

Mr. Mason Mantla

Chair

Wek'èezhìi Land and Water Board

#1-4905 48th St.

Yellowknife, NT X1A 3S3

Re: 2024 Annual Water Licence Report

Dear Mr. Mantla:

Attached please find our 2024 Annual Report for the activities related to the Indin Lake Gold Property.

This submission is in fulfillment of the reporting requirements for two Water Licences held by Nighthawk Gold Corp, namely W2021L2-0004 and W2021L2-0005, both issued on January 13th, 2023.

Please note that Nighthawk Gold Corp. has recently merged with Moneta Gold Inc. to form STLLR Gold Inc., on whose letterhead this cover letter is prepared. Nighthawk Gold Corp. remains a subsidiary of STLLR Gold Inc.

Should you have any questions or concerns, please do not hesitate to contact me.

Sincerely,

John McBride

Vice President, Exploration

John McBride

2024 Annual Water Licence Report Indin Lake Gold Property, NWT NTS Sheet: 086B/02,03,06,07,10,11 Northern Mining District, NWT

Latitude 64° 242 10.11" N, and Longitude -115° 062 23.04" W
UTM NAD 83, Zone 11, 7143262N, 0591274E

John Nicholson, B.Sc., NAPEG P.Geo.

Brian Game, B.Sc., NAPEG P.Geo.

Riley Ledoux, B.Sc., NAPEG P.Geo.

John McBride, M.Sc., NAPEG P.Geo.

Table 1: Schedule 1 Annual Water Licence Report Conformity Table

Condition	Section of Report
a) A brief summary of Project activities	3
b) An updated Project schedule	3.4
c) The daily, monthly, and annual quantities in cubic metres of fresh Water obtained from all sources, as required in Part B, Condition 18 of this Licence	3.2.3, 4.1.1, Appendix B
d) A summary of the calibration and status of the meters and devices referred to in Part B, Condition 18 of this Licence	4.1.1
e) A summary of engagement activities conducted in accordance with the approved Engagement Plan, referred to in Part B, Condition 20 of this Licence	4.5
f) A summary of how Traditional Knowledge was incorporated into decision making	4.5
g) A summary of Construction activities conducted in accordance with Part E of this Licence	2.2.2
h) A summary of major maintenance activities conducted in accordance with this Licence	2.2.2
i) A summary of activities conducted in accordance with the approved Waste Management Plan, referred to in Part F, Condition 9 of this Licence, including:	4.2
i) i. A summary of approved updates or changes to the process or facilities required for the management of Waste	4.2
i) ii. Monthly and annual quantities, in cubic metres, of deposits of Waste deposited, by location	4.1.2, 4.2.1
i) iii. A map depicting the location of the Sumps	4.1.2
j) A summary of the results and any actions taken as a result of the inspections conducted to fulfill Part F of this Licence	5
k) A summary of activities conducted in accordance with the approved Spill Contingency Plan, referred to in Part G, Condition 2 of this Licence, including:	4.3
k) i. A list and description for all Unauthorized Discharges, including the date, NWT spill number, volume, location, summary of the circumstances and follow-up actions taken, and status (i.e. open or closed), in accordance with the reporting requirements in Part G, Condition 4 of this Licence	4.3
k) ii. An outline of any spill training carried out	4.3
I) A summary of activities conducted in accordance with the Closure and Reclamation Plan, referred to in Part H, Condition 1 of this Licence, including:	4.4
I) i. Details of any Progressive Reclamation undertaken	4.4.1
I) ii. A discussion on whether planning and implementation remains on schedule, and summary of any new scheduling setbacks	4.4.2
I) iii. A summary of Reclamation Research completed	4.4.1
I) iv. A summary of engagement conducted regarding Closure and Reclamation	4.4.3
I) v. A list of any factors that would increase or decrease the Closure Cost Estimate the next time the Estimate is updated	4.4.2

Condition	Section of Report
I) vi. Tabular summaries of all data and information generated under the SNP annexed to this Licence, in Excel format	Appendix C, Appendix D
m) A summary of activities conducted in accordance with the Water Management Plan, referred to in Part F, Condition 4 of this Licence, including	4.1
m) i. A summary of approved updates or changes to the process or facilities required for the management of water	4.1
m) ii. Monthly and annual volumes by location of water managed under the Plan	4.1.1
m) iii. A summary and interpretation of any monitoring results	4.1.3, Appendix C, Appendix D
m) iv. A list of any action level exceedances	4.1.3
m) v. A description of actions taken in response to any action level exceedances	4.1.3
n) A summary of activities conducted in accordance with the Explosives Management Plan, referred to in Part F, Condition 6 of this Licence, including:	4.6
n) i. A summary of approved updates or changes to the process required for management of explosives	4.6
n) ii. Monthly and annual quantities by location of explosives managed under the Plan	4.6
o) A summary and interpretation of any monitoring results and a description of any corrective actions implemented	4.1.3
p) A summary of activities conducted in accordance with the Wildlife Mitigation and Monitoring Plan	4.7
q) A list of any non-compliance(s) with the conditions of this Licence or any directive from the Board pursuant to the conditions of this Licence	1.3
r) A summary of actions taken to address concerns, non-conformances, or deficiencies in any reports filed by an Inspector	5
s) Any other details requested by the Board by December 31 of the year being reported N.B. Nighthawk was directed to track water usage by lake	4.1.1

Table of Contents

1	PROP	PERTY DESCRIPTION, LOCATION, OBLIGATIONS & PERMITS	
	1.1	Location	
	1.2	Description	1
	1.3	Obligations and Permits	
2	ACCE	SSIBILITY, LOCAL RESOURCES, & INFRASTRUCTURE	
	2.1	Accessibility & Local Resources	
	2.2	Infrastructure of the Project Area	10
	2.2.1	Colomac Camp	10
	2.2.2	2024 Colomac Camp Improvements	20
	2.3	Damoti Infrastructure	23
	2.3.1	Damoti Horseshoe Camp	23
	2.3.2	Damoti Ramp Area	23
	2.3.3	Importance of Damoti Infrastructure	25
3	WOR	K CONDUCTED DURING 2024	25
	3.1	Drill Staff and Other Personnel / Contractors	25
	3.2	2024 Drill Program	27
	3.2.1	2024 Drill Program Summary	27
	3.2.2	Assaying and Quality Assurance and Quality Control	28
	3.2.3	Colomac Drilling	31
	3.3	2024 Other Exploration Work	37
	3.3.1	8	
	3.3.2	Detailed Relogging of High-Grade Mineralization in Colomac 3.5 Zone Gabbro	37
	3.4	Project Schedule	
	3.4.1	2025 Project Schedule	40
	3.4.2	Waste Incineration	40
	3.4.3	6 ,	
4	ACTI\	/ITIES GOVERNED BY MANAGEMENT PLANS	
	4.1	Water Management Plan	
	4.1.1		
	4.1.2	,	
	4.1.3		
	4.2	Waste Management Plan	
	4.2.1	Solid Waste Management	
	4.2.2	Č	
	4.2.3		
	4.3	Spill Contingency Plan	
	4.4	Closure and Reclamation Plan	
	4.4.1	2024 Spider Lake Reclamation Program	
	4.4.2	č	
	4.4.3	Closure and Remediation Engagement	
	4.5	Engagement Plan	
	4.6	Explosives Management Plan	49

4.7 Wildlife Mitigation and Management Plan	49
4.7.1 Monitoring	49
4.7.2 Wildlife Incidents and Harm to Wildlife	50
4.7.3 Mitigation of Habitat Loss	50
4.7.4 Training	50
4.7.5 Plan Review	50
5 INSPECTIONS	51
5.1 Land Use Permit W2021C0009	51
5.1.1 June 24 th , 2024	51
5.1.2 September 19 th , 2024	51
5.2 Water Licence (Non-Federal Lands) W2021L2-0004	51
5.2.1 June 6 th , 2024	51
6 REFERENCES	53
7 CERTIFICATES OF QUALIFICATION	56
List of Tables Table 1. Schodule 1. Appual Water License Benezt Conformity Table	
Table 1: Schedule 1 Annual Water Licence Report Conformity Table	
Table 2: Summary of 2024 Drilling	
Table 4: Colomac Camp Water Usage Summary	
Table 5: Drill Water Usage Summary	
Table 6: Summary of Colomac Incinerator Feed and Shipped Waste for 2024 and Prior Years	
Table 6: Summary of Colomac incinerator Feed and Shipped Waste for 2024 and Prior Years	
Table 8: Comparison of Select June 3rd and June 6th Analytical Results at SNP Station 5-6	
Table 6. Comparison of Select June Stu and June our Analytical Results at SNP Station 5-6	52
List of Figures	
Figure 1: Map of Indin Lake Property Location and Yellowknife with inset Regional Map of the Northwes	st
Territories	
Figure 2: Map of Indin Lake Gold Property with NWT and Federal Land Tenure.	
Figure 3: Aerial view of Colomac Camp facing SSE with Steeves Lake to the SW, Truck Lake to the NE, an Truck Lake Channel north of camp (Summer 2023)	
Figure 4: Dash 7 at Colomac Airstrip (2021).	
Figure 5: Aerial view of the Colomac airstrip apron, showing the fuel berms (2022)	
Figure 6: Map of Nighthawk's 2023 Winter Road with portage locations labelled.	
Figure 7: Aerial view of Colomac camp looking west (2024)	
Figure 8: Surveyed schematic drawing of Colomac Camp with changes made during 2024 included	
Figure 9: Main washhouse with washers on the right, dryers on the left and showers in the back (2023).	
Figure 10: Dormitory trailers (2023); A. Corridor, B. Sleeper Room, C. Laundry, D. Single Washroom, E. C	
Washroom.	

Figure 11: Main washhouse and kitchen water tanks and hot water tank (2023)	14
Figure 12: 75Kw and 100 Kw John Deere diesel generators (2023)	14
Figure 13: Colomac camp kitchen (left side) and one of the two dinning rooms (right side); (2023)	15
Figure 14: Colomac Gym with putting area in the front and bouldering wall partially visible on the back, with	
geology office and core shack in the background to the right, and the One Web (white bulbs) internet rece	ivers
to the left (2023)	16
Figure 15: Helicopter operations workshops (2023)	16
Figure 16: Major Drilling Warehouse and shop to the right and geology office in the back left (2023)	17
Figure 17: Major Drilling laydown aerial view (2024).	17
Figure 18: Government storage shed, and 20-foot sea can with government truck on the left (2023)	17
Figure 19: Inside of "Big Blue" with carpentry area (front left), two-story storage building (back left), mech	anic
shop (back right), and FL60 Freightliner Hiab (front right); (2023)	17
Figure 20: Colomac apron storage buildings, with Major Drilling's storage building on the left and general storage buildings.	storage
and waiting room on the right side with a windsock. Further to the right the airstrip entrance to the apron	is
visible (2023)	
Figure 21: Inside view of cutting room (2023).	
Figure 22: Inside view of core shack (2023).	
Figure 23: Aerial view of Big Blue Boneyard (top 2024), Mine Road Boneyard (middle 2024), and close-up of the control of the c	
Mine Road core stacks (bottom 2023).	19
Figure 24: Completed drillers' dry at the entrance to camp, with fire station visible alongside (2024)	
Figure 25: Aerial view of nearly completed sleeper cabin (2024)	
Figure 26: Aerial view of camp centre with fire sprinklers circled in red, and pool visible on its platform (20	-
Figure 27: Aerial view of Drilling Warehouse with fire sprinklers circled in red, and incinerator shack in top	
(2024)	
Figure 28: Aerial view of Damoti Camp after remediation in 2017.	
Figure 29: Core drilled by Nighthawk during 2009 to early 2012 stored near the Damoti core shack	
Figure 30: Core racks at the old camp on the island north of the Damoti camp.	
Figure 31: Aerial view of three double, 75,000 litre, bulk tanks at ramp area near Damoti camp. Inset show	
metal tag with Environment Canada ID number EC-00021357.	
Figure 32: Map of 2024 drilling area locations on the Indin Lake Gold Property.	
Figure 33: Geological map of Colomac Deposit with 2024 drill collar locations.	
Figure 34: Long section of the Colomac Deposit 1.5 to 3.5 Zone looking west with the 2023 PEA resource a	
shell with significant intercepts from C24-06, 07, 08, 09, & 10.	
Figure 35: Long section of the Colomac Deposit 1.5 to 3.5 Zone looking west with the 2023 PEA resource a	
shell with significant intercepts from C24-01 & 05.	
Figure 36: Long section of the Colomac Deposit 1.5 to 3.5 Zone looking west with the 2023 PEA resource a	•
shell with significant intercepts from C24-11 ,12, 13, 14, & 15.	
Figure 37: Cross section of C24-06 in the Colomac Deposit 3.0 Zone looking north with the 2023 PEA resou	
Figure 38: Geological map showing drill holes selected in 2024 for the Lakehead Masters' theses	
Figure 39: Geological map showing drill holes selected in Colomac 3.5 Zone for detailed relogging	
Figure 40: Outside of incinerator shack, with mega bags in front ready to be weighed before being flown o	
camp (2023)	40

Figure 41: Incinerator building (interior) at Colomac camp. Inciner8, Model A600(sec) Incinerator on the left and bins on the right are for partitioning different types of waste based on burn rate (2014).44

1 PROPERTY DESCRIPTION, LOCATION, OBLIGATIONS & PERMITS

1.1 Location

Nighthawk Gold Corp. ("Nighthawk"), a wholly-owned subsidiary of STLLR Gold Inc. ("STLLR"), owns 100 percent of the mineral rights to the Indin Lake Gold Property, located approximately 220 kilometres north of the city of Yellowknife, NT. Nighthawk's Indin Lake Gold Property is a land package comprised of owned federal and territorial mining leases within a contiguous, north-trending area approximately 60 kilometres in length by 6 to 24 kilometres in width, which covers 90 percent of the Indin Lake Volcanic-Sedimentary Belt.

The Colomac Gold Mine, which comprises mining leases covering a former open pit gold operation and contiguous lands, are located within the northern portion of the Indin Lake Gold Property. Colomac Camp is the current location for all drilling, logging, and related support, including field activities, on the Indin Lake Gold Property. Colomac Camp is located on the site of the former Colomac Gold Mine, at Latitude 64° 24′ 10.11″ N, and Longitude -115° 06′ 23.04″ W (UTM NAD 83, Zone 11, 7143262N, 0591274E), as shown in Figure 2.

1.2 Description

The Indin Lake Gold Property comprises mining leases covering approximately 229,791 acres or 931 square kilometres within the North Mining District, Northwest Territories, Canada. The land package forms a contiguous, northwardly-trending strip, measuring approximately 60 kilometres in length north to south, and 6 to 24 kilometres in an east-west width (see Figure 2).

In early 2011, Nighthawk optioned from Ursa Polaris Developments Corporation ("Ursa"), the Leta Arm mining leases and three other mining claims, Treasure Island, Laurie Lake, and Barker-Vidie. (Byron, 2011a) The Leta Arm mining leases were registered in the name of George Stephenson and are held by Nighthawk under an option agreement with Ursa.

Nighthawk also owns 100% of the mineral rights to the Colomac Property, a reclaimed open pit mine that historically produced 527,908 ounces of gold with an average head grade of 1.66 grams per tonne gold ("g/t Au"). Nighthawk acquired the mineral claims and leases of the former producing Colomac Gold Mine from Aboriginal Affairs and Northern Development Canada ("AANDC"). The Colomac Property includes the past producing Colomac Main Zone, four surrounding gold deposits, and several gold showings. (Byron, 2011b).

On December 18, 2013, Nighthawk announced an option/purchase agreement to acquire 4 mining leases (the Cass and Kim Properties) from Geomark Exploration Ltd., a wholly-owned subsidiary of Pine Cliff Energy Ltd. (Byron, 2013). On December 29, 2015, Nighthawk announced that it was going to allow its option to acquire the Kim and Cass Properties to expire in accordance with the terms of the option agreement with Geomark Exploration Ltd. dated Dec 18, 2013 (Byron, 2015). On February 18, 2021, Nighthawk announced that it had entered into a binding option agreement with Geomark Exploration Ltd. to acquire a 100% undivided leasehold interest in four contiguous mining leases (the Kim and Cass Properties), a total of 7,588 acres (31 km²) that incorporate the historic Kim and Cass Zones, immediately adjacent to Nighthawk's Indin Lake Gold Property, increasing the total Indin Lake Gold Property holdings to the current 229,791 acres or 931 square kilometres.

On January 15, 2020, Nighthawk announced that it has entered into an agreement (the "Purchase Agreement") to purchase certain net smelter return ("NSR"), and net profit interest ("NPI"), royalties (collectively referred to as the "Royalties"), from the two parties. The Royalties relate to certain claims within the Leta Arm Gold Project ("Leta Arm"), including the Lexindin showing ("Lexindin"), the Treasure Island Gold Project ("Treasure Island"), the Laurie Lake Showing ("Laurie Lake"), and the Barker-Vidie Showing ("Barker-Vidie"). The completion of the transaction was announced by Nighthawk on April 3, 2020 (Byron, 2020).

On November 28, 2023, Nighthawk and Moneta Gold Inc. announced that they had entered into an agreement for an at-market merger whereby Moneta would acquire all issued and outstanding common shares of Nighthawk in exchange for common shares of Moneta Gold Inc (McBride & Dankowski, 2023). On February 6, 2024, STLLR Gold Inc. (formerly Moneta Gold Inc.) and Nighthawk announced the completion of their at-market merger. In connection with the transaction, Moneta Gold Inc. changed its name to STLLR Gold Inc., 2024a).

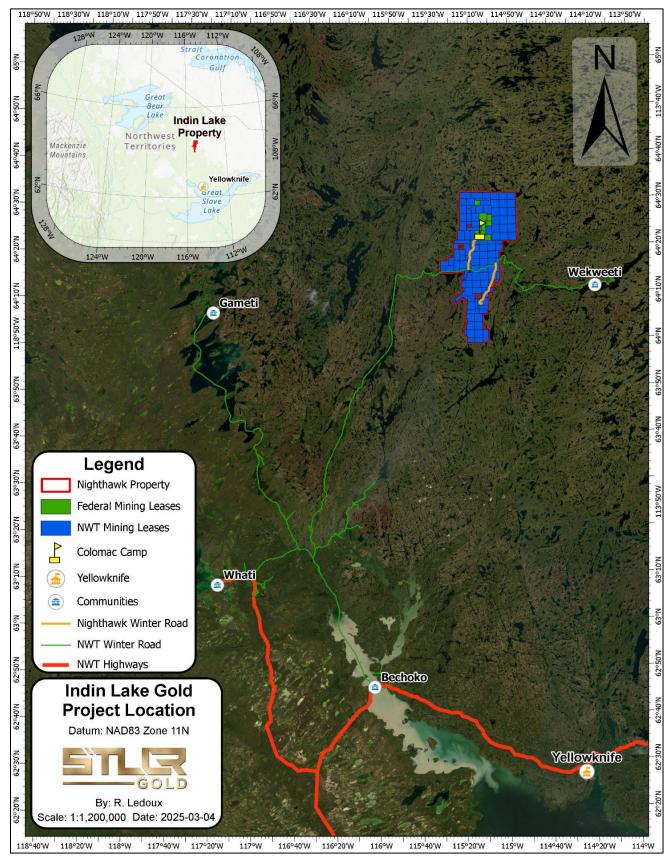


Figure 1: Map of Indin Lake Property Location and Yellowknife with inset Regional Map of the Northwest Territories.

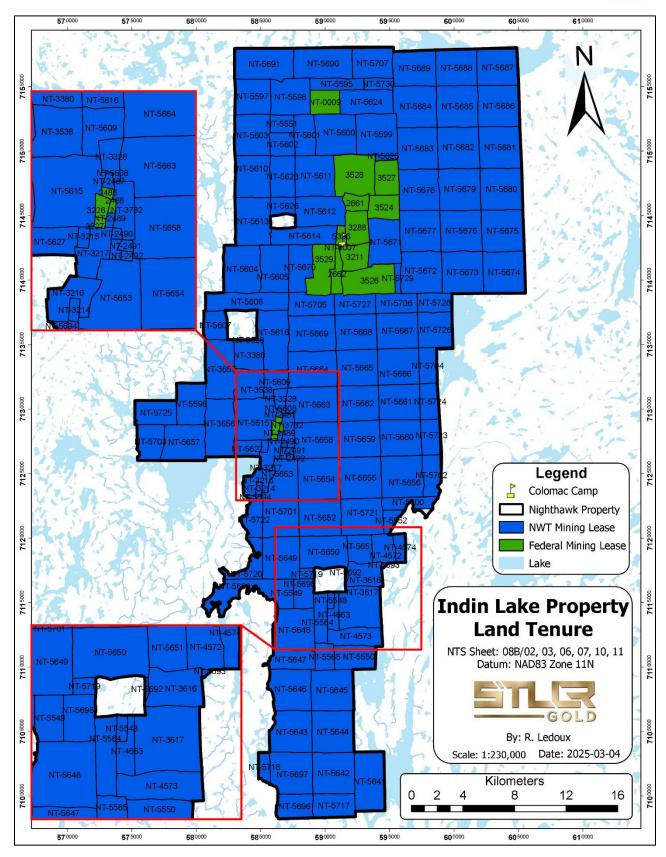


Figure 2: Map of Indin Lake Gold Property with NWT and Federal Land Tenure.

1.3 Obligations and Permits

Under Northwest Territories and Nunavut Mining Regulations, C.R.C., c. 1516, mining claims require representation work (i.e. assessment work) to the value of at least \$10 per hectare or part thereof contained in the claim during the two-year period immediately following the date the claim is recorded and at least \$5 per hectare during each subsequent one-year period. All of Nighthawk's claims were converted to leases in 2021 and 2022, therefore no further assessment work is required.

Nighthawk holds two valid Class A Land Use Permits ("LUP"):

- W2018X0006 effective February 15th, 2019, and expiring February 14th, 2026.
- W2021C0009 effective January 13th, 2023, and expiring January 12th, 2028.

These LUP were formerly covered in part by W2018C0007, W2012C0002, W2010C0008, and W2006C0001 Class A.

Nighthawk holds two valid Type A water licences:

- W2021L2-0004 Type A (non-federal lands) effective January 13th, 2023, and expiring January 12th, 2038.
- W2021L2-0005 Type A (federal lands) effective January 13th, 2023, and expiring January 12th, 2038.

These water licences were formerly covered in part by, W2018L2-0002, W2018L2-0003, W2012L1-0001, W2010L2-0002, and W2006L2-0001 Type B licences.

The LUP permits and water licences are issued under the authority of the Wek'èezhìi Land and Water Board ("WLWB"), for whom this report has been prepared. LUP W2021C0009 is issued for Mining Exploration at the Indin Lake Gold Project (the "Project"). LUP W2018X0006 permits remediation of the Damoti Lake, Diversified, Chalco Lake, and Spider Lake sites.

Type A water licences W2021L2-0004 (non-federal lands) and W2021L2-0005 (federal lands) came into effect on January 13th, 2023, permitting Nighthawk to withdraw up to 800 m³ of water per day, combined, for the Project from all lakes listed in Annex B of the water licence.

Nighthawk has complied with the terms and conditions of its land use permits and water licences, and all directives from the Board pursuant to these permits and licences, including continuing restoration and cleanup of the land and water previously utilized under the Licences. Nighthawk also holds a valid GNWT Prospector's Licence #33742, and (NWT-AANDC) Federal Prospecting Licence NEF0012.

2 ACCESSIBILITY, LOCAL RESOURCES, & INFRASTRUCTURE

2.1 Accessibility & Local Resources

The Indin Lake Gold Property is located approximately 220 kilometres north-northwest of the city of Yellowknife, NT. Yellowknife has population of 20,340 (2021 census) and is both the capital of the Northwest Territories, and the main supply centre for personnel, goods, and services within the area. The community of Behchokò, formerly Rae-Edzo, populated primarily by people of the Tlicho Nation and the seat of the Tłıcho Government, is southwest of the Indin Lake Gold Property, and is accessible from Yellowknife via Highway 3.

During the winter season, access to Colomac is also possible by the annual Wekweètì Winter Road (see Figure 1) from Yellowknife and then by a 13-kilometre Winter Road to Colomac Camp (see Figure 6). This method of access was last employed during 2023 to conduct bulk fuel transfers to the work site. In total, 18 days were spent building the Winter Road and an additional ten days were spent on road maintenance.

Figure 3: Aerial view of Colomac Camp facing SSE with Steeves Lake to the SW, Truck Lake to the NE, and the Truck Lake Channel north of camp (Summer 2023).

For the 2024 Indin Lake drilling program, an Airbus AS350B3 "AStar" helicopter was used for all drill moves and supporting flights. The helicopter was provided by Tłįchǫ Helicopters, a partnership between Great Slave Helicopters ("GSH") of Yellowknife, NT, and the Tłįchǫ Investment Corporation. The helicopter was based at Colomac Camp (see Figure 3). Colomac Camp also has an airstrip, which can accommodate large aircraft up to a de Haviland Canada DCH-7 "Dash 7" (see Figure 4), which are routinely provided by Tłįchǫ Air Inc., a partnership between Air Tindi of Yellowknife, NT, and the Tłįchǫ Investment Corporation.

Figure 4: Dash 7 at Colomac Airstrip (2021).

Four new fuel berms were built in 2022 around the apron at the Colomac airstrip to house the incoming fuel. This site is the official refueling area and ensures minimum transport of hydrocarbons during the field season. All fuel transported in new 45-gallon drums and sealed with plastic water seals on all bungs. All gasoline and P-50 (diesel) is palletized in berms and standing upright. Grade A & B jet fuel is laid down with outlets located at 3 and 9 o'clock positions and is supported by rough-cut 3x9-foot lumber to protect the berm from damage. Large drum spill kits and fire extinguishers are available at each fuel berm in case of an emergency.

The Colomac camp is also located less than 130 kilometres north-northeast of the Snare Lake Hydro Generation facility and approximately 120 kilometres northeast of the Nico gold-cobalt-bismuth-copper deposit.

Figure 5: Aerial view of the Colomac airstrip apron, showing the fuel berms (2022).

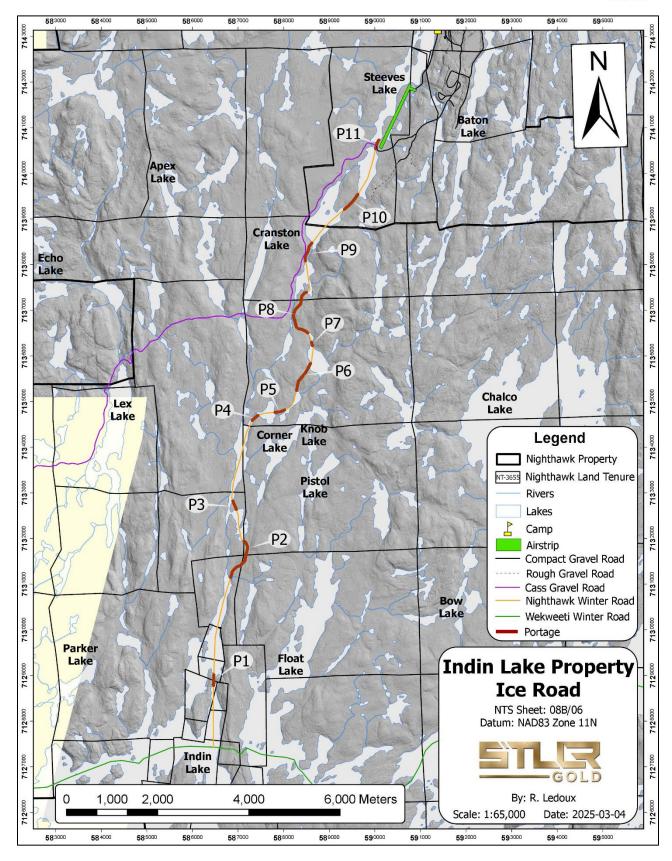


Figure 6: Map of Nighthawk's 2023 Winter Road with portage locations labelled.

2.2 Infrastructure of the Project Area

2.2.1 Colomac Camp

All drilling, logging, and related support, including field activities were serviced from Colomac Camp, which is located at 7143262N and 0591274E (UTM NAD 83, Zone 11N). Nighthawk began constructing Colomac Camp in March 2012 and occupied the camp in May 2012. The camp underwent upgrades and had additional structures added during early 2014 and has been updated annually from 2016 to 2024. The camp is built on a coarse rock and gravel pad 1-2 metres above grade and is enclosed by a gated electric bear fence (see Figure 3, Figure 7, & Figure 8). The camp is located east of Steeves Lake and approximately 2.2 kilometres north of the Colomac airstrip.

Figure 7: Aerial view of Colomac camp looking west (2024).

The authorization to construct the camp specified that it must be located 30 metres or greater away from the Truck Lake Channel. The channel is an attempt by Crown-Indigenous Relations and Northern Affairs Canada — Contaminants and Remediation Directorate to encourage fish to breed. Truck Lake Channel connects Truck Lake to Steeves Lake and has generally not contained water year-round for the past ten-plus years (see Figure 3), although water does flow along the channel for a short period during the freshet period, only to dry up and flow underground thereafter once the ground defrosts.

The blue structure shown near Steeves Lake (see Figure 3 & Figure 7), is a disassembled metal crane. This equipment was included with the sale of the Mining Leases to Nighthawk. It is non-functional and is only of scrap metal value.

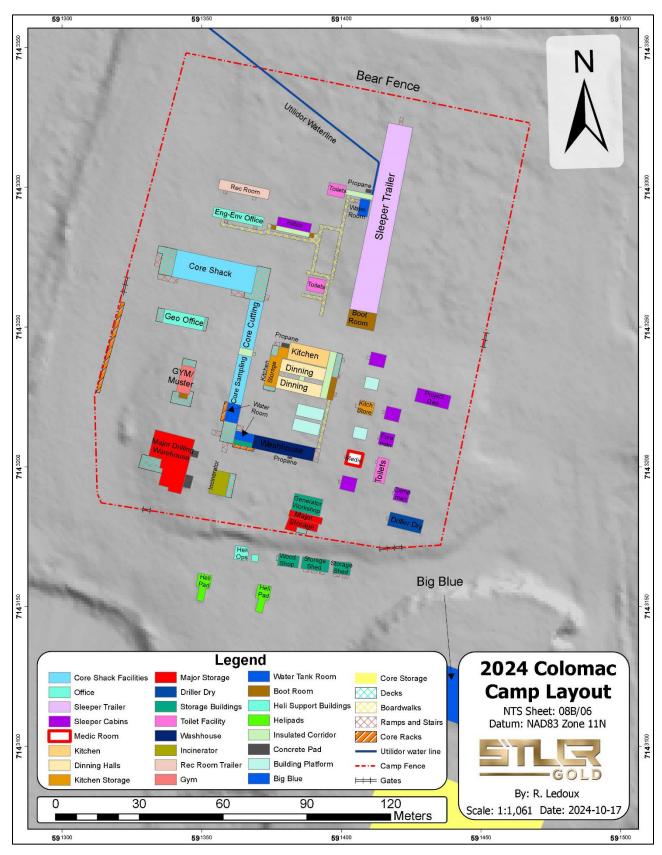


Figure 8: Surveyed schematic drawing of Colomac Camp with changes made during 2024 included.

Colomac Camp (see Figure 3, Figure 7, & Figure 8) is made up of wood framed buildings and trailers. It has a current maximum capacity of 60-70 people.

Colomac Camp Accommodations

The main form of accommodations at Colomac Camp is provided by a 49-person dormitory trailer complex (serial number 17745-1256-S(B)-06N08) that was built in June 2008 and brought into camp on the Winter Road in 2023. The dormitory trailers (located in the NE corner of camp) are made up of eight 12x58-foot trailers connected by a central hallway (see Figure 10A), each with independent 56,000 BTU furnaces and air conditioning. There are seven sleeper trailers with individual rooms (see Figure 10B), and one washroom/laundry room trailer (see Figure 10C/D). There are exits at the north and south entrances to the trailers as well as a side entrance that leads to the new toilet house through an insulated corridor. At the main southern entrance, a wood framed building was added for use as a boot room. There is a central propane heated hot water tank that supplies hot water for the washroom/laundry trailer. Within the washroom/laundry trailer are three washer-dryer combo machines (see Figure 10C), six individual bathrooms with a sink, shower stall, and a deactivated toilet (see Figure 10D) that has been covered with plywood to prevent usage, as well as a communal washroom with four sinks, two urinals, and two deactivated toilets (see Figure 10E). All water used in the showers, sinks, and urinals is emptied with the greywater on the west side of the trailers in a rocky area behind the new toilet facility.

Additional accommodations can be found in a five-person cabin with individual rooms, an internal corridor, and a boot room on both entrances, as well as six 14x16-foot wood cabins used for the Major Drilling Foreman, Project Geologist(s), Camp Manager(s), Medic, Mechanic, and one additional individual.

Toilet and Shower Facilities

There are three external toilet facilities at Colomac Camp with a total of fourteen Incinolet electric incinerating toilets and six Pacto toilets. The original toilet facility, located across from the old core shack (now the washhouse), is the largest, with eight Incinolets and two Pacto toilets. The other two toilet facilities each have three Incinolet toilets and two Pacto toilets; one is located across from the new core shack and the other, which is the newest, is connected by an insulated corridor to the dormitory trailer complex. Additionally, there are two outdoor urinals located at the back of the original toilet facilities and the toilets across from

Figure 9: Main washhouse with washers on the right, dryers on the left and showers in the back (2023).

the new core shack. The outdoor urinals are open air troughs covered on three sides for privacy that drain on top of piles of rocks.

In addition to the showers and laundry room in the dormitory trailers (see Figure 10D & Figure 10E) described above, there is a main wash house at the southern end of camp. The old core shack building was converted into a wash house to make up for the decommissioning of two-Weatherhaven drys formerly in use. The building has four showers, five dryers, five washing machines, four-bathroom sinks, an industrial sink, a

cubby area for hanging towels and other bathroom supplies (see Figure 9). Additionally, in the back of the bathhouse a cleaning supplies storage area was established, as well as a small storage room for gear.

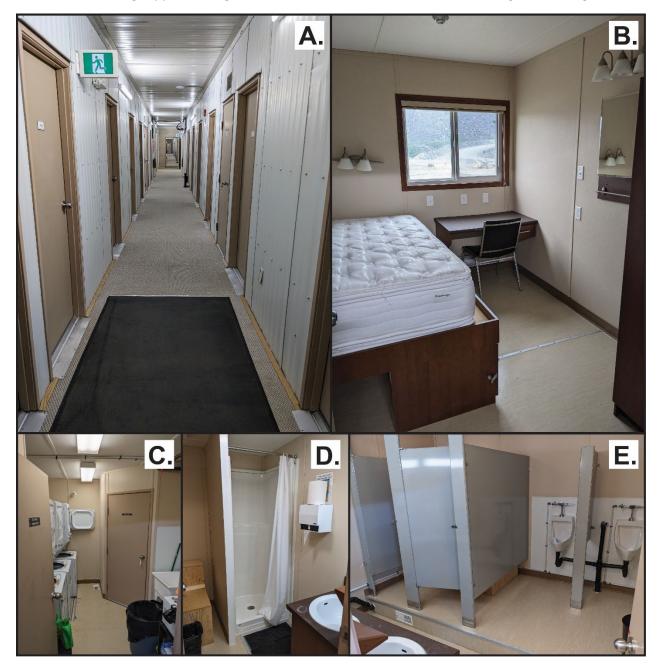


Figure 10: Dormitory trailers (2023); A. Corridor, B. Sleeper Room, C. Laundry, D. Single Washroom, E. Communal Washroom.

Water and Electricity

Colomac Camp has capacity to store a total of 10,800 gallons or 40.9 m³ of water which is used for the kitchen, washhouse, and trailer washrooms. There are also fire hoses and portable Honda generators available to be hooked up to the water tanks in the event of a fire. All water is sourced from nearby Steeves Lake and then passes through a filtration system with two separate filters and a UV water treatment system.

Additionally, newly installed in 2023, the water systems have been equipped with a fill trigger that is activated at low water level and turns off when the tanks are close to full. Water usage is tracked daily with a gauge (see Figure 11) as water is emptied from the water tanks.

Figure 11: Main washhouse and kitchen water tanks and hot water tank (2023).

There are two water room locations. The original and largest water room is located behind the kitchen in the old cut shack and has been recently expanded into the back of the new washhouse. There, four 750-gallon water tanks (see Figure 11) are linked with eight 450-gallon tanks that are all fed by a buried heat traced water line from Steeves Lake. This water room supplies water to the washhouse and kitchen, with hot water heated by an oil burner hot water tank (see Figure 11) and an electric hot water tank respectively. The second, and newest, water room is located on the western side of the dormitory trailers. The trailer water room contains six 450-gallon water tanks and is supplied by a heat-traced waterline inside of a utilidor built in 2023 for use in the 2024 season.

Colomac Camp is powered by a 75 Kw John Deere diesel generator and a backup 100 Kw John Deere diesel generator (see Figure 12). The generators are located inside a room of a 20x32-foot uninsulated wooden building at the far south end of camp. The other half of the building is used as a workshop and storage area for tools.

Figure 12: 75Kw and 100 Kw John Deere diesel generators (2023).

Kitchen and Dining Area

The kitchen and dining rooms are located near the centre of camp. The dining rooms (see Figure 13) are comprised of two 14X48-foot insulated wood-frame buildings with a connecting insulated walkway between them, and a black-top insulated wood-frame foyer connecting both the dining rooms and the 14x48-foot kitchen on the eastern side (see Figure 7 & Figure 8). There is a large storage area with a walk-in fridge and freezer connecting them all together on the western side as well as a small storage shed across the main road in camp beside some of the sleeper cabins. The updated kitchen was completed at the end of the 2021 season and the new dining rooms were progressively added during 2022.

Figure 13: Colomac camp kitchen (left side) and one of the two dinning rooms (right side); (2023).

Recreation Buildings

In addition to the dining rooms, which can be used as a hangout or meeting spot to watch TV or play cards, there is a gym and a rec room trailer. The gym is a 16x32-foot insulated wooden building with an attached boot room; inside are various workout equipment and outside there is a golf putting area and short bouldering wall (see Figure 14). The gym also doubles as an emergency muster point for the camp. The rec room trailer is a 12x59.6-foot office trailer on skids that was brought into the camp in winter 2023 and has been set up with a projector and seating.

Figure 14: Colomac Gym with putting area in the front and bouldering wall partially visible on the back, with the geology office and core shack in the background to the right, and the One Web (white bulbs) internet receivers to the left (2023).

Helicopter Operations

The helicopter operations area is located immediately outside of camp to the south, beside the main gate. There are two helicopter pads constructed of pallets and plywood. The helicopter pilots and engineers have a small (7x7-foot) blue wooden building for supplies, as well as a 16x16-foot wooden building for the helicopter engineers to work on repairs for the helicopter(s) (see Figure 15). Additionally, there is a refueling station set up at the airstrip apron close to the jet fuel berm.

Figure 15: Helicopter operations workshops (2023).

Driller Facilities

Major Drilling has three storage buildings, a 40-foot sea can, a dry, and a laydown area. The Major Drilling main warehouse/workshop is in the southwest corner of camp (see Figure 7, Figure 8, & Figure 16). The building is roughly 50x64-foot with a 16x24-foot deck for receiving sling loads (see Figure 16). Also used for storage are several connected sheds close to the main camp entrance making up a 16x36-foot storage area and a 40-foot sea can for secure storage. At the airstrip apron, Major Drilling has a 16x50-foot storage building where snowmobiles, frost fighters, and other miscellaneous equipment are stored (see Figure 20). The drillers' dry, an insulated 16x32-foot wood-framed building, is located next to the main camp entrance (see Figure 24). Additionally, the drillers have a laydown just outside of camp up the hill towards the Colomac pits (see Figure 17). The area is approximately 75x200-metres and is used for storing large drilling equipment.

Figure 16: Major Drilling Warehouse and shop to the right and geology office in the back left (2023).

Figure 17: Major Drilling laydown aerial view (2024).

General Storage and Other Buildings

There are several additional storage buildings, as well as a woodshop and incinerator building (see Figure 40). "Big Blue", a 65x196-foot uninsulated cold storage blue metal building, owned the by Tłıcho Government, is located nearby and to the southeast of the Colomac camp. In 2023, the Tłycho Government granted access to "Big Blue". Inside, Nighthawk has built a storage area with shelving, a woodworking area on a level platform, a 24x60-foot wood framed mechanic's shop, and a 16x60-foot two story storage building (see Figure 19). Immediately outside of camp, beside the helicopter operations area, is a 14x24-foot woodshop, as well as a 14x32-foot and 14x20-foot storage shed used for storing

Figure 19: Inside of "Big Blue" with carpentry area (front left), two-story storage building (back left), mechanic shop (back right), and FL60 Freightliner Hiab (front right); (2023).

Figure 18: Government storage shed, and 20-foot sea can with government truck on the left (2023).

small equipment like quads and snowmobiles. One of the storage areas can also be used as a staging area for field work.

At the airstrip apron, there is a 16x50-foot wooden storage building for miscellaneous camp storage (see Figure 20). The building at the airstrip also has a room inside with a small diesel GeoStove that can be used as a waiting room for fixed wing flights, or in an emergency where camp is evacuated. Also at the airstrip apron is a 14x16-foot storage shed built by Nighthawk for government use, and a 20-foot sea can owned by the government (see Figure 18).

Figure 20: Colomac apron storage buildings, with Major Drilling's storage building on the left and general storage and waiting room on the right side with a windsock. Further to the right the airstrip entrance to the apron is visible (2023).

Geological Facilities and Offices

The camp geology/head office is in an insulated 16x48-foot wood framed building on the western edge of camp, south of the core shack. The office has six desks/workstations and a weather station, and is the hub for the camp's internet. Internet is provided by Cascom Ltd. and is accessed through three networks to ensure quality internet access. The primary internet is provided by One Web (see Figure 14), with Starlink and a large VSAT satellite dish providing backup. Additionally, a 12x59.6-foot office trailer on skids was brought to camp in 2023 for use as an environmental and engineering office.

All 2024 core logging, cutting, and sampling of core was conducted at the Colomac facilities. The core shack, where all core logging is conducted, is a long building (96+ feet length) and can hold just over 800 metres of core on all the benches at a time (see Figure 22). All core was cut with one of four Vancom electric core saws (see Figure 21) and then sampled in a separate building from the core shack connected by an insulated wooden corridor. All water used for cutting core was recirculated in settling tanks located next to each of the four core saws.

Figure 22: Inside view of core shack (2023).

Figure 21: Inside view of cutting room (2023).

All drill core from the 2012 through 2024 drill programs is stored on the Colomac property. Most core is flat stacked outdoors within an area immediately south of Big Blue; a second core storage area along the side of the road on the first left after going up the hill towards the Colomac pits was started during 2022 after the area near Big Blue reached capacity (see Figure 23).

Figure 23: Aerial view of Big Blue Boneyard (top 2024), Mine Road Boneyard (middle 2024), and close-up of the Mine Road core stacks (bottom 2023).

Mobile Equipment

There are several mobile vehicles and pieces of equipment onsite that are owned by Nighthawk and several of the contractors; they are listed below.

- Nighthawk: CAT 289C2 skid steer, CAT 950E loader, 480 John Deere Loader, Kubota KX1613 excavator, 1968 MAC dump truck, two Honda quads, four Kubota Sidekick side by sides, wobblywheel packer, and a 750-litre fuel trailer.
- Geominex Consultants: Two Chevrolet 3500 HD pickup trucks, GMC Suburban truck, and a Ford E350 passenger van.
- Major Drilling: Tucker 4000 Snowcat, CAT D3KGP bulldozer, four Can-Am side by sides, two Bombardier 650 snowmobiles, and two Bombardier wide track scandic snowmobiles.
- Aurora Telecom Services: two PistenBully 200 series Snowcats, two water trucks, Ford support truck, and an Arco plough truck.
- F & A Mechanic: Freightliner FL60 Hiab.

2.2.2 2024 Colomac Camp Improvements

In 2024, Nighthawk made improvements to Colomac Camp with the aim to upgrade the camp's fire preparedness and increase the camp's capacity. Camp improvements consisted of the following new buildings constructed or upgraded:

- 1. The drillers' dry, which was started at the end of 2023, was finished during 2024. The new drillers' dry is an insulated 16x32-foot wood-framed building where the drillers change outerwear, store and dry outerwear, and hold meetings (see Figure 24).
- 2. A new insulated 14x42-foot wood-framed sleeper cabin was constructed at the eastern side of the camp (see Figure 25). It has two rooms connected by an internal corridor with a central washroom with an Incinolet toilet, sink and shower that has not yet been finished.
- 3. Fire suppression sprinklers were installed on the peaks of several of the buildings with tar roofing (see Figure 26 & Figure 27). A total of 16 sprinklers were installed with four on the washhouse, six along the connected water tank, core sampling, and core cutting rooms, four on the coreshack, and two on the Major Drilling workshop. The sprinkler system is powered by two electric deep well pressure pumps producing 28-GPM and can draw water from the camp water tanks and from a newly installed 16x32-foot Coleman rectangular frame swimming pool that holds 7,092 US gallons (see Figure 26).

Figure 24: Completed drillers' dry at the entrance to camp, with fire station visible alongside (2024).

Figure 25: Aerial view of nearly completed sleeper cabin (2024).

Figure 26: Aerial view of camp centre with fire sprinklers circled in red, and pool visible on its platform (2024).

Figure 27: Aerial view of Drilling Warehouse with fire sprinklers circled in red, and incinerator shack in top left (2024).

2.3 Damoti Infrastructure

2.3.1 Damoti Horseshoe Camp

The Damoti Horseshoe Camp, which located at 7114527N and 0591288E (UTM NAD 83 Zone 11N) was mothballed during 2012 after Colomac camp was constructed. Damoti Camp remains as the site for flat-stack storage of historical (legacy) Damoti drill core, as well as core drilled by Nighthawk from the Damoti drilling during 2009 and 2010. Nighthawk's core from the 2011 drilling of Treasure Island and the Leta Arm areas, and the early 2012 drilling of Colomac, are also stored at Damoti Camp (see Figure 28 & Figure 29). In addition, a large amount of older Damoti historic drill core, generally of pre-1996, is stored in racks on Esker Island, immediately north of the Damoti camp (see Figure 30).

An insulated, wood-framed core shack was constructed at Damoti Camp in 2009, with a separate cutting room added in 2011. Both structures remain valuable assets, and with nominal effort can be returned to operational status if required. The rest of the camp currently comprises a few small insulated, wood-framed buildings

Figure 28: Aerial view of Damoti Camp after remediation in 2017.

Figure 29: Core drilled by Nighthawk during 2009 to early 2012 stored near the Damoti core shack.

and several tent floors and standing tent frames.

In 2022 some repairs were made to the

roof of the core shack, as well as ensuring that the electrical wiring and lights were available for use. A survival bag with food, sleeping bags, and other survival gear was left in case of an emergency in the area, and a diesel furnace with accompanying fuel has also been reinstalled.

2.3.2 Damoti Ramp Area

Three double-walled Environmental Protection Tanks, having a capacity of 75,000 litres each, are located near the Horseshoe ramp area, a short distance east of the Damoti Horseshoe camp (see Figure 31). The

Underwriter's Laboratories of Canada brass plates affixed to each of the three tanks indicate that they were constructed in 1996 by Northern Steel Industries Limited, Tisdale, Saskatchewan (tel: 306-873-4531). The tanks are registered in the Environment Canada database with the following identification numbers, which are also indicated on aluminum tags affixed to the tanks (see Figure 31): EC-00021356, EC-00021357, and EC-00021359. As of late 2018, two of these tanks are empty while the third (the western tank) contains a minor amount of legacy diesel (dated c. 1996) estimated at less than five barrels.

Two seacan containers are also located along an ATV trail connecting Damoti Camp to the ramp area and provide secured storage for equipment if required.

During March 1996, a decision was made to drive a ramp at Damoti to provide underground exploration access on the high-grade portion of the Horseshoe Zone, conduct an underground drill program, and obtain a mini-bulk sample. The high-grade gold encountered over long intervals in surface drilling warranted going underground (van Hees, 1996). Both underground programs were conducted by Quest International Management Services under the supervision of Dr. Edmond H. van

Figure 30: Core racks at the old camp on the island north of the Damoti camp.

Figure 31: Aerial view of three double, 75,000 litre, bulk tanks at ramp area near Damoti camp. Inset shows metal tag with Environment Canada ID number EC-00021357.

Hees. Approximately 430 metres of decline/crosscut were driven between June 15 and October 15. Two levels were opened, 120 metres driven on the 25-meter Level, and 30 metres driven on the 40-metre Level. Thirty-five underground drill holes were completed, totalling 792.1 metres. Surface access was closed and barred with a grate of steel bars/rods, and the ramp has since filled with water.

The underground exploration program resulted in the production of approximately 20,000 tonnes of waste rock and mineralized rock (3,810 tonnes) stored on surface near the portal.

The resulting report of the underground development, prepared by P & E Mining Consultants Inc, indicated a non 43-101-compliant mineral inventory "within easy reach of the McPherson Project ramp" to contain 25,972 troy ounces (in proven, probable, and possible categories) with gold grades ranging from 15.43 g/t Au (0.45 oz/t) for the surface stockpile to between 34.28 and 39.08 g/t Au (1.0 oz/t and 1.14 oz/t) for "in place" zones. This total inventory included the stockpile stored on surface near the portal, as estimated by

van Hees, to be 3,810 tonnes of mineralized rock averaging 15.43 g/t Au (i.e. 4,200 short tons grading 0.45 oz/t) for a total of 1,890 contained troy ounces on surface (i.e. 58.78 kg gold) (van Hees, 1996).

No surface water flow was noted at that time at the ramp area where the waste and mineralized rock is stored. It should also be noted that since 2009, both Nighthawk personnel, and staff from Golder & Associates (now WSP Canada Inc.), have not noted any surface water flow at the ramp area where the waste and mineralized rock is stored. The pathway for flow from the waste and ore stockpiles is constrained by bedrock highs to the north, east and west and therefore, all runoff from this site is expected to drain towards Lardass Lake. The water quality at the Surveillance Network Program ("SNP") stations, as well as downstream towards Lardass Lake, suggest there has been minimal effect to the environment from seepage to date. Seepage from the stockpiles is considered limited, consistent with observations at site during the field investigations (i.e., no surface water flow) (Golder Associates Inc., 2015).

2.3.3 Importance of Damoti Infrastructure

The Damoti Camp infrastructure, and both the historical and Nighthawk-drilled core stored on site, are extremely important assets to the future advancement of mineral exploration within the Indin Lake Belt. The core shack and cutting facilities can be returned to operational status, if required, with very nominal effort. They are extremely important to advancing any future drill program at either Damoti or within the southern portion of the Indin Lake Gold Property.

During 2012, historical legacy core was located and identified by Nighthawk near the new Colomac Camp. It appears that during 1997, Royal Oak Mines Inc. drilled these holes in the Colomac sill, testing Zone 3.5 mineralization to depth and laterally. These holes had not been included in any previous resource estimate. The Royal Oak logs were lost, but the core with Tyvek sample tags and the associated assay values without locations are still available. Nighthawk re-logged 20 of these historic holes (7,470 metres), and re-assayed 10% of the known mineralization to meet QA/QC requirements. Geological logs were produced and merged with the Royal Oak assays. This work added considerable positive information to the new resource estimate at Colomac. The fact that these historical holes were available also saved Nighthawk more than 4.0 million dollars of drilling/exploration expenditures. It is possible that the historic core at Damoti Camp may be of similar potential value.

Damoti is important both for its mineral potential and its infrastructure. It is a high-grade, near-surface gold target that offers significant lateral expansion possibilities as well as room for new discoveries. The fact that in 2018 Nighthawk completed 17 diamond drill holes for a total of 5,140 metres reflects this belief. These 17 holes were directed at exploring outside of the main deposit to test several new geological targets within the host Horseshoe and Red Mountain synclines. The holes returned 31 unique samples containing visible gold, in addition to gold defined by assay. These holes also confirmed and extended gold zones and outlined at least one new discovery at Red Mountain that remains open in all dimensions.

3 WORK CONDUCTED DURING 2024

3.1 Drill Staff and Other Personnel / Contractors

Nighthawk's 2024 drilling and field activities for the Indin Lake Gold Project were supervised by Brian Game, P.Geo., John Nicholson, P.Geo., and Riley Ledoux, P.Geo. of Geominex Consultants ("Geominex"), of 1411-409 Granville Street, Vancouver, BC. Riley Ledoux acted as the Qualified Person for this Project in the

preparation and supervision of the logs and related scientific or technical information related to the drilling activities.

The diamond drilling program was conducted with personnel, supplies, and ancillary equipment provided under contract by Major Drilling Group International Inc. of 270 Industrial Blvd, Rouyn-Noranda, QC. Donald Lafrance served as drill foreman for both rigs, and the 10 to 11-man crew responsible for drilling. The Major Drilling personnel were on site at Colomac Camp from May 6th to June 13th, and June 28th to August 1st, 2024, with a scheduled break between. Major Drilling provided two drillers and two helpers for each drill to cover night and day shifts, as well a fifth man to help with drill maintenance and moves.

Geominex provided geologists and geotechnical support for the 2024 core logging and field activities from May 3rd to June 15th, and June 28th to July 30th, 2024, with a scheduled break between. In general, there were seven to eight Geominex geology staff on site for the two drills, with one camp manager, one core shack manager, two logging geologists, three geotechs/samplers, one core cutter, and a master's student. Additionally, Geominex provided two to five staff for camp management, maintenance, construction, and heavy equipment operation from April 7th to August 6th and August 29th to September 13th, 2024. Crew shifts varied but were roughly three to five weeks on with two weeks off.

Brian Game, P.Geo., and John Nicholson, P.Geo., oversaw camp operations. Geologists Riley Ledoux, P. Geo., and Christopher Fozard were responsible for supervision of the logging geologists and technicians within the core shack. The Geominex geologists responsible for the 2024 logging were Jack Armstrong, Ben Ruston, and Louise Igoe. Geotechnical support was provided by Carter Hokanson, Brendan Muscalu, and Ethan Milkowski; Paul Bingham cut core using a Vancom electric core saw. Additionally, Turner Green was employed by Geominex to help in the core shack and to complete data collection for his master's thesis on the Indin Lake Greenstone belt at Lakehead University. Ryan Pownall and Friedrich Kaiser alternately oversaw camp maintenance. Chad Pyette was the main heavy equipment operator and assisted with camp maintenance. Simon Cornellier worked on camp construction and assisted with other jobs as needed.

All 2024 drill moves, support, and environmental work was completed with an Airbus AS350B3 "AStar" helicopter provided by Great Slave Helicopters of Yellowknife, NT ("GSH"). One pilot was based at Colomac camp from April 14th to June 13th, July 3rd to August 6th, who was assisted by visits from an engineer as required for maintenance. A Bell 206L "Long Ranger" helicopter was used from August 29th to September 7th, 2024, for camp support. GSH helicopter pilots included: Tanner Pelletier, Pierre Otish, Marie Josée Lacroix, Steven Beck, and Caitlin Munro. GSH engineers on site included: Erwan Chalet, Denise Ranque, Carlos Arrieta, and Khalid Abu-Shaar.

Camp catering and expediting services was performed by personnel provided by Discovery Mining Services Ltd. ("DMS"), of Yellowknife, NT. DMS had one to five personnel onsite from April 7th to June 15th, June 27th to August 6th, and August 29th to September 13th, 2024. With one head cook, one 2nd cook, two assistants, and one camp maintenance assistant.

Dehk'e Enterprise Ltd. ("Dehk'e"), of 122 Donda Tilli Block 15 Lot 3 Behchokò, NT, supplied two additional camp labourers, three remediation labourers, and a custodian. There were two to six Dehk'e personnel on site from May 3rd to June 13th, and June 29th to August 6th, 2024.

Sub-Arctic Geomatics Ltd., of 226 Utsingi Drive, Yellowknife, NT, provided land surveyors with Global Navigation Satellite System Real-Time Kinetic surveying equipment, to survey the planned 2024 drill collar

locations and azimuths as well as the final 2024 collar locations. Surveys were conducted on May 6^{th} to 7^{th} by Sam Bartlett, and July 2^{nd} to 4^{th} by Dylan Foote.

62 Degrees North Inc., of 100 Borden Dr Bay 25, Yellowknife, NT, provided paramedic services for the Project. One paramedic was on site from April 15th to June 13th and June 27th to August 6th. Paramedic services were provided by McKenzie Duncan, Hayden Gernat, Sebastian Rapitt, and Brian Groves.

WSP Canada Inc. ("WSP"), of 4905 48th Street, Yellowknife, NT, served as Nighthawk's Environmental Consultant. In this capacity, they provided technical planning and oversight of the Spider Lake Remediation Program (see 4.4.1) with Kristine Novakowski, P.Geo., on site from May 30th to June 4th, 2024, and Bruno Klopf, EIT, was on site from July 9th to 16th, and again on August 22nd, 2024. WSP also provided environmental monitoring and reporting services for the Damoti Lake Surveillance Network Program (see 4.1.3), with Emily Finstad on site on June 3rd, and Sarah Beattie on site on September 10th, 2024.

Air Tindi, of 107 Berry Street, Yellowknife, NT, provided fixed-wing air support to transport personnel and supplies to the Colomac camp from April 7th to September 13th, 2024. De Haviland Canada DCH-7 "Dash 7" and de Haviland Canada DCH-6 "Twin Otter" were the main fixed-wing aircraft used.

Cascom Ltd., of 11 Coronation Drive, Yellowknife, NT, provided satellite telecommunications equipment and services.

3.2 2024 Drill Program

3.2.1 2024 Drill Program Summary

Colomac Camp was opened April 7th, 2024, by a small group from Geominex to prepare the camp for operations and to finish construction on the drillers' dry. The 2024 drill program was a summer program, with a short, scheduled break for most personnel. Geology and drilling staff were on site from May 4th to June 15th and from June 29th to August 1st, 2024.

The summer program had a staggered start with the first drill (SDD 129) starting on May 10th and the second drill (SDD 131) starting on May 13th, followed by a break for both drills from June 13th to June 29th. The end of the summer program was also staggered, with SDD 129 finishing on July 18th and SDD 131 finishing on July 27th, 2024.

Once drilling was completed, a small crew of drillers remained until August 1st to winterize and store the drills for next season. The logging, cutting, and sampling of drill core was completed a few days after the last drill was shut down. A small crew from Geominex remained until July 30th to put away core, clean, and organize items to ensure everything was ready for the start of the next season.

During 2024, Nighthawk drilled 15 NQ-sized diamond drill holes into the Colomac deposit, for a total of 6,331 metres drilled, of which 2,448 core samples were submitted for gold assay. A total of 6,000 m³ of water was used while drilling throughout the 2024 season (see Table 2, Table 3, & Table 5). Drill hole details including hole ID, start date, stop date, days spent drilling, water usage, local zone, UTM collar locations, hole attitude, final hole depth, number of samples submitted for assay, number of samples with visible gold, the water source, and land tenure, is shown on Table 3. Nighthawk's 2024 drill collar locations, as well as mineral tenure, can be seen in Figure 32 & Figure 33.

Table 2: Summary of 2024 Drilling

Area	Drill Holes	Start Date	Stop Date	Drill Days	Water Usage (m³)	Final EOH (m)	# Of Samples	VG # Of Samples
Colomac	15	2024-05-10	2024-07-28	107.5	6000.0	6331.00	2448	114

All holes were logged in detail with downhole surveys, lithology, alteration, structures, mineralization, veining, and sampling data recorded in MX Deposit. All holes had basic geotechnical data recorded for every three-metre run including recovery, rock quality designation, and number of joints. Core from both drills was oriented using REFLEX ACT-III structural orientation tools, and all oriented holes had relevant structural data recorded with a REFLEX LOGRx tool and REFLEX IQ-LOGGER software to record the alpha and beta angles (as well as gamma angles where applicable) of structures. For sections of core where a Bottom of Hole line could not be drawn, alpha angles were measured manually. For core from all drill holes, a specific gravity measurement was taken every 10 metres or on every interval that was selected for sampling: in total, 6,617 specific gravity measurements were recorded. Downhole surveys were completed every 30 metres using a REFLEX GYRO SPRINT-IQ while drilling, and additionally, holes C24-06 to 15 were surveyed after hole completion using a REFLEX OMNI-IQ for a continuous survey.

All work described in this subsection was performed on the Indin Lake Gold Property.

3.2.2 Assaying and Quality Assurance and Quality Control

Core samples were assayed for gold by fire assay with an atomic absorption spectroscopy finish ("FA-AA") method in which the entire sample is crushed, of which 1 kg is pulverized, then a 30-gram aliquot of which is assayed. Samples for which FA-AA results exceeded 7 parts per million Au were re-assayed by fire assay with a gravimetric finish. For sample intervals in which visible gold was observed and samples adjacent them, a metallic screening method was used instead, in order to account for the erratic or "nuggety" nature of the gold. The metallic screening method used involves crushing, pulverizing, and screening the entire sample at 100 μ m; the undersize portion was assayed in duplicate by FA-AA (as described above) and the oversize portion was assayed by fire assay with a gravimetric finish to exhaustion (until no oversize portion was left). All sample analyses were conducted by ALS Laboratories: FA-AA samples were prepared at their facility in Yellowknife, NT, with assaying performed at their facility in North Vancouver, BC, while all work for metallics screening samples was performed in North Vancouver, BC.

Approximately 5% of samples submitted were Certified Reference Materials prepared by Ore Research & Exploration Pty Ltd. of 37A Hosie Street, Bayswater North, VIC, Australia. Another approximate 5% were blank samples, sourced from barren diabase obtained during previous drill programs on the Colomac Main deposit. A further approximate 5% of samples were quarter-core field duplicates intended to assess the presence of the "nugget effect".

At Nighthawk's request, ALS collected a pre-selected portion of pulp from samples and shipped them to Nighthawk for submittal to a second independent laboratory for comparison purposes by method of FA-AA as described above. For samples originally submitted for metallic screening, the pulp was taken from the undersize portion of the sample, due to the oversize portion being assayed to exhaustion. These pulp samples were accompanied by Certified Reference Material as described above, and with blank samples composed of pre-assayed, pulverized, barren marble stone. Sample preparation for the check pulp program

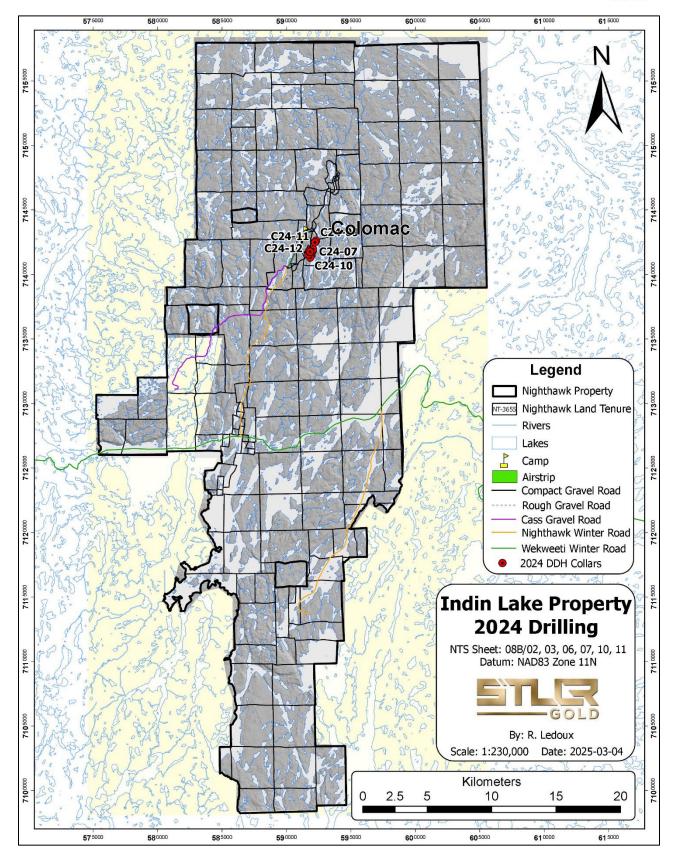


Figure 32: Map of 2024 drilling area locations on the Indin Lake Gold Property.

3.2.3 Colomac Drilling

Colomac Major Objectives and Drilling Completed

The major objectives for the 2024 Colomac drill program were to extend the depth of mineralization below the 2023 PEA resource (McBride, 2023a) in the 2.0, 2.5, and 3.0 Zones.

During 2024, a total of 15 drill holes were completed at the Colomac Deposit on Federal mining lease 3211 (see Figure 33) totalling 6,331 metres, with 2,448 samples submitted for assay. A total of 107.5 drill days were spent by two diamond drills using 6000 m³ of water from May 10th to June 13th, and from June 29th to July 27th, as detailed in Table 3. Of the 15 drill holes, 12 reached target depth: drill holes C24-02, 03, and 04 were abandoned due to drilling complications and were restarted with new hole ID's.

Table 3: Colomac 2024 Drill Collar Info

Description (Hole ID)	Start Date	Stop Date	Drill Days	Water Usage (m³)	Zone	UTM Easting Actual	UTM Northing Actual	Elevation (m) Actual	Collar Azim.	Collar Dip	Final EOH (m)	Total # of Samples	VG # of Samples	Water Source	Land Tenure
				()		(NAD 83	Zone 11N)	Actual			(111)	Jampies			
C24-01	2024-05-10	2024-05-15	4.5	230	2.5 Zone	592031	7141821	366	270	-76	369	96	15	Baton	3211
C24-02	2024-05-13	2024-05-13	0.5	15	3.0 Zone	591927	7141518	369	298	-77	9	0	-	Baton	3211
C24-03	2024-05-13	2024-05-18	5	206	3.0 Zone	591925	7141519	369	298	-77	186	0	-	Baton	3211
C24-04	2024-05-15	2024-05-17	1.5	109	2.5 Zone	592051	7141873	366	280	-78	19	0	-	Baton	3211
C24-05	2024-05-17	2024-05-23	6	419	2.5 Zone	592052	7141873	367	280	-78	462	168	16	Baton	3211
C24-06	2024-05-19	2024-05-28	9	349	3.0 Zone	591927	7141514	370	298	-77	402	170	16	Baton	3211
C24-07	2024-05-23	2024-05-28	5	184	2.5 Zone	592059	7141951	368	270	-78	415	167	22	Baton	3211
C24-08	2024-05-28	2024-06-04	6.5	227	3.0 Zone	591860	7141391	366	271	-81	488	111	-	Baton	3211
C24-09	2024-05-29	2024-06-08	10.5	687	2.0 Zone	592296	7142624	346	290	-80	561	178	3	Baton	3211
C24-10	2024-06-04	2024-06-10	6.5	242	3.0 Zone	591844	7141314	363	279	-80	441	171	4	Baton	3211
C24-11	2024-06-09	2024-07-04	9	503	2.0 Zone	592203	7142487	343	265	-78	477	93	-	Baton	3211
C24-12	2024-06-10	2024-07-03	7	386	3.0 Zone	591692	7141552	363	115	-64	399	154	5	13033	3211
C24-13	2024-07-04	2024-07-11	7	516	2.5 Zone	591751	7141789	357	85	-68	543	117	2	13033	3211
C24-14	2024-07-05	2024-07-18	12.5	861	2.5 Zone	591759	7141833	358	83	-71	720	406	21	13033	3211
C24-15	2024-07-11	2024-07-28	17	1066	2.5 Zone	591828	7141762	369	44	-71	840	617	10	13033	3211
All	2024-05-10	2024-07-28	107.5	6000					15 0	DDH	6331	2448	114		

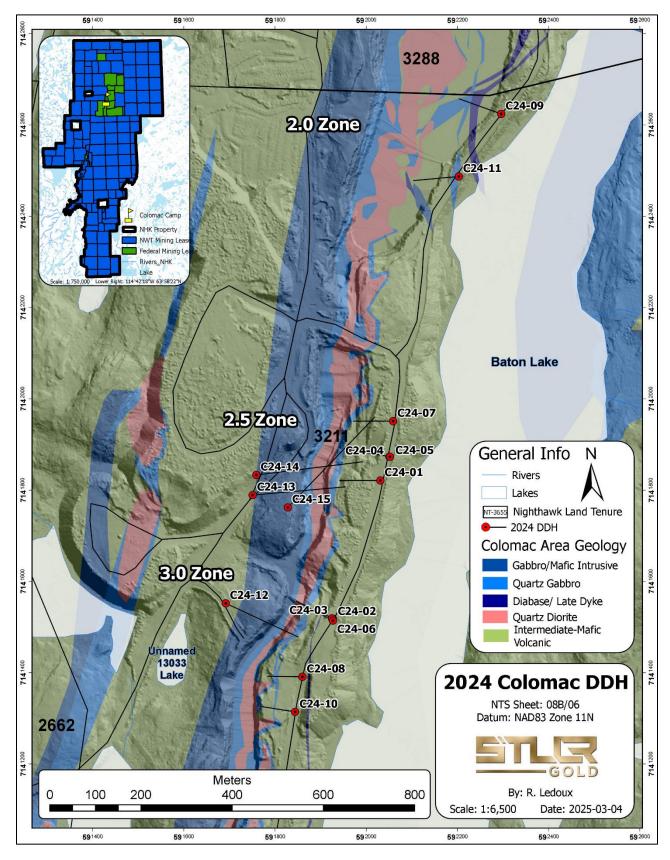


Figure 33: Geological map of Colomac Deposit with 2024 drill collar locations.

Colomac Drill Results

The results of Nighthawk's 2024 drill program are summarized and presented in tables, plans, and drill hole cross sections, along with commentary and context presented in press releases on STLLR's website at https://stllrgold.com. The following summary highlights a few select drill cross sections and related comments to illustrate discoveries, and the objectives met.

Colomac 2.0 Zone Drilling Highlights

Hole C24-09 intersected 1.85 g/t Au over 41.50 m and 0.61 g/t Au over 4.00 m (see Figure 34)

Two drill holes (C24-09 & 11) were drilled in the southern portion of the Colomac 2.0 Zone. Both intersected thinner mineralization than directly above. It is likely that the holes intersected the quartz diorite outside of one of the main ore shoots that is potentially plunging more towards the north, where better deep intercepts have been intersected in the 2.0 Zone.

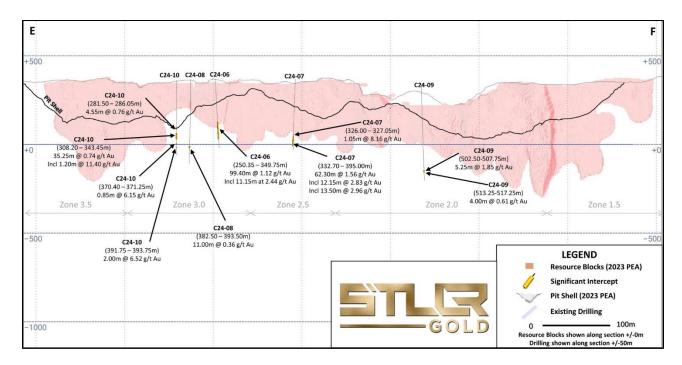


Figure 34: Long section of the Colomac Deposit 1.5 to 3.5 Zone looking west with the 2023 PEA resource and pit shell with significant intercepts from C24-06, 07, 08, 09, & 10.

Colomac 2.5 Zone Drilling Highlights

- Hole C24-01 intersected 1.97 g/t Au over 41.50 m incl. 2.96 g/t Au over 21.25 m and 7.40 g/t Au over 2.55 m (see Figure 35) (McBride, 2024b).
- Hole C24-05 intersected 1.23 g/t Au over 59.00 m incl. 3.23 g/t Au over 6.90 m (see Figure 35) (McBride, 2024c).
- Hole C24-07 intersected 1.56 g/t Au over 62.30 m (incl.2.83 g/t Au over 12.15 m & 2.96 g/t Au over 13.50 m) (see Figure 34) (McBride, 2024d).

