

Moisture contents were determined on 50 soil samples from all 22 testpits and were tested in accordance with ASTM D2216. Moisture content results are included on the geotechnical laboratory test results summary in the Tables section and are presented on the testpit logs in Appendix B.

3.5.2 Particle Size Analyses with Crush Counts

Particle size analyses (sieves) were performed on selected samples to characterize the granular materials sampled throughout the investigation. Thirty-one sieve analyses were completed in accordance with ASTM D422 and C136. Crush (fracture) counts for two faces were also determined on 28 samples during the analyses. Sieve test results and crush counts are summarized in Table 3-2 below.

Prospect No.	Testpit No.	1		Moisture Content	Fine Grained (%)		Co	ned	Crush Count (2 Faces)	
NO.		From	То	(%)	Clay	Silt	Sand	Gravel	Cobbles	(%)
	PR1-TP01	1.0	4.0	4.4		1		40	0	14
	PR1-TP02	0.4	2.0	11.4	4	1	86	10	0	31
1	PR1-TP03	0.4	3.0	4.7	1	5	55	30	0	77
	PR1-TP04	0.4	4.0	2.1	4	2	27	71	0	68
	PR1-TP05	1.0	2.0	4.1	1		81	18	0	61
	PR1-TP06	2.8	4.0	3.4	6		59	35	0	66
	PR1-TP07	1.0	4.0	2.8	Ę	5	34	61	0	75
	PR1-TP08	1.5	4.0	3.1	4		52	44	0	66
	PR2-TP01	0.4	2.0	9.3	1	6	6	78	0	21
	1112-11-01	2.0	4.0	8.2	2	9	35	36	0	51
	PR2-TP02	0.8	1.5	6.0	Q	9	14	51	26	97
2	1112 11 02	1.5	4.0	3.9	Ę	5	40	55	0	33
2	PR2-TP03	1.0	1.8	5.5	Ç	9	19	72	0	90
-	11/2 11 00	1.8	4.2	4.9	8	3	22	61	9	92
	PR2-TP04	1.2	4.5	4.1	3	3	57	40	0	26
	PR2-TP05	1.6	4.2	5.3	6	6	47	47	0	42

Table 3-2: Particle Size Analyses Test Results

Prospect No.	Testpit No.	Depth (m)		Moisture Content	Fine Grained (%)		C	ned	Crush Count (2 Faces)	
NO.		From	То	(%)	Clay	Silt	Sand	Gravel	Cobbles	(%)
	PR3-TP01	1.4	4.2	4.1	2	2	22	76	0	-
	PR3-TP02	1.0	1.3	18.0	6	6	31	3	0	56
	FR3-IFU2	1.3	4.0	4.5	Ę	5	32	63	0	16
	PR3-TP03	0.5	1.6	2.5	2	2	23	75	0	31
		1.6	4.0	2.9	2		24	74	0	19
	PR3-TP04	0.6	4.5	3.7	2	2	18	80	0	-
	PR3-TP05	0.4	2.0	3.2	2	2	17	81	0	71
3	FK3-1F03	2.0	4.0	4.1	1		35	64	0	9
	PR3-TP06	2.0	3.5	4.6	4	1	76	20	0	82
	FK3-1F00	3.5	4.5	2.7	-		26	73	0	10
	PR3-TP07	0.6	3.5	6.2	Ę	5	22	73	0	-
	PR3-TP08	1.2	3.8	5.2	4	1	60	36	0	87
	113-1600	3.8	4.5	3.2	3	3	27	70	0	81
	DD3-TD00	1.0	2.0	3.2	2	2	23	75	0	83
	PR3-TP09	2.0	4.0	4.8	4	1	68	28	0	88

Table 3-2: Particle Size Analyses Test Results

It should be noted that particle size analyses were typically undertaken only on samples with particle sizes less than 20 mm in diameter. All gradation estimates over 20 mm in diameter are based on visual field observations and may not be an accurate representation.

3.5.3 Los Angeles Abrasion

Los Angeles Abrasion testing of small-size coarse aggregates was performed on combined samples from each granular prospect. Testing was completed in accordance with ASTM C131 and results are summarized in Table 3-3 below.

Prospect Combined No. Sample No	Combined		Mass of I	ndicated Sizes (g)		Loss (%)	
	Sample NO.	40 – 25 mm	25 – 20 mm	20 – 12.5 mm	12.5 – 10 mm		
1	2 – 16	1,260.7	1,252.4	1,249.8	1,244.2	30	
2	18 – 30	1,241.3	1,248.8	1,253.0	1,252.2	33	
3	34 – 52	1,264.4	1,258.9	1,250.5	1,243.1	31	

Table 3-3: Los Angeles Abrasion Test Results

3.5.4 Petrographic Analyses

Petrographic Analyses of coarse aggregates were performed on combined testpit samples from each granular prospect. Analyses were completed in accordance with Canadian Standards Association (CSA) A23.2-15A and results are summarized below in Table 3-4.

Prospect	Combined Sample			Petrographic N	umber	
NO.	No. No.	25 – 19 mm	19 – 12.5 mm	12.5 – 9.5 mm	9.5 – 4.75 mm	Weighted Average
1	2 - 16	Not Tested	141	133	143	140
2	18 - 30	Not Tested	Not Tested	129	119	125
3	34 - 52	205	234	185	164	204

Table 3-4: Petrographic Analyses Test Results

3.6 Geochemical Characterization Testing

Preliminary geochemical characterization analyses were completed for each prospect to identify ML and ARD potential of the granular materials. Geochemical testing for ML and ARD potential was completed by ALS Canada Ltd. of North Vancouver, British Columbia.

Nine samples of the excavated materials from Prospects 1, 2, and 3 were submitted for acid-base accounting (ABA) analysis, trace element analysis by Inductively Coupled Plasma Mass Spectrometry, and shake flask extraction (SFE) analysis. All samples are described as granular materials with variable parent lithological sources. Detailed results and lab certifications from ML/ARD testing carried out on samples from Prospect 1, 2, and 3 are presented in Appendix D.

The ABA results indicate that all samples submitted are Non-Acid Generating (NAG) based upon either Sobek Neutralization Potential Ratios (NPR) or Carbonate NPR values. The average Sobek NPR value for the samples is 392 and the average Carbonate NPR value is 406. Sulphur content is low to moderate with most of the sulphur in the form of sulphides, with a maximum total sulphur content of 0.12% in any of the samples. The carbonate contents in the samples are moderate to high. Sobek Neutralization potential and Carbonate Neutralization potential are approximately the same, indicating that most NPR comes from carbonate and not a lot is contributed from silicates or other sources.

The results of the total elemental analysis were compared against average crustal abundance values for all rock types. Elemental concentrations exceeding the average crustal abundance values by greater than an order of magnitude are flagged for further consideration. Concentrations of various elements including Silver (Ag), Arsenic (As), Molybdenum (Mo), Thallium (Th), Barium, Beryllium (Be), Calcium (Ca), Cadmium (Cd), Manganese (Mn), Sulphur (S), antimony (Sb), and Uranium (U) are elevated above the average crustal abundance in select samples. Molybdenum (Mo) is greater than the average crustal abundance value by slightly more than an order of magnitude in samples PR2 CS3 and PR3 CS1. Selenium (Se) is greater than the average crustal abundance value by more than an order of magnitude in all samples.

The results of the SFE analysis were compared against the Canadian Council of Ministers of the Environment (CCME) *Canadian Water Quality Guidelines for the Protection of Aquatic Life* (CCME 2017) and the British Columbia Ministry of Environment approved water quality guidelines (BC 2019) for freshwater aquatic life as reference points for dissolved concentrations in the leachate from the test samples. Concentrations exceeding the guideline values by greater than an order of magnitude are flagged for further consideration. Elevated concentrations of dissolved metals in the SFE analysis do not necessarily result in elevated constituents in a field setting; however, it can be used to identify which leachable constituents may be of future concern. This test work and analysis does not take into account the water chemistry, dilution volumes, or long-term metal dissolution for evaluating the impact of ML potential on surface water receptors. Concentrations of dissolved Fluoride (F) show minor exceedances above the CCME guideline value in all samples, the guideline value for fluoride is 0.12 mg/L,

and values from sample analyses range from 0.12 mg/L to 0.49 mg/L. Concentrations of leachable Aluminium (Al) are elevated above the CCME guideline in samples from Prospect 2 (PR2-CS1, PR2-CS2) and Prospect 3 (PR3-CS3), the guideline value for aluminum is 0.10 mg/L and concentrations in samples exceeding the guideline range from 0.11 mg/L to 0.18 mg/L. Concentrations of leachable Selenium (Se) are elevated above the CCME guideline in samples from Prospect 2 (PR3-CS1, PR3-CS2, PR3-CS3), the guideline value for selenium is 0.0010 mg/L and concentrations in samples exceeding the guideline value for selenium is 0.0010 mg/L and concentrations in samples exceeding the guideline to 0.0017 mg/L to 0.0023 mg/L.

The materials represented by the samples in this characterization program are at a low risk of producing ML and ARD. The risks associated with ML/ARD will depend on the final excavated and placed material volumes, construction uses, and location of placement. Larger volumes of disturbed rock materials may translate to increased metal loading. The risks to aquatic life associated with ML and ARD are increased when the disturbed rock materials are placed proximal to surface water receptors. If required, ML/ARD risks can be mitigated by placing construction materials sub-aqueously to limit the reactions and weathering which produce ML/ARD.

4.0 GRANULAR PROSPECT CONDITIONS

Surface and subsurface conditions for each granular prospect are summarized herein based on results from the geotechnical investigation. The locations of each granular prospect relative to the Oscar Creek site are shown in Figure 1. A plan view of each granular prospect showing locations of the testpits excavated are presented in Figures 2, 3, and 4. Geotechnical data is shown on the testpit logs in Appendix B and laboratory test results in Appendix C.

4.1 Prospect 1

Prospect 1 is located approximately 2.4 km north of the MVWR and about 500 m past the proposed OCB location. A plan view of the granular prospect showing locations of the testpits excavated are presented in Figure 2.

4.1.1 Surface Conditions

The Prospect 1 site covers a 12.4 hectare (ha) area that encompasses alluvial plains from nearby Oscar Creek (PEMCAN 1973). The site is characterized by several shallow terraces that border the active stream channel, which meanders north to south at the location. The terraces contain alluvial deposits comprised of sands, gravels, and silts. Several scarps are present along the edges of the plain adjacent to the creek. Topsoils and organic silts support relatively dense growths of spruce, poplar, and various smaller brush.

4.1.2 Subsurface Conditions

A total of eight testpits (PR1-TP01 to PR1-TP08) were excavated in Prospect 1 to profile the subsurface. The granular materials encountered predominantly consisted of sands and gravels with trace silt components and up to 30% cobble and boulder-sized particles. Sands were typically well-graded and brown to grey in colour. Gravels were fine-grained and subrounded to rounded in shape. The area features organic topsoil layers at the surface that were up to 300 mm thick. Table 4-1 below presents a summary of the estimated granular distributions from each Prospect 1 testpit.

Testpit No.	Granular Material Depth (m)		Fine Grained (%)		С	Crush Count (2 Faces)		
	From	То	Clay	Silt	Sand	Gravel	Cobbles	(%)
PR1-TP01	0.2	4.0	1		41	28	30	14
PR1-TP02	0.1	4.0	4		77	9	10	31
PR1-TP03	0.2	3.0	12		44	24	20	77
PR1-TP04	0.2	4.0	1		19	50	30	68
PR1-TP05	0.4	4.0	1		69	15	15	61
PR1-TP06	0.3	4.0	5	;	50	30	15	66
PR1-TP07	0.2	4.0	4	ŀ	27	49	20	75
PR1-TP08	0.1	4.0	3	}	47	40	10	66
Prospect 1 Average			4	l.	47	30	19	57

Table 4-1: Prospect 1 Estimated Granular Properties

Cobbles and boulders proportions (i.e., material greater than 19 mm in diameter) were based on field observations and could not be representatively sampled. Los Angeles Abrasion testing loss was 30% and the weighted average Petrographic Number was 140 for a combined, 19 mm minus sample from all Prospect 1 testpits.

4.2 Prospect 2

Prospect 2 is located immediately adjacent to the east bank of Oscar Creek, approximately 3.4 km north of the MVWR. It is bounded by Oscar Creek to the west and the steep escarpment of the Franklin Mountains to the north and east. A plan view of Prospect 2 showing locations of the completed testpits is presented in Figure 3.

4.2.1 Surface Conditions

The Prospect 2 site consists of terraced deposits that are likely remnants of a previous glaciofluvial delta (PEMCAN 1973). The prospect covers an area approximately 36.9 ha with several existing cutlines throughout. The area and adjacent terrain appears to be well-drained to the south and west. Granular materials within the terrace remnants consist of clean gravels and sands overlain by a thin topsoil layer. The area is densely forested with spruce, birch, and poplar trees up to 12 m in height as well as smaller brush and grass growth.

4.2.2 Subsurface Conditions

Five testpits were excavated within Prospect 2 to interpret the subsurface conditions. The materials encountered primarily consisted of gravel and cobbles with some sand and trace fine components. Gravels were coarse grained and subrounded to rounded. Particles larger than 19 mm in diameter (i.e., cobbles and boulders) made up to 55% of the subsurface in some areas of the prospect. Sands were poorly graded and grey-brown in colour. The area was overlain with organics (topsoil) and underlying sandy silts up to a total thickness of 400 mm. A summary of the estimated granular distribution for Prospect 2 is included in Table 4-2 below.

Testpit No.	Granular Material Depth (m)		Fine Grained (%)		С	oarse Grain (%)	Crush Count (2 Faces)	
	From	То	Clay	Silt	Sand	Gravel	Cobbles	(%)
PR2-TP01	0.4	4.0	1	9	18	48	15	36
PR2-TP02	0.3	4.0	:	5		26	55	65
PR2-TP03	0.3	4.2		7	14	44	35	91
PR2-TP04	0.3	4.5		2	40	28	30	26
PR2-TP05	0.4	4.2		4	33	33	30	42
Prospect 2 Average				7	24	36	33	57

Table 4-2: Pros	pect 2 Estimated	Granular Properties
-----------------	------------------	----------------------------

The proportions of granular material greater than 19 mm in size (i.e., cobbles and boulders) were estimated visually in the field as they could not be representatively sampled. Los Angeles Abrasion testing loss was 33% for a combined, 19 mm minus sample from all Prospect 2 testpits. The same combined sample had a weighted average Petrographic Number of 125.

4.3 Prospect 3

Prospect 3 is located at the base of the Franklin Mountain range and on the west side of the Oscar Creek. The summit of Mount Morrow rises sharply from the northwest corner of the site. Access to the prospect is approximately 4.3 km north of the MVWR. Figure 4 shows a plan view of Prospect 3 including locations of the completed testpits.

4.3.1 Surface Conditions

Prospect 3 also consists primarily of granular deposits from glaciofluvial delta remnants, similar to Prospect 2 (PEMCAN 1973). The prospect covers an area approximately 181.1 ha and contains several existing cutlines. Granular materials comprise of well-graded sands and gravels with trace silt components. Granular materials are overlain by a thin layer of organic topsoil. The site is fully forested and contains dense growth of spruce, birch, and poplar trees as well as smaller shrubs and grasses. The terrain slopes gradually to the southwest, and the terraces overlooking Oscar Creek feature elevation changes of up to 20 m. The site area and adjacent terrain show good surface drainage to the east and southwest.

4.3.2 Subsurface Conditions

Prospect 3 was investigated with nine testpits to classify the subsurface. Granular materials encountered in the testpits consisted of gravel with sandy and some cobble components. Gravels were coarse grained and subrounded to rounded. Sands were poorly graded and brown in colour. Cobbles and larger diameter particles made up to 25% of the subsurface in some areas of the prospect. Prospect 3 was overlain with organics (topsoil) and underlying sandy silts up to a combined thickness of 1.0 m. A summary of the estimated granular distribution for Prospect 3 is included in Table 4-3 below.

Testpit No.	Granular Material Depth (m)		Fine Grained (%)		С	Crush Count (2 Faces)		
-	From	То	Clay	Silt	Sand	Gravel	Cobbles	(%)
PR3-TP01	0.1	4.2		1		57	25	-
PR3-TP02	0.3	4.0	4	4	27	54	15	36
PR3-TP03	0.5	4.0	2		17	56	25	25
PR3-TP04	0.6	4.5	2	2	14	64	20	-
PR3-TP05	0.4	4.0		1	24	65	10	40
PR3-TP06	0.5	4.5	2	2	41	37	20	46
PR3-TP07	0.6	3.5	4	4	18	58	20	-
PR3-TP08	0.5	4.5	:	3		42	20	84
PR3-TP09	1.0	4.0	2	2	39	44	15	86
Prospect 3 Average				2	26	53	19	53

Table 4-3: Prospect 3 Estimated Granular Properties

Cobbles and boulders proportions (i.e., material greater than 19 mm in diameter) were based on field observations and could not be representatively sampled. Los Angeles Abrasion testing loss was 31% and the weighted average Petrographic Number was 204 for a combined, 19 mm minus sample from all Prospect 3 testpits.

5.0 GRANULAR PROSPECTS ASSESSMENT

Findings from the geotechnical investigation of the Oscar Creek granular prospects confirmed the availability of granular materials at all three sources and are generally consistent with historical information from previous investigations carried out in 1973 (PEMCAN) and 1974 (EBA). All recommendations provided herein are based on the material criteria outlined in Section 5.1 (below) and the geotechnical laboratory test results presented in Appendix C.

5.1 Material Criteria

The three material types and criteria presented in the request for proposal are outlined below. The suitability of a specific material within a granular prospect depends on the material's gradation, moisture (ice) content, proportion of oversized particles or deleterious materials, if present, and compactability. Criteria for each material type, included:

- Common Fill
 - Low ice and moisture contents; and
 - Free of deleterious materials (i.e., organics).
- Granular Backfill
 - Non-frost susceptible (i.e., thaw stable).
- Granular Aggregates
 - Free of deleterious materials (i.e., organics, low ice content);

- Non-frost susceptible (i.e., thaw stable);
- Crush Count (two fracture faces) of no less than 50%;
- Los Angeles abrasion testing of no greater than 50% loss; and
- Materials must have acceptable percentages of flat and elongated particles.

5.2 Material Availability

Ground conditions at all three prospects generally consist of glaciofluvial and fluvial deposits of sand and gravel underlain by bedrock and overlain by organics. Glaciofluvial materials are sediments deposited by the meltwater from the front of a glacier (outwash), usually in patterns similar to that of braided streams. Fluvial materials are those deposited by flowing water in channels such as Oscar Creek. The sedimentary bedrock underlying the granular materials was not encountered in any of the testpits excavated. The surface organics generally comprised topsoil and peat. The organics are not suitable materials for construction but could be used in non-engineering applications (i.e., landscaping). Organic layer thicknesses were relatively thin at all three prospect sites ranging in thickness from 0.1 m to 0.4 m, averaging 0.2 m.

5.2.1 Common Fill

Overburden materials suitable for common (borrow) fill were identified in all three granular prospects. The material layers investigated would be acceptable for use as common fill, excluding all organic and deleterious materials. The well-graded glaciofluvial sands and gravels would be better utilized for engineered materials such as granular backfill or aggregate, where required.

The materials with higher fines content should be utilized for common fill as these are not suitable for other purposes. The ground ice content observed within these layers was low and decreased with depth, and moisture contents were low (dry to moist) meaning the material can readily be placed and compacted during the winter months. The well-graded sand materials can be compacted to a relatively dense state in unfrozen conditions.

5.2.2 Granular Backfill

Glaciofluvial sands and gravels, suitable for granular backfill, were encountered in all three prospect locations. The deposits in Prospects 2 and 3 generally consist of well-graded gravels and with components of coarse-grained sands up to depths of 4.5 m. Prospect 1 predominantly consists of well-graded gravels and sands up to depths of 4.0 m.

Low fines content materials are generally considered to be non-frost susceptible and thaw stable. The glaciofluvial materials generally exhibit a low fines content (less than 9%), except within one testpit in Prospect 1 (PR1-TP03) and one testpit in Prospect 2 (PR2-TP01). All three deposits were noted to have varying proportions of cobble and boulder-sized particles (visual estimates of 10% to 55% by volume). Materials larger than 25 mm diameter would need to be screened or crushed prior to use as granular backfill.

All three granular prospects exhibited materials suitable for use as granular backfill; however, Prospect 3 is recommended as the best source for granular backfill due to having the lowest estimated proportions of fines and oversized materials. Prospect 1 is considered the second best source for granular backfill, followed by Prospect 2.

5.2.3 Granular Aggregates

Findings from the investigation program show select areas in each prospect suitable for extracting and processing granular aggregates. All three prospect locations yielded Los Angeles abrasion losses below 50%, meeting the

material criteria; however, crush (fracture) count results showed several areas within each prospect that did not meet the minimum requirement of 50%. Two testpits in Prospect 1 (PR1-TP01, PR1-TP02), three testpits in Prospect 2 (PR2-TP01, PR2-TP04, PR2-TP05), and four testpits in Prospect 3 (PR3-TP02, PR3-TP03, PR3-TP05, PR3-TP06) did not meet the minimum crush count following testing.

Based on this, a select area within Prospect 1 is the only recommended material source for granular aggregate. Material extraction should focus around testpits PR1-TP03 to PR1-TP08 as these locations had favourable crush counts. The production of quality granular aggregates, such as surfacing coarse and concrete aggregates, will require selective excavation in these areas if Prospect 1 is to be developed. Producing quality granular aggregates will likely still require some amount of processing (i.e., screening, crushing, and/or washing) to ensure aggregate properties meet specified construction requirements.

5.3 Estimated Material Quantities

Inferred boundaries for each granular prospect were delineated based on a desktop review of air photos, historical borehole logs, and satellite imagery of the Oscar Creek area, as shown in Figure 1. Combining this information with results from the testpitting program, volumes were calculated based on a 50 m radius limit from each testpit. Testpit findings are assumed to be representative of the subsurface within this radius and in areas may extend well beyond the 50 m radius.

Based on the above, it is estimated that the total quantity of available granular materials from Prospects 1, 2, and 3 is approximately 465,000 m³. The estimated granular material quantities for each prospect are summarized below in Table 5-1.

Dreamant	Investigated	Average Granular	Estimated Material	Potential Material Usage			
Prospect No.	Surface Area (m ²)	Material Thickness (m)	Quantity (m ³)	Common Fill	Granular Backfill	Granular Aggregate	
1	50,000	3.7	185,000	\checkmark	✓	\checkmark	
2	15,000	4.0	60,000	\checkmark	✓		
3	55,000	4.0	220,000	\checkmark	✓		
Total	120,000	3.9	465,000		-		

Table 5-1: Estimated Granular Material Quantities

It was previously estimated that Prospects 2 and 3 had available granular materials of $1,146,000 \text{ m}^3$ and $7,645,000 \text{ m}^3$, respectively (PEMCAN 1973); however, these quantities were not able to be verified by this assessment.

6.0 DEVELOPMENT CONSIDERATIONS

The development of granular prospects should follow recommendations provided in the GNWT's *Northern Land Use Guidelines: Pits and Quarries* (GNWT 2015). The following operational guidelines should also be considered during the development of new granular sources:

Prospects 1 and 2 are located in close proximity to Oscar Creek and appropriate sediment and erosion control
measures should be implemented if developed;

- Organics and vegetation should be maintained between prospect areas and Oscar Creek to protect from erosion and sedimentation near the active stream channel;
- Organics and vegetation overlying excavation areas should be cleared, removed, and stockpiled adjacent to the prospect in designated areas;
- Production of higher quality granular aggregates, such as concrete aggregates, will likely require additional processing (i.e., screening, crushing, and/or washing) to ensure aggregates meet the specified construction requirements; and
- Additional geotechnical laboratory testing is recommended if granular aggregates are to be considered for concrete aggregate production, including but not limited to:
 - Clay Lumps (CSA A23.2-2019 3A);
 - Low Density Granular Materials (CSA A23.2-2019 4A);
 - Material Finer than 80µm (CSA A23.2-2019 5A);
 - Soundness of Aggregates using Magnesium Sulphate (CSA A23.2-2019 9A);
 - Percentage of Flat and Elongated Particles (CSA A23.2-2019 13A);
 - Resistance of Coarse Aggregate to Freezing and Thawing (CSA A23.2-2019 24A);
 - Alkali Aggregate Reactivity (CSA A23.2-2019 27A); and
 - Micro Deval Abrasion (CSA A23.2-2019 23A, 29A).

OSCAR CREEK GRANULAR PROSPECTS GEOTECHNICAL ASSESSMENT REPORT FILE: 704-ENG YARC03255-01 | OCTOBER 19, 2020 | ISSUED FOR USE

7.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted,

Tetra Tech Canada Inc.