Hole C24-14 intersected 2.81 g/t Au over 18.50 m (incl. 71.80 g/t Au over 0.50 m) and 1.33 g/t Au over 34.00 m (incl. 4.46 g/t Au over 3.55 m) (see Figure 36) (McBride, 2024e).

Six drill holes were drilled in the Colomac 2.5 Zone of which one (C24-04) was lost and was restarted with the new hole ID C24-05. The drilling in the 2.5 Zone was the most successful of the 2024 program with consistent intersections of strong mineralization well outside of the current resource model (McBride, 2023a) as shown in Figure 35 and Figure 36.

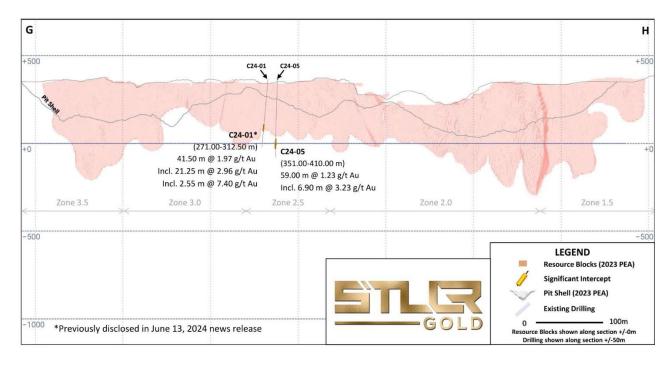


Figure 35: Long section of the Colomac Deposit 1.5 to 3.5 Zone looking west with the 2023 PEA resource and pit shell with significant intercepts from C24-01 & 05.

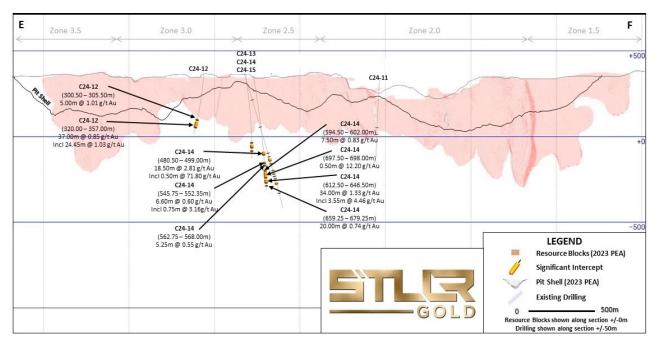


Figure 36: Long section of the Colomac Deposit 1.5 to 3.5 Zone looking west with the 2023 PEA resource and pit shell with significant intercepts from C24-11, 12, 13, 14, & 15.

Colomac 3.0 Zone Drilling Highlights

- Hole C24-06 intersected 1.12 g/t Au over 99.40 m (incl. 2.44 g/t Au over 11.15 m & 11.40 g/t Au over 1.20 m) (see Figure 34 & Figure 37).
- Hole C24-12 intersected 0.85 g/t Au over 37.00 m (incl. 1.03 g/t Au over 24.45 m) (see Figure 36).

Six drill holes were drilled in the Colomac 3.0 Zone of which two (C24-02 & 03) were lost on the same set up and were restarted with the new hole ID C24-06. Three of the four holes that were drilled to depth successfully intersected good mineralization outside of the 2023 resource (McBride, 2023a) with the exception of C24-08 (see Figure 34). C24-08 intersected the Colomac sill at a location where it is much thinner and where there is a kink. Drill hole C24-06 is one of the most northerly 3.0 Zone holes near the edge of the 2.5 Zone. C24-06 intersected a wider interval of mineralization than directly above and is likely intersecting a shoot of stronger mineralization plunging towards the north.

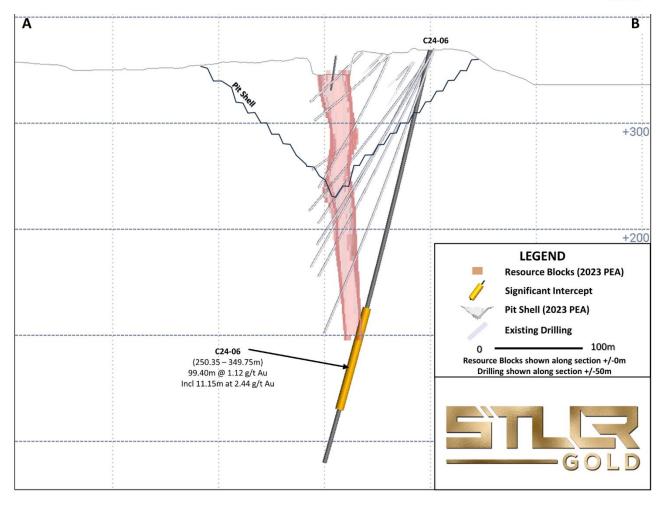


Figure 37: Cross section of C24-06 in the Colomac Deposit 3.0 Zone looking north with the 2023 PEA resource.

3.3 2024 Other Exploration Work

3.3.1 Lakehead Master's Program

There are two MSc studies in progress on the Indin Lake Gold Property that were started in 2023 by Turner Green and Tshepiso Sekhula of Lakehead University. Their overall goals are to integrate petrography, whole rock geochemistry, geochronology, and radiogenic isotopes into the overall understanding of the Indin Lake Gold Project. Turner Green was on site from July 6th to 20th, 2024, collecting additional samples from drill core for his and Tshepiso's theses.

A total of eighteen samples were collected from four drill holes (G19-04, C22-45, C22-25, & C19-41) for Turner Green's thesis (see Figure 38). The samples were collected to gather additional geochemical, geochronology, isotope dating, and structural mineralization data. Geochemical samples were sent to ALS for whole rock lithogeochemistry, while the samples for geochronology, isotope dating, and structural mineralization were sent to Lakehead University for processing and analysis.

A total of thirteen samples were collected from four drill holes (GB21-16, GB21-26, NL21-15, & NL21-08) for Tshepiso Sekhula's thesis (see Figure 38). One sample was taken from felsic rocks for zircon geochronology in each drill hole, and seven samples were taken for lithogeochemistry to complement the lithogeochemistry grab samples taken in 2023.

3.3.2 Detailed Relogging of High-Grade Mineralization in Colomac 3.5 Zone Gabbro

A detailed relogging of quartz veins with high gold grades within the gabbro portion of the Colomac Sill was conducted from July 15th to 19th, 2024, by Riley Ledoux, Jack Armstrong, and Turner Green. Sections of 18 drill holes in the Colomac 3.5 Zone (see Figure 39) were selected for the relogging to better understand the nature and continuity of high-grade gold found within the gabbro portion of the sill which is currently not well understood.

Within the selected intervals, all vein widths, alpha angles, and type (extensional or shear) were measured and recorded, and a summary write-up was completed about the overall section. In addition, the intervals were re-photographed with some additional close-up photos taken.

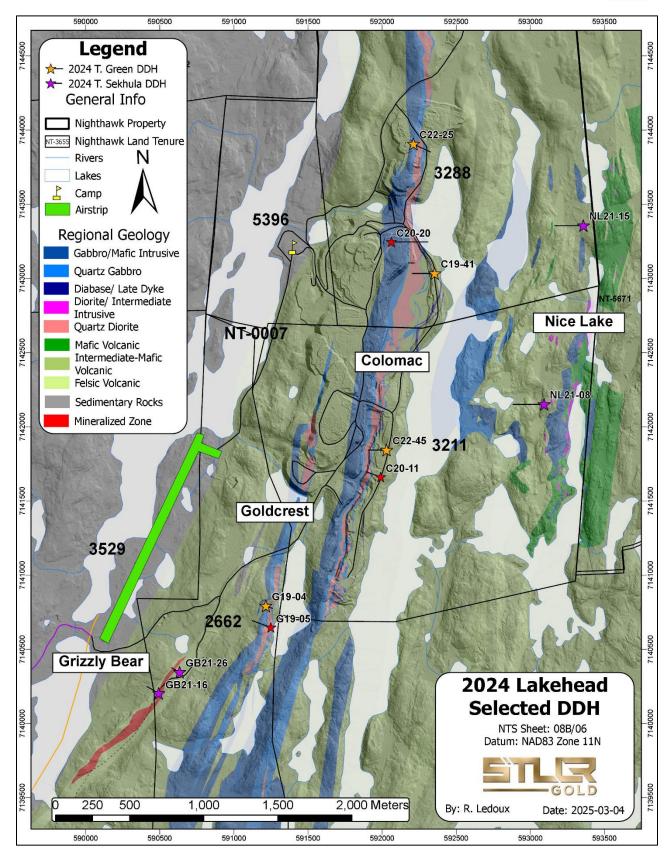


Figure 38: Geological map showing drill holes selected in 2024 for the Lakehead Masters' theses.

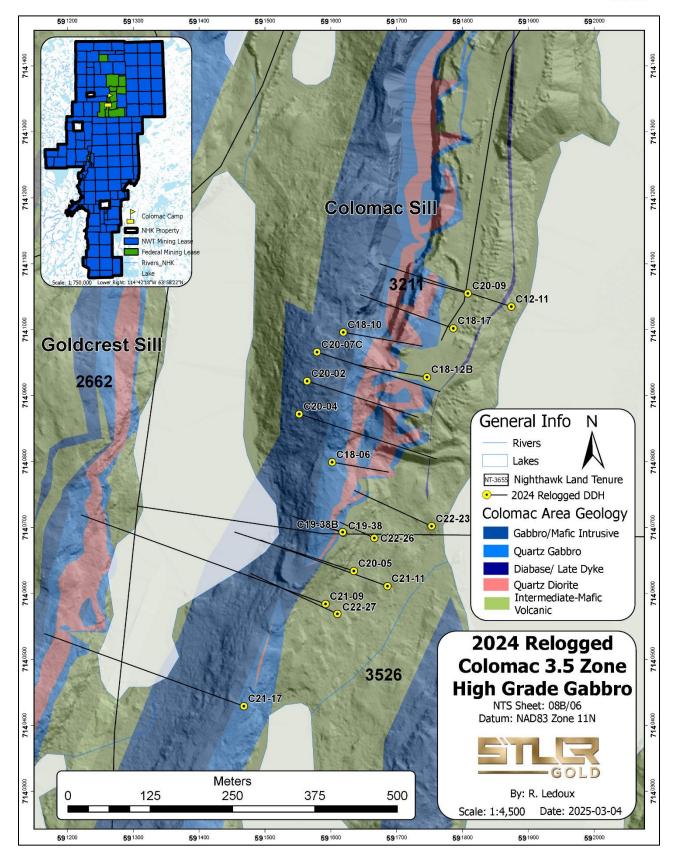


Figure 39: Geological map showing drill holes selected in Colomac 3.5 Zone for detailed relogging.

3.4 Project Schedule

3.4.1 2025 Project Schedule

In 2025, Nighthawk intends to construct a Winter Road (see Figure 1) to resupply its camp and transport materials for the installation of a solar farm (STLLR Gold Inc., 2024c), as well as to backhaul materials from its 2024 Spider Lake Reclamation Program (see 4.4.1). The solar farm will be installed during the summer months.

3.4.2 Waste Incineration

The incinerator facility at Colomac Camp (see Figure 40) is equipped with an Inciner8 Model A600 Incinerator (see Figure 41). The incinerator is diesel-fired, with a secondary chamber for additional gas burn, and operates at a thermostatically controlled temperature with a minimum 900° C to maximum of 1350° C. The furnace has a capacity of 300 kg and burns at an average burn rate of 75 kg per hour.

The incinerator is contained within a wood-framed framed building that is isolated from other structures. The incinerator facility also contains digital weigh scales for waste tracking, and separate bins for partitioning different types of waste, which burn at different rates (see Figure 41).

All ash from incineration is collected in reused diesel drums, weighed, and recorded (see 4.2.3) before the drums are sealed and labelled. The drums are then shipped to KBL Environmental in Yellowknife for proper disposal (GNWT, 2017).

Only the camp person, a Geominex employee, is authorized to operate the incinerator at Colomac, in order to maintain control over operating procedures and record keeping.

Figure 40: Outside of incinerator shack, with mega bags in front ready to be weighed before being flown out of camp (2023).

3.4.3 Long-Term Project Schedule

Since the original acquisition of the Indin Lake Gold Project by Nighthawk, the Project has been in the discovery and exploration phase, focusing on defining the global mineral resource (McBride, 2023a). The exploration and discovery phase has no set timeline and can range from years to decades. Predevelopment, or advanced exploration, is the next phase of the Project and includes technical engineering studies, baseline

environmental studies, metallurgical studies, and economic feasibility studies. Timelines for advanced exploration vary based on the location, size, and complexity of the project. Transitioning from exploration to predevelopment requires significant capital investment, and positive preliminary economic studies. In tandem with the technical studies, major development projects require an environmental assessment. Upon successful studies and approval from the environmental assessment, the permitting phase would follow. All this must occur prior to the construction and production phases of a mine.

4 ACTIVITIES GOVERNED BY MANAGEMENT PLANS

4.1 Water Management Plan

No changes or updates were undertaken to the process or facilities required for the management of water during 2024.

4.1.1 Water Drawn

Camp water usage, sourced from Steeves Lake, is tracked daily by recording the readings on water meters at the outflow of all three water tank houses. In total, 346.42 m³ of water was used from April 13th to September 13th, 2024, by the camp: 93.79 m³ was used by the kitchen, 111.98 m³ by the main washhouse, and 140.65 m³ was used by the dormitory trailer complex. A summary is available in Table 4 below with details by month; the detailed daily water usage is located in Appendix B. Water meters are inspected at the beginning of each year during camp opening and are calibrated based on initial filling of a tank with a known volume. Regular calibration records will be kept going forward.

Drilling water was sourced from Baton Lake and Unnamed Lake 13033. Usage was tracked by a water meter on the drill and recorded at the end of day and night shift. In total, 6,000 m³ of water was used by both drills. Water consumption is detailed by drill hole in Table 3 and summarized by source and month in Table 5.

Table 4: Colomac Camp Water Usage Summary

	Usage		Kitche	en	V	Vashho	use		Trailer	'S	Combined			
	Metric	Total (m³)	Days	Daily Average (m³/day)	Total (m³)	Days	Daily Average (m³/day)	age Iotal Day		Daily Average (m³/day)	Total (m³)	Days	Daily Average (m³/day)	
	April	5.54	17	0.33	7.90	17	0.46	3.45	11	0.31	16.89	17	0.99	
	May	24.44	31	0.79	27.98	31	0.90	40.79	31	1.32	93.21	31	3.01	
7	June	26.01	30	0.87	17.96	30	0.60	35.64	30	1.19	79.61	30	2.65	
Period	July	28.65	31	0.92	43.54	31	1.40	57.77	31	1.86	129.96	31	4.19	
۵	August	4.80	8	0.60	7.86	8	0.98	3.00	5	0.60	15.66	8	1.96	
	September	4.35	13	0.33	6.74	13	0.52	0.00	0	0.00	11.09	13	0.85	
	Annum	93.79	130	0.72	111.98	130	0.86	140.65	108	1.30	346.42	130	2.66	

Table 5: Drill Water Usage Summary

S	ource		Baton	Lake	Uı	nnamed L	ake 13033	Combined				
r	Metric	Total (m³)	Days	Daily Average (m³ / day)	Total (m³)	Days	Daily Average (m³ / day)	Total (m³)	Days	Daily Average (m³ / day)		
	May	1781	22	81.0	0	0	0.0	1781	22	81.0		
riod	June	1101	12	91.8	232	4	58.0	1333	16	83.3		
Peri	July	289	4	72.3	2597	27	96.2	2886	31	93.1		
	Annum	3171	38	83.4	2829	31	91.25	6000	69	87.0		

N.B.: Up to two drills drew on each water source at a time.

4.1.2 Greywater

Grey water from the camp is generated from the kitchen, the washhouse, and the trailers at Colomac. To minimize the effects of the greywater, biodegradable and eco-friendly cleaning products are employed at all locations wherever possible. The greywater from the kitchen area is also processed through a grease trap located within the pump house building before it is released into the environment. Greywater from the kitchen, along with that from the washhouse, is then released in an area west of and behind the kitchen/dining structures and washhouse. The greywater from the trailers is released on the west side behind the new toilet facility. No sumps are employed in the release; rather, the water enters a 1-2 metreplus thick groundcover of broken rock. This system works well and allows for natural filtration. There was no residual accumulation of water, or other extraneous debris on surface during either the winter or summer periods during 2012-2024. The government inspectors have regularly reviewed the release site during their visits and found no issues with this process. Volumes of greywater generated in camp are assumed to be equal to volumes drawn from the lake for use.

Greywater from drilling is discharged into topographic depressions away from bodies of water. Often, return drill water is lost underground, but otherwise volumes discharged are assumed to equal those drawn.

There were no unauthorized discharges during 2024.

4.1.3 Damoti Lake Surveillance Network Program

STLLR and WSP staff were on site on June 3rd and September 10th, measuring and recording water quality parameters and collecting water samples for laboratory testing, including the collection of a bulk sample at SNP station 5-6 for toxicity on June 3rd.

For both events, results for SNP stations 5-4, 5-5, and 5-6 were found to be within applicable guideline exceedance thresholds and water licence limits (WSP Canada Inc., 2024a) (WSP Canada Inc., 2024b); as such, no remedial actions were taken in response to monitoring in 2024.

See Appendices C and D for further details of the June and September monitoring events, respectively, including tabular summaries of data including the QA/QC program.

4.2 Waste Management Plan

4.2.1 Solid Waste Management

Waste stream management was implemented to ensure that only non-hazardous, combustible waste was incinerated. Other types of waste that are not suitable for incineration (based on the applicable guidelines and standards) was transported to Yellowknife for disposal at an approved facility following the procedures outlined in the *Waste Management Plan*.

One component of waste stream management is the "Three R's": reducing, reusing, and recycling. The first consideration for waste materials (or potential waste) generated is to reduce the amount of overall waste. This can include using products that have less packaging or come in bulk containers. Reusing items (if safe to do so) can also reduce the input into the waste stream as well as result in cost savings. Recycling appropriate wastes will also divert wastes from incinerators, landfills, and other disposal methods. Recyclables, including but not limited to pop cans and glass, are sent to approved recycling facilities in Yellowknife. To increase recycling, a protocol change occurred in late 2017 with most of the clean cardboard brought to Colomac as part of the grocery delivery being strapped together and returned to Yellowknife for recycling.

Waste streams that are not incinerated at Colomac include (but are not limited to) the following:

- Hydrocarbons and hydrocarbon containing products, including waste and sludge oils, and hydrocarbon impacted drill waste,
- Spray cans,
- Plastics and rubber,
- Metal and glass,
- Batteries of all types,
- Treated wood products,
- All scrap poly-foam insulation, and
- Chemicals and their containers.

Such materials are packed into sealed and marked drums and shipped to Yellowknife for proper disposal by KBL Environmental.

Waste from the lavatories is processed within the toilet facilities (see 2.2.1). The Incinolet toilets produce minor residual ash, and the Pactos keep the waste sealed inside industrial plastic bags; both of which are shipped within marked, sealed drums to KBL Environmental in Yellowknife for proper disposal.

No solid waste is deposited on the property. Masses of all outgoing waste are summarized alongside the incineration records in Table 6.

No updates or changes to the process or facilities required for the management of waste took place during 2024.

4.2.2 Incinerator Training

In addition to reading the Waste Management Plan, the incinerator operator is trained in the following areas:

- Incinerator start-up and operating procedures,
- Incinerator waste streams and load limitations,
- Clean-out procedures and safe packaging of ashes,
- Troubleshooting procedures,
- Maintenance schedule, and
- Record keeping and reporting.

Training of any additional personnel as needed is handled by those already trained and familiar with operations.

Figure 41: Incinerator building (interior) at Colomac camp. Inciner8, Model A600(sec) Incinerator on the left and bins on the right are for partitioning different types of waste based on burn rate (2014).

Attestations of training from the incinerator operators are presented as Appendix A.

4.2.3 Incinerator Records

As part of the daily routine, waste at the Colomac camp is sorted, weighed, and recorded prior to incineration. Paper records are kept onsite and are digitized regularly and prior to camp closure. Materials incinerated are sorted as "kitchen waste" or "other sources".

The incinerator records are summarized in Table 6

alongside outgoing waste flows. Detailed incinerator records are tabulated in Appendix B alongside outgoing waste and camp water usage.

Table 6: Summary of Colomac Incinerator Feed and Shipped Waste for 2024 and Prior Years

	Incine	rated			Shipp	ed Out		
Year	Kitchen Waste (lb)	Other Sources (lb)	Ash Outgoing (lb)	Cardboard (lb)	Construction Material & Pallets (lb)	Refundable Bottles (lb)	Driller Garbage (lb)	Other Non- Burnable (lb)
2017	20,925.00	6,533.50	2,416.00	2,709.00	413.00	N/A	N/A	N/A
2018	23,396.90	5,124.00	2,286.00	343.00	5,532.00	N/A	N/A	N/A
2019	22,448.00	2,339.00	884.00	196.00	2,024.00	N/A	N/A	N/A
2020	13,015.50	1,944.00	360.00	2,555.00	903.90	N/A	N/A	N/A
2021	36,345.10	5,122.70	2,717.00	7,617.00	14,907.00	1,814.00	26,465.00	22,152.00
2022	36,276.00	8,049.00	2,286.00	7,273.00	28,310.00	1,838.00	17,311.00	9,261.00
2023	21,936.00	4,662.00	2,058.00	3,544.00	7,201.00	1,253.00	9,561.00	25,993.00
2024	10,568.00	5,365.00	692.00	2,627.00	1,341.00	735.00	5,830.00	13,691.00

4.3 Spill Contingency Plan

The *Spill Contingency Plan* and its location in camp were discussed with all personal onsite during spill response training on May 11th and 30th, June 1st and 5th, and July 9th, 2024. During training, the proper steps for responding to various spills, the location, contents, and use of spill kits, as well as the spill reporting requirements were discussed.

Numerous 55 and 95-gallon drum spill kits produced by Uline are located on site near all fuel storage and transfer sites and are regarded as the primary response tool in a spill scenario. Smaller soft case spill kits are located in all vehicles, as well as absorbent blue matting at the drills, driller workshop, generator shack, incinerator shack, and mechanic shop; the presence of these spill response supplies are part of regular inspection protocols.

No unauthorized discharges or reportable spills occurred during the 2024 program.

4.4 Closure and Reclamation Plan

4.4.1 2024 Spider Lake Reclamation Program

Reclamation of the Spider Lake Site was undertaken in 2024 under LUP W2018X0006 and in accordance with Nighthawk's *Conveyance and Reclamation Agreement* with AANDC, and the *Nighthawk Gold: Final Spider Lake Site Closure and Reclamation Plan* ("CRP"). This work was performed to address legacy environmental impacts at the former Mahogany Camp and Spinet Camp, as well as the Main Showing and East Zone on Treasure Island.

Nighthawk was responsible for planning the logistics and for oversight of physical reclamation activities during the program, with labour support provided by TEES and Dehk'e. WSP was Nighthawk's Environmental Consultant and provided technical input and oversight. All laboratory analytical services were provided by ALS.

The 2024 phase of the Spider Lake Reclamation Program took place between May 31st and August 22nd.

Due to the impacts of the 2023 wildfires which burned across Treasure Island and through the site, work began with a Soil Characterization Program and updating the site inventory to reflect the impacts of the wildfires. Soil characterization included collecting samples from the upper 0.50m of soil from the centres and perimeters of ten-by-ten metre grids (where terrain allowed), centred on nine Areas of Environmental Concern ("AECs") identified by a Phase II Environmental Site Assessment, resulting in up to 10 soil samples per AEC. These soil samples were field-screened for volatile petroleum hydrocarbons, and submitted for laboratory analysis of select volatile organic compounds, polycyclic aromatic hydrocarbons, and metals. The updated site inventory included a smaller volume of untreated wood waste, as most was found to have been combusted by the wildfires.

Upon review of the analytical results of the Soil Characterization Program and their comparison with applicable environmental screening guidelines, as well as other considerations as described in the CRP, WSP advised Nighthawk to proceed with soil remediation at four of the nine AECs in order to satisfy the closure objectives set out in the CRP (WSP Canada Inc., 2024c).

Reclamation efforts included:

- Remediation (excavation) of approximately 10 m³ of hydrocarbon-impacted soil and approximately 40 m³ of hydrocarbon and metals-impacted soil. All excavated soils were placed in lined megabags, which were marked with their respective AEC numbers and contents.
- Consolidation and removal of remnant untreated wood structures after the wildfires.
- Consolidation and removal of metal waste.
- Cross-pumping of drums containing remnant fuels into newer drums to prevent leakage during transportation, and removal of both older and newer drums.
- Removal of hazardous materials, which were double-bagged in labelled, lined megabags or
 placed in labelled, sealed plastic containers. All removal of hazardous materials was performed
 by a person in full hazardous materials personal protective equipment (i.e., full face mask with
 P100 cartridges, Tyvek suits and booties, and rubberized gloves, with all gaps duct-taped closed).
- Containment and removal of two lead-acid batteries, also while wearing the personal protective equipment described above.
- Transfer of all broken core from Mahogany Camp and Spinet Camp to Trench 06 at the Main Showing, as the core boxes had combusted by the wildfires, resulting in the core no longer being of research or educational value.
- Backfilling of Trench 04 at the Main Showing and Trench 18 at the East Zone with adjacent waste rock material.

All the above materials (with the exception of the broken core and waste rock) were transported (slung) by helicopter operated by GSH from Treasure Island to Colomac Camp, where they have been staged for removal from the Indin Lake Gold Property via Winter Road in 2025. Megabags of contaminated soils were placed on platforms and tarped-over to mitigate any possibility of acid rock drainage and/or leaching of contaminants.

Confirmatory soil samples were collected from the base and sidewalls of each AEC post-excavation to ensure that the remaining soil is within the guidelines set out in the CRP. Excavated soils were also sampled to assess acceptance screening criteria for permitted receiving facility(ies).

WSP has recommended closure of the site pending final disposal of contaminated soils and waste materials, and required site inspections (WSP Canada Inc., 2024c).

4.4.2 Future Closure and Remediation Programs

Nighthawk intends to remove all materials from the 2024 Spider Lake Remediation Program staged at Colomac Camp from the Indin Lake Gold Property via Winter Road, to be constructed in winter 2025, for disposal at permitted receiving facility(ies). In spring 2025, the site is to be visited by a CIRNAC inspector and a third-party engineer to evaluate whether the Spider Lake Remediation Program was conducted in accordance with the CRP and the *Conveyance and Reclamation Agreement*.

After closure of the Spider Lake Site, Nighthawk intends to resume reclamation of the Diversified Mine Site. This will begin with the staging of heavy equipment at the former Diversified Mine via Winter Road.

There are no additional activities planned that are expected to change the closure cost estimates in 2025.

4.4.3 Closure and Remediation Engagement

Information on the Spider Lake Remediation Program was provided to each group in the *Engagement Plan*, prior to and during the remediation activities. Early engagement was conducting in 2023 during the

planning stage. Activity updates at the start of program, throughout and at completion of field activities occurred periodically throughout the year. Information was provided by email, bulletin and in-person meetings. See Table 7 for engagement records.

4.5 Engagement Plan

The Engagement Plan version 4.1 for the Indin Lake Gold Project was developed following the Mackenzie Valley Land and Water Board's Engagement Guidelines for Applicants and Holders of Water Licences and Land Use Permits (MVLWB, 2014), Engagement and Consultation Policy (MVLWB, 2018) and the Weghàà Eleyatits'eedi: Thicho Government Guidelines for Proponents of Development (Thicho Government, 2022). Nighthawk's Engagement Plan version 4.1 was last revised as of February 2023. The intent of the Engagement Plan is to respectfully and effectively collaborate and inform affected parties. Engagement was carried out by email, virtual meetings, presentations, in person meetings, and weekly activity reporting. Table 7 is a summary of engagement activities carried out in 2024 for Water Licences W2021L2-0004, W2021L2-0005 and Land Use Permit W2021C0009.

Table 7: Summary of Engagement Activities in 2024

Date	Party	Issue/Topic	Type of Engagement
01/22/2024	Tlicho Government	Project Update and 2024 Plans	In-Person
05/4/2024	Tlicho Government, NSMA and WRRB	Notice of Camp Opening	Email
05/19/2024	Tlicho Government, NSMA and WRRB	STLLR Weekly Activity Report	Email
05/28/2024	NSMA	Project Update and Activity Report	In-Person
05/31/2024	Tlicho Government	Project Update and Activity Report	In-Person
05/31/2024	Tlicho Government, NSMA and WRRB	STLLR Weekly Activity Report	Email
07/05/2024	NSMA	Project Update and Activity Report	In-Person
07/05/2024	Tlicho Government, NSMA and WRRB	STLLR Weekly Activity Report	Email
07/07/2024	Tlicho Government, NSMA and WRRB	Notice of News Release	Email
08/02/2024	Tlicho Government, NSMA and WRRB	STLLR Weekly Activity Report	Email
08/02/2024	Tlicho Government, NSMA and WRRB	Notice of News Release	Email
11/07/2024	Tlicho Government, NSMA and WRRB	Notice of News Release	Email
11/26/2024	Public Presentation Yellowknife Geoscience Forum	Project Update and Activity Report	In-Person

Date	Party	Issue/Topic	Type of Engagement
11/27/2024	Tlicho Government	Project Update and Activity Report	In-Person
12/20/2024	Tlicho Government and NSMA	STLLR Gold Job Posting	Email
12/31/2024	Tlicho Government, NSMA and	Bi-annual Community News	Email
	WRRB	Letter	

Through the engagement process, an open dialogue and feedback on program design, timing and activity has been received by Nighthawk. This includes priorities on closure criteria, archaeological sites, caribou and other wildlife, and transparent project updating.

A GIS template for early archaeological mapping has been designed and set up to spatially record traditional knowledge provided for archeological sites and local areas of interest. This GIS system will also provide spatial reference for baseline data collection, such as wildlife data which can be shared with interested groups.

Bi-weekly project activity reports have been provided to increase transparency and more timely communication of activities, focusing on site specific activities, health and safety, and employment numbers. Increased frequency of communication during active programming allows for traditional knowledge and feedback received to be integrated more promptly into the programing.

Information provided to STLLR related to Traditional Knowledge supported program design to avoid sensitive areas or areas of concern, timing of programs and potential caribou migration paths.

4.6 Explosives Management Plan

An *Explosives Management Plan* has not been developed as no explosives were brought to, stored at, or used on the property, and there are no plans to do so at this time.

4.7 Wildlife Mitigation and Management Plan

The Wildlife Mitigation and Management Plan ("WMMP") describes the steps necessary to protect personnel, wildlife and wildlife habitat within the project area footprint as well as identifying potential species of concern on the Indin Lake Gold Property and monitoring and incident requirements.

4.7.1 Monitoring

Wildlife species of concern for Colomac camp are communicated to all staff and contractors at weekly Safety Meetings. Staff and contractors are required to document all relevant wildlife sightings at the Colomac camp.

A total of 13 wildlife species were recorded as observed at the site in 2024. Swallows (tree and mud) were the most commonly recorded species, being observed around and near camp day in flights of dozens between the beginning of May and the end of operations on July 30th. Ravens were the next most observed species, with near-daily observations of murders of up to four. Rabbits were a common sight between late may and mid-July, with up to four daily observations. Bears (adult or adolescent, no cubs) were observed alone on 29 occasions between the end of April and mid-July. Loons were spotted, usually solo, on twenty-five occasions between mid-May and late-July. Whiskey jacks, usually solo, were spotted

on eight occasions in the months of June and July. Snow geese, in gaggles of up to two dozen, were observed on six occasions in May. Solitary moose were observed on six occasions (2 bull, 4 cow, no calves) in June and July. Grouse, in coveys of up to a half-dozen, were observed on three occasions in April. Snow buntings, in drifts of up to a half-dozen, were observed on three in April. Solitary martens were observed twice in June and July. Solitary wolverines were observed on 2 occasions in April.

The only species of concern known to potentially live within the Project area as identified within the WMMP to be observed in 2024 were wolverines.

4.7.2 Wildlife Incidents and Harm to Wildlife

In order to mitigate the probability of incidents involving wildlife, hunting, trapping, harvesting and fishing was prohibited on the property, as well as the feeding or harassment of wildlife. A speed limit of 40km/h was enforced on roads, and wildlife was given the right-of-way if encountered on the road. When large mammals such as moose and bears were observed, all workers were notified via radio. No land clearing took place in 2024. No upland breeding birds and raptors nested on Project infrastructure. No physical hazards were present, and any chemical hazards were isolated per the *Waste Management Plan* and the *Spill Contingency Plan*. No bears had to be deterred within the Project area. Food waste and residuals were handled according to the *Waste Management Plan*.

As a result of the implementation of the above mitigation measures, no wildlife incidents occurred in 2024.

4.7.3 Mitigation of Habitat Loss

To reduce the Project's impact to habitat loss, all mitigation efforts as outlined in the WMMP were implemented. All exploration activities were restricted to the authorized areas, and all drill sites were remediated progressively subsequently by supervising geologists. There was no expansion of the camp in 2024. No beaver lodges, muskrat push-up or hibernacula, or bear dens were observed. Recreation vehicle use was prohibited. A minimum flying altitude of 300m was observes except during takeoff and landing for cargo and passenger aircraft outside of exploration camp areas.

There were no instances of impacts to wildlife habitat in 2024 that were not predicted.

4.7.4 Training

Annual training was completed for all camp staff on the WMMP. Bear awareness training was completed by all Geominex staff on site with the intention of expanding this to all staff who work outdoors in 2025. In addition, practical bear deterrent training was provided to field staff on May 30th, June 5th, and July 9th, 2024, in which the safe use of bear spray, horns, and bangers were discussed and demonstrated before participants practiced the application of these deterrents themselves.

4.7.5 Plan Review

Nighthawk believes that the non-occurrence of wildlife incidents and habitat loss in 2024 suggests the implementation of mitigation measures in the WMMP has been effective.

As there was no wildlife incidents or habitat loss, and the Project has not changed substantially in the time since the WMMP was prepared and approved, there are no updates or recommended changes to the WMMP at this time.

5 INSPECTIONS

5.1 Land Use Permit W2021C0009

5.1.1 June 24th, 2024

Resource Management Officer (Inspector) Erika Nissen and Environmental Specialist Megan Larose, both of CIRNAC, conducted an inspection on June 24th of 2024 to ensure compliance with the terms and conditions of land use permit W2021C0009 and approved management plans. Areas inspected included Colomac Camp, fuel and waste storage areas, the airstrip, and drill locations that had been completed to that date.

The inspectors found the site to be "overall very well managed, clean, and organized", with "[c]oncerns raised regarding management of small leaks noted from machinery... addressed... [with] submitted photos to the inspectors to demonstrate compliance" (Nissen, 2024).

5.1.2 September 19th, 2024

On September 19th of 2024, all 2023 drill locations were inspected by Resource Management Manager (Inspector) Clint Ambrose of the Department of Environment and Climate Change, Government of the Northwest Territories to ensure compliance with the conditions annexed to land use permit W2021C0009.

The Inspector noted "no major concerns", however "a minor amount of cleanup [is] required" regarding "impacted soils at the collar of [two] drill sites" (Ambrose, 2024). Nighthawk is to complete a thorough cleanup of these sites and provide documentation of the cleanup efforts to the Inspector; as no personnel have been on site since the date of the inspection, cleanup efforts will take place during the summer of 2025.

5.2 Water Licence (Non-Federal Lands) W2021L2-0004

5.2.1 June 6th, 2024

Meaghan McIntyre-Newell and Nahum Lee, Water Resource Officers (Inspectors) for the Department of Environment and Climate Change, Government of the Northwest Territories, inspected the Damoti Lake area on June 6th, 2024, for water licence compliance.

The Inspectors reported the following: "Nighthawk has efficiently addressed all issues raised in the previous Inspection. No concerns were noted." (MacIntyre-Newell, 2024).

The Inspectors sampled the water at SNP Station 5-6 and noted the Total Suspended Solids ("TSS") result of 59 mg/L exceeded the maximum concentration of any grab sample of 30 mg/L indicated in Part F, Condition 12(a) of the water licence, however in relation to this, the Inspector noted that "SNP Station 5-6 [being] within a vegetation dense area with limited ability to obtain a sample without disturbing the sediment and vegetation" (MacIntyre-Newell, 2024). Additionally, sampling conducted three days prior (June 3rd, 2024) at the same station by WSP yielded TSS results of only 5.9 mg/L (WSP Canada Inc., 2024a) (see Appendix C). In comparing TSS and Total Metals data available for both sampling events (elements analysed for June 6th were a subset of those analysed for June 3rd), it can be observed that while the TSS of the successive sampling events are a full order of magnitude apart, those of Total Metals analysed (which tend to be higher when associated with higher TSS) are generally comparable and within the same order of magnitude (see Table 8). The TSS at SNP Station 5-6 during the following monitoring event, on

September 10th, was found to be 3.9 mg/L (WSP Canada Inc., 2024b) (see Appendix D). For the above reasons, Nighthawk believes that the TSS results at SNP Station 5-6 from June 6th were erroneous.

Table 8: Comparison of Select June 3rd and June 6th Analytical Results at SNP Station 5-6

Took Downworkey	June 3 rd (WS	SP)	June 6th (GNW	Г-ЕСС)	Percentage
Test Parameter	Concentration	Units	Concentration	Units	Difference (%)
Total Suspended Solids	5.9	mg/L	59	mg/L	900
Total Arsenic	0.00081	mg/L	1	μg/L	23
Total Cadmium	0.000015	mg/L	< 0.04	μg/L	*
Total Copper	0.0035	mg/L	3	μg/L	-14
Total Lead	0.00037	mg/L	0.2	μg/L	-46
Total Nickel	0.024	mg/L	24.9	μg/L	4
Total Zinc	0.0071	mg/L	6.7	μg/L	-6

^{*} Percentage difference for Total Cadmium has not been calculated, as the June 6^{th} results were below the detection limit of 0.04 $\mu g/L$.

6 REFERENCES

- Ambrose, C. (2024, September 23). *Environmental Inspection Report*. Retrieved from Wek'èezhii Land and Water Board Public Registry: https://mvlwb.ca/Documents/W2021C0009/Nighthawk%20-%20Inspection%20Report%20-%20September%2019%202024%20-%20Sep%2023_24.pdf
- Byron, M. (2011a, January 10). *Merc Enters into Binging Option Agreement to Acquire Gold Property in Northwest Territories*. Retrieved from SEDAR+:

 https://www.sedarplus.ca/csfsprod/data113/filings/01684827/00000001/C%3A%5CFilings%5C MRKnr011011.pdf
- Byron, M. (2011b, December 15). *Merc Agrees to Acquire Colomac Gold Mine Consolidating Indin Lake Gold Camp*. Retrieved from SEDAR+:

 https://www.sedarplus.ca/csfsprod/data125/filings/01840631/00000001/e%3A%5CWorkSpace%5CSEDAR12157239E00023453.pdf
- Byron, M. (2013, December 18). Nighthawk Enters into Option Agreement to Acquire Kim and Cass Properties in Northwest Territories. Retrieved from SEDAR+:

 https://www.sedarplus.ca/csfsprod/data149/filings/02148088/0000001/s%3A%5CToronto%5C
 Steve_Running%5C918648.pdf
- Byron, M. (2015, December 29). *Nighthawk's Option on Kim and Cass Properties Expires*. Retrieved from SEDAR+: https://www.sedarplus.ca/csa-party/records/document.html?id=4d1207bc960e8f41f0e71ffa847b82258df6b2bad1ecdd062379 672057759800
- Byron, M. (2020, April 3). Nighthawk Completes Purchase of Royalties Pertaining to Certain Regional Assets Within its Indin Lake Gold Property. Retrieved from SEDAR+:

 https://www.sedarplus.ca/csaparty/records/document.html?id=63f5817e26d86f9b70c776f85293c99c005367001fbe5896475
 1392a44fd0d59
- GNWT. (2017, October). *Guidelines for Hazardous Waste Management*. Retrieved from Government of the Northwest Territories: https://www.gov.nt.ca/ecc/sites/ecc/files/resources/128-hazardous_waste-interactive_web_0_0.pdf
- Golder Associates Inc. (2015). Geochemical Characterization of Waste Rock Damoti Lake Site; Report # 13-1328-002 prepared for Nighthawk Gold Corp.
- MacIntyre-Newell, M. (2024, July 8). Water Use Inspection Report. Retrieved from Wek'èezhìi Land and Water Board Public Registry: https://mvlwb.ca/Documents/W2021L2-0004/Indin%20Lake%20-%20Water%20Licence%20Inspection%20Report%20-%20June%206%202024%20-%20Jul%208_24.pdf
- McBride, J. (2023a, February 9). Nighthawk Gold Updated Mineral Resource Estimate Demonstrates
 Significant Boost to the Global and Open-Pit Mineral Resources. Retrieved from SEDAR+:
 https://www.sedarplus.ca/csaparty/records/document.html?id=665d69344eeb0026f67c8c4f12d57133fdd78118a3d3aaf4cffc
 e479f75c86a8

- McBride, J. (2024b, June 13). STLLR Gold Intersects 1.97 g/t Au over 41.5 m at the Colomac Main Deposit and Wide Zones of Mineralization Near Windjammer Central. Retrieved from SEDAR+: https://www.sedarplus.ca/csa-party/records/document.html?id=723632a899873688e2065461e62e995dcab5d8db2ac5933072 41d2de2965054a
- McBride, J. (2024c, June 26). STLLR Gold Intersects 1.23 g/t Au over 59.00 m at the Colomac Main Deposit and New Zones of Mineralization at Windjammer North. Retrieved from SEDAR+: https://www.sedarplus.ca/csa-party/records/document.html?id=e865801f688203a383ee64a6a6b412108cf88ef878c65edf20fe 7cebc2da3e2e
- McBride, J. (2024d, August 1). STLLR Gold Intersects 1.56 g/t Au over 62.30 m and 1.12 g/t Au over 99.40 m at the Colomac Main Deposit. Retrieved from SEDAR+: https://www.sedarplus.ca/csa-party/records/document.html?id=12aa1629a8d6b233e15f433a32d0660e5abb3fdbd462b22dd9 7280660060786b
- McBride, J. (2024e, September 16). STLLR Gold Intersects 2.81 g/t Au over 18.50 m (Including 71.80 g/t Au over 0.50 m) at the Colomac Main Deposit. Retrieved from SEDAR+:

 https://www.sedarplus.ca/csa-party/records/document.html?id=ac43a3f7df410cc7e2340b7069d9f39b9ba0c53cd4eed4dcbb2 631b8d8ce6538
- McBride, J., & Dankowski, J. (2023, November 28). Nighthawk and Moneta Announce At-Market Merger to Create a Leading Canadian Gold Development Company; Concurrent C\$12.5 Million Bought Deal Equity Financing. Retrieved from SEDAR+: https://www.sedarplus.ca/csa-party/records/document.html?id=e3ac0b2cf33304c2ebe889b11598d08e4377f63266f94969aa8f b0782fcf8078
- MVLWB. (2014). Engagement Guidelines for Applicants and Holders of Water Licences and Land Use Permits. Retrieved from Mackenzie Valley Land and Water Board:

 https://mvlwb.com/sites/default/files/documents/wg/MVLWB%20Engagement%20Guidelines%20for%20Holders%20of%20LUPs%20and%20WLs%20-%20Oct%202014.pdf
- MVLWB. (2018, June 5). Engagement and Consultation Policy. Retrieved from Mackenzie Valley Land and Water Board:

 https://mvlwb.com/sites/default/files/mvlwb_engagement_and_consultation_policy__nov_25_19.pdf
- Nissen, E. (2024, September 23). *Environmental Inspection Report*. Retrieved from Wek'èezhii Land and Water Board Public Registry: https://mvlwb.ca/Documents/W2021C0009/Indin%20Lake%20-%20Federal%20Inspection%20Report%20-%20June%2024%202024%20-%20Nov%2015_24.pdf
- STLLR Gold Inc. (2024a, February 6). Moneta Gold and Nighthawk Gold Complete At-Market Merger to form STLLR Gold Inc. Retrieved from SEDAR+: https://www.sedarplus.ca/csa-party/records/document.html?id=b1bac65fbe94f67d22acf34dc1f13fe7d17ac7edfc22111cced6d aa384194ba6

- STLLR Gold Inc. (2024c, May 29). STLLR Gold and Tłįchǫ Investment Corporation Announce a Solar Farm Installation Agreement at the Colomac Gold Project. Retrieved from SEDAR+: https://www.sedarplus.ca/csa-party/records/document.html?id=9f2a5e21c0ac68a5652319054d27b826dd19c24e91a548639e 3d50ab7642cb32
- Tłįchǫ Government. (2022). Tłįchǫ Government Guidelines for Proponents of Development. Retrieved from Tłįchǫ Government:

 https://tlicho.ca/sites/default/files/2022_11_14_Tlicho_Government_weghaa_eleyatitseedi_for _optprinting.pdf
- WSP Canada Inc. (2024a). Damoti Lake Surveillance Network Program: Results from June 2024 Monitoring Event.
- WSP Canada Inc. (2024b). Damoti Lake Surveillance Network Program: Results from September 2024 Monitoring Event.
- WSP Canada Inc. (2024c). Closure and Reclamation Completion Report Spider Lake Site.

7 CERTIFICATES OF QUALIFICATION

I, John A. Nicholson, of the City of Vancouver, Province of British Columbia, do hereby CERTIFY that:

- 1. I am a Professional Geologist and a qualified person ("QP"), and a principal of Geominex Consultants Inc. (NAPEG Permit to Practise #P1330, EGBC Permit to Practice #1002226, EGM Permit to Practise #8254) with a postal address at 1411-409 Granville Street Vancouver B.C V6C1T2.
- 2. I am a graduate of University of British Columbia, with a B.Sc. degree (1986) in Geology.
- 3. I am registered as a Licensee with the Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists (NAPEG reg. no. L3197) and entitled to Practice as a Professional Geologist in the Northwest Territories. I am also registered as a Professional Geoscientist (P.Geo.) with the Engineers and Geoscientist of British Columbia (EGBC reg.no. 19933).
- 4. I have practised my profession as a geologist continuously for over thirty-five years. I have prepared reports, and conducted, supervised, and managed programs for various major and junior mining companies, and have evaluated projects for clients both domestically and internationally.
- 5. I have no direct or indirect interest, nor do I expect to receive any interest either directly or indirectly in the Indin Lake Gold Property, North Mining District, Northwest Territories, Canada as a result of my involvement with the work covered by this report.
- 6. I have prepared or supervised the preparation of the scientific and technical information presented in this report and related attached documents.
- 7. This report, 2024 Annual Water Licence Report, was prepared by John A. Nicholson for the account of STLLR Gold Inc., at the request of STLLR Gold Inc. The material in this report reflects my best judgement in light of information available to me at the time of preparation. Any use which a third party makes of this report, or any reliance on, or decisions to be made based upon it, are the responsibility of such third parties. J. Nicholson accepts no responsibility for damages, if any, suffered by a third party as a result of decisions made or actions based on this report and related attached documents.
- 8. Permission is granted for use of this report, in whole or in part, for assessment and qualification requirements with any regulatory authority.

Man 15th/2015

DATED at Vancouver British Columbia this 15th day of March, 2025

John A. Nicholson, P.Geo.

I, Brian D. Game, of the City of Richmond, Province of British Columbia, do hereby CERTIFY that:

- 1. I am a Professional Geologist and a qualified person ("QP"), and a principal of Geominex Consultants Inc. (NAPEG Permit to Practise #P1330, EGBC Permit to Practice #1002226, EGM Permit to Practise #8254) with a postal address at 1411-409 Granville Street Vancouver B.C V6C1T2.
- 2. I am a graduate of University of British Columbia, with a B.Sc. degree (1985) in Geology.
- 3. I am registered as a Licensee with the Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists (NAPEG reg. no. L3252) and entitled to Practice as a Professional Geologist in the Northwest Territories. I am also registered as a Professional Geoscientist (P.Geo.) with the Engineers and Geoscientist of British Columbia (EGBC reg.no. 19896) and the Professional Geoscientists Ontario (PGO reg.no. 4068).
- 4. I have practised my profession as a geologist continuously for over thirty-five years. I have prepared reports, and conducted, supervised, and managed programs for gold and base metals in Canada, USA, Mexico, South America, Philippines and Albania.
- 5. I have no direct or indirect interest, nor do I expect to receive any interest either directly or indirectly in the Indin Lake Gold Property, North Mining District, Northwest Territories, Canada as a result of my involvement with the work covered by this report.
- 6. I have prepared or supervised the preparation of the scientific and technical information presented in this report and related attached documents.
- 7. This report, 2024 Annual Water Licence Report, was prepared by Brian D. Game, for the account of STLLR Gold Inc., at the request of STLLR Gold Inc. The material in this report reflects my best judgement in light of information available to me at the time of preparation. Any use which a third party makes of this report, or any reliance on, or decisions to be made based upon it, are the responsibility of such third parties. Brian D. Game accepts no responsibility for damages, if any, suffered by a third party as a result of decisions made or actions based on this report and related attached documents.
- 8. Permission is granted for use of this report, in whole or in part, for assessment and qualification requirements with any regulatory authority.

DATED at Vancouver, British Columbia this 15th day of March, 2025

March 15 2025

Brian D. Game, P.Geo.

B.D. GAME

I, Riley T. Ledoux, of the City of North Vancouver, Province of British Columbia, do hereby CERTIFY that:

- 1. I am a Professional Geologist and a qualified person ("QP"), and a responsible registrant of Geominex Consultants Inc. (NAPEG Permit to Practise #P1330, EGBC Permit to Practice #1002226, EGM Permit to Practise #8254) with a postal address at 1411-409 Granville Street Vancouver B.C V6C1T2.
- 2. I am a graduate of University of British Columbia, with a B.Sc. degree (2019) in Geology.
- 3. I am registered as a Licensee with the Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists (NAPEG reg. no. L5676) and entitled to Practice as a Professional Geologist in the Northwest Territories. I am also registered as a Professional Geoscientist (P.Geo.) with the Engineers and Geoscientist of British Columbia (EGBC reg.no. 59191), Engineers Geoscientists Manitoba (EGM reg.no. 49918), and the Professional Geoscientists Ontario (PGO reg.no. 4063).
- 4. I have practiced my profession as a geologist continuously for nine years. I have prepared reports, and conducted, supervised, and managed programs for major and junior mining companies in the Northwest Territories, Manitoba, Labrador, and British Columbia.
- 5. I have no direct or indirect interest, nor do I expect to receive any interest either directly or indirectly in the Indin Lake Gold Property, North Mining District, Northwest Territories, Canada as a result of my involvement with the work covered by this report.
- 6. I have prepared or supervised the preparation of the scientific and technical information presented in this report and related attached documents.
- 7. This report, 2024 Annual Water Licence Report, was prepared by Riley T. Ledoux for the account of STLLR Gold Inc., at the request of STLLR Gold Inc. The material in this report reflects my best judgement in light of information available to me at the time of preparation. Any use which a third party makes of this report, or any reliance on, or decisions to be made based upon it, are the responsibility of such third parties. Riley T. Ledoux accepts no responsibility for damages, if any, suffered by a third party as a result of decisions made or actions based on this report and related attached documents.
- 8. Permission is granted for use of this report, in whole or in part, for assessment and qualification requirements with any regulatory authority.

DATED at Vancouver, British Columbia this 15th day of March, 2025

Riley T. Ledoux, P.Geo.

NTAN

I, John McBride, of the City of Thunder Bay, Province of Ontario, do hereby CERTIFY that:

- 1. I am a Professional Geologist and a qualified person ("QP"), and a responsible registrant of STLLR Gold Inc. with a postal address at 181 Bay St, Suite 4260, Toronto, Ontario M5J 2V1.
- 2. I am a graduate of Lakehead University, with a M.Sc. degree (2010) in Geology.
- 3. I am registered as a Licensee with the Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists (NAPEG reg. no. L5040) and entitled to Practice as a Professional Geologist in the Northwest Territories. I am also registered as a Professional Geoscientist (P.Geo.) with the Association of Professional Geoscientists of Ontario (APGO reg.no. 2208).
- 4. I have practiced my profession as a geologist continuously for seventeen years. I have prepared reports, and conducted, supervised, managed, and planned programs for junior mining companies in the Ontario, Newfoundland, and the Northwest Territories.
- 5. I have prepared or supervised the preparation of the scientific and technical information presented in this report and related attached documents.
- 6. The material in this report reflects my best judgement in light of information available to me at the time of preparation. Any use which a third party makes of this report, or any reliance on, or decisions to be made based upon it, are the responsibility of such third parties. John McBride accepts no responsibility for damages, if any, suffered by a third party as a result of decisions made or actions based on this report and related attached documents.
- 7. Permission is granted for use of this report, in whole or in part, for assessment and qualification requirements with any regulatory authority.

DATED at Thunder Bay, Ontario this 15th day of March, 2025

John McBride, P.Geo.

John McBride

APPENDIX A: Attestation from Incinerator Operator

Incinerator Training Acknowledgment

Form No.	GMXO-004
Date of Issue	2024-05-12

This document confirms Fred rich Koiser of Geominex Consultants Inc. as a trained and principal operator of the Inciner8, Model A600(Sec) Incinerator with a secondary combustion chamber, located at Nighthawk Gold Corp's Indin Lake Camp, approximately 220 km's North of Yellowknife, NT.

The Inciner8, Model A600(Sec) Incinerator is a diesel-fired unit with a high temperature, secondary burner/chamber for additional gas burn. It operates at a thermostatically controlled temperature with a minimum 900 degrees Celsius (°C) and up to a maximum of 1350°C. It has a capacity of 300 kilograms (kg) and burns at an average 75 kg per hour.

The unit is contained within an isolated (from other buildings), framed wood and metal structure that contains weight scales, and separate bins for segregating different types of waste. Bins allocated for combustible waste include the following: 1) kitchen waste; 2) non-hazardous building materials; and 3) cardboard. Paper and digital records are kept of the daily weights of the materials for incineration, weights of the resulting ash, and any other relevant information.

Signed by,

John Nicholson, P. Geo Project Manager Geominex Consultants Inc.

Signed on Apr: 1. 18, 2024

Signed by,

(Name)
Geominex Consultants Inc.

Signed on April. 18, 2024

Incinerator Training Acknowledgment

Page 1 of 1

Incinerator Training Acknowledgment

Form No.	GMXO-004
Date of Issue	2024-05-12

This document confirms <u>Kyon Pownall</u> of Geominex Consultants Inc. as a trained and principal operator of the Inciner8, Model A600(Sec) Incinerator with a secondary combustion chamber, located at Nighthawk Gold Corp's Indin Lake Camp, approximately 220 km's North of Yellowknife, NT.

The Inciner8, Model A600(Sec) Incinerator is a diesel-fired unit with a high temperature, secondary burner/chamber for additional gas burn. It operates at a thermostatically controlled temperature with a minimum 900 degrees Celsius (°C) and up to a maximum of 1350°C. It has a capacity of 300 kilograms (kg) and burns at an average 75 kg per hour.

The unit is contained within an isolated (from other buildings), framed wood and metal structure that contains weight scales, and separate bins for segregating different types of waste. Bins allocated for combustible waste include the following: 1) kitchen waste; 2) non-hazardous building materials; and 3) cardboard. Paper and digital records are kept of the daily weights of the materials for incineration, weights of the resulting ash, and any other relevant information.

Signed by,

John Nicholson, P. Geo Project Manager

Geominex Consultants Inc.

Signed on Apr: 1.18, 2024

Signed by,

(Name)
Geominex Consultants Inc.

Signed on Apr. 1.18, 2024

Page 1 of 1

Incinerator Training Acknowledgment

APPENDIX B: 2024 Incinerator and Camp Water Usage Records

Colo	mac		Water Usa	ige		Incine	erated				Shipp	ed Out				
Date	Camp Population	Kitchen (m3)	Washhouse (m3)	Dorm Trailer (m3)	Total (m3)	Kitchen Waste (lb)	Other Sources (lb)	Ash Outgoing (lb)	Cardboard (lb)	Refundable Bottles (lb)	Construction Material & Pallets (lb)	Driller Garbage (lb)	Metal (lb)	Hydrocarbon Contaminated Material (lb)	Used Oil (lb)	Non- Burnable (lb)
1-Apr-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
2-Apr-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
3-Apr-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
4-Apr-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
5-Apr-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
6-Apr-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
7-Apr-23	5	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
8-Apr-23	5	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
9-Apr-23	5	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
10-Apr-23	5	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
11-Apr-23	9	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
12-Apr-23	9	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
13-Apr-23	6	0.0000	0.0000	0.0000	0.0000	60	0	0	0	0	0	0	0	0	0	0
14-Apr-23	7	0.1842	0.1440	0.0000	0.3282	0	0	0	0	0	0	0	0	0	0	0
15-Apr-23	8	0.1122	0.1820	0.0000	0.2942	36	0	0	0	0	0	0	0	0	0	0
16-Apr-23	8	0.2804	0.2740	0.0000	0.5544	0	0	0	0	0	0	0	0	0	0	0
17-Apr-23	8	0.2840	0.3000	0.0000	0.5840	50	40	0	0	0	0	0	0	0	0	0
18-Apr-23	8	0.2426	0.4000	0.0000	0.6426	28	10	0	0	0	0	0	0	0	0	0
19-Apr-23	8	0.3294	0.5900	0.0000	0.9194	48	30	0	0	0	0	0	0	0	0	0
20-Apr-23	8	0.3228	0.7300	0.3400	1.3928	0	0	0	0	0	0	0	0	0	0	0
21-Apr-23	8	0.3389	0.2800	0.2200	0.8389	0	0	0	0	0	0	0	0	0	0	0
22-Apr-23	10	0.4143	0.6700	0.1100	1.1943	35	15	0	0	0	0	0	0	0	0	0
23-Apr-23	10	0.3700	0.5700	0.2350	1.1750	52	0	0	0	0	0	0	0	0	0	0
24-Apr-23	10	0.4339	0.9880	0.3240	1.7459	48	25	0	0	0	0	0	0	0	0	0
25-Apr-23	10	0.4777	0.4920	0.4640	1.4337	74	20	0	0	0	0	0	0	0	0	0

Date	Camp Population	Kitchen (m3)	Washhouse (m3)	Dorm Trailer (m3)	Total (m3)	Kitchen Waste (lb)	Other Sources (lb)	Ash Outgoing (lb)	Cardboard (lb)	Refundable Bottles (lb)	Construction Material & Pallets (lb)	Driller Garbage (lb)	Metal (lb)	Hydrocarbon Contaminated Material (lb)	Used Oil (lb)	Non- Burnable (lb)
26-Apr-23	9	0.4691	0.2080	0.4280	1.1051	67	10	223	113	0	1036	0	0	153	0	289
27-Apr-23	9	0.2928	0.4470	0.3060	1.0458	38	10	0	0	0	0	0	0	0	0	0
28-Apr-23	9	0.3035	0.3970	0.3300	1.0305	69	10	0	0	0	0	0	0	0	0	0
29-Apr-23	11	0.3629	0.8480	0.2800	1.4909	23	0	0	0	0	0	0	0	0	0	0
30-Apr-23	11	0.3189	0.3750	0.4130	1.1069	59	15	0	0	0	0	0	0	0	0	0
1-May-23	11	0.3684	0.8730	0.2900	1.5314	25	0	0	0	0	0	0	0	0	0	0
2-May-23	12	0.4231	0.4450	0.4080	1.2761	58	29	0	212	0	0	0	0	0	0	438
3-May-23	12	0.4091	0.2540	0.7700	1.4331	57	27	0	0	0	0	0	0	0	0	0
4-May-23	12	0.3983	1.3350	0.2240	1.9573	103	29	0	96	76	0	0	0	0	0	0
5-May-23	12	0.4410	0.3520	0.2700	1.0630	41	153	0	0	0	0	0	0	0	0	0
6-May-23	20	1.4991	0.6740	0.7080	2.8811	51	39	0	0	0	0	0	0	0	0	0
7-May-23	23	0.5650	0.9630	0.3250	1.8530	129	29	0	0	0	0	0	0	0	0	165
8-May-23	23	0.7764	0.5210	0.7270	2.0244	55	48	0	0	0	0	0	0	0	0	0
9-May-23	26	0.8192	0.7530	0.5700	2.1422	85	42	0	176	0	0	0	0	0	0	0
10-May-23	26	0.6227	0.5590	1.0500	2.2317	37	19	0	0	0	0	0	0	0	0	0
11-May-23	29	0.4670	0.4440	1.0870	1.9980	66	40	0	0	0	0	0	0	0	0	0
12-May-23	29	0.8620	0.6370	0.9260	2.4250	120	26	0	0	0	0	0	0	0	0	0
13-May-23	29	0.8800	0.6550	1.1810	2.7160	126	42	0	0	0	0	0	0	0	0	0
14-May-23	29	0.7330	0.6480	1.5310	2.9120	112	19	0	0	0	0	0	0	0	0	0
15-May-23	31	1.1470	0.2980	1.4780	2.9230	114	26	0	132	0	0	175	0	0	0	158
16-May-23	31	0.8730	1.1330	1.7100	3.7160	126	9	0	78	0	0	0	0	0	0	0
17-May-23	31	0.8190	1.4650	1.8300	4.1140	112	36	0	0	0	0	0	0	0	0	0
18-May-23	32	1.1710	0.7910	1.1490	3.1110	126	70	0	0	0	0	0	0	0	0	0
19-May-23	32	1.0950	1.1890	1.9340	4.2180	100	189	0	0	0	0	0	0	0	0	0
20-May-23	32	0.3560	1.0310	1.6430	3.0300	130	16	0	0	0	0	0	0	0	0	0
21-May-23	33	0.7290	0.8220	1.7560	3.3070	109	105	0	0	0	0	0	0	0	0	0
22-May-23	33	0.8830	0.9320	1.4070	3.2220	118	52	0	0	0	0	0	0	0	0	0
23-May-23	33	0.9460	1.0570	1.8790	3.8820	96	50	0	0	0	0	211	0	3800	0	343
24-May-23	33	0.7180	1.1090	1.4190	3.2460	103	4	0	0	0	0	0	0	0	0	0

Date	Camp Population	Kitchen (m3)	Washhouse (m3)	Dorm Trailer (m3)	Total (m3)	Kitchen Waste (lb)	Other Sources (lb)	Ash Outgoing (lb)	Cardboard (lb)	Refundable Bottles (lb)	Construction Material & Pallets (lb)	Driller Garbage (lb)	Metal (lb)	Hydrocarbon Contaminated Material (lb)	Used Oil (lb)	Non- Burnable (lb)
25-May-23	33	0.9340	1.6340	1.9430	4.5110	85	49	0	141	76	0	380	0	0	0	0
26-May-23	33	1.0170	0.8560	2.5940	4.4670	160	122	0	0	0	0	0	0	0	0	0
27-May-23	33	0.8010	1.2850	2.1310	4.2170	137	24	0	0	0	0	0	0	0	0	0
28-May-23	32	0.8600	0.7610	1.9730	3.5940	97	6	0	70	0	0	0	0	0	0	207
29-May-23	32	0.8010	2.3590	1.9850	5.1450	122	47	0	0	0	0	0	0	0	0	0
30-May-23	34	0.9100	1.5420	2.2070	4.6590	96	36	0	0	0	0	484	0	0	800	0
31-May-23	34	1.1110	0.5980	1.6860	3.3950	105	32	0	0	0	0	0	0	0	0	0
1-Jun-23	34	1.2270	0.8590	2.0280	4.1140	154	76	0	0	0	0	0	0	0	0	0
2-Jun-23	34	1.1160	1.2620	2.7520	5.1300	158	161	0	0	0	0	0	0	0	0	0
3-Jun-23	34	1.0990	1.2750	3.4390	5.8130	102	110	0	0	0	0	0	0	0	0	0
4-Jun-23	32	2.1910	1.1440	2.4740	5.8090	137	115	0	0	87	0	284	0	0	0	162
5-Jun-23	32	4.2500	0.6800	2.2050	7.1350	107	51	0	0	0	0	0	0	0	0	0
6-Jun-23	30	3.3130	0.9670	2.5930	6.8730	105	34	0	294	0	107	255	0	0	0	0
7-Jun-23	30	0.9270	0.8700	2.1330	3.9300	122	83	0	0	0	0	0	0	0	0	0
8-Jun-23	31	0.8590	1.0620	1.7410	3.6620	136	98	0	0	0	0	0	0	0	0	0
9-Jun-23	31	0.9520	0.7500	1.6760	3.3780	142	229	0	0	0	0	0	0	0	0	0
10-Jun-23	31	0.6820	0.9170	2.0130	3.6120	85	59	0	0	0	0	0	0	0	0	0
11-Jun-23	31	1.0810	0.7650	2.1990	4.0450	94	87	0	110	0	0	201	0	0	0	168
12-Jun-23	31	1.1360	0.5700	1.5050	3.2110	126	50	0	0	0	0	0	0	0	0	0
13-Jun-23	8	0.9740	1.4570	2.4850	4.9160	150	66	0	0	0	0	0	0	0	0	0
14-Jun-23	8	0.7020	0.7240	1.0450	2.4710	35	34	0	0	0	0	0	0	0	0	0
15-Jun-23	5	0.5380	0.6840	0.9130	2.1350	37	34	0	0	0	0	0	0	0	0	0
16-Jun-23	5	0.2930	0.2760	0.1270	0.6960	55	151	0	0	0	0	0	0	0	0	0
17-Jun-23	5	0.1440	0.1240	0.3360	0.6040	10	15	0	0	0	0	0	0	0	0	0
18-Jun-23	5	0.1940	0.2770	0.2470	0.7180	20	0	0	0	0	0	0	0	0	0	0
19-Jun-23	5	0.2110	0.3230	0.1040	0.6380	30	6	0	0	0	0	0	0	0	0	0
20-Jun-23	5	0.2620	0.3810	0.2740	0.9170	0	0	0	0	0	0	0	0	0	0	0
21-Jun-23	5	0.2570	0.4480	0.1850	0.8900	18	2	0	0	0	0	0	0	0	0	0
22-Jun-23	6	0.2520	0.0490	0.2760	0.5770	26	18	0	0	0	0	0	0	0	0	0

Date	Camp Population	Kitchen (m3)	Washhouse (m3)	Dorm Trailer (m3)	Total (m3)	Kitchen Waste (lb)	Other Sources (lb)	Ash Outgoing (lb)	Cardboard (lb)	Refundable Bottles (lb)	Construction Material & Pallets (lb)	Driller Garbage (lb)	Metal (lb)	Hydrocarbon Contaminated Material (lb)	Used Oil (lb)	Non- Burnable (lb)
23-Jun-23	6	0.4870	0.3040	0.1210	0.9120	35	20	0	0	0	0	0	0	0	0	0
24-Jun-23	6	0.3710	0.3090	0.1960	0.8760	0	0	0	0	0	0	0	0	0	0	0
25-Jun-23	6	0.2490	0.1970	0.2290	0.6750	31	18	0	0	0	0	0	0	0	0	0
26-Jun-23	6	0.3460	0.0880	0.2250	0.6590	0	0	0	0	0	0	0	0	0	0	0
27-Jun-23	8	0.3860	0.2110	0.3060	0.9030	42	0	180	0	87	105	842	129	700	420	0
28-Jun-23	8	0.3860	0.2250	0.2380	0.8490	29	15	0	0	0	0	0	0	0	0	0
29-Jun-23	33	0.5050	0.3630	0.4490	1.3170	59	20	0	83	0	0	0	0	0	0	230
30-Jun-23	33	0.6230	0.3990	1.1230	2.1450	83	127	0	0	0	0	0	0	0	0	0
1-Jul-23	33	0.8130	0.7680	1.8480	3.4290	113	116	0	0	0	0	0	0	0	0	0
2-Jul-23	37	0.9950	1.3860	1.9890	4.3700	126	24	0	103	88	0	0	0	0	0	197
3-Jul-23	38	1.0320	0.8810	1.7740	3.6870	135	17	0	0	0	0	0	0	0	0	0
4-Jul-23	37	1.0530	2.5120	1.8040	5.3690	148	13	0	0	0	0	0	0	0	0	0
5-Jul-23	37	1.1120	1.2830	2.0240	4.4190	103	47	0	0	0	0	0	0	0	0	0
6-Jul-23	38	1.1190	2.0740	1.8250	5.0180	114	39	0	0	0	0	0	0	0	0	0
7-Jul-23	38	0.9390	1.1910	2.3460	4.4760	158	137	0	0	0	0	0	0	0	0	0
8-Jul-23	37	0.9260	1.8030	2.9750	5.7040	153	33	0	0	0	0	0	0	0	0	0
9-Jul-23	38	0.7930	1.6090	1.7970	4.1990	145	13	0	408	0	93	376	0	0	0	169
10-Jul-23	38	0.8780	0.9610	1.3520	3.1910	133	64	0	0	0	0	0	0	0	0	0
11-Jul-23	39	0.8380	2.1930	2.1130	5.1440	126	60	0	0	161	0	448	0	0	0	187
12-Jul-23	39	1.1050	1.7560	2.4320	5.2930	158	22	0	0	0	0	0	0	0	0	0
13-Jul-23	39	1.1140	1.9540	2.2480	5.3160	135	52	0	0	0	0	0	0	0	0	0
14-Jul-23	39	1.1590	1.9140	2.5840	5.6570	175	139	0	0	0	0	0	0	0	0	0
15-Jul-23	39	1.0230	1.4750	2.4000	4.8980	145	14	0	0	0	0	0	0	0	0	0
16-Jul-23	39	0.9190	1.9880	2.2960	5.2030	111	39	0	0	0	0	0	0	0	0	0
17-Jul-23	36	1.4900	1.2180	2.4690	5.1770	144	58	0	0	0	0	0	0	0	0	0
18-Jul-23	36	0.8950	1.7550	2.5640	5.2140	146	56	0	84	72	0	1063	0	0	0	291
19-Jul-23	31	0.7740	2.7260	1.9510	5.4510	114	58	0	0	0	0	0	0	0	0	0
20-Jul-23	31	0.8460	1.3420	2.1830	4.3710	129	124	0	0	0	0	0	0	0	0	0
21-Jul-23	24	0.6520	1.2960	2.1330	4.0810	75	220	0	0	0	0	0	0	0	0	0

Date	Camp Population	Kitchen (m3)	Washhouse (m3)	Dorm Trailer (m3)	Total (m3)	Kitchen Waste (lb)	Other Sources (lb)	Ash Outgoing (lb)	Cardboard (lb)	Refundable Bottles (lb)	Construction Material & Pallets (lb)	Driller Garbage (lb)	Metal (lb)	Hydrocarbon Contaminated Material (lb)	Used Oil (lb)	Non- Burnable (lb)
22-Jul-23	24	0.8930	0.6170	1.3200	2.8300	184	79	0	0	0	0	0	0	0	0	0
23-Jul-23	24	1.1260	1.2290	1.2220	3.5770	77	16	0	0	0	0	270	0	0	0	172
24-Jul-23	21	0.6270	0.5770	1.5020	2.7060	121	49	0	0	0	0	0	0	0	0	0
25-Jul-23	21	1.2380	0.8720	1.6460	3.7560	92	52	0	264	0	0	0	500	0	1708	112
26-Jul-23	21	0.6580	0.9050	1.4360	2.9990	70	44	0	0	0	0	0	0	0	0	0
27-Jul-23	21	0.6510	0.6320	1.8990	3.1820	48	41	0	0	0	0	0	0	0	0	0
28-Jul-23	21	0.6580	1.8000	1.0650	3.5230	109	164	0	263	88	0	306	1220	225	0	133
29-Jul-23	21	0.8340	1.1030	0.6960	2.6330	146	12	0	0	0	0	0	0	0	0	0
30-Jul-23	21	0.9380	0.5190	0.8810	2.3380	137	76	0	0	0	0	277	0	0	0	0
31-Jul-23	16	0.5540	1.2000	0.9920	2.7460	27	8	0	0	0	0	0	0	0	0	0
1-Aug-23	16	0.2880	0.9950	1.0640	2.3470	89	29	0	0	0	0	0	0	0	0	0
2-Aug-23	12	0.4380	0.9290	0.6010	1.9680	123	41	289	0	0	0	258	422	0	0	193
3-Aug-23	12	0.3370	0.7170	0.6970	1.7510	0	0	0	0	0	0	0	0	0	0	0
4-Aug-23	13	0.5330	1.3960	0.5940	2.5230	0	0	0	0	0	0	0	0	0	0	0
5-Aug-23	14	2.1590	0.9320	0.0460	3.1370	0	0	0	0	0	0	0	0	0	0	0
6-Aug-23	14	0.4160	1.5720	0.0000	1.9880	0	0	0	0	0	0	0	0	0	0	0
7-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
8-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
9-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
10-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
11-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
12-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
13-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
14-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
15-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
16-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
17-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
18-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
19-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0

Date	Camp Population	Kitchen (m3)	Washhouse (m3)	Dorm Trailer (m3)	Total (m3)	Kitchen Waste (lb)	Other Sources (lb)	Ash Outgoing (lb)	Cardboard (lb)	Refundable Bottles (lb)	Construction Material & Pallets (lb)	Driller Garbage (lb)	Metal (lb)	Hydrocarbon Contaminated Material (lb)	Used Oil (lb)	Non- Burnable (lb)
20-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
21-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
22-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
23-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
24-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
25-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
26-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
27-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
28-Aug-23	0	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
29-Aug-23	6	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0
30-Aug-23	6	0.3930	1.0180	0.0000	1.4110	16	0	0	0	0	0	0	0	0	0	0
31-Aug-23	6	0.2350	0.3050	0.0000	0.5400	18	0	0	0	0	0	0	0	0	0	0
1-Sep-23	6	0.3380	0.3370	0.0000	0.6750	31	15	0	0	0	0	0	0	0	0	0
2-Sep-23	6	0.4590	0.4840	0.0000	0.9430	32	0	0	0	0	0	0	0	0	0	0
3-Sep-23	6	0.2240	0.3160	0.0000	0.5400	39	0	0	0	0	0	0	0	0	0	0
4-Sep-23	6	0.4060	0.4930	0.0000	0.8990	49	20	0	0	0	0	0	0	0	0	0
5-Sep-23	6	0.4050	0.3570	0.0000	0.7620	72	15	0	0	0	0	0	0	0	0	0
6-Sep-23	6	0.2770	0.2940	0.0000	0.5710	29	35	0	0	0	0	0	0	0	0	0
7-Sep-23	6	0.2440	0.5500	0.0000	0.7940	32	15	0	0	0	0	0	0	0	0	0
8-Sep-23	5	0.4090	0.4560	0.0000	0.8650	44	20	0	0	0	0	0	0	0	0	0
9-Sep-23	5	0.2340	0.8520	0.0000	1.0860	68	0	0	0	0	0	0	0	0	0	0
10-Sep-23	5	0.3160	0.3760	0.0000	0.6920	26	10	0	0	0	0	0	0	0	0	0
11-Sep-23	5	0.3030	0.4840	0.0000	0.7870	35	0	0	0	0	0	0	0	0	0	0
12-Sep-23	4	0.3910	0.4310	0.0000	0.8220	115	0	0	0	0	0	0	0	0	0	0
13-Sep-23	4	0.3460	1.3080	0.0000	1.6540	137	0	0	0	0	0	0	0	0	0	0
Totals	2728	93.7889	111.971	140.646	346.4059	10568	5365	692	2627	735	1341	5830	2271	4878	2928	3614

APPENDIX C: Damoti Lake Surveillance Network Program: Results from June 2024 Monitoring Event.

REPORT

DAMOTI LAKE SURVEILLANCE NETWORK PROGRAM

Results From June 2024 Monitoring Event

Submitted to:

STLLR Gold Inc.

181 Bay St., Suite 4260 Toronto, Ontario, Canada M5J 2V1

Submitted by:

WSP Canada Inc.

Distribution List

1 copy STLLR Gold Inc.

1 copy WSP Canada Inc.

Study Limitations

This report was prepared for the exclusive use of STLLR Gold Inc. (STLLR). The report, which specifically includes tables and figures, is based on data and information collected by WSP Canada Inc. (WSP) at the time of the field investigations. The services performed as described in this report were conducted in a manner consistent with the level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services. Any use of this report by a third party, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. WSP accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. In addition, WSP disclaims responsibility for consequential financial effects on transactions or property values or requirements for follow-up actions and costs.

The content of this report is based on information collected during the investigation, our present understanding of the site conditions, and our professional judgment in light of such information at the time of this report. This report provides a professional opinion, and therefore, no warranty is expressed, implied, or made as to the conclusions, advice, and recommendations offered. This report does not provide a legal opinion regarding compliance with applicable laws. Regarding regulatory compliance issues, it should be noted that regulatory statutes and their interpretation are subject to change. The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, WSP should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

Table of Contents

1.0	INTRO	DDUCTION	1
2.0	METH	ODS	1
	2.1	Sampling Locations	1
	2.1.1	Water Licence Surveillance Network Program	1
	2.2	Sampling Methods	4
	2.2.1	Field Measurements	4
	2.2.2	Water Quality and Acute Toxicity Sampling	4
	2.3	Laboratory Analyses	4
	2.4	Data Analysis	5
	2.5	Quality Assurance/Quality Control	6
3.0	RESU	LTS	7
	3.1	Water Quality and Acute Toxicity	7
	3.2	Quality Assurance/Quality Control	7
1.0	CLOS	URE	8
5.0	REFE	RENCES	9
ΓΑΕ	BLES		
Гab	le 1: Su	rveillance Network Program Stations Sampled on 3 June 2024	1
Гab	le 2: Pa	rameter List for Each Surveillance Network Program Station	5
	URES		
-igu	ire 1: Da	amoti Lake Surveillance Network Program (SNP) Stations	2
-igu	re 2: Si	te Drainage Patterns at the Damoti Lake Rock Pile Area	3

APPENDICES

APPENDIX A

Site Photographs

APPENDIX B

Water Quality Data

APPENDIX C

Laboratory Certificate of Analysis

APPENDIX D

Quality Assurance and Quality Control

1.0 INTRODUCTION

The Damoti Lake Site (Damoti) is located 200 km north of Yellowknife in the Northwest Territories (NT), within the Wek'èezhìı co-management land boundaries. Nighthawk Gold Corp (Nighthawk), subsidiary of STLLR Gold Inc. (STLLR), in this report referenced as STLLR, currently holds the leases to Damoti. WSP Canada Inc. (WSP), carried out the Surveillance Network Program (SNP) monitoring on behalf of STLLR on 3 June 2024, to meet the requirements of Type A Water Licence W2021L2-0004 (Water Licence; WLWB 2023). This report summarizes the results of the June 2024 SNP field program.

2.0 METHODS

2.1 Sampling Locations

2.1.1 Water Licence Surveillance Network Program

SNP stations were visited to collect in situ measurements and surface water grab samples on 3 June 2024 (Table 1, Figure 1 and Figure 2, Appendix A). Station SNP 5-14 was visited, although water quality samples were not collected for analysis because insufficient water was present at this location (Appendix A, Photograph A-10).

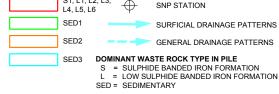
Table 1: Surveillance Network Program Stations Sampled on 3 June 2024

Station ^(a)	Location ^(b)	UTM Coordinates ^(c)			
Station*	Location 47	Easting (m)	Northing (m)		
SNP 5-4	Inflow from wetlands into Lardass Lake	591819	7113641		
SNP 5-5	Lardass Lake	591759	7113638		
SNP 5-6	Runoff from ore rock pile	591876	7113876		
SNP 5-8	Damoti Lake site decline ramp (Minewater pooled at entrance of Adit)	591859	7113979		
SNP 5-9	Pool of standing water immediately west of waste rock pile	591894	7113983		
SNP 5-11	Pool of standing water next to waste rock/ore stockpiles	591904	7113947		
SNP 5-12	Pool of standing water in rock pile area	591908	7113934		
SNP 5-13	Pool of standing water in waste rock/ore pile area	591882	7113922		
SNP 5-14 ^(d)	Flow pathway between the rock/ore pile area and Lardass Lake	591821	7113754		

Notes:


SNP = Surveillance Network Program; UTM = Universal Transverse Mercator; m = metres.

⁽a) SNP 5-1, SNP 5-2, SNP 5-3, and SNP 5-15 are currently inactive based on-site conditions (WLWB 2023). SNP 5-1 and SNP 5-2 were not sampled because minewater was not being discharged from the adit into the settling pond, SNP 5-3 was not sampled because water was not being pumped for camp use, and SNP 5-15 was not sampled because no artesian aquifers have been encountered.


⁽b) Photographs of stations visited during the June 2024 field program are provided in Appendix A.

⁽c) UTM coordinates are in NAD83, Zone 11W.

⁽d) Previously referred to as FB-100.

L = LOW SULPHIDE BANDED IRON FORMATION

CONSULTANT

NOTES

LEGEND

- 1. GRID IS DISPLAYED IN NAD83 UTM ZONE 11 COORDINATES.
- 2. AIRPHOTO SCALE IS APPROXIMATE.

S1, L1, L2, L3,

REFERENCE

JUNE 2012 AIRPHOTO TAKEN BY GOLDER ASSOCIATES LTD. FIELD STAFF.

_

YYYY-MM-DD	2024-07-29
DESIGNED	NB/SP
PREPARED	GS
REVIEWED	MI
APPROVED	KS

DAMOTI SNP JUNE 2024

SITE DRAINAGE PATTERNS AT THE

_	DAMOTI LAKE ROCK PILE AREA	
_		

PROJECT NO. PHASE/TASK REV. **FIGURE** CA0034908.5454 1000/1002 0

2.2 Sampling Methods

2.2.1 Field Measurements

Prior to collecting surface water grab samples, ambient wind and weather conditions were recorded along with in-situ measurements of the following water quality parameters:

- water temperature (°C)
- pH
- dissolved oxygen (DO; milligrams per litre [mg/L] and percent saturation [%])
- specific conductivity (microsiemens per centimetre [µS/cm])

A YSI multiparameter water quality meter was used for the in-situ measurements. An Oakton 30 handheld pH meter was used to confirm field measurements. Water depth was measured at each sampling location. Flow and volume measurements were not recorded because water was not being pumped for camp or industrial use.

2.2.2 Water Quality and Acute Toxicity Sampling

Surface water quality grab samples were collected in accordance with WSP's technical procedures for surface water sample collection, using plastic and glass bottles depending on the parameter or parameter group being sampled. Sample bottles were submerged approximately 0.3 m below the water surface at each SNP station, except at the following stations where water depths were <0.3 m:

- SNP 5-6: A syringe was used to collect water from the surface and fill the sample bottle due to low water levels (<0.1 m), as well as to collect the sample from the same depth as the toxicity sample (near the surface).
- SNP 5-12: The sample bottle was submerged approximately 0.2 m below the water surface due to low water levels (<0.1 m).</p>

Water quality samples were field-filtered and preserved according to laboratory instructions and were kept cool until delivery to ALS Environmental (ALS) in Yellowknife, NT. After delivery to ALS in Yellowknife, samples were shipped to Burnaby, British Columbia, for analysis.

Acute toxicity samples from SNP 5-6 were collected at the same depth of the water quality sample (i.e., near the surface, as the water level was low) using a peristaltic pump, tubing, and 10-litre low-density polyethylene plastic carboys. Although water level was low, an adequate volume of water was available for sample collection. Carboys and lids were rinsed three times with sample water prior to sample collection. Acute toxicity samples were kept cool and shipped to Nautilus Environmental (Nautilus) in Calgary, Alberta. Upon receipt at Nautilus, samples were refrigerated at 4°C and acute toxicity tests were initiated within five days of sample collection (within the recommended hold time for acute toxicity tests).

2.3 Laboratory Analyses

Surface water samples were analyzed for the parameters outlined in Table 2. These parameters are either required by the SNP annexed to the Water Licence or were analyzed to support the Interim Closure and Reclamation Plan and to develop the historical dataset for the aquatic receiving environment.

Table 2: Parameter List for Each Surveillance Network Program Station

Station	Parameters
SNP 5-4	Conventional (pH, specific conductivity, hardness, total suspended solids, total dissolved solids, and dissolved
SNP 5-5	organic carbon), major ions (calcium, magnesium, potassium, sodium, and sulphate), nutrients (nitrate, nitrite, total ammonia, low-level total phosphorus, and dissolved phosphorus), total metals ^(a) (plus total mercury), dissolved metals ^(a)
SNP 5-6	Conventional (pH, specific conductivity, hardness, total suspended solids, total dissolved solids, and dissolved organic carbon), major ions (calcium, magnesium, potassium, sodium, and sulphate), nutrients (nitrate, nitrite, total ammonia, low-level total phosphorus, and dissolved phosphorus), total metals ^(a) , dissolved metals ^(a) , acute toxicity (Rainbow Trout [<i>Oncorhynchus mykiss</i>] and <i>Daphnia magna</i>) ^(b)
SNP 5-8	
SNP 5-9	Conventional (pH, specific conductivity, hardness, total suspended solids, total dissolved solids, and dissolved
SNP 5-11	organic carbon), major ions (calcium, magnesium, potassium, sodium, and sulphate), nutrients (nitrate, nitrite,
SNP 5-12	total ammonia, low-level total phosphorus, and dissolved phosphorus), total metals ^(a) , dissolved metals ^(a)
SNP 5-13	
SNP 5-14 ^(c)	Conventional (pH, specific conductivity, and total suspended solids, total dissolved solids (calculated)), major ions (calcium, magnesium, potassium, sodium, and sulphate), nutrients (nitrate, nitrite, total ammonia, low-level total phosphorus, total metals ^(a) (plus total mercury), dissolved metals ^(a)

Notes:

- (a) Total and dissolved metals include metalloids such as arsenic and non-metals such as selenium (WLWB 2023). The list of elements include: aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), cesium (Cs), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), thallium (TI), uranium (U), vanadium (V), and zinc (Zn).
- (b) Static pass/fail (single-concentration) test for Rainbow Trout and *Daphnia magna* per Environment Canada's Biological Test Methods Environment Protection Series (EPS 1/RM/13 Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout [Environment Canada 2007], and EPS 1/RM/14 Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to *Daphnia magna* [Environment Canada 2000]).
- (c) SNP 5-14 was visited on 3 June, but no water quality sample was collected due to insufficient water.

SNP = Surveillance Network Program.

2.4 Data Analysis

Analytical results from station SNP 5-6 were compared to applicable effluent quality criteria (EQC) as specified in the Water Licence, i.e., maximum average concentration and maximum concentration of any grab sample. For SNP stations at Lardass Lake (SNP 5-4 and SNP 5-5), analytical results were compared to water quality objectives, i.e. the lowest of the Canadian Council of Ministers of the Environment (CCME) guidelines for the protection of aquatic life and livestock (wildlife) health (CCME 1999 with updates) as well as the federal environmental quality guidelines (FEQG) for cobalt (ECCC 2017), strontium (ECCC 2020), and vanadium (ECCC 2016).

Laboratory pH is considered less reliable than field pH because the recommended holding time of 15 minutes cannot be met due to sample transport and shipping. Field pH values were therefore used to calculate CCME guidelines, where applicable.

Results of acute toxicity testing for samples collected at SNP 5-6 were expressed as percent survival for Rainbow Trout (*Oncorhynchus mykiss*) and percent survival and immobility for *Daphnia magna*. A sample was considered acutely lethal if survival less than 50% was observed in the full-strength sample, per the regulatory definition (WLWB 2023).

2.5 Quality Assurance/Quality Control

Quality assurance/quality control (QA/QC) procedures and requirements are an important aspect of any field or laboratory testing program. The objective of the QA/QC program is to standardize methods such that field sampling, data entry, data analysis, and report preparation produce technically sound and scientifically defensible results.

As part of routine practices for field operations, the following QA procedures were undertaken:

- YSI/AquaTROLL water quality and Oakton pH meters were calibrated according to manufacturer recommendations prior to sample collection for the day.
- Field-measured pH values were verified using a second pH meter at the time of sample collection.
- Surface water samples were collected by experienced personnel following WSP's technical procedures for surface water sample collection.
- Detailed field notes were recorded in a waterproof field notebook.
- Field data were checked at the end of the sampling event for completeness and accuracy.
- Chain-of-custody (COC) forms were used to track all sample shipments from the field to the analytical laboratory.

The following QC samples were collected:

- A duplicate sample at SNP 5-6 to assess variability potentially introduced during sample collection, sample handling, and laboratory analytical procedures.
- A field blank at SNP 5-8 to assess potential contamination during sample collection.
- A travel blank to determine whether any contamination may have occurred during transportation, storage, or analysis.

The analytical laboratories, ALS and Nautilus, also have their own QA/QC programs, including laboratory replicate samples, sample blanks and control standards.

Upon receipt of the final Nautilus toxicity test reports, the following information was verified:

- The condition of samples received by Nautilus was acceptable (e.g., no broken containers or lids).
- The appropriate test species and test methods were used.
- Sample hold times were met.
- Sample temperatures at the time of sample receipt were within an acceptable range.
- Test conditions were within the required range and no unusual results were reported (e.g., pH, specific conductivity, storage temperature, or loading density).
- Test validity criteria were met for the laboratory control water as it pertains to the health histories and sensitivities of the organisms.
- No deviations from test procedures occurred that would influence the reliability of the data.

In addition, internal laboratory QC results were reviewed, and toxicity results were checked for completeness.

3.0 RESULTS

3.1 Water Quality and Acute Toxicity

Water quality results from the June 2024 program are presented in Appendix B. Ambient weather at the time of sampling included temperatures of approximately 12°C, mainly sunny and calm conditions with wind from the east, and cloud cover of approximately 20%.

Water quality and toxicity results for station SNP 5-6 are provided in Table B-1, including comparisons to applicable Water Licence limits (WLWB 2023). Results from Lardass Lake, SNP 5-4 and SNP 5-5, are provided in Table B-2, including comparisons to applicable CCME guidelines (CCME 1999 with updates). Results from the remaining SNP stations are presented in Table B-3. Analytical results provided by the laboratories (i.e., the certificate of analysis and the final toxicity report provided by Nautilus) are included in Appendix C.

At station SNP 5-6, parameter concentrations were below Water Licence EQC and within the required pH range of 5.5 to 9.5. The acute toxicity sample was not acutely toxic to Rainbow Trout or *D. magna* (survival = 100%) per the regulatory definition (Appendix B, Table B-1).

At Lardass Lake, SNP 5-4 and SNP 5-5, parameter concentrations were below the water quality objectives, i.e., the lowest of the CCME acute and chronic guidelines for the protection of aquatic life, the wildlife health guidelines, and applicable FEQG (Appendix B, Table B-2).

3.2 Quality Assurance/Quality Control

The QA/QC assessment of the data collected during the 3 June 2024 sampling event indicated that the data are adequate to address the objectives of the program (Appendix D). There was limited potential for contamination during sampling, transport, and laboratory analysis. Duplicate sample results indicated that intrastation variability was low (i.e., sampling precision was high). Parameter concentrations were consistently less than five times the detection limit in the field and travel blanks.

Recommended hold times between sample collection and analysis were generally met, except for total mercury. The low-level total mercury vials provided by ALS for sample collection were not cleaned by the laboratory to the required level to provide reliable detection limits. ALS analyzed this parameter 8 days after sample collection (within the standard hold time of 190 hours), but a qualifier was applied to the results.

All QA/QC requirements for the acute toxicity testing with samples collected from SNP 5-6 (Section 2.5) were met.

4.0 CLOSURE

We trust the above information satisfies the Water Licence requirements. If you have any questions or require additional information, please contact the undersigned.

WSP Canada Inc.

Saad Pasha, MSc Water Quality Scientist Kate Sinclair, PhD

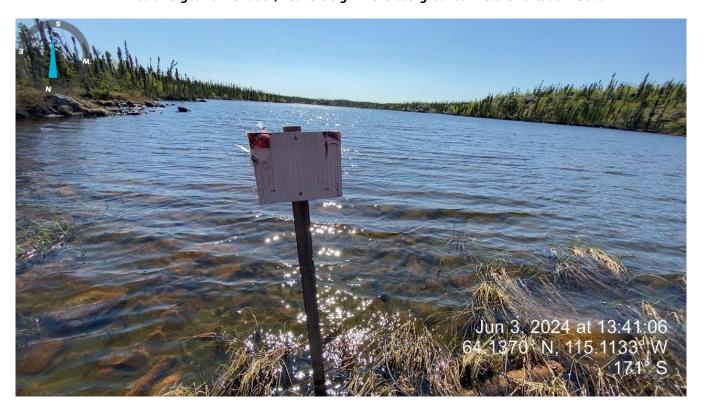
Principal Water Quality Scientist

Michael Iwanyshyn, Ph.D. Lead Water Quality Scientist

SP/KS/MI/jlb/jr

5.0 REFERENCES

CCME (Canadian Council of Ministers of the Environment). 1999. Canadian Environmental Quality Guidelines 1999, with updates to 2020. Winnipeg, MB. Accessed July 2023.


- EC (Environment Canada). 2000. Reference method for determining acute lethality of effluents to *Daphnia magna*, 2000. Environment Canada, EPS 1/RM/14. Second Edition.
- EC. 2007. Reference method for determining acute lethality of effluents to Rainbow Trout. Environment Canada, EPS 1/RM/13. Second Edition (amended May 2007 and February 2016).
- ECCC (Environment and Climate Change Canada). 2016. Federal Environmental Quality Guidelines Vanadium. Available at: FEQG Vanadium EN.pdf (ec.gc.ca).
- ECCC. 2017. Federal Environmental Quality Guidelines Cobalt. Available at: <u>FEQG Cobalt Final EN.pdf</u> (ec.gc.ca).
- ECCC. 2020. Federal Environmental Quality Guidelines Strontium. Available at: Federal-environmental-quality-guidelines-strontium.pdf.
- WLWB (Wek'èezhìı Land and Water Board). 2023. Type A Water Licence W2021L2-0004. Issued 13 January 2023.

APPENDIX A

Site Photographs

Photograph A-1: SNP 5-4, Inflow from Wetlands into Lardass Lake. Note: Sample was collected at the edge of the submerged former dock, near the sign in the background. Photo Orientation: South.

Photograph A-2: SNP 5-4, Sampling location at inflow from Wetlands into Lardass Lake. Photo Orientation: South.

Photograph A-3: SNP 5-5, Lardass Lake. Photo Orientation: Southeast.

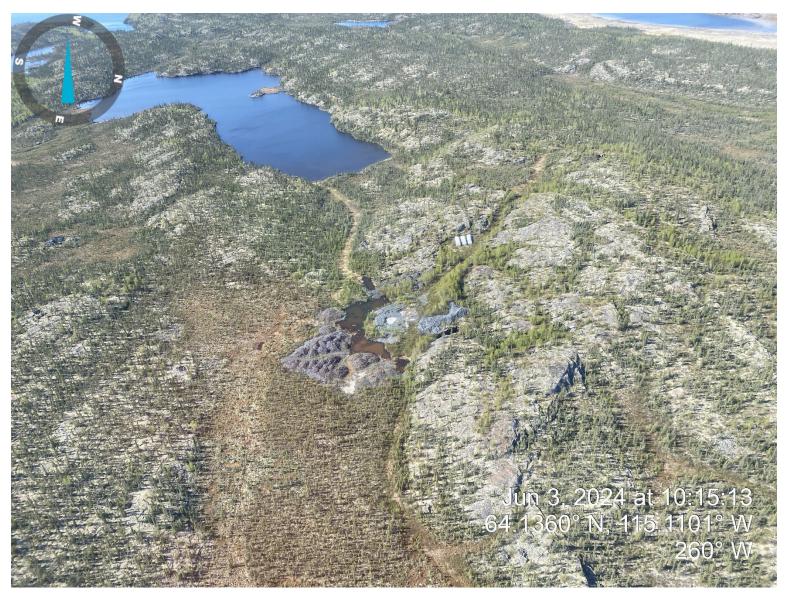
Photograph A-4: SNP 5-6, Combined Runoff from Damoti Rock Piles. Note: Carboys used for toxicity sampling can be seen near water. Photo Orientation: West.

Photograph A-5: SNP 5-8, Damoti Lake Site Decline Ramp (Minewater Pooled at Entrance of Adit). Photo Orientation: West.

Photograph A-6: SNP 5-9, Pool of Standing Water Immediately West of Waste Rock Pile. Photo Orientation: Northwest.

Photograph A-7: SNP 5-11, Pool of Standing Water Between Waste Rock/Ore Stockpiles. Photo Orientation: North.

Photograph A-8: SNP 5-12, Pool of Standing Water in Rock Pile Area. Photo Orientation: South.



Photograph A-9: SNP 5-13, Pool of Standing Water in Rock Pile Area. Photo Orientation: South.

Photograph A-10: SNP 5-14, Flow pathway between rock ore pile area and Lardass Lake. Note: Low water level and no flow observed. Field measurements were collected (probe shown in foreground) but a water quality sample was not collected. Photo Orientation: Southeast.

Photograph A-11: Aerial View of site and drainage to Lardass Lake. Photo Orientation: West.

APPENDIX B

Water Quality Data

Table B-1: Surveillance Network Program Results at SNP 5-6 Compared to Water Licence Limits, 3 June 2024

Table B-1. Survemance Network				Station		
Darameter	Unit	Maximum Concentration of	Maximum Average	Station		
Parameter	Unit	Any Grab Sample ^(a)	Concentration ^(b)	SNP 5-6		
Field Measured Parameters	•					
рН	unitless	5.5 - 9.5	-	6.5		
Specific conductivity	μS/cm	-	-	334		
Temperature	°C	-	-	7.9		
Dissolved oxygen	mg/L	-	-	2.7		
Dissolved oxygen	%	-	-	23		
Conventional Parameters			1	7.5		
pH Specific conductivity	unitless µS/cm	5.5 - 9.5	-	7.5 294		
Hardness, as CaCO ₃	mg/L	-	-	129		
Total alkalinity, as CaCO ₃	mg/L	-	-	24		
Total dissolved solids (calculated)	mg/L	-	-	175		
Total suspended solids	mg/L	30	15	5.9		
Major lons	mg/L	00	10	0.0		
Calcium	mg/L	_ [-	32		
Chloride	mg/L	-	-	1.5		
Fluoride	mg/L	-	-	0.16		
Magnesium	mg/L	-	-	12		
Potassium	mg/L	-	-	2.6		
Sodium	mg/L	-	-	3.1		
Sulphate	mg/L	-	-	102		
Nutrients						
Nitrate	mg-N/L	-	-	<0.005		
Nitrite	mg-N/L		-	<0.001		
Total ammonia	mg-N/L	-	12	0.0084		
Total phosphorus (colourimetric)	mg-P/L	-	-	0.039		
Dissolved phosphorus	mg-P/L	-	-	<0.05		
Total Metals	T	1				
Aluminum	mg/L	-	-	0.13		
Antimony	mg/L	-	-	<0.0001		
Arsenic	mg/L	0.2	0.1	0.00081		
Barium	mg/L	-	-	0.014 <0.00002		
Beryllium Bismuth	mg/L mg/L	-	-	<0.00002		
Boron	mg/L	-	-	0.030		
Cadmium	mg/L	0.002	0.001	0.000015		
Cesium	mg/L	-	-	0.00076		
Chromium	mg/L	-	-	<0.0005		
Cobalt	mg/L	_	-	0.00066		
Copper	mg/L	0.02	0.01	0.0035		
Iron	mg/L	-	-	1.3		
Lead	mg/L	0.04	0.02	0.00037		
Lithium	mg/L	-	-	0.012		
Manganese	mg/L	-	-	0.058		
Molybdenum	mg/L	-	-	<0.00005		
Nickel	mg/L	0.5	0.25	0.024		
Rubidium	mg/L	-	-	0.0067		
Selenium	mg/L	-	-	<0.00005		
Silicon	mg/L	-	-	2.6		
Silver	mg/L	-	-	<0.00001		
Strontium	mg/L	-	-	0.094		
Sulphur	mg/L	-	-	37		
Tellurium	mg/L	-	-	<0.0002		
Thallium	mg/L	-	-	<0.00001		
Thorium	mg/L	-	-	<0.0001		
Tin Titanium	mg/L	-	-	<0.0001		
Titanium	mg/L	-	-	0.00062		
Tungsten	mg/L	-	-	<0.0001 0.00011		
Uranium Vanadium	mg/L mg/L	-	-	<0.0005		
Zinc	mg/L	0.2	0.1	0.0005		
Zirconium	mg/L	-	-	<0.0071		
Zii Oonium	I IIIg/L		-	~ 0.000∠		

Table B-1: Surveillance Network Program Results at SNP 5-6 Compared to Water Licence Limits, 3 June 2024

				Station
Parameter	Unit	Maximum Concentration of Any Grab Sample ^(a)	Maximum Average Concentration ^(b)	SNP 5-6
Dissolved Metals	•			
Aluminum	mg/L	-	-	0.063
Antimony	mg/L	-	-	<0.0001
Arsenic	mg/L	-	-	0.00056
Barium	mg/L	-	-	0.013
Beryllium	mg/L	-	-	<0.00002
Bismuth	mg/L	-	-	<0.00005
Boron	mg/L	-	-	0.029
Cadmium	mg/L	-	-	0.000016
Cesium	mg/L	-	-	0.00077
Chromium	mg/L	-	-	<0.0005
Cobalt	mg/L	-	-	0.00076
Copper	mg/L	-	-	0.0025
Iron	mg/L	-	-	0.51
Lead	mg/L	-	-	0.00010
Lithium	mg/L	-	-	0.012
Manganese	mg/L	-	-	0.072
Molybdenum	mg/L	-	-	<0.00005
Nickel	mg/L	-	-	0.023
Rubidium	mg/L	-	-	0.0065
Selenium	mg/L	-	-	0.000054
Silicon	mg/L	-	-	2.5
Silver	mg/L	-	-	<0.00001
Strontium	mg/L	-	-	0.094
Sulphur	mg/L	-	-	36
Tellurium	mg/L	-	-	<0.0002
Thallium	mg/L	-	-	<0.00001
Thorium	mg/L	-	-	<0.0001
Tin	mg/L	-	-	<0.0001
Titanium	mg/L	-	-	<0.0003
Tungsten	mg/L	-	-	<0.0001
- Uranium	mg/L	-	-	0.000080
√anadium	mg/L	-	-	<0.0005
Zinc	mg/L	-	-	0.0063
Zirconium	mg/L	-	-	<0.0003
Acute Toxicity	<u>. </u>		<u> </u>	
Daphnia magna survival	%	≥50	-	100
Daphnia magna immobility	%	-	-	0
Rainbow trout survival	%	≥50	-	100

Notes:

WLWB = Wek'èezhii Land and Water Board; SNP = Surveillance Network Program; $CaCO_3$ = calcium carbonate; μ S/cm = microsiemens per centimetre; mg/L = milligrams per litre; mg-N/L = milligrams of nitrogen per litre; mg-P/L = milligrams of phosphorus pe

Reference:

 $WLWB \ (Wek'\`eezhii\ Land\ and\ Water\ Board).\ 2023. Type\ A\ Water\ Licence\ W2021L2-0004.\ Issued\ 13\ January\ 2023.$

a) Maximum concentration of any grab sample as per Type A Water Licence W2021L2-0004 (WLWB 2023).

b) Maximum average concentration as per Type A Water Licence W2021L2-0004 (WLWB 2023).

			Guideline:		Station		
Parameter	Unit	For the Protect	tion of Aquatic Life	Wildlife Health	SNP 5-4	SNP 5-5	
		Acute	Chronic	(Livestock)	3NF 3-4	SNF 5-5	
ield Measured Parameters							
Н	unitless	-	6.5 - 9.0	-	8.2	8.1	
Specific conductivity	μS/cm	-	-	-	121	122	
Temperature	°C	-	-	-	16	16	
Dissolved oxygen	mg/L %	-	6.5	-	10 105	10 105	
Dissolved oxygen Conventional Parameters	%	-	-	-	105	105	
oH	unitless		6.5 - 9.0	-	7.9	7.9	
Specific conductivity	μS/cm	-	-	-	127	128	
Hardness, as CaCO ₃	mg/L	-	-	-	59	57	
Fotal alkalinity, as CaCO₃	mg/L				43	44	
Total dissolved solids (calculated)	mg/L	-	-	3000	88	88	
Total suspended solids	mg/L	-	-	-	7.9	7.2	
Dissolved organic carbon	mg/L	-	-	-	22	22	
Major lons				1 1		T	
Calcium	mg/L	-	-	1,000	17	16	
Chloride Fluoride	mg/L	640	120	-	0.79	0.77	
-iuoride Magnesium	mg/L mg/L	<u>-</u>	0.12	2	0.076 4.2	0.082 4.3	
Potassium	mg/L	-	-	-	1.4	1.4	
Sodium	mg/L	<u>-</u>	-	-	2.5	2.7	
Sulphate	mg/L	-	-	1,000	14	14	
Nutrients	<u>J</u>			,- ,-			
Nitrate	mg-N/L	124	2.9	-	<0.005	<0.005	
Nitrite	mg-N/L		0.06	10	<0.001	<0.001	
Гotal ammonia	mg-N/L	-	0.35 ^(a)	-	0.033	0.032	
Γotal phosphorus (colourimetric)	mg-P/L	-	-	-	0.021	0.019	
Dissolved phosphorus	mg/-P/L	-	-	-	<0.05	<0.05	
Total Metals			/h)		0.004	1 0005	
Aluminum	mg/L	-	0.10 ^(b)	5.0	0.091	0.095	
Antimony Arsenic	mg/L mg/L	-	0.005	0.025	<0.0001 0.00026	<0.0001 0.00027	
Barium	mg/L	<u>-</u>	-	-	0.0089	0.00027	
Beryllium	mg/L	-	-	0.1	<0.0009	<0.0002	
Bismuth	mg/L	-	-	-	<0.00005	<0.00005	
Boron	mg/L	29	1.5	5.0	0.010	0.011	
Cadmium	mg/L	0.0012 ^(c)	0.000099 ^(c)	0.08	<0.000005	<0.000005	
Calcium	mg/L	-	-	-	16	16	
Cesium	mg/L	-	-	-	0.000026	0.000028	
Chromium	mg/L	-	0.001 ^(d)	0.05	<0.0005	0.00056	
Cobalt	mg/L	-	0.00081 ^(e)	1.0	0.00014	0.00016	
Copper	mg/L	-	0.002 ^(c)	0.5	0.00080	0.00084	
ron	mg/L	-	0.30	- 0.1	0.11	0.093	
_ead _ithium	mg/L mg/L	-	0.001 ^(c)	0.1	<0.00005 0.0024	<0.00005 0.0024	
Magnesium	mg/L	-	-	-	4.3	4.3	
Manganese	mg/L	<u>-</u>	-	-	0.069	0.079	
Mercury	mg/L	-	0.000026	0.003	0.0000019	0.0000021	
Molybdenum	mg/L	-	0.073	0.5	0.000095	0.00011	
Nickel	mg/L	-	0.025 ^(c)	1.0	0.0016	0.0019	
Potassium	mg/L	-	-	-	1.4	1.4	
Rubidium	mg/L	-	-	-	0.0024	0.0024	
Selenium	mg/L	-	0.001	0.05	<0.00005	<0.00005	
Silicon	mg/L	-	-	-	0.21	0.23	
Silver	mg/L	-	0.00025	-	<0.00001	<0.00001	
Strontium	mg/L	-	-	-	2.5	2.6	
Strontium	mg/L	<u>-</u>	-	-	0.041 5.1	0.041 5.3	
Sulphur Fellurium	mg/L mg/L	-	-	-	<0.0002	<0.0002	
Thallium	mg/L	-	0.0008	-	<0.0002	<0.0002	
Thorium	mg/L	<u>-</u>	-	-	<0.0001	<0.0001	
Fin	mg/L	<u> </u>	-	-	<0.0001	<0.0001	
Fitanium	mg/L	-	-	-	0.00058	0.00079	
Гungsten	mg/L	-	-	-	<0.0001	<0.0001	
Jranium	mg/L	0.033	0.015	0.2	0.00015	0.00015	
/anadium	mg/L	-	0.12 ^(f)	0.1	<0.0005	<0.0005	
Zinc	mg/L	-	-	50	<0.003	<0.003	
Zirconium	mg/L	-	-	-	<0.0002	<0.0002	

Appendix B

July 2024

Water Quality Data
21499891-032-R-Rev0

Table B-2: Surveillance Network Program Sample Results at Lardass Lake Compared to Water Quality Objectives, 3 June 2024

Table B-2. Our vemance Network			Guideline:	Station		
Parameter	Unit	For the Protection of Aquatic Life		Wildlife Health		
		Acute	Chronic	(Livestock)	SNP 5-4	SNP 5-5
Dissolved Metals	•		•			
Aluminum	mg/L	-	-	-	0.054	0.049
Antimony	mg/L	-	-	-	<0.0001	<0.0001
Arsenic	mg/L	-	-	-	0.00028	0.00026
Barium	mg/L	-	-	-	0.0080	0.0081
Beryllium	mg/L	-	-	-	<0.00002	<0.00002
Bismuth	mg/L	-	-	-	<0.00005	<0.00005
Boron	mg/L	-	-	-	<0.01	<0.01
Cadmium	mg/L	-	-	-	<0.000005	<0.000005
Cesium	mg/L	-	-	-	0.000025	0.000026
Chromium	mg/L	-	-	-	<0.0005	<0.0005
Cobalt	mg/L	-	-	-	<0.0001	<0.0001
Copper	mg/L	-	-	-	0.00064	0.00059
Iron	mg/L	-	-	-	0.018	<0.01
Lead	mg/L	-	-	-	<0.00005	<0.00005
Lithium	mg/L	-	-	-	0.0022	0.0022
Manganese	mg/L	4.1 ^(c)	0.22 ^(g)	-	0.0068	0.00055
Molybdenum	mg/L	-	-	-	0.00010	0.000089
Nickel	mg/L	-	-	-	0.0013	0.0012
Rubidium	mg/L	-	-	-	0.0023	0.0024
Selenium	mg/L	-	-	-	<0.00005	<0.00005
Silicon	mg/L	-	-	-	0.16	0.17
Silver	mg/L	-	-	-	<0.00001	<0.00001
Strontium	mg/L	-	2.5 ^(h)	-	0.040	0.042
Sulphur	mg/L	-	-	-	4.8	5.3
Tellurium	mg/L	-	-	-	<0.0002	<0.0002
Thallium	mg/L	-	-	-	<0.00001	<0.00001
Thorium	mg/L	-	-	-	<0.0001	<0.0001
Tin	mg/L	-	-	-	<0.0001	<0.0001
Titanium	mg/L	-	-	-	<0.0003	<0.0003
Tungsten	mg/L	-	-	-	<0.0001	<0.0001
Uranium	mg/L	-	-	-	0.00013	0.00012
Vanadium	mg/L	-		-	<0.0005	<0.0005
Zinc	mg/L	0.097 ⁽ⁱ⁾	0.022 ⁽ⁱ⁾	-	0.0010	<0.001
Zirconium	mg/L	-	-	-	<0.0003	<0.0003

Notes:

- a) The ammonia guideline is pH and temperature dependent. The ammonia guideline (0.35 mg-N/L) is based on the combination of field pH (8.2) and water temperature (16°C).
- b) Guideline is pH dependent. The guideline shown is based on the field pH (8.1 and 8.2).
- c) Guideline is hardness dependent. The guideline shown is based on the minimum hardness observed in the dataset (57 mg/L).
- d) Guideline is for chromium VI.
- e) Federal environmental quality guideline for cobalt is dependent on water hardness. The guideline shown is based on the minimum hardness observed in the dataset (57 mg/L) (ECCC 2017).
- f) Federal environmental quality guideline for vanadium (ECCC 2016).
- g) The chronic dissolved manganese guideline is pH and hardness dependent. The chronic manganese guideline (0.22 mg/L) is based on the combination of field pH (8.1) and hardness (57 mg/L).
- h) Federal environmental quality guideline for strontium (ECCC 2020).
- i) The acute and chronic dissolved zinc guidelines are dependent on pH, hardness, and DOC (acute only). The guidelines (0.097 and 0.022 mg/L, respectively) are based on the combination of field pH (8.1), hardness (57 mg/L), and DOC (22 mg/L) (CCME 1999).

CCME = Canadian Council of Ministers of the Environment; SNP = Surveillance Network Program; μ S/cm = microsiemens per centimetre; mg/L = milligrams per litre; mg-N/L = milligrams of nitrogen per litre; mg-P/L = milligrams of phosphorus per litre; mg-N/L = milligrams per litre

References

CCME (Canadian Council of Ministers of the Environment). 1999. Canadian Environmental Quality Guidelines 1999, with updates to 2020. Winnipeg, MB. Accessed October 2022. ECCC (Environment and Climate Change Canada). 2016. Federal Environmental Quality Guidelines – Vanadium. Available at: https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/canadian-environmental-protection-act-1999-8.html

ECCC. 2017. Federal Environmental Quality Guidelines – Cobalt. Available at: https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/canadian-environmental-protection-act-1999-federal-environmental-quality-guidelines-cobalt.html

ECCC. 2020. Federal Environmental Quality Guidelines - Strontium. Available at: https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/federal-environmental-quality-guidelines-strontium.html#toc7

Table B-3: Surveillance Network Program Sample Results for Stations around the Rock Piles, 3 June 2024

Table B-3: Surveillance Network P	rogram Sample	Results for Stations around the Rock Piles, 3 June 2024 Station						
Parameter	Unit	SNP 5-8	SNP 5-9	SNP 5-11	SNP 5-12	SNP 5-13		
ield Measured Parameters								
bH Specific conductivity	unitless µS/cm	6.6 113	6.5 379	6.5 383	6.6 291	6.6 286		
Femperature	°C	2.9	8.8	11	13	11		
Dissolved oxygen	mg/L	5.8	6.8	5.9	6.7	7.8		
Dissolved oxygen Conventional Parameters	%	43	58	53	63	70		
ьН	unitless	7.4	7.9	7.5	7.3	7.4		
Specific conductivity	μS/cm	115	505	374	304	302		
Hardness, as CaCO ₃ Total alkalinity, as CaCO ₃	mg/L mg/L	49 24	220 59	166 23	130 15	132 16		
Total dissolved solids (calculated)	mg/L	68	303	221	178	177		
Total suspended solids	mg/L	2.8	4.7	4.0	4.4	4.5		
Major Ions Calcium	mg/L	13	60	42	33	33		
Chloride	mg/L	1.4	3.9	1.9	1.5	1.4		
Fluoride	mg/L	0.053	0.17	0.21	0.21	0.20		
Magnesium Potassium	mg/L mg/L	3.8 1.7	17 3.2	15 3.4	12 2.8	12 2.9		
Sodium	mg/L	1.6	5.5	3.5	3.1	3.1		
Sulphate	mg/L	26	168	133	108	106		
Nutrients Nitrate	mg-N/L	0.016	<0.005	<0.005	<0.005	<0.005		
Nitrite	mg-N/L	<0.001	<0.001	<0.001	<0.001	<0.001		
Total ammonia	mg-N/L	0.0065	0.023	0.027	0.012	0.010		
Total phosphorus (colourimetric) Dissolved phosphorus	mg-P/L mg-P/L	0.024 <0.05	0.018 <0.05	0.012 <0.05	0.015 <0.05	0.015 <0.05		
Total Metals	g . / L							
Aluminum	mg/L	0.35	0.061	0.12	0.19	0.19		
Antimony Arsenic	mg/L mg/L	<0.0001 0.00065	0.00074 0.00070	0.00011 0.00068	<0.0001 0.00068	0.00010 0.00068		
Barium	mg/L	0.0063	0.00070	0.016	0.0008	0.0008		
Beryllium	mg/L	0.00002	0.000022	0.000031	0.000039	0.000030		
Bismuth Boron	mg/L mg/L	<0.00005 <0.01	<0.00005 0.031	<0.00005 0.037	<0.00005 0.032	<0.00005 0.031		
Cadmium	mg/L	0.000031	0.00013	0.000041	0.000031	0.00036		
Cesium	mg/L	0.00014	0.00026	0.00051	0.00065	0.00065		
Chromium Cobalt	mg/L mg/L	0.00094 0.0011	<0.0005 0.0021	<0.0005 0.0098	<0.0005 0.0058	<0.0005 0.0053		
Copper	mg/L	0.0067	0.0021	0.0038	0.0038	0.0033		
ron	mg/L	0.56	1.8	1.6	1.5	1.5		
_ead	mg/L	0.00025 0.0032	0.00025	0.00032	0.00028	0.00029		
_ithium Manganese	mg/L mg/L	0.0032	0.012 0.31	0.017 0.65	0.014 0.43	0.013 0.39		
Molybdenum	mg/L	0.00046	0.000084	0.000052	<0.00005	0.000063		
Nickel	mg/L	0.0096	0.026	0.071 0.0076	0.053	0.052		
Rubidium Selenium	mg/L mg/L	0.0039 0.000069	0.0069 0.000066	0.0076	0.0064 0.000078	0.0063 0.00069		
Silicon	mg/L	2.3	3.4	2.8	2.9	2.9		
Silver Strontium	mg/L	0.000046 0.033	<0.00001 0.17	<0.00001 0.13	<0.00001 0.096	<0.00001 0.095		
Sulphur	mg/L mg/L	9.3	60	49	38	38		
Tellurium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Thallium	mg/L	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001		
Thorium Tin	mg/L mg/L	<0.0003 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001		
Titanium	mg/L	0.0036	<0.0006	0.00058	0.00046	0.00072		
Tungsten	mg/L	0.00047	<0.0001	<0.0001	<0.0001	<0.0001		
Jranium Vanadium	mg/L mg/L	0.00069 <0.0005	0.00014 <0.0005	0.00015 <0.0005	0.00015 <0.0005	0.00015 <0.0005		
Zinc	mg/L	0.0055	0.0041	0.015	0.013	0.014		
Zirconium	mg/L	<0.0004	<0.0004	<0.0002	<0.0002	<0.0002		
Dissolved Metals Aluminum	mg/L	0.21	0.027	0.041	0.078	0.074		
Antimony	mg/L	<0.0001	0.0051	<0.0001	<0.0001	<0.001		
Arsenic	mg/L	0.00059	0.00060	0.00047	0.00049	0.00050		
Barium Beryllium	mg/L mg/L	0.015 <0.00002	0.041 <0.00002	0.017 <0.00002	0.016 <0.00002	0.015 <0.00002		
Bismuth	mg/L mg/L	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002		
Boron	mg/L	<0.01	0.030	0.033	0.030	0.030		
Cadmium	mg/L	0.000028	0.0000092	0.000038	0.000035	0.000034		
Cesium Chromium	mg/L mg/L	0.00013 0.00068	0.00028 <0.0005	0.00056 <0.0005	0.00071 <0.0005	0.00072 <0.0005		
Cobalt	mg/L	0.00074	0.00037	0.0086	0.0053	0.0048		
Copper	mg/L	0.0063	0.0034	0.0030	0.0032	0.0035		
ron _ead	mg/L mg/L	0.13 0.00008	0.48 0.000073	0.40 0.000076	0.48 0.000085	0.48 0.000085		
ithium	mg/L	0.0031	0.012	0.015	0.013	0.014		
Manganese	mg/L	0.037	0.12	0.61	0.42	0.39		
Molybdenum Nickel	mg/L mg/L	0.00047 0.009	0.00011 0.024	0.000050 0.069	<0.00005 0.051	0.00011 0.051		
Rubidium	mg/L	0.0039	0.0072	0.0078	0.0069	0.0069		
Selenium	mg/L	0.000066	0.000050	0.000063	0.000060	0.000061		
Silicon Silver	mg/L mg/L	2.2 0.000021	3.4 <0.00001	2.7 <0.00001	2.9 <0.00001	2.9 <0.00001		
Strontium	mg/L	0.00021	0.18	0.13	0.10	0.11		
Sulphur	mg/L	9	59	47	37	36		
Tellurium Thallium	mg/L mg/L	<0.0002 <0.00001	<0.0002 <0.00001	<0.0002 <0.00001	<0.0002 <0.00001	<0.0002 <0.00001		
Thorium	mg/L mg/L	0.00017	<0.0001	<0.0001	<0.0001	<0.0001		
- Tin	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		
Fitanium	mg/L	0.0012	<0.0003	<0.0003	<0.0003	<0.0003		
Гungsten Jranium	mg/L mg/L	0.00037 0.00056	<0.0001 0.00012	<0.0001 0.000081	<0.0001 0.000092	<0.0001 0.000090		
/anadium	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
Zinc	mg/L	0.0041	0.0020	0.012	0.011	0.0097		

SNP = Surveillance Network Program; µS/cm = microsiemens per centimetre; mg/L = milligrams per litre; mg-N/L = milligrams of nitrogen per litre; mg-P/L = milligrams of phosphorus per litre; CaCO₃ = calcium carbonate; % = percent; °C = degrees Celsius; < = less than.

APPENDIX C

Laboratory Certificate of Analysis

Acute Toxicity Test Results

Sample collected June 3, 2024

Final Report

July 5, 2024

Submitted to: ALS Environmental

Yellowknife, NT

SAMPLE INFORMATION

		_				
Sample ID/ Internal ID	Collected	Received	Rainbow trout test initiation	<i>Daphnia</i> <i>magna</i> test initiation	Receipt temperature	
YL2400571-001 SNP 5-6 / 2324-2287	2024-06-03 at 1200h	2024-06-05 at 1420h	2024-06-06 at 1405h	2024-06-06 at 1300h	5.9°C	

TEST TYPES

- Rainbow trout 96-h single concentration screening test
- Daphnia magna 48-h single concentration screening test

RESULTS

Toxicity test results

Samula ID	Percent survival in 100% (v/v) sample					
Sample ID -	Rainbow trout	Daphnia magna				
YL2400571-001 SNP 5-6	100	100				

Sample ID	Daphnia magna Percent Immobility in 100% (v/v)
YL2400571-001 SNP 5-6	0

QA/QC

QA/QC summary	Rainbow trout	Daphnia magna
Reference toxicant LC50 (95% CL)	3.3 (2.8-3.8) g/L KCl ¹	6.2 (5.9-6.5) g/L NaCl ²
Reference toxicant historical mean (2 SD Range)	3.8 (3.0-5.0) g/L KCl	6.2 (5.6 -6.8) g/L NaCl
Reference toxicant CV	8.5%	3.4%
Organism health history	Acceptable	Acceptable
Protocol deviations	None	None
Water quality range deviations	None	None
Control performance	Acceptable	Acceptable
Test performance	Valid	Valid

¹ Test date 2024-05-23; ² Test date 2024-06-05

Reference: 2324-2287

LC = Lethal Concentration, CL = Confidence Limit, SD = Standard Deviation, CV = Coefficient of Variation

Dessica Knoch

Report By: Jessica Knoch, BSc Laboratory Assistant

Reference: 2324-2287

Reviewed By: Daisy Meyer, BSc Project Coordinator

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

APPENDIX A – Summary of test conditions

Table 1. Summary of test conditions: 96-h rainbow trout (Oncorhynchus mykiss) survival test.

Test species Oncorhynchus mykiss

Organism source Fish hatchery Organism age Juvenile Test type Static Test duration 96 hours

Test vessel 5-gallon glass aquariums

10 - 20 L, depending on size of fish Test volume

Test solution depth Minimum 15 cm

Test concentrations 100% (undiluted) sample plus laboratory control

Test replicates 1 per treatment Number of organisms 10 per replicate

Control/dilution water De-chlorinated City of Calgary tap water

Test solution renewal None Test temperature 15 ± 1°C None Feeding

100 to 500 lux Light intensity

Photoperiod 16 hours light/8 hours dark

Aeration $6.5 \pm 1 \, \text{mL/min/L}$

> pH, conductivity, dissolved oxygen, and temperature were measured at test initiation and test completion;

Test Measurements salinity measured at test initiation; evaluated for

survival daily

Environment Canada (2000), EPS 1/RM/13, with 2007, Test protocol

2016, & 2023 amendments

Statistical software None

Test endpoints Percent survival Test acceptability criteria for controls Survival ≥ 90%

Reference toxicant Potassium chloride (KCI)

Table 2. Summary of test conditions: 48-h Daphnia magna survival test.

Test species Daphnia magna

Organism source In-house culture

Organism age <24 hours

Test type Static

Test duration 48 hours

Test vessel 375 mL glass vessels

Test volume 150 mL

Test concentrations 100% (undiluted) sample plus laboratory control

Test replicates 3 per treatment

Number of organisms 10 per replicate

De-chlorinated City of Calgary tap water amended

Control/dilution water with 4 mg/L KCl and with B12 (2 µg/L) and Na₂SeO₄

 $(2 \mu g Se/L)$

Test solution renewal None
Test temperature $20 \pm 2^{\circ}$ C
Feeding None

Light intensity 400 to 800 lux

Photoperiod 16 hours light/8 hours dark

Aeration None

Test measurements

pH, conductivity, dissolved oxygen, and temperature

measured at test initiation and completion; salinity

and hardness measured at test initiation in undiluted sample; evaluated daily for survival

Environment Canada (2000), EPS 1/RM/14 with

Test protocol February 2016 amendments

Statistical software None

Test endpoints Mean percent survival

Test acceptability criteria for controls Survival $\geq 90\%$

Reference toxicant Sodium chloride (NaCl)

APPENDIX B – Toxicity test data

Trout Bench Sheet

ation rate adj aeration time (mg/L) of 100 np (°C) of 100	2024/ 2024/ 2024/ 2024/ 2024/ ration justed to 6.5	06/06	_	Initial AC/KN AC/KN PY William AO when the test v	Chem. Cart	Double Counted KN - - fish 2 hours	Do in mg/L (70' saturation)** 6.2 mg/L - 8.8 mg/L 6.0 mg/L - 8.6 mg/L	Lat 14°C Lat 15°C
0 1 2 3 4 nple Pre-Aer ation rate adj aeration time (mg/L) of 100 np (°C) of 100 t Chemistry Conc.	2024/ 2024/ 2024/ 2024/ 2024/ ration 2008/	06/06 06/07 06/08 06/09 06/10 +/- 1 mL/min/L 0 hours	1405 0755 0755 0800 13 15 Note: ; time : (ves) no 0.5 hours	AC/KN MS PY Weighy AO when the test v	zas loaded with	Counted	DO in mg/L (70' saturation)** 6.2 mg/L - 8.9 mg/L 6.1 mg/L - 8.8 mg/L	Initial EC (µS/c) Salinity (ppt): % - 100% Lat 14°C Lat 15°C
0 1 2 3 4 nple Pre-Aer ation rate adj aeration time (mg/L) of 100 np (*C) of 100 ct Chemistry Conc.	2024/ 2024/ 2024/ 2024/ 2024/ ration 2008/	06/06 06/07 06/08 06/09 06/10 +/- 1 mL/min/L 0 hours	1405 0755 0755 0800 13 15 Note: ; time : (ves) no 0.5 hours	AC/KN MS PY Weighy AO when the test v	zas loaded with	fish	DO in mg/L (70' saturation)** 6.2 mg/L - 8.9 mg/L - 6.8 mg/L - 8.8	Initial EC (µS/c) Salinity (ppt): % - 100% Lat 14°C Lat 15°C
mple Pre-Aer ration rate adj aeration time 0(mg/L) of 100 mp ("C) of 100 st Chemistry Conc.	2024/ 2024/ 2024/ 2024/ ration justed to 6.5 20% 20% 20%	06/07 06/08 06/09 06/10 +/- 1 mL/min/L 0 hours	0755 0755 0700 13 15 Note: *; time ::ves/no 0.5 hours	WS PL William AO when the test v	- 	- - - fish	DO in mg/L (70' saturation)** 6.2 mg/L - 8.9 mg/L - 8.8	Salinity (ppt): 3 % - 100% Lat 14°C Lat 15°C
2 3 4 mple Pre-Aer ration rate adj aceration time 0(mg/L) of 100 mp (°C) of 100 st Chemistry Conc.	2024/ 2024/ 2024/ ration justed to 6.5 20% 20% 20% 20% 20%	06/08 06/09 06/10 +/- 1 mL/min/L 0 hours	0.755 0.800 13 15 Note: *; time .:ves/no 0.5 hours	when the test v	- 	- - fish	DO in mg/L (70° saturation)** 6.2 mg/L - 8.9 mg/l 6.1 mg/L - 8.8 mg/l	% - 100 % Lat 14°C Lat 15°C
mple Pre-Aer ration rate adj aearation time 0(mg/L) of 100 mp (°C) of 100 st Chemistry Conc.	2024/ 2024/ ration justed to 6.5 20% 00% and Biology	06/09 06/10 +/- 1 mL/min/L 0 hours	13 15 Note: * ; time .: (ves/no 0.5 hours	when the test v	1 vas loaded with	- fish	DO in mg/L (70° saturation)** 6.2 mg/L - 8.9 mg/l 6.1 mg/L - 8.8 mg/l	Lat 14°C Lat 15°C
mple Pre-Aer ration rate adj eaeration time 0(mg/L) of 100 mp (°C) of 100 st Chemistry Conc.	2024/ ration justed to 6.5 2 0% 0% and Biology	06/10 +/- 1 mL/min/L 0 hours	Note: *; time .:ves/no 0.5 hours	when the test v	1 vas loaded with	- fish	DO in mg/L (70° saturation)** 6.2 mg/L - 8.9 mg/L 6.1 mg/L - 8.8 mg/L	Lat 14°C Lat 15°C
mple Pre-Aer ration rate adj searation time (mg/L) of 100 mp (°C) of 100 st Chemistry Conc.	ration justed to 6.5 e D% D% and Biology	+/- 1 mL/min/L 0 hours	Note: *; time .:ves/no 0.5 hours	when the test v	vas loaded with	fish	DO in mg/L (70° saturation)** 6.2 mg/L - 8.9 mg/l 6.1 mg/L - 8.8 mg/l	Lat 14°C Lat 15°C
ration rate adjusteration rate adjusteration time of mg/L) of 100 mp (°C) of 100 st Chemistry Conc.	justed to 6.5 e 0% 0% and Biology	0 hours	:ves/no 0.5 hours				saturation)** 6.2 mg/L - 8.9 mg/l 6.1 mg/L - 8.8 mg/l	Lat 14°C Lat 15°C
ration rate adjusteration rate adjusteration time of mg/L) of 100 mp (°C) of 100 st Chemistry Conc.	justed to 6.5 e 0% 0% and Biology	0 hours	0.5 hours	1 hour	1.5 hours	2 hours	saturation)** 6.2 mg/L - 8.9 mg/l 6.1 mg/L - 8.8 mg/l	Lat 14°C Lat 15°C
eaeration time O(mg/L) of 100 mp (°C) of 100 st Chemistry Conc. Day 0	e D% D% and Biology	0 hours	0.5 hours	1 hour	1.5 hours	2 hours	6.2 mg/L - 8.9 mg/l 6.1 mg/L - 8.8 mg/l	L at 15°C
o(mg/L) of 100 mp (°C) of 100 st Chemistry Conc.	0% 0% and Biology	8.2		Thour	1.5 hours	2 nours	6.1 mg/L - 8.8 mg/l	L at 15°C
st Chemistry Conc. Day 0	% and Biology	-0.	3.3				- Y-5 1.	U
conc.	and Biology	16		L			6.0 mg/L - 8.6 mg/l	liat 16°C
Conc.								
Conc.							**corrected for altit	tude
Day 0	1.0							1
	7.0							J
	7.0		pposition	uniated was a common or o	- 0 -			
	1.0		pH (units) (range: 5	.5-8.5)			1
Day 4								1
	7.5]
	7.7			EC (uS/cm)				10
Day 0	255							-
Day 4	784							
		_		4000/	Westerlie	38		
	00		O (mg/L) (70	100% saturati	on at test temp	0.)	-	1
Day 0	8.5							4
Day 4	8.8							1
			520					
- · -			Temper	ature (°C) (range	e: 14-16 C)		Ť	1
Day 0	طا ا							4
Day 4	15]
				COMMITTEE IN THE PARTY OF THE P				
F			Number Aliv	e (In brackets ni	umber stressed)		,	1
Day 0	10							
Day 1	ID							4
Day 2	N							4
Day 3	Çį.							1
Day 4	10							J
U	Inless otherwi	se noted, beha	vior is conside	red to be norm	al			
			15					<u></u>
Te	est Volume (18		Control Refer	rence Number:	20240606CT	LA	_
					3.]
A.			·	-11				-10.

Reviewed By:

Date Reviewed: 2024 -06- 1 7

Control Trout Bench Sheet

Client	tNE	Control Refere	nce Number	20240606CTLA		Chamber	3
Test Log							
					Double	Daily Data	Sample Reference Number(s):
Day	Date	Time	Initial	Chem. Cart	Counted	Review	2324-2278-01
0	2024/06/06	1330	AC/KN	7	KV	PUN	2324-2278-02
1	2024/06/07	0350	MC			KO	2324-2287
2	2024/06/08	0750	pi	9		AM	2324-2293
3	2024/06/09	0200	KN		•	M C	2324-2294
4	2024/06/10	1310	45/BD / AD	1	1.00	NC.	
	adjusted to 6.5 +/- 1 mL/min	In the second		vas loaded with f	ish	Test Orga	nism Information
Conc.	CTL					Batch	20240306TR
pH (units) (ra Day 0 Day 4	7.8 7.9					Source	Trout Lodge
EC (u Day 0 Day 4	(S/cm)					Held at 15± 2°C for	5 ≥14 daysY
DO (mg/L) (70	-100% saturation at test to			_		(must be ≥14 days) Percent stock morta	
Day 0 Day 4	3.6	DO in mg/L satura 6.2 mg/L - 8.9 mg/	tion)**			(7 days prior to test, must Test Volume (L)	st be <2%)
Temperati Day 0 Day 4	ure (°C) (range: 14-16°C)	6.1 mg/L - 8.8 mg/ 6.0 mg/L - 8.6 mg/ **corrected for alti	/L at 15°C /L at 16°C			(2)	
Number Alive (Day 0	In brackets number stressed)				1	Fest Volume Ranges of the control)
Day 1 Day 2 Day 3	10					14 L control allo	ows for 13 L - 15 L test(s) ows for 14 L - 18 L test(s)
Day 4	Validity Criteria: must be : Unless otherwise noted, bel	10% mortality navior is conside	and/or stressered to be norn	ed behavior in ti	ne control	18 L control allo	ows for 16 L - 20 L test(s)
Control Fish	Control Or Length Weight (cm) (g)	ganism Data					
1 2 3	3,90,5	Loading Densit (must be ≤0.5 g/L)		0.3			
4 5 6	3, 5 0, 4	Mean Length (o Length Range (4.0			
7 8	3 9 0 6	Mean Weight (0.5			
9 10	319014	(Must be ≥0.3g) Weight Range;		0.4-0.7			
Comments/Pr	otocol Deviations :						
- January F1		sne					
					8		
	Reviewed By:	LC	Е	Date Reviewed:	2024	-06- 1 0	

Daphnia Bench Sheet

Method	DAS20	ec e		Client	ALS 106	ř.	Reference	2324	-2287	e
Test Log								Sample In	formation	1
Day	Da	ate	Time	Technician	Chem. Cart	Daily Dat	a Review	Initial pH:		76
0	2024/	06/06	1300	EP/LS	2	M		Initial EC (uS/cm):	277
1	2024/		0835	AP		KO		Salinity (p		-544
2	2024/		01230	KN	2	A	~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	1 202.7	30,00	M	NO	· ·	1 V				
Lab Code	CTLA	CTLB	CTLC	100A	100B	100C	Ι			1
	CIET	CILD	CILC	100/1	1000	1000				
day				nH (uni	its) (range: 6	0-8 5)				
0	20	70	7.9	79		7.5		r		
2	7.	1-1	9-01		7.6	7.7				
۷	5.1	5.1	811	7.8	1.	1,6				
		The pH of the	sample was no	ot adjusted prior	_	unless noted	in the comme	ents below		
•					EC (uS/cm)					
0	410	423	423	332	326	326				
2	470	427	427	335	331	331				
				DO (mg/L) (40-100% sa	turation at	test temp	.)		
0	7-9	7.9	7.9	7.9	7.9	7.9				
2	79	7.9	79	79	7.9	1.9				
	100						1			1
				Temperatu	re (°C) (range	e 18-22 °C	i e			
0	20	20	20		20	20	í — —	1		
2				20	-					
۷	20	120	20	20	20	20				
					Numbe (I, immo					
0	10	10	10	10	10	10	1	1		
1	io	10	10	10	10	10				
2	(3	10	10	10	10	10			-	
_				e ≤ 10% mor			hebavior in	the control		
				nid can't swi						
				l, behaviour i				HOVE		
Culture		Offiess Outil	erwise notec	i, benaviour	s considered	to be nor	IIai			
Young jar	Wed D	4	Jar(s) morta	ality 7 days p	rior to test (r	must be ≤2	:5%)	0.1.		
									-	
QA (previo	ous month)		0				Control V	alidity Crit	eria	
	st brood (≤12	days)	8				Mean % m			0%
	umber of you		d (>15 your	<u>a)</u>	31		(must be ≤		10 1100.5	01.
	treatments rai			6		-	(IIIdat be 2	1070)		
vveie test	treatments rai	idomized o	ii test tray:	Yes N	U					
Sample				-1.1	- .					20°C
DO (mg/L)	of sample pri	or to aerati		7.1	Temperatur	re ($^{\circ}$ C) of sa	imple prior	to aeration): •	_ d0 C
DO % of sa	ample prior to	aeration:	90-	/.	Is aeration	required (<	40% or > 10	00%)?	Yes or No	0.
1					-:					Κ
	f aeration (37		mL/mln/L):		Filtered witl				Yes or No	
Hardness (mg CaCO ₃ /L)	of 100% :	113		ls hardness	adjustmen	t required (<25 mg Ca	(CO_3/L) ?	Yes or No
Hardness of	of sample afte	r adiustmer	nt (must be	between 25	- 30 ma CaC	O ₂ /L)				_
Later Brown		=			Jo mg cac	- 31 =/		4		
Alkalinity C	of 100% samp	ie (mg CaCC	J ₃ /L):		-					
					-					
Dilution V			5	~	DO Levels					
Pail label /	preparation of	date	Pa:06/0	3	3.3 to 8.2 m	ng/L at 18°	C	3.1 to 7.7	mg/L at 21	°C
Hardness o	of dilution wat	er (mg/L)	167	-	3.2 to 8.1 m			3.0 to 7.6	mg/L at 22	2°C
					3.2 to 7.9 m				_	
Comment	s/Observatio	ns:						_		
	-,									
I										
	Davidson I.D.	00			e Reviewed:	2024 - UR	- 17			
	Reviewed By:	VI [*]		Dat	e Keviewed:	TOTA 20	• -			

APPENDIX C – Chain-of-custody form

Chain of Custody ALS Environmental - Yellowknife 314 Old Airport Road, Unit 116 Yellowknife NT Canada X1A 3T3

Destination Lab:

Nautilus Environmental

(Calgary)

Address:

10828 27 Street SE Calgary AB Canada

T2Z 3V9

Work Order Number: YL2400571

Original Receipt Date/Time

Instructions Received

04/06/2024 09:57

Relinquished By Date/Time Received By Date/Time

Return as Indicated: Results: ALSYK.ClientServices@alsglobal.com Invoice: ALSYK.ClientServices@alsglobal.com

Electronic Data: ALSYK.ClientServices@alsglobal.com

Receipt Temp

Attention: Oliver Gregg

ALS Sample ID	Client ID	Matrix	Container Type	Test Codes	Method Description	Due Date	Sampling Date and Time	Remarks
YL2400571-001	SNP 5-6	Water	LDPE carboy	TRT-SCR-96	Survival/Screening Rainbow Trout (96 hours)	26-06-2024	03/06/2024 12:00	
YL2400571-001	SNP 5-6	Water	LDPE carboy	DAP-SCR-48	Survival/Screening Daphnia Magna 48 hours	26-06-2024	03/06/2024 12:00	

2024/00/046 14:26 Berffolo Air. 30 2x101. carboys NeS/NGL Gobol Cond. 5.9°C

END OF REPORT

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : YL2400572 Page : 1 of 14

Amendment : 1

Client : WSP Canada Inc. Laboratory : ALS Environmental - Yellowknife

Contact : Saad Pasha : Oliver Gregg

Address : 2800, 700 - 2nd Street SW Address : 314 Old Airport Road, Unit 116

Yellowknife NT Canada X1A 3T3

: 403.512.6580 Telephone : 1 867 445 7143

: CA0034908.5454-1000.1002 Date Samples Received : 04-Jun-2024 09:57

Sampler : Emily Finstad

Site :

Quote number : YL24-GOLD100-002

No. of samples received : 11

No. of samples analysed : 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

Calgary AB Canada T2P 2W2

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

Monica Ko

Telephone

Project

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Lab Assistant

Signatories	Position	Laboratory Department
Angelo Salandanan	Lab Assistant	Metals, Burnaby, British Columbia
Brieanna Allen	Production/Validation Manager	Inorganics, Burnaby, British Columbia
Dan Gebert	Laboratory Analyst	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia

Inorganics, Burnaby, British Columbia

Page : 2 of 14

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
μS/cm	microsiemens per centimetre
mg/L	milligrams per litre
ng/L	nanograms per litre
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Workorder Comments

YL2400572 #1,2,10,11 (E508-L): Samples received in 40mL glass vials, which are not proofed for low level Hg. Travel blank and Field blank using these vials are clean at 0.5 ng/L LOR, which supports this LOR, however we cannot be certain the hits in samples 1 & 2 are from the vials themselves, or the samples.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).
RRR	Refer to report comments for issues regarding this analysis.

>: greater than.

Page : 3 of 14

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Sub-Matrix: Water		Cli	ent sample ID	SNP 5-4	SNP 5-5	SNP 5-6	SNP 5-8	SNP 5-9
(Matrix: Water)								
		Client sampl	ing date / time	03-Jun-2024 13:40	03-Jun-2024 13:40	03-Jun-2024 12:00	03-Jun-2024 11:15	03-Jun-2024 11:15
Analyte CAS Number	Method/Lab	LOR	Unit	YL2400572-001	YL2400572-002	YL2400572-003	YL2400572-004	YL2400572-005
				Result	Result	Result	Result	Result
Physical Tests Conductivity	E100/VA	2.0	μS/cm	127	128	294	115	505
1 1 1 1 1 1	EC100/VA	0.50	mg/L	58.6	56.9	129	48.6	220
	E108/VA	0.10	pH units	7.90	7.90	7.47	7.38	7.86
1.	EC103/VA	1.0	mg/L	87.6	87.7	175	68.4	303
_ · ·	E160-L/VA	1.0	mg/L	7.9	7.2	5.9	2.8	4.7
Alkalinity, total (as CaCO3)	E290/VA	2.0	mg/L	43.2	44.4	23.8	23.5	59.3
Anions and Nutrients								
Ammonia, total (as N) 7664-41-7	E298/VA	0.0050	mg/L	0.0332	0.0317	0.0084	0.0065	0.0232
Bromide 24959-67-9	E235.Br-L/VA	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
Chloride 16887-00-6	E235.CI/VA	0.50	mg/L	0.79	0.77	1.53	1.35	3.92
Fluoride 16984-48-8	E235.F/VA	0.020	mg/L	0.076	0.082	0.162	0.053	0.170
Nitrate (as N) 14797-55-8	E235.NO3-L/V	0.0050	mg/L	<0.0050	<0.0050	<0.0050	0.0158	<0.0050
Nitrite (as N) 14797-65-0	A E235.NO2-L/V	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Phosphorus, total 7723-14-0	E372-U/VA	0.0020	mg/L	0.0209	0.0186	0.0389	0.0235	0.0178
	E235.SO4/VA	0.30	mg/L	14.1	14.0	102	26.2	168
Organic / Inorganic Carbon								
Carbon, dissolved organic [DOC]	E358-L/VA	0.50	mg/L	21.5	21.6			
Total Metals								
Aluminum, total 7429-90-5		0.0030	mg/L	0.0908	0.0949	0.132	0.349	0.0612
Antimony, total 7440-36-0		0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	0.00074
Arsenic, total 7440-38-2		0.00010	mg/L	0.00026	0.00027	0.00081	0.00065	0.00070
Barium, total 7440-39-3		0.00010	mg/L	0.00889	0.00916	0.0140	0.0156	0.0440
Beryllium, total 7440-41-7		0.000020	mg/L	<0.000020	<0.000020	<0.000020	0.000020	0.000022
Bismuth, total 7440-69-9		0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Boron, total 7440-42-8		0.010	mg/L	0.010	0.011	0.030	<0.010	0.031
Cadmium, total 7440-43-9		0.0000050	mg/L	<0.0000050	<0.0000050	0.0000151	0.0000312	0.0000132
Calcium, total 7440-70-2		0.050	mg/L	16.1	16.0	31.8	13.6	63.5
Cesium, total 7440-46-2	E420/VA	0.000010	mg/L	0.000026	0.000028	0.000757	0.000139	0.000262

Page 4 of 14

Work Order YL2400572 Amendment 1 Client

WSP Canada Inc.