Prepared by: Atif Rafiq, M.Sc. Project Manager Arctic Engineering Practice Direct Line: 867.675.0261 Atif.Rafiq@tetratech.com

Reviewed by: Ed Grozic, M.Eng., P.Eng. Director, Strategic Projects Arctic Engineering Practice Direct Line: 403.723.6858 Ed.Grozic@tetratech.com

Prepared by: Thomas Bradshaw, P.Eng. Geotechnical Engineer Arctic Engineering Practice Direct Line: 587.460.3602 Thomas.Bradshaw@tetratech.com

TET	RA TECH CANADA INC.
Signature Date	ct 19,2020
NT/NU	MIT NUMBER: P 018 Association of Professional gineers and Geoscientists

/jf

REFERENCES

- Andersland and Ladanyi, 2004. *Frozen Ground Engineering.* Textbook authored by D.M. Andersland and B. Ladanyi. 2nd Edition. January 2004. ISBN 0-471-61549-8.
- BC, 2019. Derivation of Water Quality Guidelines for the Protection of Aquatic Life in British Columbia. Guideline No. WQG-06 prepared by the British Columbia Ministry of Environment and Climate Change Strategy, Water Protection & Sustainability Branch. June 2019. ISBN 978-1-988314-05-1.
- CCME, 2017. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Publication No. 1299 issued by the Canadian Council of Ministers of the Environment. June 2017. ISBN 1-896997-34-1.
- EBA, 1974. Mackenzie Highway Geotechnical Evaluation, Oscar Creek Crossing, Mile 648.9. Report prepared by EBA Engineering Consultants Ltd. for the Government of Canada, Department of Public Works. January 1974. EBA File: 9305-52-37.
- GNWT, 2015. Northern Land Use Guidelines: Pits and Quarries. Guideline prepared by the Government of the Northwest Territories, Department of Lands. September 2015. ISBN 978-0-7708-0231-8.
- GNWT, 2017. *The Mackenzie Valley Winter Road System*. Information handout prepared by the Government of the Northwest Territories, Department of Infrastructure. January 2017.
- NRC, 2009. Atlas of Canada, Permafrost Map. National Atlas of Canada Map prepared by Natural Resources Canada. 6th Edition. January 2009.
- PEMCAN, 1973. Oscar Creek Granular Materials Inventory. Report prepared by PEMCAN Services for the Government of Canada, Department of Indian Affairs and Northern Development. January 1973.
- Robinson, S., Couture, R., and Burgess, M., 2001. *Climate Change, Permafrost, and Community Infrastructure: A Compilation of Background Material from a Pilot Study of Norman Wells, Northwest Territories.* Open report prepared for the Geological Survey of Canada. January 2001. Open File No. 3913.
- Tetra Tech, 2013. *WM4400 Geotechnical Soil Classification*. Tetra Tech Canada Inc. Work Method, Revision No. 03, p. 15. July 2013.
- Tetra Tech, 2018. WM4102 Logging of Perennially Frozen Soils and Ground Ice for Engineering Purposes. Tetra Tech Canada Inc. Work Method, Revision No. 04, p. 34. July 2018.
- Tetra Tech, 2020a. Oscar Creek Bridge Relocation Geotechnical Investigation Data Report. Report prepared by Tetra Tech Canada Inc. for the Government of the Northwest Territories, Department of Infrastructure. June 1, 2020. Tetra Tech Project No. 704-ENG.YARC03255-01.
- Tetra Tech, 2020b. Oscar Creek Bridge Relocation and Tributary Crossings Geotechnical Recommendations Report. Report prepared by Tetra Tech Canada Inc. for the Government of the Northwest Territories, Department of Infrastructure. August 6, 2020. Tetra Tech Project No. 704-ENG.YARC03255-01.

TABLES

- Table A Testpit Information Summary
- Table B
 Geotechnical Laboratory Test Results Summary

TABLE A: TESTPIT INFORMATION SUMMARY

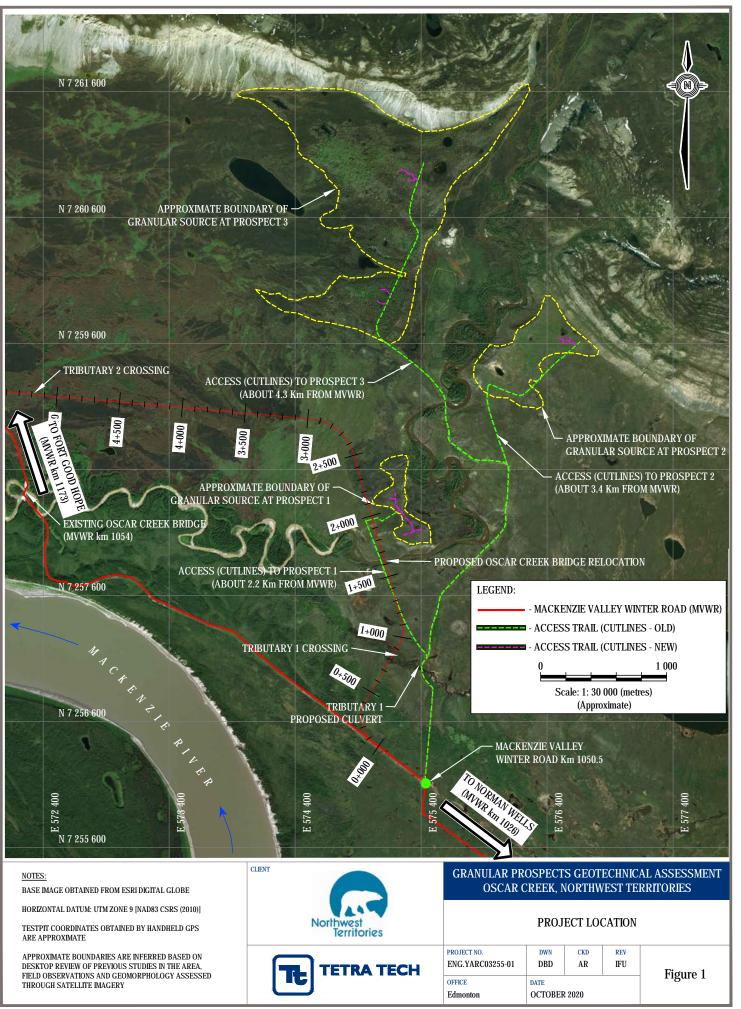
Project: Project No.: Client:	704 Governme	Granular Prospects A 4-ENG.YARC03255-0 ent of the Northwest T)1 erritories	TE TET	RA TECH	UTM Zone: Program Dates: Logged By:	Program Dates: January 11 to 13, 202 Logged By: Atif Rafiq	
Location:	Oscar C	Creek, Northwest Terr	ltories			Total Testpits:		22
Prospect No.	Testpit No.			Ground Surface Elevation	Excavated Depth		Organic Layer Thickness	Excavation Date
		Northing (m)	Easting (m)	(m)	. ,	(m)	(m)	
	PR1-TP01	7,258,088	575,262	71.0	4.0	67.0	0.2	January 13, 2020
	PR1-TP02	7,258,111	575,333	66.0	4.0	62.0	0.1	January 13, 2020
1	PR1-TP03	7,258,131	575,395	67.0	3.0	64.0	0.2	January 13, 2020
	PR1-TP04	7,258,164	575,325	65.0	4.0	61.0	0.2	January 13, 2020
	PR1-TP05	7,258,218	575,218	71.0	4.0	67.0	0.4	January 13, 2020
	PR1-TP06	7,258,321	575,197	72.0	4.0	68.0	0.3	January 13, 2020
	PR1-TP07	7,258,409	575,189	74.0	4.0	70.0	0.2	January 13, 2020
	PR1-TP08	7,258,370	575,152	72.0	4.0	68.0	0.1	January 13, 2020
	PR2-TP01	7,259,615	576,659	101.0	4.0	97.0	0.1	January 11, 2020
	PR2-TP02	7,259,603	576,601	99.0	4.0	95.0	0.3	January 11, 2020
2	PR2-TP03	7,259,639	576,578	102.0	4.2	97.8	0.3	January 11, 2020
	PR2-TP04	7,259,602	576,527	104.0	4.5	99.5	0.3	January 11, 2020
	PR2-TP05	7,259,636	576,502	104.0	4.2	99.8	0.1	January 11, 2020
	PR3-TP01	7,260,013	575,172	111.0	4.2	106.8	0.1	January 12, 2020
	PR3-TP02	7,260,023	575,071	107.0	4.0	103.0	0.1	January 12, 2020
	PR3-TP03	7,259,927	575,127	109.0	4.0	105.0	0.2	January 12, 2020
	PR3-TP04	7,259,947	575,055	105.0	4.5	100.5	0.1	January 12, 2020
3	PR3-TP05	7,260,844	575,345	116.0	4.0	112.0	0.1	January 12, 2020
Γ	PR3-TP06	7,260,908	575,336	117.0	4.5	112.5	0.1	January 12, 2020
Γ	PR3-TP07	7,260,890	575,309	117.0	3.5	113.5	0.2	January 12, 2020
	PR3-TP08	7,260,947	575,291	114.0	4.5	109.5	0.1	January 12, 2020
	PR3-TP09	7,260,981	575,247	112.0	4.0	108.0	0.1	January 12, 2020

TABLE B: GEOTECHNICAL LABORATORY TEST RESULTS SUMMARY

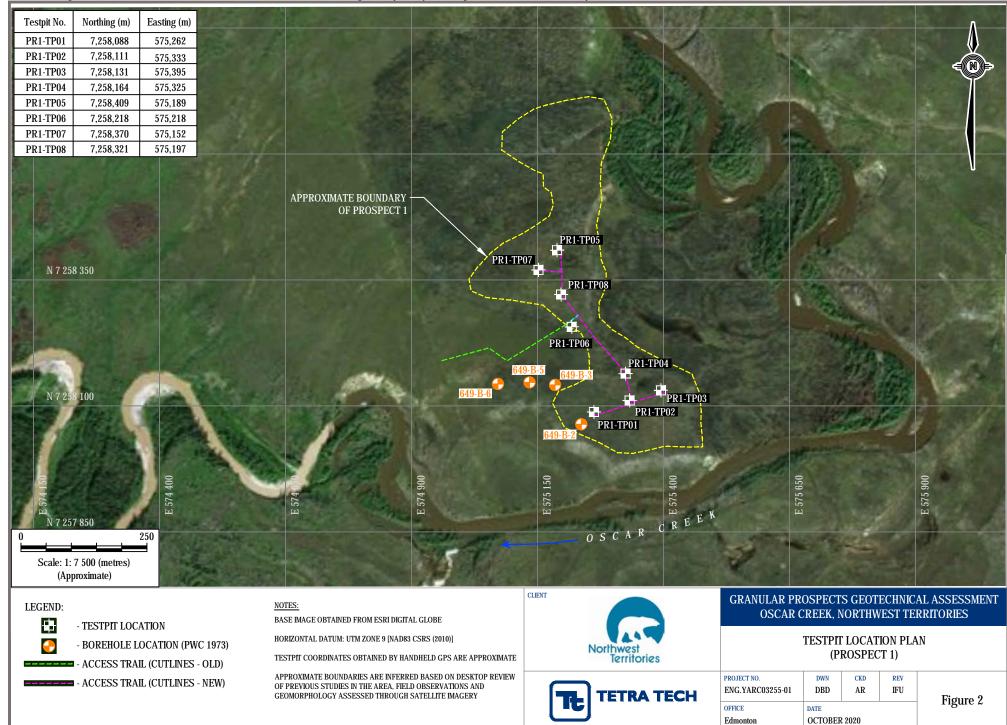
Project:	Oscar Creek Granular Prospects Assessment
Project No:	704-ENG.YARC03255-01
Client:	Government of the Northwest Territories
Location:	Oscar Creek, Northwest Territories

Project: Project No: Client: Location:	ssment ories es	TETRA TECH									Sampled By:		9 January 11 to 13, 2020 Atif Rafiq nife & Edmonton Material Labs			
Prospect No.	Testpit No.	Sample No.	Sample Depth (m)		Moisture Content	Particle Size Distribution (%)					Crush Count (2 Faces)	Los Angeles Abrasion Loss	Petrographic Number			
			From	То	(%)	Cobbles	Gravel	Sand	Silt	Clay	(%)	(%)	19 - 12.5 mm	12.5 - 9.5 mm	9.5 - 4.75 mm	Weighted Average
	PR1-TP01	1	0.0	1.0	19.8											
		2	1.0	4.0	4.4	0	40	59		1	14					
	PR1-TP02	3	0.0	0.4	15.7							30	141	133	143	140
	PR1-TP02	4	0.4	2.0	11.4	0	10	86	4	4	31					
	PR1-TP03	5	0.0	0.4	18.4											
		6	0.4	3.0	4.7	0	30	55	1	5	77					
	PR1-TP04	7	0.0	0.4	9.7											
1		8	0.4	4.0	2.1	0	71	27	1	2	68					
1	PR1-TP05	9	0.5	1.0	12.4		1									
		10	1.0	2.0	4.1	0	18	81		1	61					
	PR1-TP06	11	1.8	2.5	0.4		05	50		<u>_</u>						
		12	2.8	4.0	3.4	0	35	59		6	66					
	PR1-TP07	13	0.4	1.0	20.4											
		14	1.0	4.0	2.8	0	61	34	ţ	5	75					
	PR1-TP08	15	1.0	1.5	2.6											
		16	1.5	4.0	3.1	0	44	52	4	4	66					
	PR2-TP01	17	0.0	0.4	18.8											
		18	0.4	2.0	9.3	0	78	6	1	6	21	33	N/A	129	119	125
		19	2.0	4.0	8.2	0	36	35	2	9	51					
		20	0.2	0.8	4.5		1									
	PR2-TP02	21	0.8	1.5	6.0	26	51	14	(9	97					
		22	1.5	4.0	3.9	0	55	40	Ę	5	33					
2	PR2-TP03	23	0.4	1.0	4.2											
		24	1.0	1.8	5.5	0	72	19	(9	90					
		25	1.8	4.2	4.9	9	61	22	8	8	92					
	PR2-TP04	26	0.0	0.3	22.4											
		27	0.3	1.2	4.0											
		28	1.2	4.5	4.1	0	40	57	:	3	26					
	PR2-TP05	29	0.4	1.6	2.8											
		30	1.6	4.2	5.3	0	47	47	(6	42					

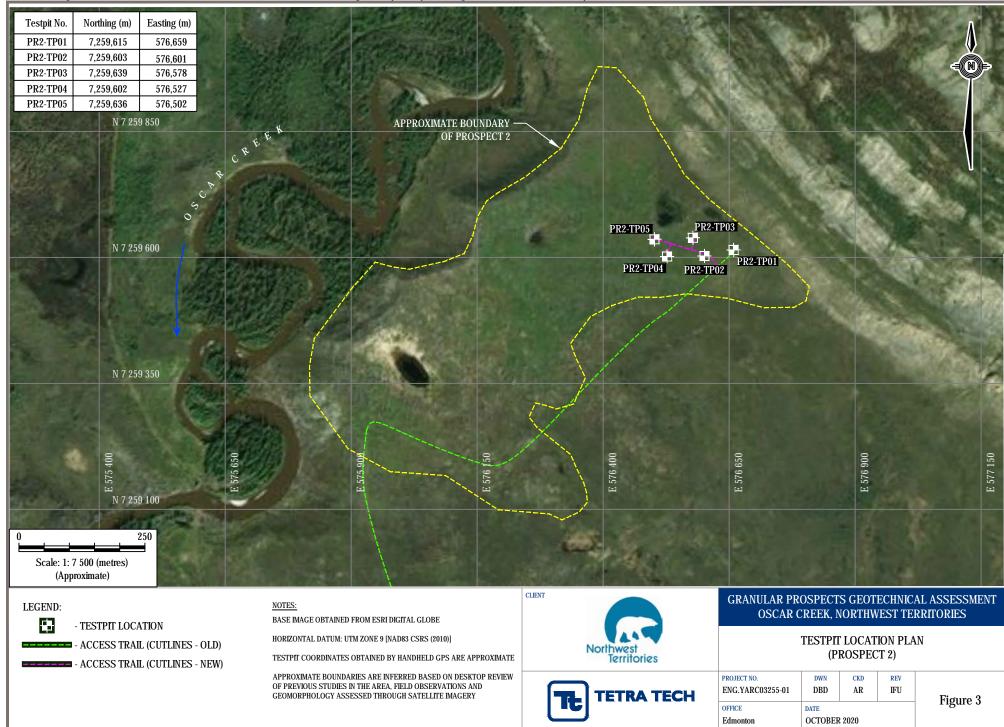
OSCAR CREEK GRANULAR PROSPECTS GEOTECHNICAL ASSESSMENT REPORT FILE: 704-ENG.YARC03255-01 | OCTOBER 2020 | ISSUED FOR USE

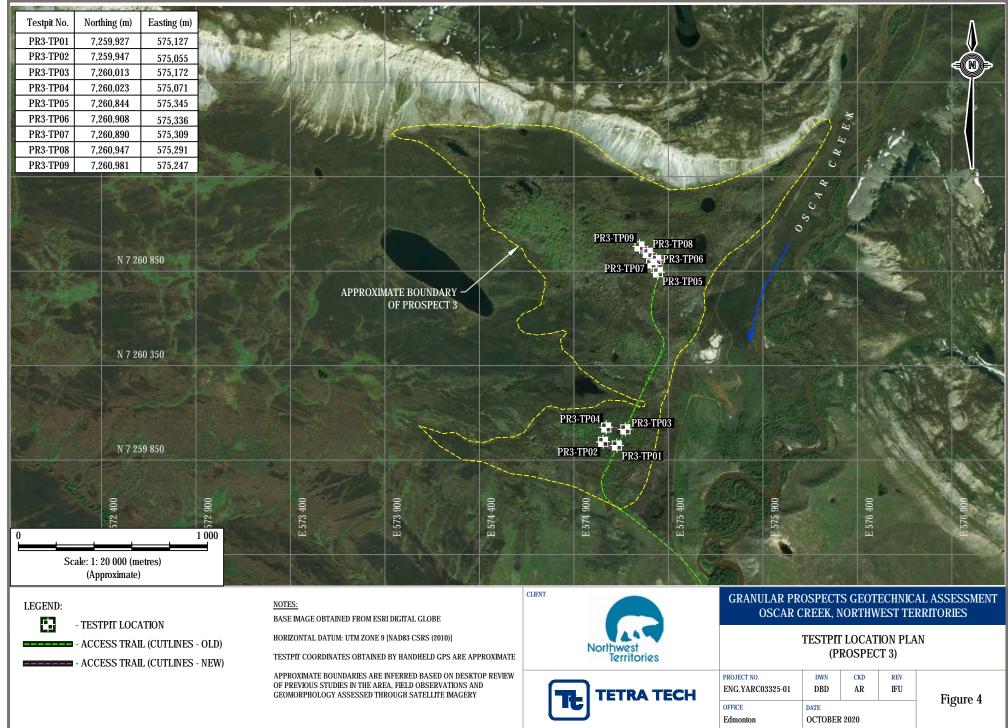

Prospect No.	Testpit No.	Sample No.	Sample Depth (m)		Moisture Content	Particle Size Distribution (%)					Crush Count (2 Faces)	Los Angeles Abrasion Loss	Petrographic Number				
			From	То	(%)	Cobbles	Gravel	Sand	Silt	Clay	(%)	(%)	19 - 12.5 mm	12.5 - 9.5 mm	9.5 - 4.75 mm	Weighted Average	
	PR3-TP01	31	0.4	1.0	3.0												
	FR3-IFUI	32	1.4	4.2	4.1	0	76	22		2							
		33	0.3	1.0	3.0												
	PR3-TP02	34	1.0	1.3	18.0	0	3	31	6	6	56		234	185	164	204	
		35	1.3	4.0	4.5	0	63	32		5	16						
	PR3-TP03	36	0.5	1.6	2.5	0	75	23		2	31						
		37	1.6	4.0	2.9	0	74	24		2	19						
	PR3-TP04	38	0.0	0.6	3.9							31					
3	1105-11-04	39	0.6	4.5	3.7	0	80	18		2							
	PR3-TP05	40	0.4	2.0	3.2	0	81	17		2	71						
		41	2.0	4.0	4.1	0	64	35		1	9						
		42	0.5	2.0	4.2												
	PR3-TP06	43	2.0	3.5	4.6	0	20	76		4	82						
		44	3.5	4.5	2.7	0	73	26		1	10						
	PR3-TP07	45	0.0	0.6	6.7												
		46	0.6	3.5	6.2	0	73	22		5							
		47	0.5	1.2	3.9												
	PR3-TP08	48	1.2	3.8	5.2	0	36	60		4	87						
		49	3.8	4.5	3.2	0	70	27		3	81						
		50	0.0	1.0	15.5												
	PR3-TP09	51	1.0	2.0	3.2	0	75	23		2	83						
	[52	2.0	4.0	4.8	0	28	68		4	88						

OSCAR CREEK GRANULAR PROSPECTS GEOTECHNICAL ASSESSMENT REPORT FILE: 704-ENG.YARC03255-01 | OCTOBER 2020 | ISSUED FOR USE


FIGURES

- Figure 1 Project Location
- Figure 2 Prospect 1 Testpit Location Plan
- Figure 3 Prospect 2 Testpit Location Plan
- Figure 4 Prospect 3 Testpit Location Plan




Q:/Edmonton/Drafting/PROJECTS/704-ENG.YARC03255-01_Oscar Creek/03_Acad/ENG.YARC03255-01 Figure 2_Prospect 1_July 02_2020.dwg [FIGURE 2] October 16, 2020 - 1:24:56 pm (BY: LEE, ELVIN)

Q:/Edmonton/Drafting/PROJECTS/704-ENG.YARC03255-01_Oscar Creek/03_Acad/ENG.YARC03255-01 Figure 3_Prospect 2_July 02_2020.dwg [FIGURE 3] October 16, 2020 - 1:25:08 pm (BY: LEE, ELVIN)

Q:Edmonton/Drafting\PROJECTS\704-ENG.YARC\8255-01_Oscar Creek\03_Acad\ENG.YARC\8255-01 Figure 4_Prospect 3_July 02_2020.dwg [FIGURE 4] October 16, 2020 - 1:25:16 pm (BY: LEE, ELVIN)

PHOTOGRAPHS

Photo 1	Cutline access from proposed Oscar Creek Bridge to Prospect 1
Photo 2	Prospect 1 viewed from cutline access
Photo 3	Excavating Testpit 6 at Prospect 1
Photo 4	John Deere 270D LC excavator used for testpitting
Photo 5	Prospect 1, Testpit 1
Photo 6	Prospect 1, Testpit 2
Photo 7	Prospect 1, Testpit 3
Photo 8	Prospect 1, Testpit 4
Photo 9	Prospect 1, Testpit 5
Photo 10	Prospect 1, Testpit 6
Photo 11	Prospect 1, Testpit 7
Photo 12	Prospect 1, Testpit 8
Photo 13	Prospect 2, Testpit 1
Photo 14	Prospect 2, Testpit 2
Photo 15	Prospect 2, Testpit 2
Photo 16	Prospect 2, Testpit 3
Photo 17	Prospect 2, Testpit 3
Photo 18	Prospect 2, Testpit 4
Photo 19	Prospect 2, Testpit 4
Photo 20	Prospect 3, Testpit 1
Photo 21	Prospect 3, Testpit 1
Photo 22	Prospect 3, Testpit 2
Photo 23	Prospect 3, Testpit 2
Photo 24	Prospect 3, Testpit 3
Photo 25	Prospect 3, Testpit 4
Photo 26	Prospect 3, Testpit 5
Photo 27	Prospect 3, Testpit 6
Photo 28	Prospect 3, Testpit 7
Photo 29	Prospect 3, Testpit 8
Photo 30	Prospect 3, Testpit 9

Photo 1: Cutline access from proposed Oscar Creek Bridge to Prospect 1.

Photo 2: Prospect 1 viewed from cutline access.

Photo 3: Excavating Testpit 6 at Prospect 1.

Photo 4: John Deere 270D LC excavator used for testpitting.

Photo 5: Prospect 1, Testpit 1. Gravel, sandy below 1.0 m depth.

Photo 6: Prospect 1, Testpit 2. Gravel and Sand.

Photo 7: Prospect 1, Testpit 3. Sand, silty underlain by topsoil.

Photo 8: Prospect 1, Testpit 4. Gravel at approximately 1.0 m depth underlain by gravelly sand.

Photo 9: Prospect 1, Testpit 5. Alternating layers of sandy gravel and silty sand.

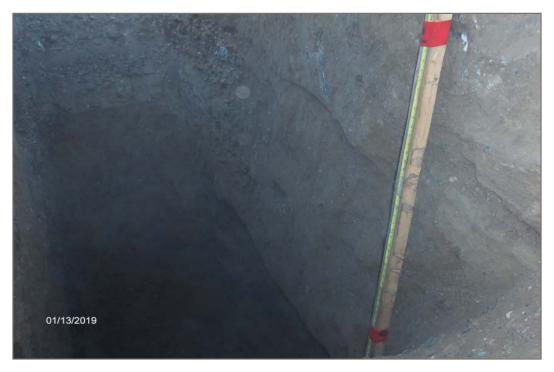


Photo 10: Prospect 1, Testpit 6. Alternating layers of sandy gravel and silty sand.

Photo 11: Prospect 1, Testpit 7. Sand, silty underlain by topsoil and gravels to about 1.0 m depth.

Photo 12: Prospect 1, Testpit 8. Sand, silty underlain by gravel starting at about 1.5 m depth.

Photo 13: Prospect 2, Testpit 1. Gravel, sandy from 0.4 m to 2.0 m depth.

Photo 14: Prospect 2, Testpit 2. Boulder can be seen in left wall.

Photo 15: Prospect 2, Testpit 2. Gravel from 0.8 m to 1.5 m depth.

Photo 16: Prospect 2, Testpit 3. Gravel, sandy from 0.3 m to 4.2 m depth.

Photo 17: Prospect 2, Testpit 3. Gravel, sandy from 0.3 m to 4.2 m depth.

Photo 18: Prospect 2, Testpit 4. Gravel, sandy from 0.3 m to 1.2 m depth.

Photo 19: Prospect 2, Testpit 4. Gravel, sandy from 0.3 m to 1.2 m depth.

Photo 20: Prospect 3, Testpit 1. Gravel, sandy from 0.4 m to 2.0 m depth.

Photo 21: Prospect 3, Testpit 1. Gravel, sandy from 0.4 m to 4.2 m depth.

Photo 22: Prospect 3, Testpit 2. Gravel, sandy from 0.3 m to 4.0 m depth.

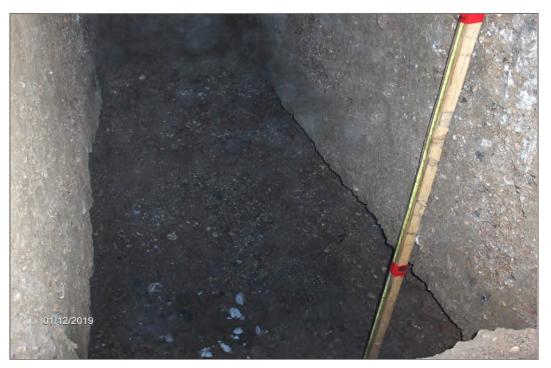


Photo 23: Prospect 3, Testpit 2. Gravel, sandy from 0.4 m to 4.2 m depth.

Photo 24: Prospect 3, Testpit 3. Coarse-grained materials from 0.5 m to 1.6 m depth.

12

Photo 25: Prospect 3, Testpit 4. Gravel from 0.6 m to 4.5 m depth.

Photo 26: Prospect 3, Testpit 5. Gravel, sandy from 0.4 m to 4.0 m depth.