Project CA0034908.5454-1000.1002

Sub-Matrix: Water		Client sample ID		SNP 5-4	SNP 5-5	SNP 5-6	SNP 5-8	SNP 5-9
(Matrix: Water)								
		Client samp	ling date / time	03-Jun-2024 13:40	03-Jun-2024 13:40	03-Jun-2024 12:00	03-Jun-2024 11:15	03-Jun-2024 11:15
Analyte	CAS Number Method/Lab	LOR	Unit	YL2400572-001	YL2400572-002	YL2400572-003	YL2400572-004	YL2400572-005
				Result	Result	Result	Result	Result
Total Metals								
Chromium, total	7440-47-3 E420/VA	0.00050	mg/L	<0.00050	0.00056	<0.00050	0.00094	<0.00050
Cobalt, total	7440-48-4 E420/VA	0.00010	mg/L	0.00014	0.00016	0.00066	0.00112	0.00208
Copper, total	7440-50-8 E420/VA	0.00050	mg/L	0.00080	0.00084	0.00350	0.00670	0.00480
Iron, total	7439-89-6 E420/VA	0.010	mg/L	0.114	0.093	1.26	0.560	1.78
Lead, total	7439-92-1 E420/VA	0.000050	mg/L	<0.000050	<0.000050	0.000374	0.000247	0.000249
Lithium, total	7439-93-2 E420/VA	0.0010	mg/L	0.0024	0.0024	0.0120	0.0032	0.0118
Magnesium, total	7439-95-4 E420/VA	0.0050	mg/L	4.31	4.27	11.6	3.67	17.3
Manganese, total	7439-96-5 E420/VA	0.00010	mg/L	0.0694	0.0793	0.0581	0.0576	0.314
Mercury, total	7439-97-6 E508-L/VA	0.50	ng/L	1.92 RRR	2.07 RRR			
Molybdenum, total	7439-98-7 E420/VA	0.000050	mg/L	0.000095	0.000112	<0.000050	0.000462	0.000084
Nickel, total	7440-02-0 E420/VA	0.00050	mg/L	0.00163	0.00191	0.0243	0.00955	0.0256
Phosphorus, total	7723-14-0 E420/VA	0.050	mg/L	< 0.050	<0.050	<0.050	<0.050	<0.050
Potassium, total	7440-09-7 E420/VA	0.050	mg/L	1.39	1.38	2.71	1.61	3.11
Rubidium, total	7440-17-7 E420/VA	0.00020	mg/L	0.00238	0.00240	0.00671	0.00387	0.00688
Selenium, total	7782-49-2 E420/VA	0.000050	mg/L	<0.000050	<0.000050	<0.000050	0.000069	0.000066
Silicon, total	7440-21-3 E420/VA	0.10	mg/L	0.21	0.23	2.57	2.27	3.35
Silver, total	7440-22-4 E420/VA	0.000010	mg/L	<0.000010	<0.000010	<0.000010	0.000046	<0.000010
Sodium, total	7440-23-5 E420/VA	0.050	mg/L	2.54	2.63	3.08	1.45	5.36
Strontium, total	7440-24-6 E420/VA	0.00020	mg/L	0.0409	0.0405	0.0942	0.0332	0.171
Sulfur, total	7704-34-9 E420/VA	0.50	mg/L	5.10	5.27	36.7	9.26	60.3
Tellurium, total	13494-80-9 E420/VA	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Thallium, total	7440-28-0 E420/VA	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Thorium, total	7440-29-1 E420/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00030 DLM	<0.00010
Tin, total	7440-31-5 E420/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium, total	7440-32-6 E420/VA	0.00030	mg/L	0.00058	0.00079	0.00062	0.00364	<0.00060 DLM
Tungsten, total	7440-33-7 E420/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	0.00047	<0.00010
Uranium, total	7440-61-1 E420/VA	0.000010	mg/L	0.000145	0.000148	0.000106	0.000693	0.000139
Vanadium, total	7440-62-2 E420/VA	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Zinc, total	7440-66-6 E420/VA	0.0030	mg/L	<0.0030	<0.0030	0.0071	0.0055	0.0041
Zirconium, total	7440-67-7 E420/VA	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00040 DLM	<0.00040 DLM
	7440-01-1 - 1-37.77	1 3.33323	9, _	0.00020	5.55525	0.00020	0.000.0	0.000.0

Page : 5 of 14

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Sub-Matrix: Water		Client sample ID		SNP 5-4	SNP 5-5	SNP 5-6	SNP 5-8	SNP 5-9
(Matrix: Water)								
		Client samp	ling date / time	03-Jun-2024 13:40	03-Jun-2024 13:40	03-Jun-2024 12:00	03-Jun-2024 11:15	03-Jun-2024 11:15
Analyte	CAS Number Method/Lab	LOR	Unit	YL2400572-001	YL2400572-002	YL2400572-003	YL2400572-004	YL2400572-005
				Result	Result	Result	Result	Result
Dissolved Metals								
Aluminum, dissolved	7429-90-5 E421/VA	0.0010	mg/L	0.0536	0.0486	0.0627	0.212	0.0273
Antimony, dissolved	7440-36-0 E421/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	0.00051
Arsenic, dissolved	7440-38-2 E421/VA	0.00010	mg/L	0.00028	0.00026	0.00056	0.00059	0.00060
Barium, dissolved	7440-39-3 E421/VA	0.00010	mg/L	0.00796	0.00807	0.0128	0.0152	0.0412
Beryllium, dissolved	7440-41-7 E421/VA	0.000020	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Bismuth, dissolved	7440-69-9 E421/VA	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Boron, dissolved	7440-42-8 E421/VA	0.010	mg/L	<0.010	<0.010	0.029	<0.010	0.030
Cadmium, dissolved	7440-43-9 E421/VA	0.0000050	mg/L	<0.000050	<0.0000050	0.0000162	0.0000283	0.0000092
Calcium, dissolved	7440-70-2 E421/VA	0.050	mg/L	16.6	15.7	32.2	13.2	59.7
Cesium, dissolved	7440-46-2 E421/VA	0.000010	mg/L	0.000025	0.000026	0.000773	0.000134	0.000275
Chromium, dissolved	7440-47-3 E421/VA	0.00050	mg/L	<0.00050	<0.00050	<0.00050	0.00068	<0.00050
Cobalt, dissolved	7440-48-4 E421/VA	0.00010	mg/L	<0.00010	<0.00010	0.00076	0.00074	0.00037
Copper, dissolved	7440-50-8 E421/VA	0.00020	mg/L	0.00064	0.00059	0.00247	0.00625	0.00342
Iron, dissolved	7439-89-6 E421/VA	0.010	mg/L	0.018	<0.010	0.513	0.132	0.475
Lead, dissolved	7439-92-1 E421/VA	0.000050	mg/L	<0.000050	<0.000050	0.000103	0.000080	0.000073
Lithium, dissolved	7439-93-2 E421/VA	0.0010	mg/L	0.0022	0.0022	0.0116	0.0031	0.0116
Magnesium, dissolved	7439-95-4 E421/VA	0.0050	mg/L	4.16	4.30	11.8	3.81	17.2
Manganese, dissolved	7439-96-5 E421/VA	0.00010	mg/L	0.00683	0.00055	0.0724	0.0373	0.121
Molybdenum, dissolved	7439-98-7 E421/VA	0.000050	mg/L	0.000100	0.000089	<0.000050	0.000468	0.000106
Nickel, dissolved	7440-02-0 E421/VA	0.00050	mg/L	0.00127	0.00121	0.0228	0.00899	0.0242
Phosphorus, dissolved	7723-14-0 E421/VA	0.050	mg/L	< 0.050	<0.050	<0.050	<0.050	<0.050
Potassium, dissolved	7440-09-7 E421/VA	0.050	mg/L	1.38	1.42	2.64	1.67	3.22
Rubidium, dissolved	7440-17-7 E421/VA	0.00020	mg/L	0.00226	0.00235	0.00645	0.00390	0.00717
Selenium, dissolved	7782-49-2 E421/VA	0.000050	mg/L	<0.000050	<0.000050	0.000054	0.000066	0.000050
Silicon, dissolved	7440-21-3 E421/VA	0.050	mg/L	0.158	0.174	2.51	2.22	3.37
Silver, dissolved	7440-22-4 E421/VA	0.000010	mg/L	<0.000010	<0.000010	<0.000010	0.000021	<0.000010
Sodium, dissolved	7440-23-5 E421/VA	0.050	mg/L	2.54	2.65	3.14	1.56	5.54
Strontium, dissolved	7440-24-6 E421/VA	0.00020	mg/L	0.0397	0.0424	0.0939	0.0342	0.179
Sulfur, dissolved	7704-34-9 E421/VA	0.50	mg/L	4.76	5.26	35.9	8.97	59.4
Tellurium, dissolved	13494-80-9 E421/VA	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
l '		1	ı ĭ		I	I	I	

Page : 6 of 14

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Analytical Results

Sub-Matrix: Water		CI	lient sample ID	SNP 5-4	SNP 5-5	SNP 5-6	SNP 5-8	SNP 5-9
(Matrix: Water)								
		Client samp	oling date / time	03-Jun-2024 13:40	03-Jun-2024 13:40	03-Jun-2024 12:00	03-Jun-2024 11:15	03-Jun-2024 11:15
Analyte	CAS Number Method/Lab	LOR	Unit	YL2400572-001	YL2400572-002	YL2400572-003	YL2400572-004	YL2400572-005
				Result	Result	Result	Result	Result
Dissolved Metals								
Thallium, dissolved	7440-28-0 E421/VA	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Thorium, dissolved	7440-29-1 E421/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	0.00017	<0.00010
Tin, dissolved	7440-31-5 E421/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium, dissolved	7440-32-6 E421/VA	0.00030	mg/L	<0.00030	<0.00030	<0.00030	0.00124	<0.00030
Tungsten, dissolved	7440-33-7 E421/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	0.00037	<0.00010
Uranium, dissolved	7440-61-1 E421/VA	0.000010	mg/L	0.000131	0.000123	0.000080	0.000556	0.000120
Vanadium, dissolved	7440-62-2 E421/VA	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Zinc, dissolved	7440-66-6 E421/VA	0.0010	mg/L	0.0010	<0.0010	0.0063	0.0041	0.0020
Zirconium, dissolved	7440-67-7 E421/VA	0.00030	mg/L	< 0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved metals filtration location	EP421/VA	-	-	Field	Laboratory	Field	Laboratory	Laboratory

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 7 of 14

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Sub-Matrix: Water			Cl	ient sample ID	SNP 5-11	SNP 5-12	SNP 5-13	SNP 5-6-D	SNP 5-8-FB
(Matrix: Water)									
			Client samp	ling date / time	03-Jun-2024 11:15	03-Jun-2024 11:15	03-Jun-2024 11:15	03-Jun-2024 12:00	03-Jun-2024 13:40
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2400572-006	YL2400572-007	YL2400572-008	YL2400572-009	YL2400572-010
					Result	Result	Result	Result	Result
Physical Tests									
Conductivity		E100/VA	2.0	μS/cm	374	304	302	298	<2.0
Hardness (as CaCO3), dissolved		EC100/VA	0.50	mg/L	166	130	132	127	<0.50
pH		E108/VA	0.10	pH units	7.48	7.30	7.35	7.64	5.35
Solids, total dissolved [TDS], calculated		EC103/VA	1.0	mg/L	221	178	177	174	<1.0
Solids, total suspended [TSS]		E160-L/VA	1.0	mg/L	4.0	4.4	4.5	4.9	<1.0
Alkalinity, total (as CaCO3)		E290/VA	2.0	mg/L	22.5	14.9	15.8	24.2	<2.0
Anions and Nutrients									
Ammonia, total (as N)	7664-41-7	E298/VA	0.0050	mg/L	0.0274	0.0118	0.0103	0.0102	<0.0050
Bromide	24959-67-9	E235.Br-L/VA	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
Chloride	16887-00-6	E235.CI/VA	0.50	mg/L	1.86	1.45	1.44	1.51	<0.50
Fluoride	16984-48-8	E235.F/VA	0.020	mg/L	0.212	0.211	0.195	0.160	<0.020
Nitrate (as N)	14797-55-8	E235.NO3-L/V	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Nitrite (as N)	14797-65-0	A E235.NO2-L/V	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Phosphorus, total	7723-14-0	E372-U/VA	0.0020	mg/L	0.0121	0.0149	0.0147	0.0183	<0.0020
Sulfate (as SO4)		E235.SO4/VA	0.30	mg/L	133	108	106	101	<0.30
Organic / Inorganic Carbon									
Carbon, dissolved organic [DOC]		E358-L/VA	0.50	mg/L					<0.50
Total Metals									
Aluminum, total	7429-90-5	E420/VA	0.0030	mg/L	0.121	0.191	0.188	0.103	<0.0030
Antimony, total	7440-36-0	E420/VA	0.00010	mg/L	0.00011	<0.00010	0.00010	<0.00010	<0.00010
Arsenic, total	7440-38-2	E420/VA	0.00010	mg/L	0.00068	0.00068	0.00068	0.00068	<0.00010
Barium, total	7440-39-3		0.00010	mg/L	0.0161	0.0151	0.0149	0.0136	<0.00010
Beryllium, total	7440-41-7		0.000020	mg/L	0.000031	0.000039	0.000030	<0.000020	<0.000020
Bismuth, total	7440-69-9		0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Boron, total	7440-42-8		0.010	mg/L	0.037	0.032	0.031	0.030	<0.010
Cadmium, total	7440-43-9		0.0000050	mg/L	0.0000406	0.0000310	0.0000360	0.0000176	<0.0000050
Calcium, total	7440-70-2		0.050	mg/L	42.0	32.9	32.2	32.9	<0.050
Cesium, total	7440-46-2		0.000010	mg/L	0.000510	0.000647	0.000653	0.000755	<0.000010
		I	T. Control	1 9 1		I	I	I	l

Page : 8 of 14

Work Order : YL2400572 Amendment 1
Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Sub-Matrix: Water		CI	lient sample ID	SNP 5-11	SNP 5-12	SNP 5-13	SNP 5-6-D	SNP 5-8-FB
(Matrix: Water)								
		Client samp	oling date / time	03-Jun-2024 11:15	03-Jun-2024 11:15	03-Jun-2024 11:15	03-Jun-2024 12:00	03-Jun-2024 13:40
Analyte	CAS Number Method/Lab	LOR	Unit	YL2400572-006	YL2400572-007	YL2400572-008	YL2400572-009	YL2400572-010
Total Matala				Result	Result	Result	Result	Result
Total Metals Chromium, total	7440-47-3 E420/VA	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Cobalt, total	7440-48-4 E420/VA	0.00010	mg/L	0.00979	0.00580	0.00532	0.00067	<0.00010
Copper, total	7440-50-8 E420/VA	0.00050	mg/L	0.00382	0.00399	0.00402	0.00321	<0.00050
Iron, total	7439-89-6 E420/VA	0.010	mg/L	1.59	1.50	1.45	1.02	<0.010
Lead, total	7439-92-1 E420/VA	0.000050	mg/L	0.000323	0.000279	0.000287	0.000291	<0.000050
Lithium, total	7439-93-2 E420/VA	0.0010	mg/L	0.0168	0.0139	0.0132	0.0116	<0.0010
Magnesium, total	7439-95-4 E420/VA	0.0050	mg/L	14.2	11.2	11.1	11.5	<0.0050
Manganese, total	7439-96-5 E420/VA	0.00010	mg/L	0.650	0.427	0.389	0.0600	<0.00010
Mercury, total	7439-97-6 E508-L/VA	0.50	ng/L					<0.50 RRR
Molybdenum, total	7439-98-7 E420/VA	0.000050	mg/L	0.000052	<0.000050	0.000063	<0.000050	<0.000050
Nickel, total	7440-02-0 E420/VA	0.00050	mg/L	0.0710	0.0527	0.0521	0.0239	<0.00050
Phosphorus, total	7723-14-0 E420/VA	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
Potassium, total	7440-09-7 E420/VA	0.050	mg/L	3.13	2.62	2.61	2.67	<0.050
Rubidium, total	7440-17-7 E420/VA	0.00020	mg/L	0.00761	0.00637	0.00631	0.00674	<0.00020
Selenium, total	7782-49-2 E420/VA	0.000050	mg/L	0.000088	0.000078	0.000069	<0.000050	<0.000050
Silicon, total	7440-21-3 E420/VA	0.10	mg/L	2.77	2.88	2.89	2.44	<0.10
Silver, total	7440-22-4 E420/VA	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Sodium, total	7440-23-5 E420/VA	0.050	mg/L	3.51	2.86	2.86	3.09	<0.050
Strontium, total	7440-24-6 E420/VA	0.00020	mg/L	0.126	0.0961	0.0945	0.0942	<0.00020
Sulfur, total	7704-34-9 E420/VA	0.50	mg/L	48.9	38.2	38.4	36.1	<0.50
Tellurium, total	13494-80-9 E420/VA	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Thallium, total	7440-28-0 E420/VA	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Thorium, total	7440-29-1 E420/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Tin, total	7440-31-5 E420/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium, total	7440-32-6 E420/VA	0.00030	mg/L	0.00058	0.00046	0.00072	0.00040	<0.00030
Tungsten, total	7440-33-7 E420/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Uranium, total	7440-61-1 E420/VA	0.000010	mg/L	0.000148	0.000148	0.000146	0.000094	<0.000010
Vanadium, total	7440-62-2 E420/VA	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Zinc, total	7440-66-6 E420/VA	0.0030	mg/L	0.0148	0.0130	0.0136	0.0065	<0.0030
Zirconium, total	7440-67-7 E420/VA	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020

Page : 9 of 14

Work Order : YL2400572 Amendment 1

 Client
 :
 WSP Canada Inc.

 Project
 :
 CA0034908.5454-1000.1002

Sub-Matrix: Water	Client sample ID		SNP 5-11	SNP 5-12	SNP 5-13	SNP 5-6-D	SNP 5-8-FB	
(Matrix: Water)								
		Client samp	ling date / time	03-Jun-2024 11:15	03-Jun-2024 11:15	03-Jun-2024 11:15	03-Jun-2024 12:00	03-Jun-2024 13:40
Analyte	CAS Number Method/Lab	LOR	Unit	YL2400572-006	YL2400572-007	YL2400572-008	YL2400572-009	YL2400572-010
				Result	Result	Result	Result	Result
Dissolved Metals								
Aluminum, dissolved	7429-90-5 E421/VA	0.0010	mg/L	0.0414	0.0781	0.0742	0.0599	<0.0010
Antimony, dissolved	7440-36-0 E421/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Arsenic, dissolved	7440-38-2 E421/VA	0.00010	mg/L	0.00047	0.00049	0.00050	0.00055	<0.00010
Barium, dissolved	7440-39-3 E421/VA	0.00010	mg/L	0.0170	0.0157	0.0153	0.0127	<0.00010
Beryllium, dissolved	7440-41-7 E421/VA	0.000020	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Bismuth, dissolved	7440-69-9 E421/VA	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Boron, dissolved	7440-42-8 E421/VA	0.010	mg/L	0.033	0.030	0.030	0.029	<0.010
Cadmium, dissolved	7440-43-9 E421/VA	0.0000050	mg/L	0.0000381	0.0000346	0.0000338	0.0000145	<0.0000050
Calcium, dissolved	7440-70-2 E421/VA	0.050	mg/L	42.4	32.8	33.2	31.9	<0.050
Cesium, dissolved	7440-46-2 E421/VA	0.000010	mg/L	0.000556	0.000705	0.000718	0.000768	<0.000010
Chromium, dissolved	7440-47-3 E421/VA	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Cobalt, dissolved	7440-48-4 E421/VA	0.00010	mg/L	0.00858	0.00532	0.00478	0.00063	<0.00010
Copper, dissolved	7440-50-8 E421/VA	0.00020	mg/L	0.00300	0.00321	0.00354	0.00251	<0.00020
Iron, dissolved	7439-89-6 E421/VA	0.010	mg/L	0.402	0.482	0.478	0.499	<0.010
Lead, dissolved	7439-92-1 E421/VA	0.000050	mg/L	0.000076	0.000085	0.000085	0.000106	<0.000050
Lithium, dissolved	7439-93-2 E421/VA	0.0010	mg/L	0.0154	0.0134	0.0135	0.0116	<0.0010
Magnesium, dissolved	7439-95-4 E421/VA	0.0050	mg/L	14.6	11.8	12.0	11.5	<0.0050
Manganese, dissolved	7439-96-5 E421/VA	0.00010	mg/L	0.608	0.419	0.387	0.0680	<0.00010
Molybdenum, dissolved	7439-98-7 E421/VA	0.000050	mg/L	0.000050	<0.000050	0.000112	<0.000050	<0.000050
Nickel, dissolved	7440-02-0 E421/VA	0.00050	mg/L	0.0686	0.0511	0.0514	0.0221	<0.00050
Phosphorus, dissolved	7723-14-0 E421/VA	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
Potassium, dissolved	7440-09-7 E421/VA	0.050	mg/L	3.35	2.81	2.85	2.60	<0.050
Rubidium, dissolved	7440-17-7 E421/VA	0.00020	mg/L	0.00784	0.00690	0.00691	0.00639	<0.00020
Selenium, dissolved	7782-49-2 E421/VA	0.000050	mg/L	0.000063	0.000060	0.000061	<0.000050	<0.000050
Silicon, dissolved	7440-21-3 E421/VA	0.050	mg/L	2.73	2.86	2.86	2.50	<0.050
Silver, dissolved	7440-22-4 E421/VA	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Sodium, dissolved	7440-23-5 E421/VA	0.050	mg/L	3.48	3.07	3.06	3.05	<0.050
Strontium, dissolved	7440-24-6 E421/VA	0.00020	mg/L	0.132	0.101	0.105	0.0936	<0.00020
Sulfur, dissolved	7704-34-9 E421/VA	0.50	mg/L	47.2	37.2	36.4	35.3	<0.50
Tellurium, dissolved	13494-80-9 E421/VA	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020

Page : 10 of 14

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Analytical Results

Sub-Matrix: Water		CI	ient sample ID	SNP 5-11	SNP 5-12	SNP 5-13	SNP 5-6-D	SNP 5-8-FB
(Matrix: Water)								
		Client samp	ling date / time	03-Jun-2024 11:15	03-Jun-2024 11:15	03-Jun-2024 11:15	03-Jun-2024 12:00	03-Jun-2024 13:40
Analyte	CAS Number Method/Lab	LOR	Unit	YL2400572-006	YL2400572-007	YL2400572-008	YL2400572-009	YL2400572-010
				Result	Result	Result	Result	Result
Dissolved Metals								
Thallium, dissolved	7440-28-0 E421/VA	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Thorium, dissolved	7440-29-1 E421/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Tin, dissolved	7440-31-5 E421/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium, dissolved	7440-32-6 E421/VA	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Tungsten, dissolved	7440-33-7 E421/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Uranium, dissolved	7440-61-1 E421/VA	0.000010	mg/L	0.000081	0.000092	0.000090	0.000077	<0.000010
Vanadium, dissolved	7440-62-2 E421/VA	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Zinc, dissolved	7440-66-6 E421/VA	0.0010	mg/L	0.0116	0.0107	0.0097	0.0050	<0.0010
Zirconium, dissolved	7440-67-7 E421/VA	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Dissolved metals filtration location	EP421/VA	-	-	Laboratory	Laboratory	Laboratory	Field	Field

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 11 of 14

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

(Manthian Marken)			OII	ient sample ID	TB	 	
(Matrix: Water)							
			Client samp	ling date / time	03-Jun-2024 13:40	 	
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2400572-011	 	
					Result	 	
Physical Tests		E100/VA	2.0	uC/om	<2.0		
Conductivity				μS/cm		 	
Hardness (as CaCO3), dissolved		EC100/VA	0.50	mg/L	<0.50	 	
pH		E108/VA	0.10	pH units	5.50	 	
Solids, total dissolved [TDS], calculated		EC103/VA	1.0	mg/L	<1.0	 	
Solids, total suspended [TSS]		E160-L/VA	1.0	mg/L	<1.0	 	
Alkalinity, total (as CaCO3)		E290/VA	2.0	mg/L	<2.0	 	
Anions and Nutrients							
Ammonia, total (as N)	7664-41-7		0.0050	mg/L	<0.0050	 	
Bromide		E235.Br-L/VA	0.050	mg/L	<0.050	 	
Chloride	16887-00-6	E235.CI/VA	0.50	mg/L	<0.50	 	
Fluoride	16984-48-8	E235.F/VA	0.020	mg/L	<0.020	 	
Nitrate (as N)	14797-55-8	E235.NO3-L/V	0.0050	mg/L	<0.0050	 	
Nitrite (as N)	14797-65-0	A E235.NO2-L/V	0.0010	mg/L	<0.0010	 	
Phosphorus, total	7723-14-0	E372-U/VA	0.0020	mg/L	<0.0020	 	
Sulfate (as SO4)		E235.SO4/VA	0.30	mg/L	<0.30	 	
Organic / Inorganic Carbon							
Carbon, dissolved organic [DOC]		E358-L/VA	0.50	mg/L	<0.50	 	
Total Metals							
Aluminum, total	7429-90-5	E420/VA	0.0030	mg/L	<0.0030	 	
Antimony, total	7440-36-0	E420/VA	0.00010	mg/L	<0.00010	 	
Arsenic, total	7440-38-2	E420/VA	0.00010	mg/L	<0.00010	 	
Barium, total	7440-39-3	E420/VA	0.00010	mg/L	<0.00010	 	
Beryllium, total	7440-41-7	E420/VA	0.000020	mg/L	<0.000020	 	
Bismuth, total	7440-69-9	E420/VA	0.000050	mg/L	<0.000050	 	
Boron, total	7440-42-8	E420/VA	0.010	mg/L	<0.010	 	
Cadmium, total	7440-43-9		0.0000050	mg/L	<0.0000050	 	
Calcium, total	7440-70-2		0.050	mg/L	<0.050	 	
Cesium, total	7440-46-2		0.000010	mg/L	<0.000010	 	

Page : 12 of 14

Work Order : YL2400572 Amendment 1
Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Sub-Matrix: Water		CI	ient sample ID	ТВ	 		
(Matrix: Water)							
			ling date / time	03-Jun-2024 13:40	 		
Analyte	CAS Number Method/Lab	LOR	Unit	YL2400572-011	 		
				Result	 		
Total Metals	7440-47-3 E420/VA	0.00050	ma et /1	<0.00050	 		
Chromium, total Cobalt, total	7440-47-3 E420/VA 7440-48-4 E420/VA	0.00030	mg/L	<0.00030			
		0.00010	mg/L	<0.00010	 		
Copper, total	7440-50-8 E420/VA		mg/L		 		
Iron, total	7439-89-6 E420/VA	0.010	mg/L	<0.010	 		
Lead, total	7439-92-1 E420/VA	0.000050	mg/L	<0.000050	 		
Lithium, total	7439-93-2 E420/VA	0.0010	mg/L	<0.0010	 		
Magnesium, total	7439-95-4 E420/VA	0.0050	mg/L	<0.0050	 		
Manganese, total	7439-96-5 E420/VA	0.00010	mg/L	<0.00010	 		
Mercury, total	7439-97-6 E508-L/VA	0.50	ng/L	<0.50 RRR	 		
Molybdenum, total	7439-98-7 E420/VA	0.000050	mg/L	<0.000050	 		
Nickel, total	7440-02-0 E420/VA	0.00050	mg/L	<0.00050	 		
Phosphorus, total	7723-14-0 E420/VA	0.050	mg/L	<0.050	 		
Potassium, total	7440-09-7 E420/VA	0.050	mg/L	<0.050	 		
Rubidium, total	7440-17-7 E420/VA	0.00020	mg/L	<0.00020	 		
Selenium, total	7782-49-2 E420/VA	0.000050	mg/L	<0.000050	 		
Silicon, total	7440-21-3 E420/VA	0.10	mg/L	<0.10	 		
Silver, total	7440-22-4 E420/VA	0.000010	mg/L	<0.000010	 		
Sodium, total	7440-23-5 E420/VA	0.050	mg/L	<0.050	 		
Strontium, total	7440-24-6 E420/VA	0.00020	mg/L	<0.00020	 		
Sulfur, total	7704-34-9 E420/VA	0.50	mg/L	<0.50	 		
Tellurium, total	13494-80-9 E420/VA	0.00020	mg/L	<0.00020	 		
Thallium, total	7440-28-0 E420/VA	0.000010	mg/L	<0.000010	 		
Thorium, total	7440-29-1 E420/VA	0.00010	mg/L	<0.00010	 		
Tin, total	7440-31-5 E420/VA	0.00010	mg/L	<0.00010	 		
Titanium, total	7440-32-6 E420/VA	0.00030	mg/L	<0.00030	 		
Tungsten, total	7440-33-7 E420/VA	0.00010	mg/L	<0.00010	 		
Uranium, total	7440-61-1 E420/VA	0.000010	mg/L	<0.000010	 		
Vanadium, total	7440-62-2 E420/VA	0.00050	mg/L	<0.00050	 		
Zinc, total	7440-66-6 E420/VA	0.0030	mg/L	<0.0030	 		
Zirconium, total	7440-67-7 E420/VA	0.00020	mg/L	<0.00020	 		
I .	I	1	1			I	ı

13 of 14

Page Work Order YL2400572 Amendment 1 Client WSP Canada Inc.

Project CA0034908.5454-1000.1002

Sub-Matrix: Water		Cli	ient sample ID	ТВ	 	
(Matrix: Water)						
		·	ling date / time	03-Jun-2024 13:40	 	
Analyte	CAS Number Method/Lab	LOR	Unit	YL2400572-011	 	
				Result	 	
Dissolved Metals						
Aluminum, dissolved	7429-90-5 E421/VA	0.0010	mg/L	<0.0010	 	
Antimony, dissolved	7440-36-0 E421/VA	0.00010	mg/L	<0.00010	 	
Arsenic, dissolved	7440-38-2 E421/VA	0.00010	mg/L	<0.00010	 	
Barium, dissolved	7440-39-3 E421/VA	0.00010	mg/L	<0.00010	 	
Beryllium, dissolved	7440-41-7 E421/VA	0.000020	mg/L	<0.000020	 	
Bismuth, dissolved	7440-69-9 E421/VA	0.000050	mg/L	<0.000050	 	
Boron, dissolved	7440-42-8 E421/VA	0.010	mg/L	<0.010	 	
Cadmium, dissolved	7440-43-9 E421/VA	0.0000050	mg/L	<0.0000050	 	
Calcium, dissolved	7440-70-2 E421/VA	0.050	mg/L	<0.050	 	
Cesium, dissolved	7440-46-2 E421/VA	0.000010	mg/L	<0.000010	 	
Chromium, dissolved	7440-47-3 E421/VA	0.00050	mg/L	<0.00050	 	
Cobalt, dissolved	7440-48-4 E421/VA	0.00010	mg/L	<0.00010	 	
Copper, dissolved	7440-50-8 E421/VA	0.00020	mg/L	<0.00020	 	
Iron, dissolved	7439-89-6 E421/VA	0.010	mg/L	<0.010	 	
Lead, dissolved	7439-92-1 E421/VA	0.000050	mg/L	<0.000050	 	
Lithium, dissolved	7439-93-2 E421/VA	0.0010	mg/L	<0.0010	 	
Magnesium, dissolved	7439-95-4 E421/VA	0.0050	mg/L	<0.0050	 	
Manganese, dissolved	7439-96-5 E421/VA	0.00010	mg/L	<0.00010	 	
Molybdenum, dissolved	7439-98-7 E421/VA	0.000050	mg/L	<0.000050	 	
Nickel, dissolved	7440-02-0 E421/VA	0.00050	mg/L	<0.00050	 	
Phosphorus, dissolved	7723-14-0 E421/VA	0.050	mg/L	<0.050	 	
Potassium, dissolved	7440-09-7 E421/VA	0.050	mg/L	<0.050	 	
Rubidium, dissolved	7440-17-7 E421/VA	0.00020	mg/L	<0.00020	 	
Selenium, dissolved	7782-49-2 E421/VA	0.000050	mg/L	<0.000050	 	
Silicon, dissolved	7440-21-3 E421/VA	0.050	mg/L	<0.050	 	
Silver, dissolved	7440-22-4 E421/VA	0.000010	mg/L	<0.000010	 	
Sodium, dissolved	7440-23-5 E421/VA	0.050	mg/L	< 0.050	 	
Strontium, dissolved	7440-24-6 E421/VA	0.00020	mg/L	<0.00020	 	
Sulfur, dissolved	7704-34-9 E421/VA	0.50	mg/L	<0.50	 	
Tellurium, dissolved	13494-80-9 E421/VA	0.00020	mg/L	<0.00020	 	

Page : 14 of 14

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Analytical Results

		_			i		
Sub-Matrix: Water		Ci	lient sample ID	ТВ		 	
(Matrix: Water)							
		Client samp	oling date / time	03-Jun-2024 13:40		 	
Analyte CAS N	mber Method/Lab	LOR	Unit	YL2400572-011		 	
				Result		 	
Dissolved Metals							
Thallium, dissolved 7440	28-0 E421/VA	0.000010	mg/L	<0.000010		 	
Thorium, dissolved 7440	29-1 E421/VA	0.00010	mg/L	<0.00010		 	
Tin, dissolved 7440	31-5 E421/VA	0.00010	mg/L	<0.00010		 	
Titanium, dissolved 7440	32-6 E421/VA	0.00030	mg/L	<0.00030		 	
Tungsten, dissolved 7440	33-7 E421/VA	0.00010	mg/L	<0.00010		 	
Uranium, dissolved 7440	61-1 E421/VA	0.000010	mg/L	<0.000010		 	
Vanadium, dissolved 7440	62-2 E421/VA	0.00050	mg/L	<0.00050		 	
Zinc, dissolved 7440	66-6 E421/VA	0.0010	mg/L	<0.0010		 	
Zirconium, dissolved 7440	67-7 E421/VA	0.00030	mg/L	<0.00030		 	
Dissolved metals filtration location	EP421/VA	-	-	Field		 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

:YL2400572 **Work Order** Page : 1 of 27

Amendment

Client : WSP Canada Inc. Laboratory : ALS Environmental - Yellowknife

Contact : Saad Pasha Account Manager : Oliver Gregg

> Address : 2800. 700 - 2nd Street SW : 314 Old Airport Road, Unit 116

Calgary AB Canada T2P 2W2 Yellowknife, Northwest Territories Canada X1A 3T3

Issue Date

: 24-Jun-2024 10:21

Telephone Telephone :403.512.6580 : 1 867 445 7143 **Date Samples Received** Project : CA0034908.5454-1000.1002 : 04-Jun-2024 09:57 PO

C-O-C number

Sampler : Emily Finstad

Site

Quote number : YL24-GOLD100-002

No. of samples received ·11 No. of samples analysed :11

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

: 2024CA215454/1000.1001

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers occur - please see following pages for full details.

Page : 3 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Physical Tests	QC-MRG2-1480527		Alkalinity, total (as		E290	2.0 mg/L ^B	1.5 mg/L	Blank result exceeds
	001		CaCO3)					permitted value

Result Qualifiers

Qualifier	Description
В	Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.

Page : 4 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🕶	= Within	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Prep	paration			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) SNP 5-11	E298	03-Jun-2024	11-Jun-2024	28 8 days	8 days	✓	11-Jun-2024	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) SNP 5-12	E298	03-Jun-2024	11-Jun-2024	28 8 days	8 days	✓	11-Jun-2024	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) SNP 5-13	E298	03-Jun-2024	11-Jun-2024	28 8 days	8 days	✓	11-Jun-2024	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) SNP 5-4	E298	03-Jun-2024	11-Jun-2024	28 8 days	8 days	√	11-Jun-2024	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) SNP 5-5	E298	03-Jun-2024	11-Jun-2024	28 8	8 days	✓	11-Jun-2024	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) SNP 5-6	E298	03-Jun-2024	11-Jun-2024	28 days	8 days	✓	11-Jun-2024	28 days	8 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) SNP 5-6-D	E298	03-Jun-2024	11-Jun-2024	28 8 days	8 days	✓	11-Jun-2024	28 days	8 days	✓

Page : 5 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Matrix: Water						raidation. • -	Holding time exce	cuarioc , ·	- vvicinii	riolaling rillie
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
SNP 5-8	E298	03-Jun-2024	11-Jun-2024	28	8 days	✓	11-Jun-2024	28 days	8 days	✓
				days						
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)				<u> </u>						
SNP 5-8-FB	E298	03-Jun-2024	11-Jun-2024	28	8 days	✓	11-Jun-2024	28 days	8 davs	✓
				days				,	- ,	
A transcription of the state of				dayo						
Anions and Nutrients : Ammonia by Fluorescence	I						I			
Amber glass total (sulfuric acid) SNP 5-9	E298	03-Jun-2024	11-Jun-2024	28	8 days	√	11-Jun-2024	28 days	8 days	✓
ON 0-9	L230	00-0011-2024	11-Jun-2024		Juays	,	11-Juli-2024	20 days	Juays	*
				days						
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (lab preserved)	5000	00 1 0004				,				
ТВ	E298	03-Jun-2024	07-Jun-2024	3 days	3 days	✓	08-Jun-2024	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
SNP 5-4	E235.Br-L	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	✓
				days						
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
SNP 5-5	E235.Br-L	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	✓
				days						
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
SNP 5-6	E235.Br-L	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	✓
				days	′					
Aniana and Nutrianta - Brancida in Water by IC // and availy				,-						
Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE										
SNP 5-6-D	E235.Br-L	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	√
OINI 0-0-D	L200.DI-L	00-0011-2024	00-0u11-2024		Juays	,	00-0u11-2024	20 days	Juays	•
				days						
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	E005 D. /	00 1 000 1	00 1 005							
SNP 5-8-FB	E235.Br-L	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	✓
				days						

Page : 6 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

						araaraan.	Holding time exce			Troiumig Time
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
SNP 5-11	E235.Br-L	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	4 days	✓
				days						
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
SNP 5-12	E235.Br-L	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	4 days	✓
				days				,	Í	
Anima and National a Describe in Water by 10 (Level 1991)				, -						
Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE									1	
SNP 5-13	E235.Br-L	03-Jun-2024	06-Jun-2024	28	3 days	√	06-Jun-2024	28 days	4 days	√
ON 0-10	L200.BI-L	00-0411-202-	00-0411-202-4	days	o days	ĺ	00-0411-202-4	20 days	+ days	•
				uays						
Anions and Nutrients : Bromide in Water by IC (Low Level)					1					
HDPE	E005 D. I	00 1 0004	00.1.0004					00.1		
SNP 5-8	E235.Br-L	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	4 days	✓
				days						
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
SNP 5-9	E235.Br-L	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	4 days	✓
				days						
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
ТВ	E235.Br-L	03-Jun-2024	06-Jun-2024	28	3 days	✓	07-Jun-2024	28 days	4 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC				1						
HDPE										
SNP 5-4	E235.CI	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	✓
				days	,-			, ,-	, ,	
Aniana and Nutrianta - Chlorida in Water by IC				,5						
Anions and Nutrients : Chloride in Water by IC HDPE									1	
SNP 5-5	E235.CI	03-Jun-2024	06-Jun-2024	28	3 days	√	06-Jun-2024	28 days	3 days	✓
O141 0-0	L200.01	00-0011-2024	00-0011-2024		Juays	,	00-0011-2024	20 days	o uays	*
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE	5005.01	00 1 005 :								
SNP 5-6	E235.CI	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	✓
				days						

Page : 7 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Matrix: Water					EV	raiuation. ^ –	Holding time exce	euance , v	- vviuiiii	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Chloride in Water by IC										
HDPE										
SNP 5-6-D	E235.CI	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE										
SNP 5-8-FB	E235.CI	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC				,						
HDPE				<u> </u>			I		1	
SNP 5-11	E235.CI	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	4 davs	✓
				days	,				,	
Anisana and Natrianta a Oblanida in Matanba 10				aayo						
Anions and Nutrients : Chloride in Water by IC							I			
HDPE SNP 5-12	E235.CI	03-Jun-2024	06-Jun-2024	00	3 days	√	06-Jun-2024	28 days	4 days	✓
SNP 5-12	L233.01	03-3411-2024	00-3011-2024	28	3 uays	·	00-Jun-2024	20 uays	4 uays	•
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE						,				,
SNP 5-13	E235.CI	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	4 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE										
SNP 5-8	E235.CI	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	4 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE										
SNP 5-9	E235.CI	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	4 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE										
ТВ	E235.CI	03-Jun-2024	06-Jun-2024	28	3 days	✓	07-Jun-2024	28 days	4 days	✓
				days					-	
Anions and Nutrients : Fluoride in Water by IC				,						
HDPE										
SNP 5-4	E235.F	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	✓
0111 0 1		00 0011 202 T	50 0dil-2024	days	Jaayo	·	00 0011-202-4	_o days	Jaayo	·
				uays						

Page : 8 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

										Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
SNP 5-5	E235.F	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	✓
				days						
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
SNP 5-6	E235.F	03-Jun-2024	06-Jun-2024	28	3 days	1	06-Jun-2024	28 days	3 davs	✓
				days	,			,	- ,	
Asiana and National a Florida in Water by 10				aayo						
Anions and Nutrients : Fluoride in Water by IC HDPE	I	I I					l			
SNP 5-6-D	E235.F	03-Jun-2024	06-Jun-2024	28	3 days	√	06-Jun-2024	28 days	3 days	✓
0141 0-0-0	L200.1	00-0411-202-4	00-0411-202-4	days	o days	ĺ	00-0411-202-	20 days	o days	•
				uays						
Anions and Nutrients : Fluoride in Water by IC										
HDPE	5005 5	00 1 0004				,				,
SNP 5-8-FB	E235.F	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	✓
				days						
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
SNP 5-11	E235.F	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	4 days	✓
				days						
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
SNP 5-12	E235.F	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	4 days	✓
				days						
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
SNP 5-13	E235.F	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	4 davs	✓
				days	, -				,0	
Anima and Mutricuta a Florenida in West and 10				aays						
Anions and Nutrients : Fluoride in Water by IC	I									
HDPE SNP 5-8	E235.F	03-Jun-2024	06-Jun-2024	00	3 days	√	06-Jun-2024	28 days	1 days	✓
SNP 5-8	E235.F	03-Jun-2024	00-Jun-2024	28	3 days	•	00-Jun-2024	20 days	4 days	•
				days						
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
SNP 5-9	E235.F	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	4 days	✓
	1			days						

Page : 9 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

nalyte Group : Analytical Method	Method	Method Sampling Date		ampling Date Extraction / Pr			Analysis				
Container / Client Sample ID(s)		J	Preparation	Holdin	g Times	a Times	Eval	Analysis Date	Holding	Times	Eval
(4)			Date	Rec	Actual	2747	7 maryolo Bato	Rec	Actual	Zvar	
nions and Nutrients : Fluoride in Water by IC			Date		11010101			1100	1 1000		
HDPE							I				
TB	E235.F	03-Jun-2024	06-Jun-2024	28 days	3 days	✓	07-Jun-2024	28 days	4 days	✓	
nions and Nutrients : Nitrate in Water by IC (Low Level)											
HDPE											
SNP 5-11	E235.NO3-L	03-Jun-2024	06-Jun-2024	3 days	3 days	✓	06-Jun-2024	3 days	3 days	✓	
nions and Nutrients : Nitrate in Water by IC (Low Level)											
HDPE											
SNP 5-12	E235.NO3-L	03-Jun-2024	06-Jun-2024	3 days	3 days	✓	06-Jun-2024	3 days	3 days	✓	
nions and Nutrients : Nitrate in Water by IC (Low Level)											
HDPE											
SNP 5-13	E235.NO3-L	03-Jun-2024	06-Jun-2024	3 days	3 days	✓	06-Jun-2024	3 days	3 days	✓	
nions and Nutrients : Nitrate in Water by IC (Low Level)											
HDPE											
SNP 5-4	E235.NO3-L	03-Jun-2024	06-Jun-2024	3 days	3 days	✓	06-Jun-2024	3 days	3 days	✓	
nions and Nutrients : Nitrate in Water by IC (Low Level)											
HDPE											
SNP 5-5	E235.NO3-L	03-Jun-2024	06-Jun-2024	3 days	3 days	✓	06-Jun-2024	3 days	3 days	✓	
nions and Nutrients : Nitrate in Water by IC (Low Level)											
HDPE											
SNP 5-6	E235.NO3-L	03-Jun-2024	06-Jun-2024	3 days	3 days	✓	06-Jun-2024	3 days	3 days	✓	
nions and Nutrients : Nitrate in Water by IC (Low Level)											
HDPE											
SNP 5-6-D	E235.NO3-L	03-Jun-2024	06-Jun-2024	3 days	3 days	✓	06-Jun-2024	3 days	3 days	✓	
nions and Nutrients : Nitrate in Water by IC (Low Level)											
HDPE											
SNP 5-8	E235.NO3-L	03-Jun-2024	06-Jun-2024	3 days	3 days	✓	06-Jun-2024	3 days	3 days	✓	

Page : 10 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Matrix: Water	Evaluation: x = Holding time exceedance ; ✓ = Within Holding Time

Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE SNP 5-8-FB	E235.NO3-L	03-Jun-2024	06-Jun-2024	3 days	3 days	4	06-Jun-2024	3 days	3 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE SNP 5-9	E235.NO3-L	03-Jun-2024	06-Jun-2024	3 days	3 days	✓	06-Jun-2024	3 days	3 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE TB	E235.NO3-L	03-Jun-2024	06-Jun-2024	3 days	3 days	*	07-Jun-2024	3 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE SNP 5-11	E235.NO2-L	03-Jun-2024	06-Jun-2024	3 days	3 days	✓	06-Jun-2024	3 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE SNP 5-12	E235.NO2-L	03-Jun-2024	06-Jun-2024	3 days	3 days	*	06-Jun-2024	3 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE SNP 5-13	E235.NO2-L	03-Jun-2024	06-Jun-2024	3 days	3 days	*	06-Jun-2024	3 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE SNP 5-4	E235.NO2-L	03-Jun-2024	06-Jun-2024	3 days	3 days	4	06-Jun-2024	3 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE SNP 5-5	E235.NO2-L	03-Jun-2024	06-Jun-2024	3 days	3 days	*	06-Jun-2024	3 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE SNP 5-6	E235.NO2-L	03-Jun-2024	06-Jun-2024	3 days	3 days	✓	06-Jun-2024	3 days	3 days	✓

Page : 11 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						/aluation. ^ =	Holding time excee			Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SNP 5-6-D	E235.NO2-L	03-Jun-2024	06-Jun-2024	3 days	3 days	✓	06-Jun-2024	3 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SNP 5-8	E235.NO2-L	03-Jun-2024	06-Jun-2024	3 days	3 days	✓	06-Jun-2024	3 days	3 days	✓
									-	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SNP 5-8-FB	E235.NO2-L	03-Jun-2024	06-Jun-2024	3 days	3 days	✓	06-Jun-2024	3 days	3 days	✓
					,				- ,	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE				<u> </u>						
SNP 5-9	E235.NO2-L	03-Jun-2024	06-Jun-2024	3 days	3 days	1	06-Jun-2024	3 days	3 days	✓
2NF 2-9	L233.NO2-L	03-3u11-2024	00-3011-2024	3 days	3 days	•	00-3011-2024	Juays	3 uays	•
Anions and Nutrients : Nitrite in Water by IC (Low Level)				I	I			1		
HDPE TB	E235.NO2-L	03-Jun-2024	06-Jun-2024	3 days	3 days	√	07-Jun-2024	3 days	3 days	✓
ID	E235.NO2-L	03-Jun-2024	00-Jun-2024	3 uays	3 uays	•	07-Jun-2024	3 uays	3 uays	•
Anions and Nutrients : Sulfate in Water by IC										
HDPE	E005 CO4	00 1 0004	00 1 0004		0.1	√	00 1 0004	00 1	0.1	✓
SNP 5-4	E235.SO4	03-Jun-2024	06-Jun-2024	28	3 days	•	06-Jun-2024	28 days	3 days	•
				days						
Anions and Nutrients : Sulfate in Water by IC										
HDPE										,
SNP 5-5	E235.SO4	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	✓
				days						
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
SNP 5-6	E235.SO4	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	✓
				days						
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
SNP 5-6-D	E235.SO4	03-Jun-2024	06-Jun-2024	28	3 days	✓	06-Jun-2024	28 days	3 days	✓
				days						
				days						

Page : 12 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Matrix: Water	Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pi	reparation		J	Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE SNP 5-8-FB	E235.SO4	03-Jun-2024	06-Jun-2024	28 days	3 days	✓	06-Jun-2024	28 days	3 days	*
Anions and Nutrients : Sulfate in Water by IC										
HDPE SNP 5-11	E235.SO4	03-Jun-2024	06-Jun-2024	28 days	3 days	✓	06-Jun-2024	28 days	4 days	4
Anions and Nutrients : Sulfate in Water by IC										
HDPE SNP 5-12	E235.SO4	03-Jun-2024	06-Jun-2024	28 days	3 days	1	06-Jun-2024	28 days	4 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE SNP 5-13	E235.SO4	03-Jun-2024	06-Jun-2024	28 days	3 days	✓	06-Jun-2024	28 days	4 days	√
Anions and Nutrients : Sulfate in Water by IC										
HDPE SNP 5-8	E235.SO4	03-Jun-2024	06-Jun-2024	28 days	3 days	1	06-Jun-2024	28 days	4 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE SNP 5-9	E235.SO4	03-Jun-2024	06-Jun-2024	28 days	3 days	√	06-Jun-2024	28 days	4 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE TB	E235.SO4	03-Jun-2024	06-Jun-2024	28 days	3 days	1	07-Jun-2024	28 days	4 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) SNP 5-11	E372-U	03-Jun-2024	11-Jun-2024	28 days	8 days	1	13-Jun-2024	28 days	10 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) SNP 5-12	E372-U	03-Jun-2024	11-Jun-2024	28 days	8 days	✓	13-Jun-2024	28 days	10 days	✓

Page : 13 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					E	/aluation. × –	Holding time exce	euance , v	- vviuiiii	Holding Time	
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass total (sulfuric acid)											
SNP 5-13	E372-U	03-Jun-2024	11-Jun-2024	28	8 days	✓	13-Jun-2024	28 days	10 days	✓	
				days							
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass total (sulfuric acid)											
SNP 5-4	E372-U	03-Jun-2024	11-Jun-2024	28	8 days	✓	13-Jun-2024	28 days	10 days	✓	
				days							
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)				<u>'</u>							
Amber glass total (sulfuric acid)											
SNP 5-5	E372-U	03-Jun-2024	11-Jun-2024	28	8 days	✓	13-Jun-2024	28 days	10 days	✓	
				days							
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass total (sulfuric acid)											
SNP 5-6	E372-U	03-Jun-2024	11-Jun-2024	28	8 days	✓	13-Jun-2024	28 days	10 days	✓	
				days							
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass total (sulfuric acid)											
SNP 5-6-D	E372-U	03-Jun-2024	11-Jun-2024	28	8 days	✓	13-Jun-2024	28 days	10 days	✓	
				days							
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass total (sulfuric acid)											
SNP 5-8	E372-U	03-Jun-2024	11-Jun-2024	28	8 days	✓	13-Jun-2024	28 days	10 days	✓	
				days					-		
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass total (sulfuric acid)											
SNP 5-8-FB	E372-U	03-Jun-2024	11-Jun-2024	28	8 days	✓	13-Jun-2024	28 days	10 days	✓	
				days	-				-		
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass total (sulfuric acid)											
SNP 5-9	E372-U	03-Jun-2024	11-Jun-2024	28	8 days	✓	13-Jun-2024	28 days	10 days	✓	
				days							
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass total (lab preserved)											
TB	E372-U	03-Jun-2024	07-Jun-2024	3 days	3 days	✓	08-Jun-2024	28 days	2 days	✓	
					′				,		

Page : 14 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

						araaraa	Holding time excee	, ,		Trending Time
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation			Analy	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holdin	Eval	
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
SNP 5-4	E421	03-Jun-2024	09-Jun-2024	180	6 days	✓	11-Jun-2024	180	8 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)				<u> </u>						
SNP 5-6	E421	03-Jun-2024	09-Jun-2024	180	6 days	✓	11-Jun-2024	180	8 days	✓
o 0 0				days	, -			days	,-	
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS							I			
HDPE - dissolved (lab preserved) SNP 5-6-D	E421	03-Jun-2024	09-Jun-2024	180	6 days	✓	11-Jun-2024	180	8 days	✓
SNP 0-0-D	E421	03-3011-2024	09-Jun-2024		0 uays	•	11-Jun-2024		o uays	•
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
SNP 5-8-FB	E421	03-Jun-2024	09-Jun-2024	180	6 days	✓	11-Jun-2024	180	8 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
ТВ	E421	03-Jun-2024	09-Jun-2024	180	6 days	✓	11-Jun-2024	180	8 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
SNP 5-11	E421	03-Jun-2024	10-Jun-2024	180	7 days	✓	11-Jun-2024	180	8 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
SNP 5-12	E421	03-Jun-2024	10-Jun-2024	180	7 days	✓	11-Jun-2024	180	8 days	✓
		JJ JJIII EOLT	.0 00.1 202 1	days	,0		55.71 202 7	days	Jayo	•
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)	E404	02 lun 2024	10 Jun 2024	400	7 days	√	11 lue 2024	400	0 days	✓
SNP 5-13	E421	03-Jun-2024	10-Jun-2024	180	7 days	*	11-Jun-2024	180	8 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
SNP 5-5	E421	03-Jun-2024	10-Jun-2024	180	7 days	✓	11-Jun-2024	180	8 days	✓
				days				days		

Page : 15 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Matrix: Water	Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	eparation			Analysis			
Container / Client Sample ID(s)			Preparation			Analysis Date			Eval		
			Date	Rec	Actual			Rec	Actual		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS											
HDPE - dissolved (lab preserved) SNP 5-8	E421	03-Jun-2024	10-Jun-2024	180 days	7 days	✓	11-Jun-2024	180 days	8 days	✓	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS											
HDPE - dissolved (lab preserved) SNP 5-9	E421	03-Jun-2024	10-Jun-2024	180 days	7 days	✓	11-Jun-2024	180 days	8 days	√	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	l)										
Amber glass dissolved (sulfuric acid) SNP 5-4	E358-L	03-Jun-2024	11-Jun-2024	28 days	8 days	✓	11-Jun-2024	28 days	8 days	✓	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	l)										
Amber glass dissolved (sulfuric acid) SNP 5-5	E358-L	03-Jun-2024	11-Jun-2024	28 days	8 days	✓	11-Jun-2024	28 days	8 days	✓	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	l)										
Amber glass dissolved (sulfuric acid) SNP 5-8-FB	E358-L	03-Jun-2024	11-Jun-2024	28 days	8 days	✓	11-Jun-2024	28 days	8 days	✓	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	l)										
Amber glass dissolved (lab preserved) TB	E358-L	03-Jun-2024	07-Jun-2024	3 days	3 days	✓	07-Jun-2024	28 days	0 days	✓	
Physical Tests : Alkalinity Species by Titration											
HDPE SNP 5-11	E290	03-Jun-2024	06-Jun-2024	14 days	3 days	✓	07-Jun-2024	14 days	4 days	✓	
Physical Tests : Alkalinity Species by Titration											
HDPE SNP 5-12	E290	03-Jun-2024	06-Jun-2024	14 days	3 days	✓	07-Jun-2024	14 days	4 days	✓	
Physical Tests : Alkalinity Species by Titration											
HDPE SNP 5-13	E290	03-Jun-2024	06-Jun-2024	14 days	3 days	✓	07-Jun-2024	14 days	4 days	✓	

Page : 16 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Matrix: Water Evaluation: ★ = Holding time exceedance; ✓ = Within Holding Time

						Analysis				
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pr	eparation					
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	s Date Holding Times		
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
SNP 5-4	E290	03-Jun-2024	06-Jun-2024	14	3 days	1	07-Jun-2024	14 days	4 days	✓
				days				-	-	
Physical Tests : Alkalinity Species by Titration				,						
HDPE				I				I		
SNP 5-5	E290	03-Jun-2024	06-Jun-2024	14	3 days	1	07-Jun-2024	14 days	A days	√
SIVE 0-0	L290	03-3411-2024	00-3011-2024		3 days	·	07-Juli-2024	14 days	4 uays	•
				days						
Physical Tests : Alkalinity Species by Titration										
HDPE										
SNP 5-6	E290	03-Jun-2024	06-Jun-2024	14	3 days	✓	07-Jun-2024	14 days	4 days	✓
				days						
Physical Tests : Alkalinity Species by Titration										
HDPE										
SNP 5-6-D	E290	03-Jun-2024	06-Jun-2024	14	3 days	✓	07-Jun-2024	14 days	4 days	✓
				days						
Physical Tests : Alkalinity Species by Titration				,						
HDPE							I			
SNP 5-8	E290	03-Jun-2024	06-Jun-2024	14	3 days	√	07-Jun-2024	14 days	4 days	√
SINF 0-0	L290	03-3411-2024	00-3011-2024		3 days	, ,	07-Juli-2024	14 days	4 uays	•
				days						
Physical Tests : Alkalinity Species by Titration										
HDPE										
SNP 5-8-FB	E290	03-Jun-2024	06-Jun-2024	14	3 days	✓	07-Jun-2024	14 days	4 days	✓
				days						
Physical Tests : Alkalinity Species by Titration										
HDPE										
SNP 5-9	E290	03-Jun-2024	06-Jun-2024	14	3 days	✓	07-Jun-2024	14 days	4 days	✓
				days						
Physical Tests : Alkalinity Species by Titration										
HDPE							I			
TB	E290	03-Jun-2024	06-Jun-2024	14	3 days	√	10-Jun-2024	14 days	7 days	✓
10	2230	00-0011-2024	50-0411-202 1		o days	·	10-04/1-2024	1 - days	ruays	•
				days						
Physical Tests : Conductivity in Water										
HDPE										
SNP 5-11	E100	03-Jun-2024	06-Jun-2024	28	3 days	✓	07-Jun-2024	28 days	4 days	✓
				days						

Page : 17 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Matrix: Water	Evaluation: × = Holding time exceedance ; ✓ = Within Holding Time

iviatrix: vvater						Analysis				
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation					
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE										
SNP 5-12	E100	03-Jun-2024	06-Jun-2024	28	3 days	✓	07-Jun-2024	28 days	4 days	✓
				days				-	-	
Physical Tests : Conductivity in Water				,						
HDPE							<u> </u>			
SNP 5-13	E100	03-Jun-2024	06-Jun-2024	28	3 days	✓	07-Jun-2024	28 days	4 days	√
0141 0-10	2100	00-0411-202-4	00-0dii 2024		o days	·	07-0di1-202-	20 days	+ days	•
				days						
Physical Tests : Conductivity in Water	•				<u> </u>					
HDPE	F400	00 1 0004	00 1 0004					00.1	4 .	,
SNP 5-4	E100	03-Jun-2024	06-Jun-2024	28	3 days	✓	07-Jun-2024	28 days	4 days	✓
				days						
Physical Tests : Conductivity in Water										
HDPE										
SNP 5-5	E100	03-Jun-2024	06-Jun-2024	28	3 days	✓	07-Jun-2024	28 days	4 days	✓
				days						
Physical Tests : Conductivity in Water										
HDPE										
SNP 5-6	E100	03-Jun-2024	06-Jun-2024	28	3 days	√	07-Jun-2024	28 days	4 days	✓
				days				,	,	
Dhousing Tarks a Conductivity in Weter				,-						
Physical Tests : Conductivity in Water HDPE					1		I	I		
SNP 5-6-D	E100	03-Jun-2024	06-Jun-2024	200	3 days	√	07-Jun-2024	28 days	4 daya	✓
SINP 3-0-D	L100	03-3011-2024	00-Jun-2024	28	3 uays	ľ	07-Jun-2024	20 uays	4 uays	•
				days						
Physical Tests : Conductivity in Water										
HDPE	_									
SNP 5-8	E100	03-Jun-2024	06-Jun-2024	28	3 days	✓	07-Jun-2024	28 days	4 days	✓
				days						
Physical Tests : Conductivity in Water										
HDPE										
SNP 5-8-FB	E100	03-Jun-2024	06-Jun-2024	28	3 days	✓	07-Jun-2024	28 days	4 days	✓
				days						
Physical Tests : Conductivity in Water			1480							
HDPE							<u> </u>			
SNP 5-9	E100	03-Jun-2024	06-Jun-2024	20	3 days	1	07-Jun-2024	28 days	4 dave	✓
ON 0-0	_ 100	00-0411-2024	00-0011-2024	28	Juays	,	07-3411-2024	20 days	- uays	*
				days						

Page : 18 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Matrix: Water		Evaluation: × = F	Holding time exceedance ; ✓ = Within Holding Time

Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE TB	E100	03-Jun-2024	06-Jun-2024	28 days	3 days	√	10-Jun-2024	28 days	7 days	✓
Physical Tests : pH by Meter										
HDPE SNP 5-4	E108	03-Jun-2024	06-Jun-2024	0.25 hrs	78 hrs	* EHTR-FM	07-Jun-2024	0.25 hrs	94 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE SNP 5-5	E108	03-Jun-2024	06-Jun-2024	0.25 hrs	78 hrs	* EHTR-FM	07-Jun-2024	0.25 hrs	94 hrs	# EHTR-FM
Physical Tests : pH by Meter										
HDPE SNP 5-8-FB	E108	03-Jun-2024	06-Jun-2024	0.25 hrs	78 hrs	* EHTR-FM	07-Jun-2024	0.25 hrs	94 hrs	# EHTR-FM
Physical Tests : pH by Meter										
HDPE SNP 5-6	E108	03-Jun-2024	06-Jun-2024	0.25 hrs	79 hrs	* EHTR-FM	07-Jun-2024	0.25 hrs	96 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE SNP 5-6-D	E108	03-Jun-2024	06-Jun-2024	0.25 hrs	79 hrs	* EHTR-FM	07-Jun-2024	0.25 hrs	96 hrs	# EHTR-FM
Physical Tests : pH by Meter										
HDPE SNP 5-11	E108	03-Jun-2024	06-Jun-2024	0.25 hrs	80 hrs	# EHTR-FM	07-Jun-2024	0.25 hrs	97 hrs	# EHTR-FM
Physical Tests : pH by Meter										
HDPE SNP 5-12	E108	03-Jun-2024	06-Jun-2024	0.25 hrs	80 hrs	* EHTR-FM	07-Jun-2024	0.25 hrs	97 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE SNP 5-13	E108	03-Jun-2024	06-Jun-2024	0.25 hrs	80 hrs	# EHTR-FM	07-Jun-2024	0.25 hrs	97 hrs	# EHTR-FM

Page : 19 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						aluation. • –	Holding time excee	dance,	***************************************	Tholaing Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE										
SNP 5-8	E108	03-Jun-2024	06-Jun-2024	0.25	80 hrs	3c	07-Jun-2024	0.25	97 hrs	se
				hrs		EHTR-FM		hrs		EHTR-FM
District the second sec				10						
Physical Tests : pH by Meter				T T	1					
HDPE	E400	00 1 0004	00 1 0004		00 6	×	07 1 0004		07 5	×
SNP 5-9	E108	03-Jun-2024	06-Jun-2024	0.25	80 hrs		07-Jun-2024	0.25	97 hrs	
				hrs		EHTR-FM		hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
ТВ	E108	03-Jun-2024	06-Jun-2024	0.25	81 hrs	*	10-Jun-2024	0.25	176 hrs	sc .
				hrs		EHTR-FM		hrs		EHTR-FM
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
SNP 5-11	E160-L	03-Jun-2024					10-Jun-2024	7 days	7 days	✓
SNF 0-11	L 100-L	03-3411-2024					10-3411-2024	1 days	1 days	,
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
SNP 5-12	E160-L	03-Jun-2024					10-Jun-2024	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
SNP 5-13	E160-L	03-Jun-2024					10-Jun-2024	7 days	7 days	✓
									,	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE	F400 !	00 1 000 :					40 1 2224	7.1	7.1	,
SNP 5-4	E160-L	03-Jun-2024					10-Jun-2024	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
SNP 5-5	E160-L	03-Jun-2024					10-Jun-2024	7 days	7 days	✓
Physical Tests (TSS by Crayimetry / ow Level)										
Physical Tests : TSS by Gravimetry (Low Level) HDPE										
	E160-L	03-Jun-2024					10-Jun-2024	7 days	7 days	√
SNP 5-6	E 100-L	03-Juli-2024					10-Juli-2024	/ uays	/ uays	,

Page : 20 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analysis Analyte Group: Analytical Method Method Sampling Date Container / Client Sample ID(s) **Holding Times** Preparation **Holding Times** Eval Analysis Date Eval Rec Actual Rec Actual Date Physical Tests: TSS by Gravimetry (Low Level) HDPE E160-L 03-Jun-2024 1 SNP 5-6-D 10-Jun-2024 7 days 7 days Physical Tests: TSS by Gravimetry (Low Level) **HDPE** SNP 5-8 E160-L 03-Jun-2024 10-Jun-2024 7 days 7 days 1 Physical Tests: TSS by Gravimetry (Low Level) HDPE SNP 5-8-FB E160-L 03-Jun-2024 10-Jun-2024 7 days 1 7 days Physical Tests: TSS by Gravimetry (Low Level) HDPE E160-L SNP 5-9 03-Jun-2024 10-Jun-2024 7 days 7 days 1 Physical Tests: TSS by Gravimetry (Low Level) **HDPE** TB E160-L 03-Jun-2024 10-Jun-2024 7 days 1 7 days Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Glass vial total (hydrochloric acid) E508-L 03-Jun-2024 SNP 5-4 11-Jun-2024 0 hrs 190 hrs 11-Jun-2024 0 hrs 190 hrs UCP UCP Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Glass vial total (hydrochloric acid) SNP 5-5 E508-L 03-Jun-2024 11-Jun-2024 0 hrs 190 hrs 11-Jun-2024 0 hrs 190 hrs UCP UCP Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Glass vial total (hydrochloric acid) 190 hrs SNP 5-8-FB E508-L 03-Jun-2024 11-Jun-2024 0 hrs 30 11-Jun-2024 0 hrs 190 hrs UCP UCP Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Glass vial - total (lab preserved) E508-L 03-Jun-2024 11-Jun-2024 190 hrs 11-Jun-2024 0 hrs 190 hrs TB 0 hrs × æ UCP UCP

Page : 21 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Matrix: Water	Evaluation: × = Holding time exceedance ; ✓ = Within Holding Time

Matrix. Water						- Caracacacacacacacacacacacacacacacacacaca	Tiolding time excet	, ,	**********	Troiding Tin
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SNP 5-11	E420	03-Jun-2024	07-Jun-2024	180	4 days	✓	09-Jun-2024	180	6 days	✓
				days				days		
Total Metals : Total Metals in Water by CRC ICPMS								-		
HDPE - total (lab preserved)										
SNP 5-12	E420	03-Jun-2024	07-Jun-2024	180	4 days	✓	09-Jun-2024	180	6 days	✓
				days	-			days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)				<u> </u>			I			
SNP 5-13	E420	03-Jun-2024	07-Jun-2024	180	4 days	✓	09-Jun-2024	180	6 days	✓
				days	,			davs	,	
TALM OF TALM OF SWALL ORGANIA				dayo				dayo		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) SNP 5-4	E420	03-Jun-2024	07-Jun-2024	180	4 days	✓	09-Jun-2024	180	6 days	1
SINF 3-4	L420	05-5411-2024	07-Jun-2024		4 uays	•	09-3011-2024	days	0 days	•
				days				uays		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)	F400	00 1 0004	07 1 0004		4 1	,	00 1 0004		0.1	1
SNP 5-5	E420	03-Jun-2024	07-Jun-2024	180	4 days	✓	09-Jun-2024	180	6 days	•
				days				days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SNP 5-6	E420	03-Jun-2024	07-Jun-2024	180	4 days	✓	09-Jun-2024	180	6 days	✓
				days				days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SNP 5-6-D	E420	03-Jun-2024	07-Jun-2024	180	4 days	✓	09-Jun-2024	180	6 days	✓
				days				days		
Total Metals : Total Metals in Water by CRC ICPMS								-		
HDPE - total (lab preserved)										
SNP 5-8	E420	03-Jun-2024	07-Jun-2024	180	4 days	✓	09-Jun-2024	180	6 days	✓
				days				days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)							I			
SNP 5-8-FB	E420	03-Jun-2024	07-Jun-2024	180	4 days	✓	09-Jun-2024	180	6 days	1
5.11 5 5 1 B		30 00 2021	57 Guil 2027	days	, 44,5		00 0dii 2024	days	Jaayo	•
				uays				uays		

Page : 22 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Width Fracti						aldation.	Tiolaing anto oxooc	, ,	**********	Troiding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times Eval		Analysis Date	e Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SNP 5-9	E420	03-Jun-2024	07-Jun-2024	180	4 days	✓	09-Jun-2024	180	6 days	✓
				days				days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
ТВ	E420	03-Jun-2024	07-Jun-2024	180	4 days	✓	09-Jun-2024	180	6 days	✓
				days				days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

UCP: Unsuitable Container and/or Preservative used (invalidates standard hold time). Maximum hold time of zero applied. Test results may be biased low / unreliable, and may not meet regulatory requirements.