Photo 27: Prospect 3, Testpit 6. Sand and gravel from 0.5 m to 4.5 m depth.

Photo 28: Prospect 3, Testpit 7. Gravel, sandy from 0.6 m to 1.5 and sand, gravelly from 1.5 m to 3.5 m depth.

14

Photo 29: Prospect 3, Testpit 8. Gravel and sand from 0.5 m to 4.5 m depth.

Photo 30: Prospect 3, Testpit 9. Gravel, sandy and sand from 1.0 m to 4.0 m.

APPENDIX A

TETRA TECH'S LIMITATIONS ON USE OF THIS DOCUMENT

GEOTECHNICAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by third parties other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this document, at or on the development proposed as of the date of the Professional Document requires a supplementary exploration, investigation, and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, TETRA TECH has not been retained to explore, address or consider and has not explored, addressed or considered any environmental or regulatory issues associated with development on the subject site.

1.8 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems, methods and standards employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgmental in nature as to both type and condition. TETRA TECH does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

1.9 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

1.10 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historical environment. TETRA TECH does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional exploration and review may be necessary.

1.11 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geological materials to climatic elements (freeze/thaw, wet/dry) and/or mechanical disturbance which can cause severe deterioration. Unless otherwise specifically indicated in this report, the walls and floors of excavations must be protected from the elements, particularly moisture, desiccation, frost action and construction traffic.

1.12 SUPPORT OF ADJACENT GROUND AND STRUCTURES

Unless otherwise specifically advised, support of ground and structures adjacent to the anticipated construction and preservation of adjacent ground and structures from the adverse impact of construction activity is required.

1.13 INFLUENCE OF CONSTRUCTION ACTIVITY

Construction activity can impact structural performance of adjacent buildings and other installations. The influence of all anticipated construction activities should be considered by the contractor, owner, architect and prime engineer in consultation with a geotechnical engineer when the final design and construction techniques, and construction sequence are known.

1.14 OBSERVATIONS DURING CONSTRUCTION

Because of the nature of geological deposits, the judgmental nature of geotechnical engineering, and the potential of adverse circumstances arising from construction activity, observations during site preparation, excavation and construction should be carried out by a geotechnical engineer. These observations may then serve as the basis for confirmation and/or alteration of geotechnical recommendations or design guidelines presented herein.

1.15 DRAINAGE SYSTEMS

Unless otherwise specified, it is a condition of this report that effective temporary and permanent drainage systems are required and that they must be considered in relation to project purpose and function. Where temporary or permanent drainage systems are installed within or around a structure, these systems must protect the structure from loss of ground due to mechanisms such as internal erosion and must be designed so as to assure continued satisfactory performance of the drains. Specific design details regarding the geotechnical aspects of such systems (e.g. bedding material, surrounding soil, soil cover, geotextile type) should be reviewed by the geotechnical engineer to confirm the performance of the system is consistent with the conditions used in the geotechnical design.

1.16 DESIGN PARAMETERS

Bearing capacities for Limit States or Allowable Stress Design, strength/stiffness properties and similar geotechnical design parameters quoted in this report relate to a specific soil or rock type and condition. Construction activity and environmental circumstances can materially change the condition of soil or rock. The elevation at which a soil or rock type occurs is variable. It is a requirement of this report that structural elements be founded in and/or upon geological materials of the type and in the condition used in this report. Sufficient observations should be made by qualified geotechnical personnel during construction to assure that the soil and/or rock conditions considered in this report in fact exist at the site.

1.17 SAMPLES

TETRA TECH will retain all soil and rock samples for 30 days after this report is issued. Further storage or transfer of samples can be made at the Client's expense upon written request, otherwise samples will be discarded.

1.18 APPLICABLE CODES, STANDARDS, GUIDELINES & BEST PRACTICE

This document has been prepared based on the applicable codes, standards, guidelines or best practice as identified in the report. Some mandated codes, standards and guidelines (such as ASTM, AASHTO Bridge Design/Construction Codes, Canadian Highway Bridge Design Code, National/Provincial Building Codes) are routinely updated and corrections made. TETRA TECH cannot predict nor be held liable for any such future changes, amendments, errors or omissions in these documents that may have a bearing on the assessment, design or analyses included in this report.

APPENDIX B

TESTPIT LOGS

				ĺ	MOD	IFIED UNIFIEI	d soil	Cl	ASSIF	FICATION		
МА	Jor Divis	ION	groi Syme			TYPICAL DESCRIPTION				LABORATORY CLASSIFICATION CRITERIA		
	ion	AN ELS	GW	1		raded gravels and gravel nixtures, little or no fines			sP SC assification of dual symbols	$ \begin{array}{c} C_{_{U}} = D_{_{60}}/D_{_{10}} & \mbox{Greater than 4} \\ C_{_{C}} = \ \frac{(D_{_{30}})2}{D_{_{10}}xD_{_{60}}} & \mbox{Between 1 and 3} \end{array} $		
	ELS coarse fract 75 mm sieve	CLEAN GRAVELS	GP			graded gravels and grav nixtures, little or no fines			GW, GP, SW, SP GM, GC, SM, SC Borderline Classification requiring use of dual symb	Not meeting both criteria for GW		
n sieve*	GRAVELS 50% or more of coarse fraction retained on 4.75 mm sieve	E E S E S E S	GM	1	Silty g gravel	ravels, -sand-silt mixtures		of fines	GW, GP, GM, GC Borderli requirin	or plasticity index less than 4 hatched area are		
COARSE-GRAINED SOILS More than 50% retained on 75 µm sieve*	50%	GRAVELS WITH	GC			gravels, -sand-clay mixtures		Classification on basis of percentage of fines		Atterberg limits plot above "A" line or plasticity index greater than 7 borderline classifications requiring use of dual symbols		
COARSE-GRAINED SOILS an 50% retained on 75 µr	eve eve	NA DS	SW	'		raded sands and gravelly little or no fines	y	ation on basis				
More tha	SANDS More than 50% of coarse fraction passes 4.75 mm sieve	CLEAN SANDS	SP			graded sands and grave little or no fines	lly	Classific	µm sieve 5 µm sieve 1 sieve	Not meeting both criteria for SW		
	SANDS More than 50% (ction passes 4.7	Sands With Thier	SM	1	Silty sa	ands, sand-silt mixtures			Less than 5% Pass 75 µm sieve More than 12% Pass 75 µm sieve 5% to 12% Pass 75 µm sieve	Atterberg limits plot below "A" line or plasticity index less than 4 Atterberg limits plotting in hatched area are borderline		
	fra	IM NVS	SC		Clayey	sands, sand-clay mixtur	res		Less tha More tha 5% to 12	Atterberg limits plot above "A" line or plasticity index greater than 7 dual symbols		
	S	limit	R ML		rock fl	nic silts, very fine sands, our, silty or clayey fine sa ht plasticity			60	PLASTICITY CHART		
£ *0	SILTS	Liquid limit	R MH	ł	diatom	nic silts, micaceous or naceous fine sands or lastic silts			50 soils ar grained	ssification of fine-grained dd fine fraction of coarse- d soils on of 'A' line: PI = 0.73(LL-20) CH		
GRAINED SOILS (by behavior) or more passes 75 µm sieve*	lasticity iic content	8	CL		gravel	nic clays of low plasticity ly clays, sandy clays, ays, lean clays	Ι,		30	HW8		
GRAINED SOILS or more passes	CLAYS Above "A" line on plasticity chart negligible organic content	Liquid limit	CI			nic clays of medium ity, silty clays		PLASTICITY INDEX	20			
FINE-GRAIN 50% or mol	Above chart neg	î	СН			nic clays of high ity, fat clays				MH or OH		
	ORGANIC SILTS AND CLAYS	Liquid limit	B OL			c silts and organic silty c plasticity	clays		0 10	0 20 30 40 50 60 70 80 90 100 LIQUID LIMIT		
	ORGAL	, Liqu	R ОН	I		c clays of medium n plasticity		* Bi	ased on the n	naterial passing the 75 mm sieve		
HIGHI	LY ORGANIC	SOILS	PT		Peat a soils	nd other highly organic		† A	STM Designa	ation D 2487, for identification procedure see D 2488 USC as modified by PFRA		
			S	SOIL COM	PONENTS		ANGES OF			OVERSIZE MATERIAL		
Ff	RACTION			VE SIZE DEFINING RANGES OF PERCENTAGE BY MASS MINOR COMPONENTS		BY MASS OF IPONENTS			Rounded or subrounded COBBLES 75 mm to 300 mm BOULDERS > 300 mm			
GRAVE	E	┝	PASSING	RETA	INED	PERCENTAGE	DESCRI	PTOR	_			
	coarse fine		75 mm 19 mm	19 m 4.75		>35 % 21 to 35 %	"and "y-adjed		Not rounded ROCK FRAGMENTS >75 mm ROCKS > 0.76 cubic metre in volume			
SAND) coarse medium fine		4.75 mm 2.00 mm 425 μm	2.00 425 75	μm	11 to 20 % >0 to 10 %	"som "trac			TETRA TECH		
SILT (or CLAY	75 Description.cdr	μm		as abov by beh								

Tt_Modified Unified Soil Classification_Ice Description.cdr

GROUND ICE DESCRIPTION

	v	ISIBLE ICE LESS THAN 50% BY VOL	.UME		ICE NOT VISIBLE								
group Symbol	SYMBOL	SUBGROUP DESCRIPTION	SKETCH	PHOTOGRAPH	GROUP SYMBOL	SYMBOL	SUBGROUP DESCRIPTION	SKETCH	PHOTOGRAPH				
	Vx	Individual ice crystals or inclusions	•	N. S. C.		Nf	Poorly-bonded or friable		Z.				
	Vc	Ice coatings on particles	0 2 2 2 2	A A	N	Nbn	No excess ice, well-bonded						
v	Vr	Random or irregularly oriented ice formations				Nbe	Excess ice, well-bonded						
	Vs	Stratified or distinctly oriented ice formations			LEGEND:	Soil	Ice						
					NOTES:	1.	Dual symbols are used to indicate bo ice classifications.	rderline or mi	xed				
	Vu	Ice formations uniformly distributed throughout frozen soil				2.	Visual estimates of ice contents indic	ated on boref	nole logs ± 5%				
			<u>r-23723</u>			3.	This system of ground ice description NRC Technical Memo 79, Guide to the Permafrost for Engineering Purposes.	Field Descri					

VISIBLE ICE GREATER THAN 50% BY VOLUME

ICE	ICE + Soil Type	Ice with soil inclusions (greater than 25 mm thick)	
IGE	ICE	Ice without soil inclusions (greater than 25 mm thick)	

TERMS USED ON BOREHOLE LOGS

TERMS DESCRIBING CONSISTENCY OR CONDITION

COARSE GRAINED SOILS (major portion retained on 0.075 mm sieve): Includes (1) clean gravels and sands, and (2) silty or clayey gravels and sands. Condition is rated according to relative density, as inferred from laboratory or in situ tests.

descriptive term

Very Loose

Loose

Compact

Dense

Very Dense

relative density

0 to 20%

20 to 40%

40 to 75%

75 to 90%

90 to 100%

n (blows per 0.3 m)

0 to 4 4 to 10 10 to 30 30 to 50 greater than 50

The number of blows, N, on a 51 mm 0.D. split spoon sampler of a 63.5 kg weight falling 0.76 m, required to drive the sampler a distance of 0.3 m from 0.15 m to 0.45 m.

FINE GRAINED SOILS (major portion passing 0.075 mm sieve): Includes (1) inorganic and organic silts and clays, (2) gravelly, sandy, or silty clays, and (3) clayey silts. Consistency is rated according to shearing strength, as estimated from laboratory or in situ tests.

descriptive term	unconfined compressive strength (kPa)
Very Soft	Less than 25
Soft	25 to 50
Firm	50 to 100
Stiff	100 to 200
Very Stiff	200 to 400
Hard	Greater than 400

NOTE: Slickensided and fissured clays may have lower unconfined compressive strengths than shown above, because of planes of weakness or cracks in the soil.

GENERAL DESCRIPTIVE TERMS

Slickensided - having inclined planes of weakness that are slick and glossy in appearance.
Fissured - containing shrinkage cracks, frequently filled with fine sand or silt; usually more or less vertical.
Laminated - composed of thin layers of varying colour and texture.
Interbedded - composed of alternate layers of different soil types.
Calcareous - containing appreciable quantities of calcium carbonate.;
Well graded - having wide range in grain sizes and substantial amounts of intermediate particle sizes.
Poorly graded - predominantly of one grain size, or having a range of sizes with some intermediate size missing.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

BOREHOLE KEYSHEET Water Level Measurement Measured in standpipe, ∇ ⊻ Inferred piezometer or well Sample Types Disturbed, Bag, A-Casing Core HQ Core Jar Grab Jar and Bag 75 mm SPT No Recovery Split Spoon/SPT Tube **CRREL** Core **Backfill Materials** Cement/ Grout Drill Cuttings Asphalt Bentonite Grout <u>× //</u> <u>×</u> Gravel Slough Topsoil Backfill Sand Lithology - Graphical Legend¹ Coord Cobbles/Boulders Coal Bedrock Asphalt Mudstone Limestone *P* . N Concrete \bigotimes Fill Gravel e se se s <u>se se se</u> Sand \times Sandstone Organics Peat Shale 7.14 X Siltstone Conglomerate Topsoil Till Silt à 1. The graphical legend is an approximation and for visual representation only. Soil strata may comprise a combination of the basic symbols shown above. Particle sizes are not drawn to scale

			Testpit No:	PR1-TP0 ²	1					
			Project: Oscar Creek Granular F			ct No: I	ENG.YARC03255-01			
		Northwest	Location: Prospect 1		Ground Elev: 71 m					
		Northwest Territories	Oscar Creek, Northwest Territor	ies	UTM: 575262 E; 7258088 N; Z 9					
			Codd Oreck, Northwest Territor		101111.	1	113202 L, 7230000 N, 2 9			
o Depth (m)	Method	Soil Descriptior	٦	Ground Ice Description	Sample Type	Moisture Content (%)	Plastic Moisture Limit Content 20 40 60	Liquid Limit –¶ 80	Elevation (m)	
ŀ		TOPSOIL - sandy, rootlets, brown, (200 mm thick)		Frozen, Vx, Vc						
- - - - - - - - - - - - - - - - - - -	ted	SAND - gravelly, trace silt, trace rootlets SAND AND GRAVEL - trace silt, well graded, subround than 20 mm diameter: 20-35% by volume	ed gravel, field estimate for greater	Nbn		19.8				
- 2 - - - - - - - - - - - - - - - - - -	Excavated	- (Gravel - 40%; Sand - 59%; Silt & Clay - 1%) END OF TESTPIT (4.0 metres)				4.4	•		69— - - - - - - - - - - - - - - - - - - -	
		END OF TESTPTT (4.0 metres) Notes: LA Abrasion Loss = 30% Petrographic Number (Weighted Average) = 140							-	
5			Contractor: HRN Contracting Ltd	l.	Com	letion	Depth: 4 m	I	- 66 -	
		TETRA TECH	Drilling Rig Type: John Deere 27		-		2020 January 13			
		TETRATECH	Logged By: AR				Date: 2020 January 1	13		
			Reviewed By: EG			Page 1 of 1				

			Testpit No:	PR1-TP0	2					
			Project: Oscar Creek Granular			ct No:	ENG.YAF	RC03255-01		
		Northwest Territories	Location: Prospect 1	·	-	Ground Elev: 66 m				
		Territories	Oscar Creek, Northwest Territo	ries	UTM:	57533	3 E: 7258	3111 N; Z 9		
o Depth (m)	Method	Soil Descriptio	n	Ground Ice Description	IΨ	Moisture Content (%)	Plastic Limit 20	Moisture Content 40 60	Liquid Limit ¶ 80	Elevation
		TOPSOIL - sandy, trace gravel, rootlets, brown, (100 m SAND - some gravel, trace silt, rootlets, grey to brown	m thick)	Frozen, Vx, Vc		15.7	•			66
- 1		- (Gravel - 10%; Sand - 86%; Silt & Clay - 4%)				11.4	•			65
2	Excavated	- gravelly, no visible rootlets, field estimate for greater volume	than 20 mm diameter: 10-15% by	Nbn Vc						64
3										. 6
- 4		END OF TESTPIT (4.0 metres) Notes: LA Abrasion Loss = 30% Petrographic Number (Weighted Average) = 140								- 6
5	7	TETRATECH	Contractor: HRN Contracting L Drilling Rig Type: John Deere 2		_		Depth: 4 2020 Janu			6
	U		Logged By: AR		Comp	letion	Date: 202	20 January 1	3	
			Reviewed By: EG		Page					

			Testpit No: PR1-TP03							
			Project: Oscar Creek Granular F		-	ct No:	ENG.YARCO	03255-01		
		Northwest	Location: Prospect 1		Ground Elev: 67 m					
		Territories	Oscar Creek, Northwest Territor	ies	-		95 E; 725813	81 N· 7 9		
	Γ							, , 20		
o Depth (m)	Method	Soil Description		Ground Ice Description	Sample Type	Moisture Content (%)	I —	Noisture Content	Liquid Limit 1 80	Elevation (m)
-		TOPSOIL - sandy, trace gravel, rootlets, brown, (200 m	m thick)	Frozen, Vx, Vc						-
- - - - - - - - - - - - - - - - - - -	Excavated	SAND - gravelly, some silt, rootlets, grey to brown - subrounded gravel, field estimate for greater than 20 - (Gravel - 30%; Sand - 55%; Silt & Clay - 15%)	mm diameter: 20-25% by volume	Vc		4.7	•			
- 3 		END OF TESTPIT (3.0 metres) Notes: LA Abrasion Loss = 30% Petrographic Number (Weighted Average) = 140								64
			Contractor: HRN Contracting Ltd		-		Depth: 3 m			
	r -	TETRA TECH	Drilling Rig Type: John Deere 270D LC Excavator			Start Date: 2020 January 13				
	U		Logged By: AR	Completion Date: 2020 January 13			3			
J			Reviewed By: EG		Page	1 of 1				

			Testpit No:	PR1-TP04	4						
			Project: Oscar Creek Granular F			ct No: I	ENG.YARC03255-01				
		Northwest Territories	Location: Prospect 1		Ground Elev: 65 m						
		Territories	Oscar Creek, Northwest Territor	ies	-		25 E; 7258164 N; Z 9				
			,								
o Depth (m)	Method	Soil Descriptior		Ground Ice Description	Sample Type	Moisture Content (%)	Plastic Moisture Liqui Limit Content Limi 20 40 60 80				
-		TOPSOIL - sandy, trace gravel, rootlets, brown, (200 mi	m thick)	Frozen, Vx, Vc							
-		GRAVEL - sandy, trace silt, grey to brown, fine gravel		-		9.7	•	-			
- - - - - - - - - - - - - - - - - - -	Excavated	 poorly graded, subrounded gravel, field estimate for 15-50% by volume (Gravel - 71%; Sand - 27%; Silt & Clay - 2%) 	greater than 20 mm diameter:	Nbn		2.1					
- - - - - - - - - - - - - - - - - - -		END OF TESTPIT (4.0 metres) Notes: LA Abrasion Loss = 30% Petrographic Number (Weighted Average) = 140	Contractor: HRN Contracting Ltc				Depth: 4 m				
		TETRA TECH	Drilling Rig Type: John Deere 27				2020 January 13				
			Logged By: AR				Date: 2020 January 13				
			Reviewed By: EG			Page 1 of 1					

			Testpit No:	PR1-TP0	5					
			Project: Oscar Creek Granular P		1	ct No: I	ENG.YARC03255-01			
		Northwest	Location: Prospect 1		Ground Elev: 74 m					
		Northwest Territories	Oscar Creek, Northwest Territor	es			39 E; 7258409 N; Z 9		_	
	Τ								-	
o Depth (m)	Method	Soil Descriptior	1	Ground Ice Description	Sample Type	Moisture Content (%)	Plastic Moisture Limit Content 20 40 60	Liquid Limit 4 80 74	(111)	
-		TOPSOIL - trace gravel, rootlets, brown		Frozen, Vx, Vc					_	
-		GRAVEL - sandy, trace silt, poorly graded, brown, fine s	ubrounded gravel	-		12.4	•			
-									٦	
- 1 -		SAND - some gravel, trace silt, fine gravel, field estimate 10-15% by volume	e for greater than 20 mm diameter:	Vc				73	;	
-		- (Gravel - 18%; Sand - 81%; Silt & Clay - 1%)							-	
-						4.1	•			
-									-	
Ľ	ted								_	
- 2	Excavated							72	2—	
	ШЩ								-	
-									-	
L									_	
-									-	
L									_	
-									_	
- 3							· · · · · · · · · · · · · · · · · · ·	71	. —	
F									_	
F									-	
Ē.									_	
-									-	
-									-	
-									-	
4		END OF BOREHOLE (4.0 metres) Notes:						70		
F		LA Abrasion Loss = 30%							-	
ļ		Petrographic Number (Weighted Average) = 140							-	
╞									-	
È									_	
+									-	
- 5			1					60	,	
	_		Contractor: HRN Contracting Ltd		-		Depth: 4 m	09		
	6	TETRA TECH	Drilling Rig Type: John Deere 27	OD LC Excavator	-		2020 January 13	_		
			Logged By: AR		Completion Date: 2020 January 13					
		- 0 M	Reviewed By: EG		Page	1 of 1				

			Testpit No:	Testpit No: PR1-TP06						
			Project: Oscar Creek Granular F			ct No: I	ENG.YAR	C03255-01		
		Northwest	Location: Prospect 1		-		/: 71 m			
		Northwest Territories	Oscar Creek, Northwest Territor	ies				218 N; Z 9		
					101101	1	0 2, 7200	21011,20		
o Depth (m)	Method	Soil Descriptior		Ground Ice Description	Sample Type	Moisture Content (%)	Plastic Limit 20	Moisture Content 40 60	Liquid Limit - 1 80	Elevation (m)
-		TOPSOIL - trace gravel, rootlets, brown, (300 mm thick)		Frozen, Vx, Vc						-
- - - - - - - - - - - - - - - - - - -	Excavated	SAND AND GRAVEL - trace silt, well graded, brown, fie diameter: 10-15% by volume	ld estimate for greater than 20 mm							
- - - - - - - - - - - - - - - - - - -		- (Gravel - 35%; Sand - 59%; Silt & Clay - 6%)				3.4	•			- - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - -		END OF TESTPIT (4.0 metres) Notes: LA Abrasion Loss = 30% Petrographic Number (Weighted Average) = 140								
			Contractor: HRN Contracting Ltc		-		Depth: 4 n			
	r -	TETRA TECH	Drilling Rig Type: John Deere 27	OD LC Excavator	-		2020 Janua			
	U		Logged By: AR		Completion Date: 2020 January 13					
			Reviewed By: EG		Page	1 of 1				

			Testpit No:	PR1-TP07	7						
			Project: Oscar Creek Granular P		1	ct No: I	ENG.YARCO)3255-01			
		Northwest	Location: Prospect 1				r: 72 m				
		Northwest Territories	Oscar Creek, Northwest Territor	es			2 E; 725837	0 N; Z 9			
			,				,	,			
o Depth (m)	Method	Soil Description	٦	Ground Ice Description	Sample Type	Moisture Content (%)		Noisture Content	Liquid Limit –¶ 80	kk Elevation (m)	
-		TOPSOIL - sandy, rootlets, brown, (200 mm thick)		Frozen, Vx, Vc						- 12	
-		SAND - trace gravel, trace silt, trace roots, brown to gre	у			20.4	•				
1 - - - - -		GRAVEL - sandy, trace silt, poorly graded, subrounded 20 mm diameter: 15-20% by volume	gravel, field estimate for greater than	Nbn						71	
- 2	Excavated	- (Gravel - 61%; Sand - 34%; Silt & Clay - 5%)				2.8	•				
- 3 - - - - - - - - - - - - - - - - -		END OF TESTPIT (4.0 metres)								69— - - - - - - - - - - - - - - - - - - -	
		Notes: LA Abrasion Loss = 30% Petrographic Number (Weighted Average) = 140									
	·		Contractor: HRN Contracting Ltd		Comp	oletion	Depth: 4 m			67	
		TETRA TECH	Drilling Rig Type: John Deere 27				2020 Januar	y 13			
	U		Logged By: AR		Completion Date: 2020 January 13						
			Reviewed By: EG			Page 1 of 1					

		Testpit No: I	PR1-TP08	3					
		Project: Oscar Creek Granular Pr		1	ct No: E	ENG.YARC03255-01			
	Northwest	Location: Prospect 1		Ground Elev: 72 m					
	Northwest Territories	Oscar Creek, Northwest Territorio	25			17 E; 7258321 N; Z 9			
				1.0					
o Depth (m) Method	Soil Descriptior		Ground Ice Description	Sample Type	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80 72			
	PSOIL - trace gravel, rootlets, brown, (100 mm thick)		Frozen, Nbn Vx, Vc						
	ND - trace gravel, trace silt, rootlets, brown to grey	gravel	Nbn		2.6	•			
ANA ANA Excanded Excanded Excanded	ND AND GRAVEL - trace silt, poorly graded, greyish 20 mm diameter: 5-10% by volume	brown, field estimate for greater than				70-			
(((((Gravel - 44%; Sand - 52%; Silt & Clay - 4%)				3.1	• 69-			
	ID OF TESTPIT (4.0 metres) Notes: LA Abrasion Loss = 30% Petrographic Number (Weighted Average) = 140					68-			
		Contractor: HRN Contracting Ltd		Comp	letion	Depth: 4 m			
	TETRA TECH	Drilling Rig Type: John Deere 27				2020 January 13			
		Logged By: AR				Date: 2020 January 13			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Reviewed By: EG			Page 1 of 1				

			Testpit No:	PR2-TP0 ²	1					
			Project: Oscar Creek Granular	Prospects Assessment	Proje	ct No: E	ENG.YAR	C03255-01		
		Northwest Territories	Location: Prospect 2		Grour	nd Elev	: 101 m			
		lerritories	Oscar Creek, Northwest Territ	ories	UTM:	57665	9 E; 7259	615 N; Z 9		
(W)	Method	Soil Descriptio	n	Ground Ice Description	Sample Type	Moisture Content (%)	Plastic Limit 20	Content	Liquid Limit ¶ 80	Elevation
		TOPSOIL - silty, rootlets, dark brown, (100 mm thick) SILT - sandy, trace gravel, brown, (300 mm thick)		Frozen, Vx, Vc Nbn		40.0				
						18.8	÷			
		GRAVEL - sandy, trace silt, greyish brown, coarse sub estimated for greater than 20 mm diameter: 15-20%	rounded to rounded gravel, field by volume	Vx, Vc						
1		- (Gravel - 78%; Sand - 6%; Silt & Clay - 16%)								10
						9.3	•			
2	Excavated	GRAVEL AND SAND - silty, trace clay, poorly graded		Nbn						9
3		- (Gravel - 36%; Sand - 35%; Silt & Clay - 29%)				8.2	•			. g
4		END OF TESTPIT (4.0 metres) Notes: LA Abrasion Loss = 33% Petrographic Number (Weighted Average) = 125								- 9
5			Contractor: HRN Contracting L	td.	Comp	letion	Depth: 4 r	<u>n</u>		
		TETRA TECH	Drilling Rig Type: John Deere				1020 Janu			
	U		Logged By: AR		Comp	letion	Date: 202	0 January 11	1	
_	_		Reviewed By: EG		Page	1 of 1				

			Testpit No:											
			Project: Oscar Creek Granula	r Prospects Assessment	Proj	ect	No: E	ENG.YAR	C03255-01					
		Northwest	Location: Prospect 2		-	Ground Elev: 99 m								
		Territories	Oscar Creek, Northwest Terri	tories	UTN	N: 5	57660	1 E; 7259) 603 N; Z 9					
o Ueptn (m) Method		Soil Descriptio		Ground Ice Description		Sample Type	Moisture Content (%)	Plastic Limit 20	Moisture Content 40 60	Liquid Limit 80	Elevation			
		TOPSOIL - silty, trace gravel, rootlets, dark brown, (300) mm thick)	Frozen, Vx, Vc										
		GRAVEL - sandy, trace silt, greyish brown, coarse subr estimated for greater than 20 mm diameter: 15-20%	by volume				4.5	•						
· 1		 GRAVEL AND COBBLES - some sand, trace silt, trace estimate for greater than 20 mm diameter: 50-60% b - (Cobbles - 26%; Gravel - 51%; Sand - 14%; Silt & C 	by volume				6	•			98			
		GRAVEL AND SAND - trace silt, poorly graded, subrou	nded gravel	Nbn										
Excavated	Excavated										97			
3		- (Gravel - 55%; Sand - 40%; Silt & Clay - 5%)					3.9	•			96			
4 —		END OF TESTPIT (4.0 metres) Notes: LA Abrasion Loss = 33% Petrographic Number (Weighted Average) = 125									- 9			
5)	Contractor: HRN Contracting		_			Depth: 4 i			9			
		TETRA TECH	Drilling Rig Type: John Deere	210D LC Excavator	-			020 Janu	-	1 1				
•	-	'J	Logged By: AR Reviewed By: EG			-	etion l of 1	Date: 202	0 January	11				

			Testpit No: PR2-TP03										
			Project: Oscar Creek Granular F		-	ect No:	ENG.YAR	C03255-01					
		Northwest	Location: Prospect 2				v: 102 m						
		Territories	Oscar Creek, Northwest Territor	ies				639 N; Z 9					
						1 07 00	10 2, 1200	00011,20					
o Depth (m)	Method	Soil Descriptior		Ground Ice Description	Samnla Tvna	Moisture Content (%)	Plastic Limit 20	Moisture Content 40 60	Liquid Limit –¶ 80	Elevation (m)			
-		TOPSOIL - silty, trace gravel, rootlets, dark brown, (300	mm thick)	Frozen, Vx, Vc					-	-			
-										-			
- - - -		GRAVEL - sandy, trace silt, greyish brown, coarse subro estimate for greater than 20 mm diameter: 20-25% b	ounded to rounded gravel, field y volume			4.2	•						
										-			
- 1		GRAVEL AND COBBLES - some sand, trace silt, coarse than 20 mm diameter: 60-65% by volume	e gravel, field estimate for greater	-						101-			
-		- (Gravel - 72%; Sand - 19%; Silt & Clay - 9%)								-			
-										-			
_						5.5				_			
-										-			
-										-			
Ę	_	GRAVEL - sandy, trace silt, trace cobbles, greyish brow	n, coarse subrounded to rounded	Nbn					-	-			
- 2	ated	gravel, field estimate for greater than 20 mm diameter	er: 20-25% by volume							100-			
-	Excavated									-			
Ľ	Ш									-			
-										-			
-										-			
L									-	-			
_		- (Cobbles - 9%; Gravel - 61%; Sand - 22%; Silt & Cla								-			
-		- (Cobbles - 9%, Gravel - 61%, Sand - 22%, Silt & Cla	iy - 0%)							-			
- 3						4.9	•			99-			
_										-			
-										-			
_										-			
-										-			
-										-			
Ľ													
4										98-			
-									-	-			
Ĺ		END OF TESTPIT (4.2 metres)							:	-			
F		Notes: LA Abrasion Loss = 33%								-			
╞		Petrographic Number (Weighted Average) = 125								-			
Ĺ										-			
F										-			
- 5										-			
5			Contractor: HRN Contracting Ltd	j.	Com	pletion	Depth: 4.2	2 m		97			
		TETRA TECH	Drilling Rig Type: John Deere 27		-	-	2020 Janu						
	lt		Logged By: AR	· · · · · · · · · · · · · · · · · · ·	-			-	11				
			Reviewed By: EG			Completion Date: 2020 January 11 Page 1 of 1							

			Testpit No: PR2-TP04							
			Project: Oscar Creek Granular P		-	ct No: I	ENG.YAR	C03255-01		
		Northwest	Location: Prospect 2				r: 104 m			
		Northwest Territories	Oscar Creek, Northwest Territor	ies				502 N; Z 9		
							,	, ,		
o Depth (m)	Method	Soil Descriptior		Ground Ice Description	Sample Type	Moisture Content (%)	Plastic Limit 20	Moisture Content 40 60	Liquid Limit –¶ 80	Elevation (m)
-		TOPSOIL - silty, trace gravel, rootlets, dark brown, (300	mm thick)	Frozen, Vx, Vc		00.4				
- - - - - - - - - - - - - - - - - - -	Excavated	GRAVEL - sandy, trace silt, trace cobbles and boulders, subrounded to rounded gravel, field estimate for grea volume SAND AND GRAVEL - trace silt, poorly graded, subrour		- Vc		4	•			
- - - - - - - - - - - - - - - - - - -		- (Gravel - 40%; Sand - 57%; Silt & Clay - 3%) END OF TESTPIT (4.5 metres)				4.1	•			
- - - 5		Notes: LA Abrasion Loss = 33% Petrographic Number (Weighted Average) = 125								
		2	Contractor: HRN Contracting Ltc	I	Comp	oletion	Depth: 4.5	m		99
	r -	TETRA TECH	Drilling Rig Type: John Deere 27	OD LC Excavator	Start	Date: 2	020 Janua	ary 11		
	U		Logged By: AR		Comp	oletion	Date: 2020) January 1	1	
J			Reviewed By: EG Page 1 of 1							

			Testpit No: PR2-TP05							
			Project: Oscar Creek Granular P		-	ct No: I	ENG.YARC03255-01			
		Northwest	Location: Prospect 2				<i>ı</i> : 104 m			
		Northwest Territories	Oscar Creek, Northwest Territori	es			02 E; 7259636 N; Z 9			
o Depth (m)	Method	Soil Descriptior	٦	Ground Ice Description	Sample Type	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80			
_		TOPSOIL - silty, rootlets, dark brown, (100 mm thick)		Frozen, Vx, Vc			104			
- - -		SILT - sandy, brown, (300 mm thick) GRAVEL - sandy, trace silt, well graded, greyish brown, gravel, field estimate for grater than 20 mm diameter	coarse subrounded to rounded : 30-35% by volume							
-										
- 1 -						2.8	• 103-			
-										
-		SAND AND GRAVEL - trace silt, poorly graded, subrour	nded gravel	Nbn						
- 2	ted						102-			
-	Excavated									
-		- (Gravel - 47%; Sand - 47%; Silt & Clay - 6%)				5.3	•			
- 3 - - -							101-			
- - - - -							100-			
-		END OF TESTPIT (4.2 metres) Notes: LA Abrasion Loss = 33% Petrographic Number (Weighted Average) = 125								
F										
5			Contractor: UDN Contracting 144				Donth: 4.2 m			
C			Contractor: HRN Contracting Ltd				Depth: 4.2 m			
	5	TETRA TECH	Drilling Rig Type: John Deere 27	UD LU EXCAVATOR			2020 January 11			
	-		Logged By: AR Reviewed By: EG		-	1 of 1	Date: 2020 January 11			
1			I NEVIEWEU DY. LO		1 aye					

			Testpit No: PR3-TP01										
			Project: Oscar Creek Granular P		-	ect No	ENG.YARC03255-01						
		Northwest	Location: Prospect 3				ev: 109 m						
		Territories	Oscar Creek, Northwest Territor	95			27 E; 7259927 N; Z 9						
			Oscal Cleek, Northwest Territor			. 5/51	21 L, 1233321 N, 2 3						
Depth (m)	Method	Soil Descriptior		Ground Ice Description	Samnla Tvna	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80 109						
-		TOPSOIL - silty, trace gravel, rootlets, dark brown, (100	mm thick)	Frozen, Vc Nbn									
-		SILT - sandy, trace gravel, brown, (300 mm thick)											
-		GRAVEL - sandy, trace silt, poorly graded, brown, black field estimate for greater than 20 mm diameter: 30-33	flaky shale particles, coarse gravel, % by volume	Vc		3	•						
							108-						
-		- field estimate for greater than 20 mm diameter: 15-2	0% by volume	Nbn									
- - - - -	ated												
- - - - - - - - - - - - - - - - - - -	Excavated	- (Gravel - 76%; Sand - 22%; Silt & Clay - 2%)				4.1	• 106-						
- 4		END OF TESTPIT (4.2 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204											
5			Contractor: HRN Contracting Ltc		Com	pletior	Depth: 4.2 m						
		TETRATECU	Drilling Rig Type: John Deere 27			-	2020 January 12						
		TETRA TECH	Logged By: AR				Date: 2020 January 12						
	_		Reviewed By: EG			Page 1 of 1							

			Testpit No:	PR3-TP02	2					
			Project: Oscar Creek Granular F			ct No:	ENG.YAR	C03255-01		
		Northwest	Location: Prospect 3				/: 105 m			
		Territories	Oscar Creek, Northwest Territor	ies				947 N; Z 9		
								5 H H, 2 C		
o Depth (m)	Method	Soil Description		Ground Ice Description	Sample Type	Moisture Content (%)	Plastic Limit 20	Moisture Content 40 60	Liquid Limit - 1 80	Elevation (m)
-		TOPSOIL - silty, trace gravel, rootlets, dark brown, (100 SILT - sandy, trace gravel, brown, (200 mm thick)	mm thick)	Frozen, Vc, Vx Nbn						-
-		Sich - Sandy, trace graver, blown, (200 min trick)								-
-		GRAVEL - sandy, trace silt, poorty graded, brown, black field estimate for greater than 20 mm diameter: 15-20	flaky shale particles, coarse gravel, 0% by volume			3	•			-
- 1				-			· · · · · · · · · · · · · · · · · · ·			104-
-		SILT - sandy, trace gravel, brown - (Gravel - 3%; Sand - 31%; Silt & Clay - 66%)				18	•			-
F		GRAVEL - sandy, trace silt, poorly graded, brown		-						-
- - - - - 2 - - -	Excavated	- (Gravel - 63%; Sand - 32%; Silt & Clay - 5%)								
_		- (Oraver - 0070, Oand - 0270, One & Oray - 070)								
- - - 3						4.5	•			- - - 102—
- 4	\vdash	END OF TESTPIT (4.0 metres)								101—
F		Notes:								-
-		LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204								-
-										-
È										
-										-
5				-			<u> </u>			100
			Contractor: HRN Contracting Ltd				Depth: 4 m			-
	<u>,</u>	TETRA TECH	Drilling Rig Type: John Deere 2	70D LC Excavator	-		2020 Janua	-	_	
	- C		Logged By: AR		-		Date: 2020) January 1	2	
			Reviewed By: EG Page 1 of 1							

			Testpit No:	PR3-TP03	3					
			Project: Oscar Creek Granular F		-	ct No: I	ENG.YARC03255-01			
		Northwest	Location: Prospect 3				<i>ı</i> : 111 m			
		Territories	Oscar Creek, Northwest Territor	ies	_		2 E; 7260013 N; Z 9			
						1	2 2, 72000 10 10, 2 0			
o Depth (m)	Method	Soil Descriptior		Ground Ice Description	Sample Type	Moisture Content (%)	Plastic Moisture Liqui Limit Content Limi 20 40 60 80			
-		TOPSOIL - silty, trace gravel, rootlets, dark brown, (200	mm thick)	Frozen, Vc, Vx						
- -		SILT - sandy, trace gravel, brown, (300 mm thick)		Nbn				-		
-		GRAVEL - sandy, trace silt, poorly graded, brown, black field estimate for greater than 20 mm diameter: 30-35	flaky shale particles, coarse gravel, % by volume	Vx, Vc				-		
- - 1		- (Gravel - 75%; Sand - 23%; Silt & Clay - 2%)				2.5		- - ··· 110—		
		- field estimate for greater than 20 mm diameter: 15-20		Nbn				-		
- - - 2 -	Excavated							- - - - - - -		
-		- (Gravel - 74%; Sand - 24%; Silt & Clay - 2%)				2.9	•	-		
- 3 - - - - - -								···· 108— - - - - - - - - - - - -		
- - - -		END OF TESTPIT (4.0 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204								
- - - - 5								-		
			Contractor: HRN Contracting Ltd	1	Com	oletion	Depth: 4 m	100		
		TETRA TECH	Drilling Rig Type: John Deere 27	OD LC Excavator	Start Date: 2020 January 12					
	U		Logged By: AR		Completion Date: 2020 January 12					
			Reviewed By: EG							

Protect Over Creek Grander Prospect Assessment Project NorthWet (NOT me Loaden: Prospect 3 Grand Eur. 100 m Usation: Prospect 3 Grand Eur. 100 m UDK SYSTE 7.220020 H.2 9 Image System 2.2000 H.2 9 ge				Testpit No: PR3-TP04							
Notified Locative: Prospect 3 Ground Else: 107 m Our Creat, Northwest Tentories UTNL 575071 E. 7250023 II: 2.9 Image: Solid Description Ground Line: 107 m Description Image: Solid Description Image: Solid Description Ground Line: 107 m Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Descript							ect No:	ENG.YAR	03255-01		
Uccar Lifeer, Normeet Lemone Difference g = g <t< td=""><td></td><td></td><td>Northwest</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			Northwest								
End End Soil Description Ground Ice Description Plantic Molitive Liquid Umm Count Limit 20 40 00 80 Plantic Molitive Liquid Umm Count Limit 20 40 40 00 80 Plantic Molitive Liquid Umm Count Liquid 20 40 40 00 80 Plantic Molitive Liquid Umm Count Liquid 20 40 40 00 80 Plantic Molitive Liquid Umm Count Liquid 20 40 40 00 80 Plantic Molitive Liquid 20 40 40 00 80 Plantic Molitive Liquid 20 40 40 40 40 Plantic Molitive Liquid 20 40 40 40 40 40 40 40 40 40 40 40 40 40			Territories	· · · · · · · · · · · · · · · · · · ·	ies	UTM	: 57507	1 E; 7260)23 N; Z 9		
0 10PSOLL - sity, trace gravel, colled, dark bown, (100 mm thd) Frazer, Vr, Vc 3.9 40 60 80 447 SILT - sandy, trace gravel, trace dill, pony graded, brown, black flaky shale particles, coarre subconded grave, field estimate for greater than 20 mm dameter. 15-20% by volume Vr. Vc 3.9 40 60 80 447 1 GRAVEL - sorre sand, trace dill, pony graded, brown, black flaky shale particles, coarre subconded grave, field estimate for greater than 20 mm dameter. 15-20% by volume Vr. Vc 3.9 40 60 80 447 1 GRAVEL - sorre sand, trace dill, pony graded, brown, black flaky shale particles, coarre subconded grave, field estimate for greater than 20 mm dameter. 15-20% by volume Vr. Vc 3.7 40 100 1				,							
1 105-50.1- sity, tade grade, loceds, as and hown, (hu min the) Freen, Vx, Ve Non Non Non GRWEL - some sand, trace sit, poorly graded, brown, black fiely shale particles, coarse succounded grand, fied estimate for greater than 20 nm dameter. 15-20% by obume Vx, Ve -1 GRWEL - some sand, trace sit, poorly graded, brown, black fiely shale particles, coarse succounded grand, fied estimate for greater than 20 nm dameter. 15-20% by obume Vx, Ve -1 GRWEL - some sand, trace sit, some for greater than 20 nm dameter. 15-20% by obume Vx, Ve -1 (Gravel - 60%; Sand - 16%; Sit & Cay - 2%) 106- -3 - (Gravel - 60%; Sand - 16%; Sit & Cay - 2%) 107 -3 - (Gravel - 60%; Sand - 16%; Sit & Cay - 2%) 103- -3 - (Gravel - 60%; Sand - 16%; Sit & Cay - 2%) 103- -4 - (Gravel - 60%; Sand - 16%; Sit & Cay - 2%) 103- -5 - (Gravel - 60%; Sand - 16%; Sit & Cay - 2%) 103- -4 - (Gravel - 60%; Sand - 16%; Sit & Cay - 2%) 103- -5 - (Gravel - 60%; Sand - 16%; Sit & Cay - 2%) 103- -5 - (Gravel - 60%; Sand - 16%; Sit & Cay - 2%) - (Gravel - 60%; Sand - 16%; Sit & Cay - 2%) -7		Method	Description			Samula Tuna	Moisture Content (%)	Limit	Content	Limit	
1 GRIVEL.come and the all, pooly grade. brown. black fiely able patieties, come astrounded gravel, field estimate for greater then 20 mm dameter. 15-20% by volume Vk, Vc 33 1 106 2 Image: Second Sec	_			mm thick)							- 107
CRAVEL - some sand, trace sill, poorly graded, brown, black flady shale particles, coarse aubrounded gravel. field estimate for greater than 20 mm diameter: 15-20% by volume Vx. Vc Image: Complex control of the control	-		SILT - sandy, trace gravel, brown		INDN						
- 1 - 1 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.9</td> <td>•</td> <td></td> <td></td> <td>-</td>	-						3.9	•			-
- 1 - 1 <td>Ę</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>	Ę										_
subrounded gravel, field estimate for greater than 20 mm diameter. 15:20% by volume 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		GRAVEL - some sand trace silt poorly graded brown	black flaky shale particles coarse	Vx, Vc						-
-2 00 -3 -(Gravel - 80%; Sand - 18%; Sit & Clay - 2%) -3 -3 -3 -3 -4 -4 -4 -4 -5	E		subrounded gravel, field estimate for greater than 20	mm diameter: 15-20% by volume							-
-2 00 -3 -(Gravel - 80%; Sand - 18%; Sit & Clay - 2%) -3 -3 -3 -3 -4 -4 -4 -4 -5	-									-	-
(Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Interpretent of the second seco	- 1										106-
(Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Interpretent of the second seco											-
(Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Interpretent of the second seco	-										-
(Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Interpretent of the second seco	F										-
(Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Interpretent of the second seco	-										-
(Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Interpretent of the second seco	F										-
(Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Gravel - 80%; Sand - 18%; Silt & Clay - 2%) (Interpretent of the second seco	_										-
3.7 -3 -4 -4 -4 END OF TESTPIT (4.5 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 TETRATECH Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Dilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR Completion Date: 2020 January 12	- 2										105-
3.7 -3 -4 -4 -4 END OF TESTPIT (4.5 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 TETRATECH Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Dilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR Completion Date: 2020 January 12	-	ted									-
3.7 -3 -4 -4 -4 END OF TESTPIT (4.5 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 TETRATECH Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Dilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR Completion Date: 2020 January 12	Ĺ	ava									-
- 3 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 5 END OF TESTPIT (4.5 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 - 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m - 102 - 104 - 104	-	ШĚ	- (Gravel - 80%; Sand - 18%; Silt & Clay - 2%)								-
4 END OF TESTPIT (4.5 metres) Notes: 103- LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m 102 Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR Completion Date: 2020 January 12	-						3.7	•			-
4 END OF TESTPIT (4.5 metres) Notes: 103- LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m 102 Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR Completion Date: 2020 January 12	-										-
4 END OF TESTPIT (4.5 metres) Notes: 103- LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m 102 Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR Completion Date: 2020 January 12	-										-
4 END OF TESTPIT (4.5 metres) Notes: 103- LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m 102 Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR Completion Date: 2020 January 12	-										-
END OF TESTPIT (4.5 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR	- 3										- 104
END OF TESTPIT (4.5 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR	-									-	-
END OF TESTPIT (4.5 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR											-
END OF TESTPIT (4.5 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR	-										-
END OF TESTPIT (4.5 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR	-									-	
END OF TESTPIT (4.5 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR	_									-	-
END OF TESTPIT (4.5 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR	-										-
Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR Completion Date: 2020 January 12	- 4										103—
Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR Completion Date: 2020 January 12	_										-
Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR Completion Date: 2020 January 12	F										
Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204 5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR Completion Date: 2020 January 12	F						_				-
Petrographic Number (Weighted Average) = 204	F		Notes:								-
5 Contractor: HRN Contracting Ltd. Completion Depth: 4.5 m Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR Completion Date: 2020 January 12	t		LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204								-
Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR Completion Date: 2020 January 12	\vdash										-
Drilling Rig Type: John Deere 270D LC Excavator Start Date: 2020 January 12 Logged By: AR Completion Date: 2020 January 12	5		1	Contractor: HRN Contracting Ltr	1	Com	nletion	 Depth: 1.5	m		102
Logged By: AR Completion Date: 2020 January 12						-	-	-			
		R	TETRATECH							12	
				Reviewed By: EG		-			20.1001 y		

			Testpit No: PR3-TP05								
			Project: Oscar Creek Granular F		-	iect	No: E	NG.YAR	203255-01		
		Northwest	Location: Prospect 3					: 116 m			
		Northwest Territories	Oscar Creek, Northwest Territor	ies	-				344 N; Z 9		
									, <u> </u>		
o Depth (m)	Method	Soil Descriptior		Ground Ice Description	ŀ	Sample Lype	Moisture Content (%)	Plastic Limit 20	Moisture Content 40 60	Liquid Limit 80	Elevation (m)
-		TOPSOIL - silty, trace gravel, rootlets, dark brown, (100 SILT - sandy, trace gravel, brown, (300 mm thick)	mm thick)	Frozen, Vx, Vc Nbn							-
-		SILT - Sandy, trace graver, brown, (500 min trick)		Non				-			-
-											-
-		GRAVEL - some sand, trace silt, poorly graded, fine sub greater than 20 mm diameter: 5-10% by volume	prounded gravel, field estimate for	-							
- 1		- (Gravel - 81%; Sand - 17%; Silt & Clay - 2%)									115—
-								_			-
Ľ							3.2	•			-
								-		-	
-											_
-								-			-
-								-			-
F	ğ										-
	/ate										-
2	Excavated	- sandy, coarse gravel									114-
_	Ш							-			_
-								-			-
-								-			-
-											-
F											-
F											-
Ē		- (Gravel - 64%; Sand - 35%; Silt & Clay - 1%)						-			
- 3							4.1				113-
-											-
-					-			-			-
-											-
_								-		-	_
-											_
-								-			-
-								-		-	-
Ĺ								-			110
4		END OF TESTPIT (4.0 metres)									112
+		Notes: LA Abrasion Loss = 31%									-
+		Petrographic Number (Weighted Average) = 204									-
t											
F											
F											-
F											-
5											
		2	Contractor: HRN Contracting Ltd	I	Con	nple	etion [Depth: 4 m	<u></u> ו		-11
		TETRA TECH	Drilling Rig Type: John Deere 27		Star	t D	ate: 2	020 Janua	ary 12		
			Logged By: AR							2	
			Reviewed By: EG		Completion Date: 2020 January 12 Page 1 of 1						
			· · · · · · · · · · · · · · · · · · ·		1 ~3						

			Testpit No: PR3-TP06							
			Project: Oscar Creek Granular P		1	ect No:	ENG.YARCO	3255-01		
		Northwest	Location: Prospect 3				ev: 117 m			
		Northwest Territories	Oscar Creek, Northwest Territori	es			36 E; 726090	8 N: Z 9		
o Depth (m)	Method	Soil Description	٦	Ground Ice Description	Cample Tune	Moisture Content (%)		loisture Liquid content Limit 0 60 80	Elevation (m)	
-		TOPSOIL - silty, trace gravel, rootlets, dark brown, (100	mm thick)	Frozen, Vx, Vc					- 11/ -	
-		SILT - sandy, trace gravel, brown		Nbn					-	
-									-	
-	GRAVEL - sandy, trace silt, greyish brown, coarse subro estimate for greater than 20 mm diameter: 15-20% b		bunded to rounded gravel, field y volume	Vx, Vc					-	
- 1									116-	
-						4.2	•		-	
-									-	
L									-	
-									-	
-									-	
-									-	
- 2				Vc				·····;····;····;····	115-	
-	ed	SAND - some gravel, trace silt, grey to brown							-	
-	Excavated								-	
Ē.	1 N N									
-	Ш								-	
-		- (Gravel - 20%; Sand - 76%; Silt & Clay - 4%)							-	
Ľ						4.6	•		-	
_									-	
- 3									114-	
-									-	
Ē										
-									-	
-		GRAVEL - sandy, trace silt, greyish brown, coarse subro	ounded to rounded gravel, field	Nbn					-	
Ľ		estimate for greater than 20 mm diameter: 15-20% b	y volume							
_		- (Gravel - 73%; Sand - 26%; Silt & Clay - 1%)							-	
-		- (Gravei - 73%, Sand - 20%, Siit & Clay - 1%)							-	
- 4						2.7		· · · · · · · · · · · · · · · · · · ·	113—	
[
F									-	
F									-	
F		END OF TESTPIT (4.5 metres)								
+	Notes: LA Abrasion Loss = 31%								-	
F	Petrographic Number (Weighted Average) = 204								-	
5			1		$- \bot$					
			Contractor: HRN Contracting Ltd		-	-	n Depth: 4.5 m			
	<u>r</u> -	TETRA TECH	Drilling Rig Type: John Deere 27	0D LC Excavator			2020 January			
	U		Logged By: AR		Completion Date: 2020 January 12					
		NE9.GPJ EBA GDT 20-10-13	Reviewed By: EG		Page	e 1 of 1				