Page : 23 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		Frequency (%	,)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	1480385	2	40	5.0	5.0	✓
Ammonia by Fluorescence	E298	1480663	2	12	16.6	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	1480389	2	23	8.7	5.0	√
Chloride in Water by IC	E235.CI	1480388	2	40	5.0	5.0	1
Conductivity in Water	E100	1480386	2	40	5.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	1481562	2	29	6.9	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1480661	2	5	40.0	5.0	1
Fluoride in Water by IC	E235.F	1480387	2	40	5.0	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	1480390	2	40	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	1480391	2	40	5.0	5.0	✓
pH by Meter	E108	1480384	2	40	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1480392	2	40	5.0	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	1487332	0	4	0.0	5.0	3c
Total Metals in Water by CRC ICPMS	E420	1480771	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1480662	2	12	16.6	5.0	✓
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	1480385	2	40	5.0	5.0	✓
Ammonia by Fluorescence	E298	1480663	2	12	16.6	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	1480389	2	23	8.7	5.0	✓
Chloride in Water by IC	E235.CI	1480388	2	40	5.0	5.0	✓
Conductivity in Water	E100	1480386	2	40	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1481562	2	29	6.9	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1480661	2	5	40.0	5.0	✓
Fluoride in Water by IC	E235.F	1480387	2	40	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	1480390	2	40	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	1480391	2	40	5.0	5.0	✓
pH by Meter	E108	1480384	2	40	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1480392	2	40	5.0	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	1487332	1	4	25.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	1480771	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1480662	2	12	16.6	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	1485354	1	20	5.0	5.0	✓
Method Blanks (MB)							
Alkalinity Species by Titration	E290	1480385	2	40	5.0	5.0	✓
Ammonia by Fluorescence	E298	1480663	2	12	16.6	5.0	1

Page : 24 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Matrix: Water		Evaluati	on: × = QC frequ	ency outside sp	ecification; ✓ =	QC frequency wit	hin specification
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
Bromide in Water by IC (Low Level)	E235.Br-L	1480389	2	23	8.7	5.0	✓
Chloride in Water by IC	E235.CI	1480388	2	40	5.0	5.0	✓
Conductivity in Water	E100	1480386	2	40	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1481562	3	29	10.3	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1480661	2	5	40.0	5.0	✓
Fluoride in Water by IC	E235.F	1480387	2	40	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	1480390	2	40	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	1480391	2	40	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1480392	2	40	5.0	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	1487332	1	4	25.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	1480771	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1480662	2	12	16.6	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	1485354	1	20	5.0	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	1480663	1	12	8.3	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	1480389	2	23	8.7	5.0	✓
Chloride in Water by IC	E235.CI	1480388	2	40	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1481562	2	29	6.9	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1480661	1	5	20.0	5.0	✓
Fluoride in Water by IC	E235.F	1480387	2	40	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	1480390	2	40	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	1480391	2	40	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1480392	2	40	5.0	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	1487332	0	4	0.0	5.0)c
Total Metals in Water by CRC ICPMS	E420	1480771	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1480662	1	12	8.3	5.0	✓

Page : 25 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	ALS Environmental -			sample. Conductivity measurements are temperature-compensated to 25°C.
	Vancouver			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	ALS Environmental -			pH should be measured in the field within the recommended 15 minute hold time.
	Vancouver			
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	ALS Environmental -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Vancouver			brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Vancouver			
Chloride in Water by IC	E235.CI	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Vancouver			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	ALS Environmental -			
	Vancouver			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Vancouver			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Vancouver			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	ALS Environmental -			
	Vancouver			

Page : 26 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	ALS Environmental -			alkalinity values.
	Vancouver			
Ammonia by Fluorescence	E298	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	ALS Environmental - Vancouver			This method is approved under US EPA 40 CFR Part 136 (May 2021)
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
(···-)	ALS Environmental - Vancouver			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are
				purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
	ALS Environmental - Vancouver			
Total Metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	ALS Environmental - Vancouver			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	ALS Environmental -		, ,	
	Vancouver			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
,	ALS Environmental - Vancouver			
Dissolved Hardness (Calculated)	EC100	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	ALS Environmental -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Vancouver			calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
TDS in Water (Calculation)	EC103	Water	APHA 1030E (mod)	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where
	ALS Environmental - Vancouver			available. Minor ions are included where data is present.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions

Page : 27 of 27

Work Order : YL2400572 Amendment 1

Client : WSP Canada Inc.

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	ALS Environmental -			
	Vancouver			
Preparation for Dissolved Organic Carbon for	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Combustion				
	ALS Environmental -			
	Vancouver			
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	ALS Environmental -			
	Vancouver			
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	ALS Environmental -			
	Vancouver			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order Page : 1 of 23 :YL2400572

Amendment :1

Client : WSP Canada Inc. Laboratory : ALS Environmental - Yellowknife

Contact :Saad Pasha **Account Manager** : Oliver Gregg

Address : 2800, 700 - 2nd Street SW Address :314 Old Airport Road, Unit 116

Yellowknife, Northwest Territories Canada X1A 3T3

Telephone :403.512.6580 Telephone :1 867 445 7143 Date Samples Received

Project : CA0034908.5454-1000.1002 :04-Jun-2024 09:57 **Date Analysis Commenced** :06-Jun-2024 :2024CA215454/1000.1001

C-O-C number Issue Date : 24-Jun-2024 10:16

Sampler : Emily Finstad

Site

Quote number :YL24-GOLD100-002 No. of samples received :11

No. of samples analysed : 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

Calgary AB Canada T2P 2W2

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

PO

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angelo Salandanan	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Brieanna Allen	Production/Validation Manager	Vancouver Inorganics, Burnaby, British Columbia
Dan Gebert	Laboratory Analyst	Vancouver Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Monica Ko	Lab Assistant	Vancouver Inorganics, Burnaby, British Columbia

Page : 2 of 23

Work Order: YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 23

Work Order: YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Part	ub-Matrix: Water	o-Matrix: Water						Laboratory Duplicate (DUP) Report							
Accordance Acc	Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	_		1 1		Qualifier			
Page	Physical Tests (QC	Lot: 1480384)													
Askalinity, Istal (us. GaCO3)	VA24B3059-003	Anonymous	pH		E108	0.10	pH units	7.82	7.85	0.383%	4%				
Page	Physical Tests (QC	Lot: 1480385)													
Analymous Conductivity Conduct	VA24B3059-003	Anonymous	Alkalinity, total (as CaCO3)		E290	1.0	mg/L	36.3	34.6	4.80%	20%				
Part	Physical Tests (QC	Lot: 1480386)													
Analymous PH Park Park	VA24B3059-003	Anonymous	Conductivity		E100	2.0	μS/cm	71.1	69.0	3.00%	10%				
Note	Physical Tests (QC	Lot: 1480526)													
Acade Anonymous Alkalinity, total (as CaCO3)	VA24B3010-003	Anonymous	pH		E108	0.10	pH units	8.42	8.43	0.119%	4%				
National Nutrients (OC Lot: 1480528) National Nutrients (OC Lot: 1480387) National Nutrients (OC Lot: 1480388) National Nutrients (OC Lot: 1480389) National Nutrients National Nutrients National Nutrients National Nutrients National Nutrients National Nutrients National National National National National National National National	Physical Tests (QC	Lot: 1480527)													
Annoymous Conductivity Conduct	VA24B3010-003	Anonymous	Alkalinity, total (as CaCO3)		E290	1.0	mg/L	185	186	0.754%	20%				
Annoymous Conductivity Conduct	Physical Tests (QC	Lot: 1480528)													
Annymous Fluoride 16984-48-8 E235.F 0.020 mg/L 0.027 <0.020 0.007 Diff <2x LOR	VA24B3010-003		Conductivity		E100	2.0	μS/cm	750	745	0.669%	10%				
Annymous Fluoride 16984-48-8 E235.F 0.020 mg/L 0.027 <0.020 0.007 Diff <2x LOR	Anions and Nutrient	ts (QC Lot: 1480387)													
A24B3059-001 Anonymous Chloride 16887-00-6 E235.Cl 0.50 mg/L <0.50 <0.50 0 Diff <2x LOR	VA24B3059-001	A Committee of the Comm	Fluoride	16984-48-8	E235.F	0.020	mg/L	0.027	<0.020	0.007	Diff <2x LOR				
A24B3059-001 Anonymous Chloride 16887-00-6 E235.Cl 0.50 mg/L <0.50 <0.50 0 Diff <2x LOR	Anions and Nutrient	ts (QC Lot: 1480388)													
A24B3059-001 Anonymous Bromide 24959-67-9 E235.Br-L 0.050 mg/L <0.050 <0.050 0 Diff <2x LOR	VA24B3059-001		Chloride	16887-00-6	E235.CI	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR				
A24B3059-001 Anonymous Bromide 24959-67-9 E235.Br-L 0.050 mg/L <0.050 <0.050 0 Diff <2x LOR	Anions and Nutrient	ts (QC Lot: 1480389)													
A24B3059-001 Anonymous Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L 0.0215 0.0216 0.0008 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L 0.0215 0.0216 0.0008 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0010 mg/L <0.0010 <0.0010 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0010 mg/L <0.0010 <0.0010 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0010 mg/L 0.0010 <0.0010 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L 0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L 0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR	VA24B3059-001	A Committee of the Comm	Bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR				
A24B3059-001 Anonymous Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L 0.0215 0.0216 0.0008 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L 0.0215 0.0216 0.0008 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0010 mg/L <0.0010 <0.0010 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0010 mg/L <0.0010 <0.0010 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0010 mg/L 0.0010 <0.0010 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L 0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L 0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR	Anions and Nutrient	ts (QC Lot: 1480390)													
A24B3059-001 Anonymous Nitrite (as N) 14797-65-0 E235.NO2-L 0.0010 mg/L <0.0010 <0.0010 0 Diff <2x LOR nions and Nutrients (QC Lot: 1480392) A24B3059-001 Anonymous Sulfate (as SO4) 14808-79-8 E235.SO4 0.30 mg/L 6.46 6.42 0.558% 20% nions and Nutrients (QC Lot: 1480529) A24B3010-001 Anonymous Fluoride 16984-48-8 E235.F 0.020 mg/L 0.064 0.064 0.0002 Diff <2x LOR nions and Nutrients (QC Lot: 1480530) A24B3010-001 Anonymous Chloride 16887-00-6 E235.Cl 0.50 mg/L 0.73 0.72 0.007 Diff <2x LOR nions and Nutrients (QC Lot: 1480531) A24B3010-001 Anonymous Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR	VA24B3059-001	A Committee of the Comm	Nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0215	0.0216	0.00008	Diff <2x LOR				
A24B3059-001 Anonymous Nitrite (as N) 14797-65-0 E235.NO2-L 0.0010 mg/L <0.0010 <0.0010 0 Diff <2x LOR nions and Nutrients (QC Lot: 1480392) A24B3059-001 Anonymous Sulfate (as SO4) 14808-79-8 E235.SO4 0.30 mg/L 6.46 6.42 0.558% 20% nions and Nutrients (QC Lot: 1480529) A24B3010-001 Anonymous Fluoride 16984-48-8 E235.F 0.020 mg/L 0.064 0.064 0.0002 Diff <2x LOR nions and Nutrients (QC Lot: 1480530) A24B3010-001 Anonymous Chloride 16887-00-6 E235.Cl 0.50 mg/L 0.73 0.72 0.007 Diff <2x LOR nions and Nutrients (QC Lot: 1480531) A24B3010-001 Anonymous Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR	Anions and Nutrient	ts (QC Lot: 1480391)													
A24B3059-001 Anonymous Sulfate (as SO4) 14808-79-8 E235.SO4 0.30 mg/L 6.46 6.42 0.558% 20% nions and Nutrients (QC Lot: 1480529) A24B3010-001 Anonymous Fluoride 16984-48-8 E235.F 0.020 mg/L 0.064 0.064 0.064 0.0002 Diff <2x LOR nions and Nutrients (QC Lot: 1480530) A24B3010-001 Anonymous Chloride 16887-00-6 E235.Cl 0.50 mg/L 0.73 0.72 0.007 Diff <2x LOR nions and Nutrients (QC Lot: 1480531) A24B3010-001 Anonymous Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR	VA24B3059-001		Nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR				
A24B3059-001 Anonymous Sulfate (as SO4) 14808-79-8 E235.SO4 0.30 mg/L 6.46 6.42 0.558% 20% nions and Nutrients (QC Lot: 1480529) A24B3010-001 Anonymous Fluoride 16984-48-8 E235.F 0.020 mg/L 0.064 0.064 0.064 0.0002 Diff <2x LOR nions and Nutrients (QC Lot: 1480530) A24B3010-001 Anonymous Chloride 16887-00-6 E235.Cl 0.50 mg/L 0.73 0.72 0.007 Diff <2x LOR nions and Nutrients (QC Lot: 1480531) A24B3010-001 Anonymous Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR	Anions and Nutrient	ts (QC Lot: 1480392)													
A24B3010-001 Anonymous Fluoride 16984-48-8 E235.F 0.020 mg/L 0.064 0.064 0.064 0.0002 Diff <2x LOR nions and Nutrients (QC Lot: 1480530) A24B3010-001 Anonymous Chloride 16887-00-6 E235.Cl 0.50 mg/L 0.73 0.72 0.007 Diff <2x LOR nions and Nutrients (QC Lot: 1480531) A24B3010-001 Anonymous Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR	VA24B3059-001	A Committee of the Comm	Sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	6.46	6.42	0.558%	20%				
A24B3010-001 Anonymous Fluoride 16984-48-8 E235.F 0.020 mg/L 0.064 0.064 0.064 0.0002 Diff <2x LOR nions and Nutrients (QC Lot: 1480530) A24B3010-001 Anonymous Chloride 16887-00-6 E235.Cl 0.50 mg/L 0.73 0.72 0.007 Diff <2x LOR nions and Nutrients (QC Lot: 1480531) A24B3010-001 Anonymous Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR	Anions and Nutrient	ts (QC Lot: 1480529)													
A24B3010-001 Anonymous Chloride 16887-00-6 E235.Cl 0.50 mg/L 0.73 0.72 0.007 Diff <2x LOR nions and Nutrients (QC Lot: 1480531) A24B3010-001 Anonymous Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR	VA24B3010-001		Fluoride	16984-48-8	E235.F	0.020	mg/L	0.064	0.064	0.0002	Diff <2x LOR				
A24B3010-001 Anonymous Chloride 16887-00-6 E235.Cl 0.50 mg/L 0.73 0.72 0.007 Diff <2x LOR nions and Nutrients (QC Lot: 1480531) A24B3010-001 Anonymous Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR	Anions and Nutrient	ts (QC Lot: 1480530)													
A24B3010-001 Anonymous Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR	VA24B3010-001		Chloride	16887-00-6	E235.CI	0.50	mg/L	0.73	0.72	0.007	Diff <2x LOR				
A24B3010-001 Anonymous Nitrate (as N) 14797-55-8 E235.NO3-L 0.0050 mg/L <0.0050 <0.0050 0 Diff <2x LOR	Anions and Nutrient	ts (QC Lot: 1480531)													
	VA24B3010-001	,	Nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR				
	Anions and Nutrion	ts (OC Lat: 1480522)													

Page : 4 of 23

Work Order: YL2400572 Amendment 1

Client : WSP Canada Inc.

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrien	ts (QC Lot: 1480532) - c	continued									
VA24B3010-001	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1480533)										
VA24B3010-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	33.0	32.9	0.276%	20%	
Anions and Nutrien	ts (QC Lot: 1480534)										
VA24B3114-001	Anonymous	Bromide	24959-67-9	E235.Br-L	2.50	mg/L	<2.50	<2.50	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1480662)										
YL2400572-011	ТВ	Phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1480663)										
YL2400572-011	ТВ	Ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1486558)										
VA24B3358-012	Anonymous	Phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0046	0.0044	0.0002	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1486559)										
VA24B3358-012	Anonymous	Ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 14806	61)									
YL2400572-011	ТВ	Carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 14865	57)									
YL2400572-001	SNP 5-4	Carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	21.5	20.3	5.90%	20%	
Total Metals (QC Lo	ot: 1480771)										
VA24B2961-001	Anonymous	Aluminum, total	7429-90-5	E420	0.0030	mg/L	2.41	2.41	0.210%	20%	
		Antimony, total	7440-36-0	E420	0.00010	mg/L	0.00389	0.00390	0.170%	20%	
		Arsenic, total	7440-38-2	E420	0.00010	mg/L	0.0149	0.0150	0.548%	20%	
		Barium, total	7440-39-3	E420	0.00010	mg/L	0.0146	0.0147	1.07%	20%	
		Beryllium, total	7440-41-7	E420	0.000020	mg/L	0.000202	0.000198	1.65%	20%	
		Bismuth, total	7440-69-9	E420	0.000050	mg/L	0.000098	0.000100	0.000002	Diff <2x LOR	
		Boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		Cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.000575	0.000557	3.12%	20%	
		Calcium, total	7440-70-2	E420	0.050	mg/L	8.54	8.62	0.882%	20%	
		Cesium, total	7440-46-2	E420	0.000010	mg/L	0.00505	0.00505	0.0299%	20%	
		Chromium, total	7440-47-3	E420	0.00050	mg/L	0.00171	0.00182	0.00011	Diff <2x LOR	
		Cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00141	0.00140	0.275%	20%	
		Copper, total	7440-50-8	E420	0.00050	mg/L	0.00464	0.00459	0.00004	Diff <2x LOR	
		Iron, total	7439-89-6	E420	0.010	mg/L	1.59	1.61	1.25%	20%	
		Lead, total	7439-92-1	E420	0.000050	mg/L	0.00232	0.00237	2.10%	20%	
			7439-93-2	E420	0.0010		0.0035	0.0035	0.00002	Diff <2x LOR	

Page : 5 of 23

Work Order: YL2400572 Amendment 1

Client : WSP Canada Inc.

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 1480771) - continued										
VA24B2961-001	Anonymous	Magnesium, total	7439-95-4	E420	0.100	mg/L	0.500	0.504	0.0045	Diff <2x LOR	
		Manganese, total	7439-96-5	E420	0.00010	mg/L	0.314	0.316	0.576%	20%	
		Molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000244	0.000248	0.000003	Diff <2x LOR	
		Nickel, total	7440-02-0	E420	0.00050	mg/L	0.00302	0.00307	0.00005	Diff <2x LOR	
		Phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		Potassium, total	7440-09-7	E420	0.100	mg/L	2.66	2.67	0.327%	20%	
		Rubidium, total	7440-17-7	E420	0.00020	mg/L	0.0148	0.0151	2.31%	20%	
		Selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Silicon, total	7440-21-3	E420	0.10	mg/L	4.92	4.90	0.361%	20%	
		Silver, total	7440-22-4	E420	0.000010	mg/L	0.000032	0.000030	0.000002	Diff <2x LOR	
		Sodium, total	7440-23-5	E420	0.050	mg/L	0.176	0.176	0.00009	Diff <2x LOR	
		Strontium, total	7440-24-6	E420	0.00020	mg/L	0.0132	0.0132	0.242%	20%	
		Sulfur, total	7704-34-9	E420	0.50	mg/L	3.93	4.01	0.09	Diff <2x LOR	
		Tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Thallium, total	7440-28-0	E420	0.000010	mg/L	0.000242	0.000251	3.28%	20%	
		Thorium, total	7440-29-1	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		Tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Titanium, total	7440-32-6	E420	0.00030	mg/L	0.0314	0.0318	1.33%	20%	
		Tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Uranium, total	7440-61-1	E420	0.000010	mg/L	0.000094	0.000098	0.000005	Diff <2x LOR	
		Vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00317	0.00317	0.000003	Diff <2x LOR	
		Zinc, total	7440-66-6	E420	0.0030	mg/L	0.0984	0.0981	0.333%	20%	
		Zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Dissolved Metals (OC Lot: 1481562)										
YL2400574-001	Anonymous	Aluminum, dissolved	7429-90-5	E421	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
		Antimony, dissolved	7440-36-0	E421	0.00020	mg/L	0.00708	0.00704	0.487%	20%	
		Arsenic, dissolved	7440-38-2	E421	0.00020	mg/L	0.00621	0.00615	0.956%	20%	
		Barium, dissolved	7440-39-3	E421	0.00020	mg/L	0.0264	0.0266	0.901%	20%	
		Beryllium, dissolved	7440-41-7	E421	0.000040	mg/L	<0.000040	<0.000040	0	Diff <2x LOR	
		Bismuth, dissolved	7440-69-9	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		Boron, dissolved	7440-42-8	E421	0.020	mg/L	0.278	0.280	0.733%	20%	
		Cadmium, dissolved	7440-43-9	E421	0.0000100	mg/L	0.00122	0.00119	2.05%	20%	
		Calcium, dissolved	7440-70-2	E421	0.100	mg/L	615	608	1.05%	20%	
		Cesium, dissolved	7440-46-2	E421	0.000020	mg/L	0.000275	0.000260	5.39%	20%	

Page : 6 of 23

Work Order: YL2400572 Amendment 1

Client : WSP Canada Inc.

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 1481562) - con	tinued									
YL2400574-001	Anonymous	Chromium, dissolved	7440-47-3	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		Cobalt, dissolved	7440-48-4	E421	0.00020	mg/L	0.0266	0.0264	0.646%	20%	
		Copper, dissolved	7440-50-8	E421	0.00040	mg/L	0.00734	0.00722	1.67%	20%	
		Iron, dissolved	7439-89-6	E421	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
		Lead, dissolved	7439-92-1	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		Lithium, dissolved	7439-93-2	E421	0.0020	mg/L	0.0414	0.0412	0.531%	20%	
		Magnesium, dissolved	7439-95-4	E421	0.0100	mg/L	125	121	3.02%	20%	
		Manganese, dissolved	7439-96-5	E421	0.00020	mg/L	0.442	0.435	1.62%	20%	
		Molybdenum, dissolved	7439-98-7	E421	0.000100	mg/L	0.00263	0.00262	0.482%	20%	
		Nickel, dissolved	7440-02-0	E421	0.00100	mg/L	0.0439	0.0437	0.476%	20%	
		Phosphorus, dissolved	7723-14-0	E421	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
		Potassium, dissolved	7440-09-7	E421	0.100	mg/L	10.8	10.7	0.885%	20%	
		Rubidium, dissolved	7440-17-7	E421	0.00040	mg/L	0.0122	0.0120	2.17%	20%	
		Selenium, dissolved	7782-49-2	E421	0.000100	mg/L	0.000225	0.000217	0.000008	Diff <2x LOR	
		Silicon, dissolved	7440-21-3	E421	0.100	mg/L	1.07	1.04	2.67%	20%	
		Silver, dissolved	7440-22-4	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		Sodium, dissolved	7440-23-5	E421	0.100	mg/L	309	306	1.13%	20%	
		Strontium, dissolved	7440-24-6	E421	0.00040	mg/L	6.58	6.50	1.18%	20%	
		Sulfur, dissolved	7704-34-9	E421	1.00	mg/L	308	307	0.349%	20%	
		Tellurium, dissolved	13494-80-9	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
		Thallium, dissolved	7440-28-0	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		Thorium, dissolved	7440-29-1	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Tin, dissolved	7440-31-5	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Titanium, dissolved	7440-32-6	E421	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	
		Tungsten, dissolved	7440-33-7	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Uranium, dissolved	7440-61-1	E421	0.000020	mg/L	0.00288	0.00283	1.82%	20%	
		Vanadium, dissolved	7440-62-2	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		Zinc, dissolved	7440-66-6	E421	0.0020	mg/L	0.124	0.122	1.28%	20%	
		Zirconium, dissolved	7440-67-7	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
issolved Metals (QC Lot: 1483032)										
VA24B3253-001	Anonymous	Aluminum, dissolved	7429-90-5	E421	0.0020	mg/L	1.61	1.57	2.42%	20%	
		Antimony, dissolved	7440-36-0	E421	0.00020	mg/L	0.00511	0.00518	1.23%	20%	
		Arsenic, dissolved	7440-38-2	E421	0.00020	mg/L	0.00534	0.00541	1.47%	20%	
		Barium, dissolved	7440-39-3	E421	0.00020	mg/L	0.0649	0.0647	0.342%	20%	

Page : 7 of 23

Work Order: YL2400572 Amendment 1

Client : WSP Canada Inc.

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (C	QC Lot: 1483032) - cont	inued									
VA24B3253-001	Anonymous	Beryllium, dissolved	7440-41-7	E421	0.000040	mg/L	<0.000040	<0.000040	0	Diff <2x LOR	
		Bismuth, dissolved	7440-69-9	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		Boron, dissolved	7440-42-8	E421	0.020	mg/L	0.110	0.112	0.002	Diff <2x LOR	
		Cadmium, dissolved	7440-43-9	E421	0.0000100	mg/L	<0.0000100	<0.0000100	0	Diff <2x LOR	
		Calcium, dissolved	7440-70-2	E421	0.100	mg/L	375	374	0.265%	20%	
		Cesium, dissolved	7440-46-2	E421	0.000020	mg/L	0.00242	0.00235	3.02%	20%	
		Chromium, dissolved	7440-47-3	E421	0.00100	mg/L	0.0102	0.0103	0.388%	20%	
		Cobalt, dissolved	7440-48-4	E421	0.00020	mg/L	0.00143	0.00142	0.000008	Diff <2x LOR	
		Copper, dissolved	7440-50-8	E421	0.00040	mg/L	0.00883	0.00864	2.19%	20%	
		Iron, dissolved	7439-89-6	E421	0.020	mg/L	0.025	0.024	0.0007	Diff <2x LOR	
		Lead, dissolved	7439-92-1	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		Lithium, dissolved	7439-93-2	E421	0.0020	mg/L	0.0049	0.0049	0.00001	Diff <2x LOR	
		Magnesium, dissolved	7439-95-4	E421	0.0100	mg/L	4.23	4.04	4.45%	20%	
		Manganese, dissolved	7439-96-5	E421	0.00020	mg/L	0.00961	0.00946	1.57%	20%	
		Molybdenum, dissolved	7439-98-7	E421	0.000100	mg/L	0.0333	0.0332	0.202%	20%	
		Nickel, dissolved	7440-02-0	E421	0.00100	mg/L	0.00100	0.00112	0.00012	Diff <2x LOR	
		Phosphorus, dissolved	7723-14-0	E421	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
		Potassium, dissolved	7440-09-7	E421	0.100	mg/L	43.4	42.2	2.70%	20%	
		Rubidium, dissolved	7440-17-7	E421	0.00040	mg/L	0.0695	0.0679	2.26%	20%	
		Selenium, dissolved	7782-49-2	E421	0.000100	mg/L	0.00296	0.00308	3.83%	20%	
		Silicon, dissolved	7440-21-3	E421	0.100	mg/L	1.36	1.35	1.26%	20%	
		Silver, dissolved	7440-22-4	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		Sodium, dissolved	7440-23-5	E421	0.100	mg/L	258	250	3.06%	20%	
		Strontium, dissolved	7440-24-6	E421	0.00040	mg/L	3.49	3.51	0.538%	20%	
		Sulfur, dissolved	7704-34-9	E421	1.00	mg/L	450	446	0.882%	20%	
		Tellurium, dissolved	13494-80-9	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR	
		Thallium, dissolved	7440-28-0	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		Thorium, dissolved	7440-29-1	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Tin, dissolved	7440-31-5	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Titanium, dissolved	7440-32-6	E421	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	
		Tungsten, dissolved	7440-33-7	E421	0.00020	mg/L	0.00386	0.00385	0.474%	20%	
		Uranium, dissolved	7440-61-1	E421	0.000020	mg/L	0.000043	0.000046	0.000002	Diff <2x LOR	
		Vanadium, dissolved	7440-62-2	E421	0.00100	mg/L	0.0172	0.0171	0.536%	20%	
		Zinc, dissolved	7440-66-6	E421	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	

Page : 8 of 23

Work Order: YL2400572 Amendment 1

Client : WSP Canada Inc.

Sub-Matrix: Water							Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Dissolved Metals (C	Dissolved Metals (QC Lot: 1483032) - continued												
VA24B3253-001	Anonymous	Zirconium, dissolved	7440-67-7	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR			

Page : 9 of 23

Work Order: YL2400572 Amendment 1
Client: WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1480385)					
Alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 1480386)					
Conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 1480527)					
Alkalinity, total (as CaCO3)	E290	1	mg/L	# 2.0	В
Physical Tests (QCLot: 1480528)					
Conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 1485354)					
Solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 1480387)					
Fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 1480388)					
Chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 1480389)					
Bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 1480390)					
Nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 1480391)					
Nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 1480392)					
Sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 1480529)					
Fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 1480530)					
Chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 1480531)					
Nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 1480532)					
Nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 1480533)					
Sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	

Page 10 of 23

Work Order YL2400572 Amendment 1 WSP Canada Inc. Client

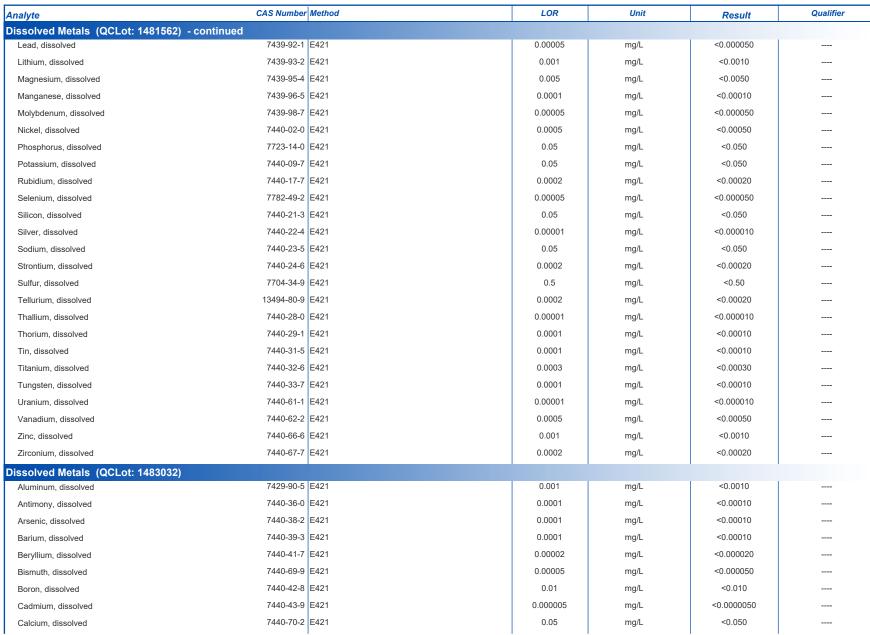
Project CA0034908.5454-1000.1002

Page 11 of 23

YL2400572 Amendment 1 Work Order: Client

WSP Canada Inc.

Project CA0034908.5454-1000.1002


Analyte CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 1480771) - continued					
Potassium, total 7440-09-7	E420	0.05	mg/L	<0.050	
Rubidium, total 7440-17-7	E420	0.0002	mg/L	<0.00020	
Selenium, total 7782-49-2	E420	0.00005	mg/L	<0.000050	
Silicon, total 7440-21-3	E420	0.1	mg/L	<0.10	
Silver, total 7440-22-4	E420	0.00001	mg/L	<0.000010	
Sodium, total 7440-23-5	E420	0.05	mg/L	<0.050	
Strontium, total 7440-24-6	E420	0.0002	mg/L	<0.00020	
Sulfur, total 7704-34-9	E420	0.5	mg/L	<0.50	
Tellurium, total 13494-80-9	E420	0.0002	mg/L	<0.00020	
Thallium, total 7440-28-0	E420	0.00001	mg/L	<0.000010	
Thorium, total 7440-29-1	E420	0.0001	mg/L	<0.00010	
Tin, total 7440-31-5	E420	0.0001	mg/L	<0.00010	
Titanium, total 7440-32-6	E420	0.0003	mg/L	<0.00030	
Tungsten, total 7440-33-7	E420	0.0001	mg/L	<0.00010	
Uranium, total 7440-61-1	E420	0.00001	mg/L	<0.000010	
Vanadium, total 7440-62-2	E420	0.0005	mg/L	<0.00050	
Zinc, total 7440-66-6	E420	0.003	mg/L	<0.0030	
Zirconium, total 7440-67-7	E420	0.0002	mg/L	<0.00020	
Total Metals (QCLot: 1487332)					
Mercury, total 7439-97-6	E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 1481562)					
Aluminum, dissolved 7429-90-5	E421	0.001	mg/L	<0.0010	
Antimony, dissolved 7440-36-0	E421	0.0001	mg/L	<0.00010	
Arsenic, dissolved 7440-38-2	E421	0.0001	mg/L	<0.00010	
Barium, dissolved 7440-39-3	E421	0.0001	mg/L	<0.00010	
Beryllium, dissolved 7440-41-7	E421	0.00002	mg/L	<0.000020	
Bismuth, dissolved 7440-69-9	E421	0.00005	mg/L	<0.000050	
Boron, dissolved 7440-42-8	E421	0.01	mg/L	<0.010	
Cadmium, dissolved 7440-43-9	E421	0.000005	mg/L	<0.0000050	
Calcium, dissolved 7440-70-2	E421	0.05	mg/L	<0.050	
Cesium, dissolved 7440-46-2	E421	0.00001	mg/L	<0.000010	
Chromium, dissolved 7440-47-3	E421	0.0005	mg/L	<0.00050	
Cobalt, dissolved 7440-48-4	E421	0.0001	mg/L	<0.00010	
Copper, dissolved 7440-50-8	E421	0.0002	mg/L	<0.00020	MBRR
Iron, dissolved 7439-89-6	E421	0.01	mg/L	<0.010	

Page : 12 of 23

Work Order: YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Page : 13 of 23

Work Order: YL2400572 Amendment 1
Client: WSP Canada Inc.

nalyte	CAS Number	Method	LOR	Unit	Result	Qualifier
issolved Metals (QCLot: 1483032	2) - continued					
Cesium, dissolved	7440-46-2	E421	0.00001	mg/L	<0.000010	
Chromium, dissolved	7440-47-3	E421	0.0005	mg/L	<0.00050	
Cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
Copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
Iron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
Lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
Lithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
Magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
Manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
Molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
Nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
Phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	<0.050	
Potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
Rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	<0.00020	
Selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
Silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
Silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
Sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
Strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
Sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
Tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	<0.00020	
Thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
Thorium, dissolved	7440-29-1	E421	0.0001	mg/L	<0.00010	
Tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
Titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
Tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	<0.00010	
Uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
Vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
Zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	<0.00020	

Page : 14 of 23

Work Order: YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Qualifiers

Quaniforo	
Qualifier	Description
В	Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.
MBRR	Initial MB for this submission had positive results for flagged analyte (data not shown). Low level samples were repeated with new QC (2nd MB results shown). High level results (>5x initial MB level) and non-detect results were reported and are defensible

Page : 15 of 23

Work Order: YL2400572 Amendment 1
Client: WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Wethod	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 1480384)									
рН	E	E108		pH units	7 pH units	101	98.0	102	
Physical Tests (QCLot: 1480385)									
Alkalinity, total (as CaCO3)	E	E290	1	mg/L	500 mg/L	106	85.0	115	
Physical Tests (QCLot: 1480386)									
Conductivity	E	≡ 100	1	μS/cm	147 μS/cm	104	90.0	110	
Physical Tests (QCLot: 1480526)		-100		11 2	7.11.2	100	00.0	400	
рн	E	=108		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 1480527)	l.	200	1	m a/l	500 mg/l	106	95.0	115	
Alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	106	85.0	115	
Physical Tests (QCLot: 1480528) Conductivity		≣ 100	1	μS/cm	147 μS/cm	101	90.0	110	
·		_100	, ,	μο/επ	147 μο/οπ	101	90.0	110	
Physical Tests (QCLot: 1485354) Solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	96.0	85.0	115	
Contas, total suspended [100]	ľ	100 L		mg/L	100 mg/L	00.0	00.0	110	
Anions and Nutrients (QCLot: 1480387)									
Fluoride	16984-48-8 E	E235.F	0.02	mg/L	1 mg/L	98.2	90.0	110	
Anions and Nutrients (QCLot: 1480388)									
Chloride	16887-00-6 E	E235.CI	0.5	mg/L	100 mg/L	97.4	90.0	110	
Anions and Nutrients (QCLot: 1480389)									
Bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	99.1	85.0	115	
Anions and Nutrients (QCLot: 1480390)						·			
Nitrate (as N)	14797-55-8 E	E235.NO3-L	0.005	mg/L	2.5 mg/L	98.0	90.0	110	
Anions and Nutrients (QCLot: 1480391)									
Nitrite (as N)	14797-65-0 E	E235.NO2-L	0.001	mg/L	0.5 mg/L	96.0	90.0	110	
Anions and Nutrients (QCLot: 1480392)									
Sulfate (as SO4)	14808-79-8 E	E235.SO4	0.3	mg/L	100 mg/L	97.2	90.0	110	
Anions and Nutrients (QCLot: 1480529)									
Fluoride	16984-48-8 E	E235.F	0.02	mg/L	1 mg/L	98.9	90.0	110	
Anions and Nutrients (QCLot: 1480530)	10007.03							440	
Chloride	16887-00-6 E	=235.Cl	0.5	mg/L	100 mg/L	98.0	90.0	110	
Anions and Nutrients (QCLot: 1480531)	4.4707.55.0	TOOL NOO!	0.005	"	0.5 ". "	07.0	00.0	440	
Nitrate (as N)	14797-55-8 E	=235.NU3-L	0.005	mg/L	2.5 mg/L	97.9	90.0	110	

Page : 16 of 23

Work Order: YL2400572 Amendment 1
Client: WSP Canada Inc.

Analyte	Spike Recover rget Concentration LC 0.5 mg/L 98.5 100 mg/L 99.5 0.5 mg/L 97.2 0.05 mg/L 92.4 0.2 mg/L 101 0.2 mg/L 97.0 8.57 mg/L 92.6 8.57 mg/L 102 8.57 mg/L 102	S Low 5 90.0 6 90.0 8 85.0 8 80.0 8 85.0 8 85.0	y Limits (%) High 110 110 115 120 115 120 115	Qualifier
Anions and Nutrients (QCLot: 1480532) Nitrile (as N) 14797-65-0 E235.NO2-L 0.001 mg/L Anions and Nutrients (QCLot: 1480533) Sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L Anions and Nutrients (QCLot: 1480534) Bromide 24959-67-9 E235.Br-L 0.05 mg/L Anions and Nutrients (QCLot: 1480662) Phosphorus, total 7723-14-0 E372-U 0.002 mg/L Anions and Nutrients (QCLot: 1480663) Armonia, total (as N) 7664-41-7 E298 0.005 mg/L Anions and Nutrients (QCLot: 1486558) Phosphorus, total 7723-14-0 E372-U 0.002 mg/L Anions and Nutrients (QCLot: 1486559) Armonia, total (as N) 7664-41-7 E298 0.005 mg/L Organic / Inorganic Carbon (QCLot: 1486557) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Organic / Inorganic Carbon (QCLot: 1486557) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Antimony, total 7440-36-0 E420 0.0001 mg/L Arsenic, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L	0.5 mg/L 98.5 100 mg/L 99.5 0.5 mg/L 97.2 0.05 mg/L 92.4 0.2 mg/L 101 0.05 mg/L 97.0 8.57 mg/L 92.6	90.0 90.0 90.0 2 85.0 85.0 85.0 9 85.0	110 110 1115 120 115 120 115	
Nitrite (as N)	100 mg/L 99.5 0.5 mg/L 97.2 0.05 mg/L 92.4 0.2 mg/L 101 0.05 mg/L 97.0 0.2 mg/L 97.0	90.0 2 85.0 4 80.0 85.0 0 80.0	110 115 120 115 120 115 120	
Anions and Nutrients (QCLot: 1480533) Sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L Anions and Nutrients (QCLot: 1480534) Bromide 24959-67-9 E235.Br-L 0.05 mg/L Anions and Nutrients (QCLot: 1480662) Phosphorus, total 7723-14-0 E372-U 0.002 mg/L Anions and Nutrients (QCLot: 1480663) Ammonia, total (as N) 7664-41-7 E298 0.005 mg/L Anions and Nutrients (QCLot: 1486558) Phosphorus, total 7723-14-0 E372-U 0.002 mg/L Anions and Nutrients (QCLot: 1486558) Phosphorus, total 7723-14-0 E372-U 0.002 mg/L Anions and Nutrients (QCLot: 1486559) Ammonia, total (as N) 7664-41-7 E298 0.005 mg/L Organic / Inorganic Carbon (QCLot: 1480661) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Organic / Inorganic Carbon (QCLot: 1486557) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Total Metals (QCLot: 1480771) Aluminum, total 7429-90-5 [E420 0.003 mg/L Antimony, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L	100 mg/L 99.5 0.5 mg/L 97.2 0.05 mg/L 92.4 0.2 mg/L 101 0.05 mg/L 97.0 0.2 mg/L 97.0	90.0 2 85.0 4 80.0 85.0 0 80.0	110 115 120 115 120 115 120	
Sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L Anions and Nutrients (QCLot: 1480534) 24959-67-9 E235.Br-L 0.05 mg/L Anions and Nutrients (QCLot: 1480662) E372-U 0.002 mg/L Phosphorus, total 7723-14-0 E372-U 0.002 mg/L Anions and Nutrients (QCLot: 1480663) E298 0.005 mg/L Anions and Nutrients (QCLot: 1486558) E372-U 0.002 mg/L Phosphorus, total 7723-14-0 E372-U 0.002 mg/L Anions and Nutrients (QCLot: 1486559) E372-U 0.002 mg/L Ammonia, total (as N) 7664-41-7 E298 0.005 mg/L Organic / Inorganic Carbon (QCLot: 1480661) E358-L 0.5 mg/L Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Total Metals (QCLot: 1480771) E358-L 0.5 mg/L Antimony, total 7440-36-0 E420 0.0001 mg/L Arsenic, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001	0.5 mg/L 97.2 0.05 mg/L 92.4 0.2 mg/L 101 0.05 mg/L 97.0 0.2 mg/L 97.0	85.0 85.0 85.0 85.0 85.0	115 120 115 120 115 120 115	
Anions and Nutrients (QCLot: 1480534) Bromide	0.5 mg/L 97.2 0.05 mg/L 92.4 0.2 mg/L 101 0.05 mg/L 97.0 0.2 mg/L 97.0	85.0 85.0 85.0 85.0 85.0	115 120 115 120 115 120 115	
Bromide 24959-67-9 E235.Br-L 0.05 mg/L	0.05 mg/L 92.4 0.2 mg/L 101 0.05 mg/L 97.0 0.2 mg/L 97.0	85.0 85.0 80.0 85.0	120 115 120 115	
Bromide 24959-67-9 E235.Br-L 0.05 mg/L	0.05 mg/L 92.4 0.2 mg/L 101 0.05 mg/L 97.0 0.2 mg/L 97.0	85.0 85.0 80.0 85.0	120 115 120 115	
Phosphorus, total 7723-14-0 E372-U 0.002 mg/L	0.2 mg/L 101 0.05 mg/L 97.0 0.2 mg/L 97.0 8.57 mg/L 92.6	85.0	115 120 115 120	
Phosphorus, total 7723-14-0 E372-U 0.002 mg/L	0.2 mg/L 101 0.05 mg/L 97.0 0.2 mg/L 97.0 8.57 mg/L 92.6	85.0	115 120 115 120	
Ammonia, total (as N) 7664-41-7 E298 0.005 mg/L Anions and Nutrients (QCLot: 1486558) Phosphorus, total 7723-14-0 E372-U 0.002 mg/L Anions and Nutrients (QCLot: 1486559) Ammonia, total (as N) 7664-41-7 E298 0.005 mg/L Organic / Inorganic Carbon (QCLot: 1480661) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Organic / Inorganic Carbon (QCLot: 1486557) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Total Metals (QCLot: 1480771) Aluminum, total 7429-90-5 E420 0.003 mg/L Antimony, total 7440-36-0 E420 0.0001 mg/L Arsenic, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L	0.05 mg/L 97.0 0.2 mg/L 97.0 8.57 mg/L 92.6	80.0	120 115	
Ammonia, total (as N) 7664-41-7 E298 0.005 mg/L Anions and Nutrients (QCLot: 1486558) Phosphorus, total 7723-14-0 E372-U 0.002 mg/L Anions and Nutrients (QCLot: 1486559) Ammonia, total (as N) 7664-41-7 E298 0.005 mg/L Organic / Inorganic Carbon (QCLot: 1480661) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Organic / Inorganic Carbon (QCLot: 1486557) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Total Metals (QCLot: 1480771) Aluminum, total 7429-90-5 E420 0.003 mg/L Antimony, total 7440-36-0 E420 0.0001 mg/L Arsenic, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L	0.05 mg/L 97.0 0.2 mg/L 97.0 8.57 mg/L 92.6	80.0	120 115	
Phosphorus, total	0.2 mg/L 97.0 8.57 mg/L 92.6	85.0	115	
Phosphorus, total	0.2 mg/L 97.0 8.57 mg/L 92.6	85.0	115	
Ammonia, total (as N) 7664-41-7 E298 0.005 mg/L Organic / Inorganic Carbon (QCLot: 1480661) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Organic / Inorganic Carbon (QCLot: 1486557) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Total Metals (QCLot: 1480771) Aluminum, total 7429-90-5 E420 0.003 mg/L Antimony, total 7440-36-0 E420 0.0001 mg/L Arsenic, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L	8.57 mg/L 92.6		120	
Ammonia, total (as N) 7664-41-7 E298 0.005 mg/L Organic / Inorganic Carbon (QCLot: 1480661) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Organic / Inorganic Carbon (QCLot: 1486557) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Total Metals (QCLot: 1480771) Aluminum, total Antimony, total Antimony, total Arsenic, total Barium, total 7440-38-2 E298 0.005 mg/L E358-L 0.5 mg/L E420 0.003 mg/L E420 0.0001 mg/L E420 0.0001 mg/L E420 0.0001 mg/L E420 0.0001 mg/L	8.57 mg/L 92.6		120	
Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Organic / Inorganic Carbon (QCLot: 1486557) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Total Metals (QCLot: 1480771) Aluminum, total 7429-90-5 E420 0.003 mg/L Antimony, total 7440-36-0 E420 0.0001 mg/L Arsenic, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L		6 80.0		
Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Organic / Inorganic Carbon (QCLot: 1486557) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Total Metals (QCLot: 1480771) Aluminum, total 7429-90-5 E420 0.003 mg/L Antimony, total 7440-36-0 E420 0.0001 mg/L Arsenic, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L		80.0		
Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Organic / Inorganic Carbon (QCLot: 1486557) Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Total Metals (QCLot: 1480771) Aluminum, total 7429-90-5 E420 0.003 mg/L Antimony, total 7440-36-0 E420 0.0001 mg/L Arsenic, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L		80.0		
Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Total Metals (QCLot: 1480771) Aluminum, total 7429-90-5 E420 0.003 mg/L Antimony, total 7440-36-0 E420 0.0001 mg/L Arsenic, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L	8.57 mg/L 102			
Carbon, dissolved organic [DOC] E358-L 0.5 mg/L Total Metals (QCLot: 1480771) Aluminum, total 7429-90-5 E420 0.003 mg/L Antimony, total 7440-36-0 E420 0.0001 mg/L Arsenic, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L	8.57 mg/L 102			
Aluminum, total 7429-90-5 E420 0.003 mg/L Antimony, total 7440-36-0 E420 0.0001 mg/L Arsenic, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L		80.0	120	
Aluminum, total 7429-90-5 E420 0.003 mg/L Antimony, total 7440-36-0 E420 0.0001 mg/L Arsenic, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L				
Aluminum, total 7429-90-5 E420 0.003 mg/L Antimony, total 7440-36-0 E420 0.0001 mg/L Arsenic, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L				
Arsenic, total 7440-38-2 E420 0.0001 mg/L Barium, total 7440-39-3 E420 0.0001 mg/L	2 mg/L 99.7	80.0	120	
Barium, total 7440-39-3 E420 0.0001 mg/L	1 mg/L 102	80.0	120	
	1 mg/L 104	80.0	120	
Beryllium, total 7440-41-7 E420 0.00002 mg/L	0.25 mg/L 100	80.0	120	
	0.1 mg/L 101	80.0	120	
Bismuth, total 7440-69-9 E420 0.00005 mg/L	1 mg/L 101	80.0	120	
Boron, total 7440-42-8 E420 0.01 mg/L	1 mg/L 98.6	80.0	120	
Cadmium, total 7440-43-9 E420 0.000005 mg/L	0.1 mg/L 101	80.0	120	
Calcium, total 7440-70-2 E420 0.05 mg/L	50 mg/L 102	80.0	120	
Cesium, total 7440-46-2 E420 0.00001 mg/L	0.05 mg/L 98.2	80.0	120	
Chromium, total 7440-47-3 E420 0.0005 mg/L	0.25 mg/L 99.0	80.0	120	
Cobalt, total 7440-48-4 E420 0.0001 mg/L	0.25 mg/L 99.2	2 80.0	120	
Copper, total 7440-50-8 E420 0.0005 mg/L	0.25 ===/1	80.0	120	
Iron, total 7439-89-6 E420 0.01 mg/L	0.25 mg/L 97.8	5 80.0	120	
Lead, total 7439-92-1 E420 0.00005 mg/L	0.25 mg/L 97.8 1 mg/L 94.5		120	
Lithium, total 7439-93-2 E420 0.001 mg/L	-	80.0		

Page : 17 of 23

Work Order: YL2400572 Amendment 1
Client: WSP Canada Inc.

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 1480771) - continued									
Magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	101	80.0	120	
Manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	99.2	80.0	120	
Molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	100	80.0	120	
Nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	99.2	80.0	120	
Phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	98.3	80.0	120	
Potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	99.2	80.0	120	
Rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	94.7	80.0	120	
Selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	93.4	80.0	120	
Silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	109	80.0	120	
Silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	91.4	80.0	120	
Sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	104	80.0	120	
Strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	96.3	80.0	120	
Sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	93.4	80.0	120	
Tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	99.9	80.0	120	
Thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	104	80.0	120	
Thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	99.2	80.0	120	
Tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	104	80.0	120	
Titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	99.9	80.0	120	
Tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	101	80.0	120	
Uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	103	80.0	120	
Vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	98.7	80.0	120	
Zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	102	80.0	120	
Zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	96.0	80.0	120	
Total Metals (QCLot: 1487332)									
Mercury, total	7439-97-6	E508-L	0.5	ng/L	5 ng/L	92.0	80.0	120	
				_					
Dissolved Metals (QCLot: 1481562)									
Aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	97.8	80.0	120	
Antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	100	80.0	120	
Arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	104	80.0	120	
Barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	97.8	80.0	120	
Beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	98.0	80.0	120	
Bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	93.5	80.0	120	
Boron, dissolved	7440-42-8		0.01	mg/L	1 mg/L	98.5	80.0	120	
Cadmium, dissolved	7440-43-9		0.000005	mg/L	0.1 mg/L	96.7	80.0	120	
Calcium, dissolved	7440-70-2		0.05	mg/L	50 mg/L	99.1	80.0	120	
I i		I	1	I	I		-		l

Page : 18 of 23

Work Order: YL2400572 Amendment 1
Client: WSP Canada Inc.

o-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier		
Dissolved Metals (QCLot: 1481562) - con	tinued										
Cesium, dissolved	7440-46-2	E421	0.00001	mg/L	0.05 mg/L	96.7	80.0	120			
Chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	101	80.0	120			
Cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	97.3	80.0	120			
Copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	95.5	80.0	120			
Iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	93.3	80.0	120			
Lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	93.4	80.0	120			
Lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	98.7	80.0	120			
Magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	102	80.0	120			
Manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	96.9	80.0	120			
Molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	99.2	80.0	120			
Nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	97.1	80.0	120			
Phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	103	80.0	120			
Potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	97.3	80.0	120			
Rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	0.1 mg/L	93.9	80.0	120			
Selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	95.7	80.0	120			
Silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	102	80.0	120			
Silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	89.0	80.0	120			
Sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	107	80.0	120			
Strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	95.3	80.0	120			
Sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	95.6	80.0	120			
Tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	0.1 mg/L	94.4	80.0	120			
Thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	93.9	80.0	120			
Thorium, dissolved	7440-29-1	E421	0.0001	mg/L	0.1 mg/L	91.6	80.0	120			
Tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	94.8	80.0	120			
Titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	97.0	80.0	120			
Tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	0.1 mg/L	92.3	80.0	120			
Uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	95.4	80.0	120			
Vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	98.0	80.0	120			
Zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	101	80.0	120			
Zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	92.9	80.0	120			
Dissolved Metals (QCLot: 1483032)									1		
Aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	101	80.0	120			
Antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	105	80.0	120			
Arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	109	80.0	120			
Barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	102	80.0	120			
Beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	98.3	80.0	120			

Page : 19 of 23

Work Order: YL2400572 Amendment 1

Client : WSP Canada Inc.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report				
					Spike	Recovery (%)	Recovery Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 1483032) -	continued								
Bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	98.7	80.0	120	
Boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	100	80.0	120	
Cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	101	80.0	120	
Calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	102	80.0	120	
Cesium, dissolved	7440-46-2	E421	0.00001	mg/L	0.05 mg/L	101	80.0	120	
Chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	101	80.0	120	
Cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	98.9	80.0	120	
Copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	99.8	80.0	120	
Iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	100	80.0	120	
Lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	99.0	80.0	120	
Lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	99.7	80.0	120	
Magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	102	80.0	120	
Manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	100	80.0	120	
Molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	105	80.0	120	
Nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	100	80.0	120	
Phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	106	80.0	120	
Potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	101	80.0	120	
Rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	0.1 mg/L	102	80.0	120	
Selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	102	80.0	120	
Silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	103	80.0	120	
Silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	94.8	80.0	120	
Sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	107	80.0	120	
Strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	102	80.0	120	
Sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	101	80.0	120	
Tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	0.1 mg/L	101	80.0	120	
Thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	100	80.0	120	
Thorium, dissolved	7440-29-1	E421	0.0001	mg/L	0.1 mg/L	98.1	80.0	120	
Tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	102	80.0	120	
Titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	98.0	80.0	120	
Tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	0.1 mg/L	98.0	80.0	120	
Uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	99.0	80.0	120	
Vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	102	80.0	120	
Zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	105	80.0	120	
Zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	0.1 mg/L	100	80.0	120	
									1

Page : 20 of 23

Work Order: YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water				Matrix Spike (MS) Report						
					Spi	Spike		Recovery	Limits (%)	
Laboratory sample li	D Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutr	ients (QCLot: 1480387	7)								
VA24B3059-002	Anonymous	Fluoride	16984-48-8	E235.F	0.990 mg/L	1 mg/L	99.0	75.0	125	
Anions and Nutr	ients (QCLot: 1480388									
VA24B3059-002	Anonymous	Chloride	16887-00-6	E235.CI	97.3 mg/L	100 mg/L	97.3	75.0	125	
Anions and Nutr	ients (QCLot: 1480389									
VA24B3059-002	Anonymous	Bromide	24959-67-9	E235.Br-L	0.513 mg/L	0.5 mg/L	102	75.0	125	
Anions and Nutr	ients (QCLot: 1480390									
VA24B3059-002	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3-L	2.44 mg/L	2.5 mg/L	97.5	75.0	125	
Anions and Nutr	ients (QCLot: 1480391)								
VA24B3059-002	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2-L	0.490 mg/L	0.5 mg/L	97.9	75.0	125	
Anions and Nutr	ients (QCLot: 1480392									
VA24B3059-002	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	96.3 mg/L	100 mg/L	96.3	75.0	125	
Anions and Nutr	ients (QCLot: 1480529)								
VA24B3010-002	Anonymous	Fluoride	16984-48-8	E235.F	4.89 mg/L	5 mg/L	97.8	75.0	125	
Anions and Nutr	ients (QCLot: 1480530)								
VA24B3010-002	Anonymous	Chloride	16887-00-6	E235.CI	481 mg/L	500 mg/L	96.3	75.0	125	
Anions and Nutr	ients (QCLot: 1480531)								
VA24B3010-002	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3-L	12.0 mg/L	12.5 mg/L	96.2	75.0	125	
Anions and Nutr	ients (QCLot: 1480532									
VA24B3010-002	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2-L	2.43 mg/L	2.5 mg/L	97.3	75.0	125	
Anions and Nutr	ients (QCLot: 1480533									
VA24B3010-002	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	479 mg/L	500 mg/L	95.8	75.0	125	
Anions and Nutr	ients (QCLot: 1480534)								
VA24B3114-002	Anonymous	Bromide	24959-67-9	E235.Br-L	24.2 mg/L	25 mg/L	96.8	75.0	125	
Anions and Nutr	ients (QCLot: 1486558									
YL2400572-001	SNP 5-4	Phosphorus, total	7723-14-0	E372-U	0.0480 mg/L	0.05 mg/L	95.9	70.0	130	
Anions and Nutr	ients (QCLot: 1486559									
YL2400572-001	SNP 5-4	Ammonia, total (as N)	7664-41-7	E298	0.0948 mg/L	0.1 mg/L	94.8	75.0	125	
Organic / Inorga	nic Carbon (QCLot: 14	86557)								
YL2400572-002	SNP 5-5	Carbon, dissolved organic [DOC]		E358-L	ND mg/L		ND	70.0	130	

Page : 21 of 23

Work Order: YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Sub-Matrix: Water			Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
otal Metals (QCI	Lot: 1480771)									
VA24B2961-002	Anonymous	Aluminum, total	7429-90-5	E420	ND mg/L		ND	70.0	130	
		Antimony, total	7440-36-0	E420	0.0186 mg/L	0.02 mg/L	93.2	70.0	130	
		Arsenic, total	7440-38-2	E420	0.0193 mg/L	0.02 mg/L	96.5	70.0	130	
		Barium, total	7440-39-3	E420	0.0196 mg/L	0.02 mg/L	97.9	70.0	130	
		Beryllium, total	7440-41-7	E420	0.0390 mg/L	0.04 mg/L	97.6	70.0	130	
		Bismuth, total	7440-69-9	E420	0.00983 mg/L	0.01 mg/L	98.3	70.0	130	
		Boron, total	7440-42-8	E420	0.101 mg/L	0.1 mg/L	101	70.0	130	
		Cadmium, total	7440-43-9	E420	0.00390 mg/L	0.004 mg/L	97.6	70.0	130	
		Calcium, total	7440-70-2	E420	ND mg/L		ND	70.0	130	
		Cesium, total	7440-46-2	E420	0.00945 mg/L	0.01 mg/L	94.5	70.0	130	
		Chromium, total	7440-47-3	E420	0.0389 mg/L	0.04 mg/L	97.2	70.0	130	
		Cobalt, total	7440-48-4	E420	0.0193 mg/L	0.02 mg/L	96.6	70.0	130	
		Copper, total	7440-50-8	E420	0.0188 mg/L	0.02 mg/L	93.9	70.0	130	
		Iron, total	7439-89-6	E420	1.86 mg/L	2 mg/L	93.2	70.0	130	
		Lead, total	7439-92-1	E420	0.0200 mg/L	0.02 mg/L	100	70.0	130	
		Lithium, total	7439-93-2	E420	0.0944 mg/L	0.1 mg/L	94.4	70.0	130	
		Magnesium, total	7439-95-4	E420	0.925 mg/L	1 mg/L	92.5	70.0	130	
		Manganese, total	7439-96-5	E420	ND mg/L		ND	70.0	130	
		Molybdenum, total	7439-98-7	E420	0.0192 mg/L	0.02 mg/L	95.9	70.0	130	
		Nickel, total	7440-02-0	E420	0.0388 mg/L	0.04 mg/L	97.0	70.0	130	
		Phosphorus, total	7723-14-0	E420	9.46 mg/L	10 mg/L	94.6	70.0	130	
		Potassium, total	7440-09-7	E420	3.76 mg/L	4 mg/L	94.1	70.0	130	
		Rubidium, total	7440-17-7	E420	0.0192 mg/L	0.02 mg/L	96.2	70.0	130	
		Selenium, total	7782-49-2	E420	0.0373 mg/L	0.04 mg/L	93.2	70.0	130	
		Silicon, total	7440-21-3	E420	9.98 mg/L	10 mg/L	99.8	70.0	130	
		Silver, total	7440-22-4	E420	0.00374 mg/L	0.004 mg/L	93.6	70.0	130	
		Sodium, total	7440-23-5	E420	2.00 mg/L	2 mg/L	99.9	70.0	130	
		Strontium, total	7440-24-6	E420	0.0186 mg/L	0.02 mg/L	92.8	70.0	130	
		Sulfur, total	7704-34-9	E420	18.6 mg/L	20 mg/L	93.2	70.0	130	
		Tellurium, total	13494-80-9	E420	0.0376 mg/L	0.04 mg/L	94.0	70.0	130	
		Thallium, total	7440-28-0	E420	0.00386 mg/L	0.004 mg/L	96.6	70.0	130	
		Thorium, total	7440-29-1	E420	0.0196 mg/L	0.004 mg/L 0.02 mg/L	98.2	70.0	130	
		Tin, total	7440-31-5	E420	0.0197 mg/L	0.02 mg/L	98.4	70.0	130	
		Titanium, total	7440-31-3	E420	0.0402 mg/L	0.02 mg/L 0.04 mg/L	101	70.0	130	
		Tungsten, total	7440-32-0	E420	0.0402 mg/L 0.0196 mg/L	0.04 mg/L 0.02 mg/L	97.9	70.0	130	
		Uranium, total	7440-61-1	E420	0.00392 mg/L	0.02 mg/L 0.004 mg/L	98.1	70.0	130	
		Vanadium, total	7440-61-1	E420	0.00392 mg/L 0.0952 mg/L	0.004 mg/L 0.1 mg/L	95.2	70.0	130	
		Zinc, total	7440-62-2	E420	0.0932 mg/L 0.388 mg/L	0.1 mg/L 0.4 mg/L	96.9	70.0	130	
		Zirconium, total	7440-67-7	E420	0.0376 mg/L	0.4 mg/L 0.04 mg/L	93.9	70.0	130	
issolved Metals	(QCLot: 1481562)	Zirodilium, totai	1440-01-1	L720	0.0370 Hig/L	0.04 mg/L	33.3	70.0	130	
L2400574-002	Anonymous	Aluminum, dissolved	7429-90-5	E421	0.371 mg/l	0.4 mg/l	92.6	70.0	130	
L24003/4-002	Anonymous	· ·			0.371 mg/L	0.4 mg/L				
		Antimony, dissolved	7440-36-0	E421	0.0361 mg/L	0.04 mg/L	90.2	70.0	130	
		Arsenic, dissolved	7440-38-2	E421	0.0389 mg/L	0.04 mg/L	97.4	70.0	130	
		Barium, dissolved	7440-39-3	E421	0.0337 mg/L	0.04 mg/L	84.3	70.0	130	

Page : 22 of 23

Work Order: YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Sub-Matrix: Water			Matrix Spike (MS) Report							
					Spike Recovery (%) Recovery Limits (%)					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 1481562) - c	ontinued								
YL2400574-002	Anonymous	Beryllium, dissolved	7440-41-7	E421	0.0740 mg/L	0.08 mg/L	92.6	70.0	130	
		Bismuth, dissolved	7440-69-9	E421	0.0157 mg/L	0.02 mg/L	78.4	70.0	130	
		Boron, dissolved	7440-42-8	E421	ND mg/L		ND	70.0	130	
		Cadmium, dissolved	7440-43-9	E421	0.00694 mg/L	0.008 mg/L	86.7	70.0	130	
		Calcium, dissolved	7440-70-2	E421	ND mg/L		ND	70.0	130	
		Cesium, dissolved	7440-46-2	E421	0.0186 mg/L	0.02 mg/L	93.0	70.0	130	
		Chromium, dissolved	7440-47-3	E421	0.0725 mg/L	0.08 mg/L	90.6	70.0	130	
		Cobalt, dissolved	7440-48-4	E421	0.0336 mg/L	0.04 mg/L	84.1	70.0	130	
		Copper, dissolved	7440-50-8	E421	0.0312 mg/L	0.04 mg/L	77.9	70.0	130	
		Iron, dissolved	7439-89-6	E421	3.47 mg/L	4 mg/L	86.7	70.0	130	
		Lead, dissolved	7439-92-1	E421	0.0324 mg/L	0.04 mg/L	80.9	70.0	130	
		Lithium, dissolved	7439-93-2	E421	0.181 mg/L	0.2 mg/L	90.3	70.0	130	
		Magnesium, dissolved	7439-95-4	E421	ND mg/L		ND	70.0	130	
		Manganese, dissolved	7439-96-5	E421	ND mg/L		ND	70.0	130	
		Molybdenum, dissolved	7439-98-7	E421	0.0388 mg/L	0.04 mg/L	97.1	70.0	130	
		Nickel, dissolved	7440-02-0	E421	0.0641 mg/L	0.08 mg/L	80.1	70.0	130	
		Phosphorus, dissolved	7723-14-0	E421	19.5 mg/L	20 mg/L	97.6	70.0	130	
		Potassium, dissolved	7440-09-7	E421	ND mg/L		ND	70.0	130	
		Rubidium, dissolved	7440-17-7	E421	0.0354 mg/L	0.04 mg/L	88.6	70.0	130	
		Selenium, dissolved	7782-49-2	E421	0.0728 mg/L	0.08 mg/L	90.9	70.0	130	
		Silicon, dissolved	7440-21-3	E421	18.6 mg/L	20 mg/L	93.0	70.0	130	
		Silver, dissolved	7440-22-4	E421	0.00686 mg/L	0.008 mg/L	85.8	70.0	130	
		Sodium, dissolved	7440-22-4	E421	ND mg/L		ND	70.0	130	
		Strontium, dissolved	7440-23-3	E421	ND mg/L		ND ND	70.0	130	
		Sulfur, dissolved	7704-34-9	E421	ND mg/L		ND ND	70.0	130	
					_					
		Tellurium, dissolved	13494-80-9	E421	0.0723 mg/L	0.08 mg/L	90.4	70.0	130	
		Thallium, dissolved	7440-28-0	E421	0.00630 mg/L	0.008 mg/L	78.8	70.0	130	
		Thorium, dissolved	7440-29-1	E421	0.0345 mg/L	0.04 mg/L	86.2	70.0	130	
		Tin, dissolved	7440-31-5	E421	0.0363 mg/L	0.04 mg/L	90.8	70.0	130	
		Titanium, dissolved	7440-32-6	E421	0.0773 mg/L	0.08 mg/L	96.6	70.0	130	
		Tungsten, dissolved	7440-33-7	E421	0.0345 mg/L	0.04 mg/L	86.3	70.0	130	
		Uranium, dissolved	7440-61-1	E421	0.00714 mg/L	0.008 mg/L	89.2	70.0	130	
		Vanadium, dissolved	7440-62-2	E421	0.188 mg/L	0.2 mg/L	93.8	70.0	130	
		Zinc, dissolved	7440-66-6	E421	0.669 mg/L	0.8 mg/L	83.7	70.0	130	
issolved Metals	(QCLot: 1483032)	Zirconium, dissolved	7440-67-7	E421	0.0761 mg/L	0.08 mg/L	95.1	70.0	130	
		Aluminum discalued	7420 00 5	E424	0.495 mg/l	0.2 ma/l	02.7	70.0	120	
/A24B3256-001	Anonymous	Aluminum, dissolved	7429-90-5	E421	0.185 mg/L	0.2 mg/L	92.7	70.0	130	
		Antimony, dissolved	7440-36-0	E421	0.0193 mg/L	0.02 mg/L	96.5	70.0	130	
		Arsenic, dissolved	7440-38-2	E421	0.0198 mg/L	0.02 mg/L	99.0	70.0	130	
		Barium, dissolved	7440-39-3	E421	ND mg/L		ND	70.0	130	
		Beryllium, dissolved	7440-41-7	E421	0.0374 mg/L	0.04 mg/L	93.4	70.0	130	
		Bismuth, dissolved	7440-69-9	E421	0.00866 mg/L	0.01 mg/L	86.6	70.0	130	
		Boron, dissolved	7440-42-8	E421	0.096 mg/L	0.1 mg/L	96.1	70.0	130	
		Cadmium, dissolved	7440-43-9	E421	0.00392 mg/L	0.004 mg/L	97.9	70.0	130	

Page : 23 of 23

Work Order: YL2400572 Amendment 1

Client : WSP Canada Inc.

Project : CA0034908.5454-1000.1002

Laboratory sample ID			Sub-Matrix: Water				Matrix Spike (MS) Report				
Laboratory sample ID					Spi	ke	Recovery (%)	Recovery	Limits (%)		
	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Dissolved Metals	(QCLot: 1483032)	- continued									
VA24B3256-001	Anonymous	Calcium, dissolved	7440-70-2	E421	ND mg/L		ND	70.0	130		
		Cesium, dissolved	7440-46-2	E421	0.00966 mg/L	0.01 mg/L	96.6	70.0	130		
		Chromium, dissolved	7440-47-3	E421	0.0386 mg/L	0.04 mg/L	96.4	70.0	130		
		Cobalt, dissolved	7440-48-4	E421	0.0190 mg/L	0.02 mg/L	95.0	70.0	130		
		Copper, dissolved	7440-50-8	E421	0.0183 mg/L	0.02 mg/L	91.7	70.0	130		
		Iron, dissolved	7439-89-6	E421	1.88 mg/L	2 mg/L	94.0	70.0	130		
		Lead, dissolved	7439-92-1	E421	0.0182 mg/L	0.02 mg/L	91.1	70.0	130		
		Lithium, dissolved	7439-93-2	E421	0.0931 mg/L	0.1 mg/L	93.1	70.0	130		
		Magnesium, dissolved	7439-95-4	E421	ND mg/L		ND	70.0	130		
		Manganese, dissolved	7439-96-5	E421	0.0180 mg/L	0.02 mg/L	89.8	70.0	130		
		Molybdenum, dissolved	7439-98-7	E421	0.0201 mg/L	0.02 mg/L	101	70.0	130		
		Nickel, dissolved	7440-02-0	E421	0.0376 mg/L	0.04 mg/L	94.0	70.0	130		
		Phosphorus, dissolved	7723-14-0	E421	9.82 mg/L	10 mg/L	98.2	70.0	130		
		Potassium, dissolved	7440-09-7	E421	ND mg/L		ND	70.0	130		
		Rubidium, dissolved	7440-17-7	E421	0.0184 mg/L	0.02 mg/L	92.1	70.0	130		
		Selenium, dissolved	7782-49-2	E421	0.0402 mg/L	0.04 mg/L	100	70.0	130		
		Silicon, dissolved	7440-21-3	E421	9.18 mg/L	10 mg/L	91.8	70.0	130		
		Silver, dissolved	7440-22-4	E421	0.00374 mg/L	0.004 mg/L	93.5	70.0	130		
		Sodium, dissolved	7440-23-5	E421	ND mg/L		ND	70.0	130		
		Strontium, dissolved	7440-24-6	E421	ND mg/L		ND	70.0	130		
		Sulfur, dissolved	7704-34-9	E421	ND mg/L		ND	70.0	130		
		Tellurium, dissolved	13494-80-9	E421	0.0413 mg/L	0.04 mg/L	103	70.0	130		
		Thallium, dissolved	7440-28-0	E421	0.00356 mg/L	0.004 mg/L	89.0	70.0	130		
		Thorium, dissolved	7440-29-1	E421	0.0160 mg/L	0.02 mg/L	79.9	70.0	130		
		Tin, dissolved	7440-31-5	E421	0.0193 mg/L	0.02 mg/L	96.7	70.0	130		
		Titanium, dissolved	7440-32-6	E421	0.0390 mg/L	0.04 mg/L	97.6	70.0	130		
		Tungsten, dissolved	7440-33-7	E421	0.0188 mg/L	0.04 mg/L	94.0	70.0	130		
		Uranium, dissolved	7440-61-1	E421	0.00371 mg/L	0.004 mg/L	92.8	70.0	130		
		Vanadium, dissolved	7440-62-2	E421	0.0037 T mg/L 0.0970 mg/L	0.1 mg/L	97.0	70.0	130		
		Zinc, dissolved	7440-66-6	E421	0.396 mg/L	0.1 mg/L 0.4 mg/L	99.0	70.0	130		
		Zirconium, dissolved	7440-66-6	E421	0.0399 mg/L	0.4 mg/L 0.04 mg/L	99.8	70.0	130		

29 July 2024 21499891-032-R-Rev0

APPENDIX D

Quality Assurance and Quality Control

QUALITY ASSURANCE/QUALITY CONTROL

1.0 INTRODUCTION

Key findings of the quality assurance and quality control (QA/QC) review for water quality are summarized below. For water quality, the field QC program included collecting one duplicate sample, one field blank, and one travel blank. The assessment of QC sample results was completed using analytical data provided by ALS Canada Ltd. (ALS). For toxicity, QA/QC was completed for the sample collected at SNP 5-6 using the test report provided by Nautilus Environmental Inc. (Nautilus).

2.0 WATER QUALITY

2.1 Parameter List

All parameters required by the Type A Water Licence W2021L2-0004 (WLWB 2023) were analyzed, as requested.

2.2 Detection Limits

Standard ALS detection limits (DLs) were used when analyzing samples collected during the June 2024 field program.