			Testpit No: PR3-TP07										
			Project: Oscar Creek Granular F		-	ct No: I	ENG.YARC03255-01						
		Northwest Territories	Location: Prospect 3	•			v: 117 m						
		Territories	Oscar Creek, Northwest Territor	ies			9 E; 7260890 N; Z 9						
	q	0-1							uc				
o Depth (m)	Method	Soil Descriptior	1	Ground Ice Description	Sample Type	Moisture Content (%)	Plastic Moisture Limit Content 20 40 60	Liquid Limit –¶ 80	Elevation (m)				
-		TOPSOIL - silty, trace gravel, rootlets, dark brown, (200	mm thick)	Frozen, Vx, Vc					-11/ -				
-		SILT - sandy, trace gravel, brown	nunded to rounded gravel field	- Nbn		6.7	•		-				
- - - - - - - -	Excavated	GRAVEL - sandy, trace silt, greyish brown, coarse subro estimate for greater than 20 mm diameter: 15-20% b	unded to rounded gravel, field y volume						- - 116- - - - - - -				
- - - - - - - - - - - - - - - - - - -	Exca	- (Gravel - 73%; Sand - 22%; Silt & Clay - 5%)				6.2	•		- - 115- - - - - - - - - - - 114- - - - - - - -				
- 4		END OF TESTPIT (3.5 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204							- - - - - - - - - - - - - - - - - - -				
5			Contractor: HRN Contracting Ltd	j.	Com	oletion	Depth: 3.5 m		112				
		TETRA TECH	Drilling Rig Type: John Deere 27				2020 January 12						
	t		Logged By: AR		-		Date: 2020 January 1	2					
			Reviewed By: EG			Page 1 of 1							

			Project: Oscar Creek Granula	Prospects Assessment	Proje	ect No	: ENG.YA	RC03255-0	1													
		Northwest Territories	Location: Prospect 3				ev: 114 m															
		Territories	Oscar Creek, Northwest Territ	ories		UTM: 575291 E; 7260947 N; Z 9																
(m)	Method	Soil Ground Ic						Soil Ground Ice		Soil Ground Ice		Soil Ground Ice							Plasti Limit 20		Limit	Elevation
		TOPSOIL - silty, trace gravel, rootlets, dark brown, (100 SILT - sandy, trace gravel, brown) mm thick)	Frozen, Nbn																		
1		GRAVEL - sandy, trace silt, greyish brown, coarse subr estimate for greater than 20 mm diameter: 15-20% b	ounded to rounded gravel, field by volume			3.9	•			1.												
				_																		
		SAND AND GRAVEL - trace silt, grey to brown	Nbn																			
3	Excavated	- (Gravel - 36%; Sand - 60%; Silt & Clay - 4%)				5.2	•			1												
		GRAVEL - sandy, trace silt, greyish brown, coarse subr estimate for greater than 20 mm diameter: 15-20% I - (Gravel - 70%; Sand - 27%; Silt & Clay - 3%) END OF TESTPIT (4.5 metres)	ounded to rounded gravel, field by volume			3.2	2			1'												
		Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204																				
	I	`	Contractor: HRN Contracting	_td.	Corr	pletio	n Depth: 4	1.5 m		-10												
		TETRA TECH	Drilling Rig Type: John Deere			·	: 2020 Jai															
	U		Logged By: AR		Completion Date: 2020 January 12																	
	2.43		Reviewed By: EG			e 1 of		,														

			Testpit No:	PR3-TP0	9						
			Project: Oscar Creek Granular I			ct No: I	ENG.YAR	C03255-0			
		Northwest	Location: Prospect 3	Project No: ENG.YARC03255-01 Ground Elev: 112 m							
		Territories	Oscar Creek, Northwest Territo	UTM: 575247 E; 7260981 N; Z 9							
ueptn (m)	Method	Soil Descriptio	n	Ground Ice Description	Ψ	Moisture Content (%)	Limit	Moisture Content	Limit	Elevation	
0		TOPSOIL - silty, trace gravel, rootlets, dark brown, (100) mm thick)	Frozen, Vc			20	40 60	80	112	
		SILT - sandy, trace gravel, brown		Nbn		15.5	•				
1		GRAVEL - sandy, trace silt, greyish brown, coarse subr estimate for greater than 20 mm diameter: 15-20% t - (Gravel - 75%; Sand - 23%; Silt & Clay - 2%)	ounded to rounded gravel, field by volume	Vc		3.2	•			111	
2	Excavated	SAND - gravelly, trace silt, grey to brown		Nbn						110	
3		- (Gravel - 28%; Sand - 68%; Silt & Clay - 4%)				4.8	•			109	
4		END OF TESTPIT (4.0 metres) Notes: LA Abrasion Loss = 31% Petrographic Number (Weighted Average) = 204								- 108	
5		TETRATECH	Contractor: HRN Contracting Lt Drilling Rig Type: John Deere 2		Start I	Date: 2	Depth: 4 r 2020 Janu	ary 12	10	10	
Ľ	-		Logged By: AR			Date: 202	0 January	١Z			
		D NE9.GPJ EBA.GDT 20-10-13	Reviewed By: EG		Page		Dale. 202	.0 Janual y	12		

APPENDIX C

GEOTECHNICAL LABORATORY TEST RESULTS

MOISTURE CONTENT TEST RESULTS

ASTM D2216

Project:	Oscar Creek Bridge Geotechnical Invest.	Sample No.:	7198
Project No.:	704-ENG.YARC03255-01	Date Tested:	April 7, 2020
Client:	Government of Northwest Territories	Tested By:	SI
Address:	Near MVWR km 1054, Prospect 1	Page:	1 of 1

B.H. Number	Depth (m)	Moisture Content (%)	Visual Description of Soil
TP 01	0.0 - 1.0	19.8	CLAY, silty, sandy, organics, rootlets, brown
TP 02	0.4 - 2.0	15.7	CLAY, silty, sandy, organics, rootlets, brown
TP 03	0.0 - 0.4	18.4	CLAY, silty, some sand, occasional gravel, reddish brown
TP 04	0.0 - 0.4	9.7	SAND, silty, clayey, some gravel, brown
TP 05	0.5 - 1.0	12.4	SILT and SAND, some clay, trace gravel, light brown
TP 07	0.4 - 1.0	20.4	SILT and SAND, some clay, trace gravel, light brown
TP 08	1.0 - 1.5	2.6	SAND and GRAVEL, trace silt, brown
			Reviewed By: Jorg Yokayon P.Eng.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

MOISTURE CONTENT TEST RESULTS

ASTM D2216

Project:	Oscar Creek Bridge Geotechnical Invest.	Sample No.:	7199
Project No.:	704-ENG.YARC03255-01	Date Tested:	April 7, 2020
Client:	Government of Northwest Territories	Tested By:	SI
Address:	Near MVWR km 1054, Prospect 2	Page:	1 of 1

B.H. Number	Depth (m)	Moisture Content (%)	Visual Description of Soil
TP 01	0.0 - 4.0	18.8	CLAY, silty, some sand, trace gravel, organics, rootlets, orangey
			brown
TP 02	0.2 - 0.8	4.5	GRAVEL and SAND, some silt, trace clay, rootlets, brown
TP 03	0.4 - 1.0	4.2	GRAVEL, some sand, trace silt, brown
TP 04	0.0 - 0.3	22.4	CLAY, silty, some sand, trace gravel, mottled orange
			and brown, medium plasticity
TP 04	0.3 - 1.2	4.0	SAND, some gravel, trace silt, brown
TP 05	0.4 - 1.6	2.8	GRAVEL, trace sand, trace silt, brown
			Reviewed By: Jorg Yolsyom P.Eng.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

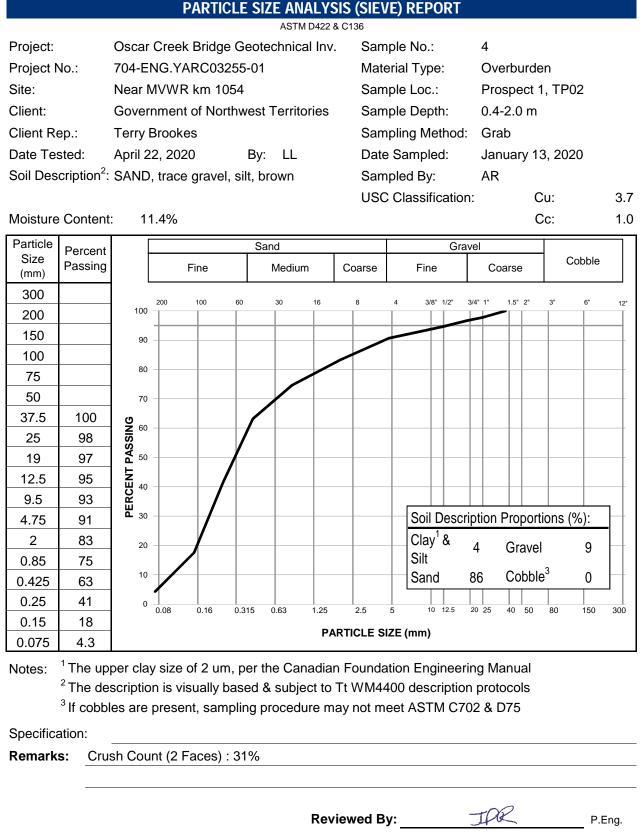
MOISTURE CONTENT TEST RESULTS

ASTM D2216

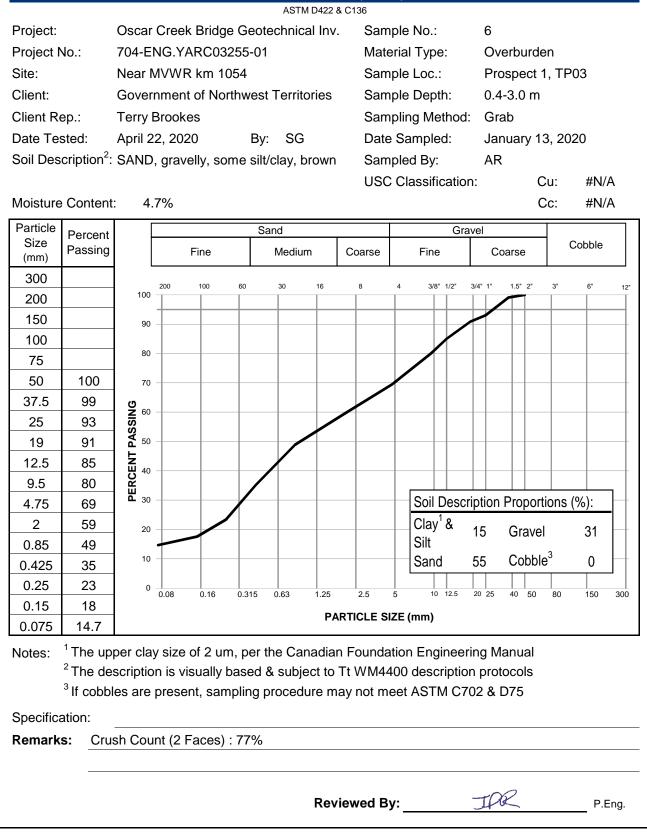
Project:	Oscar Creek Bridge Geotechnical Invest.	Sample No.:	7200
Project No.:	704-ENG.YARC03255-01	Date Tested:	April 8, 2020
Client:	Government of Northwest Territories	Tested By:	SI
Address:	Near MVWR km 1054, Prospect 3	Page:	1 of 1

B.H. Number	Depth (m)	Moisture Content (%)	Visual Description of Soil
TP 01	0.4 - 1.0	3.0	GRAVEL and SAND, trace silt, brown
TP 01	1.4 - 4.2	4.1	GRAVEL, some sand, trace silt/clay, brown
TP 02	0.3 - 1.0	3.0	GRAVEL, some sand, trace silt/clay, brown
TP 04	0.0 - 0.6	3.9	GRAVEL, some sand, trace silt/clay, brown
TP 04	0.6 - 4.5	3.7	GRAVEL, some sand, trace silt/clay, brown
TP 06	0.5 - 2.0	4.2	SAND, some gravel, trace silt, brown
TP 07	0.0 - 0.6	6.7	SAND, trace silt, brown
TP 07	0.6 - 3.5	6.2	GRAVEL, sandy, trace silt/clay, brown
TP 08	0.5 - 1.2	3.9	SAND, gravelly, trace silt, brown
TP 09	0.0 - 1.0	15.5	SAND, trace gravel and silt and clay, reddish brown
			Reviewed By:P.Eng.

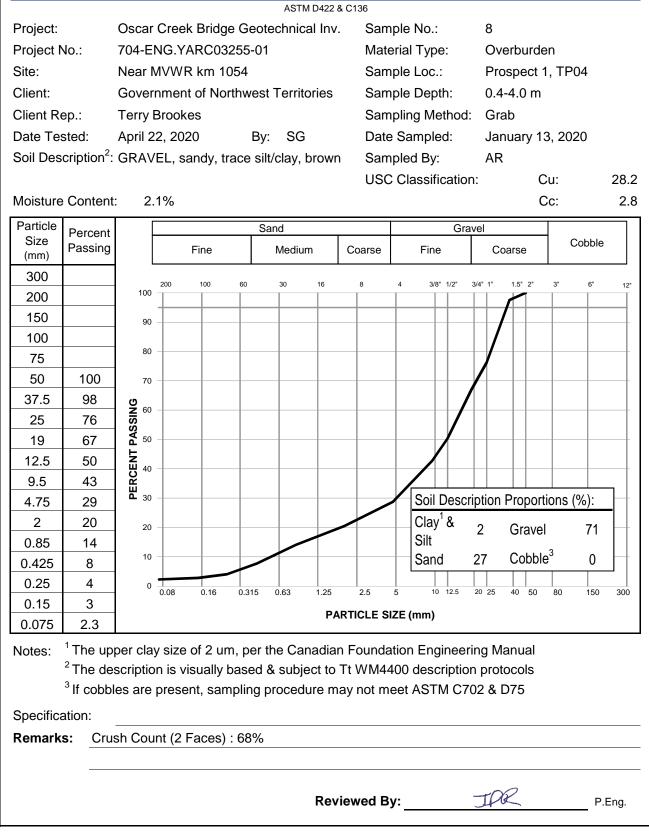
Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

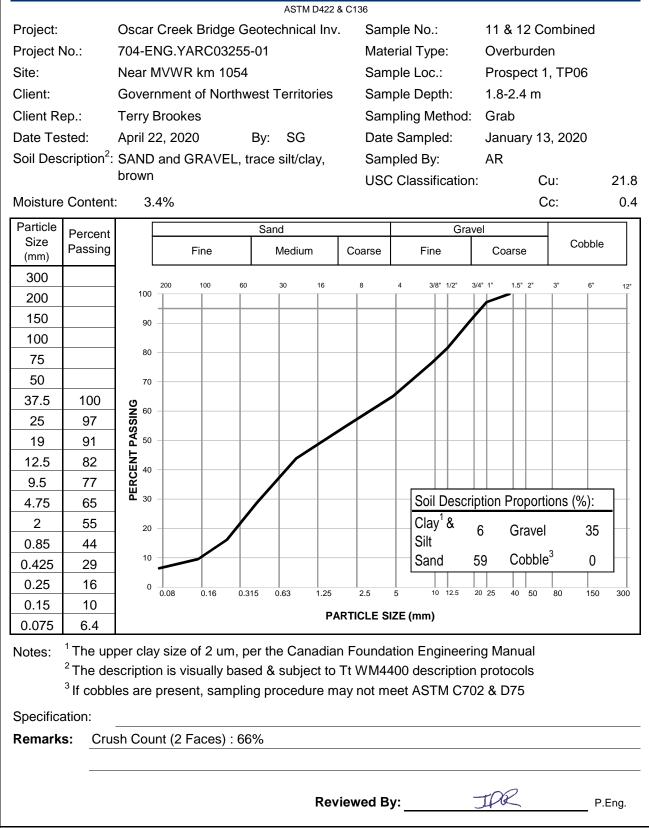


PARTICLE SIZE ANALYSIS (SIEVE) REPORT

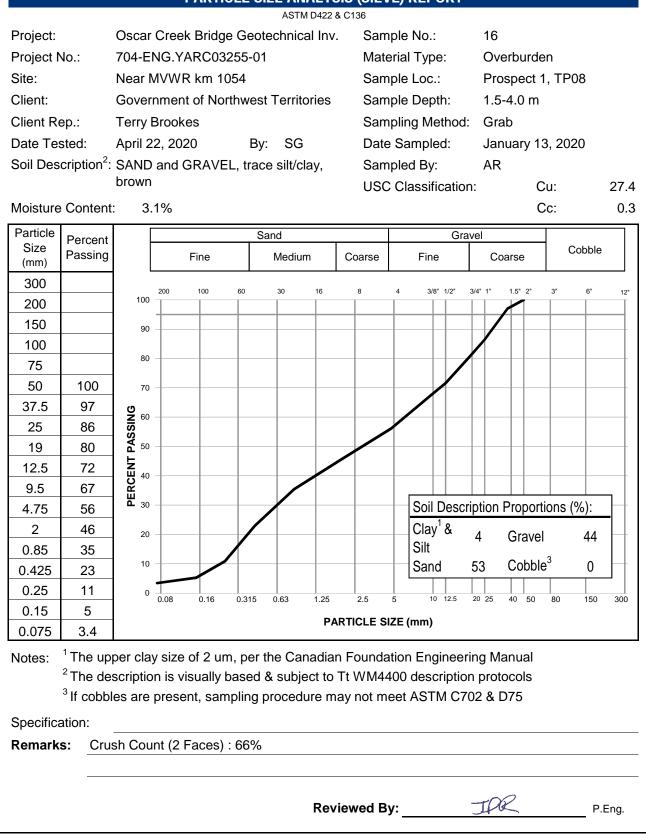

			-	AITIO				& C136)	KLPUKI				
Project:		Oscar	r Creek	Bridge	Geote	echnica	l Inv	. Sam	nple	No.:	2			
Project N	No.:			RC032					eria	l Type:	Ove	rburden		
Site:		Near	MVWR	km 105					Sample Loc.:		Prospect 1, TP01			
Client:		Gove	rnment	of North	nwest	Territo	ries	Sam	Sample Depth:			1.0-4.0 m		
Client Re	ep.:	Terry	Brookes						•	ng Method:	Gral	Grab		
Date Te		-	22, 202		By:	LL			•	ampled:		January 13, 2020		
Soil Des		•			•		av.			ed By:	AR	•		
		brown			,		,		•	assification				22.4
Moisture Content: 4.4% Cc:											0.5			
Particle	Percent				Sa	nd				Gra	vel			
Size (mm)	Passing			Fine		Medium	l	Coarse		Fine	Coa	arse	Cobble	
300			200	100	60	30	16	8	4	3/8" 1/2"	3/4" 1"	1.5" 2" 3"	6"	12"
200		100												12
150		90									$\boldsymbol{/}$			
100											1			
75		80												
50		70					-		+					
37.5	100	9 60												
25	93	SSIL												
19	87						-		+					
12.5	77		, 											
9.5	71	60 50 50 40 40 30 30					1							-
4.75	59	L 30				/				Soil Descr	iption F	Proportion	is (%):	_
2	45	20					-	_	-	Clay ¹ &	1	Gravel	41	
0.85	33	10			1					Silt	50	Cobble ³	0	
0.425	21	-								Sand	59		0	
0.25	12	0	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25	40 50 80) 150	300
0.15	6						PA	ARTICLE S	IZE	(mm)				
0.075	0.9													
Notes:	•	•	•		•					n Engineer	-			
		-		-		-				descriptio	-			
Specifica		les are	preser	nt, samp	pling p	roceau	re m	iay not m	eet	ASTM C7	02 & D	75		
			t (0 E		1 4 0/									
Remark	s: <u>Cru</u>	sn Col	int (2 F	aces) :	14%									
							Pou	viewed B	v-		$-\tau \Omega \phi$	2		Eng
							Rev		у		JI V	~	P.I	Eng.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.





			-					& C136						
Project:		Oscai	r Creek	Bridge	Geote	echnica	al Inv	. San	nple	No.:	10			
Project I	No.:			RC0325					•	l Type:	٥v	verburde	n	
Site:		Near	MVWR	km 105	54					e Loc.:	Pr	ospect 1	, TP05	
Client:		Gove	rnment	of North	nwest	Territo	ries	San	Iple	e Depth:)-2.0 m		
Client R	ep.:	Terry	Brooke	es					•	ng Method	: Gr	ab		
Date Te	•	-	22, 202		By:	LL			•	ampled:		nuary 13	, 2020	
Soil Des	cription ² :	•					y,			ed By:	AF	-		
		browr		0 /					•	assificatio	n:	C	u:	3.7
Moisture	Content	t: 4	.1%									C	c:	0.7
Particle	Percent				Sa	and				Gra	avel			
Size (mm)	Passing			Fine		Medium	۱	Coarse		Fine	С	oarse	Cobble	
300			200	100	60	30	16	8	4	3/8" 1/2"	3/4" 1"	1.5" 2"	3" 6"	12"
200		100												
150		90					_		+			_		
100		80												
75														
50	100	70		_			\checkmark		+		+			
37.5	97	9 60												
25	97	ASSI												
19	95								1					
12.5	91	60 50 50 40 40 30		_		_	-		+			_		
9.5	88	BER 30								Soil Desc	rintion	Proporti	one (%):	∟ ∣
4.75	82				/					Clay ¹ &	приоп	горони	0115 (70).	-
2 0.85	74 63	20		/			-		+	Silt	1	Gravel	18	
0.85	44	10					-		+	Sand	81	Cobble	³ 0	
0.420	14	-												
0.15	4	-	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25	40 50	80 150	300
0.075	0.8						PA	RTICLE S	IZE	(mm)				
Notes:		-	-		-					n Enginee	-			4
										descriptic ASTM C7				
Specifica				, <u> </u>	51		-					-		
Remark	s: Cru	sh Cou	unt (2 F	aces) : (61%									
							Rev	iewed B	y:_		IP	R	P.E	Eng.



						ASTM	I D422	& C136					
Project:		Oscar	r Cree	k Bridge	e Geot	echnica	al Inv	r. Sam	nple	e No.:	14		
Project I	No.:	704-E	NG.Y	ARC032	255-01	l		Mate	eria	l Type:	Overburde	en	
Site:		Near	MVWI	R km 10	54			Sam	nple	e Loc.:	Prospect 2	I, TP07	
Client:		Gove	rnmen	t of Nor	thwes	t Territo	ories	Sam	nple	e Depth:	1.0-4.0 m		
Client R	ep.:	Terry	Brook	es				Sam	nplii	ng Method:	Grab		
Date Te	sted:	April 2	22, 20	20	By	: SG		Date	e Sa	ampled:	January 1	3, 2020	
Soil Des	cription ² :	GRA\	/EL, s	andy, tra	ace sil	t/clay, t	orowr	n Sam	nple	ed By:	AR		
									•	lassification	: C	Cu:	30.3
Moisture	e Content	t: 2	.8%								C	Cc:	1.9
Particle	Percent				S	and		1		Grav	el		
Size (mm)	Passing			Fine		Medium	n	Coarse		Fine	Coarse	Cobb	ble
300										I.			
200		100	200	100	60	30	16	8	4	3/8" 1/2" 3	/4" 1" 1.5" 2"	3" 6	12
150		90			+				+				
100		50											
75		80			-	_			+				
50		70			_				_	/			
37.5	100	<u>ں</u>											
25	91												
19	81	60 50 50 40 40 30				_	_		+				
12.5	65			_		_			Ϊ				
9.5	57	ERC											
4.75	39	L 30						/	t		ption Proport	ions (%)	<u> </u>
2	27	20							+	Clay ¹ &	5 Grave	6	1
0.85	19	10								Silt Sand 3	34 Cobble	e ³ (
0.425	12	-	-	_	1					Saliu		- (<u> </u>
0.25	7	0	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25 40 50	80 1	50 300
0.15 0.075	6 5.4						PA	ARTICLE S	IZE	(mm)			
Notes:		•	•		•					n Engineerir	-		
										description ASTM C70			
Specific				,	1 01			,					
Remark	s: Cru	sh Cou	unt (2	Faces) :	75%								
							Rev	viewed B	v:	-	TPR		P.Eng.
									<u> </u>				



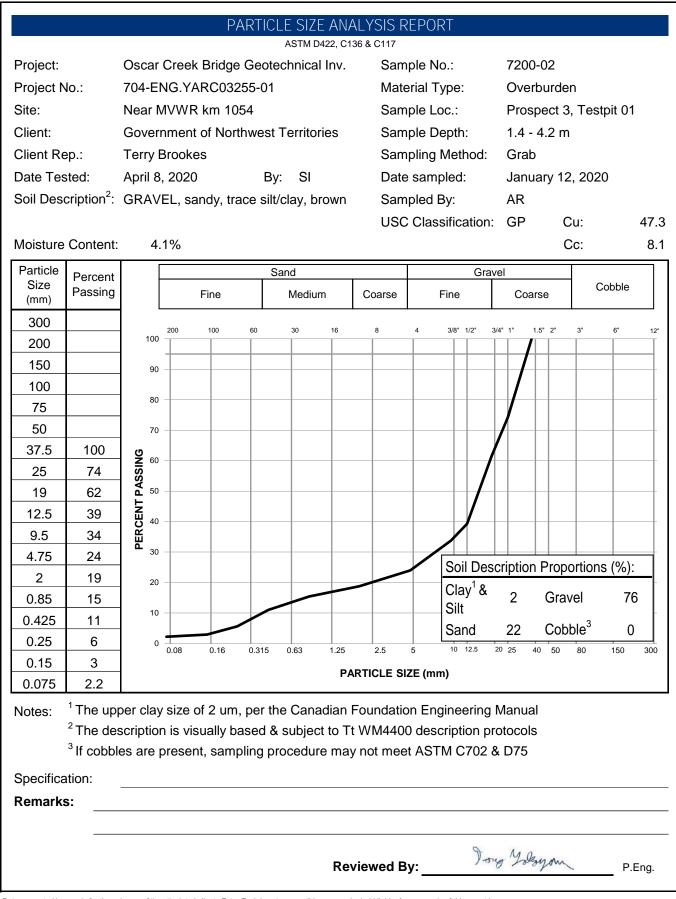
								& C136							
Project:		Oscar	[.] Creek	Bridge	Geo	technica	al Inv	. Sam	ple	No.:	18				
Project I	No.:	704-E	NG.YA	RC032	255-0	1		Mate	erial	Type:	Ove	erburde	า		
Site:		Near	MVWR	km 10	54			Sam	ple	Loc.:	Pro	spect 2	, TPC)1	
Client:		Gove	rnment	of Nor	thwes	t Territo	ories	Sam	ple	Depth:	0.4	-2.0 m			
Client R	ep.:	Terry	Brooke	s				Sam	nplin	g Method:	Gra	ab			
Date Te	sted:	April 2	22, 202	0	Ву	: LL		Date	e Sa	mpled:	Jar	nuary 11	, 202	20	
Soil Des	cription ² :	GRA\	/EL, so	me silt/	/clay,	trace sa	and,	Sam	ple	d By:	AR				
		browr	1					USC	Cla	assificatior	ו:	С	J:	#N/A	
Moisture	Content	: 9	.3%									C	c:	#N/A	
Particle	Percent				S	and				Gra	vel				7
Size (mm)	Passing			Fine		Medium	n	Coarse		Fine	Co	arse	С	obble	
300		1	L						<u> </u>						
200		100	200	100	60	30	16	8	4	3/8" 1/2"	3/4" 1"	1.5" 2"	3"	6"	12"
150			+		-				+		/			_	-
100		90													1
75		80		_			_		+-					_	+
50		70				_		_						_	
37.5	100	U								/					
25	86	NIS 60			1				\top						+
19	68	60 50 50 40 40 30				_	_		-					_	+
12.5	55														
9.5	41														
4.75	22	₽ 30	-							Soil Desc	riptior	n Propor	ions	(%):	Ħ
2	18	20							/	Clay ¹ &					1
0.85	18							_		Silt	16	Grave	I	78	
0.425	17	10								Sand	6	Cobbl	e^3	0	T
0.25	17	0	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25	40 50	80	150	300
0.15	16	-					PA	ARTICLE S	IZE (mm)					
0.075	15.5									····· ,					
Notes:	² The de	scriptio	on is vis	sually b	ased	& subje	ect to	Tt WM44	400	Engineer description	n prot	ocols			
Specifica					-										
Remark		sh Cou	unt (2 F	aces) :	21%										
							Rev	viewed B	y:		JA	R		P.En	g.