2.3 Hold Times

Hold times between sample collection and analysis for each parameter are specified by ALS and should be met to obtain reliable data. For this program, the 15-minute hold time for pH (APHA 2012) was not met because the samples cannot be processed by ALS Canada Ltd. (ALS) within this time limit. The hold time for total mercury was not met because the containers provided by ALS for sample collection were not cleaned by the laboratory to the required level to provide reliable detection limits for low-level mercury). As a result of this error, a maximum hold time of zero was applied instead of the standard 190 hours. ALS analyzed this parameter 8 days after sample collection at SNP 5-4, SNP 5-5, the field blank, and the travel blank. The hold times were met for all other parameters.

2.4 Units

All reported units were correct, and no issues were identified during the review of electronic data against the final certificate of analysis provided by ALS.

2.5 Qualifiers

The ALS internal data quality report indicated that the DL was adjusted due to sample matrix effects for total thorium and total zirconium in the sample collected at SNP 5-8 and for total titanium and total zirconium in the sample collected at SNP 5-9.

2.6 Total versus Dissolved Metal Concentrations

Dissolved metal concentrations in water samples were compared to corresponding total metal concentrations. Dissolved and total concentrations were considered notable if the dissolved concentration was more than 20% higher than the total concentration. Dissolved concentrations were within 20% of total concentrations for samples collected in June 2024.

2.7 Duplicate Sample Results

A duplicate water sample was collected from SNP 5-6 on 3 June 2024 to assess variability during sample collection, handling, and analysis.

The relative percent difference (RPD) was used to determine the variability between the primary and duplicate sample and was calculated using the following formula:

$$RPD = ABS\left(\frac{(field\ sample\ concentration-duplicate\ sample\ concentration)}{average\ concentration}\right)\ x\ 100$$

where ABS = absolute value.

Values reported below the DLs were included in the calculations at half the applicable DL. The RPD was not calculated in cases where the concentration in both samples was less than five times the DL (i.e., within the range of analytical uncertainty).

The variability in parameter concentrations between primary and duplicate samples was considered notable if:

- the parameter concentration in at least one sample was greater than five times the DL
- the RPD was greater than 20%

These criteria are consistent with those used by ALS for internal QC procedures (Dang 2015, pers. comm.) and account for potential analytical uncertainty when concentrations approach DLs (Weiner 2000). Variability between the field and duplicate samples was rated as follows:

- **low** if less than 10% of the parameters included in the duplicate analysis were notably different from one another
- moderate if 10 to 30% of the parameters included in the duplicate analysis were notably different from one another
- high if more than 30% of the parameters included in the duplicate or split sample analysis were notably different from one another

The results of the comparison between the SNP 5-6 primary and duplicate samples are summarized in Table D-1. The pH measurements and concentrations of total phosphorus, total aluminum, total iron, total lead, total titanium, and dissolved zinc in the duplicate samples collected at SNP 5-6 had an RPD greater than 20%. Data re-checks were requested from the laboratory and total phosphorus results were updated while all the other results were confirmed. Variability in metal concentrations between the sample and its duplicate may be due to low water levels at the site during collection. Overall, the variability between the primary and duplicate sample was rated as low; less than 10% of parameters included in the analysis were notably different from one another.

Table D-1: Duplicate Results for the Surveillance Network Program at Damoti Lake, 3 June 2024

		Detection	SI	NP 5-6	Relative	
Parameter	Unit	Limit	Sample	Duplicate	Percent Difference	
Conventional Parameters						
pH ^(a)	unitless	0.1	7.5	7.6	39%	
Specific conductivity	μS/cm	2	294	298	1%	
Hardness, as CaCO₃	mg/L	0.5	129	127	2%	
Total suspended solids	mg/L	2	5.9	4.9	2%	
Total dissolved solids (calculated)	mg/L	1	175	174	1%	
Major lons						
Calcium	mg/L	0.05	32	31	1%	
Chloride	mg/L	0.5	1.5	1.5	-	
Fluoride	mg/L	0.02	0.16	0.16	1%	
Magnesium	mg/L	0.005	12	12	3%	
Potassium	mg/L	0.05	2.6	2.6	2%	
Sodium	mg/L	0.05	3.1	3.1	3%	
Sulphate	mg/L	0.3	102	101	1%	
Nutrients						
Nitrate	mg-N/L	0.005	<0.005	<0.005	-	
Nitrite	mg-N/L	0.001	<0.001	<0.001	-	
Total ammonia	mg-N/L	0.005	0.0084	0.010	-	
Total phosphorus (colourimetric)	mg-P/L	0.002	0.039	0.018	72%	
Dissolved phosphorus	mg-P/L	0.05	<0.05	<0.05	-	
Total Metals						
Aluminum	mg/L	0.003	0.13	0.10	25%	
Antimony	mg/L	0.0001	<0.0001	<0.0001	-	
Arsenic	mg/L	0.0001	0.00081	0.00068	17%	
Barium	mg/L	0.0001	0.014	0.014	3%	
Beryllium	mg/L	0.00002	<0.00002	<0.00002	-	
Bismuth	mg/L	0.00005	<0.00005	<0.00005	-	
Boron	mg/L	0.01	0.030	0.030	-	
Cadmium	mg/L	0.000005	0.000015	0.000018	-	
Calcium	mg/L	0.05	32	33	3%	
Cesium	mg/L	0.00001	0.00076	0.00076	0%	
Chromium	mg/L	0.0005	<0.0005	<0.0005	-	
Cobalt	mg/L	0.0001	0.00066	0.00067	2%	
Copper	mg/L	0.0005	0.0035	0.0032	9%	
Iron	mg/L	0.01	1.3	1.0	21%	
Lead	mg/L	0.00005	0.00037	0.00029	25%	
Lithium	mg/L	0.001	0.012	0.012	3%	
Magnesium	mg/L	0.005	12	12	1%	
Manganese	mg/L	0.0001	0.058	0.060	3%	

Table D-1: Duplicate Results for the Surveillance Network Program at Damoti Lake, 3 June 2024

		Detection	SN	Relative	
Parameter	Unit	Limit	Sample	Duplicate	Percent Difference
Mercury	mg/L	0.0000005	-	-	-
Molybdenum	mg/L	0.00005	<0.00005	<0.00005	-
Nickel	mg/L	0.0005	0.024	0.024	2%
Potassium	mg/L	0.05	2.7	2.7	1%
Rubidium	mg/L	0.0002	0.0067	0.0067	0%
Selenium	mg/L	0.00005	<0.00005	<0.00005	-
Silicon	mg/L	0.1	2.6	2.4	5%
Silver	mg/L	0.00001	<0.00001	<0.00001	-
Sodium	mg/L	0.05	3.1	3.1	0%
Strontium	mg/L	0.0002	0.094	0.094	0%
Sulphur	mg/L	0.5	37	36	2%
Tellurium	mg/L	0.0002	<0.0002	<0.0002	-
Thallium	mg/L	0.00001	<0.00001	<0.00001	-
Thorium	mg/L	0.0001	<0.0001	<0.0001	-
Tin	mg/L	0.0001	<0.0001	<0.0001	-
Titanium	mg/L	0.0003	0.00062	0.00040	43%
Tungsten	mg/L	0.0001	<0.0001	<0.0001	-
Uranium	mg/L	0.00001	0.00011	0.000094	12%
Vanadium	mg/L	0.0005	<0.0005	<0.0005	-
Zinc	mg/L	0.003	0.0071	0.0065	-
Zirconium	mg/L	0.0002	<0.0002	<0.0002	-
Dissolved Metals	•				•
Aluminum	mg/L	0.001	0.063	0.060	5%
Antimony	mg/L	0.0001	<0.0001	<0.0001	-
Arsenic	mg/L	0.0001	0.00056	0.00055	2%
Barium	mg/L	0.0001	0.013	0.013	1%
Beryllium	mg/L	0.00002	<0.00002	<0.00002	-
Bismuth	mg/L	0.00005	<0.00005	<0.00005	-
Boron	mg/L	0.01	0.029	0.029	-
Cadmium	mg/L	0.000005	0.000016	0.000014	-
Cesium	mg/L	0.00001	0.00077	0.00077	1%
Chromium	mg/L	0.0005	<0.0005	<0.0005	-
Cobalt	mg/L	0.0001	0.00076	0.00063	19%
Copper	mg/L	0.0002	0.0025	0.0025	2%
Iron	mg/L	0.01	0.51	0.50	3%
Lead	mg/L	0.00005	0.00010	0.00011	-
Lithium	mg/L	0.001	0.012	0.012	0%
Manganese	mg/L	0.0001	0.072	0.068	6%
Molybdenum	mg/L	0.00005	<0.00005	<0.00005	-

Table D-1: Duplicate Results for the Surveillance Network Program at Damoti Lake, 3 June 2024

	Detection		SN	Relative	
Parameter	Unit	Limit	Sample	Duplicate	Percent Difference
Nickel	mg/L	0.0005	0.023	0.022	3%
Rubidium	mg/L	0.0002	0.0065	0.0064	1%
Selenium	mg/L	0.00005	0.000054	<0.00005	-
Silicon	mg/L	0.05	2.5	2.5	0%
Silver	mg/L	0.00001	<0.00001	<0.0001	-
Strontium	mg/L	0.0002	0.094	0.094	0%
Sulphur	mg/L	0.5	36	35	2%
Tellurium	mg/L	0.0002	<0.0002	<0.0002	-
Thallium	mg/L	0.00001	<0.00001	<0.0001	-
Thorium	mg/L	0.0001	<0.0001	<0.0001	-
Tin	mg/L	0.0001	<0.0001	<0.0001	-
Titanium	mg/L	0.0003	<0.0003	<0.0003	-
Tungsten	mg/L	0.0001	<0.0001	<0.0001	-
Uranium	mg/L	0.00001	0.000080	0.000077	4%
Vanadium	mg/L	0.0005	<0.0005	<0.0005	-
Zinc	mg/L	0.001	0.0063	0.0050	23%
Zirconium	mg/L	0.0003	<0.0003	<0.0003	-

Notes:

Bolded values indicate relative percent difference is greater than 20%.

The relative percent difference is calculated for duplicate samples using the following formula: RPD = (absolute value (difference in concentration between field sample and duplicate sample) / average concentration) x 100%.

a) pH values were converted to hydrogen ion concentrations prior to calculating the relative percent difference.

SNP = Surveillance Network Program; < = less than; CaCO $_3$ = calcium carbonate; mg/L = milligrams per litre; μ S/cm = microsiemens per centimetre; % = percent; mg-N/L = milligrams of nitrogen per litre; mg-P/L = milligrams of phosphorous per litre; - = the relative percent difference was not calculated because the concentration in both samples was less than five times the detection limit.

2.8 Field Blank Results

A field blank was collected at SNP 5-8 during the 3 June 2024 sampling event, with results summarized in Table D-2. Concentrations of all parameters were less than applicable DLs in the field blank, indicating low potential for contamination during sampling.

Table D-2: Field Blank Results for the Surveillance Network Program at Damoti Lake, 3 June 2024

Parameter	Unit	Detection Limit	Field Blank (SNP 5-8)
Conventional Parameters	•		
рН	unitless	0.1	5.4
Specific conductivity	μS/cm	2	<2
Hardness, as CaCO₃	mg/L	0.5	<0.5
Total alkalinity, as CaCO₃	mg/L	2	<2
Total dissolved solids (calculated)	mg/L	1	<1
Total suspended solids	mg/L	1	<1
Dissolved organic carbon	mg/L	0.5	<0.5
Major Ions			
Calcium	mg/L	0.05	<0.05
Chloride	mg/L	0.5	<0.5
Fluoride	mg/L	0.02	<0.02
Magnesium	mg/L	0.005	<0.005
Potassium	mg/L	0.05	<0.05
Sodium	mg/L	0.05	<0.05
Sulphate	mg/L	0.3	<0.3
Nutrients			
Nitrate as N	mg-N/L	0.005	<0.005
Nitrite as N	mg-N/L	0.001	<0.001
Total ammonia	mg-N/L	0.005	<0.005
Total phosphorus (colourimetric)	mg-P/L	0.002	<0.002
Dissolved phosphorus	mg-P/L	0.05	<0.05
Total Metals			
Aluminum	mg/L	0.003	<0.003
Antimony	mg/L	0.0001	<0.0001
Arsenic	mg/L	0.0001	<0.0001
Barium	mg/L	0.0001	<0.0001
Beryllium	mg/L	0.00002	<0.00002
Bismuth	mg/L	0.00005	<0.00005
Boron	mg/L	0.01	<0.01
Cadmium	mg/L	0.000005	<0.00005
Calcium	mg/L	0.05	<0.05
Cesium	mg/L	0.00001	<0.00001
Chromium	mg/L	0.0005	<0.0005
Cobalt	mg/L	0.0001	<0.0001

Table D-2: Field Blank Results for the Surveillance Network Program at Damoti Lake, 3 June 2024

Parameter	Unit	Detection Limit	Field Blank (SNP 5-8)
Copper	mg/L	0.0005	<0.0005
Iron	mg/L	0.01	<0.01
Lead	mg/L	0.00005	<0.00005
Lithium	mg/L	0.001	<0.001
Magnesium	mg/L	0.005	<0.005
Manganese	mg/L	0.0001	<0.0001
Mercury	mg/L	0.000005	<0.000005
Molybdenum	mg/L	0.00005	<0.00005
Nickel	mg/L	0.0005	<0.0005
Potassium	mg/L	0.05	<0.05
Rubidium	mg/L	0.0002	<0.0002
Selenium	mg/L	0.00005	<0.00005
Silicon	mg/L	0.1	<0.1
Silver	mg/L	0.00001	<0.00001
Sodium	mg/L	0.05	<0.05
Strontium	mg/L	0.0002	<0.0002
Sulphur	mg/L	0.5	<0.5
Tellurium	mg/L	0.0002	<0.0002
Thallium	mg/L	0.00001	<0.00001
Thorium	mg/L	0.0001	<0.0001
Tin	mg/L	0.0001	<0.0001
Titanium	mg/L	0.0003	<0.0003
Tungsten	mg/L	0.0001	<0.0001
Uranium	mg/L	0.00001	<0.00001
Vanadium	mg/L	0.0005	<0.0005
Zinc	mg/L	0.003	<0.003
Zirconium	mg/L	0.0002	<0.0002
Dissolved Metals			
Aluminum	mg/L	0.001	<0.001
Antimony	mg/L	0.0001	<0.0001
Arsenic	mg/L	0.0001	<0.0001
Barium	mg/L	0.0001	<0.0001
Beryllium	mg/L	0.00002	<0.00002
Bismuth	mg/L	0.00005	<0.00005
Boron	mg/L	0.01	<0.01
Cadmium	mg/L	0.000005	<0.00005
Cesium	mg/L	0.00001	<0.00001
Chromium	mg/L	0.0005	<0.0005
Cobalt	mg/L	0.0001	<0.0001
Copper	mg/L	0.0002	<0.0002

Table D-2: Field Blank Results for the Surveillance Network Program at Damoti Lake, 3 June 2024

Parameter	Unit	Detection Limit	Field Blank (SNP 5-8)
Iron	mg/L	0.01	<0.01
Lead	mg/L	0.00005	<0.00005
Lithium	mg/L	0.001	<0.001
Manganese	mg/L	0.0001	<0.0001
Molybdenum	mg/L	0.00005	<0.00005
Nickel	mg/L	0.0005	<0.0005
Rubidium	mg/L	0.0002	<0.0002
Selenium	mg/L	0.00005	<0.00005
Silicon	mg/L	0.05	<0.05
Silver	mg/L	0.00001	<0.0001
Strontium	mg/L	0.0002	<0.0002
Sulphur	mg/L	0.5	<0.5
Tellurium	mg/L	0.0002	<0.0002
Thallium	mg/L	0.00001	<0.0001
Thorium	mg/L	0.0001	<0.0001
Tin	mg/L	0.0001	<0.0001
Titanium	mg/L	0.0003	<0.0003
Tungsten	mg/L	0.0001	<0.0001
Uranium	mg/L	0.00001	<0.00001
Vanadium	mg/L	0.0005	<0.0005
Zinc	mg/L	0.001	<0.001
Zirconium	mg/L	0.0003	<0.0003

Notes:

< = less than; mg/L = milligrams per litre; μ S/cm = microsiemens per centimetre; mg-N/L = milligrams of nitrogen per litre; mg-P/L = milligrams of phosphorous per litre.

2.9 Travel Blank

A travel blank was prepared by the analytical laboratory and accompanied the field team during travel to/from the site and sampling activities. Results for the travel blank sample are summarized in Table D-3. Parameter concentrations were less than five times the applicable DLs, indicating low potential for contamination during sample handling, transport, and storage.

Table D-3: Travel Blank Results for the Surveillance Network Program at Damoti Lake, 3 June 2024

Parameter	Unit	Detection Limit	Travel Blank
Conventional Parameters			
рН	unitless	0.1	5.5
Specific conductivity	μS/cm	2	<2
Hardness, as CaCO₃	mg/L	0.5	<0.5
Total alkalinity, as CaCO₃	mg/L	2	<2
Total dissolved solids (calculated)	mg/L	1	<1
Total suspended solids	mg/L	1	<1
Dissolved organic carbon	mg/L	0.5	<0.5
Major Ions	•		
Calcium	mg/L	0.05	<0.05
Chloride	mg/L	0.5	<0.5
Fluoride	mg/L	0.02	<0.02
Magnesium	mg/L	0.005	<0.005
Potassium	mg/L	0.05	<0.05
Sodium	mg/L	0.05	<0.05
Sulphate	mg/L	0.3	<0.3
Nutrients	·		·
Nitrate	mg-N/L	0.005	<0.005
Nitrite	mg-N/L	0.001	<0.001
Total ammonia	mg-N/L	0.005	<0.005
Total phosphorus (colourimetric)	mg-P/L	0.002	<0.002
Dissolved phosphorus	mg-P/L	0.05	<0.05
Total Metals			·
Aluminum	mg/L	0.003	<0.003
Antimony	mg/L	0.0001	<0.0001
Arsenic	mg/L	0.0001	<0.0001
Barium	mg/L	0.0001	<0.0001
Beryllium	mg/L	0.00002	<0.00002
Bismuth	mg/L	0.00005	<0.00005
Boron	mg/L	0.01	<0.01
Cadmium	mg/L	0.000005	<0.000005
Calcium	mg/L	0.05	<0.05
Cesium	mg/L	0.00001	<0.00001
Chromium	mg/L	0.0005	<0.0005

Table D-3: Travel Blank Results for the Surveillance Network Program at Damoti Lake, 3 June 2024

Parameter	Unit	Detection Limit	Travel Blank
Cobalt	mg/L	0.0001	<0.0001
Copper	mg/L	0.0005	<0.0005
Iron	mg/L	0.01	<0.01
Lead	mg/L	0.00005	<0.00005
Lithium	mg/L	0.001	<0.001
Magnesium	mg/L	0.005	<0.005
Manganese	mg/L	0.0001	<0.0001
Mercury	mg/L	0.000005	<0.0000005
Molybdenum	mg/L	0.00005	<0.00005
Nickel	mg/L	0.0005	<0.0005
Potassium	mg/L	0.05	<0.05
Rubidium	mg/L	0.0002	<0.0002
Selenium	mg/L	0.00005	<0.00005
Silicon	mg/L	0.1	<0.1
Silver	mg/L	0.00001	<0.0001
Sodium	mg/L	0.05	<0.05
Strontium	mg/L	0.0002	<0.0002
Sulphur	mg/L	0.5	<0.5
Tellurium	mg/L	0.0002	<0.0002
Thallium	mg/L	0.00001	<0.0001
Thorium	mg/L	0.0001	<0.0001
Tin	mg/L	0.0001	<0.0001
Titanium	mg/L	0.0003	<0.0003
Tungsten	mg/L	0.0001	<0.0001
Uranium	mg/L	0.00001	<0.0001
Vanadium	mg/L	0.0005	<0.0005
Zinc	mg/L	0.003	<0.003
Zirconium	mg/L	0.0002	<0.0002
Dissolved Metals			•
Aluminum	mg/L	0.001	<0.001
Antimony	mg/L	0.0001	<0.0001
Arsenic	mg/L	0.0001	<0.0001
Barium	mg/L	0.0001	<0.0001
Beryllium	mg/L	0.00002	<0.00002
Bismuth	mg/L	0.00005	<0.00005
Boron	mg/L	0.01	<0.01
Cadmium	mg/L	0.00005	<0.00005
Cesium	mg/L	0.00001	<0.0001
Chromium	mg/L	0.0005	<0.0005
Cobalt	mg/L	0.0001	<0.0001

Table D-3: Travel Blank Results for the Surveillance Network Program at Damoti Lake, 3 June 2024

Parameter	Unit	Detection Limit	Travel Blank
Copper	mg/L	0.0002	<0.0002
Iron	mg/L	0.01	<0.01
Lead	mg/L	0.00005	<0.00005
Lithium	mg/L	0.001	<0.001
Manganese	mg/L	0.0001	<0.0001
Molybdenum	mg/L	0.00005	<0.00005
Nickel	mg/L	0.0005	<0.0005
Rubidium	mg/L	0.0002	<0.0002
Selenium	mg/L	0.00005	<0.00005
Silicon	mg/L	0.05	<0.05
Silver	mg/L	0.00001	<0.00001
Strontium	mg/L	0.0002	<0.0002
Sulphur	mg/L	0.5	<0.5
Tellurium	mg/L	0.0002	<0.0002
Thallium	mg/L	0.00001	<0.00001
Thorium	mg/L	0.0001	<0.0001
Tin	mg/L	0.0001	<0.0001
Titanium	mg/L	0.0003	<0.0003
Tungsten	mg/L	0.0001	<0.0001
Uranium	mg/L	0.00001	<0.00001
Vanadium	mg/L	0.0005	<0.0005
Zinc	mg/L	0.001	<0.001
Zirconium	mg/L	0.0003	<0.0003

Notes:

3.0 TOXICITY

The QA/QC results for the acute toxicity testing at SNP 5-6 are as follows:

- Samples were received in good condition.
- Tests were initiated within the recommended holding time, i.e., five days from sample collection for acute tests
- The acute toxicity samples were within the recommended temperature range of 4°C ± 3°C upon receipt at Nautilus Environmental (5.9°C).
- Health culture criteria were met for all test species.
- Water quality data were within acceptable ranges per standard protocols for each test species.
- Test acceptability for laboratory control performance was met in all tests (Table D-4).

< = less than; mg/L = milligrams per litre; μ S/cm = microsiemens per centimetre; mg-N/L = milligrams of nitrogen per litre; mg-P/L = milligrams of phosphorous per litre.

Results of the Rainbow Trout and Daphnia magna reference toxicant tests were within acceptable ranges per the standard protocol.

Table D-4: Test Validity and Quality Assurance Results for SNP 5-6 Acute Toxicity Tests in Laboratory Control Water, June 2024

Test Species	Acceptable Control Criteria	SNP 5-6 03 June 2024	
Oncorhynchus mykiss (Rainbow Trout)			
Mean Control Mortality and Abnormal Behaviour	≤10%	0%	
Daphnia magna (water flea)			
Mean Control Mortality and Immobility	≤10%	0%	

4.0 SUMMARY

The QA/QC assessment of the data collected during the 3 June 2024 sampling event indicated limited potential for contamination during sampling, handling, or transport. Duplicate sample results indicate that intrastation variability was low (i.e., sampling precision was high). No deviations in the acute toxicity tests for SNP 5-6 were identified. Overall, the data are considered adequate to address the objectives of the program.

5.0 REFERENCES

- APHA (American Public Health Association). 2012. Standard Methods for the Examination of Water and Wastewater. 22nd Edition, with updates to 2015. Washington, D.C.
- Dang C. 2015. ALS Laboratory Group, Environmental Division. Personal Communication at ALS Vancouver, 11 February 2015.
- Weiner ER. 2000. Applications of Environmental Chemistry: A Practical Guide for Environmental Professionals. Lewis Publishers, Boca Raton, FL. 288 pp.
- WLWB (Wek'èezhìı Land and Water Board). 2023. Type A Water Licence W2021L2-0004. Issued 13 January 2023.

APPENDIX D: Damoti Lake Surveillance Network Program: Results from September 2024 Monitoring Event

REPORT

DAMOTI LAKE SURVEILLANCE NETWORK PROGRAM

Results from September 2024 Monitoring Event

Submitted to:

STLLR Gold Inc.

181 Bay St., Suite 4260 Toronto, Ontario, Canada M5J 2V1

Submitted by:

WSP Canada Inc.

Distribution List

1 copy STLLR Gold Inc.

1 copy WSP Canada Inc.

wsp i

ii

Study Limitations

This report was prepared for the exclusive use of STLLR Gold Inc. (STLLR). The report, which specifically includes tables and figures, is based on data and information collected by WSP Canada Inc. (WSP) at the time of the field investigations. The services performed as described in this report were conducted in a manner consistent with the level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services. Any use of this report by a third party, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. WSP accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. In addition, WSP disclaims responsibility for consequential financial effects on transactions or property values or requirements for follow-up actions and costs.

The content of this report is based on information collected during the investigation, our present understanding of the site conditions, and our professional judgment in light of such information at the time of this report. This report provides a professional opinion, and therefore, no warranty is expressed, implied, or made as to the conclusions, advice, and recommendations offered. This report does not provide a legal opinion regarding compliance with applicable laws. Regarding regulatory compliance issues, it should be noted that regulatory statutes and their interpretation are subject to change. The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, WSP should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

wsp

Table of Contents

1.0	INTRODUCTION1		
2.0	0 METHODS		
	2.1	Sampling Locations	1
	2.1.1	Water Licence Surveillance Network Program	1
	2.2	Sampling Methods	4
	2.2.1	Field Measurements	4
	2.2.2	Water Quality Sampling	4
	2.3	Laboratory Analyses	4
	2.4	Data Analysis	5
	2.5	Quality Assurance/Quality Control	5
3.0	RESU	JLTS	6
	3.1	Water Quality	6
	3.2	Quality Assurance/Quality Control	7
4.0	CLOS	SURE	7
5.0	REFE	RENCES	8
TAE	BLES		
Tab	le 1: Su	rveillance Network Program Stations Sampled on September 10, 2024	1
Tab	le 2: Pa	rameter List for Each Surveillance Network Program Station	5
FIG	URES		
Figu	re 1: Da	amoti Lake Surveillance Network Program (SNP) Stations	2
Fiau	re 2: Si	te Drainage Patterns at the Damoti Lake Rock Pile Area	3

APPENDICES

APPENDIX A

Site Photographs

APPENDIX B

Water Quality Data

APPENDIX C

Laboratory Certificate of Analysis

APPENDIX D

Quality Assurance and Quality Control

1.0 INTRODUCTION

The Damoti Lake Site (Damoti) is located 200 km north of Yellowknife in the Northwest Territories (NT), within the Wek'èezhìı co-management land boundaries. Nighthawk Gold Corp (Nighthawk), a subsidiary of STLLR Gold Inc. (STLLR), in this report referenced as STLLR, currently holds the leases to Damoti. WSP Canada Inc. (WSP) carried out the Surveillance Network Program (SNP) monitoring on behalf of STLLR on September 10, 2024, to meet the requirements of Type A Water Licence W2021L2-0004 (Water Licence; WLWB 2023). This report summarizes the results of the September 2024 SNP field program.

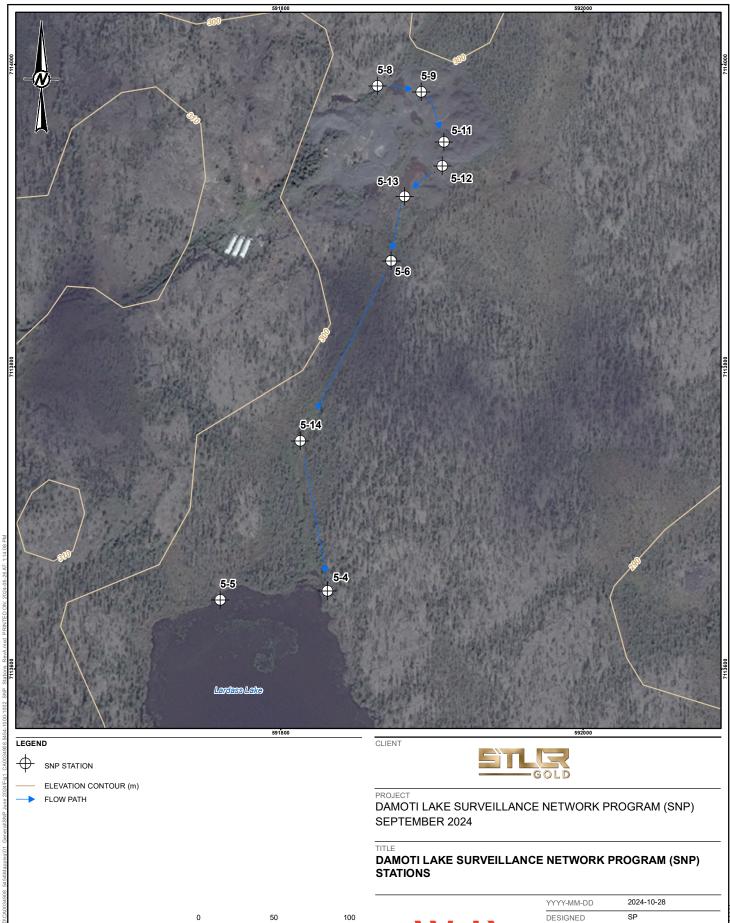
2.0 METHODS

2.1 Sampling Locations

2.1.1 Water Licence Surveillance Network Program

SNP stations were visited to collect in situ measurements and surface water grab samples on September 10, 2024 (Table 1, Figure 1 and Figure 2, Appendix A). Station SNP 5-14 was visited, but water quality samples were not collected for analysis because insufficient water was present (Appendix A, Photograph A-9).

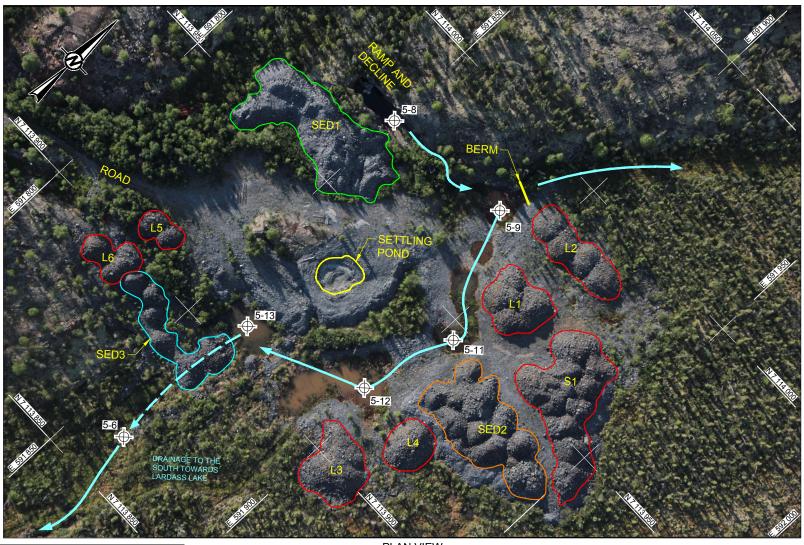
Table 1: Surveillance Network Program Stations Sampled on September 10, 2024


		UTM Coord	UTM Coordinates ^(c)	
Station ^(a)	Location ^(b)	Easting (m)	Northing (m)	
SNP 5-4	Inflow from wetlands into Lardass Lake	591821	7113637	
SNP 5-5	Lardass Lake	591759	7113638	
SNP 5-6	Runoff from ore rock pile	591875	7113866	
SNP 5-8	Damoti Lake site decline ramp (water pooled at the entrance)	591856	7113981	
SNP 5-9	Pool of standing water immediately west of waste rock pile	591896	7113984	
SNP 5-11	Pool of standing water next to waste rock/ore stockpiles	591906	7113947	
SNP 5-12	Pool of standing water in rock pile area	591907	7113936	
SNP 5-13	Pool of standing water in waste rock/ore pile area	591883	7113917	
SNP 5-14 ^(d)	Flow pathway between the rock/ore pile area and Lardass Lake	591822	7113757	

Notes:

- b) Photographs of stations visited during the September 2024 field program are provided in Appendix A.
- c) UTM coordinates are in NAD83, Zone 11W.
- d) Previously referred to as FB-100. The station was visited in September 2024, but the water level was too low for sample collection. SNP = Surveillance Network Program; UTM = Universal Transverse Mercator; m = metres.

a) SNP 5-7 and SNP 5-10 are not part of the program as per the Water Licence (WLWB 2023). SNP 5-1, SNP 5-2, SNP 5-3, and SNP 5 15 are currently inactive based on on-site conditions. SNP 5-1 and SNP 5-2 were not sampled because mine water was not being discharged from the Adit into the settling pond, SNP 5-3 was not sampled because the water was not being pumped for camp use, and SNP 5-15 was not sampled because no artesian aquifers have been encountered.



REFERENCE(S)

BACKGROUND IMAGERY OBTAINED FROM BING MAPS FOR ARCGIS PUBLISHED BY MICROSOFT CORPORATION, REDMOND, WA.
 PROJECTION: UTM ZONE 11 DATUM: NAD83

YYYY-MM-DI	2024-10-28	
DESIGNED	SP	
PREPARED	SP	
REVIEWED	MI	
APPROVED	KS	

FIGURE PHASE/TASK REV. CA0034908.5454 1000.1004 0

LEGEND

S1, L1, L2, L3,

L4, L5, L6

SNP STATION

SURFICIAL DRAINAGE PATTERNS

GENERAL DRAINAGE PATTERNS

SED2

DOMINANT WASTE ROCK TYPE IN PILE

S = SULPHIDE BANDED IRON FORMATION L = LOW SULPHIDE BANDED IRON FORMATION

SED = SEDIMENTARY

NOTES

- 1. GRID IS DISPLAYED IN NAD83 UTM ZONE 11 COORDINATES.
- 2. AIRPHOTO SCALE IS APPROXIMATE.

REFERENCE

JUNE 2012 AIRPHOTO TAKEN BY GOLDER ASSOCIATES LTD. FIELD STAFF.

PLAN VIEW

SCALE 1:1,000

CONSULTANT

YYYY-MM-DD	2024-10-28
DESIGNED	NB/SP
PREPARED	GS
REVIEWED	MI
APPROVED	KS

PROJECT DAMOTI LAKE SURVEILLANCE NETWORK
PROGRAM SEPTEMBER 2024

SITE DRAINAGE PATTERNS AT THE DAMOTI LAKE ROCK PILE AREA

CA0034908.5454	1000/1004	0	02
PROJECT NO.	PHASE/TASK	REV.	FIGURE

2.2 Sampling Methods

2.2.1 Field Measurements

Prior to collecting surface water grab samples, ambient wind and weather conditions were recorded along with in-situ measurements of the following water quality parameters:

- water temperature (°C)
- pH
- dissolved oxygen (DO; milligrams per litre [mg/L] and percent saturation [%])
- specific conductivity (micro siemens per centimetre [µS/cm])

An AquaTROLL multiparameter water quality meter was used to collect in situ measurements. A handheld LaMotte pH meter was used to confirm field measurements. Water depth was measured at each sampling location. Flow and volume measurements were not recorded because water was not pumped for camp or industrial use.

2.2.2 Water Quality Sampling

Surface water quality grab samples were collected per WSP's technical procedures for surface water sample collection, using plastic and glass bottles, depending on the parameter or parameter group being sampled. Sample bottles were submerged approximately 0.3 m below the water surface at each SNP station, except for at SNP 5-4, where an extension pole was used to collect water off an old dock.

Water quality samples were preserved in the field and filtered in the WSP laboratory at the end of the day. They were kept cool until delivery to ALS Environmental (ALS) in Yellowknife, NT. After delivery to ALS in Yellowknife, samples were shipped to Burnaby, British Columbia, for analysis.

2.3 Laboratory Analyses

Surface water samples were analyzed for the parameters outlined in Table 2. These parameters are either required by the SNP annexed to the Water Licence or were analyzed to support the Interim Closure and Reclamation Plan and develop the historical dataset for the aquatic receiving environment.

Table 2: Parameter List for Each Surveillance Network Program Station

Station	Parameters	
SNP 5-4	Conventional (pH, specific conductivity, hardness, total alkalinity, total suspended solids, total dissolved solids [calculated], and dissolved organic carbon), major ions (including sulphate), nutrients (nitrate, nitrite, total ammonia, low-level total phosphorus, and dissolved phosphorus), total metals ^(a) (plus total mercury), dissolved metals ^(a) .	
SNP 5-5	Conventional (pH, specific conductivity, hardness, total alkalinity, total suspended solids, total dissolved solids [calculated], and dissolved organic carbon), major ions (including sulphate), nutrients (nitrate, nitrite, total ammonia, and low-level total phosphorus), total metals ^(a) (plus total mercury).	
SNP 5-6	Conventional (pH, specific conductivity, hardness, total alkalinity, total suspended solids, and total dissolved solids [calculated]), major ions (including sulphate), nutrients (nitrate, nitrite, total ammonia, low-level total phosphorus, and dissolved phosphorus), total metals ^(a) dissolved metals ^(a) .	
SNP 5-8		
SNP 5-9	Conventional (pH, specific conductivity, hardness, total alkalinity, total suspended solids, and total dissolved	
SNP 5-11	solids [calculated]), major ions (including sulphate), nutrients (nitrate, nitrite, total ammonia, and low-level total	
SNP 5-12	phosphorus), and total metals ^(a) .	
SNP 5-13		
SNP 5-14 ^(b)	Conventional (pH, specific conductivity, hardness, total alkalinity, total suspended solids, and total dissolved solids [calculated]), major ions (including sulphate), nutrients (nitrate, nitrite, total ammonia, low-level total phosphorus), total metals ^(a) (plus total mercury), dissolved metals ^(a) .	

Notes:

- a) Total and dissolved metals include metalloids such as arsenic and non-metals such as selenium (WLWB 2023). The list of elements includes aluminum (AI), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), cesium (Cs), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), thallium (TI), uranium (U), vanadium (V), and zinc (Zn).
- b) SNP 5-14 was visited on September 10, but the water level was too low for sample collection.

SNP = Surveillance Network Program.

2.4 Data Analysis

Analytical results from station SNP 5-6 were compared to applicable effluent quality criteria (EQC) as specified in the Water Licence, i.e., maximum average concentration and maximum concentration of any grab sample. For SNP stations at Lardass Lake (SNP 5-4 and SNP 5-5), analytical results were compared to Canadian Council of Ministers of the Environment (CCME) guidelines for the protection of aquatic life and livestock (wildlife) health (CCME 1999 with updates), as well as the federal environmental quality guidelines (FEQG) for cobalt (ECCC 2017), strontium (ECCC 2020), and vanadium (ECCC 2016). Water quality objectives for SNP 5-4 are the lowest of each applicable guideline, as specified in the Water Management Plan (Nighthawk 2024).

Laboratory pH is considered less reliable than field pH because the recommended holding time of 15 minutes cannot be met due to sample transport and shipping. Field pH values were therefore used to calculate CCME guidelines, where applicable.

2.5 Quality Assurance/Quality Control

Quality assurance/quality control (QA/QC) procedures and requirements are essential to any field or laboratory testing program. The objective of the QA/QC program is to standardize methods such that field sampling, data entry, data analysis, and report preparation produce technically sound and scientifically defensible results.

As part of routine practices for field operations, the following QA procedures were undertaken:

- AquaTROLL water quality meter was calibrated according to manufacturer recommendations prior to sample collection for the day.
- Field-measured pH values were verified using a second pH meter at the time of sample collection.
- Surface water samples were collected by experienced personnel following WSP's technical procedures for surface water sample collection.
- Detailed field notes were recorded in a waterproof field notebook.
- Field data were checked at the end of the sampling event for completeness and accuracy.
- Chain-of-custody (COC) forms were used to track all sample shipments from the field to the analytical laboratory.

The following QC samples were collected:

- A duplicate sample at SNP 5-6 to assess variability potentially introduced during sample collection, sample handling, and laboratory analytical procedures.
- A field blank at SNP 5-8 will be used to assess potential contamination during sample collection.
- A travel blank to determine whether any contamination may have occurred during transportation, storage, or analysis.

The analytical laboratory, ALS, also has its own QA/QC programs, including laboratory replicate samples, sample blanks and control standards.

3.0 RESULTS

3.1 Water Quality

Water quality results from the September 2024 program are presented in Appendix B. Ambient weather at the time of sampling included temperatures of approximately 10°C, mainly cloudy skies with some sun, and calm conditions with wind from the northwest.

Water quality results for station SNP 5-6 are provided in Table B-1, including comparisons to applicable Water Licence limits (WLWB 2023). Results from Lardass Lake, SNP 5-4 and SNP 5-5, are provided in Table B-2, including comparisons to applicable water quality objectives (e.g., CCME 1999 with updates). Results from the remaining SNP stations are presented in Table B-3. Analytical results provided by the laboratories (i.e., the certificate of analysis) are included in Appendix C.

At station SNP 5-6, parameter concentrations were below Water Licence EQC and within the required pH range of 5.5 to 9.5 (Appendix B, Table B-1).

At Lardass Lake, SNP 5-4 and SNP 5-5, parameter concentrations were below the water quality objectives, i.e., the lowest of the CCME acute and chronic guidelines for the protection of aquatic life, the wildlife health guidelines, and applicable FEQG (Appendix B, Table B-2).

3.2 Quality Assurance/Quality Control

The QA/QC assessment of the data collected during the September 10, 2024; sampling event indicated that the data adequately addresses the program's objectives (Appendix D). There was limited potential for contamination during sampling, transport, and laboratory analysis. Duplicate sample results indicated that intrastation variability was low (i.e., sampling precision was high). Parameter concentrations were consistently less than five times the detection limit in the field and travel blanks.

Recommended hold times between sample collection and analysis were generally met, except for pH, nitrate, and nitrate in all samples, as well as ammonia, dissolved organic carbon, and total phosphorus in the travel blank.

4.0 CLOSURE

We trust the above information satisfies the Water Licence requirements. Please contact the undersigned if you have any questions or require additional information.

WSP Canada Inc.

Saad Pasha, MSc Water Quality Scientist Kate Sinclair, PhD

Principal Water Quality Scientist

Michael Iwanyshyn, PhD Lead Water Quality Scientist

SP/KS/MI/pr/jr

5.0 REFERENCES

- CCME (Canadian Council of Ministers of the Environment). 1999. Canadian Environmental Quality Guidelines 1999, with updates to 2020. Winnipeg, MB. Accessed July 2023.
- ECCC (Environment and Climate Change Canada). 2016. Federal Environmental Quality Guidelines Vanadium. Available at: FEQG Vanadium EN.pdf (ec.gc.ca).
- ECCC. 2017. Federal Environmental Quality Guidelines Cobalt. Available at: FEQG Cobalt Final EN.pdf (ec.gc.ca).
- ECCC. 2020. Federal Environmental Quality Guidelines Strontium. Available at: Federal-environmental-quality-guidelines-strontium.pdf.
- Nighthawk (Nighthawk Gold Corporation). 2024 (in preparation). Indin Lake Gold Project Water Management Plan Version 1.1.
- WLWB (Wek'èezhìı Land and Water Board). 2023. Type A Water Licence W2021L2-0004. Issued January 13, 2023.

APPENDIX A

Site Photographs

Photograph A-1: SNP 5-4, Inflow from Wetlands into Lardass Lake.

Note: Sample was collected at the edge of the submerged former dock, near the sign in the background. Photo Orientation: South.

Photograph A-2: SNP 5-5, Lardass Lake. Photo Orientation: Southeast.

Photograph A-3: SNP 5-6, Combined Runoff from Damoti Rock Piles. Photo Orientation: West.

Photograph A-4: SNP 5-8, Damoti Lake Site Decline Ramp (Minewater Pooled at Entrance of Adit). Photo Orientation: West.

Appendix A – Site Photographs

Photograph A-5: SNP 5-9, Pool of Standing Water Immediately West of Waste Rock Pile. Photo Orientation: Northwest.

Photograph A-6: SNP 5-11, Pool of Standing Water Between Waste Rock/Ore Stockpiles. Photo Orientation: North.

Photograph A-7: SNP 5-12, Pool of Standing Water in Rock Pile Area. Photo Orientation: South.

Appendix A – Site Photographs

Photograph A-8: SNP 5-13, Pool of Standing Water in Rock Pile Area. Photo Orientation: South.

Photograph A-9: SNP 5-14, Flow pathway between rock ore pile area and Lardass Lake. Note: Low water level and no flow observed. Field measurements were collected but a water quality sample was not collected. Photo Orientation: Southeast.

Appendix A – Site Photographs

Photograph A-10: Aerial View of site and drainage to Lardass Lake. Photo Orientation: West.

APPENDIX B

Water Quality Data

Table B-1: Surveillance Network Program Results at SNP 5-6 Compared to Water Licence Limits, September 10, 2024

Table B-1: Surveillance Network Pr	ogram Results at SNF	ts at SNP 5-6 Compared to Water Licence Limits, September						
Parameter	Unit	Maximum Concentration of Any Grab Sample ^(a)	Maximum Average Concentration ^(b)	Station SNP 5-6				
Field Measured Parameters		Any Grab Gample	Solicemation	3NF 3-0				
рН	unitless	5.5 - 9.5	-	7.1				
Specific conductivity	μS/cm	-	-	356				
Temperature	°C	<u>-</u>	-	11				
Dissolved oxygen	mg/L	-	-	4.0				
Dissolved oxygen	%	-	-	37				
Conventional Parameters	L		L	l				
pH	unitless	5.5 - 9.5	-	8.1				
Specific conductivity	μS/cm	-	-	370				
Hardness, as CaCO ₃	mg/L	-	-	188				
Total alkalinity, as CaCO ₃	mg/L	-	-	159				
Total suspended solids	mg/L	30	15	3.9				
Total dissolved solids (calculated)	mg/L	-	-	218				
Major Ions			•					
Calcium	mg/L	-	-	44				
Chloride	mg/L	-	-	3.7				
Fluoride	mg/L	-	-	0.21				
Magnesium	mg/L	-	-	19				
Potassium	mg/L	-	-	5.0				
Sodium	mg/L	-	-	6.6				
Sulphate	mg/L	-	-	35				
Nutrients								
Nitrate	mg-N/L	•	-	<0.005				
Nitrite	mg-N/L	•	-	<0.001				
Total ammonia	mg-N/L	•	12	0.013				
Total phosphorus (colourimetric)	mg-P/L	•	-	0.038				
Dissolved phosphorus	mg-P/L	-	-	0.32 ^(c)				
Total Metals								
Aluminum	mg/L	-	-	0.072				
Antimony	mg/L	-	-	<0.0001				
Arsenic	mg/L	0.2	0.1	0.0010				
Barium	mg/L	-	-	0.014				
Beryllium	mg/L	-	-	<0.00002				
Bismuth	mg/L	-	-	<0.00005				
Boron	mg/L	-	-	0.034				
Cadmium	mg/L	0.002	0.001	0.0000097				
Calcium	mg/L	-	-	47				
Cesium	mg/L	-	-	0.00070				
Chromium	mg/L	-	-	0.00074				
Cobalt	mg/L	-	-	0.0013				
Copper	mg/L	0.02	0.01	0.0015				
Iron	mg/L	-	-	0.66				
Lead	mg/L	0.04	0.02	0.000088				
Lithium	mg/L	-	-	0.017				
Magnesium	mg/L	-	-	18				
Manganese	mg/L	-	-	0.27				
Molybdenum	mg/L	-	- 0.05	0.000073				
Nickel	mg/L	0.5	0.25	0.0098				
Potassium	mg/L	-	-	3.8				
Rubidium	mg/L	-	-	0.0085				
Selenium	mg/L	-	-	0.000078				
Silicon	mg/L	-	-	2.9				
Silver	mg/L	-	-	<0.00001				
Sodium	mg/L	-	-	6.5				
Strontium	mg/L	-	-	0.14				
Sulphur	mg/L	-	-	14				
Tellurium Thallium	mg/L	-	-	<0.0002				
	mg/L	-	-	<0.00001 <0.0003				
Thorium	mg/L	-	-					
Tin Titanium	mg/L	-	-	<0.0001				
Titanium	mg/L	-	-	0.0017				
Tungsten	mg/L	-	-	<0.0001				
Uranium	mg/L	-	-	0.00043				
Vanadium	mg/L	-	- 0.4	<0.0005				
Zinc	mg/L	0.2	0.1	<0.003				
Zirconium	mg/L	-	-	<0.0006				

Table B-1: Surveillance Network Program Results at SNP 5-6 Compared to Water Licence Limits, September 10, 2024

Parameter Whit			Maximum Concentration of	Maximum Average	Station
Dissolved Metals	Parameter	Unit			
Antimony mg/L	Dissolved Metals		•		
Arsenic mg/L - 0.0012 Barlum mg/L - 0.012 Beryllium mg/L - 0.012 Beryllium mg/L - 0.012 Beryllium mg/L - 0.0002 Boron mg/L - 0.0003 Boron mg/L - 0.0003 Boron mg/L - 0.000078 Boron mg/L - 0.00010 Boron mg	Aluminum	mg/L	-	-	0.061
Barium mg/L - 0.012 Beryllium mg/L - - <0.00002	Antimony	mg/L	-	-	<0.0001
Sery lium	Arsenic	mg/L	-	-	0.0012
Sismuth mg/L - - - - - -	Barium	mg/L	-	-	0.012
Soron mg/L - - 0.034	Beryllium	mg/L	-	-	<0.00002
Cadmium mg/L - - 0.000078 Cesium mg/L - - 0.00078 Chronium mg/L - - 0.00071 Cobalt mg/L - - 0.0010 Copper mg/L - - 0.0017 ron mg/L - - 0.36 Lead mg/L - - 0.00013 Lead mg/L - - 0.036 Lead mg/L - - 0.0013 Manganese mg/L - - 0.016 Manganese mg/L - - 0.022 Molybdenum mg/L - - 0.00053 Nickel mg/L - - 0.00053 Rubidium mg/L - - 0.00053 Silicon mg/L - - 0.00009 Silicon mg/L - - - 0.0	Bismuth	mg/L	-	-	<0.00005
Desition	Boron	mg/L	-	-	0.034
Chromium mg/L - - 0.00071 Cobalt mg/L - - 0.0010 Copper mg/L - - 0.0017 ron mg/L - - 0.0017 ron mg/L - - 0.00013 Lichium mg/L - - 0.00013 Manganese mg/L - - 0.016 Manganese mg/L - - 0.00053 Nickel mg/L - - 0.00055 Rubidium mg/L - - 0.00055 Rubidium mg/L - - 0.000091 Silicon mg/L - - 0.000091 Silicon mg/L - - 0.00001	Cadmium	mg/L	-	-	0.000078
Cobalt mg/L - - 0.0010 Copper mg/L - - 0.0017 ron mg/L - - 0.36 .ead mg/L - - 0.00013 .tithium mg/L - - 0.016 Manganese mg/L - - 0.32 Molybdenum mg/L - - 0.000053 Nickel mg/L - - 0.000053 Nickel mg/L - - 0.0025 Nickel mg/L - - 0.0025 Rubidium mg/L - - 0.0025 Rubidium mg/L - - 0.002 Rubidium mg/L - - 0.00091 Silicon mg/L - - 0.000091 Silicon mg/L - - - 0.00001 Strontium mg/L - - <	Cesium	mg/L	-	-	0.00078
Copper mg/L - - 0.0017 ron mg/L - - 0.36 .ead mg/L - - 0.00013 .ithium mg/L - - 0.016 Manganese mg/L - - 0.32 Molybdenum mg/L - - 0.00023 Nickel mg/L - - 0.00085 Rubidium mg/L - - 0.00085 Rubidium mg/L - - 0.00091 Selenium mg/L - - 0.00095 Silicon mg/L - - 0.00099 Silicon mg/L - - 0.00090 Silicon mg/L - - 0.00001 Strontium mg/L - - 0.00001 Strontium mg/L - - 0.00002 Thallium mg/L - - 0.00001<	Chromium	mg/L	-	-	0.00071
mg/L	Cobalt	mg/L	-	-	0.0010
mg/L	Copper	mg/L	-	-	0.0017
Description	Iron	mg/L	-	-	0.36
Manganese mg/L - 0.32 Molybdenum mg/L - 0.000053 Nickel mg/L - - 0.0085 Rubidium mg/L - - 0.012 Selenium mg/L - - 0.00091 Selenium mg/L - - 0.000091 Silver mg/L - - 2.8 Silver mg/L - - 0.00001 Strontium mg/L - - 0.0002 Thallium mg/L - - 0.00001 Thorium mg/L - - 0.00017 Fin mg/L - - 0.00017 Fin mg/L - - 0.00017	Lead	mg/L	-	-	0.00013
Molybdenum mg/L - 0.000053 Nickel mg/L - 0.0085 Rubidium mg/L - 0.0012 Selenium mg/L - 0.000091 Silicon mg/L - - 0.000091 Siliver mg/L - - 0.00001 Strontium mg/L - - 0.13 Sulphur mg/L - - 0.13 Sulphur mg/L - - 0.0002 Fhallium mg/L - - 0.0002 Fhallium mg/L - - 0.0001 Fino mg/L - - 0.0001 Finin mg/L - - 0.0001 Finin mg/L - - 0.0001 Transium mg/L - - 0.00028 Vanadium mg/L - - 0.00034	Lithium	mg/L	-	-	0.016
Nickel	Manganese	mg/L	-	-	0.32
Rubidium	Molybdenum	mg/L	-	-	0.000053
Selenium mg/L - 0.000091 Silicon mg/L - 2.8 Silver mg/L - - <0.00001	Nickel	mg/L	-	-	0.0085
March Marc	Rubidium	mg/L	-	-	0.012
Silver	Selenium	mg/L	-	-	0.000091
Strontium mg/L	Silicon	mg/L	-	-	2.8
Sulphur mg/L - - 14 Fellurium mg/L - - <0.0002	Silver	mg/L	-	-	<0.00001
Fellurium mg/L - < 0.0002 Fhallium mg/L - - < 0.0001	Strontium	mg/L	-	-	0.13
Fhallium mg/L - - <0.00001 Thorium mg/L - - 0.00017 Tin mg/L - - <0.0001	Sulphur	mg/L	-	-	14
Fhorium mg/L - - 0.00017 Fin mg/L - - <0.0001	Tellurium	mg/L	-	-	<0.0002
Fin mg/L - - <0.0001 Titanium mg/L - - 0.0013 Tungsten mg/L - - <0.0001	Thallium	mg/L	-	-	<0.00001
Fitanium mg/L - - 0.0013 Fungsten mg/L - - <0.0001	Thorium	mg/L	-	-	0.00017
Tungsten mg/L - - <0.0001 Jranium mg/L - - 0.00028 Janadium mg/L - - <0.0005	Tin		-	-	<0.0001
Jranium mg/L - - 0.00028 /anadium mg/L - - <0.0005	Titanium	mg/L	-	-	0.0013
Vanadium mg/L - - <0.0005 Zinc mg/L - - 0.0034	Tungsten	mg/L	-	-	<0.0001
Zinc	Uranium	mg/L	-	-	0.00028
	Vanadium	mg/L	-	-	<0.0005
Zirconium - 0.00052	Zinc	mg/L	-	-	0.0034
1g- 1g-	Zirconium	mg/L	-	-	0.00052

Notes:

- a) Maximum concentration of any grab sample as per Type A Water Licence W2021L2-0004 (WLWB 2023).
- b) Maximum average concentration as per Type A Water Licence W2021L2-0004 (WLWB 2023).
- c) Lab qualifier provided: The dissolved concentration exceeds total concentration for field-filtered metals sample. Metallic contaminants may have been introduced to dissolved sample during field filtration.

WLWB = Wek'èezhii Land and Water Board; SNP = Surveillance Network Program; CaCO₃ = calcium carbonate; µS/cm = microsiemens per centimetre; mg/L = milligrams per litre; mg-N/L = milligrams of nitrogen per litre; mg-P/L = milligrams of phosphorus per litre; % = percent; °C = degrees Celsius; < = less than; - = no Water Licence limit.

Reference:

WLWB (Wek'èezhii Land and Water Board). 2023. Type A Water Licence W2021L2-0004. Issued 13 January 2023.

			Guidelines:			ation
Parameter	Unit	For the Protec	tion of Aquatic Life	Wildlife Health	SNP 5-4	SNP 5-5 ^(a)
		Acute	Chronic	(Livestock)	OIII 3- 4	SNP 5-5
ield Measured Parameters						
<u>H</u>	unitless	-	6.5 - 9.0	-	7.7	7.3
Specific conductivity	μS/cm	-	-	-	160	181
emperature	°C	-	6.5	-	14 13	8.3
Dissolved oxygen Dissolved oxygen	mg/L %	-	- 0.5	-	121	80
Conventional Parameters	70				121	
)H	unitless	-	6.5 - 9.0	-	7.8	7.9
Specific conductivity	μS/cm	-	-	-	171	168
lardness, as CaCO₃	mg/L	-	-	-	72	79
otal alkalinity, as CaCO ₃	mg/L				51	62
otal suspended solids	mg/L	-	-	-	6.9	4.7
otal dissolved solids (calculated)	mg/L	-	-	3000	117	117
Dissolved organic carbon	mg/L	-	-	-	23	21
lajor lons						
Calcium	mg/L	-	-	1,000	19	23
Chloride	mg/L	640	120	- 2.0	1.1	1.3
luoride	mg/L	-	0.12	2.0	0.088	0.084
Magnesium Potassium	mg/L mg/L	-	-	-	5.9 1.6	5.4 1.6
Sodium	mg/L	-	-	-	3.2	3.1
Sulphate	mg/L	-	<u>-</u>	1,000	32	21
Nutrients	9/ -			.,000	<u> </u>	
litrate	mg-N/L	124	2.9	-	<0.005	<0.005
litrite	mg-N/L	-	0.06	10	<0.001	<0.001
otal ammonia	mg-N/L	-	1.3 - 3.6 ^(b)	-	0.025	0.059
otal phosphorus (colourimetric)	mg-P/L	-	-	-	0.012	0.012
issolved phosphorus	mg-P/L	-	-	-	<0.05	-
otal Metals	·					
luminum	mg/L	-	0.1 ^(c)	5.0	0.061	0.053
ntimony	mg/L	-	-	-	<0.0001	<0.0001
rsenic	mg/L	-	0.005	0.025	0.00032	0.00028
arium	mg/L	-	-	-	0.010	0.0094
eryllium	mg/L	-	-	0.1	<0.00002	<0.00002
ismuth	mg/L	29	1.5	- 5.0	<0.00005 0.013	<0.00005
Soron Cadmium	mg/L mg/L	0.0015 - 0.0017 ^(d)	0.00012 - 0.00013 ^(d)	0.080	<0.00005	<0.00005
Calcium	mg/L	0.0015 - 0.0017	0.00012 - 0.00013	-	21	23
Cesium	mg/L	-		_	0.000029	0.000031
Chromium	mg/L	-	0.001 ^(e)	0.050	<0.0005	<0.0005
Cobalt	mg/L	-	0.00089 - 0.00092 ^(f)	1.0	0.00015	0.00015
Copper	mg/L	-	0.002 ^(d)	0.50	<0.0005	0.00058
on	mg/L	-	0.3	-	0.073	0.17
ead	mg/L	-	0.0021 - 0.0024 ^(d)	0.10	<0.00005	<0.00005
ithium	mg/L	-	-	-	0.0029	0.0025
/lagnesium	mg/L	-	-	-	5.0	5.4
/langanese	mg/L	-	-	-	0.092	0.13
lercury	mg/L	-	0.000026	0.0030	<0.000005	<0.000005
lolybdenum	mg/L	-	0.073	0.50	0.00011	0.00012
lickel	mg/L	-	0.075 - 0.080 ^(d)	1.0	0.0013	0.0013
otassium	mg/L	-	-	-	1.6	1.6
dubidium	mg/L	-	-	- 0.05	0.0025	0.0025
elenium	mg/L	-	0.001	0.05	<0.00005	<0.00005
ilicon ilver	mg/L	-	0.00025	-	0.16 <0.00001	<0.00001
odium	mg/L mg/L	-	0.00025	-	3.0	3.1
trontium	mg/L	-	-	-	0.049	0.057
ulphur	mg/L	-	-	-	7.2	7.6
ellurium	mg/L	-	-	-	<0.0002	<0.0002
hallium	mg/L	-	0.0008	-	<0.0001	<0.0001
horium	mg/L	-	-	-	<0.0001	<0.0001
ïn	mg/L	-	-	-	<0.0001	<0.0001
ïtanium	mg/L	-	-	-	<0.0003	<0.0003
ungsten	mg/L	-	-	-	<0.0001	<0.0001
Iranium	mg/L	0.033	0.015	0.20	0.00013	0.00020
/anadium	mg/L	_	0.120 ^(g)	0.10	<0.0005	<0.0005

Table B-2: Surveillance Network Program Sample Results at Lardass Lake Compared to Water Quality Objectives, September 10, 2024

			Guidelines:	Station		
Parameter	Unit	For the Protect	tion of Aquatic Life	Wildlife		
		Acute	Chronic	Health (Livestock)	SNP 5-4	SNP 5-5 ^(a)
Zinc	mg/L	-	-	50	<0.003	<0.003
Zirconium	mg/L	-	-	-	<0.0002	<0.0004
Dissolved Metals		•				
Aluminum	mg/L	-	-	-	0.043	-
Antimony	mg/L	-	-	-	<0.0001	-
Arsenic	mg/L	-	-	-	0.00070	-
Barium	mg/L	-	-	-	0.0099	-
Beryllium	mg/L	-	-	-	<0.00002	-
Bismuth	mg/L	-	-	-	<0.00005	-
Boron	mg/L	-	-	-	0.015	-
Cadmium	mg/L	-	-	-	<0.000005	-
Cesium	mg/L	-	-	-	0.000035	-
Chromium	mg/L	-	-	-	<0.0005	-
Cobalt	mg/L	-	-	-	0.00010	-
Copper	mg/L	-	-	-	0.00053	-
Iron	mg/L	-	-	-	0.056	-
Lead	mg/L	-	-	-	0.00011	-
Lithium	mg/L	-	-	-	0.0028	-
Manganese	mg/L	5.0 - 5.4 ^(d)	0.39 - 0.49 ^(h)	-	0.036	-
Molybdenum	mg/L	-	-	-	0.00011	-
Nickel	mg/L	-	-	-	0.0011	-
Rubidium	mg/L	-	-	-	0.0025	-
Selenium	mg/L	-	-	-	<0.00005	-
Silicon	mg/L	-	-	-	0.23	-
Silver	mg/L	-	-	-	<0.00001	-
Strontium	mg/L	-	2.5 ⁽ⁱ⁾	-	0.052	-
Sulphur	mg/L	-	-	-	8.8	-
Tellurium	mg/L	-	-	-	<0.0002	-
Thallium	mg/L	-	-	-	<0.00001	-
Thorium	mg/L	-	-	-	<0.0001	-
Tin	mg/L	-	-	-	<0.0001	-
Titanium	mg/L	-	-	-	<0.0003	-
Tungsten	mg/L	-	-	-	<0.0001	-
Uranium	mg/L	-	-	-	0.00012	-
Vanadium	mg/L	-		-	<0.0005	-
Zinc	mg/L	0.12 - 0.13 ^(j)	0.038 - 0.056 ^(j)	-	<0.001	-
Zirconium	mg/L	-	-	-	<0.0003	-

Notes:

Bolded values are water quality objectives as outlined in the Indin Lake Gold Project Water Management Plan Version 1.1 (Nighthawk 2024).

- a) Water quality objectives are proposed to apply at SNP 5-4 only (Nighthawk 2024), but guidelines and screening have been applied to both SNP 5-4 and SNP 5-5 for context.
- b) The ammonia guideline range shown is pH and temperature dependent. The guideline that results in the minimum ammonia guideline (1.3 mg-N/L) is based on the combination of pH (7.7) and water temperature (14°C).
- c) Guideline is pH dependent. The guideline shown is based on the field pH observed in the dataset (7.3 and 7.7).
- d) Guideline is hardness dependent. The guideline range shown is based on the hardness observed in the dataset (72 to 79 mg/L). The guideline is calculated based on the individual hardness value for each sample.
- e) Guideline is for chromium VI.
- f) Federal environmental quality guideline for cobalt is hardness dependent (ECCC 2017). The guideline range shown is based on the hardness range observed in the dataset (72 to 79 mg/L).
- g) Federal environmental quality guideline for vanadium (ECCC 2016).
- h) The chronic dissolved manganese guideline is pH and hardness dependent. The guideline range shown is based on the range of field pH (7.3 and 7.7) and hardness (72 and 79 mg/L) observed in the dataset.
 i) Federal environmental quality guideline for strontium (ECCC 2020).
- j) The acute and chronic dissolved zinc guidelines are pH (chronic only), hardness, and DOC dependent (CCME 1999). The minimum acute and chronic zinc guidelines (0.12 and 0.038 mg/L, respectively) are based on the combination of field pH (7.7, chronic only), hardness (72 mg/L), and DOC (23 mg/L).

 SNP = Surveillance Network Program; μS/cm = microsiemens per centimetre; °C = degrees Celsius; mg/L = milligrams per litre; % = percent; CaCO₃ = calcium carbonate; mg-N/L =
- milligrams of nitrogen per litre; mg-P/L = milligrams of phosphorus per litre; < = less than; = no guideline or no data available; DOC = dissolved organic carbon.

Reference:

CCME (Canadian Council of Ministers of the Environment). 1999. Canadian Environmental Quality Guidelines 1999, with updates to 2020. Winnipeg, MB. Accessed October 2022. ECCC (Environment and Climate Change Canada). 2016. Federal Environmental Quality Guidelines – Vanadium. Available at: https://www.ec.gc.ca/ese-ees/48D3A655-0F43-4BCD-905D-631B1402B61A/FEQG_Vanadium_EN.pdf.

ECCC. 2017. Federal Environmental Quality Guidelines – Cobalt. Available at: https://www.ec.gc.ca/ese-ees/92F47C5D-24F5-4601-AEC0-390514B3ED75/FEQG%20Cobalt%20Final%20EN.pdf.

ECCC. 2020. Federal Environmental Quality Guidelines - Strontium. Available at: https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/federal-environmental-quality-guidelines-strontium.html.

Nighthawk (Nighthawk Gold Corp.). 2024 (in preparation). Indin Lake Gold Project Water Management Plan Version 1.1.

Table B-3: Surveillance Network Program Sample Results for Stations Around the Rock Piles, September 10, 2024

Table B-3: Surveillance Network F		Tesure for State	mo Around the r	Stations	10, 202-	
Parameter	Unit	SNP 5-8	SNP 5-9	SNP 5-11	SNP 5-12	SNP 5-13
Field Measured Parameters			•			
рН	unitless	7.0	7.3	7.3	7.1	6.1
Specific conductivity	μS/cm	257	645	689	578	564
Temperature	°C	3.5	9.8	11	12	11
Dissolved oxygen	mg/L	3.7	9.2	11	10	9.5
Dissolved oxygen	%	29	35	102	99	91
Conventional Parameters						
рН	unitless	7.9	8.0	7.7	7.6	7.5
Specific conductivity	μS/cm	295	719	776	646	625
Hardness, as CaCO ₃	mg/L	137	370	395	315	309
Total alkalinity, as CaCO ₃	mg/L	78	109	38	34	33
Total suspended solids	mg/L	2.0	3.6	5.4	3.2	5.0
Total dissolved solids (calculated)	mg/L	182	459	536	427	416
Major lons	1		ı	•	1	T
Calcium	mg/L	39	99	100	79	76
Chloride	mg/L	6.0	6.8	5.5	4.4	4.3
Fluoride	mg/L	0.11	0.15	0.26	0.25	0.26
Magnesium	mg/L	9.6	30	35	29	29
Potassium	mg/L	3.0	4.9	5.8	5.0	5.0
Sodium	mg/L	5.0	9.4	8.2	7.3	7.5
Sulphate	mg/L	62	241	351	273	264
Nutrients	_	<u></u>	Γ	ı	T	T
Nitrate	mg-N/L	0.025	<0.025	0.039	<0.005	<0.005
Nitrite	mg-N/L	<0.001	<0.005	<0.005	<0.001	<0.001
Total ammonia	mg-N/L	0.0082	0.013	0.040	0.017	0.021
Total phosphorus (colourimetric)	mg-P/L	0.0075	0.017	0.0090	0.0076	0.0087
Total Metals		T	T	I	1	
Aluminum	mg/L	0.023	0.010	0.047	0.029	0.020
Antimony	mg/L	<0.0001	0.00055	<0.0001	<0.0001	<0.0001
Arsenic	mg/L	0.00046	0.00059	0.00066	0.00060	0.00068
Barium	mg/L	0.019	0.039	0.019	0.018	0.020
Beryllium	mg/L	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Bismuth	mg/L	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Boron	mg/L	0.025	0.053	0.083	0.072	0.072 0.0000075
Cadmium	mg/L	0.000035	<0.000005	0.000024	0.000011	
Cesium Chromium	mg/L	0.00026 <0.0005	0.00030 <0.0005	0.00068 <0.0005	0.00095 <0.0005	0.0011 <0.0005
Cobalt	mg/L	0.0003	0.0005	0.0005	0.0003	0.00084
	mg/L mg/L	0.00043	0.00048	0.0027	0.0012	0.00084
Copper	mg/L	0.0025	0.80	1.6	1.2	1.4
Iron Lead	mg/L	0.43	<0.0005	0.00024	0.000085	0.000092
Lithium	mg/L	0.00028	0.00003	0.00024	0.000065	0.00092
Manganese	mg/L	0.064	0.018	0.031	0.027	0.020
Molybdenum	mg/L	0.004	0.00061	0.000058	<0.00005	<0.00005
Nickel	mg/L	0.0013	0.0086	0.00038	0.016	0.014
Rubidium	mg/L	0.0035	0.0000	0.028	0.010	0.014
Selenium	mg/L	<0.0005	<0.00099	<0.0005	<0.0005	0.00051
Silicon	mg/L	3.7	0.77	1.8	2.8	3.2
Silver	mg/L	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Strontium	mg/L	0.093	0.27	0.28	0.23	0.23
Sulphur	mg/L	22	94	134	105	102
Sulphul Tellurium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Thallium	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Thorium	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Tin	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium	mg/L	0.00035	<0.0001	<0.0001	<0.0001	<0.0001
Tungsten	mg/L	0.00035	<0.0003	<0.0009	<0.0003	<0.0003
Uranium	mg/L	0.00043	0.0001	0.0001	0.000073	0.00001
Vanadium	mg/L	<0.0026	<0.00040	<0.00014	<0.0005	<0.0005
Zinc	mg/L mg/L	<0.0005	<0.0005	0.0059	<0.0005	<0.0005
Zirconium	mg/L mg/L	<0.003	<0.003	<0.0059	<0.003	<0.003
Notes:	III9/L	~U.UUUZ	~U.UUUZ	~U.UUUZ	\U.UUUZ	~0.000∠

Notes:

SNP = Surveillance Network Program; μ S/cm = microsiemens per centimetre; °C = degrees Celsius; % = percent; mg/L = milligrams per litre; CaCO₃ = calcium carbonate; < = less than; mg-N/L = milligrams of nitrogen per litre; mg-P/L = milligrams of phosphorus per litre.

APPENDIX C

Laboratory Certificate of Analysis

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : **YL2401456** Page : 1 of 14

Client : WSP Canada Inc. Laboratory : ALS Environmental - Yellowknife

Contact : Saad Pasha : Oliver Gregg

Address : 2800, 700 - 2nd Street SW Address : 314 Old Airport Road, Unit 116

Yellowknife NT Canada X1A 3T3

 Telephone
 : 403.512.6580
 Telephone
 : 1 867 445 7143

 Project
 : Damoti Lake SNP
 Date Samples Received
 : 11-Sep-2024 10:58

: 2024CA215454/1000.1001 Date Analysis Commenced : 15-Sep-2024

C-O-C number : ---- Issue Date : 20-Sep-2024 12:43

Sampler : Sarah Beattie

Site : Damoti Lake

Quote number : YL24-GOLD100-002

Calgary AB Canada T2P 2W2

No. of samples received : 11

No. of samples analysed : 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

PO

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Erin Sanchez		Metals, Burnaby, British Columbia
Kate Dimitrova	Supervisor - Inorganic	Inorganics, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Monica Ko	Lab Assistant	Inorganics, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia

 Page
 :
 2 of 14

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
μS/cm	microsiemens per centimetre
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).
DTMF	Dissolved concentration exceeds total for field-filtered metals sample. Metallic
	contaminants may have been introduced to dissolved sample during field filtration.

Page : 3 of 14
Work Order : YL2401456
Client : WSP Canada Inc.
Project : Damoti Lake SNP

Sub-Matrix: Water			Cli	ent sample ID	SNP 5-4	SNP 5-5	SNP 5-6	SNP 5-8	SNP 5-9
(Matrix: Water)									
			Client sampl	ing date / time	10-Sep-2024 14:00	10-Sep-2024 14:30	10-Sep-2024 13:25	10-Sep-2024 11:35	10-Sep-2024 12:00
Analyte C.	AS Number	Method/Lab	LOR	Unit	YL2401456-001	YL2401456-002	YL2401456-003	YL2401456-004	YL2401456-005
					Result	Result	Result	Result	Result
Physical Tests		E4000/4	2.0		474	400	270	205	740
Conductivity		E100/VA EC100/VA	2.0 0.50	μS/cm	171 72.3	168	370 188	295	719
Hardness (as CaCO3), dissolved		EC100/VA EC100A/VA	0.50	mg/L	72.3 72.2	 79.3	188	 137	 370
Hardness (as CaCO3), from total Ca/Mg				mg/L					
pH		E108/VA EC103.B/VA	0.10 1.0	pH units	7.80 117	7.87 117	8.10	7.91 182	8.00
Solids, total guaranded (TSS)		E0103.B/VA E160-L/VA	1.0	mg/L	6.9	4.7	218 3.9	2.0	459 3.6
Solids, total suspended [TSS]			2.0	mg/L					109
Alkalinity, total (as CaCO3)		E290/VA	2.0	mg/L	50.5	61.9	159	78.2	109
Amonia total (as N)	7664-41-7	E208/\/A	0.0050	ma/l	0.0247	0.0586	0.0131	0.0082	0.0125
Ammonia, total (as N) Bromide		E235.Br-L/VA	0.050	mg/L mg/L	<0.050	<0.050	<0.050	<0.050	<0.250 DLDS
	24959-67-9 16887-00-6		0.50	ŭ	1.06	1.28	3.73	5.99	6.80
	16984-48-8		0.020	mg/L	0.088	0.084	0.207	0.106	0.149
			0.020	mg/L	<0.0050	<0.0050	<0.0050	0.0250	<0.0250 DLDS
Nitrate (as N)	14/9/-55-8	E235.NO3-L/V Δ	0.0030	mg/L	<0.0050	\0.0030	<0.0030	0.0230	\0.0250
Nitrite (as N)	14797-65-0	E235.NO2-L/V A	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0050 DLDS
Phosphorus, total	7723-14-0	E372-U/VA	0.0020	mg/L	0.0124	0.0120	0.0381	0.0075	0.0168
Sulfate (as SO4)	14808-79-8	E235.SO4/VA	0.30	mg/L	31.9	21.4	35.2	61.8	241
Organic / Inorganic Carbon									
Carbon, dissolved organic [DOC]		E358-L/VA	0.50	mg/L	22.5	20.7			
Total Metals									
Aluminum, total	7429-90-5	E420/VA	0.0030	mg/L	0.0614	0.0529	0.0720	0.0232	0.0102
Antimony, total	7440-36-0	E420/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	0.00055
Arsenic, total	7440-38-2	E420/VA	0.00010	mg/L	0.00032	0.00028	0.00100	0.00046	0.00059
Barium, total	7440-39-3	E420/VA	0.00010	mg/L	0.0103	0.00937	0.0139	0.0194	0.0391
Beryllium, total	7440-41-7	E420/VA	0.000020	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Bismuth, total	7440-69-9	E420/VA	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Boron, total	7440-42-8	E420/VA	0.010	mg/L	0.013	0.012	0.034	0.025	0.053
Cadmium, total	7440-43-9	E420/VA	0.0000050	mg/L	<0.0000050	<0.000050	0.0000097	0.0000353	<0.0000050
Calcium, total	7440-70-2	E420/VA	0.050	mg/L	20.6	22.9	47.0	39.0	98.6

Page : 4 of 14
Work Order : YL2401456
Client : WSP Canada Inc.
Project : Damoti Lake SNP

Sub-Matrix: Water		Cli	ent sample ID	SNP 5-4	SNP 5-5	SNP 5-6	SNP 5-8	SNP 5-9
(Matrix: Water)								
		Client samp	ling date / time	10-Sep-2024 14:00	10-Sep-2024 14:30	10-Sep-2024 13:25	10-Sep-2024 11:35	10-Sep-2024 12:00
Analyte	CAS Number Method/Lab	LOR	Unit	YL2401456-001	YL2401456-002	YL2401456-003	YL2401456-004	YL2401456-005
Total Metals				Result	Result	Result	Result	Result
Cesium, total	7440-46-2 E420/VA	0.000010	mg/L	0.000029	0.000031	0.000701	0.000264	0.000299
Chromium, total	7440-47-3 E420/VA	0.00050	mg/L	<0.00050	<0.00050	0.00074	<0.00050	<0.00050
Cobalt, total	7440-48-4 E420/VA	0.00010	mg/L	0.00015	0.00015	0.00128	0.00043	0.00048
Copper, total	7440-50-8 E420/VA	0.00050	mg/L	<0.00050	0.00058	0.00153	0.00251	0.00130
Iron, total	7439-89-6 E420/VA	0.010	mg/L	0.073	0.174	0.660	0.450	0.804
Lead, total	7439-92-1 E420/VA	0.000050	mg/L	<0.000050	<0.000050	0.000088	0.000281	<0.000050
Lithium, total	7439-93-2 E420/VA	0.0010	mg/L	0.0029	0.0025	0.0174	0.0049	0.0177
Magnesium, total	7439-95-4 E420/VA	0.0050	mg/L	5.04	5.37	17.8	9.60	30.2
Manganese, total	7439-96-5 E420/VA	0.00010	mg/L	0.0921	0.126	0.270	0.0638	0.0968
Mercury, total	7439-97-6 E508/VA	0.0000050	mg/L	<0.000050	<0.0000050			
Molybdenum, total	7439-98-7 E420/VA	0.000050	mg/L	0.000108	0.000122	0.000073	0.00126	0.000061
Nickel, total	7440-02-0 E420/VA	0.00050	mg/L	0.00126	0.00127	0.00977	0.00560	0.00860
Phosphorus, total	7723-14-0 E420/VA	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
Potassium, total	7440-09-7 E420/VA	0.050	mg/L	1.58	1.64	3.75	3.03	4.90
Rubidium, total	7440-17-7 E420/VA	0.00020	mg/L	0.00253	0.00246	0.00846	0.00346	0.00993
Selenium, total	7782-49-2 E420/VA	0.000050	mg/L	<0.000050	<0.000050	0.000078	<0.000050	<0.000050
Silicon, total	7440-21-3 E420/VA	0.10	mg/L	0.16	1.08	2.88	3.73	0.77
Silver, total	7440-22-4 E420/VA	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Sodium, total	7440-23-5 E420/VA	0.050	mg/L	3.02	3.10	6.46	5.00	9.42
Strontium, total	7440-24-6 E420/VA	0.00020	mg/L	0.0486	0.0572	0.140	0.0927	0.266
Sulfur, total	7704-34-9 E420/VA	0.50	mg/L	7.21	7.63	13.6	22.0	93.5
Tellurium, total	13494-80-9 E420/VA	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Thallium, total	7440-28-0 E420/VA	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Thorium, total	7440-29-1 E420/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00030 DLM	<0.00010	<0.00010
Tin, total	7440-31-5 E420/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium, total	7440-32-6 E420/VA	0.00030	mg/L	<0.00030	<0.00030	0.00169	0.00035	<0.00030
Tungsten, total	7440-33-7 E420/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	0.00043	<0.00010
Uranium, total	7440-61-1 E420/VA	0.000010	mg/L	0.000132	0.000204	0.000426	0.00263	0.000396
Vanadium, total	7440-62-2 E420/VA	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Zinc, total	7440-66-6 E420/VA	0.0030	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030

Page : 5 of 14
Work Order : YL2401456
Client : WSP Canada Inc.
Project : Damoti Lake SNP

Sub-Matrix: Water		Cl	ient sample ID	SNP 5-4	SNP 5-5	SNP 5-6	SNP 5-8	SNP 5-9
(Matrix: Water)								
		·	ling date / time	10-Sep-2024 14:00	10-Sep-2024 14:30	10-Sep-2024 13:25	10-Sep-2024 11:35	10-Sep-2024 12:00
Analyte	CAS Number Method/Lab	LOR	Unit	YL2401456-001 Result	YL2401456-002 Result	YL2401456-003 Result	YL2401456-004 Result	YL2401456-005 Result
Total Metals				Result	Result	Result	Result	Result
Zirconium, total	7440-67-7 E420/VA	0.00020	mg/L	<0.00020	<0.00040 DLM	<0.00060 DLM	<0.00020	<0.00020
Dissolved Metals								
Aluminum, dissolved	7429-90-5 E421/VA	0.0010	mg/L	0.0434		0.0608		
Antimony, dissolved	7440-36-0 E421/VA	0.00010	mg/L	<0.00010		<0.00010		
Arsenic, dissolved	7440-38-2 E421/VA	0.00010	mg/L	0.00070 DTMF		0.00122		
Barium, dissolved	7440-39-3 E421/VA	0.00010	mg/L	0.00990		0.0121		
Beryllium, dissolved	7440-41-7 E421/VA	0.000020	mg/L	<0.000020		<0.000020		
Bismuth, dissolved	7440-69-9 E421/VA	0.000050	mg/L	<0.000050		<0.000050		
Boron, dissolved	7440-42-8 E421/VA	0.010	mg/L	0.015		0.034		
Cadmium, dissolved	7440-43-9 E421/VA	0.0000050	mg/L	<0.000050		0.0000078		
Calcium, dissolved	7440-70-2 E421/VA	0.050	mg/L	19.2		43.8		
Cesium, dissolved	7440-46-2 E421/VA	0.000010	mg/L	0.000035		0.000775		
Chromium, dissolved	7440-47-3 E421/VA	0.00050	mg/L	<0.00050		0.00071		
Cobalt, dissolved	7440-48-4 E421/VA	0.00010	mg/L	0.00010		0.00101		
Copper, dissolved	7440-50-8 E421/VA	0.00020	mg/L	0.00053		0.00173		
Iron, dissolved	7439-89-6 E421/VA	0.010	mg/L	0.056		0.361		
Lead, dissolved	7439-92-1 E421/VA	0.000050	mg/L	0.000109 DTMF		0.000131		
Lithium, dissolved	7439-93-2 E421/VA	0.0010	mg/L	0.0028		0.0162		
Magnesium, dissolved	7439-95-4 E421/VA	0.0050	mg/L	5.92		19.0		
Manganese, dissolved	7439-96-5 E421/VA	0.00010	mg/L	0.0356		0.320		
Molybdenum, dissolved	7439-98-7 E421/VA	0.000050	mg/L	0.000114		0.000053		
Nickel, dissolved	7440-02-0 E421/VA	0.00050	mg/L	0.00111		0.00846		
Phosphorus, dissolved	7723-14-0 E421/VA	0.050	mg/L	< 0.050		0.319 DTMF		
Potassium, dissolved	7440-09-7 E421/VA	0.050	mg/L	1.58		5.01		
Rubidium, dissolved	7440-17-7 E421/VA	0.00020	mg/L	0.00252		0.0120 DTMF		
Selenium, dissolved	7782-49-2 E421/VA	0.000050	mg/L	<0.000050		0.000091		
Silicon, dissolved	7440-21-3 E421/VA	0.050	mg/L	0.225		2.84		
Silver, dissolved	7440-22-4 E421/VA	0.000010	mg/L	<0.000010		<0.000010		
Sodium, dissolved	7440-23-5 E421/VA	0.050	mg/L	3.19		6.56		
Strontium, dissolved	7440-24-6 E421/VA	0.00020	mg/L	0.0516		0.128		

 Page
 :
 6 of 14

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	SNP 5-4	SNP 5-5	SNP 5-6	SNP 5-8	SNP 5-9
(Matrix: Water)									
			Client samp	ling date / time	10-Sep-2024 14:00	10-Sep-2024 14:30	10-Sep-2024 13:25	10-Sep-2024 11:35	10-Sep-2024 12:00
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2401456-001	YL2401456-002	YL2401456-003	YL2401456-004	YL2401456-005
					Result	Result	Result	Result	Result
Dissolved Metals									
Sulfur, dissolved	7704-34-9 l	E421/VA	0.50	mg/L	8.84		13.5		
Tellurium, dissolved	13494-80-9 l	E421/VA	0.00020	mg/L	<0.00020		<0.00020		
Thallium, dissolved	7440-28-0	E421/VA	0.000010	mg/L	<0.000010		<0.000010		
Thorium, dissolved	7440-29-1	E421/VA	0.00010	mg/L	<0.00010		0.00017		
Tin, dissolved	7440-31-5	E421/VA	0.00010	mg/L	<0.00010		<0.00010		
Titanium, dissolved	7440-32-6	E421/VA	0.00030	mg/L	<0.00030		0.00128		
Tungsten, dissolved	7440-33-7	E421/VA	0.00010	mg/L	<0.00010		<0.00010		
Uranium, dissolved	7440-61-1	E421/VA	0.000010	mg/L	0.000118		0.000283		
Vanadium, dissolved	7440-62-2	E421/VA	0.00050	mg/L	<0.00050		<0.00050		
Zinc, dissolved	7440-66-6	E421/VA	0.0010	mg/L	<0.0010		0.0034		
Zirconium, dissolved	7440-67-7	E421/VA	0.00030	mg/L	<0.00030		0.00052		
Dissolved metals filtration location	[EP421/VA	-	-	Field		Field		

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 7 of 14
Work Order : YL2401456
Client : WSP Canada Inc.
Project : Damoti Lake SNP

Sub-Matrix: Water			Cli	ient sample ID	SNP 5-11	SNP 5-12	SNP 5-13	SNP 5-6D	SNP 5-8-FB
(Matrix: Water)									
			Client samp	ling date / time	10-Sep-2024 12:15	10-Sep-2024 12:30	10-Sep-2024 11:15	10-Sep-2024 13:30	10-Sep-2024 11:30
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2401456-006	YL2401456-007	YL2401456-008	YL2401456-009	YL2401456-010
					Result	Result	Result	Result	Result
Physical Tests Conductivity		E100/VA	2.0	μS/cm	776	646	625	371	<2.0
Hardness (as CaCO3), dissolved		EC100/VA	0.50	μο/cm mg/L				182	
Hardness (as CaCO3), from total Ca/Mg		EC100A/VA	0.50	mg/L	395	315	309	194	<0.50
pH		E108/VA	0.10	pH units	7.65	7.57	7.53	8.12	5.62
Solids, total dissolved [TDS], calculated		EC103.B/VA	1.0	mg/L	536	427	416	218	<1.0
Solids, total suspended [TSS]		E160-L/VA	1.0	mg/L	5.4	3.2	5.0	5.6	<1.0
Alkalinity, total (as CaCO3)		E290/VA	2.0	mg/L	38.4	33.9	33.4	158	<2.0
Anions and Nutrients									
Ammonia, total (as N)	7664-41-7	E298/VA	0.0050	mg/L	0.0403	0.0168	0.0208	0.0126	<0.0050
Bromide	24959-67-9	E235.Br-L/VA	0.050	mg/L	<0.250 DLDS	<0.050	<0.050	<0.050	<0.050
Chloride	16887-00-6	E235.CI/VA	0.50	mg/L	5.52	4.35	4.30	3.64	<0.50
Fluoride	16984-48-8	E235.F/VA	0.020	mg/L	0.256	0.252	0.256	0.195	<0.020
Nitrate (as N)	14797-55-8	E235.NO3-L/V	0.0050	mg/L	0.0393	<0.0050	<0.0050	<0.0050	<0.0050
Nitrite (as N)	14797-65-0	A E235.NO2-L/V A	0.0010	mg/L	<0.0050 DLDS	<0.0010	<0.0010	<0.0010	<0.0010
Phosphorus, total	7723-14-0	E372-U/VA	0.0020	mg/L	0.0090	0.0076	0.0087	0.0279	<0.0020
Sulfate (as SO4)	14808-79-8	E235.SO4/VA	0.30	mg/L	351	273	264	34.0	<0.30
Total Metals									
Aluminum, total	7429-90-5	E420/VA	0.0030	mg/L	0.0468	0.0293	0.0202	0.0705	<0.0030
Antimony, total	7440-36-0	E420/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Arsenic, total	7440-38-2	E420/VA	0.00010	mg/L	0.00066	0.00060	0.00068	0.00096	<0.00010
Barium, total	7440-39-3	E420/VA	0.00010	mg/L	0.0192	0.0183	0.0198	0.0138	<0.00010
Beryllium, total	7440-41-7	E420/VA	0.000020	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
Bismuth, total	7440-69-9	E420/VA	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Boron, total	7440-42-8	E420/VA	0.010	mg/L	0.083	0.072	0.072	0.036	<0.010
Cadmium, total	7440-43-9	E420/VA	0.0000050	mg/L	0.0000244	0.0000113	0.0000075	0.0000079	<0.0000050
Calcium, total	7440-70-2	E420/VA	0.050	mg/L	100	78.8	76.3	49.0	<0.050
Cesium, total	7440-46-2	E420/VA	0.000010	mg/L	0.000682	0.000947	0.00107	0.000675	<0.000010
Chromium, total	7440-47-3	E420/VA	0.00050	mg/L	<0.00050	<0.00050	<0.00050	0.00075	<0.00050

Page : 8 of 14
Work Order : YL2401456
Client : WSP Canada Inc.
Project : Damoti Lake SNP

Analytical Results			_					
Sub-Matrix: Water		Cl	ient sample ID	SNP 5-11	SNP 5-12	SNP 5-13	SNP 5-6D	SNP 5-8-FB
(Matrix: Water)								
			ling date / time	10-Sep-2024 12:15	10-Sep-2024 12:30	10-Sep-2024 11:15	10-Sep-2024 13:30	10-Sep-2024 11:30
Analyte	CAS Number Method/Lab	LOR	Unit	YL2401456-006	YL2401456-007	YL2401456-008	YL2401456-009	YL2401456-010
				Result	Result	Result	Result	Result
Total Metals	7440-48-4 E420/VA	0.00010	ma/l	0.00270	0.00120	0.00084	0.00112	<0.00010
Copper total	7440-50-8 E420/VA	0.00010	mg/L	0.00270	0.00120	0.00084	0.00112	<0.00010
Copper, total		0.00050	mg/L	1.59	1.24	1.41	0.00158	<0.00050
Iron, total	7439-89-6 E420/VA	0.00050	mg/L	0.000236	0.000085	0.000092	0.092	<0.00050
Lead, total	7439-92-1 E420/VA	0.000030	mg/L	0.0306	0.0269	0.00092	0.00072	<0.0010
Lithium, total	7439-93-2 E420/VA	0.0010	mg/L	35.2	28.7	28.8	17.4	<0.0010
Magnesium, total	7439-95-4 E420/VA	0.0030	mg/L	0.270	0.141	0.0985	0.239	<0.00010
Manganese, total	7439-96-5 E420/VA	0.00010	mg/L	0.000058	<0.00050	<0.00050	0.239	<0.00010
Molybdenum, total	7439-98-7 E420/VA		mg/L	0.0280				<0.00050
Nickel, total	7440-02-0 E420/VA	0.00050	mg/L	<0.050	0.0163 <0.050	0.0137 <0.050	0.00939	<0.00050
Phosphorus, total	7723-14-0 E420/VA	0.050 0.050	mg/L	5.77	4.95	4.99	<0.050 3.72	<0.050
Potassium, total	7440-09-7 E420/VA		mg/L					
Rubidium, total	7440-17-7 E420/VA	0.00020	mg/L	0.0128	0.0102	0.0101	0.00830	<0.00020
Selenium, total	7782-49-2 E420/VA	0.000050	mg/L	<0.000050	<0.000050	0.000051	0.000083	<0.000050
Silicon, total	7440-21-3 E420/VA	0.10	mg/L	1.81	2.79	3.21	2.93	<0.10
Silver, total	7440-22-4 E420/VA	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Sodium, total	7440-23-5 E420/VA	0.050	mg/L	8.15	7.32	7.48	6.50	<0.050
Strontium, total	7440-24-6 E420/VA	0.00020	mg/L	0.284	0.227	0.228	0.139	<0.00020
Sulfur, total	7704-34-9 E420/VA	0.50	mg/L	134	105	102	13.7	<0.50
Tellurium, total	13494-80-9 E420/VA	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Thallium, total	7440-28-0 E420/VA	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Thorium, total	7440-29-1 E420/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00020 DLM	<0.00010
Tin, total	7440-31-5 E420/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium, total	7440-32-6 E420/VA	0.00030	mg/L	<0.00090 DLM	<0.00030	<0.00030	0.00167	<0.00030
Tungsten, total	7440-33-7 E420/VA	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Uranium, total	7440-61-1 E420/VA	0.000010	mg/L	0.000140	0.000073	0.000063	0.000414	<0.000010
Vanadium, total	7440-62-2 E420/VA	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Zinc, total	7440-66-6 E420/VA	0.0030	mg/L	0.0059	<0.0030	<0.0030	<0.0030	<0.0030
Zirconium, total	7440-67-7 E420/VA	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00060 DLM	<0.00020
Dissolved Metals Aluminum, dissolved	7429-90-5 E421/VA	0.0010	mg/L				0.0625	

Page : 9 of 14
Work Order : YL2401456
Client : WSP Canada Inc.
Project : Damoti Lake SNP

Sub-Matrix: Water		CI	lient sample ID	SNP 5-11	SNP 5-12	SNP 5-13	SNP 5-6D	SNP 5-8-FB
		CI.	тепт заттріе тО	SINE 9-11	SNF 5-12	SNF 5-13	SNF 9-0D	SINF 9-0-FB
(Matrix: Water)								
		Client samp	oling date / time	10-Sep-2024 12:15	10-Sep-2024 12:30	10-Sep-2024 11:15	10-Sep-2024 13:30	10-Sep-2024 11:30
Analyte	CAS Number Method/Lab	LOR	Unit	YL2401456-006	YL2401456-007	YL2401456-008	YL2401456-009	YL2401456-010
				Result	Result	Result	Result	Result
Dissolved Metals		0.00040					10.00040	
Antimony, dissolved	7440-36-0 E421/VA	0.00010	mg/L				<0.00010	
Arsenic, dissolved	7440-38-2 E421/VA	0.00010	mg/L				0.00133 DTMF	
Barium, dissolved	7440-39-3 E421/VA	0.00010	mg/L				0.0122	
Beryllium, dissolved	7440-41-7 E421/VA	0.000020	mg/L				<0.000020	
Bismuth, dissolved	7440-69-9 E421/VA	0.000050	mg/L				<0.000050	
Boron, dissolved	7440-42-8 E421/VA	0.010	mg/L				0.032	
Cadmium, dissolved	7440-43-9 E421/VA	0.0000050	mg/L				0.0000092	
Calcium, dissolved	7440-70-2 E421/VA	0.050	mg/L				42.0	
Cesium, dissolved	7440-46-2 E421/VA	0.000010	mg/L				0.000782	
Chromium, dissolved	7440-47-3 E421/VA	0.00050	mg/L				0.00075	
Cobalt, dissolved	7440-48-4 E421/VA	0.00010	mg/L				0.00103	
Copper, dissolved	7440-50-8 E421/VA	0.00020	mg/L				0.00181	
Iron, dissolved	7439-89-6 E421/VA	0.010	mg/L				0.350	
Lead, dissolved	7439-92-1 E421/VA	0.000050	mg/L				0.000153	
Lithium, dissolved	7439-93-2 E421/VA	0.0010	mg/L				0.0156	
Magnesium, dissolved	7439-95-4 E421/VA	0.0050	mg/L				18.7	
Manganese, dissolved	7439-96-5 E421/VA	0.00010	mg/L				0.322	
Molybdenum, dissolved	7439-98-7 E421/VA	0.000050	mg/L				0.000059	
Nickel, dissolved	7440-02-0 E421/VA	0.00050	mg/L				0.00863	
Phosphorus, dissolved	7723-14-0 E421/VA	0.050	mg/L				0.296 DTMF	
Potassium, dissolved	7440-09-7 E421/VA	0.050	mg/L				5.15 DTMF	
Rubidium, dissolved	7440-17-7 E421/VA	0.00020	mg/L				0.0124 DTMF	
Selenium, dissolved	7782-49-2 E421/VA	0.000050	mg/L				0.000068	
Silicon, dissolved	7440-21-3 E421/VA	0.050	mg/L				2.78	
Silver, dissolved	7440-22-4 E421/VA	0.000010	mg/L				<0.000010	
Sodium, dissolved	7440-23-5 E421/VA	0.050	mg/L				6.40	
Strontium, dissolved	7440-24-6 E421/VA	0.00020	mg/L				0.127	
Sulfur, dissolved	7704-34-9 E421/VA	0.50	mg/L				12.8	
Tellurium, dissolved	13494-80-9 E421/VA	0.00020	mg/L				<0.00020	
Thallium, dissolved	7440-28-0 E421/VA	0.000010	mg/L				<0.000010	
l '		1	ı , ,		I	I	I	

Page : 10 of 14
Work Order : YL2401456
Client : WSP Canada Inc.
Project : Damoti Lake SNP

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	SNP 5-11	SNP 5-12	SNP 5-13	SNP 5-6D	SNP 5-8-FB
(Matrix: Water)									
			Client samp	ling date / time	10-Sep-2024 12:15	10-Sep-2024 12:30	10-Sep-2024 11:15	10-Sep-2024 13:30	10-Sep-2024 11:30
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2401456-006	YL2401456-007	YL2401456-008	YL2401456-009	YL2401456-010
					Result	Result	Result	Result	Result
Dissolved Metals									
Thorium, dissolved	7440-29-1 ^E	E421/VA	0.00010	mg/L				0.00017	
Tin, dissolved	7440-31-5 E	E421/VA	0.00010	mg/L				<0.00010	
Titanium, dissolved	7440-32-6 E	E421/VA	0.00030	mg/L				0.00110	
Tungsten, dissolved	7440-33-7 E	E421/VA	0.00010	mg/L				<0.00010	
Uranium, dissolved	7440-61-1 E	E421/VA	0.000010	mg/L				0.000279	
Vanadium, dissolved	7440-62-2 E	E421/VA	0.00050	mg/L				<0.00050	
Zinc, dissolved	7440-66-6 E	E421/VA	0.0010	mg/L				0.0035	
Zirconium, dissolved	7440-67-7 E	E421/VA	0.00030	mg/L				0.00052	
Dissolved metals filtration location	E	EP421/VA	-	-				Field	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 11 of 14
Work Order : YL2401456
Client : WSP Canada Inc.
Project : Damoti Lake SNP

Sub-Matrix: Water			CI	ient sample ID	Travel Blank				
			Ci	тот затріє то	i i avei Dialik				
(Matrix: Water)									
			Client samp	ling date / time	10-Sep-2024 15:00				
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2401456-011				
					Result				
Physical Tests									
Conductivity		E100/VA	2.0	μS/cm	<2.0				
Hardness (as CaCO3), dissolved		EC100/VA	0.50	mg/L	<0.50				
Hardness (as CaCO3), from total Ca/Mg		EC100A/VA	0.50	mg/L	<0.50				
pH		E108/VA	0.10	pH units	5.60				
Solids, total dissolved [TDS], calculated		EC103.B/VA	1.0	mg/L	<1.0				
Solids, total suspended [TSS]		E160-L/VA	1.0	mg/L	<1.0				
Alkalinity, total (as CaCO3)		E290/VA	2.0	mg/L	<2.0				
Anions and Nutrients									
Ammonia, total (as N)	7664-41-7	E298/VA	0.0050	mg/L	<0.0050				
Bromide	24959-67-9	E235.Br-L/VA	0.050	mg/L	<0.050				
Chloride	16887-00-6	E235.CI/VA	0.50	mg/L	<0.50				
Fluoride	16984-48-8	E235.F/VA	0.020	mg/L	<0.020				
Nitrate (as N)	14797-55-8	E235.NO3-L/V	0.0050	mg/L	<0.0050				
Nitrite (as N)	14797-65-0	A E235.NO2-L/V A	0.0010	mg/L	<0.0010				
Phosphorus, total	7723-14-0	E372-U/VA	0.0020	mg/L	<0.0020				
Sulfate (as SO4)	14808-79-8	E235.SO4/VA	0.30	mg/L	<0.30				
Organic / Inorganic Carbon									
Carbon, dissolved organic [DOC]		E358-L/VA	0.50	mg/L	<0.50				
Total Metals									
Aluminum, total	7429-90-5	E420/VA	0.0030	mg/L	<0.0030				
Antimony, total	7440-36-0	E420/VA	0.00010	mg/L	<0.00010				
Arsenic, total	7440-38-2	E420/VA	0.00010	mg/L	<0.00010				
Barium, total	7440-39-3		0.00010	mg/L	<0.00010				
Beryllium, total	7440-41-7		0.000020	mg/L	<0.000020				
Bismuth, total	7440-69-9		0.000050	mg/L	<0.000050				
Boron, total	7440-42-8		0.010	mg/L	<0.010				
Cadmium, total	7440-43-9		0.0000050	mg/L	<0.0000050				
Calcium, total	7440-70-2		0.050	mg/L	<0.050				
I and the second		l	1			l l	ı	I	1

Page : 12 of 14
Work Order : YL2401456
Client : WSP Canada Inc.
Project : Damoti Lake SNP

Analytical Nesults							
Sub-Matrix: Water		CI	lient sample ID	Travel Blank		 	
(Matrix: Water)							
		Client samp	lling date / time	10-Sep-2024 15:00		 	
Analyte	CAS Number Method/Lab	LOR	Unit	YL2401456-011		 	
				Result		 	
Total Metals	E 1000/4	0.000040		0.000010			
Cesium, total	7440-46-2 E420/VA	0.000010	mg/L	<0.000010		 	
Chromium, total	7440-47-3 E420/VA	0.00050	mg/L	<0.00050		 	
Cobalt, total	7440-48-4 E420/VA	0.00010	mg/L	<0.00010		 	
Copper, total	7440-50-8 E420/VA	0.00050	mg/L	<0.00050		 	
Iron, total	7439-89-6 E420/VA	0.010	mg/L	<0.010		 	
Lead, total	7439-92-1 E420/VA	0.000050	mg/L	<0.000050		 	
Lithium, total	7439-93-2 E420/VA	0.0010	mg/L	<0.0010		 	
Magnesium, total	7439-95-4 E420/VA	0.0050	mg/L	<0.0050		 	
Manganese, total	7439-96-5 E420/VA	0.00010	mg/L	<0.00010		 	
Mercury, total	7439-97-6 E508/VA	0.0000050	mg/L	<0.0000050		 	
Molybdenum, total	7439-98-7 E420/VA	0.000050	mg/L	<0.000050		 	
Nickel, total	7440-02-0 E420/VA	0.00050	mg/L	<0.00050		 	
Phosphorus, total	7723-14-0 E420/VA	0.050	mg/L	<0.050		 	
Potassium, total	7440-09-7 E420/VA	0.050	mg/L	<0.050		 	
Rubidium, total	7440-17-7 E420/VA	0.00020	mg/L	<0.00020		 	
Selenium, total	7782-49-2 E420/VA	0.000050	mg/L	<0.000050		 	
Silicon, total	7440-21-3 E420/VA	0.10	mg/L	<0.10		 	
Silver, total	7440-22-4 E420/VA	0.000010	mg/L	<0.000010		 	
Sodium, total	7440-23-5 E420/VA	0.050	mg/L	<0.050		 	
Strontium, total	7440-24-6 E420/VA	0.00020	mg/L	<0.00020		 	
Sulfur, total	7704-34-9 E420/VA	0.50	mg/L	<0.50		 	
Tellurium, total	13494-80-9 E420/VA	0.00020	mg/L	<0.00020		 	
Thallium, total	7440-28-0 E420/VA	0.000010	mg/L	<0.000010		 	
Thorium, total	7440-29-1 E420/VA	0.00010	mg/L	<0.00010		 	
Tin, total	7440-31-5 E420/VA	0.00010	mg/L	<0.00010		 	
Titanium, total	7440-32-6 E420/VA	0.00030	mg/L	<0.00030		 	
Tungsten, total	7440-33-7 E420/VA	0.00010	mg/L	<0.00010		 	
Uranium, total	7440-61-1 E420/VA	0.000010	mg/L	<0.000010		 	
Vanadium, total	7440-62-2 E420/VA	0.00050	mg/L	<0.00050		 	
Zinc, total	7440-66-6 E420/VA	0.0030	mg/L	<0.0030		 	
I control of the cont	11	1	1 1		l l	I	ı I

Page : 13 of 14
Work Order : YL2401456
Client : WSP Canada Inc.
Project : Damoti Lake SNP

Analytical Nesults							
Sub-Matrix: Water		CI	ient sample ID	Travel Blank		 	
(Matrix: Water)							
			ling date / time	10-Sep-2024 15:00		 	
Analyte	CAS Number Method/Lab	LOR	Unit	YL2401456-011		 	
				Result		 	
Total Metals Zirconium, total	7440-67-7 E420/VA	0.00020	mg/L	<0.00020		 	
•	7440-07-7	0.00020	mg/L	10.00020			
Dissolved Metals Aluminum, dissolved	7429-90-5 E421/VA	0.0010	mg/L	<0.0010		 	
l '	7429-90-5 E421/VA 7440-36-0 E421/VA	0.0010	_	<0.0010		 	
Antimony, dissolved		0.00010	mg/L	<0.00010		 	
Arsenic, dissolved	7440-38-2 E421/VA	0.00010	mg/L	<0.00010			
Barium, dissolved	7440-39-3 E421/VA		mg/L			 	
Beryllium, dissolved	7440-41-7 E421/VA	0.000020	mg/L	<0.000020		 	
Bismuth, dissolved	7440-69-9 E421/VA	0.000050	mg/L	<0.000050		 	
Boron, dissolved	7440-42-8 E421/VA	0.010	mg/L	<0.010		 	
Cadmium, dissolved	7440-43-9 E421/VA	0.0000050	mg/L	<0.0000050		 	
Calcium, dissolved	7440-70-2 E421/VA	0.050	mg/L	<0.050		 	
Cesium, dissolved	7440-46-2 E421/VA	0.000010	mg/L	<0.000010		 	
Chromium, dissolved	7440-47-3 E421/VA	0.00050	mg/L	<0.00050		 	
Cobalt, dissolved	7440-48-4 E421/VA	0.00010	mg/L	<0.00010		 	
Copper, dissolved	7440-50-8 E421/VA	0.00020	mg/L	<0.00020		 	
Iron, dissolved	7439-89-6 E421/VA	0.010	mg/L	<0.010		 	
Lead, dissolved	7439-92-1 E421/VA	0.000050	mg/L	<0.000050		 	
Lithium, dissolved	7439-93-2 E421/VA	0.0010	mg/L	<0.0010		 	
Magnesium, dissolved	7439-95-4 E421/VA	0.0050	mg/L	<0.0050		 	
Manganese, dissolved	7439-96-5 E421/VA	0.00010	mg/L	<0.00010		 	
Molybdenum, dissolved	7439-98-7 E421/VA	0.000050	mg/L	<0.000050		 	
Nickel, dissolved	7440-02-0 E421/VA	0.00050	mg/L	<0.00050		 	
Phosphorus, dissolved	7723-14-0 E421/VA	0.050	mg/L	<0.050		 	
Potassium, dissolved	7440-09-7 E421/VA	0.050	mg/L	<0.050		 	
Rubidium, dissolved	7440-17-7 E421/VA	0.00020	mg/L	<0.00020		 	
Selenium, dissolved	7782-49-2 E421/VA	0.000050	mg/L	<0.000050		 	
Silicon, dissolved	7440-21-3 E421/VA	0.050	mg/L	<0.050		 	
Silver, dissolved	7440-22-4 E421/VA	0.000010	mg/L	<0.000010		 	
Sodium, dissolved	7440-23-5 E421/VA	0.050	mg/L	<0.050		 	
Strontium, dissolved	7440-24-6 E421/VA	0.00020	mg/L	<0.00020		 	
•	•	•			•	•	. '

 Page
 :
 14 of 14

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	Travel Blank	 	
(Matrix: Water)							
			Client samp	ling date / time	10-Sep-2024 15:00	 	
Analyte	CAS Number	Method/Lab	LOR	Unit	YL2401456-011	 	
					Result	 	
Dissolved Metals							
Sulfur, dissolved	7704-34-9 E	E421/VA	0.50	mg/L	<0.50	 	
Tellurium, dissolved	13494-80-9 E	E421/VA	0.00020	mg/L	<0.00020	 	
Thallium, dissolved	7440-28-0 E	E421/VA	0.000010	mg/L	<0.000010	 	
Thorium, dissolved	7440-29-1 E	E421/VA	0.00010	mg/L	<0.00010	 	
Tin, dissolved	7440-31-5 E	E421/VA	0.00010	mg/L	<0.00010	 	
Titanium, dissolved	7440-32-6 E	E421/VA	0.00030	mg/L	<0.00030	 	
Tungsten, dissolved	7440-33-7 E	E421/VA	0.00010	mg/L	<0.00010	 	
Uranium, dissolved	7440-61-1 E	E421/VA	0.000010	mg/L	<0.000010	 	
Vanadium, dissolved	7440-62-2 E	E421/VA	0.00050	mg/L	<0.00050	 	
Zinc, dissolved	7440-66-6 E	E421/VA	0.0010	mg/L	<0.0010	 	
Zirconium, dissolved	7440-67-7 E	E421/VA	0.00030	mg/L	<0.00030	 	
Dissolved metals filtration location	E	EP421/VA	-	-	Field	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **YL2401456** Page : 1 of 25

Client : WSP Canada Inc. Laboratory : ALS Environmental - Yellowknife

Contact : Saad Pasha Account Manager : Oliver Gregg

Address :2800, 700 - 2nd Street SW Address :314 Old Airport Road, Unit 116

Calgary AB Canada T2P 2W2 Yellowknife, Northwest Territories Canada X1A 3T3

Issue Date

: 20-Sep-2024 12:40

 Telephone
 : 403.512.6580
 Telephone
 : 1 867 445 7143

 Project
 : Damoti Lake SNP
 Date Samples Received
 : 11-Sep-2024 10:58

PO : 2024CA215454/1000.1001

C-O-C number : ----

Sampler : Sarah Beattie
Site : Damoti Lake

Quote number : YL24-GOLD100-002

No. of samples received :11
No. of samples analysed :11

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ● Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

<u>No</u> Quality Control Sample Frequency Outliers occur.

 Page
 :
 3 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Matrix: Water

SNP 5-5

SNP 5-6

SNP 5-6D

Anions and Nutrients: Ammonia by Fluorescence

Anions and Nutrients : Ammonia by Fluorescence

Amber glass total (sulfuric acid)

Amber glass total (sulfuric acid)

Analyte Group: Analytical Method

Container / Client Sample ID(s)

Eval

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analysis Date

16-Sep-2024

16-Sep-2024

16-Sep-2024

Analysis

Holding Times

28 days 6 days

28 days 6 days

28 days 6 days

Rec Actual

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Sampling Date

Method

E298

E298

E298

Extraction / Preparation

Preparation

Date

15-Sep-2024

15-Sep-2024

15-Sep-2024

Holding Times

Rec Actual

5 days

5 days

5 days

1

28 days

28 days

28 days Eval

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

			Date	7100	Hotaui			7100	Hotaui	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) SNP 5-11	E298	10-Sep-2024	15-Sep-2024	28 days	5 days	√	16-Sep-2024	28 days	6 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) SNP 5-12	E298	10-Sep-2024	15-Sep-2024	28 days	5 days	4	16-Sep-2024	28 days	6 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) SNP 5-13	E298	10-Sep-2024	15-Sep-2024	28 days	5 days	4	16-Sep-2024	28 days	6 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) SNP 5-4	E298	10-Sep-2024	15-Sep-2024	28 days	5 days	4	16-Sep-2024	28 days	6 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										

10-Sep-2024

10-Sep-2024

10-Sep-2024

1

1

Page 4 of 25 YL2401456 Work Order : Client WSP Canada Inc. Damoti Lake SNP Project

Matrix: Water					Ev	/aluation: ≭ =	Holding time exce	edance ; •	′ = Within	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
SNP 5-8	E298	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	16-Sep-2024	28 days	6 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
SNP 5-8-FB	E298	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	16-Sep-2024	28 days	6 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) SNP 5-9	E298	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	16-Sep-2024	28 days	6 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (lab preserved) Travel Blank	E298	10-Sep-2024	15-Sep-2024	3 days	5 days	* EHT	16-Sep-2024	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE SNP 5-11	E235.Br-L	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	15-Sep-2024	28 days	5 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE SNP 5-12	E235.Br-L	10-Sep-2024	15-Sep-2024	28 days	5 days	*	15-Sep-2024	28 days	5 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE SNP 5-13	E235.Br-L	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	15-Sep-2024	28 days	5 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE SNP 5-4	E235.Br-L	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	15-Sep-2024	28 days	5 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE SNP 5-5	E235.Br-L	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	15-Sep-2024	28 days	5 days	✓

ALS

 Page
 :
 5 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Matrix: Water

Evaluation: × = Holding	g time exceedance ; 🗸	= Within Holding Time
-------------------------	-----------------------	-----------------------

Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE SNP 5-6 E235.Br-L 10-Sep-2024 15-Sep-2024 28 5 days ✓ 15-Sep-2024 28 5 days ✓ 15-Sep-2024 Anions and Nutrients : Bromide in Water by IC (Low Level)	Analysi Holding Rec 28 days	Actual	Eval
Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE SNP 5-6 E235.Br-L 10-Sep-2024 15-Sep-2024 28	Rec 28 days	Actual	
Date Rec	28 days		✓
HDPE SNP 5-6 E235.Br-L 10-Sep-2024 15-Sep-2024 28 days 5 days ✓ 15-Sep-2024 2 Anions and Nutrients : Bromide in Water by IC (Low Level) E235.Br-L 10-Sep-2024 15-Sep-2024 28 5 days ✓ 15-Sep-2024 2 SNP 5-6D E235.Br-L 10-Sep-2024 15-Sep-2024 28 5 days ✓ 15-Sep-2024 2	,	5 days	✓
SNP 5-6 E235.Br-L 10-Sep-2024 15-Sep-2024 28 days 5 days ✓ 15-Sep-2024 2 Anions and Nutrients: Bromide in Water by IC (Low Level) HDPE SNP 5-6D E235.Br-L 10-Sep-2024 15-Sep-2024 28 5 days ✓ 15-Sep-2024 2	,	5 days	4
Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE SNP 5-6D E235.Br-L 10-Sep-2024 15-Sep-2024 28 5 days ✓ 15-Sep-2024 2	,	5 days	*
Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE SNP 5-6D E235.Br-L 10-Sep-2024 15-Sep-2024 28 5 days ✓ 15-Sep-2024 2	28 days		
HDPE E235.Br-L 10-Sep-2024 15-Sep-2024 28 5 days ✓ 15-Sep-2024 2	28 days		
HDPE E235.Br-L 10-Sep-2024 15-Sep-2024 28 5 days ✓ 15-Sep-2024 2	28 days		
SNP 5-6D E235.Br-L 10-Sep-2024 15-Sep-2024 28 5 days ✓ 15-Sep-2024 2	28 days		
		5 davs	✓
days		,-	
Anions and Nutrients : Bromide in Water by IC (Low Level)			
HDPE Instrument of the properties of	28 days	5 days	√
	20 uays	5 days	l v
days			
Anions and Nutrients : Bromide in Water by IC (Low Level)			
HDPE			
SNP 5-8-FB E235.Br-L 10-Sep-2024 15-Sep-2024 28 5 days ✓ 15-Sep-2024 2	28 days	5 days	✓
days			
Anions and Nutrients : Bromide in Water by IC (Low Level)			
HDPE			
SNP 5-9 E235.Br-L 10-Sep-2024 15-Sep-2024 28 5 days ✓ 15-Sep-2024 2	28 days	5 days	✓
days			
Anions and Nutrients : Bromide in Water by IC (Low Level)			
HDPE			
	28 days	5 davs	✓
days	- ,	,	
Anions and Nutrients : Chloride in Water by IC HDPE			
	28 days	5 days	√
	zo uays	5 uays	ľ
days			
Anions and Nutrients : Chloride in Water by IC			
HDPE			
	28 days	5 days	✓
days days			
Anions and Nutrients : Chloride in Water by IC			
HDPE			
SNP 5-13 E235.CI 10-Sep-2024 15-Sep-2024 28 5 days ✓ 15-Sep-2024 2	28 days	5 days	✓
days			

 Page
 :
 6 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Matrix: Water

Evaluation: × = Holdin	a time exceedance : 🗸	´ = Within Holdina Time
------------------------	-----------------------	-------------------------

	ı						nolaing time exce			
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr			Analysis			
Container / Client Sample ID(s)			Preparation Holding Times		Eval	Analysis Date		Times	Eval	
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Chloride in Water by IC										
HDPE										
SNP 5-4	E235.CI	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE										
SNP 5-5	E235.CI	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 days	✓
		· ·	·	days			·		·	
Aniana and Nutrients - Chlavida in Mater by IC				,						
Anions and Nutrients : Chloride in Water by IC HDPE							I			
SNP 5-6	E235.CI	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 days	✓
ON 00	2200.01	10 GGP 2021	10 COP 2021	days	o dayo	·	10 00p 2021	20 dayo	o dayo	·
				uays						
Anions and Nutrients : Chloride in Water by IC										
HDPE	E005 01	40.0 0004	45.0 0004			,	45.0 0004	00.1		,
SNP 5-6D	E235.CI	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE										
SNP 5-8	E235.CI	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE										
SNP 5-8-FB	E235.Cl	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE										
SNP 5-9	E235.CI	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 days	✓
		, ,		days			,	,	- ,	
Aniana and Nationta - Oblavida in Water had IO										
Anions and Nutrients : Chloride in Water by IC	I	1					I			
HDPE Travel Blank	E235.CI	10-Sep-2024	15-Sep-2024	00	5 days	√	15-Sep-2024	28 days	5 days	✓
Havel Dialik	EZJJ.GI	10-3ep-2024	13-3ep-2024	28	Juays	•	13-3ep-2024	20 uays	Juays	•
				days						
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
SNP 5-11	E235.F	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 days	✓
				days						

 Page
 :
 7 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

							Holding time excee	,		
Analyte Group : Analytical Method	Method	Sampling Date	Extraction / Preparation							
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Eval Analysis Date		g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
SNP 5-12	E235.F	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 days	✓
				days						
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
SNP 5-13	E235.F	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 days	✓
				days						
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
SNP 5-4	E235.F	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 days	✓
		'	-	days	_				-	
Anions and Nutrients : Fluoride in Water by IC										
HDPE							I			
SNP 5-5	E235.F	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 davs	✓
				days	J, -				, -	
Anions and Nutrients : Fluoride in Water by IC				aayo						
HDPE							<u> </u>			
SNP 5-6	E235.F	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 davs	✓
5111 5 5		10 000 202 .	.0 000 202.	days	o days		10 000 202 .	20 44,0	o days	
Anisana and Natrianta a Floresida in Water bas 10				dayo						
Anions and Nutrients : Fluoride in Water by IC HDPE				l			<u> </u>			
SNP 5-6D	E235.F	10-Sep-2024	15-Sep-2024	28	5 days	√	15-Sep-2024	28 days	5 days	✓
ON 3-0D	2200.1	10 GGP 2021	10-00p-202+	days	o days	,	10-00p-2024	20 days	o days	•
				uays						
Anions and Nutrients : Fluoride in Water by IC							I			
HDPE SNP 5-8	E235.F	10-Sep-2024	15-Sep-2024	28	5 days	√	15-Sep-2024	28 days	5 days	✓
SINE 3-0	LZ33.F	10-36p-2024	10-06p-2024		Juays	,	10-0 c p-2024	20 days	Juays	*
				days						
Anions and Nutrients : Fluoride in Water by IC					I					
HDPE	E225 E	10 Son 2024	15 San 2024	00	E dove	√	15 Son 2024	20 days	E dove	✓
SNP 5-8-FB	E235.F	10-Sep-2024	15-Sep-2024	28	5 days	,	15-Sep-2024	28 days	5 days	*
				days						
Anions and Nutrients : Fluoride in Water by IC										
HDPE	F005 F	10.0	45.0				45.0			,
SNP 5-9	E235.F	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 days	✓
				days						

ALS

 Page
 :
 8 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					Ev	/aluation: 🗴 =	Holding time excee	edance ; 🖠	✓ = Within	Holding Tim
Analyte Group : Analytical Method	Method	Sampling Date	Ex	eparation			sis			
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Anione and Nutrients - Fluoride in Mater by IC			Date	7100	7101447			7100	7101447	
Anions and Nutrients : Fluoride in Water by IC HDPE				<u> </u>			<u> </u>			
Travel Blank	E235.F	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	15-Sep-2024	28 days	5 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE SNP 5-11	E235.NO3-L	10-Sep-2024	15-Sep-2024	3 days	5 days	* EHT	15-Sep-2024	3 days	5 days	* EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE SNP 5-12	E235.NO3-L	10-Sep-2024	15-Sep-2024	3 days	5 days	x EHT	15-Sep-2024	3 days	5 days	x EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE SNP 5-13	E235.NO3-L	10-Sep-2024	15-Sep-2024	3 days	5 days	* EHT	15-Sep-2024	3 days	5 days	* EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE SNP 5-4	E235.NO3-L	10-Sep-2024	15-Sep-2024	3 days	5 days	* EHT	15-Sep-2024	3 days	5 days	* EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE SNP 5-5	E235.NO3-L	10-Sep-2024	15-Sep-2024	3 days	5 days	* EHT	15-Sep-2024	3 days	5 days	x EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE SNP 5-6	E235.NO3-L	10-Sep-2024	15-Sep-2024	3 days	5 days	* EHT	15-Sep-2024	3 days	5 days	* EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE SNP 5-6D	E235.NO3-L	10-Sep-2024	15-Sep-2024	3 days	5 days	* EHT	15-Sep-2024	3 days	5 days	* EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE SNP 5-8	E235.NO3-L	10-Sep-2024	15-Sep-2024	3 days	5 days	* EHT	15-Sep-2024	3 days	5 days	# EHT
		•					•	•		

Page 9 of 25 YL2401456 Work Order : Client WSP Canada Inc. Damoti Lake SNP Project

Matrix: Water					Ev	/aluation: <mark>≭</mark> = l	Holding time excee	edance ; •	✓ = Within	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
SNP 5-8-FB	E235.NO3-L	10-Sep-2024	15-Sep-2024	3 days	5 days	*	15-Sep-2024	3 days	5 days	*
						EHT				EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
SNP 5-9	E235.NO3-L	10-Sep-2024	15-Sep-2024	3 days	5 days	35	15-Sep-2024	3 days	5 days	30
						EHT				EHT
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
Travel Blank	E235.NO3-L	10-Sep-2024	15-Sep-2024	3 days	5 days	*	15-Sep-2024	3 days	5 days	×
						EHT				EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SNP 5-11	E235.NO2-L	10-Sep-2024	15-Sep-2024	3 days	5 days	35	15-Sep-2024	3 days	5 days	*
						EHT				EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SNP 5-12	E235.NO2-L	10-Sep-2024	15-Sep-2024	3 days	5 days	*	15-Sep-2024	3 days	5 days	35
						EHT				EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SNP 5-13	E235.NO2-L	10-Sep-2024	15-Sep-2024	3 days	5 days	3 0	15-Sep-2024	3 days	5 days	×
		·	·	,		EHT	'	,		EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SNP 5-4	E235.NO2-L	10-Sep-2024	15-Sep-2024	3 days	5 days	×	15-Sep-2024	3 days	5 days	×
ON 04	2200.1102	10 000 2021	10 00p 202 1	o dayo	o dayo	EHT	10 000 2021	o dayo	o dayo	EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)	I						I			
HDPE SNP 5-5	E235.NO2-L	10-Sep-2024	15-Sep-2024	3 days	5 days	×	15-Sep-2024	3 days	5 days	*
SNP 5-5	E233.NO2-L	10-3ep-2024	15-Sep-2024	3 uays	5 uays	EHT	15-3ep-2024	3 uays	5 uays	EHT
						EUI				ЕПІ
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE	FORE NOO!	10 00= 0004	45.0 0004	0 4	C 4		45.0 2004	0 4	F 41	
SNP 5-6	E235.NO2-L	10-Sep-2024	15-Sep-2024	3 days	5 days	*	15-Sep-2024	3 days	5 days	*
						EHT				EHT

 Page
 :
 10 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Matrix: Water Evaluation: ★ = Holding time exceedance; ✓ = Within Holding Time

Matrix: vvater						raidation.	nolding time excee	Judinoo ,	***************************************	riolaling riili
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SNP 5-6D	E235.NO2-L	10-Sep-2024	15-Sep-2024	3 days	5 days	*	15-Sep-2024	3 days	5 days	*
						EHT				EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SNP 5-8	E235.NO2-L	10-Sep-2024	15-Sep-2024	3 days	5 days	*	15-Sep-2024	3 days	5 days	35
						EHT				EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SNP 5-8-FB	E235.NO2-L	10-Sep-2024	15-Sep-2024	3 days	5 days	*	15-Sep-2024	3 days	5 days	sc
						EHT				EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
SNP 5-9	E235.NO2-L	10-Sep-2024	15-Sep-2024	3 days	5 days	*	15-Sep-2024	3 days	5 days	*
		i i	,			EHT		,		EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
Travel Blank	E235.NO2-L	10-Sep-2024	15-Sep-2024	3 days	5 days	*	15-Sep-2024	3 days	5 days	3c
				, -	, -	EHT		, -	0, -	EHT
Anions and Nutrients : Sulfate in Water by IC										
HDPE							I			
SNP 5-11	E235.SO4	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 days	✓
SIN STI		10 00p 202 ·	10 00p 2021	days	o dayo	·	10 000 2021	20 dayo	o dayo	
Anima and National a College in Wester In 10				l aays						
Anions and Nutrients : Sulfate in Water by IC HDPE							I			
SNP 5-12	E235.SO4	10-Sep-2024	15-Sep-2024	28	5 days	√	15-Sep-2024	28 days	5 days	✓
OINI 3-12	L200.004	10-00p-2024	10-00p-2024	days	o days		10-00p-2024	20 days	o days	•
				uays						
Anions and Nutrients : Sulfate in Water by IC							I			
HDPE SNP 5-13	E235.SO4	10-Sep-2024	15-Sep-2024	20	5 days	√	15-Sep-2024	28 days	5 days	√
SINE D-10	L233.304	10-36p-2024	10-0 c p-2024	28 days	Juays	•	10-06p-2024	20 days	Juays	•
				uays						
Anions and Nutrients : Sulfate in Water by IC										
HDPE	F225 CO4	10 00= 0004	45.0 2001			,	45.0 0004	00 4	F 41	,
SNP 5-4	E235.SO4	10-Sep-2024	15-Sep-2024	28	5 days	✓	15-Sep-2024	28 days	5 days	✓
				days						

Page 11 of 25 YL2401456 Work Order : Client WSP Canada Inc. Damoti Lake SNP Project

Matrix: Water	1					/aluation: × =	Holding time exce			Holding Time
Analyte Group : Analytical Method	Method	Sampling Date		raction / Pr	•			Analys		
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Anions and Nutrients : Sulfate in Water by IC			Date	/\cc	Actual			//CC	Actual	
HDPE										
SNP 5-5	E235.SO4	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	15-Sep-2024	28 days	5 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE SNP 5-6	E235.SO4	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	15-Sep-2024	28 days	5 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE SNP 5-6D	E235.SO4	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	15-Sep-2024	28 days	5 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE SNP 5-8	E235.SO4	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	15-Sep-2024	28 days	5 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE SNP 5-8-FB	E235.SO4	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	15-Sep-2024	28 days	5 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE SNP 5-9	E235.SO4	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	15-Sep-2024	28 days	5 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE Travel Blank	E235.SO4	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	15-Sep-2024	28 days	5 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) SNP 5-4	E372-U	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	17-Sep-2024	28 days	6 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) SNP 5-5	E372-U	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	17-Sep-2024	28 days	6 days	✓

 Page
 :
 12 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Matrix: Water Evaluation: **×** = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					L\	/aiuation. * =	Holding time exce	suarice , •	- vviti iii i	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
SNP 5-11	E372-U	10-Sep-2024	15-Sep-2024	28	5 days	✓	17-Sep-2024	28 days	7 days	✓
				days						
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
SNP 5-12	E372-U	10-Sep-2024	15-Sep-2024	28	5 days	✓	17-Sep-2024	28 days	7 days	✓
				days						
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
SNP 5-13	E372-U	10-Sep-2024	15-Sep-2024	28	5 days	✓	17-Sep-2024	28 days	7 days	✓
				days						
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
SNP 5-6	E372-U	10-Sep-2024	15-Sep-2024	28	5 days	✓	17-Sep-2024	28 days	7 days	✓
				days						
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)				T T						
SNP 5-6D	E372-U	10-Sep-2024	15-Sep-2024	28	5 days	✓	17-Sep-2024	28 days	7 days	✓
				days						
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
SNP 5-8	E372-U	10-Sep-2024	15-Sep-2024	28	5 days	✓	17-Sep-2024	28 days	7 days	✓
		·	·	days			·		,	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
SNP 5-8-FB	E372-U	10-Sep-2024	15-Sep-2024	28	5 days	✓	17-Sep-2024	28 days	7 days	✓
		' ' '		days	,-		,	"	,-	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)				, 3						
Amons and Nutrients: Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid)							I			
SNP 5-9	E372-U	10-Sep-2024	15-Sep-2024	28	5 days	✓	17-Sep-2024	28 days	7 days	✓
5 5 5		10 00p 2021	. 3 200 2021	days	3 44,5		555 2521		,0	•
Asiana and Nickinstan Tatal Phase have be Calculinated to 1999				days						
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (lab preserved)							I			
Travel Blank	E372-U	10-Sep-2024	15-Sep-2024	3 days	5 days	×	17-Sep-2024	28 days	1 days	✓
Havei Dialik	2012-0	10-06p-2024	10-06p-2024	Juays	Juays	EHT	17-36p-2024	20 days	1 uays	•
						LIII				

 Page
 :
 13 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Matrix: Water

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

Matrix: Water					E۱	/aluation. * -	Holding time exce	edance, v	– vvitriiri	Holding Tim
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
SNP 5-4	E421	10-Sep-2024	17-Sep-2024	180	7 days	✓	17-Sep-2024	180	7 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
SNP 5-6	E421	10-Sep-2024	17-Sep-2024	180	7 days	✓	17-Sep-2024	180	7 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
SNP 5-6D	E421	10-Sep-2024	17-Sep-2024	180	7 days	✓	17-Sep-2024	180	7 days	✓
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
Travel Blank	E421	10-Sep-2024	17-Sep-2024	180	7 days	✓	17-Sep-2024	180	7 days	✓
			·	days			· ·	days	,	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	1)									
Amber glass dissolved (sulfuric acid)	.,									
SNP 5-4	E358-L	10-Sep-2024	16-Sep-2024	28	6 days	✓	16-Sep-2024	28 days	6 days	✓
		i i	'	days			'	,	j	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	I)									
Amber glass dissolved (sulfuric acid)										
SNP 5-5	E358-L	10-Sep-2024	16-Sep-2024	28	6 days	✓	16-Sep-2024	28 days	6 davs	✓
		· '	,	days			, ,	,	. ,	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve				.,,-						
Amber glass dissolved (lab preserved)										
Travel Blank	E358-L	10-Sep-2024	15-Sep-2024	3 days	5 days	32	15-Sep-2024	28 days	0 davs	✓
Travol Blank		10 00p 202 ·	.0 000 202 .	o days	o days	EHT	10 000 202 .	20 44,0	o aayo	
Physical Tests - Alkalinity Cussins by Titustica										
Physical Tests : Alkalinity Species by Titration HDPE	l									
SNP 5-11	E290	10-Sep-2024	15-Sep-2024	14	5 days	√	16-Sep-2024	14 days	6 days	✓
ON 0-11	2200	10-00p-2024	10-00p-2024	days	Juays		10-00p-2024	1 - days	o days	*
				uays						
Physical Tests : Alkalinity Species by Titration										
HDPE	E290	10 Son 2024	15 Con 2024		E dove	✓	16 Con 2024	11 day:-	C days	✓
SNP 5-12	E290	10-Sep-2024	15-Sep-2024	14	5 days	•	16-Sep-2024	14 days	o days	•
				days						

 Page
 :
 14 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Physical Tests : Alkalinity Species by Titration

Physical Tests: Alkalinity Species by Titration

Analyte Group: Analytical Method
Container / Client Sample ID(s)

Matrix: Water

HDPE SNP 5-13

HDPE SNP 5-4

HDPE SNP 5-5

HDPE SNP 5-6

HDPE SNP 5-6D

HDPE SNP 5-8

HDPE SNP 5-8-FB

HDPE

HDPE

SNP 5-9

Travel Blank

				E۱	/aluation: 🗴 =	Holding time exce	edance ; 🕶	= Within I	Holding Tim
Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
		Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
		Date	Rec	Actual			Rec	Actual	
E290	10-Sep-2024	15-Sep-2024	14 days	5 days	✓	16-Sep-2024	14 days	6 days	✓
E290	10-Sep-2024	15-Sep-2024	14 days	5 days	√	16-Sep-2024	14 days	6 days	✓
E290	10-Sep-2024	15-Sep-2024	14 days	5 days	✓	16-Sep-2024	14 days	6 days	✓
E290	10-Sep-2024	15-Sep-2024	14 days	5 days	1	16-Sep-2024	14 days	6 days	✓
E290	10-Sep-2024	15-Sep-2024	14 days	5 days	4	16-Sep-2024	14 days	6 days	✓
E290	10-Sep-2024	15-Sep-2024	14 days	5 days	✓	16-Sep-2024	14 days	6 days	✓
E290	10-Sep-2024	15-Sep-2024	14	5 days	✓	16-Sep-2024	14 days	6 days	√

days

14

days

14 days 5 days

5 days

✓

1

16-Sep-2024

16-Sep-2024

15-Sep-2024

15-Sep-2024

E290

E290

10-Sep-2024

10-Sep-2024

✓

 \checkmark

14 days 6 days

14 days 6 days

 Page
 :
 15 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Matrix: Water

Evaluation: \times = Holding time exceedance: \checkmark = \	Within	Holding ⁻	Fime.
--	--------	----------------------	-------

Matrix: Water						aldation.	Holding time exce			Tiolding Tilli
Analyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE										
SNP 5-11	E100	10-Sep-2024	15-Sep-2024	28	5 days	✓	16-Sep-2024	28 days	6 days	✓
				days						
Physical Tests : Conductivity in Water										
HDPE										
SNP 5-12	E100	10-Sep-2024	15-Sep-2024	28	5 days	✓	16-Sep-2024	28 days	6 days	✓
		· ·	'	days			'		,	
Physical Tosta - Conductivity in Water				,						
Physical Tests : Conductivity in Water HDPE										
SNP 5-13	E100	10-Sep-2024	15-Sep-2024	28	5 days	✓	16-Sep-2024	28 days	6 days	√
311 0 10	2.00	10 00p 202 .	.0 000 202.	days	o days		10 000 202 .	20 00,0	o aayo	
				uays						
Physical Tests : Conductivity in Water										
HDPE	E400	40.0 0004	45.0 0004		F .1		40.0 0004	00 1	0.1	,
SNP 5-4	E100	10-Sep-2024	15-Sep-2024	28	5 days	✓	16-Sep-2024	28 days	6 days	✓
				days						
Physical Tests : Conductivity in Water										
HDPE										
SNP 5-5	E100	10-Sep-2024	15-Sep-2024	28	5 days	✓	16-Sep-2024	28 days	6 days	✓
				days						
Physical Tests : Conductivity in Water										
HDPE										
SNP 5-6	E100	10-Sep-2024	15-Sep-2024	28	5 days	✓	16-Sep-2024	28 days	6 days	✓
				days						
Physical Tests : Conductivity in Water			111111					1		
HDPE										
SNP 5-6D	E100	10-Sep-2024	15-Sep-2024	28	5 days	✓	16-Sep-2024	28 days	6 days	✓
		' ' '		days	,-			- ,-	,-	
Dhysical Tasta - Candustivity in Water				,5						
Physical Tests : Conductivity in Water HDPE				I						
SNP 5-8	E100	10-Sep-2024	15-Sep-2024	28	5 days	√	16-Sep-2024	28 days	6 days	✓
ON 5-0	L100	10-06p-2024	10-06p-2024		Juays	,	10-06p-2024	20 days	o uays	•
				days						
Physical Tests : Conductivity in Water										
HDPE	F400	40.0 005.			L .					,
SNP 5-8-FB	E100	10-Sep-2024	15-Sep-2024	28	5 days	✓	16-Sep-2024	28 days	6 days	✓
				days						

Page 16 of 25 YL2401456 Work Order : Client WSP Canada Inc. Damoti Lake SNP Project

Matrix: Water					Ev	valuation: ≭ =	Holding time exce	edance ; •	/ = Within	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
, ,,			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE										
SNP 5-9	E100	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	16-Sep-2024	28 days	6 days	✓
Physical Tests : Conductivity in Water										
HDPE										
Travel Blank	E100	10-Sep-2024	15-Sep-2024	28 days	5 days	✓	16-Sep-2024	28 days	6 days	✓
Physical Tests : pH by Meter										
HDPE										
SNP 5-5	E108	10-Sep-2024	15-Sep-2024	0.25 hrs	120 hrs	# EHTR-FM	16-Sep-2024	0.25 hrs	147 hrs	≭ EHTR-FM
Physical Tests : pH by Meter										
HDPE										
Travel Blank	E108	10-Sep-2024	15-Sep-2024	0.25 hrs	120 hrs	# EHTR-FM	16-Sep-2024	0.25 hrs	147 hrs	≭ EHTR-FM
Physical Tests : pH by Meter										
HDPE										
SNP 5-4	E108	10-Sep-2024	15-Sep-2024	0.25	121 hrs	32	16-Sep-2024	0.25	148 hrs	se
				hrs		EHTR-FM		hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
SNP 5-6	E108	10-Sep-2024	15-Sep-2024	0.25 hrs	121 hrs	# EHTR-FM	16-Sep-2024	0.25 hrs	148 hrs	# EHTR-FM
Physical Tests : pH by Meter										
HDPE										
SNP 5-6D	E108	10-Sep-2024	15-Sep-2024	0.25 hrs	121 hrs	# EHTR-FM	16-Sep-2024	0.25 hrs	148 hrs	≭ EHTR-FM
Physical Tests : pH by Meter							l			
HDPE										
SNP 5-12	E108	10-Sep-2024	15-Sep-2024	0.25	122 hrs	×	16-Sep-2024	0.25	149 hrs	sc
			,	hrs		EHTR-FM		hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
SNP 5-11	E108	10-Sep-2024	15-Sep-2024	0.25	122 hrs	*	16-Sep-2024	0.25	150 hrs	3¢

hrs

EHTR-FM

EHTR-FM

hrs

 Page
 :
 17 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					E\	/aluation. ^ –	Holding time excee	euance,	<u> </u>	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE										
SNP 5-8	E108	10-Sep-2024	15-Sep-2024	0.25	123 hrs	se	16-Sep-2024	0.25	150 hrs	se .
				hrs		EHTR-FM		hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
SNP 5-8-FB	E108	10-Sep-2024	15-Sep-2024	0.25	123 hrs	3E	16-Sep-2024	0.25	150 hrs	3c
			•	hrs		EHTR-FM		hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
SNP 5-9	E108	10-Sep-2024	15-Sep-2024	0.25	123 hrs	×	16-Sep-2024	0.25	150 hrs	se .
		·	, i	hrs		EHTR-FM	·	hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
SNP 5-13	E108	10-Sep-2024	15-Sep-2024	0.25	123 hrs	×	16-Sep-2024	0.25	151 hrs	3 2
ON 0-10		10 000 202	10 00p 2021	hrs	1201110	EHTR-FM	10 000 2021	hrs	1011110	EHTR-FM
Photo IT of Tools On the College Day				1113		LITTICITIO		1113		LITTICITY
Physical Tests: TSS by Gravimetry (Low Level)				I	1					
HDPE [TSS-WB] SNP 5-4	E160-L	10-Sep-2024					17-Sep-2024	7 days	6 days	✓
SINP 5-4	E 100-L	10-Sep-2024					17-Sep-2024	7 days	6 days	•
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]	E400.1	40.0								,
SNP 5-5	E160-L	10-Sep-2024					17-Sep-2024	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
SNP 5-6	E160-L	10-Sep-2024					17-Sep-2024	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
SNP 5-6D	E160-L	10-Sep-2024					17-Sep-2024	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
Travel Blank	E160-L	10-Sep-2024					17-Sep-2024	7 days	6 days	✓

 Page
 :
 18 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water								,		Holding I in
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
SNP 5-11	E160-L	10-Sep-2024					17-Sep-2024	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
SNP 5-12	E160-L	10-Sep-2024					17-Sep-2024	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]							<u> </u>			
SNP 5-13	E160-L	10-Sep-2024					17-Sep-2024	7 days	7 days	✓
		· '					'	ľ	1	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
SNP 5-8	E160-L	10-Sep-2024					17-Sep-2024	7 days	7 days	1
SINF 3-0	L100-L	10-00p-2024					17-0ep-2024	7 days	r days	•
Physical Tests : TSS by Gravimetry (Low Level)				I	I			I		
HDPE [TSS-WB] SNP 5-8-FB	E160-L	10-Sep-2024					17-Sep-2024	7 days	7 days	✓
SINP 0-0-FB	E100-L	10-3ep-2024					17-3ep-2024	7 uays	1 days	•
Physical Tests : TSS by Gravimetry (Low Level)					ı			1		
HDPE [TSS-WB]	E400 I	40.0 2004					47.0 0004	7 1	7	✓
SNP 5-9	E160-L	10-Sep-2024					17-Sep-2024	7 days	7 days	•
Total Metals : Total Mercury in Water by CVAAS								_		
Glass vial total (hydrochloric acid)						,				,
SNP 5-4	E508	10-Sep-2024	20-Sep-2024	28	10	✓	20-Sep-2024	28 days	10 days	✓
				days	days					
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
SNP 5-5	E508	10-Sep-2024	20-Sep-2024	28	10	✓	20-Sep-2024	28 days	10 days	✓
				days	days					
Total Metals : Total Mercury in Water by CVAAS										
Glass vial - total (lab preserved)										
Travel Blank	E508	10-Sep-2024	20-Sep-2024	28	10	✓	20-Sep-2024	28 days	10 days	✓
	1	1		days	days		I	1		

Page 19 of 25 YL2401456 Work Order : Client WSP Canada Inc. Project Damoti Lake SNP

atrix: Water					Ev	/aluation: × =	Holding time excee	edance ;	✓ = Within	n Holding Tir
nalyte Group : Analytical Method	Method	Sampling Date	Ex	traction / Pi	reparation			Analy	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holdin	g Times	Eval
			Date	Rec	Actual		,	Rec	Actual	-
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SNP 5-11	E420	10-Sep-2024	18-Sep-2024	180	8 days	✓	19-Sep-2024	180	9 days	✓
				days				days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SNP 5-12	E420	10-Sep-2024	18-Sep-2024	180	8 days	✓	19-Sep-2024	180	9 days	✓
				days				days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SNP 5-13	E420	10-Sep-2024	18-Sep-2024	180	8 days	✓	19-Sep-2024	180	9 days	✓
				days				days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SNP 5-4	E420	10-Sep-2024	18-Sep-2024	180	8 days	✓	19-Sep-2024	180	9 days	✓
				days				days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SNP 5-5	E420	10-Sep-2024	18-Sep-2024	180	8 days	✓	19-Sep-2024	180	9 days	✓
				days				days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SNP 5-6	E420	10-Sep-2024	18-Sep-2024	180	8 days	✓	19-Sep-2024	180	9 days	✓
				days				days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SNP 5-6D	E420	10-Sep-2024	18-Sep-2024	180	8 days	✓	19-Sep-2024	180	9 days	✓
				days				days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SNP 5-8	E420	10-Sep-2024	18-Sep-2024	180	8 days	✓	19-Sep-2024	180	9 days	✓
				days				days		
otal Metals : Total Metals in Water by CRC ICPMS										
UDDE 4-4-1 (Ish massamed)										
HDPE - total (lab preserved)										
SNP 5-8-FB	E420	10-Sep-2024	18-Sep-2024	180	8 days	✓	19-Sep-2024	180	9 days	✓

 Page
 :
 20 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

Project : WSP Canada Inc.