			ſ	AKIIG	LE J			& C136	V CJ	REPORT			
Project:		Osca	r Creek	Bridge	Geo	otechnica	al Inv	. Sar	nple	e No.:	19		
, Project I	No.:			RC032					•	l Type:		erburden	
Site:										e Loc.:		ospect 2, ⁻	ГР01
Client:		Gove	rnment	of Nort	hwes	st Territo	ories		•	e Depth:)-4.0 m	
Client R	ep.:		Brooke						•	ng Method			
Date Te	•		22, 202		B	y: LL			•	ampled:		nuary 11, :	2020
	cription ²	•				•	brov			ed By:	AR		_0_0
0011200	onpuon				, one	y, olayoy	, 510		•	lassificatio		Cu:	#N/A
Moisture		. g	.2%					00				Cc:	
-		0 T	.2 /0										
Particle Size	Percent					Sand					avel		Cobble
(mm)	Passing			Fine		Mediun	n	Coarse		Fine	C	oarse	000010
300			200	100	60	30	16	8	4	3/8" 1/2"	3/4" 1"	1.5" 2" 3"	6" 1
200		100											
150		90										/	
100													
75	100	80									\square		
50	85	70	• <u> </u>		-		_						
37.5	85	9 60							/				
25	80	60 50 50 40 40 40 40											
19	79		·						+				
12.5	74		, <u> </u>				_		_				
9.5	71	ERC		1									
4.75	64	A 30									ription	Proportior	is (%):
2	59	20	·		-		_		+	Clay ¹ &	29	Gravel	36
0.85	54	10								Silt	25	Cobble ³	0
0.425	50	-								Sand	35		0
0.25	45	0	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25	40 50 80	0 150 30
0.15	38						PA		SIZE	(mm)			
0.075	28.5												
Notes:	-	-	-		-					n Enginee	-		
										descriptio			
	[°] If cobb	les are	preser	nt, samp	oling	procedu	ire m	nay not n	neet	ASTM C7	02 &	D75	
Specifica	ation:												
Remark	s: Cru	sh Cou	unt (2 F	aces) :	51%)							
											_	~	
							Rev	viewed E	3y: _		IP	K_	P.Eng.

			ľ	AKIIG	LL JI			& C136	/ L)	KLFUKI				
Project:		Oscai	[.] Creek	Bridge	Geot	echnica			əlqr	e No.:	22			
Project I	No.:			RC032						l Type:	Overb	urden		
, Site:										e Loc.:		ect 2, T	P02	
Client:						Territo	ries		•	e Depth:	1.5-4.			
Client R	ep.:		Brooke							ng Method:	Grab			
Date Te	•		23, 202		By:	JC			•	ampled:		ry 11, 2	020	
	cription ² :	•					IV.			ed By:	AR	,		
		brown			,		,		•	lassification		Cu:		29.2
Moisture	e Content	: 3	.9%									Cc:		0.9
Particle	Percent				Sa	and				Grav	vel			
Size	Percent Passing			Fine		Medium		Coarse		Fine	Coars	e	Cobble	
(mm)		-												
300 200		100	200	100	60	30	16	8	4	3/8" 1/2"	3/4" 1" 1.5	2"3"	6"	12"
150		-					-		+					_
100		90												
75		80	_	_			-		+					
50	100	70												
37.5	88	U												
25	81	60 50 40 40 40 40							+					
19	79	SA 20						_				+		
12.5	68													
9.5	59	ERC												_
4.75	45	⊡ 30	-						+	Soil Descri	iption Pro	portion	s (%):	_
2	33	20	_						-	Clay ¹ &	5 G	ravel	55	
0.85	22	10								Silt		obble ³	0	
0.425	12	10			T					Sand	40 Co		0	
0.25	8	0	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25 40	50 80	150	300
0.15	6	-					PA	ARTICLE S	IZE	(mm)				
0.075	5.3													
Notes:	-	-	-							n Engineeri	-			
		-		•		-				descriptior	•			
Specific			Piesei	n, sain	ning h			ay not m	CCI			,		
Specifica			unt /0 F		220/									
Remark	s: <u>Cru</u>	sn Côl	unt (2 F	aces) :	33 %									
							Rev	viewed B	y:_		IPR		P.I	Eng.

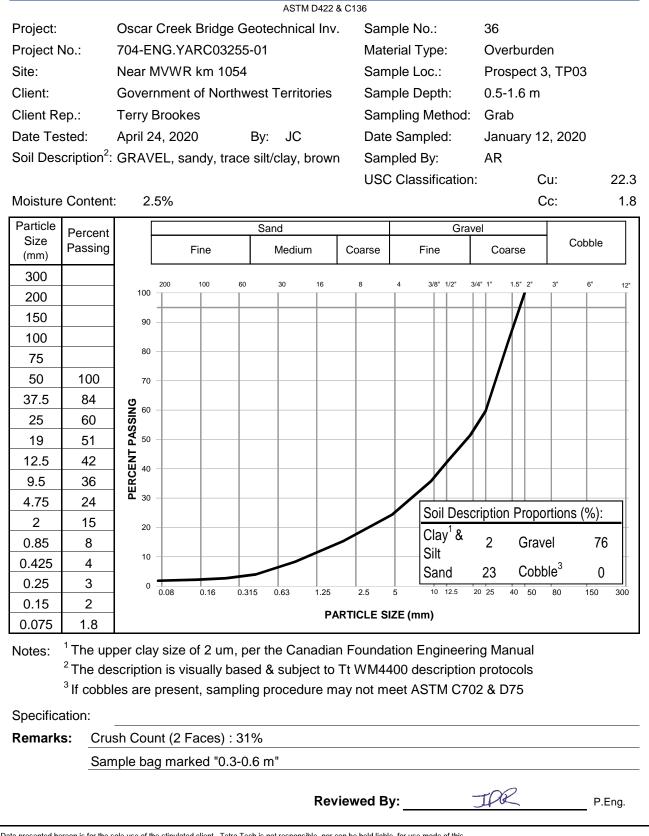
Size (mm) Pa 300 200 150 100 75 50	o.: o.: ed: ription ² :	704-E Near I Gover Terry April 2 GRAV brown	NG.YA MVWR nment Brooke 23, 202 /EL, sc	20	255-01 54 thwest By:	Territo		Mate Sam Sam	eria Iple Iple	No.: I Type: Loc.: Depth:	Pro	erburden spect 2, T -1.8 m	P03	
Site: Client: Client Rep. Date Tester Soil Descrip Moisture Co Particle Size (mm) 300 200 150 100 75 50 37.5	o.: ed: ription ² : Content: Percent	Near I Gover Terry April 2 GRAV brown	MVWR rnment Brooke 23, 202 /EL, sc	t km 10 of Nor es	54 thwest By:	Territo	ories	Sam Sam	iple iple	Loc.:	Pro	spect 2, T	P03	
Client: Client Rep. Date Tester Soil Descrip Moisture Co Particle Size (mm) 300 200 150 150 100 75 50 37.5	ed: ription ² : Content: Percent	Gover Terry April 2 GRAV brown	rnment Brooke 23, 202 /EL, sc	of Nor es :0	thwest By:	SG	ories	Sam	ple			•	P03	
Client Rep. Date Tester Soil Descrip Moisture Co Particle Size (mm) 300 200 150 100 75 50 37.5	ed: ription ² : Content: Percent	Terry April 2 GRAV brown	Brooke 23, 202 /EL, sc	es :0	By:	SG	ories			Depth:	1.0-	-1.8 m		
Date Tester Soil Descrip Moisture Co Particle Size (mm) 300 200 150 100 75 50 37.5	ed: ription ² : Content: Percent	April 2 GRA\ brown	23, 202 /EL, sc 1	20	•			Sam	·					
Date Tester Soil Descrip Moisture Co Particle Size (mm) 300 200 150 100 75 50 37.5	ed: ription ² : Content: Percent	April 2 GRA\ brown	23, 202 /EL, sc 1	20	•				plir	ng Method:	Gra	ıb		
Soil Descrip Moisture Co Size (mm) 300 200 150 100 755 50 37.5	ription ² : Content: Percent	GRA\ brown	/EL, sc ı		•				•	ampled:		uary 11, 2	020	
Particle Size (mm)Pe Pa30012001150110017515037.5	Content: Percent	brown	I		-,	ce silt/c	lav.			d By:	AR	•		
Particle Size (mm) Pe Particle 300 1 200 1 150 1 100 1 75 1 50 37.5	Percent	: 5	.5%				, ,		•	assification		Cu:		34.7
Particle Size (mm) Pe Particle 300 1 200 1 150 1 100 1 75 1 50 37.5	Percent											Cc:		9.5
Size (mm) Perform 300 200 150 100 75 50 37.5 9			r		<u> </u>					0.10				
300 200 150 100 75 50 37.5	assing			- :	58	and		-		Gra			Cobble	
200 150 100 75 50 37.5				Fine		Mediun	า	Coarse		Fine	Co	arse		
150 100 75 50 37.5			200	100	60	30	16	8	4	3/8" 1/2"	3/4" 1"	1.5" 2" 3"	6"	12"
100 75 50 37.5		100												
75 50 37.5		90	-			_			-					
50 37.5		80									1			
37.5		00												
		70	-				_	_	\vdash					-
25	100	9 60	_	_		_	_							
	91	ASSI												
19	86	a 50							t	1				_
12.5	72	60 50 40 30 40 30		_	_	_	_		+					
9.5	58										intion	Proportion	<u> </u>	
4.75	27								1	Clay ¹ &		FIOPOILION	5 (70).	-
2 0.85	15 12	20	-					\times	+	Silt	9	Gravel	73	
0.85	12	10						-		Sand	19	Cobble ³	0	
0.425	10	0												
0.15	9	0	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25	40 50 80	150	300
	8.8						PA		ZE	(mm)				
				of 0 um	nort		adia		tion	n Engineer	ing Ma			
			-		-					description	-			
										ASTM C7				
			P10001	in, ourn	r			sy not in	551		u L			
Specificatio					0001									
Remarks:	Crus	sh Cou	unt (2 F	aces) :	90%									
								iewed B			-~	0		

			•	ANTIO		ASTMI			·)	KLI OKI				
Project:		Oscar	[.] Creek	Bridge	Geot	echnica	l Inv	. San	nple	e No.:	25			
Project N	No.:	704-E	NG.YA	RC032	55-01			Mat	eria	l Type:	Overb	ourden		
Site:		Near	MVWR	km 10	54			Sam	nple	e Loc.:	Prosp	ect 2, T	P03	
Client:		Gover	rnment	of Nort	hwest	Territo	ries	Sam	nple	e Depth:	1.8-4.	2 m		
Client Re	ep.:	Terry	Brooke	es				San	nplii	ng Method:	Grab			
Date Te	•		23, 202		By:	SG			•	ampled:	Janua	ary 11, 2	2020	
Soil Des	cription ² :	•			•					ed By:	AR			
	•		ay, brov			,			•	lassification		Cu:		36.3
Moisture	Content	: 4	.9%									Cc:		4.7
Particle						and			1	Grav				
Size	Percent Passing			Fine	3.	Medium		Cooreo		Fine			Cobble	
(mm)	1 assing			rine		weatum		Coarse		Fine	Coars	e		
300			200	100	60	30	16	8	4	3/8" 1/2" 3/	4" 1" 1.5	5" 2" 3"	6"	12"
200		100												
150		90					-	_	+					
100	100	80												
75	91	-												
50	87	70	-	-		-	-		+	/				
37.5	87	5 1 1 1							_					
25	79	ASSI												
19	73													
12.5	58	60 50 50 40 40 30 30		-		-	-	_						
9.5 4.75	50 30							_	Ϊ	Soil Descrip	tion Pro	nortion	s (%)·	
4.75	19	-								Clov ¹ 8				-
0.85	13	20						1	+	Silt	8 G	ravel	61	
0.425	10	10	_				-	_	+		21 C	obble ³	9	
0.25	9	0												
0.15	9	Ů	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5 2	20 25 40	50 80	150	300
0.075	8.4						PA	ARTICLE S	IZE	(mm)				
Notes:		per cla	v size i	of 2 um	per t	he Can	adia	n Found:	atio	n Engineerir	ng Mani	ual		
10100.	•	•	•		•					description	-			
										ASTM C70				
Specifica				. 1	01			-						
Remark	s: Cru	sh Cou	unt (2 F	aces) :	92%									
				,										
											~			
							Rev	viewed B	y: _		IPK		P.I	Eng.



								& C136)	KLFOKT				
Project:		Oscai	[.] Cree	k Bridge	e Geo	technica	al Inv	. Sam	nple	No.:	28			
Project I	No.:	704-E	NG.Y	ARC032	255-0	1		Mate	eria	l Type:	Ov	erburden		
Site:		Near	MVWI	R km 10	54			Sam	nple	Loc.:	Pro	ospect 2, T	P04	
Client:		Gove	rnmen	t of Nor	thwes	st Territo	ories	Sam	nple	Depth:	1.2	2-4.5 m		
Client R	ep.:	Terry	Brook	es				Sam	nplir	ng Method	Gr	ab		
Date Te	sted:	April 2	23, 20	20	Ву	/: JC		Date	e Sa	ampled:	Ja	nuary 11, 2	2020	
Soil Des	cription ² :	SAND	and	GRAVE	L, trad	ce silt/cl	ay,	Sam	nple	ed By:	AF	ł		
		browr	1					USC	C CI	assificatio	n:	Cu:		12.4
Moisture	Content	t: 4	.1%									Cc:		0.3
Particle	Percent				S	Sand				Gra	ivel			
Size (mm)	Passing			Fine		Mediun	n	Coarse		Fine	С	oarse	Cobble	
300		-												
200		100	200	100	60	30	16	8	4	3/8" 1/2"	3/4" 1"	1.5" 2" 3"	6"	12"
150		- 90	1								$\boldsymbol{\mathcal{I}}$			
100		50									1			
75		80			-				+					
50		70	-		-		_		+		$\left \right $			
37.5	100	<u>ں</u>												
25	95	60 50 50 40 40 30							1					
19	89	Å 50					_		+		$\left \right $			
12.5	82		_		_				_					
9.5	76	ERC											(0()	-
4.75	60	H 30							T		ription	Proportion	s (%):	_
2	45	20	-		-	\square	_		+	Clay ¹ &	3	Gravel	41	
0.85	31	10	_							Silt Sand	57	Cobble ³	0	
0.425	11 5		-		1									
0.25	4	0	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25	40 50 80	150	300
0.075	2.9						PA	ARTICLE S	IZE	(mm)				
Notes:				of 2 um	nor	the Cor	odio	n Founda	otio	n Engineer	ing M	lonual		
Notes:										descriptio				
		-		-		-				ASTM C7	-			
Specifica			F1000	, ourn	r			,	200		0			
Remark		sh Coi	int (2	Faces) :	26%									
	<u>.</u> 010		<u>مار (ح</u>	1 0003)	20/0									
												0		
							Rev	viewed B	y: _		IP	K	P.	Eng.

			-					& C136		KEI OKI				
Project:		Osca	r Creek	Bridge	Geote	echnica	al Inv	. Sam	ple	No.:	30			
Project I	No.:	704-E	NG.YA	RC0325	55-01			Mate	eria	I Type:	Ove	rburden		
Site:		Near	MVWR	km 105	4			Sam	ple	Loc.:	Pro	spect 2, 7	FP05	
Client:		Gove	rnment	of North	nwest	Territo	ories	Sam	ple	Depth:	1.6-	4.2 m		
Client R	ep.:	Terry	Brooke	es				Sam	nplir	ng Method	Gra	b		
Date Te	•		23, 202		By:	JC			•	ampled:		uary 11, 2	2020	
Soil Des	cription ²	•					ay,			d By:	AR	•		
	·	browr							•	assificatio	n:	Cu:		50.1
Moisture	Conten	t: 5	.3%									Cc:		0.1
Particle	Percent				Sa	and				Gra	ivel			
Size	Passing			Fine		Medium	า	Coarse		Fine		arse	Cobble	
(mm)		-					-							
300 200		100	200	100	60	30	16	8	4	3/8" 1/2"	3/4" 1"	1.5" 2" 3"	6"	12"
150		_		_		_			┢		+			
100		90					1		1					-
75		80					_		+					
50	100	- 70												
37.5	89	-												
25	77	60 50 50 50 40 40 30 30		_										
19	71	50 BAS					_							
12.5	65	ENT 40												
9.5	60													_
4.75	54	ä 30		_	1				┢	Soil Desci	ription I	Proportion	is (%):	
2	46	20			/		_			Clay ¹ &	6	Gravel	47	
0.85	39									Silt	-			
0.425	30	10	-	/						Sand	47	Cobble ³	0	
0.25	14	0	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25	40 50 80) 150	300
0.15	8	_					PA	RTICLE S	IZE	(mm)				
0.075	6.2									` ,				
Notes:		•	-		•					n Engineer	-			
		•				•				descriptio	•			
	³ If cobb	les are	preser	nt, samp	ling p	procedu	ire m	ay not m	eet	ASTM C7	02 & C	075		
Specific	ation:													
Remark	s: Cru	sh Cou	unt (2 F	aces) : 4	42%									
							_				-0	2		_
							Kev	iewed B	y: _		110	<u> </u>	P.	Eng.



								& C136	•)	KLFUKT					
Project:		Oscar	Creel	k Bridge	Geo	technica	al Inv	. Sar	nple	No.:	34				
Project N	No.:	704-E	NG.Y	ARC032	255-0	1		Mat	eria	l Type:	٥v	/erburde	n		
Site:		Near	MVWF	R km 10	54			Sar	nple	e Loc.:	Pr	ospect 3	, TP0	2	
Client:		Gove	rnment	t of Nort	hwes	st Territo	ories	Sar	nple	e Depth:	1.0)-1.3 m			
Client Re	ep.:	Terry	Brook	es				Sar	nplii	ng Method	: Gr	ab			
Date Te	sted:	April 2	24, 202	20	By	y: JC		Dat	e Sa	ampled:	Ja	nuary 12	, 202	0	
Soil Des	cription ² :	SILT/	CLAY,	sandy,	trace	gravel,	brow	n Sar	nple	ed By:	AF	ર			
								US	СС	lassificatio	n:	C	u:	#N//	4
Moisture	Content	t: 1	8.0%									C	C:	#N//	4
Particle	Percent				ę	Sand				Gra	avel				\neg
Size (mm)	Passing			Fine		Mediun	า	Coarse		Fine	с	oarse	Co	obble	
300															
200		100	200	100	60	30	16	8	4	3/8" 1/2"	3/4" 1"	1.5" 2"	3"	6"	12"
150		-									+			+	-
100		90		\checkmark											
75		80	+/		-				+					-	-
50		70		_											_
37.5		U	1												
25															
19	100	60 50 50 40 40 30 30		_	-		-		+					-	_
12.5	99														
9.5	99	ERC													,
4.75	97	L 30							+	Soil Desc	ription	Proporti	ons (%	6):	
2	97	20		_	-		-		+	Clay ¹ &	66	Gravel		3	\vdash
0.85	96	10								Silt	31	Cobble	3	0	
0.425	94	_								Sand	31			0	1
0.25	89	0	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25	40 50	80	150	300
0.15	86						PA		SIZE	(mm)					
0.075	66.1	L				40									
Notes:	•	•	•		•					n Enginee) descriptic	-				
										ASTM C7					
One-ifi			P1036	in, sain	piiriy	PIOCEUL		aynoth	1001		52 Q	210			
Specifica					F0 0'										
Remark	s: Cru	sh Col	unt (2 F	aces) :	56%)									
							Rev	iewed E	sy:		IP	R		P.E	ng.
									-					_	

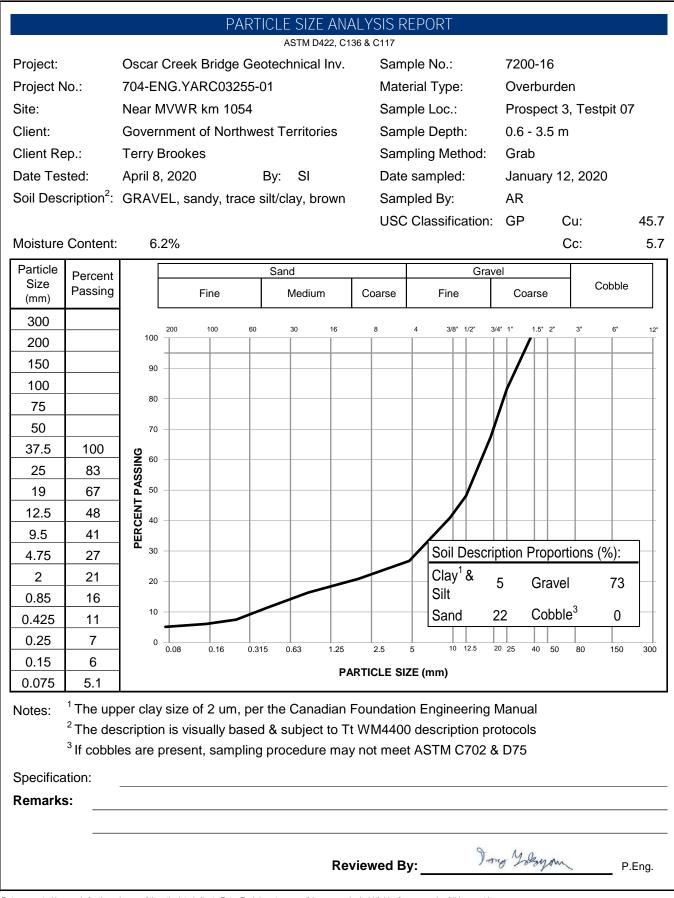
						ASTM	D422	& C136						
Project:		Oscar	r Creek	Bridge	Geo	technica	al Inv	. Sam	nple	e No.:	35			
Project No	o.:	704-E	NG.YA	RC032	55-0 ⁻	1		Mate	eria	l Type:	Ove	erburde	n	
Site:		Near	MVWR	km 10	54			Sam	nple	Loc.:	Pro	spect 3	, TP02	
Client:		Gove	rnment	of Nort	hwes	t Territo	ories	Sam	nple	Depth:	1.3	-4.0 m		
Client Rep	o.:	Terry	Brooke	es				Sam	nplir	ng Method:	Gra	b		
Date Test	ed:	April 2	23, 202	0	By	: JC		Date	e Sa	ampled:	Jan	uary 12	2, 2020	
Soil Desci	ription ² :	GRA\	/EL, sa	ndy, tra	ice si	lt/clay, t	orowr	n Sam	nple	ed By:	AR	-		
	-					-			Cl	assificatior	า:	С	u:	29.1
Moisture (Content	: 4	.5%									С	c:	2.2
Particle	Percent				S	and				Gra	vel			
Size (mm)	Passing			Fine		Medium	n	Coarse		Fine	Co	arse	Cobble	
300					!									
200		100	200	100	60	30	16	8	4	3/8" 1/2"	3/4" 1"	1.5" 2"	3" 6"	12"
150		90												
100														
75		80			-				┢	/				
50		70				_	_		+	/_				
37.5	100	9 60												
25	91	SSIN												
19	82	00 05 04 04 05 04 04 05 04 05 05 04 05 05 05 05 05 05 05 05 05 05 05 05 05		_		_								
12.5	69					_	_							
9.5	56	ERC							1					-
4.75	38	₽ 30							1	Soil Descr	iption	Proporti	ons (%):	_
2	27	20							+	Clay ¹ &	6	Gravel	63	
0.85	19	10								Silt Sand	32	Cobble	³ 0	
0.425	11]					Sanu	52		0	
0.25	8	0	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25	40 50	80 150	300
0.15	5.8	-					PA	ARTICLE S	IZE	(mm)				
		I		()										
		•	-							n Engineer descriptio	-			
										ASTM C7				
Specificat														
Remarks:	: Cru	sh Cou	unt (2 F	aces) :	16%									
							Rev	viewed B	y:_		Jβ	R	P.	.Eng.