Project : Damoti Lake SNP

Matrix: Water

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
SNP 5-9	E420	10-Sep-2024	18-Sep-2024	180	8 days	✓	19-Sep-2024	180	9 days	✓
				days				days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
Travel Blank	E420	10-Sep-2024	18-Sep-2024	180	8 days	✓	19-Sep-2024	180	9 days	✓
				days				days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

 Page
 :
 21 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		Frequency (%)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	1652648	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	1652609	2	30	6.6	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	1652643	1	20	5.0	5.0	√
Chloride in Water by IC	E235.CI	1652642	1	20	5.0	5.0	<u>√</u>
Conductivity in Water	E100	1652649	1	20	5.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	1653466	2	17	11.7	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1652605	2	23	8.7	5.0	1
Fluoride in Water by IC	E235.F	1652641	1	20	5.0	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	1652644	1	20	5.0	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	1652645	1	20	5.0	5.0	1
pH by Meter	E108	1652647	1	20	5.0	5.0	1
Sulfate in Water by IC	E235.SO4	1652646	1	20	5.0	5.0	1
Total Mercury in Water by CVAAS	E508	1662438	2	40	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	1653796	1	19	5.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1652608	2	30	6.6	5.0	✓
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	1652648	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	1652609	2	30	6.6	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	1652643	1	20	5.0	5.0	✓
Chloride in Water by IC	E235.CI	1652642	1	20	5.0	5.0	1
Conductivity in Water	E100	1652649	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1653466	1	17	5.8	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1652605	2	23	8.7	5.0	✓
Fluoride in Water by IC	E235.F	1652641	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	1652644	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	1652645	1	20	5.0	5.0	✓
pH by Meter	E108	1652647	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1652646	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	1662438	2	40	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	1653796	1	19	5.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1652608	2	30	6.6	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	1654692	1	19	5.2	5.0	✓
Method Blanks (MB)							
Alkalinity Species by Titration	E290	1652648	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	1652609	2	30	6.6	5.0	1

 Page
 :
 22 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Matrix: Water Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specification.

Matrix: Water		Evaluation: x = QC frequency outside specification; ✓ = QC frequency within spec							
Quality Control Sample Type			Co	ount		Frequency (%,)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Method Blanks (MB) - Continued									
Bromide in Water by IC (Low Level)	E235.Br-L	1652643	1	20	5.0	5.0	1		
Chloride in Water by IC	E235.CI	1652642	1	20	5.0	5.0	✓		
Conductivity in Water	E100	1652649	1	20	5.0	5.0	✓		
Dissolved Metals in Water by CRC ICPMS	E421	1653466	2	17	11.7	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1652605	2	23	8.7	5.0	✓		
Fluoride in Water by IC	E235.F	1652641	1	20	5.0	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	1652644	1	20	5.0	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	1652645	1	20	5.0	5.0	✓		
Sulfate in Water by IC	E235.SO4	1652646	1	20	5.0	5.0	✓		
Total Mercury in Water by CVAAS	E508	1662438	2	40	5.0	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	1653796	1	19	5.2	5.0	✓		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1652608	2	30	6.6	5.0	✓		
TSS by Gravimetry (Low Level)	E160-L	1654692	1	19	5.2	5.0	✓		
Matrix Spikes (MS)									
Ammonia by Fluorescence	E298	1652609	2	30	6.6	5.0	✓		
Bromide in Water by IC (Low Level)	E235.Br-L	1652643	1	20	5.0	5.0	✓		
Chloride in Water by IC	E235.CI	1652642	1	20	5.0	5.0	✓		
Dissolved Metals in Water by CRC ICPMS	E421	1653466	2	17	11.7	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1652605	2	23	8.7	5.0	✓		
Fluoride in Water by IC	E235.F	1652641	1	20	5.0	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	1652644	1	20	5.0	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	1652645	1	20	5.0	5.0	✓		
Sulfate in Water by IC	E235.SO4	1652646	1	20	5.0	5.0	✓		
Total Mercury in Water by CVAAS	E508	1662438	2	40	5.0	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	1653796	1	19	5.2	5.0	✓		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1652608	2	30	6.6	5.0	✓		

 Page
 :
 23 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	ALS Environmental -			sample. Conductivity measurements are temperature-compensated to 25°C.
	Vancouver			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	ALS Environmental -			pH should be measured in the field within the recommended 15 minute hold time.
	Vancouver			
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	ALS Environmental -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Vancouver			brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Vancouver			
Chloride in Water by IC	E235.CI	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Vancouver			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	ALS Environmental -			
	Vancouver			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Vancouver			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Vancouver			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	ALS Environmental -			
	Vancouver			

 Page
 :
 24 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 ALS Environmental -	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
	Vancouver			ainalility values.
Ammonia by Fluorescence	E298	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	ALS Environmental - Vancouver			This method is approved under US EPA 40 CFR Part 136 (May 2021)
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
(ALS Environmental - Vancouver			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U ALS Environmental - Vancouver	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Metals in Water by CRC ICPMS	E420 ALS Environmental -	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Vancouver			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Metals in Water by CRC ICPMS	E421 ALS Environmental -	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	Vancouver			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	ALS Environmental - Vancouver			
Dissolved Hardness (Calculated)	EC100	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	ALS Environmental - Vancouver			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Hardness (Calculated) from Total Ca/Mg	EC100A	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	ALS Environmental -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Vancouver			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations. Hardness from total Ca/Mg is
				normally comparable to Dissolved Hardness in non-turbid waters.

 Page
 :
 25 of 25

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
TDS in Water (Calculation) from Total Metals	EC103.B ALS Environmental - Vancouver	Water	APHA 1030E (mod)	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Total Metals species are used. Minor ions are included where data is present. Samples with particulate are not appropriate for this calculation. This calculation is typically used for drinking waters or potable waters with a turbidity <1NTU
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	ALS Environmental -			
	Vancouver			
Preparation for Dissolved Organic Carbon for Combustion	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
	ALS Environmental -			
	Vancouver			
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	ALS Environmental -			
	Vancouver			
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	ALS Environmental -			
	Vancouver			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Account Manager

Work Order Page :YL2401456

Client : WSP Canada Inc. Laboratory : ALS Environmental - Yellowknife :Saad Pasha

Address Address : 2800, 700 - 2nd Street SW :314 Old Airport Road, Unit 116

: Oliver Gregg Yellowknife, Northwest Territories Canada X1A 3T3

: 1 of 17

Telephone :1 867 445 7143

· Damoti Lake SNP Date Samples Received :11-Sep-2024 10:58

: 2024CA215454/1000.1001 **Date Analysis Commenced** :15-Sep-2024

C-O-C number Issue Date :20-Sep-2024 12:36 Sampler : Sarah Beattie

Site : Damoti Lake

Quote number : YL24-GOLD100-002

No. of samples received : 11 No. of samples analysed : 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

Calgary AB Canada T2P 2W2

403.512.6580

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

Contact

Telephone

Project

PO

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Erin Sanchez		Vancouver Metals, Burnaby, British Columbia	
Kate Dimitrova	Supervisor - Inorganic	Vancouver Inorganics, Burnaby, British Columbia	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia	
Monica Ko	Lab Assistant	Vancouver Inorganics, Burnaby, British Columbia	
Owen Cheng		Vancouver Metals, Burnaby, British Columbia	

 Page
 :
 2 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

ALS

 Page
 :
 3 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	atory Duplicate (D	OUP) Report			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Physical Tests (QC	Lot: 1652647)											
VA24C4010-003	Anonymous	pH		E108	0.10	pH units	5.66	5.65	0.177%	4%		
Physical Tests (QC	Lot: 1652648)											
VA24C4010-003	Anonymous	Alkalinity, total (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
Physical Tests (QC	Lot: 1652649)											
VA24C4010-003	Anonymous	Conductivity		E100	2.0	μS/cm	<2.0	<2.0	0	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 1652608)											
KS2403731-001	Anonymous	Phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.129	0.127	1.60%	20%		
Anions and Nutrien	ts (QC Lot: 1652609)											
KS2403731-001	Anonymous	Ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0067	0.0069	0.0001	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 1652632)											
YL2401456-001	SNP 5-4	Phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0124	0.0129	0.0005	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 1652633)											
YL2401456-001	SNP 5-4	Ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0247	0.0247	0.00004	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 1652641)											
VA24C4010-001	Anonymous	Fluoride	16984-48-8	E235.F	0.020	mg/L	0.251	0.248	1.42%	20%		
Anions and Nutrien	ts (QC Lot: 1652642)											
VA24C4010-001	Anonymous	Chloride	16887-00-6	E235.CI	0.50	mg/L	5.45	5.39	1.13%	20%		
Anions and Nutrien	ts (QC Lot: 1652643)											
VA24C4010-001	Anonymous	Bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 1652644)											
VA24C4010-001	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 1652645)											
VA24C4010-001	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0063	0.0062	0.00006	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 1652646)											
VA24C4010-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	4.12	4.03	2.17%	20%		
Organic / Inorganic	Carbon (QC Lot: 16526	05)										
KS2403731-003	Anonymous	Carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.44	1.80	0.36	Diff <2x LOR		
Organic / <u>Inorganic</u>	Carbon (QC Lot: 16530	58)										
VA24C3191-001	Anonymous	Carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	15.9	16.6	3.72%	20%		
Total Metals (QC Lo	ot: 1653796)											

 Page
 :
 4 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 1653796) - continued										
FJ2402737-001	Anonymous	Aluminum, total	7429-90-5	E420	0.0030	mg/L	0.156	0.175	11.3%	20%	
		Antimony, total	7440-36-0	E420	0.00010	mg/L	0.00017	0.00017	0.000003	Diff <2x LOR	
		Arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00040	0.00040	0.000005	Diff <2x LOR	
		Barium, total	7440-39-3	E420	0.00010	mg/L	0.124	0.120	3.22%	20%	
		Beryllium, total	7440-41-7	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		Bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Boron, total	7440-42-8	E420	0.010	mg/L	0.040	0.041	0.0005	Diff <2x LOR	
		Cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0000755	0.0000749	0.897%	20%	
		Calcium, total	7440-70-2	E420	0.050	mg/L	148	146	1.65%	20%	
		Cesium, total	7440-46-2	E420	0.000010	mg/L	0.000067	0.000071	0.000005	Diff <2x LOR	
		Chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00024	0.00024	0.000002	Diff <2x LOR	
		Copper, total	7440-50-8	E420	0.00050	mg/L	0.00100	0.00102	0.00002	Diff <2x LOR	
		Iron, total	7439-89-6	E420	0.010	mg/L	0.326	0.334	2.37%	20%	
		Lead, total	7439-92-1	E420	0.000050	mg/L	0.000198	0.000214	0.000016	Diff <2x LOR	
		Lithium, total	7439-93-2	E420	0.0010	mg/L	0.0327	0.0318	2.67%	20%	
		Magnesium, total	7439-95-4	E420	0.0050	mg/L	57.3	54.3	5.44%	20%	
		Manganese, total	7439-96-5	E420	0.00010	mg/L	0.0132	0.0130	0.910%	20%	
		Molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000512	0.000576	11.6%	20%	
		Nickel, total	7440-02-0	E420	0.00050	mg/L	0.00359	0.00359	0.000007	Diff <2x LOR	
		Phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		Potassium, total	7440-09-7	E420	0.050	mg/L	1.39	1.38	1.01%	20%	
		Rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00118	0.00125	0.00007	Diff <2x LOR	
		Selenium, total	7782-49-2	E420	0.000050	mg/L	0.00174	0.00172	1.25%	20%	
		Silicon, total	7440-21-3	E420	0.10	mg/L	2.40	2.37	1.36%	20%	
		Silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Sodium, total	7440-23-5	E420	0.050	mg/L	10.4	10.2	2.29%	20%	
		Strontium, total	7440-24-6	E420	0.00020	mg/L	0.189	0.182	3.92%	20%	
		Sulfur, total	7704-34-9	E420	0.50	mg/L	151	146	3.37%	20%	
		Tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Thallium, total	7440-28-0	E420	0.000010	mg/L	0.000010	0.000010	0.0000003	Diff <2x LOR	
		Thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Titanium, total	7440-32-6	E420	0.00180	mg/L	<0.00180	<0.00180	0	Diff <2x LOR	

 Page
 :
 5 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 1653796) - continued										
FJ2402737-001	Anonymous	Tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Uranium, total	7440-61-1	E420	0.000010	mg/L	0.00214	0.00212	0.505%	20%	
		Vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00115	0.00121	0.00006	Diff <2x LOR	
		Zinc, total	7440-66-6	E420	0.0030	mg/L	0.0046	0.0048	0.0002	Diff <2x LOR	
		Zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 1662438)										
FJ2402787-001	Anonymous	Mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 1662439)										
YL2401456-011	Travel Blank	Mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 1653466)										
VA24C3828-001	Anonymous	Aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0075	0.0069	0.0006	Diff <2x LOR	
VA24C3828-001	Anonymous	Antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00110	0.00110	0.242%	20%	
		Arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00203	0.00208	2.17%	20%	
		Barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.00805	0.00789	1.94%	20%	
		Beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		Bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Boron, dissolved	7440-42-8	E421	0.010	mg/L	0.051	0.050	0.002	Diff <2x LOR	
		Cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000086	0.0000093	0.0000007	Diff <2x LOR	
		Calcium, dissolved	7440-70-2	E421	0.050	mg/L	279	275	1.59%	20%	
		Cesium, dissolved	7440-46-2	E421	0.000010	mg/L	0.000268	0.000266	0.510%	20%	
		Chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00207	0.00207	0.0329%	20%	
		Copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00074	0.00075	0.00001	Diff <2x LOR	
		Iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		Lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0063	0.0060	0.0003	Diff <2x LOR	
		Magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	78.2	76.6	2.07%	20%	
		Manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.272	0.268	1.47%	20%	
		Molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000646	0.000662	2.36%	20%	
		Nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00213	0.00213	0.000005	Diff <2x LOR	
		Phosphorus, dissolved	7723-14-0	E421	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		Potassium, dissolved	7440-09-7	E421	0.050	mg/L	14.0	13.7	2.45%	20%	
		Rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.0101	0.0102	0.438%	20%	
		Selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000083	0.000084	0.0000007	Diff <2x LOR	
				[**						=== ======	

 Page
 :
 6 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 1653466) - co	ntinued									
VA24C3828-001	Anonymous	Silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.11	2.10	0.761%	20%	
		Silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Sodium, dissolved	7440-23-5	E421	0.050	mg/L	25.7	25.1	2.54%	20%	
		Strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.767	0.762	0.657%	20%	
		Sulfur, dissolved	7704-34-9	E421	0.50	mg/L	365	362	1.04%	20%	
		Tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		Tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000402	0.000411	2.14%	20%	
		Vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0090	0.0085	0.0005	Diff <2x LOR	
		Zirconium, dissolved	7440-67-7	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	

 Page
 :
 7 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1652648)					
Alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 1652649)					
Conductivity	E100	1	μS/cm	1.3	
Physical Tests (QCLot: 1654692)					
Solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 1652608)					
Phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 1652609)					
Ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 1652632)					
Phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 1652633)					
Ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 1652641)					
Fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 1652642)					
Chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 1652643)					
Bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 1652644)					
Nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 1652645)					
Nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 1652646)					
Sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Organic / Inorganic Carbon (QCLot: 1652605)					
Carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 1653058)					
Carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
otal Metals (QCLot: 1653796)					
Aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
Antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	

 Page
 :
 8 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Sub-Matrix: Water

nalyte	CAS Number Me	ethod	LOR	Unit	Result	Qualifier
otal Metals (QCLot: 1653796)	- continued					
Arsenic, total	7440-38-2 E4	420	0.0001	mg/L	<0.00010	
Barium, total	7440-39-3 E4	420	0.0001	mg/L	<0.00010	
Beryllium, total	7440-41-7 E4	420	0.00002	mg/L	<0.000020	
Bismuth, total	7440-69-9 E4	420	0.00005	mg/L	<0.000050	
Boron, total	7440-42-8 E4	420	0.01	mg/L	<0.010	
Cadmium, total	7440-43-9 E4	420	0.000005	mg/L	<0.0000050	
Calcium, total	7440-70-2 E4	420	0.05	mg/L	<0.050	
Cesium, total	7440-46-2 E4	420	0.00001	mg/L	<0.000010	
Chromium, total	7440-47-3 E4	420	0.0005	mg/L	<0.00050	
Cobalt, total	7440-48-4 E4	420	0.0001	mg/L	<0.00010	
Copper, total	7440-50-8 E4	420	0.0005	mg/L	<0.00050	
Iron, total	7439-89-6 E4	420	0.01	mg/L	<0.010	
Lead, total	7439-92-1 E4	420	0.00005	mg/L	<0.000050	
Lithium, total	7439-93-2 E4	420	0.001	mg/L	<0.0010	
Magnesium, total	7439-95-4 E4	420	0.005	mg/L	<0.0050	
Manganese, total	7439-96-5 E4	420	0.0001	mg/L	<0.00010	
Molybdenum, total	7439-98-7 E4	420	0.00005	mg/L	<0.000050	
Nickel, total	7440-02-0 E4	420	0.0005	mg/L	<0.00050	
Phosphorus, total	7723-14-0 E4	420	0.05	mg/L	<0.050	
Potassium, total	7440-09-7 E4	420	0.05	mg/L	<0.050	
Rubidium, total	7440-17-7 E4	420	0.0002	mg/L	<0.00020	
Selenium, total	7782-49-2 E4	420	0.00005	mg/L	<0.000050	
Silicon, total	7440-21-3 E4	420	0.1	mg/L	<0.10	
Silver, total	7440-22-4 E4	420	0.00001	mg/L	<0.000010	
Sodium, total	7440-23-5 E4	420	0.05	mg/L	<0.050	
Strontium, total	7440-24-6 E4	420	0.0002	mg/L	<0.00020	
Sulfur, total	7704-34-9 E4	420	0.5	mg/L	<0.50	
Tellurium, total	13494-80-9 E4	420	0.0002	mg/L	<0.00020	
Thallium, total	7440-28-0 E4	420	0.00001	mg/L	<0.000010	
Thorium, total	7440-29-1 E4	420	0.0001	mg/L	<0.00010	
Tin, total	7440-31-5 E4	420	0.0001	mg/L	<0.00010	
Titanium, total	7440-32-6 E4	420	0.0003	mg/L	<0.00030	
Tungsten, total	7440-33-7 E4	420	0.0001	mg/L	<0.00010	
Uranium, total	7440-61-1 E4	420	0.00001	mg/L	<0.000010	
Vanadium, total	7440-62-2 E4	420	0.0005	mg/L	<0.00050	

 Page
 :
 9 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 1653796) - c	continued					
Zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
otal Metals (QCLot: 1662438)						
Mercury, total	7439-97-6	E508	0.000005	mg/L	<0.0000050	
otal Metals (QCLot: 1662439)						
Mercury, total	7439-97-6	E508	0.000005	mg/L	<0.0000050	
Dissolved Metals (QCLot: 165346	66)					
Aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	MBRR
Antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
Arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
Barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
Beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
Bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
Boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
Cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
Calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
Cesium, dissolved	7440-46-2	E421	0.00001	mg/L	<0.000010	
Chromium, dissolved	7440-47-3	E421	0.0005	mg/L	<0.00050	
Cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
Copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
Iron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
Lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
Lithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
Magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
Manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
Molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
Nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
Phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	<0.050	
Potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
Rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	<0.00020	
Selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
Silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
Silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
Sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
Strontium, dissolved	7440-24-6		0.0002	mg/L	<0.00020	

 Page
 :
 10 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 1653466)	- continued					
Sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
Tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	<0.00020	
Thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
Thorium, dissolved	7440-29-1	E421	0.0001	mg/L	<0.00010	
Tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
Titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
Tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	<0.00010	
Uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
Vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
Zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Zirconium, dissolved	7440-67-7	E421	0.0002	mg/L	<0.00020	

Qualifiers

Qualifier	Description

MBRR

Initial MB for this submission had positive results for flagged analyte (data not shown). Low level samples were repeated with new QC (2nd MB results shown). High level results (>5x initial MB level) and non-detect results were reported and are defensible

 Page
 :
 11 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	o-Matrix: Water						Laboratory Control Sample (LCS) Report						
	_				Spike	Recovery (%)	Recovery	Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier				
Physical Tests (QCLot: 1652647)													
рН		E108		pH units	7 pH units	100	98.0	102					
Physical Tests (QCLot: 1652648)													
Alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	102	85.0	115					
Physical Tests (QCLot: 1652649)													
Conductivity		E100	1	μS/cm	147 μS/cm	96.9	90.0	110					
Physical Tests (QCLot: 1654692)													
Solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	86.2	85.0	115					
Anions and Nutrients (QCLot: 1652608)	7723-14-0	F272 II	0.002	m a/l	0.05 mg/l	96.2	80.0	120					
Phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	96.2	80.0	120					
Anions and Nutrients (QCLot: 1652609) Ammonia, total (as N)	7664-41-7	E200	0.005	mg/l	0.2 mg/L	97.6	85.0	115					
	7004-41-7	E290	0.005	mg/L	0.2 mg/L	97.6	05.0	115					
Anions and Nutrients (QCLot: 1652632) Phosphorus, total	7723-14-0	E272 II	0.002	mg/l	0.05 mg/L	96.3	80.0	120					
	7723-14-0	E372-0	0.002	mg/L	0.05 mg/L	90.3	80.0	120					
Anions and Nutrients (QCLot: 1652633) Ammonia, total (as N)	7664-41-7	F208	0.005	mg/L	0.2 mg/L	104	85.0	115					
	7004-41-7	L230	0.000	mg/L	0.2 mg/L	104	00.0	113					
Anions and Nutrients (QCLot: 1652641)	16984-48-8	F235 F	0.02	mg/L	1 mg/L	98.6	90.0	110					
	10001 10 0		0.02	9/2	g/ =	00.0	33.3						
Anions and Nutrients (QCLot: 1652642)	16887-00-6	F235 CI	0.5	mg/L	100 mg/L	100	90.0	110					
				9.2									
Anions and Nutrients (QCLot: 1652643) Bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	102	85.0	115					
				9.2	515 High								
Anions and Nutrients (QCLot: 1652644) Nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	99.6	90.0	110					
Anions and Nutrients (QCLot: 1652645) Nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	101	90.0	110					
Anions and Nutrients (QCLot: 1652646)													
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	101	90.0	110					
				_									
Organic / Inorganic Carbon (QCLot: 1652605)													
Carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	101	80.0	120					
Organic / Inorganic Carbon (QCLot: 1653058)													
organic rinorganic oarbon (@ocot. 100000)													

 Page
 :
 12 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)				
Analyte CAS Numb	er Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier			
Organic / Inorganic Carbon (QCLot: 1653058) - continued											
	E358-L	0.5	mg/L	8.57 mg/L	111	80.0	120				
Total Metals (QCLot: 1653796)											
Aluminum, total 7429-90	-5 E420	0.003	mg/L	2 mg/L	99.7	80.0	120				
Antimony, total 7440-36	-0 E420	0.0001	mg/L	1 mg/L	103	80.0	120				
Arsenic, total 7440-38	-2 E420	0.0001	mg/L	1 mg/L	103	80.0	120				
Barium, total 7440-39	-3 E420	0.0001	mg/L	0.25 mg/L	102	80.0	120				
Beryllium, total 7440-47	-7 E420	0.00002	mg/L	0.1 mg/L	98.4	80.0	120				
Bismuth, total 7440-69	-9 E420	0.00005	mg/L	1 mg/L	101	80.0	120				
Boron, total 7440-42	-8 E420	0.01	mg/L	1 mg/L	103	80.0	120				
Cadmium, total 7440-43	-9 E420	0.000005	mg/L	0.1 mg/L	98.7	80.0	120				
Calcium, total 7440-70	-2 E420	0.05	mg/L	50 mg/L	103	80.0	120				
Cesium, total 7440-46	-2 E420	0.00001	mg/L	0.05 mg/L	100	80.0	120				
Chromium, total 7440-47	-3 E420	0.0005	mg/L	0.25 mg/L	100	80.0	120				
Cobalt, total 7440-48	-4 E420	0.0001	mg/L	0.25 mg/L	98.4	80.0	120				
Copper, total 7440-50	-8 E420	0.0005	mg/L	0.25 mg/L	97.8	80.0	120				
Iron, total 7439-89	-6 E420	0.01	mg/L	1 mg/L	101	80.0	120				
Lead, total 7439-92	-1 E420	0.00005	mg/L	0.5 mg/L	99.9	80.0	120				
Lithium, total 7439-93	-2 E420	0.001	mg/L	0.25 mg/L	104	80.0	120				
Magnesium, total 7439-95	-4 E420	0.005	mg/L	50 mg/L	101	80.0	120				
Manganese, total 7439-96	-5 E420	0.0001	mg/L	0.25 mg/L	98.5	80.0	120				
Molybdenum, total 7439-98	-7 E420	0.00005	mg/L	0.25 mg/L	99.5	80.0	120				
Nickel, total 7440-02	-0 E420	0.0005	mg/L	0.5 mg/L	98.2	80.0	120				
Phosphorus, total 7723-14	-0 E420	0.05	mg/L	10 mg/L	97.4	80.0	120				
Potassium, total 7440-09	-7 E420	0.05	mg/L	50 mg/L	103	80.0	120				
Rubidium, total 7440-17	-7 E420	0.0002	mg/L	0.1 mg/L	96.5	80.0	120				
	-2 E420	0.00005	mg/L	1 mg/L	98.0	80.0	120				
Silicon, total 7440-2	-3 E420	0.1	mg/L	10 mg/L	102	80.0	120				
	-4 E420	0.00001	mg/L	0.1 mg/L	91.6	80.0	120				
Sodium, total 7440-23	-5 E420	0.05	mg/L	50 mg/L	103	80.0	120				
	-6 E420	0.0002	mg/L	0.25 mg/L	101	80.0	120				
	-9 E420	0.5	mg/L	50 mg/L	91.2	80.0	120				
Tellurium, total 13494-80	-9 E420	0.0002	mg/L	0.1 mg/L	96.2	80.0	120				
· · · · · · · · · · · · · · · · · · ·	-0 E420	0.00001	mg/L	1 mg/L	101	80.0	120				
· · · · · · · · · · · · · · · · · · ·	-1 E420	0.0001	mg/L	0.1 mg/L	96.2	80.0	120				
, and the second	-5 E420	0.0001	mg/L	0.5 mg/L	97.0	80.0	120				
7440-0	- 120	0.0001	g/L	0.0 mg/L	07.0	00.0	120	1			

 Page
 :
 13 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 1653796) - contin	nued									
Titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	94.1	80.0	120		
Tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	92.8	80.0	120		
Uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	102	80.0	120		
Vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	99.7	80.0	120		
Zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	97.8	80.0	120		
Zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	96.6	80.0	120		
Total Metals (QCLot: 1662438)										
Mercury, total	7439-97-6	E508	0.000005	mg/L	0 mg/L	99.7	80.0	120		
Total Metals (QCLot: 1662439)										
Mercury, total	7439-97-6	E508	0.000005	mg/L	0 mg/L	98.4	80.0	120		
Dissolved Metals (QCLot: 1653466)										
Aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	104	80.0	120		
Antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	99.6	80.0	120		
Arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	104	80.0	120		
Barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	100	80.0	120		
Beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	95.3	80.0	120		
Bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	94.6	80.0	120		
Boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	97.1	80.0	120		
Cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	97.6	80.0	120		
Calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	97.9	80.0	120		
Cesium, dissolved	7440-46-2	E421	0.00001	mg/L	0.05 mg/L	104	80.0	120		
Chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	101	80.0	120		
Cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	101	80.0	120		
Copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	100.0	80.0	120		
Iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	102	80.0	120		
Lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	94.6	80.0	120		
Lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	95.8	80.0	120		
Magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	105	80.0	120		
Manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	103	80.0	120		
Molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	97.4	80.0	120		
Nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	102	80.0	120		
Phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	104	80.0	120		
Potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	102	80.0	120		
Rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	0.1 mg/L	98.5	80.0	120		
Selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	101	80.0	120		

 Page
 :
 14 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Laboratory Control Sample (LCS) Report Sub-Matrix: Water Spike Recovery (%) Recovery Limits (%) CAS Number Method LOR Qualifier Unit Analyte LCS **Target Concentration** Low High Dissolved Metals (QCLot: 1653466) - continued 7440-21-3 E421 0.05 10 mg/L 103 80.0 120 Silicon, dissolved mg/L 7440-22-4 E421 Silver, dissolved 0.00001 mg/L 0.1 mg/L 90.1 80.0 120 7440-23-5 E421 0.05 mg/L 50 mg/L 106 80.0 120 Sodium, dissolved 7440-24-6 E421 0.0002 mg/L 0.25 mg/L 99.1 80.0 120 Strontium, dissolved 7704-34-9 E421 0.5 50 mg/L 105 80.0 Sulfur, dissolved mg/L 120 Tellurium, dissolved 13494-80-9 E421 0.0002 0.1 mg/L 102 80.0 120 mg/L Thallium, dissolved 7440-28-0 E421 0.00001 mg/L 1 mg/L 97.4 80.0 120 7440-29-1 E421 Thorium, dissolved 0.0001 mg/L 0.1 mg/L 91.0 80.0 120 7440-31-5 E421 Tin, dissolved 0.0001 mg/L 0.5 mg/L 100 80.0 120 7440-32-6 E421 0.0003 0.25 mg/L 93.3 80.0 120 Titanium, dissolved mg/L 7440-33-7 E421 98.7 Tungsten, dissolved 0.0001 mg/L 0.1 mg/L 80.0 120 7440-61-1 E421 0.00001 0.005 mg/L 97.1 80.0 120 Uranium, dissolved mg/L 0.5 mg/L 7440-62-2 E421 0.0005 104 80.0 120 Vanadium, dissolved mg/L Zinc, dissolved 7440-66-6 E421 0.001 0.5 mg/L 102 80.0 120 mg/L 0.1 mg/L Zirconium, dissolved 7440-67-7 E421 0.0002 mg/L 96.6 80.0 120

 Page
 :
 15 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							-	(MS) Report		
					Spi	ke	Recovery (%)	Recovery	y Limits (%)	
Laboratory sample II	D Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutr	rients (QCLot: 165260	08)								
KS2403731-002	Anonymous	Phosphorus, total	7723-14-0	E372-U	0.0492 mg/L	0.05 mg/L	98.4	70.0	130	
Anions and Nutr	rients (QCLot: 165260	09)								
KS2403731-002	Anonymous	Ammonia, total (as N)	7664-41-7	E298	0.0984 mg/L	0.1 mg/L	98.4	75.0	125	
Anions and Nutr	rients (QCLot: 165263	32)								
YL2401456-002	SNP 5-5	Phosphorus, total	7723-14-0	E372-U	0.0498 mg/L	0.05 mg/L	99.5	70.0	130	
Anions and Nutr	ients (QCLot: 165263	33)								
YL2401456-002	SNP 5-5	Ammonia, total (as N)	7664-41-7	E298	0.0952 mg/L	0.1 mg/L	95.2	75.0	125	
Anions and <u>Nutr</u>	rients (QCLot: 165264	1 1)							1	
VA24C4010-002	Anonymous	Fluoride	16984-48-8	E235.F	0.984 mg/L	1 mg/L	98.4	75.0	125	
Anions and Nutr	rients (QCLot: 165264	42)				_				
VA24C4010-002	Anonymous	Chloride	16887-00-6	E235.CI	103 mg/L	100 mg/L	103	75.0	125	
Anions and Nutr	rients (QCLot: 165264									
VA24C4010-002	Anonymous	Bromide	24959-67-9	E235.Br-L	0.528 mg/L	0.5 mg/L	106	75.0	125	
Anions and Nutr	rients (QCLot: 165264	14)								
VA24C4010-002	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3-L	2.60 mg/L	2.5 mg/L	104	75.0	125	
Anions and Nutr	rients (QCLot: 165264	45)								
VA24C4010-002	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2-L	0.504 mg/L	0.5 mg/L	101	75.0	125	
	rients (QCLot: 165264	, ,			3.55 t mg/2					
VA24C4010-002	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	104 mg/L	100 mg/L	104	75.0	125	
	nic Carbon (QCLot: 1				.55.2					
KS2403731-005	Anonymous	Carbon, dissolved organic [DOC]		E358-L	ND mg/L		ND	70.0	130	
	nic Carbon (QCLot: 1			2000 2	112 1119/2		.,,,	10.0	100	
YL2401456-001	SNP 5-4	Carbon, dissolved organic [DOC]		E358-L	ND mg/L		ND	70.0	130	
Total Metals (QC		carbon, alcoored diganic [DCC]		2000 2	145 Hig/E		ND I	70.0	100	
FJ2402737-002	Anonymous	Aluminum, total	7429-90-5	E420	0.189 mg/L	0.2 mg/L	94.5	70.0	130	
1 02402101-002	, anonymous	Antimony, total	7440-36-0	E420	0.0189 mg/L	0.02 mg/L	94.6	70.0	130	
		Arsenic, total	7440-38-2	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130	
		Barium, total	7440-39-3	E420	ND mg/L		ND	70.0	130	
		Beryllium, total	7440-41-7	E420	0.0366 mg/L	0.04 mg/L	91.5	70.0	130	
		Bismuth, total	7440-69-9	E420	0.00908 mg/L	0.01 mg/L	90.8	70.0	130	
		Boron, total	7440-42-8	E420	0.108 mg/L	0.01 mg/L	108	70.0	130	

 Page
 :
 16 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Sub-Matrix: Water							Matrix Spike	e (MS) Report		
oub-Matrix. Water					Spil	ke	Recovery (%)	· · ·	/ Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QCI	Lot: 1653796) <i>-</i> con	ntinued								
FJ2402737-002	Anonymous	Calcium, total	7440-70-2	E420	ND mg/L		ND	70.0	130	
102402101-002	7 thorrymous	Cesium, total	7440-46-2	E420	0.00962 mg/L	0.01 mg/L	96.2	70.0	130	
		Chromium, total	7440-47-3	E420	0.0397 mg/L	0.04 mg/L	99.3	70.0	130	
		Cobalt, total	7440-48-4	E420	0.0185 mg/L	0.02 mg/L	92.3	70.0	130	
		Copper, total	7440-50-8	E420	0.0180 mg/L	0.02 mg/L	90.3	70.0	130	
		Iron, total	7439-89-6	E420	1.89 mg/L	2 mg/L	94.4	70.0	130	
		Lead, total	7439-92-1	E420	0.0181 mg/L	0.02 mg/L	90.7	70.0	130	
		Lithium, total	7439-93-2	E420	0.0941 mg/L	0.1 mg/L	94.1	70.0	130	
		Magnesium, total	7439-95-4	E420	ND mg/L		ND	70.0	130	
		Manganese, total	7439-96-5	E420	0.0187 mg/L	0.02 mg/L	93.6	70.0	130	
		Molybdenum, total	7439-98-7	E420	0.0197 mg/L	0.02 mg/L	98.4	70.0	130	
		Nickel, total	7440-02-0	E420	0.0365 mg/L	0.04 mg/L	91.2	70.0	130	
		Phosphorus, total	7723-14-0	E420	9.80 mg/L	10 mg/L	98.0	70.0	130	
		Potassium, total	7440-09-7	E420	4.06 mg/L	4 mg/L	102	70.0	130	
		Rubidium, total	7440-17-7	E420	0.0182 mg/L	0.02 mg/L	90.8	70.0	130	
		Selenium, total	7782-49-2	E420	0.0397 mg/L	0.04 mg/L	99.2	70.0	130	
		Silicon, total	7440-21-3	E420	9.22 mg/L	10 mg/L	92.2	70.0	130	
		Silver, total	7440-22-4	E420	0.00375 mg/L	0.004 mg/L	93.8	70.0	130	
		Sodium, total	7440-23-5	E420	ND mg/L		ND	70.0	130	
		Strontium, total	7440-24-6	E420	ND mg/L		ND	70.0	130	
		Sulfur, total	7704-34-9	E420	ND mg/L		ND	70.0	130	
		Tellurium, total	13494-80-9	E420	0.0396 mg/L	0.04 mg/L	98.9	70.0	130	
		Thallium, total	7440-28-0	E420	0.00359 mg/L	0.004 mg/L	89.7	70.0	130	
		Thorium, total	7440-29-1	E420	0.0205 mg/L	0.02 mg/L	102	70.0	130	
		Tin, total	7440-31-5	E420	0.0187 mg/L	0.02 mg/L	93.5	70.0	130	
		Titanium, total	7440-32-6	E420	0.0389 mg/L	0.04 mg/L	97.2	70.0	130	
		Tungsten, total	7440-33-7	E420	0.0180 mg/L	0.02 mg/L	89.8	70.0	130	
		Uranium, total	7440-61-1	E420	0.00389 mg/L	0.004 mg/L	97.2	70.0	130	
		Vanadium, total	7440-62-2	E420	0.0975 mg/L	0.1 mg/L	97.5	70.0	130	
		Zinc, total	7440-66-6	E420	0.367 mg/L	0.4 mg/L	91.9	70.0	130	
		Zirconium, total	7440-67-7	E420	0.0402 mg/L	0.04 mg/L	100	70.0	130	
Total Metals (QCI	Lot: 1662438)									
FJ2402787-002	Anonymous	Mercury, total	7439-97-6	E508	0.0000880 mg/L	0 mg/L	88.0	70.0	130	
Total Metals (QCI	Lot: 1662439)									
YL2401475-001	Anonymous	Mercury, total	7439-97-6	E508	0.0000924 mg/L	0 mg/L	92.4	70.0	130	
Dissolved Metals	(QCLot: 1653466)									
VA24C3828-002	Anonymous	Aluminum, dissolved	7429-90-5	E421	0.382 mg/L	0.4 mg/L	95.5	70.0	130	
VA24C3828-002	Anonymous	Antimony, dissolved	7440-36-0	E421	0.0380 mg/L	0.04 mg/L	95.0	70.0	130	
		Arsenic, dissolved	7440-38-2	E421	0.0392 mg/L	0.04 mg/L	98.1	70.0	130	
		Barium, dissolved	7440-39-3	E421	0.0371 mg/L	0.04 mg/L	92.8	70.0	130	
		Beryllium, dissolved	7440-41-7	E421	0.0704 mg/L	0.08 mg/L	88.0	70.0	130	
		Bismuth, dissolved	7440-69-9	E421	0.0174 mg/L	0.02 mg/L	87.1	70.0	130	
	•	Boron, dissolved	7440-42-8	E421	0.170 mg/L	0.2 mg/L	84.8	70.0	130	

 Page
 :
 17 of 17

 Work Order
 :
 YL2401456

 Client
 :
 WSP Canada Inc.

 Project
 :
 Damoti Lake SNP

Sub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
issolved Metals	(QCLot: 1653466)	- continued								
VA24C3828-002	Anonymous	Cadmium, dissolved	7440-43-9	E421	ND mg/L		ND	70.0	130	
		Calcium, dissolved	7440-70-2	E421	ND mg/L		ND	70.0	130	
		Cesium, dissolved	7440-46-2	E421	0.0208 mg/L	0.02 mg/L	104	70.0	130	
		Chromium, dissolved	7440-47-3	E421	0.0744 mg/L	0.08 mg/L	93.0	70.0	130	
		Cobalt, dissolved	7440-48-4	E421	0.0371 mg/L	0.04 mg/L	92.9	70.0	130	
		Copper, dissolved	7440-50-8	E421	0.0345 mg/L	0.04 mg/L	86.4	70.0	130	
		Iron, dissolved	7439-89-6	E421	3.64 mg/L	4 mg/L	90.9	70.0	130	
		Lead, dissolved	7439-92-1	E421	0.0353 mg/L	0.04 mg/L	88.4	70.0	130	
		Lithium, dissolved	7439-93-2	E421	0.174 mg/L	0.2 mg/L	87.2	70.0	130	
		Magnesium, dissolved	7439-95-4	E421	ND mg/L		ND	70.0	130	
		Manganese, dissolved	7439-96-5	E421	ND mg/L		ND	70.0	130	
		Molybdenum, dissolved	7439-98-7	E421	0.0398 mg/L	0.04 mg/L	99.5	70.0	130	
		Nickel, dissolved	7440-02-0	E421	0.0735 mg/L	0.08 mg/L	91.8	70.0	130	
		Phosphorus, dissolved	7723-14-0	E421	19.7 mg/L	20 mg/L	98.7	70.0	130	
		Potassium, dissolved	7440-09-7	E421	ND mg/L		ND	70.0	130	
		Rubidium, dissolved	7440-17-7	E421	0.0360 mg/L	0.04 mg/L	90.1	70.0	130	
		Selenium, dissolved	7782-49-2	E421	0.0779 mg/L	0.08 mg/L	97.4	70.0	130	
		Silicon, dissolved	7440-21-3	E421	17.2 mg/L	20 mg/L	86.1	70.0	130	
		Silver, dissolved	7440-22-4	E421	0.00635 mg/L	0.008 mg/L	79.4	70.0	130	
		Sodium, dissolved	7440-23-5	E421	ND mg/L		ND	70.0	130	
		Strontium, dissolved	7440-24-6	E421	ND mg/L		ND	70.0	130	
		Sulfur, dissolved	7704-34-9	E421	ND mg/L		ND	70.0	130	
		Tellurium, dissolved	13494-80-9	E421	0.0817 mg/L	0.08 mg/L	102	70.0	130	
		Thallium, dissolved	7440-28-0	E421	0.00676 mg/L	0.008 mg/L	84.5	70.0	130	
		Thorium, dissolved	7440-29-1	E421	0.0362 mg/L	0.04 mg/L	90.4	70.0	130	
		Tin, dissolved	7440-31-5	E421	0.0381 mg/L	0.04 mg/L	95.2	70.0	130	
		Titanium, dissolved	7440-32-6	E421	0.0696 mg/L	0.08 mg/L	87.0	70.0	130	
		Tungsten, dissolved	7440-33-7	E421	0.0364 mg/L	0.04 mg/L	90.9	70.0	130	
		Uranium, dissolved	7440-61-1	E421	0.00715 mg/L	0.008 mg/L	89.4	70.0	130	
		Vanadium, dissolved	7440-62-2	E421	0.193 mg/L	0.2 mg/L	96.5	70.0	130	
		Zinc, dissolved	7440-66-6	E421	ND mg/L		ND	70.0	130	
		Zirconium, dissolved	7440-67-7	E421	0.0785 mg/L	0.08 mg/L	98.1	70.0	130	

ALS)	CHAIN OF CUSTODY ALS Laboratory		RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	RECEIVED BY:	:5
			DATE/TIME Set 2014	DATE/TIME: SCOT 11/24	DATE/TIME:	DATE/TIME:	
CLIENT:	STLLR Gold Corp	TURNAROUND REQUIREMENTS:	☐ Standard TAT (List due date):		FOR LABORATORY USE ONLY (Circle)		
PROJECT:	Damoti Lake SNP	(Standard TAT may be longer for some tasts e.g Ultra Trace Organics)			Custody Seal Intact?	Yes	No N/A
SITE:	Damoti Lake				Free ice / frozen ice bricks present upon receipt?	¥≺es	No N/A
PURCHASE ORDER NO.:	NO.:		ALS QUOTE NO.:	YL24-GOLD100-002 II	Random Sample Temperature on Receipt		
PROJECT MANAGER: Harleen Kahlon	₹: Harleen Kahlon	CONTACT PH: 905-567-4444	Job Number:		Other comments:	,	
SAMPLER:	Sarah Beattle	SAMPLER MOBILE: 867-678-0984	EQUIS Facility Code: 171683648	18			
EMAIL REPORTS TO:	։ saad.pasha@wsp.com, michael.iwanyshyn@wsp.com	yn@wsp.com	EMAIL INVOICE TO: natasha.elliott@wsp.	a.elliott@wsp.com			

ALS USE ONLY

SAMPLE DETAILS

Solid(S) Water(W)

ANALYSIS REQUIRED

Additional Information

SAMPLE SNP 5-6-D SNP 5-13 SNP 5-12 SNP 5-11 SNP 5-9 SNP 5-8 SNP 5-6 SNP 5-5 SNP 5-4 Travel Blank Sample identification (This description will appear on the report) 4:30 11:30 13:30 15:00 115 2:30 2 h → TOTAL CONTAINERS O 4 4 4 4 C) 6 pH, TDS (calculated), specific conductivity, TSS, sulphate (from bottle makred Routine) × × × × × × × × × Ammonia (bottle maked Nutrients) × × × × × × × × Nitrate × × × × × × Low level total phosphorous (Colourimetric) × × × × × × × × × × Dissolved Organic Carbon (DOC) × ★ Total Metals × × × × × × × × × Dissolved Metals × Total Mercury (Low Level) × Comments on likely contaminant lavels, dilutions samples requiring specific QC analysis etc.

Wo icepenak constaty Sep

	<u></u>			Tage			-			-	551 111011			7	0	DECEMBER OF THE PROPERTY OF TH
lacksquare	CHAIN OF CUSTODY				SHED BY:		REC	EIVED BY:	aiver	lac)	RELINQU	SHED BY:		1		RECEIVED BY:
ALS	ALS Laboratory			1 7/2	est		l l							A	•	
, ,	•			DATE/TIM	E-11 50	at 20	24 DAT	E/TIME: S	cpt 11	/24	DATE/TIM	E:	12:	NC	<u> </u>	DATE/TIME:
CLIENT:	STLLR Gold Corp		ROUND REQUIREMENTS :	☐ Stand	ard TAT (Lis	due date):			10:58	•	FOR LAB	DRATORY	USE ONLY	(Circle)		
PROJECT:	Damoti Lake SNP		TAT may be longer for somo tests Trace Organics)	☐ Non S	Standard or u	geni TAT (Lis	st due date):				Custody Se					Yes No N/A
SITE:	Damoti Lake										_	ozen ice brick				Yes No N/A
PURCHASE ORDER NO.					QUOTE N	D.;		L24-GOLD	100-002 II			mple Temper	ature on Rec	eipt:		4. \ □
PROJECT MANAGER:	Harleen Kahlon	CONTACT PH:	905-567-4444		Number:						Other comm	nents:				
SAMPLER:	Sarah Beattie	SAMPLER MOBILE:	867-678-0984			Code: 17168					-					
EMAIL REPORTS TO:	saad.pasha@wsp.com, mlchad.iwa	anyshyn@wsp.com		EMA	ML INVOICE	TO: nata	sha.elliot	t@wsp.co	<u>m</u>							
SPECIAL HANDLING/ST	ORAGE OR DISPOSAL:								****							•
ALS USE ONLY	SAMPLE DETAILS	Solid(S) Water(W)	MATRIX:	CONT	TAINER MATION					<u>A</u> NALYSIS	REQUIRED	•			•	Additional Information
					1: .	Ę				ច	1					Comments on likely contaminant levels, ditutions, of samples requiring specific QC analysis etc.
						18 al (₹)			Pro Pro	(DOC)			a a			
					ERS	ine)	ents)		phor	Sarte Garage			Leve			
SAMPLE		lentification I appear on the report)	DATÉ / TIME (dd-mm-yyyy)		CONTAINERS	ulated), sp TSS, sulph Routine)	Netr		phos	aric		s _E	Cow			
					NOS	pH, TDS (calcul conductivity, T bottle makred F	aked	-	Law level total (Colourimetric)	§	- SE	d Metals	J. J.			
				MATRIX	TOTAL	TDS ducti	Ammonla (bottle make	Nitrate	r leve lourin	Dissolved	al Metals	Dissolved	¥ 78			
		····-		¥ ¥	2	H o d	₩ (a)	ž	38	2	To Tele	ā	Total			
	SNP 5-4	14:00	10-09-2024	ws	7	×	x	×	x	х	x	х	×			
	SNP 5-5	14:30	10-09-2024	ws	6	х	x	х	x	x	х		х		Envi	ronmental Division
	SNP 5-6	12:25	10-09-2024	ws	5	×	×	×	×		×	×				owknife
-	SNP 5-8	11:26	10-09-2024	ws	4	х	х		x		х				W	ork Order Reference
	SNP 5-9	19:00	10-09-2024	ws	4	х	х		x		х				Y	′L2401456
	SNP 5-11	12:15	10-09-2024	ws	4	х	х		x		х					HII MILT ALSO ANTS MILIN
	SNP 5-12	12:30	10-09-2024	ws	4	х	х		x		х					
	SNP 5-13	11:15	10-09-2024	ws	4	х.	×	ļ <u>.</u>	x		x					U (
	SNP 5-6-D	13:30	10-09-2024	ws	5	x	х	х	x		x	x	-			
	SNP 5-8-FB	11:30	10-09-2024	ws	4	х	х		x		x				li⊲leph	one: +1 867 873 5593
	Travel Blank	15:0	Q 10-09-2024	ws	7	x	x.	х	х	×	х	х	х	1	, 	<u> </u>
				TÖTAL												
		·		-	<u> </u>	L	L		<u> </u>	l			<u> </u>	1		

APPENDIX D

Quality Assurance and Quality Control

Quality Assurance/Quality Control

D1.0 INTRODUCTION

Key findings of the quality assurance and quality control (QA/QC) review for water quality are summarized below. For water quality, the field QC program collected one duplicate sample, one field blank, and one travel blank on September 10, 2024, alongside the primary Surveillance Network Program (SNP) samples. The assessment of QC sample results was completed using analytical data provided by ALS Canada Ltd. (ALS).

D2.0 WATER QUALITY

D2.1 Parameter List

Parameters required by the Type A Water Licence W2021L2-0004 (WLWB 2023) were analyzed, as requested.

D2.2 Detection Limits

Standard ALS detection limits (DLs) were used when analyzing samples collected during the September 2024 field program.

D2.3 Hold Times

ALS specifies the time between sample collection and analysis for each parameter, which should be met to obtain reliable data. For this program, the 15-minute hold time for pH (APHA 2012) was not met because ALS Canada Ltd. (ALS) cannot process the samples within this time limit. Additionally, the recommended three-day hold time for nitrate and nitrite in all samples, as well as ammonia, dissolved organic carbon, and total phosphorus in the travel blank, was exceeded. Hold times for other parameters were met.

D2.4 Units

Reported units were correct, and no issues were identified during the review of electronic data against the final certificate of analysis provided by ALS.

D2.5 Qualifiers

The ALS internal data quality report identified the following qualifiers during analysis:

- The detection limit was raised, and dilution was required due to high dissolved solids in samples at SNP 5-9 and SNP 5-11 for bromide, nitrite, and nitrate (SNP 5-9 only).
- The detection limit was adjusted due to sample matrix effects for total titanium in the sample at SNP 5-11 and for total thorium and zirconium in the duplicate sample at SNP 5-6.
- Dissolved metals concentrations exceeded total metals concentrations for:
 - arsenic in the primary sample at SNP 5-4 and the duplicate at SNP 5-6
 - phosphorus and rubidium in the primary sample at SNP 5-6 and the duplicate at SNP 5-6
 - lead in the primary sample at SNP 5-4
 - potassium in the duplicate at SNP 5-6

D2.6 Total versus Dissolved Metal Concentrations

Dissolved metal concentrations in water samples were compared to corresponding total metal concentrations. Dissolved and total concentrations were considered notable if the dissolved concentration was more than 20% higher than the total concentration. For samples collected in September 2024, dissolved concentrations were generally within 20% of total concentrations, except those identified in Section D2.5.

D2.7 Duplicate Sample Results

A duplicate water sample was collected at SNP 5-6 to assess variability during sample collection, handling, and analysis.

The relative percent difference (RPD) was used to determine the variability between the primary and duplicate samples and was calculated using the following formula:

$$RPD = ABS\left(\frac{(field\ sample\ concentration-duplicate\ sample\ concentration)}{average\ concentration}\right)\ x\ 100$$

where ABS = absolute value.

Values reported below the DLs were included in the calculations at half the applicable DL. The RPD was not calculated in cases where the concentration in both samples was less than five times the DL (i.e., within the range of analytical uncertainty).

The variability in parameter concentrations between primary and duplicate samples was considered notable if:

- the parameter concentration in at least one sample was greater than five times the DL
- the RPD was greater than 20%

These criteria are consistent with those used by ALS for internal QC procedures (Dang 2015, pers. comm.) and account for potential analytical uncertainty when concentrations approach DLs (Weiner 2000). Variability between the field and duplicate samples was rated as follows:

- low if less than 10% of the parameters included in the duplicate analysis were notably different from one another
- moderate if 10 to 30% of the parameters included in the duplicate analysis were notably different from one another
- high if more than 30% of the parameters included in the duplicate or split sample analysis were notably different from one another

The results of the comparison between the SNP 5-6 primary and duplicate samples are summarized in Table D-1. The concentrations of total suspended solids and total phosphorus had an RPD greater than 20% in the samples collected at SNP 5-6. Data re-checks were requested from the laboratory, and the results were confirmed. Overall, the variability between the primary and duplicate samples was rated as low; less than 10% of the parameters included in the analysis differed notably.

Table D-1: Duplicate Results for the Surveillance Network Program at Damoti Lake, September 10, 2024

·				IP 5-6	Relative
Parameter	Unit	Detection Limit	Sample	Duplicate	Percent Difference
Conventional Parameters				•	
pH ^(a)	unitless	0.1	8.1	8.1	5%
Specific conductivity	μS/cm	2	370	371	0%
Hardness, as CaCO₃	mg/L	0.5	188	182	3%
Total alkalinity, as CaCO₃	mg/L	2	159	158	1%
Total suspended solids	mg/L	1	3.9	5.6	36%
Total dissolved solids (calculated)	mg/L	1	218	218	0%
Major Ions					
Calcium	mg/L	0.05	44	42	4%
Chloride	mg/L	0.5	3.7	3.6	2%
Fluoride	mg/L	0.02	0.21	0.20	6%
Magnesium	mg/L	0.005	19	18.7	2%
Potassium	mg/L	0.05	5.0	5.2	3%
Sodium	mg/L	0.05	6.6	6.4	2%
Sulphate	mg/L	0.3	35	34	3%
Nutrients			<u> </u>	<u> </u>	- I
Nitrate	mg-N/L	0.005	<0.005	<0.005	-
Nitrite	mg-N/L	0.001	<0.001	<0.001	-
Total ammonia	mg-N/L	0.005	0.013	0.013	-
Total phosphorus (colourimetric)	mg-P/L	0.002	0.038	0.028	31%
Dissolved phosphorus	mg-P/L	0.05	0.32	0.30	7%
Total Metals			-		•
Aluminum	mg/L	0.003	0.072	0.071	2%
Antimony	mg/L	0.0001	<0.0001	<0.0001	-
Arsenic	mg/L	0.0001	0.001	0.00096	4%
Barium	mg/L	0.0001	0.014	0.014	1%
Beryllium	mg/L	0.00002	<0.00002	<0.00002	-
Bismuth	mg/L	0.00005	<0.00005	<0.00005	-
Boron	mg/L	0.01	0.034	0.036	-
Cadmium	mg/L	0.000005	0.0000097	0.0000079	-
Calcium	mg/L	0.05	47	49	4%
Cesium	mg/L	0.00001	0.00070	0.00068	4%
Chromium	mg/L	0.0005	0.00074	0.00075	-
Cobalt	mg/L	0.0001	0.0013	0.0011	13%
Copper	mg/L	0.0005	0.0015	0.0016	-
Iron	mg/L	0.01	0.66	0.59	11%
Lead	mg/L	0.00005	0.000088	0.000072	-
Lithium	mg/L	0.001	0.017	0.018	4%
Magnesium	mg/L	0.005	18	17	2%

Table D-1: Duplicate Results for the Surveillance Network Program at Damoti Lake, September 10, 2024

			S	Relative	
Parameter	Unit	Detection Limit	Sample	Duplicate	Percent Difference
Manganese	mg/L	0.0001	0.27	0.24	12%
Mercury	mg/L	0.0000005	-	-	-
Molybdenum	mg/L	0.00005	0.000073	0.000064	-
Nickel	mg/L	0.0005	0.0098	0.0094	4%
Potassium	mg/L	0.05	3.8	3.7	1%
Rubidium	mg/L	0.0002	0.0085	0.0083	2%
Selenium	mg/L	0.00005	0.000078	0.000083	-
Silicon	mg/L	0.1	2.9	2.9	2%
Silver	mg/L	0.00001	<0.00001	<0.0001	-
Sodium	mg/L	0.05	6.5	6.5	1%
Strontium	mg/L	0.0002	0.14	0.14	1%
Sulphur	mg/L	0.5	14	14	1%
Tellurium	mg/L	0.0002	<0.0002	<0.0002	-
Thallium	mg/L	0.00001	<0.00001	<0.0001	-
Thorium	mg/L	0.0002 - 0.0003 ^(b)	<0.0003	<0.0002	-
Tin	mg/L	0.0001	<0.0001	<0.0001	-
Titanium	mg/L	0.0003	0.0017	0.0017	1%
Tungsten	mg/L	0.0001	<0.0001	<0.0001	-
Uranium	mg/L	0.00001	0.00043	0.00041	3%
Vanadium	mg/L	0.0005	<0.0005	<0.0005	-
Zinc	mg/L	0.003	<0.003	<0.003	-
Zirconium	mg/L	0.0006	<0.0006	<0.0006	-
Dissolved Metals					1
Aluminum	mg/L	0.001	0.061	0.063	3%
Antimony	mg/L	0.0001	<0.0001	<0.0001	-
Arsenic	mg/L	0.0001	0.0012	0.0013	9%
Barium	mg/L	0.0001	0.012	0.012	1%
Beryllium	mg/L	0.00002	<0.00002	<0.00002	-
Bismuth	mg/L	0.00005	<0.00005	<0.00005	-
Boron	mg/L	0.01	0.034	0.032	-
Cadmium	mg/L	0.000005	0.000078	0.0000092	-
Cesium	mg/L	0.00001	0.00078	0.00078	1%
Chromium	mg/L	0.0005	0.00071	0.00075	-
Cobalt	mg/L	0.0001	0.0010	0.0010	2%
Copper	mg/L	0.0002	0.0017	0.0018	5%
Iron	mg/L	0.01	0.36	0.35	3%
Lead	mg/L	0.00005	0.00013	0.00015	-
Lithium	mg/L	0.001	0.016	0.016	4%
Manganese	mg/L	0.0001	0.32	0.32	1%

Table D-1: Duplicate Results for the Surveillance Network Program at Damoti Lake, September 10, 2024

		Detection Limit	S	Relative	
Parameter	Unit		Sample	Duplicate	Percent Difference
Molybdenum	mg/L	0.00005	0.000053	0.000059	-
Nickel	mg/L	0.0005	0.0085	0.0086	2%
Rubidium	mg/L	0.0002	0.012	0.012	3%
Selenium	mg/L	0.00005	0.000091	0.000068	-
Silicon	mg/L	0.05	2.8	2.8	2%
Silver	mg/L	0.00001	<0.00001	<0.00001	-
Strontium	mg/L	0.0002	0.13	0.13	1%
Sulphur	mg/L	0.5	14	13	5%
Tellurium	mg/L	0.0002	<0.0002	<0.0002	-
Thallium	mg/L	0.00001	<0.00001	<0.00001	-
Thorium	mg/L	0.0001	0.00017	0.00017	-
Tin	mg/L	0.0001	<0.0001	<0.0001	-
Titanium	mg/L	0.0003	0.0013	0.0011	-
Tungsten	mg/L	0.0001	<0.0001	<0.0001	-
Uranium	mg/L	0.00001	0.00028	0.00028	1%
Vanadium	mg/L	0.0005	<0.0005	<0.0005	-
Zinc	mg/L	0.001	0.0034	0.0035	-
Zirconium	mg/L	0.0003	0.00052	0.00052	-

Notes:

Bolded values indicate relative percent difference is greater than 20%.

The relative percent difference is calculated for duplicate samples using the following formula: RPD = (absolute value (difference in concentration between field sample and duplicate sample) / average concentration) x 100%.

- a) pH values were converted to hydrogen ion concentrations prior to calculating the relative percent difference.
- b) Detection limit adjusted during laboratory analysis due to sample matrix effects (e.g. chemical interference, colour, turbidity).

SNP = Surveillance Network Program; < = less than; CaCO3 = calcium carbonate; mg/L = milligrams per litre; μ S/cm = microsiemens per centimetre; % = percent; mg-N/L = milligrams of nitrogen per litre; mg-P/L = milligrams of phosphorous per litre; - = the relative percent difference was not calculated because the concentration in both samples was less than five times the detection limit.

D2.8 Field Blank Results

A field blank was collected at SNP 5-8 during the September 10, 2024, sampling event, with results summarized in Table D-2. Concentrations of all parameters were less than applicable DLs in the field blank, indicating a low potential for contamination during sampling.

Table D-2: Field Blank Results for the Surveillance Network Program at Damoti Lake, September 10, 2024

Parameter	Unit	Detection Limit	Field Blank (SNP 5-8)			
Conventional Parameters						
рН	unitless	0.1	5.6			
Specific conductivity	μS/cm	2	<2			
Total dissolved solids (calculated)	mg/L	1	<1			
Total suspended solids	mg/L	1	<1			

Table D-2: Field Blank Results for the Surveillance Network Program at Damoti Lake, September 10, 2024

Parameter	Unit	Detection Limit	Field Blank (SNP 5-8)
Major Ions			
Calcium	mg/L	0.05	<0.05
Chloride	mg/L	0.5	<0.5
Fluoride	mg/L	0.02	<0.02
Magnesium	mg/L	0.005	<0.005
Potassium	mg/L	0.05	<0.05
Sodium	mg/L	0.05	<0.05
Sulphate	mg/L	0.3	<0.3
Nutrients			
Nitrate as N	mg-N/L	0.005	<0.005
Nitrite as N	mg-N/L	0.001	<0.001
Total ammonia	mg-N/L	0.005	<0.005
Total phosphorus (colourimetric)	mg-P/L	0.002	<0.002
Total Metals			
Aluminum	mg/L	0.003	<0.003
Antimony	mg/L	0.0001	<0.0001
Arsenic	mg/L	0.0001	<0.0001
Barium	mg/L	0.0001	<0.0001
Beryllium	mg/L	0.00002	<0.0002
Bismuth	mg/L	0.00005	<0.0005
Boron	mg/L	0.01	<0.01
Cadmium	mg/L	0.000005	<0.00005
Calcium	mg/L	0.05	<0.05
Cesium	mg/L	0.00001	<0.0001
Chromium	mg/L	0.0005	<0.0005
Cobalt	mg/L	0.0001	<0.0001
Copper	mg/L	0.0005	<0.0005
Iron	mg/L	0.01	<0.01
Lead	mg/L	0.00005	<0.0005
Lithium	mg/L	0.001	<0.001
Magnesium	mg/L	0.005	<0.005
Manganese	mg/L	0.0001	<0.0001
Mercury	mg/L	0.0000005	-
Molybdenum	mg/L	0.00005	<0.0005
Nickel	mg/L	0.0005	<0.0005
Potassium	mg/L	0.05	<0.05
Rubidium	mg/L	0.0002	<0.0002
Selenium	mg/L	0.00005	<0.0005
Silicon	mg/L	0.1	<0.1
Silver	mg/L	0.00001	<0.0001

Table D-2: Field Blank Results for the Surveillance Network Program at Damoti Lake, September 10, 2024

			· • •
Parameter	Unit	Detection Limit	Field Blank (SNP 5-8)
Sodium	mg/L	0.05	<0.05
Strontium	mg/L	0.0002	<0.0002
Sulphur	mg/L	0.5	<0.5
Tellurium	mg/L	0.0002	<0.0002
Thallium	mg/L	0.00001	<0.00001
Thorium	mg/L	0.0001	<0.0001
Tin	mg/L	0.0001	<0.0001
Titanium	mg/L	0.0003	<0.0003
Tungsten	mg/L	0.0001	<0.0001
Uranium	mg/L	0.00001	<0.00001
Vanadium	mg/L	0.0005	<0.0005
Zinc	mg/L	0.003	<0.003
Zirconium	mg/L	0.0002	<0.0002

Notes:

D2.9 Travel Blank

A travel blank was prepared by the analytical laboratory and accompanied the field team during travel to/from the site and sampling activities. Results for the travel blank sample are summarized in Table D-3. Parameter concentrations were less than five times the applicable DLs, indicating a low potential for contamination during sample handling, transport, and storage.

Table D-3: Travel Blank Results for the Surveillance Network Program at Damoti Lake, September 10, 2024

Parameter	Unit	Detection Limit	Travel Blank			
Conventional Parameters	Conventional Parameters					
рН	unitless	0.1	5.5			
Specific conductivity	μS/cm	2	<2			
Total dissolved solids (calculated)	mg/L	1	<1			
Total suspended solids	mg/L	1	<1			
Dissolved organic carbon	mg/L	0.5	<0.5			
Major Ions	Major lons					
Calcium	mg/L	0.05	<0.05			
Chloride	mg/L	0.5	<0.5			
Fluoride	mg/L	0.02	<0.02			
Magnesium	mg/L	0.005	<0.005			
Potassium	mg/L	0.05	<0.05			
Sodium	mg/L	0.05	<0.05			
Sulphate	mg/L	0.3	<0.3			

< = less than; mg/L = milligrams per litre; μ S/cm = microsiemens per centimetre; mg-N/L = milligrams of nitrogen per litre; mg-P/L = milligrams of phosphorous per litre.

Table D-3: Travel Blank Results for the Surveillance Network Program at Damoti Lake, September 10, 2024

Parameter	Unit	Detection Limit	Travel Blank
Nutrients			
Nitrate	mg-N/L	0.005	<0.005
Nitrite	mg-N/L	0.001	<0.001
Total ammonia	mg-N/L	0.005	<0.005
Total phosphorus (colourimetric)	mg-P/L	0.002	<0.002
Dissolved phosphorus	mg-P/L	0.05	<0.05
Total Metals			
Aluminum	mg/L	0.003	<0.003
Antimony	mg/L	0.0001	<0.0001
Arsenic	mg/L	0.0001	<0.0001
Barium	mg/L	0.0001	<0.0001
Beryllium	mg/L	0.00002	<0.00002
Bismuth	mg/L	0.00005	<0.00005
Boron	mg/L	0.01	<0.01
Cadmium	mg/L	0.00005	<0.000005
Calcium	mg/L	0.05	<0.05
Cesium	mg/L	0.00001	<0.00001
Chromium	mg/L	0.0005	<0.0005
Cobalt	mg/L	0.0001	<0.0001
Copper	mg/L	0.0005	<0.0005
Iron	mg/L	0.01	<0.01
Lead	mg/L	0.00005	<0.00005
Lithium	mg/L	0.001	<0.001
Magnesium	mg/L	0.005	<0.005
Manganese	mg/L	0.0001	<0.0001
Mercury	mg/L	0.000005	<0.0000005
Molybdenum	mg/L	0.00005	<0.00005
Nickel	mg/L	0.0005	<0.0005
Potassium	mg/L	0.05	<0.05
Rubidium	mg/L	0.0002	<0.0002
Selenium	mg/L	0.00005	<0.00005
Silicon	mg/L	0.1	<0.1
Silver	mg/L	0.00001	<0.00001
Sodium	mg/L	0.05	<0.05
Strontium	mg/L	0.0002	<0.0002
Sulphur	mg/L	0.5	<0.5
Tellurium	mg/L	0.0002	<0.0002

Table D-3: Travel Blank Results for the Surveillance Network Program at Damoti Lake, September 10, 2024

Parameter	Unit	Detection Limit	Travel Blank
Thallium	mg/L	0.00001	<0.00001
Thorium	mg/L	0.0001	<0.0001
Tin	mg/L	0.0001	<0.0001
Titanium	mg/L	0.0003	<0.0003
Tungsten	mg/L	0.0001	<0.0001
Uranium	mg/L	0.00001	<0.00001
Vanadium	mg/L	0.0005	<0.0005
Zinc	mg/L	0.003	<0.003
Zirconium	mg/L	0.0002	<0.0002
Dissolved Metals			
Aluminum	mg/L	0.001	<0.001
Antimony	mg/L	0.0001	<0.0001
Arsenic	mg/L	0.0001	<0.0001
Barium	mg/L	0.0001	<0.0001
Beryllium	mg/L	0.00002	<0.00002
Bismuth	mg/L	0.00005	<0.00005
Boron	mg/L	0.01	<0.01
Cadmium	mg/L	0.000005	<0.00005
Cesium	mg/L	0.00001	<0.00001
Chromium	mg/L	0.0005	<0.0005
Cobalt	mg/L	0.0001	<0.0001
Copper	mg/L	0.0002	<0.0002
Iron	mg/L	0.01	<0.01
Lead	mg/L	0.00005	<0.00005
Lithium	mg/L	0.001	<0.001
Manganese	mg/L	0.0001	<0.0001
Molybdenum	mg/L	0.00005	<0.0005
Nickel	mg/L	0.0005	<0.0005
Rubidium	mg/L	0.0002	<0.0002
Selenium	mg/L	0.0005	<0.0005
Silicon	mg/L	0.05	<0.05
Silver	mg/L	0.00001	<0.0001
Strontium	mg/L	0.0002	<0.0002
Sulphur	mg/L	0.5	<0.5
Tellurium	mg/L	0.0002	<0.0002
Thallium	mg/L	0.0002	<0.0002
Thorium	mg/L	0.0001	<0.0001
THORUM	IIIg/L	0.0001	\0.0001

Table D-3: Travel Blank Results for the Surveillance Network Program at Damoti Lake, September 10, 2024

Parameter	Unit	Detection Limit	Travel Blank
Tin	mg/L	0.0001	<0.0001
Titanium	mg/L	0.0003	<0.0003
Tungsten	mg/L	0.0001	<0.0001
Uranium	mg/L	0.00001	<0.0001
Vanadium	mg/L	0.0005	<0.0005
Zinc	mg/L	0.001	<0.001
Zirconium	mg/L	0.0003	<0.0003

Notes:

D3.0 SUMMARY

The QA/QC assessment of the data collected during the September 10, 2024 sampling event indicated limited potential for contamination during sampling, handling, or transport. Duplicate sample results indicate that intrastation variability was low (i.e., sampling precision was high). Overall, the data are considered adequate to address the program's objectives.

D4.0 REFERENCES

- APHA (American Public Health Association). 2012. Standard Methods for the Examination of Water and Wastewater. 22nd Edition, with updates to 2015. Washington, D.C.
- Dang C. 2015. ALS Laboratory Group, Environmental Division. Personal Communication at ALS Vancouver, February 11, 2015.
- Weiner ER. 2000. Applications of Environmental Chemistry: A Practical Guide for Environmental Professionals. Lewis Publishers, Boca Raton, FL. 288 pp.
- WLWB (Wek'èezhìı Land and Water Board). 2023. Type A Water Licence W2021L2-0004. Issued January 13, 2023.

< = less than; mg/L = milligrams per litre; μ S/cm = microsiemens per centimetre; mg-N/L = milligrams of nitrogen per litre; mg-P/L = milligrams of phosphorous per litre.