						ASTM	1 D422	& C136							
Project:		Oscar	r Creek	Bridge	Geot	echnica	al Inv	r. Sam	ple	e No.:	37				
Project N	lo.:	704-E	NG.Y	ARC032	55-01			Mate	eria	l Type:	Ove	rburde	n		
Site:		Near	MVWF	R km 105	54			Sam	ple	e Loc.:	Pros	spect 3	, TP0	3	
Client:		Gove	rnment	of North	hwest	Territo	ories	Sam	ple	e Depth:	1.6-4	4.0 m			
Client Re	ep.:	Terry	Brooke	es				Sam	nplir	ng Method	Grat	C			
Date Tes	sted:	April 2	24, 202	20	By:	JC		Date	e Sa	ampled:	Janu	uary 12	2, 202	0	
Soil Dese	cription ² :	GRA\	/EL, sa	andy, tra	ce silt	t/clay, t	orowr	n Sam	ple	ed By:	AR				
								USC	CI	lassificatio	n:	С	u:		15.0
Moisture	Content	:: 2	.9%									С	c:		2.2
Particle	Percent				Sa	and		1		Gra	ivel		_		
Size (mm)	Passing			Fine		Mediun	n	Coarse		Fine	Coa	irse	Co	obble	
300															
200		100	200	100	60	30	16	8	4	3/8" 1/2"	3/4" 1"	1.5" 2"	3"	6"	12"
150		90							T						
100															
75		80		_					1						
50		70							╞		\vdash			-	
37.5	100	9 60													
25	84	SSIL													
19	69			_					┢						
12.5	54	00 00 00 04 04 04 04 04 04 04 04 04 04 0				_			+				_		
9.5	45	BER 30									intian C)		<u> </u>	1
4.75	26								/	Soil Desci		тороп	ons (%	'o).	-
2	15	20		_					┢	Clay ¹ & Silt	2	Gravel		74	
0.85	9 5	10		_			\checkmark		-	Sand	24	Cobble	3	0	
0.425 0.25	3														┘││
0.25	3	0	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25	40 50	80	150	300
0.075	2.2	-					PA	ARTICLE S	IZE	(mm)					
· · · ·		nor cla		of 2 um	por t	ho Car	adia	n Founda	otio	n Engineer	ing Ma	nual			
	•	-	•		•					descriptio	-				
										ASTM C7					
Specifica	ation:														
Remarks	s: Cru	sh Cou	unt (2 F	aces) :	19%										
							Rev	viewed B	y:_		IPé	2		_ P.E	Eng.

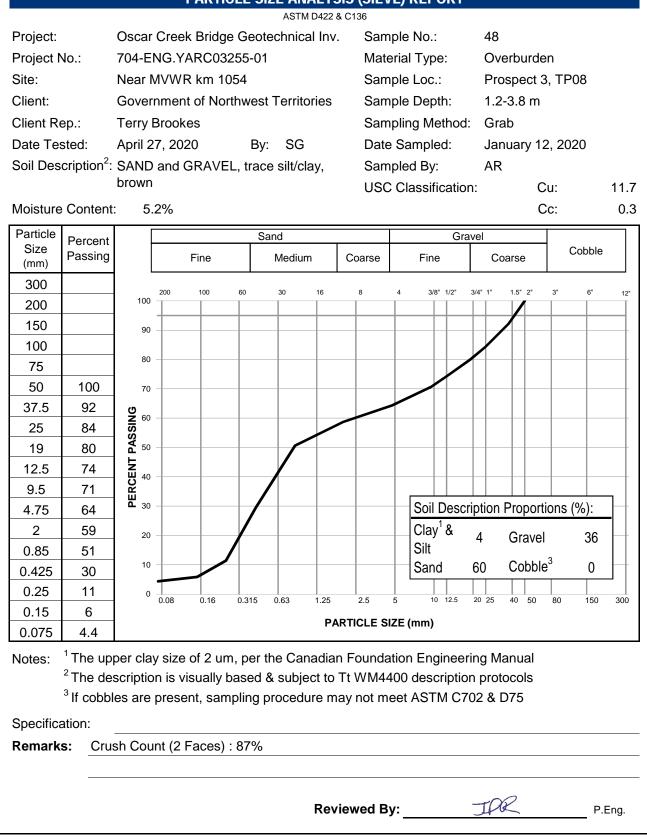
				PA	RTICI			ALYSIS	EPO	RT				
Project:		Oscal	Creek	Bridge	Geote				ple N	o ·	7200	-09		
Project N	lo ·			ARC032		, or in notal			erial T			burden		
Site:	0			km 105					ple Lo				Testpit (14
Client:				of North		Territori	ios		ple D		-	4.5 m	rootpit (7-
Client Re	n ·		Brooke		west	remon	103			Method:	Grab			
Date Tes	•	•	3, 2020		By	: SI			e sam			ary 12,	2020	
Soil Desc		•					21/		pled I		AR	ary 12,	2020	
		browr		nic san	u, iiau		ду,			sification:		Cı	P.	27.8
Moisture	Content		.7%					000	0103	Sincation.	01	C		5.0
	Content.		0.7 70											
Particle Size	Percent				<u> </u>	and				Grav			Cobbl	e
(mm)	Passing			Fine		Medium	า	Coarse		Fine	Coa	rse	0000	
300			200	100	60	30	16	8	4	3/8" 1/2" 3	/4" 1" 1	.5" 2"	3" 6"	12"
200		100)											
150		90) —		_		-				_	$\left \right $		
100		80	,											
75	100	-												
50	91	70)			_			-		-/			
37.5	78	S 60) —	_	_									
25	49	SSP4 50												
19	41										/			
12.5 9.5	30 28	Dercent Passing)	_			-							
9.5 4.75	20	- H ₃₀	,		_		_							
2	14									Soil Des	cription	Propo	rtions (%	»):
0.85	9	20)							Clay ¹ &	2	Grave		80
0.425	4	10) —	_						Silt				-
0.25	3	-	, 🗕 —							Sand	18	Cobb		0
0.15	2		0.08	0.16	0.315	0.63	1.25	2.5	5		20 25 4	0 50	80 150	300
0.075	1.7						PA	RTICLE SI	ZE (mr	n)				
Notes:	¹ The up	per cla	v size (of 2 um.	per th	e Cana	dian	Foundatio	on End	gineering	Manua			
	-	•	•		•					cription pr				
										M C702 8				
Specifica														
Remarks														
										Q	,			
							Rev	viewed B	y:) m	y Yok	inom	I	P.Eng.
														-

25	58	60 50 50 40 30 30	+								_	-
		ASSI										
19	42		+	Soil Des	criptio	n Proportic	ons (%):				_	-
12.5	29	ENT				•						
9.5	25				2	Gravel	82					
4.75	18	H 30	+		17	Cobble ³	0					
2	15	20		Janu			0					
		20	\uparrow									
		10	-									
		-										
		0	0.08	0.16	0.315	0.63 1.2	5 2.5	5 10 12.5	20 25 40	50 80	150	300
0.15	2			-	-							
0.15	1.6					I	PARTICLE S	IZE (mm)				
						I	PARTICLE S	IZE (mm)				
0.15	2		0.00	0.10	5.010	1.20			200		100	500
		0	0.08	0.16	0.315	0.63 1.2	5 2.5	5 10 12.5	20 25 40	50 80	150	300
0.25	4	0	0.08	0.16	0.315	0.63 1.2	5 2.5	5 10 12.5	20 25 40	50 80	150	300
		n	-		1							
0.425	9	10	-									
		10	_						+			
0.85	13	1 20										
		20	-						+ $+$ $+$			
		-		Sano	17	91000	0					
4.75	18	L 30	+	Sand	17	Cobble ³	0					\neg
		<u></u> На 30			. –	0 ³	-					
9.5	25	ERC		Silt	2	Gravel	82	/				
			+	Clay ¹ &	2	Gravel	82					
12.5	29					•			/			
					scriptio	n Proportic	ons (%):					
19	42	Y 50			orintia		(0/)·	1 -				
		SS										
		NIS 60	-		-							
37.5	87	U .										
50	100	70	+						++/ ++			-+
75												
		80	_									_
100		90										
150		90	+									
200		100										
300			200	100	60	30 16	8	4 3/8" 1/2"	3/4" 1" 1.5" 2	2" 3"	6"	12
(mm)	i usenig			TINC		Wealdin	Coarse		Obarse			
Size	Percent Passing			Fine		Medium	Coarse	Fine	Coarse		Cobble	
Particle					Sa	nd		Gr	avel			
Noisture	e Content	: 3	.2%							Cc:		12.
		browr	1				USC	C Classificatio	n:	Cu:		49.
Soil Des	cription ² :			some san	id, trac	ce silt/clay	, San	npled By:	AR			
Date Te		April 2	-		By:			e Sampled:	January	/ 12, 20	20	
	•	•			-	20				40.00		
Client R	an :	Terry				1 official		npling Method				
Client:		Gove	nme	nt of Nort	hwest	Territorie		nple Depth:	0.4-2.0	m		
Site:		Near	MVW	'R km 10	54		Sam	nple Loc.:	Prospe	ct 3, TP	05	
Project I	No.:	704-E	NG.	ARC032	55-01		Mat	erial Type:	Overbu	rden		
Project:		Oscar	· Cree	ek Bridge	Geote	echnical Ir	iv. San	nple No.:	40			

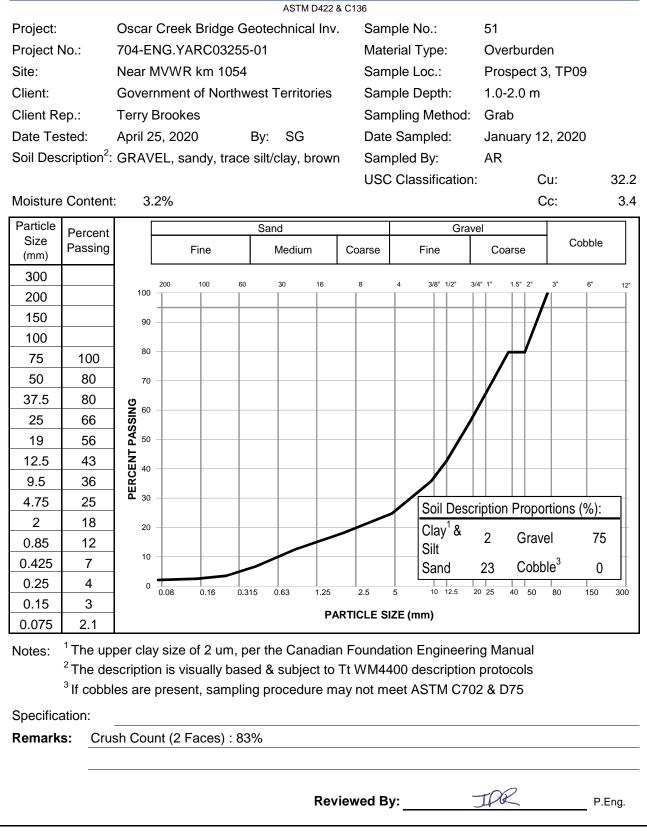
			L.	AKIIGI	LE 312	ASTM E			VC)	REPORT				
Project:		Osca	r Creek	Bridge	Geote	chnical	Inv	. San	nple	No.:	41			
Project N	No.:	704-E	NG.YA	RC0325	55-01			Mat	eria	I Type:	Ov	erburder	1	
Site:		Near	MVWR	km 105	4			San	nple	e Loc.:	Pro	spect 3,	TP05	
Client:		Gove	rnment	of North	nwest	Territor	ies	San	nple	e Depth:	2.0	-4.0 m		
Client R	ep.:	Terry	Brooke	es				San	nplii	ng Method:	Gra	ab		
Date Te	•		27, 202		By:	LL			•	ampled:		nuary 12,	2020	
	cription ² :	•								ed By:	AR	•		
		browr		, .		, ,	,		•	lassification		Cu	:	30.7
Moisture	Content	t: 4	.1%									Cc		2.3
Particle	Percent				Sa	nd				Gra	vel			
Size	Percent Passing			Fine		Medium		Coarse		Fine		arse	Cobble	
(mm)				-						-				
300		100	200	100	60	30	16	8	4	3/8" 1/2"	3/4" 1"	1.5" 2"	3" 6"	12"
200 150		_	-	_			-		+		$\boldsymbol{\vee}$			
100		90							+					
75		80		_					+	/				_
50		70												
37.5	100	1												
25	95	ONIS 60					-		+					_
19	86	60 50 50 50 40 40 30 30		_					+					
12.5	70	L												
9.5	57								Ϊ					
4.75	36	H 30						\checkmark	+	Soil Descr	iption	Proportic	ons (%):	
2	28	20								Clay ¹ &	1	Gravel	64	
0.85	24									Silt				
0.425	15	10							+	Sand	36	Cobble ³	0	
0.25	6	0	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25	40 50	80 150	300
0.15	2	_								(mm)				
0.075	0.8									()				
Notes:	¹ The up	per cla	y size	of 2 um,	per th	ne Cana	adia	n Found	atio	n Engineer	ing M	anual		
										descriptio				
	³ If cobb	les are	prese	nt, samp	ling p	rocedur	e m	ay not m	leet	ASTM C7	02 & [D75		
Specifica	ation:													
Remark	s: Cru	sh Cou	unt (2 F	aces) : 9	9%									
							_					0		
							Rev	viewed E	y: _		JH	r	P.	Eng.



					AST	M D422	& C136						
Project:		Oscar	r Creek Bri	dge Ge	eotechnic	cal Inv	. Sam	nple	No.:	43			
Project I	No.:	704-E	NG.YARC	03255-	-01		Mate	eria	l Type:	Ov	erburden		
Site:		Near	MVWR km	1054			Sam	nple	Loc.:	Pro	ospect 3,	TP06	
Client:		Gover	rnment of N	Vorthwo	est Territ	tories	Sam	nple	Depth:	2.0)-3.5 m		
Client R	ep.:	Terry	Brookes				Sam	nplir	ng Method	: Gra	ab		
Date Te	sted:	April 2	27, 2020		By: SG	;	Date	e Sa	ampled:	Jar	nuary 12,	2020	
Soil Des	cription ² :	•), gravelly,	trace s	silt/clay, t	orown			ed By:	AR			
	·							•	assificatio	n:	Cu	:	4.0
Moisture	Content	t: 4	.6%								Cc	:	0.8
Particle	Percent				Sand				Gra	avel			
Size (mm)	Passing		Fine		Mediu	ım	Coarse		Fine	Co	oarse	Cobble	
300										1	ļ		
200		100	200 100	60	30	16	8	4	3/8" 1/2"	3/4" 1"	1.5" 2" 3	8" 6"	12"
150		90											
100													
75		80						Y					
50		70						-					
37.5	100	<u></u>											
25	97	ONISS 60			1								
19	94	Å 50				_		╞					
12.5	88	60 50 50 40 40 30						_					
9.5	87	ERC											-
4.75	79	A 30		1				+	Soil Desc	ription	Proportio	ns (%):	_
2	72	20		-/		_		+	Clay ¹ &	4	Gravel	21	<u> </u>
0.85	59	10							Silt	70	Cobble ³	0	
0.425	32	-							Sand	76		0	
0.25	11	0	0.08 0.10	6 0.31	5 0.63	1.25	2.5	5	10 12.5	20 25	40 50 8	30 150	300
0.15 0.075	5 3.8	-				PA	ARTICLE S	IZE	(mm)				
Notes:		ner cla	y size of 2	um ne	er the Ca	nadia	n Founda	ation	n Engineer	rina M	anual		
10163.	•	-	on is visual						-	-			
			present, s										
Specific			,		01		,						
Remark	s: Cru	ish Cou	unt (2 Face	s) : 82	%								
			- -										
						Rev	viewed B	y:		JA	R	P.E	Eng.
								~ _					-



Draiaati		0		al Drida				& C136	na Na i	4.4			
Project:	N			ek Bridg			ai inv		ple No.:	44 Oranakaan	-l		
Project I	NO.:			ARC03		1			erial Type:	Overbur			
Site:				/R km 10		· - ·			ple Loc.:	Prospec		16	
Client:			-	nt of Noi	thwes	st l'errito	ories		ple Depth:	3.5-4.5 r	n		
Client R	•	Terry							pling Method:				
Date Te		April 2			By				e Sampled:	January	12, 202	:0	
Soil Des	scription ² :	: GRA\	/EL, :	sandy, tr	ace s	ilt/clay, l	orowr		pled By:	AR			
								USC	Classification	ו:	Cu:	3	5.7
Moisture	e Content	t: 2	.7%								Cc:		2.7
Particle	Percent					Sand			Gra	vel			
Size (mm)	Passing			Fine		Mediur	n	Coarse	Fine	Coarse	С	obble	
300		1			I								
200		100	200	100	60	30	16	8	4 3/8" 1/2"	3/4" 1" 1.5" 2"	3"	6"	12"
150			+										-
100		90											
75		80		_	-	_	_						-
50	100	70											
37.5	89	U											
25	61	NIS 60						_				_	-
19	47	50 BAS				_	_						_
12.5	39	60 50 50 50 50 50 50 50 50 50 50 50 50 50											
9.5	34												
4.75	27	ä 30				_			Soil Des	cription Pro	nortions	<u>(%)</u> .	-
2	19	20			_		_	\nearrow	Clay ¹ &		portions		-
0.85	12								Silt	1 Gr	avel	73	
0.425	6	10							Sand	26 Co	bble ³	0	-
0.25	3	C	0.08	0.16	0.315	0.63	1.25	2.5	5 10 12.5	20 25 40 5			 300
0.15	2	_						ARTICLE S					
0.075	0.7												
Notes:	¹ The up	per cla	y siz	e of 2 un	n, per	the Car	nadia	n Founda	ation Engineer	ing Manua			
									400 descriptio				
	³ If cobb	les are	pres	ent, sam	npling	procedu	ure m	nay not m	eet ASTM C7	02 & D75			
Specific	ation:												
Remark	s: Cru	ish Cou	unt (2	Faces)	: 10%)							
										- 0			
							Rev	viewed B	y:	IPK		P.Eng	g.



						ASTM	D422	& C136						
Project:		Osca	r Creel	k Bridge	e Geo	technica	al Inv	. Sam	nple	e No.:	49			
Project I	No.:	704-E	NG.Y	ARC032	255-0	1		Mate	eria	l Type:	Overburg	len		
Site:		Near	MVWF	R km 10)54			Sam	nple	e Loc.:	Prospect	3, TP	08	
Client:		Gove	rnmen	t of Nor	thwes	st Territo	ories	Sam	nple	e Depth:	3.8-4.5 m	ı		
Client R	ep.:	Terry	Brook	es				Sam	nplii	ng Method:	Grab			
Date Te	sted:	April 2	25, 202	20	Ву	/: SG		Date	e Sa	ampled:	January	12, 20	20	
Soil Des	cription ² :	GRA\	/EL, sa	andy, tra	ace si	ilt/clay, b	orowr	n Sam	nple	ed By:	AR			
								USC	C	lassification	:	Cu:		50.2
Moisture	e Content	:: 3	.2%									Cc:		3.1
Particle	Percent				5	Sand				Grav	/el			
Size (mm)	Passing			Fine		Mediun	ſ	Coarse		Fine	Coarse	(Cobble	
300														
200		100	200	100	60	30	16	8	4	3/8" 1/2" 3	8/4" 1" 1.5" 2"	3"	6"	12"
150		90												
100														
75		80				_			-					
50	100	70		_	_	_	_						_	
37.5	88	<u>o</u>												
25	72	NISS 60												
19	61	60 50 50 40 40 40 30		_			-		+			_	_	
12.5	45													
9.5	38	ERC												-
4.75	30	a 30									ption Propo	rtions	(%):	_
2	26	20		_	_				-	Clay ¹ &	3 Grav	el	70	
0.85	21	10								Silt	28 Cobb	Ja ³	0	
0.425	12	-								Sand	28 Cobb		0	
0.25	6	0	0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25 40 50	80	150	300
0.15	3	-					PA		IZE	(mm)				
0.075	2.5													
Notes:	•	•								n Engineeri	•			
										description				
	~It cobb	les are	prese	nt, sam	pling	procedu	ire m	ay not m	eet	ASTM C70)2 & D75			
Specific	ation:													
Remark	s: Cru	sh Cou	unt (2 l	aces)	: 81%									
											-00			
							Rev	iewed B	y: _		IKK		P.I	Eng.

						ASTN	1 D422	& C136						
Project:		Osca	r Creek	Bridge	Geot	echnica	al Inv	. Sarr	nple	No.:	52			
Project I	No.:	704-E	NG.YA	RC032	55-01			Mate	eria	l Type:	Ov	erburde	en	
Site:		Near	MVWR	km 105	54			Sam	nple	Loc.:	Pro	ospect 3	3, TP09	
Client:		Gove	rnment	of North	nwest	Territo	ories	Sam	nple	Depth:	2.0)-4.0 m		
Client R	ep.:	Terry	Brooke	S				Sam	nplir	ng Method	Gra	ab		
Date Te	sted:	April 2	24, 2020	0	By:	SG		Date	e Sa	ampled:	Jai	nuary 12	2, 2020	
Soil Des	cription ² :	-			-		own	Sam	nple	ed By:	AR	•		
	•		, 0	3 /		,			•	assificatio			Cu:	6.0
Moisture	Content	t: 4	.8%									C	Cc:	0.7
Particle	Demonst				Sé	and				Gra	ivel			
Size	Percent Passing			Fine		Mediur	n	Coarse		Fine		oarse	Cobble	
(mm)	g	_				Media		Course				ouroc		
300		100	200	100	60	30	16	8	4	3/8" 1/2"	3/4" 1"	1.5" 2"	3" 6"	12"
200		100				_	_		+					
150		90		_	-			_	+		T -			
100		80				_								
75		_												
50	400	70												
37.5	100	SN 60							+		$\left \right $			
25	94	SSVc 50												
19 12.5	92 85	_ ⊾ ∽												
9.5	82	60 50 50 50 40 40 30		_					+					
4.75	72	H 30				/				Soil Desci	intion	Proport	ions (%).	
2	64	_			/	'				Clay ¹ &		•		-
0.85	49	20							T	Silt	4	Grave	28	
0.425	20	10	·		1	_			+	Sand	69	Cobble	e^{3} 0	
0.25	8	-												
0.15	5		0.08	0.16	0.315	0.63	1.25	2.5	5	10 12.5	20 25	40 50	80 150	300
0.075	3.8						PA	ARTICLE S	IZE	(mm)				
Notes:	¹ The up	per cla	av size (of 2 um	per t	he Car	nadia	n Founda	atio	n Engineer	ina M	lanual		
10000	•	•	•	-	•					descriptio	•			
										ASTM C7				
Specific				· 1	01									
Remark		sh Coi	int (2 F	aces) : a	88%									
Noniark	<u>.</u> 010		λητι (Ζ Ι		0070									;
												0		
							Rev	viewed B	y: _		JA	K	P.I	Eng.

	L	os Angele	s Abrasion of S		arse Aggregate	
			ASTM C131 /	AASTHO T-96		
Project No:	704-ENG.YAI	RC03255-0	01		Sample No.:	2-16 Combined
Project:	Oscar Creek	Bridge Ge	otechnical Inv.		Date Sampled:	January 13, 2020
Client:	Government	of Northwe	st Territories		Sampled By:	AR
					Date Tested:	July 10, 2020
Attention:	Terry Brookes	S	Ph:		Tested By:	JC
Email:					Office:	Edmonton
	Deceminations					
	Description: Source:		lear MVWR km	1051		
	Source. Sample Loca		Prospect 1 Comb			
	Supplier					
	Juppingi	<u> </u>	N// 7			
			Mas	s of Indicated	l Sizes , g	
Test G	Grading					Sample 2-16
	ize (mm)	Grading	A Grading B	Grading C	Grading D	Combined
Passing	Retained					
40	25	1250 ± 2				1260.7
25	20	1250 ± 2				1252.4
20	12.5	1250 ± 1				1249.8
12.5	10	1250 ± 1	0 2500 ± 10			1244.2
10	6.3			2500 ± 10		
6.3	5			2500 ± 10		
5	2.5				5,000 ± 10	
	Total:		5,000	0 ± 10		5,007.1
		Test Grading	Initial Mass g (g)	Final Mass (g)	Mass Loss (g)	Loss (%)
		А	5,007.1	3,510.5	1,496.6	30
Remarks:			Revie	ewed By:	JA	R P.

	L	os Angeles		mall-Size Coa AASTHO T-96	arse Aggregate	9
Project No:	704-ENG.YA	RC03255-01			Sample No.:	18-30 Combined
Project:	Oscar Creek	Bridge Geote	echnical Inv.		Date Sampled	1: January 11, 2020
Client:	Government	of Northwest	Territories		Sampled By:	AR
					Date Tested:	July 24, 2020
Attention:	Terry Brooke	S	Ph:		Tested By:	JC
Email:					Office:	Edmonton
	Description:					
	Source:		ar MVWR km ´	1054		
	Sample Loca	ation: Pro	spect 2 Combi	ned		
	Supplier	N/A	-			
			Mas	s of Indicated	l Sizes , g	
	Grading					Sample 18-30
	ize (mm)	Grading A	Grading B	Grading C	Grading D	Combined
Passing	Retained	4050 - 05				1011.0
40	25	1250 ± 25				1241.3
25 20	20 12.5	1250 ± 25 1250 ± 10	 2500 ± 10			1248.8 1253.0
12.5	12.5	1250 ± 10 1250 ± 10	2500 ± 10 2500 ± 10			1252.2
12.5	6.3	1250 ± 10	2300 ± 10	 2500 ± 10		1202.2
6.3	5			2500 ± 10 2500 ± 10		
5	2.5				5,000 ± 10	
	Total:) ± 10	3,000 - 10	4,995.3
			,			·
		Test Grading	Initial Mass (g)	Final Mass (g)	Mass Loss (g)	Loss (%)
		А	4,995.3	3,328.0	1,667.3	33
Remarks:			Revie	wed By:	IA	<u>Р. е</u>

	L	os Angeles A			arse Aggregat	e
			ASTM C131 /	AASTHO T-96		
Project No:	704-ENG.YA	RC03255-01			Sample No.:	34-52 Combined
Project:	Oscar Creek	Bridge Geote	chnical Inv.		Date Sample	d: January 12, 2020
Client:	Government	of Northwest	Ferritories		Sampled By:	AR
					Date Tested:	July 7, 2020
Attention:	Terry Brooke	S	Ph:		Tested By:	JC
Email:					Office:	Edmonton
	Description:					
	Source:		r MVWR km 1	054		
	Sample Loca	ation: Pros	spect 3 Combi	ned		
	Supplier	N/A				
			Mass	s of Indicated	l Sizes , g	
Test C	Brading				_	
Sieve S	ize (mm)	Grading A	Grading B	Grading C	Grading D	Sample 34-52 Combined
Passing	Retained					
40	25	1250 ± 25				1264.4
25	20	1250 ± 25				1258.9
20	12.5	1250 ± 10	2500 ± 10			1250.5
12.5	10	1250 ± 10	2500 ± 10			1243.1
10	6.3			2500 ± 10		
6.3	5			2500 ± 10		
5	2.5				5,000 ± 10	5.040.0
	Total:		5,000) ± 10		5,016.9
		Test Grading	Initial Mass (g)	Final Mass (g)	Mass Loss (g)	Loss (%)
		А	5,016.9	3,465.0	1,551.9	31
Remarks:					·	
			Revie	wed By:	If	P. En

Table:

Summary of Petrographic Analysis of Coarse Aggregate Test Report

	CSA A23.2-1	5A	
Project:	Oscar Creek Bridge Geotechnical Inv.	Sample No.:	2-16 Combined
Client:	Government of Northwest Territories	Date Sampled:	January 13, 2020
Project No.:	704-ENG.YARC03255-01	Date Tested:	July 9, 2020
Source:	Near MVWR km 1054, Prospect 1 Combined	Petrographer:	Olaoluwa Oluwatosin
Description:		Office:	Edmonton

Multiplier 1 1 1 1 1		10.8 0.0	12.7	14.0	Average %
1 1 1				14.0	10.5
1 1 1				14 0	102
1 1		0.0	0.0	0.2	12.3 0.1
1		5.2	6.1	5.4	5.4
•		9.4	16.1	17.3	13.3
		0.0	1.0	2.2	1.0
1		59.2	49.0	43.2	51.8
		00.2	10.0	10.2	01.0
3		0.2	0.5	0.0	0.2
3		0.0	0.2	0.0	0.0
3		0.0	0.4	0.0	0.1
3		12.3	13.2	16.5	14.0
3		0.1	0.1	0.0	0.1
6 6		0.0 2.2	0.0 0.3	0.0 0.1	0.0 1.1
40		0.0	0.0	0.0	
10		0.0 0.5	0.0 0.3	0.0 1.0	0.0 0.6
	Not Tested	141	133	143	
	6.0	10.0	5.0	12.0	
raphic Numb	er: 140				
ontent: 0.1 9	%	Weighted Ave	erage Ironston	e Content:	0.6 %
		suitability/acce	eptance should	d be confirmed	d by the suite
ו	3 3 3 6 6 6 7 10 10 7 raphic Numb ontent: 0.1 0 ration of coars	3 3 3 3 3 6 6 6 6 10 10 10 10 Not Tested 6.0 raphic Number: 140 potent: 0.1 %	3 0.0 3 0.0 3 12.3 3 0.1 6 0.0 6 0.0 6 0.0 10 0.0 10 0.0 10 0.5 Not Tested 141 6.0 10.0 raphic Number: 140 ontent: 0.1 % Weighted Average value of coarse aggregate suitability/acces	3 0.0 0.2 3 0.0 0.4 3 12.3 13.2 0.1 0.1 0.1 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 10 0.0 0.0 10 0.0 0.0 10 0.5 0.3 10 0.5 0.3 10 0.0 5.0 raphic Number: 140 Weighted Average Ironston addition of coarse aggregate suitability/acceptance should	3 0.0 0.2 0.0 3 12.3 13.2 16.5 3 0.1 0.1 0.0 6 0.0 0.0 0.0 6 0.0 0.0 0.0 10 0.0 0.0 0.0 10 0.0 0.0 0.0 10 0.0 0.0 0.0 10 0.5 0.3 1.0 10 0.0 0.5 0.3 1.0 10 0.0 0.5 0.3 1.0 10 0.0 10.0 5.0 12.0 raphic Number: 140 ontent: 0.1 % Weighted Average Ironstone Content: weighted Average Ironstone Content:

Remarks: Samples combined for analysis. Results not weighted for variations in sample size.

Reviewed By:

P.Eng.

Table:

Summary of Petrographic Analysis of Coarse Aggregate Test Report

	CSA A23.2-1	CSA A23.2-15A				
Project:	Oscar Creek Bridge Geotechnical Inv.	Sample No.:	18-30 Combined			
Client:	Government of Northwest Territories	Date Sampled:	January 13, 2020			
Project No.:	704-ENG.YARC03255-01	Date Tested:	July 16, 2020			
Source:	Near MVWR km 1054, Prospect 2 Combined	Petrographer:	Olaoluwa Oluwatosin			
Description:		Office:	Edmonton			

		I				
Rock Type	Petrographic	25-19 mm	19-12.5 mm	12.5-9.5 mm	9.5-4.75 mm	Weighted
	Multiplier	% in fraction	% in fraction	% in fraction	% in fraction	Average %
Good - High Strength						
Quartzite/Quartz	1			2.6	4.9	3.1
Granite/Gneiss	1			2.0	2.8	2.0
Basalt	1			5.3	9.2	6.0
Sandstone/Arkose	1			0.9	0.7	0.7
Siltstone	1			0.4	0.6	0.4
Carbonates	1			80.1	73.9	66.3
Fair - Medium Strength Carbonates	3			0.9	0.3	0.6
Shale	3			5.6	7.1	5.4
Ondie	5			5.0	7.1	5.4
Poor - Low Strength Shale	6			0.8	0.0	0.4
Deleterious Ironstone	10			1.3	0.5	0.8
Petrographic Number :		Not Tested	Not Tested	129	119	
Percent of Fraction in Sample:		6.0	11.0	9.0	16.0	
Weighted Average Petrog	raphic Numb	oer: 125				
Weighted Average Chert Content: 0.0 % Weighted Average Ironstone Content: 0.8 %						
Note: Petrographic evaluation of coarse aggregate suitability/acceptance should be confirmed by the suite of CSA Table 12 testing and AAR testing						
Remarks: Samples com	bined for ana	lysis. Results	not weighted f	or variations i	n sample size	

Reviewed By:

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

CCi⊮

P.Eng.

IVE

Table:

Summary of Petrographic Analysis of Coarse Aggregate Test Report

	CSA A23.2-1	5A	
Project:	Oscar Creek Bridge Geotechnical Inv.	Sample No.:	34-52 Combined
Client:	Government of Northwest Territories	Date Sampled:	January 12, 2020
Project No.:	704-ENG.YARC03255-01	Date Tested:	July 3, 2020
Source:	Near MVWR km 1054, Prospect 3 Combined	Petrographer:	Olaoluwa Oluwatosin
Description:		Office:	Edmonton

Rock Type	Petrographic Multiplier	25-19 mm % in fraction	19-12.5 mm % in fraction	12.5-9.5 mm % in fraction	9.5-4.75 mm % in fraction	Weighted Average %
Good - High Strength						
Quartzite/Quartz	1	7.0	4.2	8.2	13.2	7.4
Chert	1	0.0	0.4	1.0	0.7	0.5
Granite/Gneiss	1	7.3	2.0	3.4	4.0	4.0
Basalt	1	4.0	7.5	14.2	16.1	9.4
Sandstone/Arkose	1	0.3	0.0	1.5	0.4	0.4
Carbonates	1	49.3	48.4	46.2	50.0	48.6
Fair - Medium Strength						
Sandstone/Arkose	3	0.5	0.0	0.1	0.1	0.2
Shale	3	18.1	18.3	14.3	5.7	15.1
Carbonates	3 3	0.0	0.0	0.1	0.2	0.1
Siltstone	3	0.0	0.2	0.2	0.4	0.2
Poor - Low Strength Sandstone/Arkose	C	0.0	0.0	0.0	0.0	0.0
Sandstone/Arkose	6 6	0.0 13.5	0.0 18.3	0.0 10.6	0.0 8.1	0.0 13.7
Pumice	6	0.0	0.2	0.0	0.1	0.1
Siltstone	6	0.0	0.2	0.0	0.0	0.0
Deleterious	0	0.0	0.0	0.0	0.0	0.0
Sandstone/Arkose	10	0.0	0.0	0.0	0.1	0.0
Ironstone	10	0.0	0.5	0.3	1.1	0.4
Petrographic Number :		205	234	185	164	
Percent of Fraction in Sample:		8.0	11.0	5.0	6.0	

Weighted Average Chert Content: 0.5 %

Weighted Average Ironstone Content: 0.4 %

Note: Petrographic evaluation of coarse aggregate suitability/acceptance should be confirmed by the suite of CSA Table 12 testing and AAR testing

Remarks: Samples combined for analysis. Results not weighted for variations in sample size.

Reviewed By:

P.Eng.

APPENDIX D

GEOCHEMICAL LABORATORY TEST RESULTS

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 1 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 2-SEP-2020 Account: TGM

QC CERTIFICATE VA20169143

Project: Oscar Creek Granular Studies

P.O. No.: YARC03255-01

This report is for 9 Rock samples submitted to our lab in Vancouver, BC, Canada on 6-AUG-2020.

The following have access to data associated with this certificate:

SARA IRVINE LARA REGGIN	S. KINGSTON	ATIF RAFIQ

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-31	Fine crushing - 70% <2mm
PUL-QC	Pulverizing QC Test
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize up to 250g 85% <75 um
SPL-21X	Addnl Crush Split w No Analysis
SND-01	Send samples to external laboratory

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	
OA-ELE07	Paste pH	
S-GRA06a	Sulfate Sulfur (HCI leachable)	WST-SEQ
S-IR07	Sulphide Sulphur by Na2CO3 leach	LECO
C-GAS05	Inorganic Carbon (CO2)	
ME-MS61	48 element four acid ICP-MS	
OA-ELE08	1:1 Rinse pH	
OA-VOL08	Basic Acid Base Accounting	
S-IR08	Total Sulphur (IR Spectroscopy)	LECO

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, General Manager, North Vancouver

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 2 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 2-SEP-2020 Account: TGM

Project: Oscar Creek Granular Studies

Sample Description	Method Analyte Units LOD	OA-VOL08 FIZZ RAT Unity 1	OA-VOL08 MPA tCaCO3/1Kt 0.3	OA-VOL08 NNP tCaCO3/1Kt 1	OA-VOL08 NP tCaCO3/1Kt 1	OA-VOL08 Ratio (N Unity 0.01	OA-ELEO7 pH Unity 0.1	S-IR08 S % 0.01	S-IR07 Sulphide % 0.01	C-GAS05 C % 0.05	C-GAS05 CO2 % 0.2	S-GRA06a S % 0.01	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10
							STAN	DARDS								
Buffer pH6	Bound Bound						6.0 6.1 5.3 6.7									
CO-ASSAY Target Range - Lower Upper	Bound									0.53 0.42 0.64	2.0 1.5 2.4					
GS313-8 Target Range - Lower	Bound							2.66 2.51 2.71 1.25 1.19 1.29								
KZK-1 Target Range - Lower Upper MA-2c Target Range - Lower	Bound Bound Bound	2	25.0 22.9 27.1	35 30 38	60 54 64	2.40 2.18 2.54				1.66 1.50	6.1 5.5					
MRGeo08 Target Range - Lower Upper NBM-1 Target Range - Lower	Bound Bound	2	8.8 7.8	42 37	51 45	5.83 5.26				1.84	6.8		4.15 3.93 4.83	7.29 6.64 8.14	33.7 29.5 36.5	1080 920 1270
OREAS 905 Target Range - Lower	Bound		9.7	47	54	6.08			11.40 10.85				0.55 0.46 0.58	7.67 6.67 8.17	36.4 31.0 38.4	2870 2280 3110
Upper UTS-1 Target Range - Lower	Bound								2.88			0.88 0.81 0.95				

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 2 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 2-SEP-2020 Account: TGM

(ALS									QC	CERTIF	ICATE	OF AN	ALYSIS	VA2	016914	3
Sample Description	Method Analyte Units LOD	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01
							STAN	IDARDS								
Buffer pH6 Buffer pH6 Target Range - Lower Upper CO-ASSAY Target Range - Lower Upper DS-1 Target Range - Lower Upper GS313-8 Target Range - Lower Upper KZK-1 Target Range - Lower Upper MA-2C Target Range - Lower Upper MRGe008 Target Range - Lower Upper NBM-1 Target Range - Lower Upper OREAS 905 Target Range - Lower Upper OREAS-75a Target Range - Lower	Bound Bound	3.36 2.98 3.76 3.17 2.69 3.39	0.63 0.58 0.73 5.59 5.14 6.30	2.64 2.35 2.90 0.62 0.52 0.66	2.04 2.00 2.48 0.33 0.30 0.42	68.4 66.2 81.0 98.4 82.8 101.0	20.2 17.7 21.9 14.3 13.2 16.4	91 81 102 19 16 22	13.00 11.20 13.80 6.98 6.05 7.51	610 587 675 1525 1425 1640	3.92 3.55 4.37 4.21 3.66 4.50	17.75 17.50 21.5 24.5 22.5 27.7	0.20 <0.05 0.27 0.23 <0.05 0.27	3.1 2.8 3.6 7.0 6.1 7.6	0.158 0.155 0.201 0.653 0.571 0.709	3.07 2.79 3.43 2.97 2.58 3.18
Target Range - Lower Upper UTS-2	Bound · Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 2 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 2-SEP-2020 Account: TGM

(ALS									QC	CERTIF	ICATE	OF AN	ALYSIS	VA2	016914	3
Sample Description	Method Analyte Units LOD	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1
							STAN	IDARDS								
Buffer pH6 Buffer pH6 Target Range - Lower Upper CO-ASSAY Target Range - Lower Upper DS-1 Target Range - Lower Upper GS313-8 Target Range - Lower Upper KZK-1 Target Range - Lower Upper MA-2c Target Range - Lower Upper MRGe008 Target Range - Lower Upper OREAS 905 Target Range - Lower Upper OREAS 905 Target Range - Lower Upper OREAS-75a Target Range - Lower Upper UTS-1 Target Range - Lower	Bound Bound	32.7 31.1 39.1 50.7 40.9 51.1	32.2 29.5 36.5 21.1 17.8 22.2	1.30 1.17 1.45 0.27 0.24 0.31	550 497 619 381 333 418	14.50 13.65 16.75 3.33 2.89 3.65	1.95 1.76 2.18 2.44 2.15 2.65	21.7 19.0 23.4 19.1 16.2 20.0	697 622 760 9.6 8.4 10.7	1040 930 1160 290 240 320	1085 971 1185 31.2 26.9 33.9	192.5 173.5 212 146.5 124.0 152.0	0.009 0.004 0.013 <0.002 <0.002 0.004	0.30 0.27 0.35 0.07 0.04 0.09	4.08 3.89 5.39 1.90 1.61 2.29	11.1 11.1 13.7 5.1 4.3 5.5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 2-SEP-2020 Account: TGM

(ALS)									QC	CERTI	ICATE	OF AN	ALYSIS	VA2	016914	3
Sample Description	Method Analyte Units LOD	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	OA-ELE08 pH Unity 0.1
							STAN	DARDS								
Buffer pH6 Buffer pH6 Target Range - Lower Upper CO-ASSAY Target Range - Lower Upper DS-1 Target Range - Lower Upper KZK-1 Target Range - Lower Upper MA-2c Target Range - Lower Upper MA-2c Target Range - Lower Upper	Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound	1	4.0	309	1.44	<0.05	18.80	0.488	1.04	5.0	109	4.5	24.7	790	103.0	6.0 6.1 5.3 6.7
Target Range - Lower Upper	Bound Bound	<1 4	3.5 4.7	277 339	1.39 1.81	<0.05 0.12	17.90 21.9	0.443 0.553	0.86 1.21	4.9 6.2	97 121	4.1 5.8	23.8 29.3	722 886	92.2 126.0	
NBM-1 Target Range - Lower Upper OREAS 905 Target Range - Lower OREAS-75a Target Range - Lower UTS-1 Target Range - Lower	Bound · Bound · Bound · Bound · Bound · Bound	3 <1 4	4.1 3.4 4.6	166.0 141.0 173.0	1.30 1.16 1.52	0.08 <0.05 0.17	13.75 13.15 16.05	0.126 0.105 0.139	0.73 0.58 0.83	5.0 4.4 5.6	10 8 13	2.7 2.3 3.3	17.0 14.0 17.4	140 122 154	264 214 290	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 2-SEP-2020 Account: TGM

(ALS)								QC	CERTI	ICATE	OF AN	ALYSIS	VA2	016914	43
Method Analyte Sample Description LOD	OA-VOL08 FIZZ RAT Unity 1	OA-VOL08 MPA tCaCO3/1Kt 0.3	OA-VOL08 NNP tCaCO3/1Kt 1	OA-VOL08 NP tCaCO3/1Kt 1	OA-VOL08 Ratio (N Unity 0.01	OA-ELE07 pH Unity 0.1	S-IR08 S % 0.01	S-IR07 Sulphide % 0.01	C-GAS05 C % 0.05	C-GAS05 CO2 % 0.2	S-GRA06a S % 0.01	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10
						STAN	DARDS								
Target Range - Lower Bound Upper Bound UTS-4 Target Range - Lower Bound Upper Bound								2.78 3.10			1.75 1.61 1.87				
						BLA	ANKS								
BLANK Target Range - Lower Bound BLANK Target Range - Lower Bound BLANK Target Range - Lower Bound Upper Bound BLANK Target Range - Lower Bound Upper Bound BLANK						6.0 5.5 6.9	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.05 <0.05 0.10	<0.2 <0.2 0.4	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.2 <0.2 0.4	<10 <10 20

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 3 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 2-SEP-2020 Account: TGM

Project: Oscar Creek Granular Studies

								<u> </u>	4 0	021111	10/ 11 E	01 / 11			0.001	
Sample Description	Method Analyte Units LOD	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01
							STAN	IDARDS								
UTS-4 Target Range - Lower	⁻ Bound															
							BL/	ANKS								
BLANK Target Range - Lower	Bound ⁻ Bound															
BLANK		<0.05	0.01	< 0.01	<0.02	< 0.01	<0.1	<1	< 0.05	<0.2	< 0.01	< 0.05	0.05	<0.1	< 0.005	< 0.01
	Bound Bound	<0.05 0.10	<0.01 0.02	<0.01 0.02	<0.02 0.04	<0.01 0.02	<0.1 0.2	<1 2	<0.05 0.10	<0.2 0.4	<0.01 0.02	<0.05 0.10	<0.05 0.10	<0.1 0.2	<0.005 0.010	<0.01 0.02
BLANK Target Range - Lower BLANK Target Range - Lower Upper BLANK Target Range - Lower Upper BLANK Target Range - Lower	r Bound Bound r Bound r Bound Bound r Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 2-SEP-2020 Account: TGM

Project: Oscar Creek Granular Studies

									र्ष	CERTI		••••			01051	
Sample Description	Method Analyte Units LOD	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1
							STAN	DARDS								
UTS-4 Target Range - Lower	r Bound															
							BL/	ANKS								
BLANK Target Range - Lower Upper	Bound r Bound															
BLANK Target Range - Lower		<0.5 <0.5	0.2 <0.2	<0.01 <0.01	<5 <5	<0.05 <0.05	<0.01 <0.01	<0.1 <0.1	0.2 <0.2	<10 <10	<0.5 <0.5	<0.1 <0.1	<0.002 <0.002	<0.01 <0.01	<0.05 <0.05	<0.1 <0.1
	r Bound	1.0	0.4	0.02	10	0.10	0.02	0.2	0.4	20	1.0	0.2	0.002	0.02	0.10	0.2
Target Range - Lower Upper BLANK Target Range - Lower BLANK Target Range - Lower BLANK Target Range - Lower Upper BLANK Target Range - Lower	r Bound Bound r Bound r Bound r Bound r Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 2-SEP-2020 Account: TGM

Project: Oscar Creek Granular Studies

Sample Description	Method Analyte Units LOD	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	OA-ELE08 pH Unity 0.1
							STAN	IDARDS								
UTS-4 Target Range - Lower	Bound															
							BL/	ANKS								
BLANK Target Range - Lower BLANK Target Range - Lower BLANK Target Range - Lower Upper BLANK Target Range - Lower Upper BLANK Target Range - Lower Upper BLANK Target Range - Lower	Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound	<1 <1 2	<0.2 <0.2 0.4	<0.2 <0.2 0.4	<0.05 <0.05 0.10	<0.05 <0.05 0.10	<0.01 <0.01 0.02	<0.005 <0.005 0.010	0.02 <0.02 0.04	<0.1 <0.1 0.2	<1 <1 2	<0.1 <0.1 0.2	<0.1 <0.1 0.2	<2 <2 4	<0.5 <0.5 1.0	6.0 5.5 6.9

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 4 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 2-SEP-2020 Account: TGM

Project: Oscar Creek Granular Studies

Sample Description	Method Analyte Units LOD	OA-VOL08 FIZZ RAT Unity 1	OA-VOL08 MPA tCaCO3/1Kt 0.3	OA-VOL08 NNP tCaCO3/1Kt 1	OA-VOL08 NP tCaCO3/1Kt 1	OA-VOL08 Ratio (N Unity 0.01	OA-ELE07 pH Unity 0.1	S-IR08 S % 0.01	S-IR07 Sulphide % 0.01	C-GAS05 C % 0.05	C-GAS05 CO2 % 0.2	S-GRA06a S % 0.01	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10
OR I GINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES		9.43 9.60 8.99 10.05	34.6 35.2 33.0 36.8					
PR1 CS3 DUP Target Range - Lower Upper	Bound Bound												0.14 0.12 0.11 0.15	2.57 2.54 2.42 2.69	12.8 13.1 12.1 13.8	730 720 660 790
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	1 1 <1 2	0.3 0.3 <0.3 0.6	10 10 9 12	10 10 9 12	32.00 32.00 30.39 33.61	8.8 8.9 8.3 9.4	0.01 0.01 <0.01 0.02	0.01 <0.01 <0.01 0.02			<0.01 <0.01 <0.01 0.02				

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 4 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 2-SEP-2020 Account: TGM

Project: Oscar Creek Granular Studies

Sample Description	Method Analyte Units LOD	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES								
PR1 CS3 DUP Target Range - Lower Upper	Bound Bound	0.96 0.98 0.87 1.07	0.09 0.10 0.08 0.11	11.85 11.75 11.20 12.40	0.33 0.33 0.29 0.37	30.9 29.7 28.8 31.8	4.8 4.8 4.5 5.1	34 28 28 34	1.58 1.53 1.43 1.68	25.4 20.9 22.1 24.2	1.74 1.72 1.63 1.83	6.07 5.84 5.61 6.30	0.12 0.15 0.08 0.19	1.3 1.3 1.1 1.5	0.020 0.021 0.014 0.027	1.09 1.06 1.01 1.14
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 2-SEP-2020 Account: TGM

Project: Oscar Creek Granular Studies

									40	02		01 / 110				-
Sample Description	Method Analyte Units LOD	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES								
PR1 CS3 DUP Target Range - Lower Upper	Bound Bound	16.8 15.8 15.0 17.6	14.3 13.8 13.1 15.0	3.71 3.68 3.50 3.89	383 379 357 405	9.20 8.51 8.36 9.35	0.42 0.42 0.39 0.45	3.9 3.9 3.6 4.2	25.4 24.8 23.6 26.6	340 330 310 360	7.9 7.8 7.0 8.7	48.8 48.5 46.1 51.2	0.004 0.005 <0.002 0.007	0.08 0.08 0.07 0.09	1.06 1.09 0.94 1.21	4.0 4.0 3.7 4.3
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. **885 DUNSMUIR STREET** VANCOUVER BC V6C 1N5

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 2-SEP-2020 Account: TGM

Project: Oscar Creek Granular Studies

Sample Description	Method Analyte Units LOD	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	OA-ELE08 pH Unity 0.1
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound ⁻ Bound															
PR1 CS3 DUP Target Range - Lower Upper	Bound Bound	1 1 <1 2	0.9 0.9 0.7 1.1	202 198.5 190.0 210	0.27 0.27 0.21 0.33	0.05 <0.05 <0.05 0.10	3.81 3.85 3.63 4.03	0.112 0.111 0.101 0.122	0.82 0.77 0.72 0.87	3.5 3.5 3.2 3.8	88 87 82 93	0.5 0.5 0.4 0.6	11.0 10.8 10.3 11.5	67 65 61 71	46.5 49.5 43.9 52.1	
ORIGINAL DUP Target Range - Lower Upper	Bound [.] Bound															9.2 9.2 8.6 9.8

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: TETRA TECH CANADA INC. 885 DUNSMUIR STREET VANCOUVER BC V6C 1N5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 2-SEP-2020 Account: TGM

Project: Oscar Creek Granular Studies

	CERTIFICATE COM	IMENTS								
REEs may not be totally so		TICAL COMMENTS								
ME-MS61										
C-GAS05 OA-ELE07	CRU-31 OA-ELE08	LOG-22 OA-VOL08	ME-MS61 PUL-31							
PUL-QC SND-01	S-GRA06a SPL-21	S-IR07 SPL-21X	S-IR08 WEI-21							
	ME-MS61 Processed at ALS Vancouv C-GAS05 OA-ELE07 PUL-QC	ANALY REEs may not be totally soluble in this method. ME-MS61 Processed at ALS Vancouver located at 2103 Dollarton Hwy, No C-GAS05 CRU-31 OA-ELE07 OA-ELE08 PUL-QC S-GRA06a	ME-MS61 LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. C-GAS05 CRU-31 LOG-22 OA-ELE07 OA-ELE08 OA-VOL08 PUL-QC S-GRA06a S-IR07							